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ABSTRACT

SPARSE REPRESENTATION FOR AUDIO NOISE REMOVAL
USING ZERO-ZONE QUANTIZERS

by
Neha Mittal

In zero zone quantization, bins around zero are quantized to a zero value. This kind of

quantization can be applied on orthogonal transforms to remove the unwanted or

redundant signal. Transforms reveal structures and properties of a signal and hence

careful application of a zero zone over the transform coefficients leads to noise removal.

In this thesis, such quantizers are applied over Discrete Fourier Transform and Karhunen

Loeve Transform coefficients separately, and outputs compared. Further, the localization

of the zero zones to certain frequencies leads to better performance in terms of noise

removal. PEAQ (Perceptual Evaluation of Audio Quality) scores have been used to

measure the objective quality of the denoised signal.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Signal contamination by noise can be quite a menace in various fields like broadcasting,

telecommunications, forensic science etc. The output of noise reduction algorithms

follow the statistics of the input signal, calling for a need to design different type of

techniques for different noise and signal statistics. Noise removal has called for a lot of

research and a simple way to get rid of noise is to threshold the noisy signal to remove

signal below a defined threshold. Such thresholds are mostly applied to the signal in their

transform domain as the transform reveals the property and the structure of the signal.

Orthogonal transforms decorrelate the signal and repack their energy into less number of

coefficients, leading to a sparse representation of the signal. This thesis aims at designing

and then comparing several sparse representation techniques which result in noise

reduction.

1.2 Background Information

The ongoing research has lead to numerous noise removal techniques depending on the

area of application. Techniques might apply processing in the time domain or frequency

domain or both. Spectral Subtraction [1] is one of the most commonly used time domain

based techniques. In spectral subtraction, the short time power spectrum of the noisy

signal is computed and the short time power spectrum of the noise is subtracted from it to

receive the estimate of clean signal. However, some of the known issues with this

algorithm lie in the estimation of the noise spectrum. Weiner filtering and Kalman

1
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filtering are two of the widely used frequency domain techniques for noise removal.

Weiner filtering reduces the noise content by comparing the output with an estimate of

the desired noiseless signal but these computations appear to be more efficient for short

processing blocks. Kalman filtering is theoretically the most efficient recursive filter but

the computational complexities come in. Effective noise removal can be achieved from

Spectral Subtraction by using a Voice Activity Decoder (VAD) which estimates the

properties of noise from the processed samples in past frames.

Such techniques call for complex and sophisticated implementations. Simple and

robust theoretical concepts can be used to understand the properties of the actual signal

and noise, careful thresholding can lead to perceptual loss of noise from the data. An

attempt to get rid of the noise can also lead to parts of the actual signal getting distorted.

Hence, the level and quality of noise removal differs depending on application.

1.3 The Scope of Thesis

This work presents several sparse representation techniques that lead to noise removal.

Chapter 2 introduces the concept of sparse representation and several signal analysis

techniques. Chapter 3 talks about noise removal and tools for objectively and subjectively

measuring the quality of the speech. Chapter 4 presents the methods designed for this

thesis, results and their implication. Finally, Chapter 5 concludes the thesis while drawing

some conclusions.



CHAPTER 2

SPARSE REPRESENTATION AND ANALYSIS TECHNIQUES

The enormity of the amount of data generated and transmitted these days' demands

efficient data compression techniques. Data compression encodes information using

smaller number of bits than a regular representation requires. Compression is mainly used

to get rid of the signal redundancies and low energy component of the signal. The

simplest compression algorithm can comprise of getting rid of some samples of data

completely by applying thresholds. Careful application of thresholds can be used to the

benefit of noise removal. This Chapter introduces a very elementary technique of

achieving compression, Sparse Representation. It further introduces some signal analysis

techniques including orthogonal transforms and subband decomposition.

2.1 Sparse Representation

Sparse representation uses a linear combination of less number of elementary signals to

represent the vast amount of information present in a signal [2]. The collection of

elementary signals whose linear combination is used to represent the signal is known as a

dictionary and the elements of this dictionary are known as atoms.

Let a signal x E RN can be represented as:

where θ E RN . φ  is a vector each value of which is an element of a dictionary.

Dictionaries can be orthogonal basis such that 40 depicts the kernel and 61 = φ-1x  are the

unique transform expansion coefficients.
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The representation is exact-sparse if a large number of the coefficients 0 are zero.

This representation is made sparser by applying a threshold such that it rejects the

coefficients with values around zero. Sparse representation finds its application in

compression applications where the information to be transmitted gets reduced through

thresholding.

Sparse representations have been known to provide extremely high performance

for applications such as noise removal, compression, feature extraction, pattern

classification and blind source separation. Lossy compression leads to noise removal [6]:

noise suppressing effect and thresholding allows for simultaneous noise reduction and

compression.

2.1.1 Quantization

Quantization is the process of approximating a continuous range of values by a finite and

smaller set of discrete values. It reduces the number of bits needed in order to store an

integer value by reducing the precision of the integer. In quantization, several

quantization levels are obtained which estimates the number of bits required to transmit

the data.

Figure 2.1 a) Uniform Quantization b) Zero Zone Quantization.
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Quantization can be classified into Scalar or Vector Quantization depending on

whether the quantization is performed on individual coefficients or a group of

coefficients [3]. In scalar quantization, quantization bins are formed out of the input data

X. As explained in [4], suppose the input data X ranges within the interval [a,b], this

interval can be broken down into say 'in' bins. Each bin would carry varying number of

data points. If the interval [a, b] is divided into bins of equal size, it is said to be uniform

quantization (Figure 2.1(a)). A threshold is then decided to bring some of the bins to zero

value and the rest are transmitted as it is (Figure 2.1 (b)).

The human auditory system is less sensitive to the unvoiced speech segment

compared to the voiced speech [5]. For the voiced speech, the power spectrum displays a

more harmonic structure between frequency intervals of 75 to 3.5 kHz, which is called

the voiced band; this interval varies from speaker to speaker. When the harmonic

structure doesn't exist in the power spectrum, the speech is called unvoiced. In time-

domain such segments play a noise — like structure. However, many regions of the natural

speech display a combination of voiced and unvoiced speech, i.e. a combination of

harmonic spectrum and noise spectrum. A lower bit rate is required for the unvoiced

signal because the human auditory system can't distinguish different noise-like signals.

Hence quantization or reduction in the accuracy of the higher spatial frequency values

does not dramatically affect the speech quality, since lower frequency signal is

unchanged.

Quantization where parts of the higher frequency coefficients are not transmitted

is considered zonal sampling. (In most scenarios, variations around zero are due to the
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effect of noise on the data.) In some quantization process, the threshold level is increased

around zero and is called a dead-zone or a zero-zone quantization. Since, variations

around zero are due to the effect of noise on the data, such a quantization results in data

compression along with noise removal. Quantization with a dead-zone around zero

actually eliminates the noise around zero and improves the signal quality.

2.1.2 Zero Zone Quantization

In zero zone quantization, the transform coefficients of the signal are mapped to a fixed

number of bins and thresholding is applied. Thresholding can be obtained by quantizing

certain bins around zero to a zero value. This quantization would in effect reduce the

precision of the coefficients and in effect map insignificant coefficient values to zero

whilst reducing the number of significant, non-zero coefficients that are being used to

represent information. According to information theory, the required average bit

allocation per data bin is given by

where the labels Pi indicate the probability of the distribution at the bin location i. Hence

the output of this quantizer gives a sparse representation of the input signal, mainly

containing zeros.

Zero zone quantization also leads to reduction in noise levels as large variations

around zero are mostly due to addition of noise to the signal. By applying a zero zone

threshold, noisy transform coefficients can be removed which would in effect improve

the Signal - to - Noise Ratio (SNR).
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It is known that human ear uses both temporal and spectral components to

perceive the audio signal. An audio signal requires to be analyzed in terms of the

frequency- domain characteristics as well as the time- domain characteristics. However,

the Heisenburg's uncertainty states that the time and frequency component can't be both

known at the same time with total certainty.

This thesis compares the effect of applying the zero zone quantization on different

transform bases. Dead zone quantization is applied on two different transform

coefficients. Due tO the properties of block transforms, the signal is affected in different

ways.

2.1.3 Choosing Threshold

The choice of the threshold depends on the spread of the signal onto which the threshold

is being applied. The common idea here is that the less significant transform coefficients

are forced to zero. So, choosing a threshold around zero value makes more sense.

Figure 2.2 shows the probability density function (pdf) of a signal. Threshold 2

can be defined as X = + a . a where 1.1 is the mean of the pdf and a is the standard

deviation. This threshold is used to decide a level, below which all the coefficients are set

to zero.

Figure 2.2 Choosing threshold from the signal pdf.
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2.2 Signal Analysis Techniques

2.2.1 Discrete Fourier Transform (DFT)

Applying DFT on a signal gives the Fourier transform of the sampled signal s(n) with a

finite number of samples (say N). When K is the size of the DFT, it is defined as:

DFT allows the computation of spectra from discrete-time data. Consider a DFT

of size 512, Figure 2.3 shows the magnitude plot of DFT of various signals with different

noise levels. It can be observed that the amplitude between index 100 and 400 is

increasing significantly with increasing noise energy, indicating that most of this is noise.

Applying a threshold in this region would bring these amplitude values down to zero.

Figure 2.3 Frequency magnitude plots of signals having different SNR.
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The architecture of Zero Zone Quantization been applied to the DFT coefficients

is shown in Figure 2.4 below. Figure 2.5 shows the effect of applying zero zone on the

histogram plot of the DFT coefficients of the signal.

Figure 2.4 Architecture of Zero Zone Quantization on DFT Coefficients.

Figure 2.5 Application of Zero zone quantization on DFT Coefficients.
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The architecture in Figure 2.4 can be used to plot the rate distortion curves as

shown in Figure 2.6. These curve shows the distortion with respect to the distorted signal.

The plots depict how the transmission rate decreases with the increasing thresholds. The

rate is defined as the average entropy of signal (Equation 2.2) over the frames and the

distortion is the mean square error between the input and the output signal.

Figure 2.6 D(R) curve for DFT.
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2.2.2 Karhunen Loeve Transform (KLT)

KLT diagonalizes the covariance or the correlation matrix of a discrete random sequence

and is considered an optimal transform [6]-[9]. KLT depends on the statistics of the

signal and hence its computational complexity is very high. Such a transform is also

called principal component.

R denotes the (N x N) correlation matrix of a random complex sequence

l
x= (X1,X2,X3,. . ,XN )T given by

*
where E is the expectation operator and Ercjxj J is the autocorrelation of [x j] and E

[xjx*k] is the crosscorrelation between [xJ] and [xk],j ≠ k. Note that R is Hermitian. Let

the unitary matrix which diagonalizes R be defined as 0 such that

Equation 2.7 is the characteristic equation, where X 1 , i = 1,2,3,...N are the

eigenvalues of R. 0 is called the KLT matrix and it decorrelates the random sequence x.

The forward KLT of x is written as:



and the inverse KLT transform is given by

where, θ = (θ 1 , θ2 , ,,,, θN ) T represents the random sequence in the transform domain.

12

Figure 2.7 Plot of the amplitude of the KLT matrix.

Consider a size 32 KLT, then KLT coefficients, 0 can be obtained as in Equation

2.8 in which N=32. Figure 2.8 depicts the magnitude plot of the KLT coefficients. It is

clear from this that the higher theta coefficients are low in the energy content.
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Figure 2.8 Magnitude plot of the KLT coefficients.

Determining the actual correlation matrix R involves a lot of computation and

complexity. An auto-regression (AR) model can be used to model the actual correlation

matrix. As the order of the AR model increases, so does its closeness to the actual R. This

leads into a better decorrelation of the audio signal.

A simple architecture of the application of zero zone quantization over the KLT

transform coefficients is shown in Figure 2.9. The threshold in the case of KLT is defined

based on energy criteria, where a percentage of energy is rejected to get rid of low energy

coefficients. Figure 2.10 shows the rate distortion curves for this architecture. Here, like

the DFT curves, the distortion is defined with respect to the distortion and the rate

decreases with the increasing threshold.



Figure 2.9 Architecture of Zero Zone Quantization on KLT coefficients.

14

Figure 2.10 D(R) curves for KLT domain thresholding .
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2.2.3 Subband Decomposition

The objective of subband decomposition [6], [10] is to divide the signal frequency band

into a set of uncorrelated frequency bands by filtering and then passing each of them

through a zero-zone quantizer.

2.2.3.1 Analysis Filter Bank. The simplest way to decompose a signal is into one

high-frequency component and one low-frequency component. In the filter bank in

Figure 2.11, the input signal X(z) is processed simultaneously by a low-pass filter H 0 (z)

and a high pass filter Hi(z). The available frequency range, from co = 0 to co= it (which is

half the sampling frequency), is usually partitioned into two halves, as shown in Figure

2.12. The filtered signals thus have a bandwidth of approximately 7E/2, and the sampling

rate can thus be halved. Small amount of aliasing is accepted.

Figure 2.11 Analysis Filter Bank.

Figure 2.12 Frequency bands with two bands.
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The two filtered signals in Figure 2.11 are

Downsampling with M=2, yields the subband signals

These equations can be written in matrix form as:

The spectral components in Equations 2.13, which depend on X (z 1/2), lie in the

baseband. The spectral components that are a function of X (—z 1/2) are periodic

repetations of these. Since the filtered signals are not properly band-limited to 7C, alias

signals appear in the baseband.

2.2.3.2 Synthesis Filter Bank

Figure 2.13 Synthesis Filter bank.
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Figure 2.13 shows a two-channel synthesis filter bank with a low-pass filter Go(z) and

high-pass filter G i (z). This is the dual of the analysis filter bank in Figure 2.11. The

fundamental characteristics of the two filters are the same as the analysis filter bank.

After upsampling the subsignals X0(z) and Xi(z), the low-pass filter G0(z) eliminates

substantial parts of the spectrum of the low-pass signal X0(z) in the range π/2 < Ω < π. The

high-pass filter Gi(z), meanwhile, eliminates most of the spectra of the high pass signal

Xi(z) that are in the range 0 < Ω < π/2. Since the frequency responses of the two signals

overlap, the signal spectra are not totally eliminated.

The output signal X(z) of the synthesis filter bank can be expressed as

This relationship can be expressed in matrix form as:

2.2.3.3 Two-channel SBC filter bank. An analysis filter bank followed by a

synthesis filter bank, together form a subband coding (SBC) filter bank. Figure 2.14

shows a two-channel SBC filter bank. An analysis filter bank with filters H0(z) and H i (z)

decomposes the input signal X(z) into the subband signals X0(z) and Xi(z), this is

followed by a synthesis filter bank with filters G0(z) and Gi(z), which reconstructs the

output signal X(z) from the subband signals.
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Figure 2.14 Two channel SBC filter bank.

In critically sampled filter banks, the number of samples per unit time of the

whole set of subband signals is equal to the number of input samples per unit time.

However, the power of the subband signals is generally lower that the original signal.

Therefore, for the given quantization error, there is a coding gain if the subband signals is

coded instead of the original signal. The coded signal can be used for storage or

transmission. After the decoding, the original signal is to be reconstructed. These results

in a fundamental requirement for SBC filter banks: analysis and synthesis filter banks

should be designed to produce an output signal X(z) that is as close as possible, or even

exactly the same as the original signal X(z). In addition, it is important to have good

selectivity in frequency, so that the sum of the power in the subbands is not much more

than the power of the original signal.

Substituting Equation 2.14 into Equation 2.16 gives the relationship between the

output signal X(z)and the input X(z):
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For perfect reconstruction, the output signal must be identical to the input signal

X[n] = x[n] or X(z) = X(z). For this to be true, the function Fi(z) should be set equal to

zero. The function F0(z) describes the transfer characteristics of the filter bank. The

function Fi(z) denotes the alias component, which are produced by the overlapping of the

frequency responses. If Fi(z) equals zero, an alias-free filter bank is obtained and the

remaining function F0(z) denotes the quality of the reconstruction. If this is merely a

delay i.e. F0 (z) = z-k,the filter bank performs perfect reconstruction. This can be written

as:

The analysis and synthesis filter banks are to be chosen such that Equation 2.19 is

satisfied as closely as possible, or in the best case exactly. As there are four variables in

this equation, there exist many possible solutions to Equation 2.19, one of them being the

Quadrature Mirror Filters (QMFs), which will be introduced next.

2.2.3.4 Standard QMF Banks. 	 QMF are two-channel SBC filter banks with power

complementary frequency responses. Starting with a suitable low-pass prototype H(z),

the following four filters are specified:
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Substituting these equations into Equation 2.18 reveals that the condition F i (z) =

0 is satisfied, i.e. the aliasing components cancel each other out. The factor 2 in the

synthesis filters exactly cancels out the facto 1/2 that is introduced by the downsampling.

Note that H(-z) is high-pass if H(z) is low-pass. This can be seen by substituting in z=ejω

and -z = ej(ω-π). Substituting these values in Equations 2.20 and 2.21,

Substituting co —> π/
2
 - ω, and noting that the magnitude is an even function of co,

leads to:

The squared amplitude frequency responses are mirror images of each other about

the line ω = π/2, which leads to the name QMF and is illustrated in Figure 2.15. The

frequency responses of the filters H(z) and H(-z) and thus the filters H0(z), Hi(z), G 0(z)

and Gi(z) are power complementary. Hierarchical subband tree structures can be used to

construct multiband perfect reconstruction (PR) filter banks and will be illustrated next.
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Figure 2.15 Frequency responses of quadrature mirror filters.

2.2.3.5 Regular binary Subband Tree Structure. PR QMF bank can be used

for multiresolution spectral analysis. These filter banks divide the input spectrum into

two equal subbands, yielding the low (L) and the high (H) bands. This two band PR-

QMF split can again be applied to these (L) and (H) half bands to generate the quarter

bands: (LL), (LH), (HL), and (HH).

Two levels of this decomposition are shown in Figure 2.16, where the original

signal at a data rate less is decomposed into the four subband signals v0(n),..v3(n), each

operating at a rate of fs/4. Therefore, the net data rate at the output of the analysis section

equals that of the input signal. This conservation of the data rates is called critical

sampling.
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Figure 2.16 Four Band, analysis-synthesis tree structure.

The four band frequency split of the spectrum is shown in Figure 2.17 for ideal band-pass

filters.

Figure 2.17 Frequency bands corresponding to the four-bands with ideal filters.
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2.2.3.6 Dyadic or Octave Band Subband Tree Structure. The Dyadic Analysis

Filter Bank decomposes a broadband signal into a collection of subbands with smaller

bandwidths and slower sample rates. The dyadic tree is a special irregular tree structure.

It splits only the lower half of the spectrum into two equal bands at any level of the tree.

Therefore the detail or higher half-band component of the signal at any level of the tree is

decomposed no further. The dyadic tree configuration and its corresponding frequency

resolution for L=3 are given in Figure 2.18.

Figure 2.18 Level three Dyadic tree structure.
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Figure 2.19 Frequency band split corresponding to dyadic tree structure.

A half resolution frequency step is used at each level. Therefore it is also called

the octave-based or constant-Q subband tree structure. While the band (L) provides a

coarser version of the original signal, band (H) contains the detail information. The

approach is repeated L times onto the lower-spectral half component of the higher-level

node in the tree.



CHAPTER 3

NOISE REMOVAL

Noise reduction deals with suppressing unwanted noise, thereby enhancing a speech

signal in terms of speech quality and intelligibility. In applications like

telecommunication and broadcasting, the audio signal often gets contaminated with noise

in the form of hiss or buzz due to transmission loss or introduction of background noises.

The objective of noise removal is to improve the quality of the signal in order to receive a

subjectively comfortable and natural speech at the receiver. A lot of research has been

carried in this area which has lead to plenty of techniques which reduce noise based on

the properties of either speech or noise.

Usually, it is assumed that the noise is independent of speech signal. Spectral

subtraction, which performs subtraction of a noise spectral estimate from a noisy speech

spectrum, was suggested in early years, and has still been popular due to its

computational efficiency.

While listening to music, one can clearly "hear" the time variation of the sound

"frequencies". These localized frequency events are not pure tones but packets of close

frequencies. The properties of sounds are revealed by transforms that decompose signals

over elementary functions that are well concentrated in time and frequency. Measuring

the time variation of "instantaneous" frequencies is an important application that

illustrates the limitations imposed by Heisenberg uncertainty.
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3.1 Measuring the Quality of the Signal

The quality of the reconstructed speech signal is a vital attribute of a speech coder. It is

also a particularly problematic attribute because the evaluation of speech quality is a

notoriously difficult problem. As yet, it has not been possible to find an objective

criterion that correlates well with speech quality for a variety of speech coders and input

signals Furthermore, with decreasing bit rate, the quality of the reconstructed signal of

coders becomes more and more dependent on the characteristics of the input signal,

making it difficult to anticipate the behavior of the coder in real world applications. Thus,

extensive testing with human subjects is required before the suitability of a particular

speech coder for a practical application can be judged.

One of the measures that is often used to measure the subjective quality of speech

coders is the mean opinion score (MOS). The MOS attempts to combine all aspects of

quality in a single number and is perhaps the most commonly used measure for subjective

quality testing.

3.1.1 Objective Measures of Quality

Many objective quality measures are used but the signal-to-noise ratio (SNR) in dB is a

commonly used measure and is defined as:

Here, s is the original clean audio signal ands is the estimated audio signal. The

numerator term is nothing :but the energy of the original signal. This approach has a

drawback because while removing the noise components from the contaminated signal,
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some useful signal components get removed as well. Hence the denominator of the

equation 3.1 does not give the actual noise energy.

The quality of the output signal can also be evaluated using spectral distortion

(SD) [11]. SD between two signals is calculated as follows:

3.1.2 Subjective Measures of Quality

Until recently, the only widely accepted assessment procedures for audio or speech

codecs were listening tests, due to the lack of international standards for measuring the

perceived audio quality.

The ITU has also recommended a test procedure to assess wide band audio codecs

on the basis of subjective tests [11]. Subjective assessments test method focuses on the

comparison of the coded/decoded signal to the unprocessed original reference. The

relevant recommendation is known as BS.1116, titled "Methods for the Subjective

Assessment of small Impairments in Audio Systems including Multichannel Sound

Systems" which was issued by the ITU-R2 in 1994 and was updated in 1997.

The test method, which is recommended by BS.1116, is extremely sensitive and

allows for the accurate detection of small impairments. The grading scale used is depicted

in Table 3.1.
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Table 3.1 ITU-R Five-Grade Impairment Scale
Impairment Grade SDG

Imperceptible 5.0 0.0

Perceptible,but not annoying 4.0 -1.0

Slightly annoying 3.0 -2.0

Annoying 2.0 -3.0

Very Annoying 1.0 -4.0

The analysis of the results from a subjective listening test is generally based on the

Subjective Difference Grade (SDG) which is defined as [12]:

SDG = Grade signal Under Test - Grade Reference Signal 	 (3.3)

Provided that the listener correctly assigns the hidden reference signal, the SDG

values will range from 0 to -4, where 0 corresponds to an imperceptible impairment and

—4 to an impairment judged as very annoying. The assignment of the SDG scale is shown

in the last column in Table 3.1.

3.2	 Perceptual Evaluation of Audio Quality (PEAQ)

The idea of substituting the subjective tests by objective, computer based methods gave

effect to the development of PEAQ as a standardized algorithm for measuring perceived

audio quality in 1994-1998 [13]. It was a joint venture of experts within Task Group 6Q

of the International Telecommunication Union (ITU-R). It was originally released as

ITU-R Recommendation BS.1387 in 1998 and last updated in 2001. It utilizes software to

simulate perceptual properties of the human ear and then, integrate multiple model output
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variables (MOV) into a single metric. PEAQ characterizes the perceived audio quality as

subjects would do in a listening test according to ITU-R BS.1116. It provides accurate

and repeatable estimates of audio quality degradation. It compares the audio signal input

to a device under test (DUT) with the corresponding (degraded) audio signal output from

that device on a perceptual basis. In perceptual coding it is fundamental to determine the

level of noise that can be introduced into a signal before it becomes audible.

OPTICOM who is the leading provider of signal based perceptual measurement

technologies and sole licenser for PEAQ offers algorithms for voice, audio and video

quality measurements.

3.2.1 OPERA

OPERATM, short for "Objective Perceptual Analyzer", is based on PEAQ to provide an

objective evaluation and assure the quality of compressed speech and wide-band audio

signals by modeling the human ear. OPERATM can distinguish between imperceptible

and more or less annoying transmission errors as it works quite similar to the human ear.

As a major advantage, OPERATM employs the same kind of natural stimulus for a

measurement as in practical operation: human speech or music program material. As a

consequence of the novel approach to measure the perceived audio quality instead of

signal characteristics, it is possible to gain an objective quality metrics.

Some of the features of OPERA are at the time:

• ITU-R B S,1387/PEAQ

• Delay measurement

• Real time measurement

• Interfaces to file (*.wav), analog XLR balanced (20 bit) and digital AES/EBU
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The common structure of proposed algorithms for perceptual measurement is

depicted in Figure 3.1. The process of human perception is modeled by employing a

difference-measurement-technique which compares both, a reference signal (i.e. the

"input" signal to a codec) and a test signal (i.e. the "output" signal of the codec). First, the

algorithms process an ear model for the reference and the test signal, in order to calculate

an estimate for the audible signal components.

Figure 3.1 The structure of the generic perceptual measurement algorithm.

In a consecutive step, the algorithm models the audible distortion present in the

signal under test by comparing the outputs of the ear models. The information obtained

by this process results into several values, so called MOVs ("Model Output Variables")

and may be useful for a detailed analysis of the signal. The final goal instead is to derive

a quality measure, consisting of a single number that indicates the audibility of the
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distortions present in the signal under test. To achieve this, some further processing of the

MOVs is required which simulates the cognitive part of the human auditory system.

PEAQ in general comprises ear models based on the fast Fourier transform as

well as on a filter bank. The output values of the models are based partly on the masked

threshold concept and partly on a comparison of internal representations (also known as

comparison in the cochlear domain). In addition, it also yields output values based on a

comparison of linear spectra, which are not processed by an ear model.

The evaluation of the internal representation is often related to an estimate of the

masked threshold. This estimate is based on data found in a number of psychoacoustic

experiments. Most of these experiments model certain isolated effects of the human

auditory system. One way to design a perceptual measurement algorithm is to generalize

these model data and apply them to complex audio signals.

The sample rate of the reference file is frequently already defined by the

algorithm that shall be used for the evaluation of the recorded data. PEAQ according to

ITU-R BS.1387 requires 48kHz sample rate, although the implementation in OPERA will

deliver reliable results at 44.1kHz, too. Most speech quality measures are defined for 8

and 16kHz sample rate only.

OPERA has two versions for PEAQ measurement: The "Basic" version is defined

for computational efficiency and realtime performance, while the "Advanced" version

yields for highest possible accuracy. The major difference between the Basic and the

Advanced version is hidden in the respective ear models and the set of MOVs used. Both

versions comprise an artificial neural network for the cognitive modeling. Since these

networks are usually critical in terms of reliability, special care was taken not to over-
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train the network during the design phase. The "Advanced" version uses some MOVs

derived by implementing the ear model of the "Basic" version but in addition to that, the

advanced version introduces a second ear model with improved temporal resolution.

3.2.1.1 Model Output Variables. The screen shot in Figure 3.2 shows the Model

Output Variables (MOVs) used by the advanced version as they are defined by BS.1387.

The results are shown framewise and are averaged since the beginning of the

measurement. The interpretation of these MOVs is depicted in the Table 3.2.

Figure 3.2 PEAQ Advanced Model Output Variables (MOVs) and the ODG.

Table 3.2 MOVs used by the PEAQ "Advanced" version
OPERA Model Output
Variable (MOV) Name

BS. 1387 name Interpretation

RModDif RmsModDiffA Loudness of Distortion

NLA RmsNoiseLoudAsymA Changes	 in	 modulation
(related to roughness)

ALD AvgLinDistA Linear	 distortions	 (frequency
response etc.)

SNMR Segmental NMRB Noise-to-mask ratio

EHS EHSB Harmonic structure of the error
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3.2.1.2 Objective Difference Grade (ODG). 	 The last two bars in the diagram

shown in Figure 5.24 are the Distortion Index (DI) and the final Objective Difference

Grade (ODG). The "AV" in the brackets indicates that this value is a result of the

Advanced Version of the PEAQ algorithm. The ODG is the output value from the

objective measurement method that corresponds to the SDG (Table 4.1) in the subjective

domain. The ODG indicates the measured basic audio quality of the signal under test on a

continuous scale from -4 (very annoying impairment) to 0 (imperceptible impairment) as

defined in Table 3.3. The DI is a quality indicator like the ODG except for its higher

sensitivity towards very low signal qualities.

Table 3.3 ODG Grade scale
Impairment Description ITU-R Grade ODG

Imperceptible 5.0 0.0

Perceptible, but not annoying 4.0 -1.0

Slightly annoying 3.0 -2.0

Annoying 2.0 -3.0

Very annoying 1.0 -4.0

The display of the measurement settings shown on the right side of each diagram is

depicted in Figure 3.3. The meaning of the values is as shown in Table 3.4.



Figure 3.3 General Information related to current display settings.

Table 3.4 Interpretation of the displayed values

Displayed Values Interpretation

Time The time when the measurement has been finished.

F Smpl Sample rate of input signals

Tracking Status of the delay tracking function (on or off)

DC Filter Status of the DC filter (on or off)

Delay Delay in ms (first from top) as well as in samples

Status Reliability of the automatic delay compensation (0..100%)

Atten Level difference between reference and test signal (dB)

Rel Time Current point of time in the measurement
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CHAPTER 4

IMPLEMENTATION

This Chapter puts together the design methods used in this thesis. Modifications are made

to the architecture depicted in Chapter 2 sensitive processing to take care of structures

and properties of audio signals

4.1 Method 1- DFT based Dead Zone Quantization

The architecture for the first method is shown in Figure 4.1. In this method, zero zone

quantization is applied over the DFT transform coefficients of the signal. Also, the

presence of voiced and unvoiced bands is taken into consideration. As the human

auditory system is more sensitive to the voiced band, introducing distortions into this

band is more prominent in the subjective tests. Hence a low threshold is applied in the

voiced band and a higher threshold is applied in the unvoiced band.

Figure 4.1 Architecture for Method 1.
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The threshold that is being applied in method 1 is based on the spread of the

coefficients. It is defined as:

Where, is the mean, a is the standard deviation and a is a constant. The threshold will

increase as a increases.

Since, different threshold values are considered for the voiced and unvoiced

bands, two variables determine the quality of output obtained as a result of applying this

thresholding: α1 for the voiced band and a2 for the unvoiced band. The ODG values and

SD were calculated for various thresholds applied to the noisy signal. Tables 4.1 and 4.2

show results for Method 1 using DFT of size 128 and 512 respectively.

Table 4.1 Results for Method 1, DFT size 128

Thresholds Results

al a2 ODG SD (dB)

Input signal -3.98 8,3887

-0.2 1.0 -3.93 5.2547

-0.2 3.0 -3.69 1.9821

0 3.0 -3.63 2.0000

0.2 3.0 -3.62 1.9884

0.2 4.0 -3.59 1.8086
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Table 4.2 Results for Method 1, DFT size 512

Thresholds Results

α1 α2 ODG SD (dB)

Input signal -3.98 8.3887

-0.2 3 -3.98 10.9378

0 3 -3.92 4.5086

0.2 3 -3.73 4.3656

0.2 4 -3.59 3.6222

0.2 7 -3.48 3.5204

0.1 7 -3.45 3.5944

0 7 -3.38 3.6942

The ODG value of the noisy signal was measured to be -3.98. Using size 128

DFT, the ODG came up to -3.59 and using 512 sized DFT, the value came up to -3.38.

Effectively more noise got removed when using a DFT of greater size. Figure 4.2 shows

the waveforms and spectrograms of a noisy signal and best outputs from method 1.

Musical notes can be heard in the outputs when processed on the fourier domain. These

musical notes appear in the spectrograms as dots in high frequency areas.
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Figure 4.2 (a) Waveform and (b) Spectrogram of noisy signal (c) Waveform and (d)
Spectrogram of the best output from method 1 and DFT size 128 (e) Waveform and (f)
Spectrogram of the best output from method 1 and DFT size 512.
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4.2 Method 2- KLT based Zero Zone Quantization

The input signal is passed through a low pass and high pass filter to separate voiced and

unvoiced bands. The KLT of both the bands is taken and dead zone quantization applied

separately on both these bands (Figure 4.3).

Figure 4.3 Architecture for Method — 2.

In this method, threshold is applied based on the energy content of the transform

coefficients. As was discussed in Chapter 2, KLT decorrelates the signal and rearranges

the energy content of the input signal. KLT arranges the transform coefficients in the

order of decreasing energy of the signal. The threshold decides the amount of energy that

will be rejected. A threshold 0.01, for example, means that 1% of the total energy in the

signal is getting rejected. Again, α1 is used for the voiced band and a 2 for the unvoiced

band, higher a2 is applied to get rigorous thresholding in the unvoiced band. For

implementation purpose a butterworth filter of 12 th order is used for the low pass and the

high pass filter.

Tables 4.3 and 4.4 depict the output measures for size 128 and 512 sized KLT,

respectively. A higher threshold is being applied to the unvoiced band to get a

perceivable output.
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Table 4.3 Results for Method 2, KLT size 128

Thresholds Results

EnergythL EnergythH ODG SD(dB)

Input signal -3,98 8.3887

0.0005 0.01 -3.97 8.6564

0.0005 0.8 -3.97 5.8137

0.0005 0.95 -3.98 4.3327

0.0005 0.98 -3.58 4.3587

0.005 0.98 -3.53 4.3542

0.01 0.98 -3.51 4.3387

0.04 0.98 -3.57 4.3286

Table 4.4 Results for Method 2, KLT size 512

Thresholds Results

EnergythL Energythu ODG SD(dB)

Input Signal -3.98 8.3887

0.0005 0.95 -3.98 4.7107

0.0005 0.98 -3.98 4.4870

0.01 0.98 -3.68 4.4183

0.04 0.98 -3.61 4.3949

0.05 0.98 -3.61 4.4588

0.04 0.99 -3.60 4.3674

0.04 1.0 -3.58 4.3013

The ODG value of the noisy signal was measured to be -3.98. Using size 128

KLT, the ODG came up to -3.51 and using 512 sized KLT, the value came up to -3.58.

Theoretically, an improvement is expected as the KLT size increases but as the size of
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KLT increases, the numerical complexity of calculating the eigen vectors increases which

accounts for numerical inefficiencies.

An improvement in terms of ODG value is visible for 128 sized KLT compared to

128 sized DFT (method 1). The improvement is clearly visible in the waveform and

spectrogram plots of Figure 4.4.
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Figure 4.4 (a) Waveform and (b) Spectrogram of noisy signal (c) Waveform and (d)
Spectrogram of the best output from method 1 and KLT size 128 (e) Waveform and (f)
Spectrogram of the best output from method 1 and KLT size 512.
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4.3 Method-3 DFT applied on Dyadic trees

The zero zone quantizer is applied over the DFT transform coefficients from each

frequency subband coming out of the dyadic tree (Figure 4.5). As the depth of the tree

increases, the threshold gets localized to lower frequency more. Since, the auditory

system is more sensitive to low frequency; it becomes quite intuitive that a small

threshold be applied.

Figure 4.5 Architecture for Method - 3.

Table 4.5 Results for Method 3, Depth - 1 Dyadic Tree

Threshold 128 - DFT 512 - DFT

α1 α2 ODG SD (dB) ODG SD(dB)

4 -0.3 -3.90 5.7138 -2.65 5.6881

4 -0.2 -3.98 5.6349 -2.97 5.6258

4 -0.1 -3.96 5.5793 -3.92 5.4998

4 0 -3.72 5.4986 -3.65 5.3769

4 0.1 -3.87 5.5204 -3.51 5.2649

4 0.2 -3.94 5.5520 -3.53 5.2072

5 0 -3.69 5.5701 -3.55 5.0620
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Tables 4.5 and 4.6 summarize the results of applying such a threshold over a

depth one and depth 3 dyadic tree, respectively. A higher depth of the dyadic tree

indicates better resolution in lower frequency and noise reduction by thresholding

becomes more effective.

Table 4.6 Results for Method 3, Depth — 3 Dyadic Tree

Threshold 128 - DFT 512 - DFT

α1 α2 α3 α4 ODG SD(dB) ODG SD(dB)

4 4 4 noTh -3.55 4.1038 -3.32 4.1206

4 4 4 -0.2 -3.55 3.9817 -3.55 3.9434

4 4 3 -0.2 -3.53 3.9615 -3.52 3.9566

4 4  3 -0.1 -3.55 4.0035 -3.55 4.0946

4 4 2.5 -0.2 -3.56 3.9691 -3.50 4.0720
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Figure 4.6 (a) Waveform and (b) Spectrogram of noisy signal (c) Waveform and
(d)Spectrogram of the best output from method 3 and depth 1 dyadic tree (e) Waveform
and (f) Spectrogram of the best output from method 3 and depth 3 dyadic tree.
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4.4 Method-4 KLT after Subband decomposition

The zero zone quantizer is applied over the KLT coefficients from each frequency

subband coming out of the dyadic tree (Figure 4.7). As the depth of the tree increases, the

threshold gets localized to lower frequency. Figure 4.7 shows the architecture for this

method.

Figure 4.7 Architecture for Method - 4.

Tables 4.7 and 4.8 put together the results of method 4 for depth one and a depth

3 dyadic tree, respectively. Figure 4.8 shows the waveforms and spectrograms of a noisy

signal and best outputs for depth 1 and depth 3 dyadic trees.

Table 4.7 Results for Method 4, Depth - 1 Dyadic Tree
Thresholds 128 - KLT 512 - KLT

Energyth1 Energyth2 ODG SD (dB) ODG SD (dB)

0.99 0.02 -3.62 5.8963 -3.59 5.9488

0.98 0.01 -3.96 6.0264 -3.84 6.0962

0.95 0.01 -3.96 6.0264 -3.88 6.2393

0.99 0.01 -3.84 5.8952 -3.77 6.0325



Table 4.8 Results for Method 4, Depth - 3 Dyadic Tree

Thresholds 128 - KLT 512 - KLT

Th1 The Th3 Th4 ODG SD (dB) ODG SD (dB)

0.99 0.99 0.98 noTh -3.32 4.1111 -3.54 4.1019

0.99 0.99 0.99 0.01 -3.32 4.1592 -3.52 4.1138

0.99 0.99 0.98 0.01 -3.33 4.1322 -3.54 4.1124

0.99 0.99 0.99 noTh -3.32 4.1509 -3.52 4.0980
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Figure 4.8 (a) Waveform and (b) Spectrogram of noisy signal (c) Waveform and
(d)Spectrogram of the best output from method 4 and depth l dyadic tree (e) Waveform
and (f) Spectrogram of the best output from method 4 and depth 3 dyadic tree.



CHAPTER 5

CONCLUSION AND FUTURE WORK

5.1 Conclusions

This thesis has presented several noise removal methods depending on the threshold

applied over the orthogonal transforms. Here, the four proposed methods have proved

that Zero Zone Quantization is a simple, yet robust way of achieving noise removal and

compression.

Four different concepts were proposed and experiments were carried out. The first

two were based on orthogonal transforms, DFT and KLT. For the next two, orthogonal

transforms were taken after decomposing the signal into different frequency bands by

using Subband decomposition. Different thresholds were applied and experiments were

carried out to obtain audio signals with reduced noise content. SD and PEAQ scores were

measured based on which the signal was said to have lost noise compared to the input

signal.

In context of orthogonal transforms, better noise removal was observed with

bigger size of the transform. This validates that higher transform size, decorrelates the

signal in a better manner.

Another concept that was suggested and validated experimentally was that

applying the transform after subband decomposition gave better results for both Fourier

transform and Karhunen Loeve. Subband Decomposition critically samples the input and

splits it in frequency scale.

The methods results using KLT gave better results compared to those obtained

from processing over the DFT coefficients. However, KLT computations are way too
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complex. There are no fast computation algorithms present for KLT as there are for DFT.

KLT is completely signal dependent which prevents its application in real life

applications. DFT on the other hand are easy to handle. The fast fourier transforms

further provide faster implementation of this transforms.

5.2 Future Work

Even though noise was removed from the signal, better results can be achieved by using

VADs for the estimation of noise. VAD algorithms are used for feature extraction of the

signal based on the previous frames. They can be used to detect the behavior of the noise

present in the signal and thus noise can be removed more intelligently.

The Dyadic tree structures used in this work used Daubechies filters to

decompose the signal. Use of these filters introduces aliasing due to non zero transition

bandwidth and stopband gain. However the overlap in the stopband is highly desired the

absence of which would introduce severe attenuation around π/2 frequency range. Special

filters can be designed that do not introduce as much aliasing.

The use of these additional features in noise removal algorithm will make the

processing more reliable and accurate.
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