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ABSTRACT

PRACTICAL LOCALIZED WAVES GENERATION

by
Mohamed Ahmed Salem

Since the early works on localized waves (LW), extensive results were published on this

important subject, from both the theoretical and the experimental points of view.

Nevertheless, those experimental techniques of LW generation suffer from several

shortcomings. A major one is that only pulse peaks were accredited. Either the full

profile of the generated pulse was not reported, or it was not closely matching the

theoretical profile. Additionally, low resolutions of the generated LWs were reported in

the acoustic X-Waves. The conductors of the experiment attributed this effect to the

limited bandwidth of the excitation elements.

The interest in the unique features of LWs and their high potential in different

applications were the main motivation for conducting this study. Because of the complex

nature of LWs, it is challenging to design a system that can launch LWs with high

accuracy and power efficiency as well as the flexibility in choosing the LWs design

parameters. Due to practical limitations, the results of this research could not yet be

experimentally verified; however, this research aims to provide a practically feasible

method for LWs generation that avoids the shortcomings of previous techniques.

In the study, the transverse electric (TE) version of the MPS pulse is derived.

Expansion in terms of the waveguide's orthogonal modes is presented and followed by

the method to determine the excitation currents for the loop antennas inside a circular

waveguide. The feasibility and flexibility of the method is demonstrated via numerical

examples.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this dissertation is to present a novel method for localized waves (LW's)

generation in the microwave regime

Because of the scalar nature of the LW solutions, first the electromagnetic

transverse electric (TE) vector formulation is derived and its main physical properties are

mapped to the mathematical parameters of the localized waves.

The method utilizes the completeness and orthogonality properties of the

propagating modes of cylindrical metallic waveguides to decompose the localized waves.

The localized wave field is matched to the aperture field at the waveguide's open end and

the incident field and the modal excitation coefficients are then determined.

Excitation of the corresponding waveguide's modes is accomplished by means of

circular current loops placed inside of the waveguide. A linear system is formed to map

the unknown current loops excitation currents to the modes excitation coefficients, thus

by solving this system the unknown currents are found. 

The study aims to provide a flexible yet systematic physically realizable method

to generate localized waves that is also feasible for commercial and industrial

implementation.

1
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1.2 Historical Overview

The early work of Brittingham [1] in 1983 led to the discovery of a slow-decaying and

non-dispersing class of exact Maxwell's equations solutions. The original solution was

termed focus waves modes (FWMs) and is structured on 3D pulses that carry energy with

the speed of light along linear paths. Brittingham introduced two surfaces of

discontinuity to render the FWM finite in terms of energy; however Wu and King [2]

proved that the discontinuous solution does not satisfy Maxwell's equations. Sezginer

[3] and Wu and Lehmann [4] proved that any finite energy solutions will result in

dispersion and loss of energy.

In 1985, Ziolkowski [5] showed that the superposition of FWMs results in finite

energy and slow-decaying solutions, which are characterized by their high directivity,

hence termed directed energy pulse trains (DEPTs).

Lu and Greenleaf [6] introduced another class of non-diffracting solutions to

Maxwell's equations that are termed X-Waves due to their shape in the plane through

their axes. X-Waves travel to infinity without spreading provided that they are generated

from infinite apertures. This family of solutions has an infinite total energy but finite

energy density.

Several types of localized solutions were introduced in the literature over the

years [7-15]; however, due to the difficulty in practically generating them, most of the

presented work was purely theoretical. Additionally, most of the initial practical work

done on localized waves was conducted in the acoustic domain [9-11] because of the

scalar nature of the solutions.
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1.3 Characteristics and Application Potential of Localized Waves

Localized waves are solutions to the homogenous scalar wave equation. The most

notable characteristics of LWs are:

• Ultra-wideband compact in space and time pulses in sparse background.

• Non-separable spatio-temporal functions.

• Ideally propagate without diffraction or with only local deformations for infinite

distances.

While some types of the LW solutions permit superluminal propagation

velocities, it is to be noted that this does not violate the theory of special relativity and

thus no superluminal information transfer takes place [16]-[17].

The aforementioned characteristics promote their high potential in the following

applications:

• Remote sensing.

• High-resolution imaging.

• Medical radiology and tissue characterization.

• Non-destructive testing.

• Directed energy transfer.

• Secure communication.

• Impulse radar.

• Electronic warfare.
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1.4 Spectral Structure of Localized Waves

To understand the concept of the non-diffracting waves, it is necessary to establish

precise mathematical definition of these solutions. Such mathematical concepts are

essential to extract the necessary spectral structure of the non-diffracting waves.

Intuitively, an ideal non-diffracting wave, whether a beam or a pulse, can be

defined as a wave capable of maintaining its spatial form indefinitely while propagating.

Local variations are excluded from the former definition. This property could be

mathematically expressed as

where Ψ(ρ,φ, z, t) is the wave function in the cylindrical coordinates (ρ, φ, z), t is the

time variable, Δz0 is a certain distance and V is the propagation speed of the wave.

Using the Fourier-Bessel expansion, the wave function could be expressed as

with Sn (kp ,kz ,ω ) being the n-th component of the wave's spectrum, Jn(*) is the

standard cylindrical Bessel function of first kind and order n, (k p , kz , ω ) are the

transformed spectral variables of (p,z,t), respectively, with ω 2
/c

2  
=k2ρ + k2z and c is

the speed of light in vacuum. On using the translation property of the Fourier transform,

T[f + a)] = eikaT[f(x)], the Fourier-Bessel transforms of the left-hand side and right-

t(lc Az —to AA
hand side of equation (1.1) are Sn(kρ, kz, ω) and ei(kzΔz0-ωΔz0/v)Sn(kρ, kz, ω) , respectively.
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The fundamental constraint linking the angular frequency ω  and the longitudinal wave

number k, is derived as

with m being the integer and bm = 2mπv/Δz0. To satisfy this constraint, the spectrum

Sn (kρ , kz , ω ) must be of the form

where δ(*) is the Dirac delta function. Accordingly, equation (1.2) could be written as

where only the positive angular frequency components are taken into account. For non-

diffracting waves, the spectrum function must conform to the constraint (1.3), thus

with Snm(ω ) being an arbitrary spectrum function.

By inserting (1.6) into (1.5), the general integral of the ideal non-diffracting wave

is obtained as

with

where the integration limits depend on the value of the wave's speed as follows:
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1.5 Generalized Bidirectional Decomposition

The method of bidirectional decomposition was first introduced by Besieris, Sharaawi

and Ziolkowski [18] as a formal approach to analyze and construct different families of

LW solutions. Only the axially symmetric solutions will be considered, i.e.

where 8  is the Kronecker delta. The wave representation in (1.5) could thus be further

simplified to

Ideal non-diffracting solutions could be readily obtained from (1.10) if the

spectrum function satisfies the linear relationship in (1.3). Intuitively, it is more suitable

to choose new spectral parameters in place of (k z , co) to make the implementation easier

[18]. By introducing the new spectral parameters (a , 10) such that

and limiting the analysis to luminal and superluminal solutions, the wave expression in

(1.10) could be written as

with
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The transformation to the new representation, which also preserves the constraint

(1.3), is readily implemented by letting

with β0 = b/2V . The delta function δ (β-β0)  in the spectrum implies that the Bessel

beams constituting the spectrum are integrated along the continuous line

Φ(α)—>Φ(ω/V- β0 ), which is natural way to represent pulses with field concentration on

ρ = 0 and ζ  = 0 .

However, it is essential to emphasize [19] that when β0 > 0 , there exist

contributions from both forward and backward traveling Bessel beams, corresponding to

the frequency intervals 2V β0 ≤ ω ≤  ∞  (where kz ≥  0) and Vβ0 ≤ ω ≤ Vβ0 (where

kz < 0 ), respectively. Physical solutions could be obtained by minimizing the

contribution of the backward traveling components by choosing suitable spectrum

functions.

1.6 The Focus Wave Mode Family

The bidirectional decomposition method is used to derive the traditional focus wave

mode (FWM). The approach is different from that given in [1] is due to derivation of the

superluminal representation of the FWM first, which is followed by the derivation of

ordinary FWM. Next, a finite energy solution, termed the modified power spectrum

(MPS) is derived from the FWM following [5].

1.6.1 The Ideal Non-diffracting Solution

For the spectrum function
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with a a positive constant, the angular frequency spectrum of this pulse is of the type

Φ(α)∞e-aω  and therefore has a 1/e bandwidth given by Δω  =1/a . And as β0 > 0 , the

spectral interval 0 ≤α<β0contributes only to backward traveling Bessel beams, it is

necessary to have aVβ0 «1 to minimize the contribution of the backward traveling

beams compared to the forward traveling ones. This condition allows for a simplification

in the argument of the Bessel function in (1.12) by neglecting the term (V 2/c2 - 1)β0 .

This simplified expression could be written as

Using identity (6.616.1) of [20], the expression of the superluminal Focus Wave

Mode (SFWM) [19] is obtained as

with

The center of the SFWM is located on ρ = 0 and at ζ  = 0 . The intensity, |Ψ| 2 ,

of the pulse propagates rigidly (no local variations); however, the complex function

propagates with local variations, recovering its whole three dimensional form after each

space and time intervals Δz0 = π/β0 and Δ t0 = Δz0/V , respectively.

The luminal pulse is derived directly from (1.17) by letting V --> c + [19], such

that



is derived [5]. This pulse is named modified power spectrum (MPS) because its

spectrum is derived from the power spectrum )βp-1e-qφ by scaling and truncation.



CHAPTER 2

THE TRANSVERSE ELECTRIC MODIFIED POWER SPECTRUM PULSE

2.1 Introduction

In this chapter, the TE electromagnetic counterpart of the scalar solution of (1.22) is

derived using (1.22) as the magnetic Hertz potential.

The general form of the magnetic field expression is given by

with H(r,t) the magnetic field, s the medium permittivity, Π(e)(r,t) = 0 and

Π(m) ) (r,t)= ΨMPS (ρ ,z,t)az , where aξ  is the unit vector along the ξ-direction.

The electric field is derived from (2.1) using Maxwell's equations and is given by

2.2 Characterization of the TE MPS Pulse

In this section, the relation between the pulse parameters and its physical properties of its

electric field (2.2) is established. In what follows, and without loss of generality, the

pulse parameter p will always be chosen to be equal to unity. Setting the parameter to a

real value less than unity, it will slow down the decay rate of the pulse beyond the

focusing range, but it will greatly enhance the backward traveling components; and if it is

set to a value greater than unity, it will decrease the pulse focusing range and boost its

decay [5].

10
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2.2.1 Causality

By enforcing βo = 0, the resulting pulse has no backward traveling components;

nevertheless, a lot of flexibility in choosing the remaining physical properties of the pulse

are lost as well. Thus it is preferable to keep the parameterβ

o

as a free parameter, as

having qβ

o

>> 1 ensures larger field depths and strong localization properties, and try to

minimize the contribution of the non-causal backward traveling components.

By examining the spectrum of the MPS given by the product of (1.15) and (1.21),

the ratio of the forward to backward traveling components can be approximated by

Thus the conditions adopted here to minimize the non-causal components and to

maintain the pulse localization are

respectively.

2.2.2 Spot Size

Due to the derivation in the p -direction, the field value is exactly zero at ρ  = 0 , which

gives this class of pulses its name as "dark spot" pulses. The peak of the pulse ρ0  is

found by setting the first derivative with respect to ρ  of the pulse expression to zero.

The spot size a is defined further by the radial distance where the field intensity value

drops to the half of its maximum. These values are given by
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Figure 2.1 The intensity profile of a TE MPS pulse with β0 = 33.33m -1, a =10 -12 s

and q =10 5 m.

Figure 2.1 shows a plot of the intensity profile of a TE MPS pulse with

ρ 0 = 0.21 cm and σ  = 0.36 cm .

2.2.3 Bandwidth

By investigating the spectrum of the TE MPS and considering the Fourier transform

property T[d/df f(t)] = iwT[f(t)], the 1/e bandwidth could be approximated by

with the peak at

and the peak occurring at the beginning of the spectrum.
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Figure 2.2 The bandwidth of a TE MPS pulse with β0 = 33.33 m - ' , a =10 -12 s
and q =10 5 m

Figure 2.2 shows a plot of the bandwidth of a TE MPS pulse with ω0 =10 10 rad

and Δω  = 2 x 10' 2 rad .

2.2.4 Field Depth

By defining the field depth R as the distance over which the pulse's peak intensity drops

to half of its initial value, then by setting ρ  = 0 in (1.22), the depth of field is

which solely depends on the parameter q as it regulates the concentration of the fielc

around the line ω/c = kz+2β0 .
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Figure 2.3 The intensity profile of a TE MPS pulse as a function of its range with
β0  = 33.33 	 , a =10 -12 s and =10 5 m .

Figure 2.3 shows a plot of intensity profile of a TE MPS pulse as a function of

propagation distance with pulse range R = 50 km .

2.2.5 Longitudinal Localization

By setting t = 0 and ρ  = 0 in (1.22), and defining the longitudinal extension Δz of the

pulse as the length at which the pulse's intensity drops to half of its maximum, it could he

shown that the longitudinal localization of the TE MPS pulse is given by
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Figure 2.4 The intensity profile of a TE MPS pulse as a function of its longitudinal
extension with ,80 = 33.33 m -1 , a =10 -12 s and q =10 5 m .

Figure 2.4 shows a plot of the longitudinal extension of a TE MPS pulse's

intensity with a longitudinal localization Az = 0.6 mm .



CHAPTER 3

ANALYSIS

3.1 Introduction

In this chapter, the derived TE MPS pulse is decomposed in terms of a number of guided

TE0m modes of an air-filled metallic cylindrical waveguide. The field is matched at the

open interface of the waveguide and the modes excitation coefficients are calculated. To

excite the modes with the computed excitation coefficients, an excitation technique that

utilizes current loops inside the waveguide is utilized.

3.2 Waveguide Modes and Orthogonality Relation

Because of the cylindrical nature of the structure, the transverse field could be derived

from the longitudinal one. Given the TE nature of the pulse, only guided TE modes are

considered in the analysis, and accordingly, the transverse field is derived from the

longitudinal magnetic field.

The solution of Helmholtz equation for the longitudinal magnetic field component

is

where A designates the radius of the waveguide, C is a constant. The boundary

condition is satisfied with the relation

16
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as the tangential electric field equals zero on the metallic wall. The roots of (3.2) are

designated p'nm , and the eigenvalues kc,nm are given by

By letting n = 0, axial symmetry is assured. The longitudinal wavenumber of the

m-th mode is given by

with k0 the wave number in free space.

The non-zero transverse field components inside the waveguide are derived from

(3.1) and are given by

with Z 0 = √μ0/ε0 the intrinsic impedance and μ0  the permeability of free space.

The guided modes of the cylindrical metallic waveguide form a complete and bi-

orthogonal set [12], with the orthogonality relation given by

with •* designating the complex conjugate, and the mode power Pn is

Accordingly, any axially symmetric field that is defined over the interval [0, A]

could be expanded in terms of a weighted summation over the TE 0m modes in the form
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with cn the n-th expansion coefficient. The expansion coefficients are then found using

the orthogonality relation (3.6) as

3.3 Excitation Coefficients

The expansion coefficients of the TE MPS pulse calculated according to the modal

expansion method at the plane z = 0 (open-ended face of the waveguide) represent the

transmission coefficients as shown in Figure 3.1. It is required to determine the

excitation coefficients of the guided modes. The excitation coefficients determine the

needed frequency spectrum and power to excite each of the guided modes that contribute

to the generation of the pulse.

Figure 3.1 Diagram of incident, reflected and transmitted fields at the open-ended face of
the waveguide.

Matching the tangential electric and magnetic fields at the interface results in
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with Zgn the wave impedance of the n-th mode, an and bn are the incident and reflected

coefficients, respectively, and c (e)n)andc(m)n ) are the transmitted electric field and

magnetic field coefficients, respectively. The magnetic field expansion coefficients are

obtained using the same orthogonality relation (3.9) after replacing the pulse's electric

field with its magnetic field, and the mode's radial magnetic field with its azimuthal

electric field. From (3.10), the needed excitation coefficients are computed using

It is worth noting that the previous technique of the excitation coefficients

calculations cannot be directly applied in the case of the metallic waveguide. The

discontinuity of the waveguide's metallic wall introduces a discontinuity in the tangential

magnetic field; hence the scattering problem needs another technique (e.g. Wiener-Hopf

technique) to be solved.

Introducing a metallic flange at the open end of the waveguide forces the electric

field to be zero in the radial direction at z = 0+ and prevents back scattering from the

edge. The numerical results of the magnetic field calculation across the discontinuity

show that the using the previous technique is an acceptable approximation as the largest

value of the magnetic field along the discontinuity surface is at least two orders of

magnitude less than its value on the aperture. Figure 3.2 shows the proposed metallic

flange extension to the waveguide.
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Figure 3.2 Diagram of the waveguide with a metallic flange at its open end.

3.4 Current Loops

The proposed excitation technique uses circular current loops having different radii ρm

and positioned at different locations with respect to the open end of the waveguide zm  . It

is required to find the temporal excitation function, which represents the time variation of

the current passing through each of the circular loops.

Starting from the inhomogeneous Helmholtz equation for the longitudinal

magnetic field hz (r,t), to excite axially symmetric TE modes,

where V 2 is the Laplacian and Fm (w) is the frequency spectrum of the excitation current

of the m-th loop.
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The longitudinal magnetic field is expanded in terms of the complete orthonormal

set

with the normalization coefficient Nn = √2/(AJ0(kc,nA)). Substituting into (3.12) for

each loop yields

and applying the orthogonality relation of the modes (3.6)

The solution of (3.15) is given by

Applying the source conditions,

which imply the continuity of gn (z) at z = zm and the discontinuity of its derivative with

respect to z at the same location. Solving for the forward traveling modes coefficients

yield

thus for z> max(zm )

The azimuthal electric field is derived from (3.19) using Maxwell's equations,

and accordingly its excitation coefficients, C n (ω ), are given by
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By restricting the number of current loops, m , to the number of TE modes, n , a

linear system of equations could be obtained and inverted to get the current excitation

spectrum as

with the matrix elements

To account for the multiple reflections from the closed end of the waveguide, all

elements of (3.22) must be multiplied by 1-e 2ikz,n|zg-zm|/1 + Rne 2ikz,nzg with zg the length

of the waveguide section and Rn the n-th mode reflection coefficient from the

waveguide's open end.



CHAPTER 4

NUMERICAL EXAMPLES

4.1 Introduction

To demonstrate the feasibility of the suggested method, two numerical examples are

given. Two different pulses are used, where first the TE MPS is designed and

decomposed in terms of the waveguide's modes, then the excitation coefficients are

calculated as well as the currents needed to excite them. The current loops are placed

inside the waveguide in two different configurations for each pulse. The efficiency of the

generation process is evaluated and the accuracy of the generated pulse is examined.

Interactions between adjacent current loops are omitted. Finally, numerical error analysis

is performed to give a feel of the sensitivity of the suggested method. All numerical

analysis is done on MATLAB™  and the code could be directly obtained by contacting

the author.

4.2 Example 1

For comparison purposes, the generated pulse is designed to have the same parameters as

the pulse reported in [19]. The pulse parameters are β0 = 33.33m-1  , a =10 -12 s and

q =10 5 m . The parameters translate to the physical properties of a peak center at

p0 = 0.21 cm with a spot size of a = 0.36 cm , frequency center at ω0 = 10 10 rad with a

1/e bandwidth of Δω  = 2 x 10 12 rad , a field depth R =50km and a longitudinal

localization of Δ z = 0.6 mm , as shown in Figures 2.1 to 2.4, respectively. Figures 4.1

and 4.2 show the spot size and the intensity plot of the pulse, respectively.
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Figure 4.1 Spot intensity plot of the TE MPS pulse with /3 0 = 33.33 m -1 , a =10 -12 s

and q = 10 5 m
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Figure 4.2 Intensity plot of the TE MPS pulse with β0 = 33.33m-1  , a = 10-12 s

and q = 1 0 5 m

4.2.1 Modal Decomposition

To estimate the appropriate number of modes in decomposition of the pulse, an initial

decomposition over the first 32 TE 0m modes of a cylindrical waveguide with radius

A 35.71 x10 -3 m is performed. Figure 4.3 shows the power contribution of each of the

modes to the total pulse power. As shown in the figure, the main power is concentrated

in eight consecutive modes starting at TE 09 .
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Figure 4.3 Power percentage contribution of the first 32 TE 0m modes for the
pulse in Example I.

The excitation coefficients are computed from the pulse expansion coefficients at

the waveguide's open end as described in section 4.3.3. The resulting modes excitation

coefficients are shown in Figure 4.4.
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Figure 4.4 Modes Excitation coefficients of the first 8 modes starting at TE 09 for the
pulse in Example 1.

4.2.2 Excitation Configuration 1

For the first excitation configuration, eight current loops with increasing radii of 2.5 mm

steps and equal separation steps of 5mm from each other are used. The radii and

locations are given in Table 4.1. The open end of the waveguide is located at z 0 .
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Table 4.1 List of current loops radii and location for the first excitation method for
Example 1 pulse.

Loop number Radius (m) Location (m)

I 0.0075 -0.080

2 0.0100 -0.085

3 0.0125 -0.090

4 0.0150 -0.095

5 0.0175 -0.100

6 0.0200 -0.105

7 0.0225 -0.110

8 0.0250 -0.115

The corresponding currents as functions of time are shown in Figure 4.5, and their

corresponding spectra are shown in Figure 4.6.

Figure 4.5 Excitation currents of configuration 1 for the pulse in Example 1.
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Figure 4.6 Spectra of the excitation currents of Configuration 1 for the pulse
in Example 1.

The TE MPS pulse is reconstructed from the computed currents by means of

solving the forward excitation problem. Figure 4.7 shows a comparison between the

original and the reconstructed pulse's intensity profiles at the open end of the waveguide.
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Figure 4.7 Comparison of the intensity profiles of the original and reconstructed pulses
for Configuration 1 in the Example 1.

Figure 4.7 shows that the transverse localization of the pulse is preserved,

although the reconstructed pulse suffers from a small decrease in intensity as well as

higher power concentration in the outer ring.

To demonstrate the time localization of the reconstructed pulse, the time profiles

of both the original and the reconstructed pulses are compared in Figure 4.8.
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Figure 4.8 Comparison of the time profile of the intensities of the original and
reconstructed pulses for Configuration 1 in the Example 1.

4.2.3 Excitation Configuration 2

The second excitation configuration uses the same loop radii as Configuration 1, but the

separation between the loops is decreased to 3.33 min . Table 2 lists the radii and

locations of the current loops for Configuration 2.
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Table 4.2 List of current loops radii and location for the second excitation method pulse
in the Example 1.

Loop number Radius (m) Location (m)

1 0.0075 -0.020

2 0.0100 -0.023

3 0.0125 -0.027

4 0.0150 -0.030

5 0.0175 -0.033

6 0.0200 -0.037

7 0.0225 -0.040

8 0.0250 -0.043

The corresponding currents as functions of time are shown in Figure 4.9, and their

corresponding spectra are shown in Figure 4.10.

Figure 4.9 Excitation currents of configuration 2 pulse in the Example 1.
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Figure 4.10 Spectra of the excitation currents of Configuration 2 pulse in Example 1.

By solving the forward problem, the field of the reconstructed pulse is computed.

Figure 4.11 shows the intensity profile comparison between the original and

reconstructed pulse at the open end of the waveguide. The time profile of the intensities

of both the original and reconstructed pulses is depicted in Figure 4.12.
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Figure 4.11 Comparison of the intensity profiles of the original and reconstructed pulses
for Configuration 2 in the Example 1.
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Figure 4.12 Comparison of the time profile of the intensities of the original and
reconstructed pulses for Configuration 2 in the Example 1.

Figures 4.11 and 4.12 show that still both the transverse variation and localization

are preserved, while the level of ripples in the profile has increased and the peak value

has decreased.

4.2.4 Accuracy and Efficiency

An exact pulse generation is only possible if the number modes used is infinite.

However, using an infinite number of guided modes to represent the pulse's spectrum is

not possible for practical considerations. Due to these limitations, it was necessary to

calculate the accuracy of the generation process. The accuracy is calculated by means of

the root mean square (rms) error between the original pulse and the reconstructed one at

the aperture (open end of the waveguide). The original pulse field values were calculated
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at the same grid points as the reconstructed one and the rms error percentage is calculated

according to:

where E en is the original pulse field and Ern is the generated field, both evaluated at the

same gird points n .

The efficiency of the pulse generation is evaluated in terms of the output-to-input

powers ratio. The power losses occur because of the different wave impedances between

the waveguide and the pulse propagation region (free space). The difference in

impedances results in reflections at the discontinuity surface between the guiding

structure and the free space. Assuming no losses in the metallic waveguide, the power

efficiency is calculated in terms of the ratio of the squares of the transmitted field to the

field constructed from the excitation coefficients, as

where n designates the number of sampling points and m the number of modes in which

the pulse is decomposed into.

The accuracy and efficiency of the two excitation configurations are listed in

Table 4.3.

Table 4.3 Accuracy and efficiency of the excitation configurations for example pulse 1.

Configuration Accuracy (Arms) Efficiency ( y )
1 5.72% 97.7%
2 13.5% 98.0%
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Table 4.3 shows that Configuration 1 produces pulses with slightly better

accuracy. The power efficiency of both methods is almost equal. The high efficiency is

mainly due to the introduction of the metallic flange at the open end of the waveguide,

which prevents diffraction from the edge, and also due to the strong causality nature of

the pulse.

4.3 Example 2

For the second example, a more physically realizable pulse is considered. Starting with

the physical requirements to have a pulse in the microwave X-band with a bandwidth not

exceeding 4 GHz , the following pulse parameters are used β0 = 210m -1 ,

a = 4.5 x10-10 s and q = 4m . The resulting pulse has its peak center at p 0 =1.79cm

with a spot size of σ  = 3.06 cm , frequency center at ω0 = 2π x 1010 rad with a 1/e

bandwidth of Δω  = 4.45 x 10 9 rad , a field depth R= 2 m and a longitudinal localization

of Δz = 27.0 cm . Figures 4.13 to 4.16 show the physical properties of the pulse, while

Figures 4.17 and 4.18 show the spot size and the intensity plot of the pulse, respectively.
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Figure 4.13 The intensity profile of a TE MPS pulse with fl„ = 210m -1 , a = 4.5 x10 -1° s
and q = 4m .



Figure 4.14 The bandwidth of a TE MPS pulse with β0 = 210m-1 , a = 4.5 x 10-10 s
and a = 4m .
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Figure 4.15 The intensity profile of a TE MPS pulse as a function of its range with
β0 = 210m-1 , a = 4.5x10-10 s and q = 4m.
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Figure 4.16 The intensity profile of a TE MPS pulse as a function of its longitudinal
extension with ,8„ = 210 m -1 , a = 4.5 x10 -1° s and q = 4 m .
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Figure 4.17 Spot intensity plot of the TE MPS pulse with /3 = 210 	 , a = 4.5 x10- ' ° s
and q = 4 in .
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Figure 4.18 Intensity plot of the TE MPS pulse with β 0 = 210 m-1 , a = 4.5 x 10-10 s
and = 4 m .

4.3.1 Modal Decomposition

As previously done, to estimate the appropriate number of modes to decompose the pulse

into, an initial decomposition over the first 32 TE0m , modes of a cylindrical waveguide

with radius A= 15cm is performed. Figure 4.19 shows the power contribution of each of

the modes to the total pulse power. As shown in the figure, the main power is

concentrated in the first six modes. Accordingly, in the first excitation configuration, all

six modes will be included, while for the second configuration, only first four modes will

be considered.
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Figure 4.19 Power percentage contribution of the first 32 TE 0m modes for
example 2 pulse.

The excitation coefficients are computed from the pulse expansion coefficients at

the waveguide's open end as described in section 4.3.3. The resulting modes excitation

coefficients are shown in Figure 4.20.
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Figure 4.20 Modes Excitation coefficients of the first 6 modes for example 2 pulse.

4.3.2 Excitation Configuration 1

For the first excitation configuration, six current loops with increasing radii of 2cm step

and equal separation steps of 1 mm from each other are used. The radii and locations are

given in Table 4.4.
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Table 4.4 List of current loops radii and locations for the excitation of the pulse in the
Example 2.

Loop number Radius (m) Location (m)

1 0.10 -0.050

2 0.08 -0.051

3 0.06 -0.052

4 0.04 -0.053

5 0.02 -0.053

6 0.01 -0.055

The corresponding currents as functions of time are shown in Figure 4.21, and

their corresponding spectra are shown in Figure 4.22.

Figure 4.21 Excitation currents of configuration 1 pulse in the Example 2.
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Figure 4.22 Spectra of the excitation currents of configuration 1 pulse in the Example 2.

The TE MPS pulse is reconstructed from the computed currents by means of

solving the forward excitation problem. Figure 4.23 shows a comparison between the

original and the reconstructed pulse's intensity profiles at the open end of the waveguide.
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Figure 4.23 Comparison of the intensity profiles of the original and reconstructed pulses
for Configuration 1 pulse in the Example 2.

Figure 4.23 shows that the transverse localization of the pulse is preserved. The

reconstructed pulse suffers greatly from power loss and this is due to the strong presence

of backward traveling components in its spectrum, which could not be generated using

this approach and accordingly contribute to the lower power efficiency.

To demonstrate the time localization of the reconstructed pulse, the time profiles

of both the original and the reconstructed pulses are compared in Figure 4.24.
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Figure 4.24 Comparison of the time profile of the intensities of the original and
reconstructed pulses for Configuration 1 in the Example 2.

4.2.3 Excitation Configuration 2

The second excitation configuration uses only the first four modes of the waveguide and

accordingly four current loops. No changes were made to either their locations or radii,

and accordingly, their data is found in the first four rows of Table 4.4.

The corresponding currents as functions of time are shown in Figure 4.25, and

their corresponding spectra are shown in Figure 4.26.



Figure 4.25 Excitation currents of configuration 2 pulse in the Example 2.
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Figure 4.26 Spectra of the excitation currents of Configuration 2 pulse in the Example 2.

By solving the forward problem, the field of the reconstructed pulse is computed

Figure 4.27 shows the intensity profile comparison between the original any

reconstructed pulse at the open end of the waveguide. The time profile of the intensitie

of both the original and reconstructed pulses is depicted in Figure 4.28.
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Figure 4.27 Comparison of the intensity profiles of the original and reconstructed pulses
for Example pulse 2 using Configuration 2.
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Figure 4.28 Comparison of the time profile of the intensities of the original and
reconstructed pulses for Example 2 using Configuration 2.

While Figures 4.27 shows that the transverse localization is maintained in the

reconstructed pulse, Figure 4.28 shows that the time profile exhibits delocalization and

the pulse displays significant spread in time.

4.3.4 Accuracy and Efficiency

Following the same procedures as in sub-section 4.2.4, Table 4.5 lists the calculated

accuracy and efficiency values for the Example 2 pulse generation techniques. For the

rms error values, the amplitudes of the reconstructed pulses were normalized in order to

make the accuracy calculation directly related to the pulse shape.
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Table 4.5 Accuracy and efficiency of the excitation configurations for Example 2 pulse.

Configuration Accuracy ( 4,,,, ) Efficiency (7)
1 0.89% 21.9%
2 1.03% 19.4%

While the generated pulses are very low in efficiency, their profiles closely match

the original pulses and this generation technique could be used in applications where high

power efficiencies are not of a major concern.



CHAPTER 5

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

The study proposed a new technique for the generation of localized waves (LWs) based

on the modal expansion method. In this study, the reconstructed pulse's full radial profile

is presented and compared to the original pulse, hence avoiding one of the major

shortcomings of the previously published studies of LWs generation techniques [13-16].

Using the modal expansion technique, localization of the pulse was maintained

for greater distances than those previously reported. Although the profile of the

reconstructed pulse was not exactly matching the original, but the transverse localization

was well maintained.

The modal expansion technique is an efficient technique for the generation of TE

MPS pulses. The calculated power efficiencies were high when the pulse's causality is

maintained, while a significant drop in the output-to-input power was noted when a pulse

with no strong causality is generated.

The flexibility in the choice of the number and order of the guided TE modes to

represent the LW provides more freedom in determining the efficiency of the technique

as the number and order of modes needed to generate the pulse could be tailored to the

desired application.

The choice of the locations and radii of the current loops are important factors in

determining the needed excitation function of the rings. By changing these parameters,

different current shapes are obtained and accordingly, different reconstructed pulses.
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To avoid power losses in the waveguide, the calculation of the excitation

functions took into consideration the reflection from the closed end of the waveguide.

Overall, the modal expansion technique is a reliable and efficient technique for

LWs generation. It can be easily tailored to realize a wide range of LWs.

5.2 Future Work

An important aspect is the generation of types of LWs other than the MPS pulse. The

same derivation method of TE pulses can be applied to the FWM family of pulses, as

they are subclasses of the MPS pulse. Investigation of the possible generation techniques

of X-Waves is of great importance, as their transmission, reflection and scattering

properties are intensively studied in the literature.

The practical realization of a LW launcher based on proposed method is of high

importance and is currently being investigated. This realization requires additional

investigation into different areas, such the non-linearity effects of the generation devices,

heat deformation and mechanical stress of the waveguides and the error tolerance in the

mechanical and electrical parts of the system.

As photonic crystals emerge fast into the scientific as well as the industrial arena,

it is beneficial to study the possibility of using the modal expansion technique in

generating LWs in photonic crystals in the optical regime. Materials with negative

refractive index exhibit an inherent focusing nature and thus the possibility and feasibility

of utilizing the focusing nature of these left-handed materials, as guiding media for the

launcher, could be studied.
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