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ABSTRACT

PROCESSING TECHNIQUES
FOR PARTIAL TREE-PATTERN QUERIES

ON XML DATA

by
Pawel Placek

In recent years, eXtensible Markup Language (XML) has become a de facto stan-

dard for exporting and exchanging data on the Web. XML structures data as trees.

Querying capabilities are provided through patterns matched against the XML trees.

Research on the processing of XML queries has focused mainly on tree-pattern queries.

Tree-pattern queries are not appropriate for querying XML data sources whose struc-

ture is not fully known to the user, or for querying multiple data sources which struc-

ture information differently. Recently, a class of queries, called Partial Tree-Pattern

Queries (PTPQs) was identified. A central feature of PTPQs is that the structure

can be specified fully, partially, or not at all in a query. For this reason. PTPQs can

be used for flexibly querying XML data sources.

This thesis deals with processing techniques for PTPQs. In particular, it

addresses the satisfiability, containment and minimization problems for PTPQs. In

order to cope with structural expression derivation issues and to compare PTPQs, a

set of inference rules is suggested and a canonical form for PTPQs that comprises all

derived structural expressions is defined. This canonical form is used for determining

necessary and sufficient conditions for PTPQ satisfiability.

The containment problem is studied both in the absence and in the presence of

structural summaries of data called dimension graphs. It is shown that this problem

cannot be characterized by homomorphisms between PTPQs, even when PTPQs

are put in canonical form. In both cases of the problem, necessary and sufficient

conditions for PTPQ containment are provided in terms of homomorphisms between

PTPQs and (a possibly exponential number of) tree-pattern queries. This result is



used to identify a subclass of PTPQs that strictly contains tree-pattern queries for

which the containment problem can be fully characterized through the existence of

homomorphisms. To cope with the high complexity of PTPQ containment, heuristic

approaches for this problem are designed that trade accuracy for speed. The heuristic

approaches equivalently add structural expressions to PTPQs in order to increase

the possibility for a homomorphism between two contained PTPQs to exist. An

implementation and extensive experimental evaluation of these heuristics shows that

they are useful in practice, and that they can be efficiently implemented in a query

optimizer.

The goal of PTPQ minimization is to produce an equivalent PTPQ which is

syntactically smaller in size. This problem is studied in the absence of structural

summaries. It is shown that PTPQs cannot be minimized by removing redundant

parts as is the case with certain classes of tree-pattern queries. It is also shown that,

in general, a PTPQ does not have a unique minimal equivalent PTPQ. Finally, sound,

but not complete, heuristic approaches for PTPQ minimization are presented. These

approaches gradually trade execution time for accuracy.
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CHAPTER 1

INTRODUCTION

In recent years, XML (eXtensible Markup Language) [60] has been used as a de facto

standard for interchanging data between various types of databases and Web sites.

XML organizes data in documents which have a tree-structured form. It is capable of

handling diverse data sources including sources with structured and semi-structured

documents, relational databases, and object repositories. XML is software and hard-

ware independent. It has been widely adopted by businesses, enterprises, as well as

educational and governmental institutions. Some regulatory and government agen-

cies not only use, but require that all data submitted to them be in the XML format.

A prime example of such a government body is the Food and Drug Administration

(FDA).

The broad range of XML applications include inter-application data exchange,

streaming data, metadata management, Web publishing and searching, e-business

applications, and pervasive (wireless) computing. The World Wide Web Consortium

(W3C), founded in 1994, is an international consortium devoted to developing Web

standards. Its mission is to lead the World Wide Web to its full potential by devel-

oping protocols and guidelines that ensure long-term growth for the Web. W3C has

developed several widely used technologies for XML, which make the use of XML in

current form possible and efficient. One of the attractive features of XML is its dis-

sociation of data from schema. This is paramount for applications requiring flexible

or no schemas as it is usually the case on the Web. Nevertheless, W3C developed

schema definition languages, Document Type Definition (DTD) and XML Schema,

which may be used to provide a structure, content and semantics for XML documents.

Once an XML document conforms to a DTD or XML Schema, it is much easier to

1
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query, process or exchange it. Since XML has become a data model, a need to query

XML documents has emerged. W3C suggested XQuery [58] as a language to query

XML document trees. XQuery is a powerful and complex language, which allows to

query XML sources. According to W3C's Web site, XQuery is to XML what SQL

is to relational databases. W3C also suggested the Extensible Stylesheet Language

(XSL) and the XSL Transformations (XSLT) [59] languages for transforming XML

documents into other XML documents. Working in conjunction, they allow to dis-

play XML data in different applications or on different devices. For instance, data

can be displayed on a PDA, a cell phone, in a browser on a computer, or simply be

printed out. For the sake of completeness one has to mention XML Linking Language

(XLink) and XML Pointer Language (XPointer) [56]. They allow to create hyperlinks

within XML documents as well as hyperlinks to other resources on the Web such as

other XML documents, files other than XML, database searches, etc. Finally, W3C

proposed another query language for XML, XPath [57]. XPath is a simple query

language for navigating in XML documents, but it is an integral part and lies at the

core of XQuery, XSLT, XPointer, or XLink. For this reason XPath is a target of

query evaluation, processing and optimization techniques.

1.1 Motivation

The introduction of a tree-structured data model has created a need for efficient

methods for querying this type of data. New languages proposed to address this

need include XML-QL [14], XQL [43], Lorel [1], Quilt [11], XQuery, and XPath.

All currently used languages for querying tree-structured data rely on tree patterns.

Answers to the queries are computed by matching these tree patterns against the data

trees. The answer is either a set of nodes or an XML tree. The effective and efficient

querying of tree structured data faces several obstacles: (a) a tree-structured data
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source may contain structured data (i.e., relational database) along with unstructured

data (i.e., text), (b) the user may not know the (full) tree structure of a data source,

(c) the structure is flexible and complex and evolves over time, (d) there is a need to

query in an integrated way several data sources with different structures. Different

techniques were proposed in the past to address these challenges. To cope with

these problems some researchers tried to use approximation techniques. A number of

approaches proposed query relaxation techniques that generate alternative forms of

the queries and search for their answers in the data sources [4, 5]. Others suggested

approximating the answers of XML queries [23, 41]. Another approach proposed

flexible and semi-flexible semantics for tree pattern queries [26]. In any case, all these

approaches have a drawback: the answer is not exact with respect to the initial query.

Other approaches try to cope with the problems mentioned above using keyword

search techniques [13, 32, 65]. These techniques are very popular. However, by

completely ignoring the structure, they generate a different set of drawbacks: (a)

structural information cannot be specified within the query to accelerate computation

of an answer, (b) structural conditions cannot be imposed to filter out undesirable

answers, (c) the structure of the result of the query cannot be specified. Other

attempts to cope with the previous problems try to combine XML query languages

with keyword-based search techniques [19, 31]. These languages, however, seem too

complex for a simple user. Finally, the approach of providing a global structure

[2, 12], the most widely used technique to cope with the issue of querying multiple

data sources, requires extensive manual effort. This is due to the fact that the global

schema is usually difficult to construct and all mappings between global schema and

local schemas must be hard-coded in the integration application.

An approach proposed by Theodoratos et al. [47] addresses the challenges

mentioned above in a different way. The authors define a flexible language allowing

partial specification of a tree pattern query. The novelty of that language lies in
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its ability of querying tree-structured data whose structure is complex or not fully

known to the user. It also allows querying tree-structured data from different sources

with structural differences. The language distinguishes itself from approximation

techniques, because it returns an exact and not approximate answer. It also does have

an edge over keyword search techniques since it allows partial or complete specification

of the tree structure in the queries. This language expresses a large subset of XPath

and it flexibly allows in a query pattern the specification of a full tree structure, a

partial tree structure, or no structure at all. Therefore, queries in that language range

from structureless keyword-based queries to completely specified tree patterns.

For a query language to be useful, it needs to be complemented with query

processing and optimization techniques. This explains why studying these techniques

is one of the major areas of research in tree-structured databases. Query processing

involves addressing query satisfiability issues [7, 8, 25, 30], query minimization issues

[3, 18, 29, 42, 54], rewriting queries using views issues [10, 24, 64], and query contain-

ment issues [46, 15, 33, 35, 36, 44, 55]. Solving these problems efficiently is central to

the optimal evaluation of queries over tree-structured data.

Previous research related to query processing and optimization focuses on tree-

pattern queries. In a tree-pattern query the structure of a tree pattern has to be fully

specified. None of the previous methods can be applied to partially specified tree-

pattern queries. Therefore, novel efficient query processing techniques have to be

developed in order to fully benefit from the potential of the partial tree-pattern query

language.

1.2 Contribution

Our primary goal in this thesis is to address the satisfiability, containment and min-

imization problems for different fragments of partial tree-pattern queries (PTPQs).
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Our approach is not to provide an in-depth study of the complexity for different

problems and different fragments of the language. Instead we target effective query

processing techniques (possibly using heuristics) that can be used in practice, for

instance, by query optimizers.

Our language represents tree-structured data by considering trees of values

whose nodes are partitioned to form what we call dimensions. We use dimensions to

define dimension graphs, a construct that summarizes the structural information of

the database. A dimension graph can be automatically extracted from a database and

supports the processing and evaluation of the PTPQs. We defined the concept of con-

tainment of two PTPQs and the concept of containment of two PTPQs with respect

to a dimension graph. We called the first type of containment absolute containment

and the second one relative containment. In order to handle structural expression

inference and to allow query comparison, we defined a "normal form" for PTPQs,

called full form. We further introduced the concept of homomorphism between two

PTPQs to characterize their containment.

We initially addressed the absolute and relative containment problems for a

structural subclass of PTPQs that involves value predicates. We devised techniques

for checking relative query containment. Our results were experimentally evaluated

and published in [48]. Next, we considered a more restricted class of PTPQs, which

does not comprise value predicates. We addressed the satisfiability, and absolute and

relative containment problems for this class of PTPQs. In order to deal with the in-

ference of structural relationships we developed a set of inference rules. We provided

necessary and sufficient conditions for absolute and relative query containment. We

devised sound but not complete heuristic approaches for an efficient solution of the

containment problem with respect to a dimension graph. These heuristics exploit

structural information extracted from the dimension graph. An extensive experimen-

tal evaluation showed that our approaches greatly improve the containment checking
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execution time while maintaining high accuracy. Our approaches also gradually trade

execution time for accuracy. These results suggest that our techniques can be used

by query processors and optimizers. This work was published in [50].

We also generalized our previous results to study the relative containment

problem for an unrestricted class of PTPQs. We showed that PTPQ homomorphisms

do not fully characterize the PTPQ relative containment and we provided heuristic

approaches for the relative containment problem. This part of our work was published

in the VLDB Journal [49].

Subsequently, we studied the containment in the absence of dimension graphs

(absolute containment problem) for a class of PTPQs without value predicates. We

provided necessary and sufficient conditions for PTPQ containment. We showed that

a PTPQ can be equivalently represented by a set of tree-pattern queries. We also

defined a broad subclass of PTPQs (strictly containing tree-pattern queries) for which

a homomorphism is a sufficient and necessary condition for PTPQ containment. For

PTPQs for which homomorphisms do not fully characterize containment we suggested

two new heuristic techniques for absolute containment that equivalently add virtual

partial paths to PTPQs. An empirical evaluation of these techniques demonstrated

that they maintain high accuracy while being orders of magnitude faster than PTPQ

containment check without using heuristics. Some of these results were presented in

[39]. The complete results are submitted to a journal.

Finally, we addressed the problem of minimizing PTPQs. Minimizing queries

is important, because it may significantly affect the evaluation time of the query. The

minimization problem for PTPQs is challenging for two main reasons. First, as we

showed, PTPQs cannot be minimized by removing redundant parts even though this

is the case with tree-pattern queries involving branching and descendant relationships.

Second, a PTPQ does not have, in general, a unique minimal equivalent PTPQ. We

proved that a PTPQ can be equivalently represented by a special type of PTPQs,
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called component PTPQs. Component PTPQs can be used to check PTPQ equiva-

lence through the existence of homomorphism from a PTPQ to component PTPQs.

We devised sound but not complete heuristic approach for minimizing PTPQs, which

proceeds by first equivalently adding partial paths to a PTPQ and then removing

redundant parts identified through homomorphisms.

1.3 Outline

The next chapter reviews related work. Chapter 3 contains the data model and query

language, and definitions of the containment and satisfiability problems. It also in-

cludes inference rules and a definition of the full form of a PTPQ along with necessary

and sufficient conditions for PTPQ satisfiability. Chapter 4 presents all results rele-

vant to the relative containment of PTPQs. It also provides heuristics for checking

relative containment and their experimental evaluation. Chapter 5 contains results

related to absolute PTPQ containment, heuristics for checking absolute PTPQ con-

tainment, and empirical results. Results for minimizing PTPQs along with a heuristic

approach are included in Chapter 6. Our conclusions are presented in Chapter 7.



CHAPTER 2

RELATED WORK

The wide use of XML raised the need for robust and efficient tools for querying tree-

structured data. To cope with this issue many query languages were proposed. Key

examples include: XML-QL [14], XQL [43], Lorel [1], and XPath [57]. Chamberlin et

al. [11] also proposed a query language for XML called Quilt. According to the au-

thors, Quilt has pulled features from other languages that have strengths in specific

areas. From XPath and XQL they pulled syntax for navigating hierarchical docu-

ments. From XQL-QL they took the notion of variable binding and used it to create

new structures. They also adopted some ideas used in relational languages (SQL) and

object languages (OQL). With the proliferation of query languages aimed at query

XML data, W3C formed the W3C XML Query Working Group to coordinate activ-

ities on developing standard query languages for XML. W3C XML Query Working

Group adopted Quilt as the basis for the development of XQuery [58]. XPath and

XQuery, recommended by W3C, became de facto standard languages for querying

XML data. Besides XQuery and XPath, which are general query languages for XML,

other specialized languages were presented for specific problems. For instance,

XML-DMQL [16] is a data mining query language for XML. The answer of XPath query

is a set of nodes. Some problems require as an answer a set of XML subtrees. To

this end an XPath-based subtree query language was presented in [9]. As discussed

in the previous chapter, there is a need for a query language that allows a flexible

specification of queries. The partial tree-pattern query (PTPQ) language proposed

in [47] and presented later in this work fulfills this need. Optimization techniques for

evaluating PTPQs were presented in [45, 53, 61, 62, 63]. Approaches for assigning

meaningful semantics to PTPQs were discussed in [51, 52].

8
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One of the central issues in query processing is the query containment problem.

Miklau and Suciu [33] study query containment for different classes of XPath queries.

The fragment of XPath they analyze consists of node tests, the descendant axis (//),

wildcards (*), and predicates ([]). They prove that the containment problem for

this class of queries, denoted X13( [1 '*'// ) , is co-NP complete. They also provide two

algorithms for checking containment in this subclass of XPath. The first algorithm is

an efficient, sound, but not complete algorithm. The second one is sound and complete

algorithm, which does not run in polynomial time. Subsequently, they prove that the

complexity of the problem is co-NP. They also define and discuss subclasses of queries,

for which the second algorithm runs in polynomial time.

Wood [55] studies containment for different XPath fragments under Document

Type Definitions (DTDs). DTDs constrain the structure of XML documents. As

expected, problems in the presence of these restrictions become more complex. Wood

shows that the containment problem of XP ( [] , * ,//) queries in the presence of DTDs is

decidable. He also shows that the complexity of this problem is EXPTIME-complete.

Wood also studies subclasses of DTDs, for which containment for XP ([]) can be tested

in PTIME. He also shows that containment for XP([]) under DTDs is coNP-complete

[35].

Neven and Schwentick [35] present an in-depth analysis of the complexity of

containment for many different classes of XPath. They prove that the containment

in XP ( [] , * ,/,//,I ), XP(//,I ), and XP(/, I) is coNP-complete. The symbol "1", in this con-

text, represents disjunction (logical or). In addition, they prove that if the alphabet

of node labels is finite then XP([],*'/,//,I) and XP(/'//,I) are EXPTIME-complete. The

authors study also the containment for a fragment of XPath under the presence of

DTDs. They obtain that containment for XP(/ ,//) under DTDs can be tested in

PTIME. However, by adding branching to this fragment of XPath the complexity

of containment checking increases. The authors show that under DTDs, XP (/'[]) is
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coNP-complete and X13(1 / ,[]) is coNP-hard. Subsequently they prove that for broader

XPath classes, the problem of containment checking becomes even harder. They

also prove that if DTDs are considered, the containment problem in XP([]'*'/,//,I) and

XP(/,//,I) is EXPTIME-complete.

Part of this thesis focuses on checking PTPQ containment in the presence of

a new construct called dimension graph. Dimension graphs are summaries of tree-

structured data and they are used to support the evaluation of the PTPQs and the

satisfiability and containment checking. Similar concepts have been referred to with

different names in the literature, including "index graphs", "path summaries", "path

indexes" and "structural summaries". They differ in the equivalence relations they

employ to partition the nodes of the data tree [27, 34]. In dimension graphs, however,

the nodes in the data tree are partitioned based on semantic relations provided by

the user. This consideration is general and encompasses syntactic partitioning. For

instance, in an XML tree, the equivalence classes can be formed by all the nodes

labeled by the same element. Summaries of data have been extensively studied in

recent years in both the "exact" [6, 20, 34, 40] and the "approximate" flavor [27, 28].

A common characteristic of those approaches is that the data summary is used as a

back end for evaluating a class of path expressions without accessing the data tree.

To this end, the equivalence classes of nodes are attached to the corresponding nodes

of the data summary. In contrast to the previous approaches, the equivalence classes

of the data tree nodes are not kept with the dimension graph. Therefore, partially

specified tree-pattern queries are ultimately evaluated on the data tree.

The query minimization problem is another important topic in query process-

ing. Amer-Yahia et al. [3] analyze the problem of query minimization for queries

in XP([],/,/,//) both without constraints and with specific constraints (required-child

and required-descendant). For the first case they provide an 0(n4 ) algorithm. For

the latter case they provide an 0(n6 ) algorithm. This problem was studied further
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by Ramanan in [42] where improvements to minimization algorithms were proposed.

Ramanan designed an 0(n 2 ) algorithms for query minimization in both these cases.

Flesca and Furfaro [18] study minimization in the fragment of XP ([],/,//,*). An addi-

tional constraint they impose on this XPath fragment requires that branching nodes

are not labeled by "*" . Among other results they show that the decision problem

"given a tree pattern p, is p of minimum size?" is NP-complete in this fragment of

XPath.

Query processing problems in tree-pattern languages are complex problems

and draw a lot of interest in the research community. Previous research, however, is

restricted to tree-pattern queries. Further, none of the previous approaches provided

heuristic techniques for these problems. In the next sections we will present results

on checking partial tree-pattern queries satisfiability, containment, and minimization.

We will also provide heuristic approaches for checking PTPQ containment in presence

and absence of dimension graphs and two heuristics for PTPQ minimization.



CHAPTER 3

THE PARTIAL TREE-PATTERN QUERY LANGUAGE

We present in this chapter our data model and query language. This language is

based on the query language presented by Theodoratos et al. in [47]. The data

model represents tree-structured data using the concepts of database, dimension and

dimension graph. The query language allows for partially specified tree patterns.

We define the containment and satisfiability problems of partial tree-pattern queries

(PTPQs) in the presence and absence of dimension graphs. In order to allow PTPQ

comparison we also define a "normal form" for PTPQs, called a full form. We provide

inference rules to characterize inference of structural expressions.

3.1 Data Model

We assume an infinite set of values V that includes a special value r.

Dimensions and databases. A dimension set over V is a partition D of V that in-

cludes the singleton {r}. Each element of D is called dimension of D. The dimensions

in D are assigned distinct names. In particular, the dimension {r} is named R. Intu-

itively, a dimension is a set of semantically related values. For instance, AUTHOR

can be a dimension that includes authors of bibliographic entries. Since the names

of the dimensions are distinct we use them to identify the dimensions of D. Different

applications may require and apply different partitions of the values in V. For the

needs of this chapter, we assume that a dimension set is fixed and we denote it by D.

12
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Definition 3.1.1. A database over D is a finite and rooted node-labeled tree T, such

that: (a) each node label in T belongs to V, (b) value r labels only the root of T, and

(c) there are no two nodes on a path in T labeled by values that belong to the same

dimension in D. In this sense, databases are not recursive. ❑

We assume that nodes in a database have a unique node identifier and these

node identifiers are preserved in the answers of a query on this database.

Example 3.1.1. Let D = {R, AUTHOR, BIB, Y EAR, TITLE, SUBJECT}, where

dimensions AUTHOR, BIB, YEAR, TITLE  and SUBJECT include respectively

the author name, type, publishing year, title, and subject of bibliographic entries. Fig-

ure 3.1 shows the database T. In the database, dimension of a value is shown in

capital letters by the value.
_ r

Figure 3.1 Database T.

Values from two different dimensions can appear in different order in different

branches of a database. For instance, value "1996" of dimension "YEAR" is an

ancestor of value "D. Knuth" of dimension "AUTHOR" in the third branch of tree

T, while value "1988" of dimension "YEAR" is a descendant of value "W. Wharton"

of dimension "AUTHOR" in another branch of T. 	 ❑

The next example uses abstract notation, which will be used throughout the

rest of this work.
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Example 3.1.2. Let D = {R, A, B, C, D, E}. Unless otherwise specified, this will

also be the dimension set for the rest of the examples. Figures 3.2 and 3.3 show two

databases T1 and T2 respectively.

Figure 3.4 DimensionFigure 3.2 Database T1. Figure 3.3 Database T2 graph g.

All the x i s in a database denote (not necessarily distinct) values of the same

dimension X E D. For instance, values a l and a2 are values of dimension A. The

numbers by the nodes of the database T2 of Figure 3.3 denote their identifiers.

As in previous example, values from two different dimensions can appear in

different order in different branches of a database. For instance, value c 1 of dimension

C is an ancestor of value a l of dimension A in the leftmost branch of tree T1 , while

value c 2 of dimension C is a descendant of value a2 of dimension A in another branch

of

The semantic interpretation of the values of a database into dimensions is

provided by a user, possibly assisted by an ontology. Note, however, that dimensions

can also be chosen to represent purely syntactic objects. For instance, they can be

viewed as sets that group together nodes in the database that are labeled by the same

element. In this case, the concept of a dimension graph is similar to that of an index

graph [26].

Dimension graphs. The values of some dimension may not be children or descen-

dants of any value of some other dimension in a database. For instance, no value of
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dimension A in the databases T1 and T2 of Figures 3.2 and 3.3 is a child of a value

of a dimension other than E. We use the concept of dimension graph to capture this

type of relationship between dimensions in a database.

Definition 3.1.2. Let T be a database over D. A dimension graph G of T is a graph

(N, E), where N is a set of nodes and E is a set of edges, defined as follows: (a)

there is a node D in N if and only if there is a value in T that belongs to dimension

D, and (b) there is a directed edge (Di , Di ) in E if and only if there are nodes ni and

nj in T labeled by values vi E Di and vj E Dj respectively, such that nj is a child of

ni in T. If G is a dimension graph of a database T, we say that T underlies G. ❑

The dimension graph of a database may have cycles. In particular, it can have

a trivial cycle if, in the underlying database, a value of a dimension labels a parent

node of a node labeled by a value of another dimension and conversely.

Figure 3.5 Dimension graph of the database T.

Example 3.1.3. Figure 3.4 shows the dimension graph of the databases T1 and T2

of Figures 3.2 and 3.3. Trivial cycles are shown in the figures with a double headed

edge (e.g. the edge between dimensions D and B in Figure 3.4). Figure 3.1 shows

the dimension graph of database T of Figure 3.1. ❑

The next proposition provides properties that fully characterize dimension

graphs on databases. In the proposition and the following text, paths are meant to

be simple that is, they do not meet the same node twice.
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Proposition 3.1.1. A directed graph g whose nodes are dimensions is a dimension

graph of some database if and only if the following properties hold:

(a) Graph g does not have disconnected components.

(b) There is exactly one node in g having only outgoing edges. We call this node root

of g.

(c) For every directed edge in g there is a path from the root of g that comprises this

edge. ❑

Proof The only if part is a direct consequence of the definition of a dimension graph.

For the if part let's assume that a directed graph g satisfies the conditions (a), (b),

and (c) of the proposition. We construct a database by considering all the simple

paths from the root of g and by merging their root node R. Clearly, this tree is a

database that underlies g. Therefore, g is a dimension graph. ❑

Dimension graphs can be automatically extracted from databases and abstract

their structural information. As we show in subsequent sections, they help the evalu-

ation of queries on databases, the detection of unsatisfiable queries and the checking

of PTPQ containment.

3.2 Query Language

Partial tree-pattern queries (PTPQs) are issued on dimension sets and are evaluated

on databases. Dimension graphs can support the formulation of PTPQs. To allow

PTPQ composition, we require that the evaluation of a PTPQ on a database yields

a database.

Syntax. A PTPQ on a dimension set provides a (possibly partial) specification of a

tree of dimensions annotated with sets of values. The tree is rooted at dimension R.

A PTPQ specifies such a tree through a set of (possibly partially specified) paths from

the root of the tree. For succinctness, in the following, PP stands for partial path. In
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some figures PP can be also denoted as PSP. Each PP is defined in a PTPQ by a set

of annotated dimensions, and a set of precedence relationships (child and descendant

relationships) among these annotated dimensions. A PTPQ further indicates nodes

(annotated dimensions) that are shared among different PPs in the PTPQ tree. It

also identifies a distinguished PP called output PP. The formal definition follows.

Definition 3.2.1. A PTPQ on a dimension set D is a triple (P,S,o), where:

(a) P is a nonempty set of triples (p, A, R), where A and I?, define a PP as explained

below, and p is a distinct name for this PP. Since PP names are distinct, we

identify PPs with their names.

(al) A is a set of expressions of the form D[p] = V, where D[p] denotes the

dimension D of D in PP p, and V is a set of values of dimension D or a

question mark ("?"). These expressions are called annotating expressions of

p. If the expression D[p] = V belongs to A we say that D is annotated in p

and V is its annotation. A dimension can be annotated only once in a PP p.

Without mentioning it explicitly, we assume that dimension R is annotated

with a "?" in every PP. Set A can be empty.

(a2) R is a set of expressions of the form D[p] —> Dj[p] or D i [p] Di p], where

Di is an annotated dimension in A or R, and D i is an annotated dimension

in A. These expressions are called precedence relationships of p. Set R. can

be empty.

(b) S is a set of expressions of the form D[pi] D[pj], where pi and pi are PPs in

P, and D is a dimension annotated in p i and pi . These expressions are called

node sharing expressions. Roughly speaking, they state that PPs p i and pi have a

dimension in common. Set S can be empty.

(c) o is the name of one of the PPs in P. This PP is called output PP of the PTPQ.



18

The term structural expression refers indiscreetly to a precedence relationship

or to a node sharing expression.

Example 3.2.1. Consider the database T from Example 3.1.1 and a query: "Find all

books (value of BIB) in the database, which lie in the same path as their SUBJECT

and TITLE values, and are above their YEAR value". This query can be expressed

by the following PTPQ:

Q = (P ,S , p i ) , where

P	 {(p', A1, RI), (P2, A2, R2)},

Al = {BIB p1] = {Book}, SUBJECT[p1] = ?, TITLE[p 1 ] = ?},

R-1= 0,

A2 = {B I B[p2] ?, Y EAR[p2 ] = ?I,

R2 = {B I B[p2] YEAR[p2]},

S = {BIB[p1] 11 BIB[p2 ]}. 	 ❑

We graphically represent queries using graph notation. Consider a PTPQ Q.

Each PP of Q is represented as a (not necessarily connected) graph of dimensions

labeled by their annotating expressions in the PP. The name of each PP is shown

below the corresponding PP graph. In particular, the name of the output PP of Q is

preceded by a *. PP names are omitted in the annotating expressions for succinctness.

Child and descendant precedence relationships in a PP are depicted using single HO

and double arrows between the respective nodes in the PP graph. Two nodes

(annotated dimensions) in different PP graphs that participate in a node sharing

expression of Q are linked in its graphical representation with a straight line labeled

by the symbol

Example 3.2.2. PTPQ Q of Example 3.2.1 is graphically represented in Figure 3.6.



Figure 3.6 Dimension graph of the database T.

19

Example 3.2.4. PTPQ Qi of Example 3.2.3 is graphically represented in Figure 3.7.

The graphical representation of other queries is shown in Figures 3.9 and 3.10. 	 ❑

Figure 3.7 PTPQ Q1 .
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semantics. The answer of a PTPQ is based on the concept of PTPQ embedding.

Definition 3.2.2. Let T be a database over a dimension set D, and Q be a PTPQ

on D. An embedding of Q into T is a mapping M of the annotated dimensions of

the PPs of Q to nodes in T such that:

(a) The annotated dimensions of a PP in Q are mapped to nodes in T that are on

the same path from the root of T.

(b) For every annotating expression D[p] = V in Q, the label of M(Dp]) is a

value in V, if V is a set, and it is a value of D, if V is a "?".

(c) For every precedence relationship D i p]Dk [p] (resp. Di [p] 	 Dk[p]) in Q,

M(Dk [p]) is a child (resp. descendant) of M(D j[p]) in T.

(d) For every node sharing expression Dp i] Dpi] in Q, M(D[p i ]) and M(D[pj ])

coincide. 	 ❑

A PTPQ can have more than one embedding into a database. Given an

embedding Al of a PTPQ Q into a database T, and a PP p in Q, the path from the

root of T that comprises all the images of the annotated dimensions of p under M

and ends in one of them is called image of p under M and is denoted M(p). Notice

that more than one PP of Q may have their image in the same root-to-leaf path of T

(M does not have to be a bijection).

The image of PTPQ Q under M is the subtree of T rooted at r that comprises

exactly the images of all PPs of Q under M.

The answer of a PTPQ Q on a database T is a database. Every path from the

root to a leaf of the answer of Q on T is the image of the output path of Q under an

embedding of Q into T that preserves the precedence relationships and node sharing

expressions of Q. Note that the answer of a PTPQ is defined here differently than in

XPath where the answer of an expression is a set of nodes.
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Definition 3.2.3. Let T be a database over a dimension set D, and Q = (P,S, o) be

a PTPQ on D. The answer of Q on T is a tree T' such that:

(a) T' results by removing (possibly 0) paths from T.

(b) For every embedding of Q into T, the image of the output PP of Q is in T'.

(c) Every root-to-leaf path of T' is the image of the output PP of Q under an

embedding of Q into T .

If there is no such a tree T', the answer of Q on T is an empty tree, and we say that

the answer of Q on T is empty. 	 ❑

Note that annotating a dimension with a "?" in a PP of a PTPQ is different

than omitting this dimension from the PP. A dimension of a PP that is annotated

with a "?" requires one of its values to be in the image of the PP under every PTPQ

embedding into the database.

Example 3.2.5. Consider the PTPQ Q 1 of Example 3.2.3, graphically shown in

Figure 3.7. Consider also the database T2 of Figure 3.9. The answer of Q 1 on T2 is

shown in Figure 3.8.

Figure 3.8 The answer of Q 1 on T2.

There are two embeddings of Q 1 into T2 which result in two distinct root-to-leaf

paths in the answer of Q1 on T2. The embeddings are as follows:

Embedding 1: Cp l ] —› 1, A[p1 ] 	 3, B[p i ] —4 5, D[p1] —> 4, C[p2 ] 	 1, E192] —÷ 2,

Ape] —4 3, D[p3] —> 10, Cps] 	12.
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Embedding 2: C[p1 ]	 1, Ap t ] 	 3, B p i ]	 6, Dpi] --> 7, C[p 2 ]	 1, E[p2] --> 2,

A[p 2 ]	 3, D[p3 ]	 10, C 133] —> 12.

Note that both embeddings map the dimensions of PPs p 1 and p2 of Q1 to nodes

on the same path from the root of T2. 	 ❑

Clearly, the class of PTPQs encompasses TPQs: every TPQ can be repre-

sented by a PTPQ that returns the same answer on every database. A PTPQ Q'

corresponding to a TPQ Q can be constructed by adding appropriately to the TPQ

node sharing expressions for every node that belongs to two paths of Q. Such a

construction is straightforward, and we omit the details for brevity.

Notice that the PTPQ language allows the formulation of queries with no

structure at all by specifying a single node per PP and no node sharing expressions.

This resembles a flat keyword-based query. On the other side, the PTPQ language

also allows the formulation of queries that are completely structured trees by specify-

ing only child relationships and node sharing expressions. Between the two extremes,

there are PTPQs that provide some description of the structure without fully speci-

fying a tree.

3.3 PTPQ Containment (Absolute) and PTPQ Containment in the

Presence of Dimension Graphs (Relative)

We define in this section PTPQ containment and relative PTPQ containment.

Definition 3.3.1. Let Q 1 and Q2 be two PTPQs. Q 1 contains Q2 (denoted Q2 C Qi)

if and only if for every database D, the answer of Q2 on D is a subset of the answer

of Q 1 on D. PTPQs Q 1 and Q2 on D are equivalent (denoted Q2 Q1 ) if and only

if Q 1 C Q2 and Q2 C Q1. 	 ❑

If PTPQs are evaluated on databases that underlie a specific dimension graph

we can define containment with respect to dimension graph (relative containment).
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Even though dimension graphs are not schemas in the sense of e.g. a DTD of an XML

document, we use them as schemas in processing and evaluating queries. Therefore,

we define PTPQ containment and equivalence with respect to a dimension graph.

Definition 3.3.2. Let Q and Q2 be two PTPQs on D, and g be a dimension graph

on D. PTPQ Q 1 contains PTPQ Q2 with respect to dimension graph g (denoted

Q2 Cg Q1) if and only if for every database T over D underlying g, every root-to-leaf

path in the answer of Q2 on T is also a root-to-leaf path in the answer of Q on T.

PTPQs Q and Q2 on D are equivalent with respect to dimension graph g (denoted

Q2 -=-g Q) if and only if Q 1 Cg Q2 and Q2 Cg Q1. ❑

Example 3.3.1. Consider the queries Q1 , Q2 and Q3 shown in Figures 3.7, 3.9 and

3.10 respectively.

Figure 3.9 PTPQ Q2.	 Figure 3.10 PTPQ Q3.

Consider also the dimension graph g of Figure 3.4. One can see that Q1 Cg

Q2, and Q2 Cg Q3. Further, Q3 Cg Q2, and therefore Q2 =G Q3. In contrast,

Q2 G Q1. One can also see that Q2 C Q3. We will prove these claims in Section

4.2. ❑

3.4 Structural Expression Inference and PTPQ Full Form

Because tree patterns are partially specified in the PTPQs, new, non-trivial expres-

sions (structural expressions but also annotating expressions) can be inferred from
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those explicitly specified in them. These expressions are preserved by all the embed-

dings of the PTPQ to a database; in other words, adding these expressions to the

PTPQ does not remove paths from its answer on any database. We formalize below

the notion of structural expression implication.

Definition 3.4.1. Let E be the set of expressions of a PTPQ Q on a dimension set

D, and e be an expression. We say that e is implied from E (denoted E e) if and

only if for every database T over 72) and every embedding M of Q into T, M preserves

e.

Example 3.4.1. Consider the set of structural expressions E = {A[p1] B pi], A[P1]

A1,2], R[p2] B _p2 ]}. One can see that E implies the precedence relationship

A [p2] B [p2] . El

The closure of a set E of expressions is the set that includes the expressions

in E and those structural expressions that can be implied from E. In order to check

queries for containment, we introduce a "normal form" for queries called full form.

A PTPQ is in full form if its set of expressions E is closed under implication (that

is, E equals the closure of E). Note that we ignore in E an annotating expression

DP] = V, if a more restrictive annotating expression Dp] = V', with V' C V, also

belongs to E. Clearly, a PTPQ can be equivalently put in full form by replacing its

set E of expressions by the closure of E.

To graphically represent queries in full form, we follow the following conven-

tion: (a) double arrows (ancestor precedence relationships) from R are not depicted,

(b) a double arrow between two dimensions in a PP is not depicted if it can be tran-

sitively derived from other double arrows in the same PP, and (c) a double arrow

from dimension D 1 to dimension D2 in a PP is not depicted if there is a single arrow

from D 1 to D2 in the same PP. All the omitted double arrows and node sharing

expressions can be trivially derived from the expressions explicitly represented in the

PTPQ graph.
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Example 3.4.2. Consider the PTPQs Q 1 and Q2 of Figures 3.7 and 3.9. Figures

3.11 and 3.12 show the full form of Q1 and Q2 respectively. PTPQ Q3 of Figure 3.10

Figure 3.11 Full form of PTPQQ1
Figure 3.12 Full form of PTPQ Q2.

is in full form. ❑

A set of inference rules for structural expression implication has been provided

in [48] and the complete list is presented below. The inference rules were derived in

collaboration with S. Souldatos from the National Technical University of Athens.

Figure 3.13 A set of inference rules.

Let a, b, c and d be distinct dimensions and p, p i , and p2 be distinct PPs. We

use the symbol I- to denote that the expressions that precede it produce the expression
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that follows it. The absence of expressions that precede I-- denotes an axiom. Figure

3.13 shows a set of inference rules.

Each inference rule derives a new structural expression from a set of structural

expressions. Clearly, the number of structural expressions that can be derived using

the inference rules in a PTPQ is bound by 0(n2 ), where n is the product of the

distinct dimensions in the PTPQ and its number of PPs. Therefore, the full form of

a PTPQ can be computed in polynomial time.

3.5 PTPQ Satisfiability

We also need the concept of satisfiable PTPQ.

Definition 3.5.1. A PTPQ is satisfiable if and only if it has a non-empty answer

on some database. 	 ❑

One can see that adding the precedence relationship bpi] 	 c[p1] to the PP

P1 of PTPQ Q1 of Figure 3.7, results in an unsatisfiable PTPQ. Indeed, b[p1] 	 c[p 1 ]

contradicts the descendant precedence relationship c[p1 ] 	 b[pi] that can be derived

from the set of structural expressions of Q 1 (see the full form of Q 1 in Figure 3.11).

This condition is necessary as the next proposition shows [50].

Proposition 3.5.1. A PTPQ is unsatisfiable if two contradicting descendant prece-

dence relationships a[p] 	 b[p] and b[p] 	 a[p] (in the same PP p) appear in its full

form. 	 ❑

Detecting an unsatisfiable PTPQ avoids evaluating the PTPQ to compute an

empty answer. The overhead for this check amounts to computing the full form. An

unsatisfiable PTPQ is contained in any PTPQ. In the following, unless otherwise

specified, we assume that PTPQs are satisfiable.

Similarly to PTPQ containment, we define PTPQ unsatisfiability in the pres-

ence of a dimension graph.
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Definition 3.5.2. Let g be a dimension graph on D. A PTPQ on D is unsatisfiable

with respect to g if its answer is empty on every database underlying g. Otherwise,

it is called satisfiable with respect to g. Ill

An unsatisfiable PTPQ with respect to dimension graph g is contained in any

PTPQ with respect to G. In the following, when dimension graph g is present and

it is not specified otherwise, we assume that PTPQs are satisfiable with respect to

dimension graph g.



CHAPTER 4

CHECKING PTPQ CONTAINMENT IN THE PRESENCE OF

DIMENSION GRAPHS

In this chapter we study PTPQ containment in the presence of dimension graphs.

Then we provide heuristic approaches for checking PTPQ containment. Finally, we

present and analyze experimental results for these techniques.

4.1 Valid Partial Paths Clusters

A set of PPs in a PTPQ that are all linked together through node sharing expressions

is called cluster:

Definition 4.1.1. A cluster is a set C of PPs and node sharing expressions such that

for every partition of C in two non-empty sets there is a node sharing expression in

Q on an element different than R involving PPs from both sets (that is, the cluster

does not comprise disconnected sets of PPs). ❑

We represent clusters as PTPQs without an output PP (see, for instance,

Figures 4.1 and 4.2). Given a dimension graph g, it is possible that there is a cluster

that can be added to any PTPQ without affecting its answer on any database that

underlies C. To deal with this issue, we introduce the concept of valid cluster.

Definition 4.1.2. Let g be a dimension graph on D. A cluster Q is valid with respect

to g if and only if, for every database T over D underlying g, there is a mapping M

of the annotated dimensions of Q to nodes of T that satisfies the conditions (a), (b),

(c) and (d) of definition 3.2.2 (i.e., M is an embedding of Q into T). ❑

28
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Example 4.1.1. Consider the dimension graph g of Figure 3.4. Let C1 be the cluster

that consists of a single PP comprising a single dimension A annotated with a ' ?'.

Since A appears in g, C1 is valid. Let also C2 be the cluster that consists of a single PP

P2 comprising two dimensions C and E annotated with a "?" and a child precedence

relationship C -- E. Since there is an edge (C, E) in g, it is not difficult to see that

C2 is valid with respect to G.

Valid clusters can involve several PPs. Consider the clusters C3 and C4 shown

in Figures 4.1 and 4.2. As it will become clear below, these clusters are valid with

respect to g. El

Figure 4.1 Cluster C3 (valid). 	 Figure 4.2 Cluster C4 (valid).

Clearly, adding to a PTPQ Q a valid cluster or removing from a PTPQ a valid

cluster that does not include the output PP of Q and does not share nodes with paths

outside the cluster results in a PTPQ equivalent to Q. One can see that the only way

for a cluster to be valid is that the embedding of Definition 4.1.2 maps every PP in

the cluster to the same path in the database T. The following proposition exploits

this observation to provide necessary and sufficient conditions for a cluster to be valid

with respect to a dimension graph.
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Proposition 4.1.1. Let g be a dimension graph on D and C be a cluster on D.

Cluster C is valid with respect to g if and only if the following conditions hold:

(a) Every dimension in C is annotated with a "?" (or with the set of all the values

of the dimension), and

(b) There is an edge in g such that for every path p from the root of g that

comprises this edge there is a mapping from the annotated dimensions in C

to the dimensions of p that preserves the dimensions and all the precedence

relationships in C. 	 ❑

Proof: (If part) Let's assume that cluster C is valid and condition (a) does not hold.

Then, there is a dimension D in C, which is not annotated with a "?" (or with the

set of all the values of the dimension). This means there is d E D that is not in the

annotation of D in at least one PP p of C. We construct a database T underlying g

such that d is the only value of dimension D in T. Clearly, PP p does not have an

embedding to T. This contradicts our assumption that cluster C is valid.

Let's now assume that cluster C is valid and condition (b) does not hold.

Then, there is no edge such that for every path p from the root of g that comprises

this edge there is a mapping from C to p preserving dimensions and precedence

relationships. We construct a tree T as follows: Start with an empty database T. For

each edge e in dimension graph g find a path p from the root of g containing e such

that there is no embedding from cluster C into p. For each path p add a root-to-leaf

path to T constructed from p by replacing labeling dimension by one of their values.

These paths in T have a single common node labeled by r. Clearly, T is a database

underlying graph g. Further, by construction, there is no embedding of C into T

that maps all PPs of C into the same path of T. Since the paths of T do not share

nodes (other than the root node) and all the PPs of C are involved in node sharing

expressions, there is no embedding of C into T. This contradicts our assumption that

cluster C is valid.
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(Only if part) Let's assume that conditions (a) and (b) hold, and let T be a

database underlying g. Consider an edge e = (D i , Di ) in g satisfying condition (b).

By Definition 3.1.2, in every database T underlying c, there are nodes ni and nj in

T labeled by values v i E Di and vj E Di, respectively, such that nj is a child of

Let p' = r, 	 , nk, ni, nj be a path in T where n1 E Di, / in [1, k] u {i, j}, and p be

the path R, D1, . , Dk, Di , Dj in g. Since p contains e, there is a mapping from C

to p that preserves dimensions and precedence relationships in C. Therefore, there is

a mapping m from C to p' that preserves dimensions and precedence relationships.

Since condition (a) holds, all the dimensions in C are annotated by "?" and therefore

m is an embedding of C into p'. Thus, C can be embedded to any database underlying

c, that is, it is valid wrt g. 	 ❑

Example 4.1.2. Consider the cluster C3 of Example 4.1.1 shown in Figure 4.1.

There are two paths from the root of g that comprise edge (A, B). Each path involves

all the annotated dimensions in C3 and satisfies the precedence relationships of both

PPs of C3. Therefore, cluster C3 is valid. Consider also the cluster C4 of Example

4.1.1 shown in Figure 4.2. As before, we can show that there are exactly two paths from

the root of g that comprise edge (D, B) and each of them involves all the annotated

dimensions in C4 and satisfies the precedence relationships of all three PPs of C4.

Therefore, C4 is also valid. 	 ❑

Checking for valid clusters can be performed efficiently as the next proposition

shows.

Proposition 4.1.2. Let g be a dimension graph on D, and C be a cluster on D. Let

also n be the product of the number of dimensions in g and the number of PPs in C.

Checking if C is valid with respect to g can be done in polynomial time on n. ❑

Proof: (Sketch) Based on Proposition 4.1.1, checking if C is valid can be performed

as follows: (a) for every edge (X, Y) in g, compute the set of precedence relationships
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that hold on every path from the root of g that comprises (X, Y), and (b) check if

some of these sets contains all the precedence relationships of C. If this is the case,

C is valid with respect to G.

The set S of descendant precedence relationships that hold on every path from

the root of g that comprises (X, Y) can be computed as follows:

(a) Initially let S = {X 	 Y}.

(b) Remove every outgoing edge from Y in g to create a new graph G'.

(c) For every node Z, Z X, Z Y of G', remove all the outgoing edges from Z,

and check if there is no path from the root of G' to X. If this is the case, add

Z X to S.

(d) For every precedence relationship Z 	 X added to S in step (c), apply recur-

sively step (c) to node Z.

The set S' of child precedence relationships that hold on every path from the

root of g that comprises (X, Y) can be computed from S as follows: initially let

S' {X -4 Y}. For every V 	 W e S, if V —> W appears in G', remove it and

check if there is no path from the root of G' to X. If this is the case, add V 	 W to

S'.

Since there are at most m 2 edges in g, where m is the number of nodes of g,

and checking the existence of a path between the root of g and a node can be done in

0(m2 ), the previous process can be done in polynomial time on m. Since the number

of precedence relationships in C is 0(n), where n is the product of the number of

nodes in g and the number of PPs in C, checking the validity of C can be done in

polynomial time on n. 	 ❑

In the following, we assume that a PTPQ does not comprise a valid discon-

nected cluster that does not contain the output PP of the PTPQ.
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4.2 Checking PTPQ Containment With Respect to a Dimension Graph

In order to address PTPQ containment with respect to a dimension graph, we need

the concept of homomorphism between partially specified tree-pattern PTPQs.

Definition 4.2.1. Let Q 1 and Q2 be two PTPQs on D. A homomorphism from Q2 to

Q1 is a mapping h from the annotated dimensions of Q2 to the annotated dimensions

of Q 1 such that:

(a) If the annotated dimension n is labeled by a dimension D in Q2, then h(n) is

also labeled by D in Q.

(b) All the annotated dimensions of a PP in Q2 are mapped under h to annotated

dimensions in the same PP of Q 1

(c) If an annotated dimension n in Q2 is annotated by V2 	 then h(n) in Q 1 is

annotated by V1 such that V1 C V2.

(d) The annotated dimensions in the output PP 0 2 of Q2 are mapped under h to

annotated dimensions in the output PP of of Qi, and every annotated dimen-

sion in 0 1 is the image under h of an annotated dimension in 02.

p]) is in Q2, then h(D[p]) 	 h(D' -P ] ) (resp.(e) If D [p] 	 D' [p] (resp. D[p] 	 D'

	

h(D[p]) 	 h(D'[p]) ) is in Q1

(f) If D[p] = Dp'] is in Q2, then h(D[p]) and h(D[p'])

h(D[p']) is in Q1

coincide or h(D[p])

The existence of a homomorphism between PTPQs is a sufficient condition for

PTPQ containment with respect to a dimension graph as the next proposition shows.

Proposition 4.2.1. Let Q 1 and Q2 be two PTPQs on D, where Q 1 is in full form, and

g be dimension graph. If there is a homomorphism from Q2 to Q1 , then Q 1 Cg Q2.

Proof: Let M be an embedding of Q 1 into a database T underlying g, and h be a
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homomorphism from Q2 to Q 1 Clearly, the composition of M on h, M o h, is an

embedding of Q2 into T. Therefore, Q 1 Cg Q2 . 	 ❑

Example 4.2.1. Let Q'1 be the PTPQ shown in Figure 3.11. This is the full form

of PTPQ Q 1 of Figure 3.7. Consider also PTPQ Q2 shown in Figure 3.9. One can see

that there is a homomorphism from Q2 to Q'1. 	 Therefore,

Q1 G C22.	 ❑

Unfortunately, the existence of a homomorphism is not a necessary condition

for PTPQ containment with respect to a dimension graph.

Example 4.2.2. Consider, PTPQs Q2 and Q3 of Figures 3.9 and 3.10, respectively.

PTPQ Q3 is in full form. As mentioned in Example 3.3.1, Q3 Cg Q2. However,

there is no homomorphism from Q2 to Q3 since dimension E of Q2 does not appear

in Q3. 	 ❑

In order to fully characterize PTPQ containment with respect to a dimension

graph, we use the concept of dimension tree of a PTPQ on a dimension graph.

Definition 4.2.2. Let Q be a PTPQ on a dimension set 7), and g be a dimension

graph on D. Let also Q' be the full form of Q. A dimension tree of Q on g is a tree

U such that:

(a) The nodes of U are labeled by dimensions in D and their annotations (annotating

expressions). No two nodes on a path of U are labeled by the same dimension.

(b) One of the nodes of U is marked. This node is called output node of U, and the

path from the root to the output node of U is called output path of U.

(c) There is a mapping in from the set of the nodes of U to the set of nodes of g such

that:

(c1) If n is a node of U, n and m(n) are labeled by the same dimension.

(c2) If (n1, n2) is an edge in U, (m(n1),m(n2 )) is an edge of g.
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(d) There is a mapping m' from the set of the annotated dimensions of Q' to the set

of nodes of U such that:

(di) The annotated dimensions of a PP in Q' are mapped under m' to nodes on

the same path of U.

(d2) The marked node of U is the image under m' of an annotated dimension of

the output PP o of Q' that is the descendant in U of the images under m' of

all the other annotated dimensions of o.

(d3) For every precedence relationship A[p] —> 13p] (resp. Alp] 	 B:29]) in Q',

m' (B p]) is a child (resp. descendant) of m'(A[p]) in U.

(d4) If a node sharing expression D[p 1] D[p2 ] is in Q', m'(D[p1]) = m'(D[p2 ]).

(d5) A dimension D of Q' annotated by V is mapped by m' to a node n labeled

by D and annotated by V .

(d6) Every leaf node in U is the image under m' of an annotated dimension of

Q'.

(d7) For a dimension D in PPs p 1 and p2 in Q, m'(D[p 1 ]) 	 m' (D[p2 ]) unless

	

Dim] D[p 2 ] is in Q'. 	 ❑

Intuitively, a dimension tree for Q on G represents a mapping of Q into G

that respects PPs, labeling dimensions, precedence relationships, and node sharing

expressions. This mapping is the composition m o m' of m' and in. The dimensions

trees of Q on G represent all such possible mappings of Q into Q.

Example 4.2.3. Consider PTPQ Q 1 of Figure 3.7 on the dimension graph G of

Figure 3.4. Figure 4.3 shows the dimension trees of Q 1 on G. For simplicity of

presentation, dimension annotations that are `?' are not shown in the graphical rep-

	resentation of dimension trees.	 ❑

A dimension tree of a PTPQ on a dimension graph can be seen as a PTPQ

where the tree structure is completely specified: root-to-leaf paths determine PPs;



Figure 4.3 The dimension trees of Q 1 on g: (a) U¹1 , (b) U?.

the output path determines the output PP; edges determine child precedence rela-

tionships; common nodes of two paths determine node sharing expressions. Such

PTPQs form a tree pattern without missing edges involving only parent-child (and

not ancestor-descendant) relationships. Since dimension trees are special cases of

PTPQs, we can apply to them the concepts defined on PTPQs: answer of a PTPQ,

and homomorphism between PTPQs.

Given a dimension graph g, a PTPQ Q is associated to the set U of its di-

mension trees on g. Every path in the answer of Q on a database T underlying g

is also a path in the answer of some U E u on T, and conversely. Therefore, the

answer of Q on T can be constructed by merging into a single database the answers

of the dimension trees of U on T. The identities of the nodes are used to perform this

merging.

We now state a theorem that provides necessary and sufficient conditions for

relative PTPQ containment, in terms of homomorphisms between dimension trees.

Theorem 4.2.1. Let (2 1 and Q2 be two PTPQs on D and g be a dimension graph on

D. Let also U, and U2 be the sets of dimension trees of Q 1 and Q2, respectively, on

g. Q 1 Cg Q2 if and only if there is a mapping f from U, to U2 such that, for every

dimension tree U in U1 , there is a homomorphism from f (U) to U. ❑

Proof: We start by the if part. Let M be an embedding of a dimension tree U E
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into a database T that underlies G. Let h be an homomorphism from the dimension

tree f (U) E U2. The composition of M on h, M o h, is an embedding of f (U) on T.

Therefore, Q1 Cg Q2.

For the only if part, let's assume that Q1 Cg Q2 and there is no such mapping

f from U, to U2. Then, there exists a dimension tree U 1 in U, such that there is no

homomorphism from any dimension tree in U2 to U,. We construct a database T by

replacing in U1 each labeling dimension by one of its annotating values. Clearly, T

underlies G. Since there is no homomorphism from a dimension tree U2 in U2 to

no U2 can be embedded into T. Therefore, Q 1 has an answer on T while the answer

of Q2 on T is empty. This contradicts our assumption that Q 1 G Q2. 	 111

Example 4.2.4. Consider the PTPQs Q1, Q2 and Q3 of Example 4.2.3, shown in

Figures 3.7, 3.9, and 3.10, and the dimension graph G of Figure 3.4. Figures 4.3,

4.4, and 4.5 show the dimension trees of Q1, Q2, and Q3 on G, respectively.

Figure 4.4 The dimension trees of Q2 on G: (a) N, (b) U.

Theorem 4.2.1 proves the claim of Example 4.2.3 that (2 1 G Q2: let f be the

mapping f (U¹1) = q and f (U²1) = U. Clearly, there is a homomorphism h from the

nodes of q to Ul and from U²2 to U .?. Based on Theorem 4.2.1, we can also show that

Q2 Cg Q3 and Q3 Cg Q2. Theorem 4.2.1 also proves that, in contrast, Q2 G  Q1 ❑

One can see that there can be a number of dimension trees for a given PTPQ

Q and dimension graph G that is exponential on the number of nodes of G. However,
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Figure 4.5 The dimension trees of Q3 on Q: (a) (4, (b) U.

if the dimension graph is a tree, PTPQ Q has a single dimension tree with respect to

g.

4.3 Heuristic Approaches for PTPQ Containment with Respect to a

Dimension Graph

Checking PTPQ containment with respect to a dimension graph can be time con-

suming since, as we saw in the previous section, it involves checking the existence of

homomorphisms between pairs of dimension trees (Theorem 4.2.1). As mentioned in

the previous section, the number of these pairs can be very large. Therefore, we can-

not rely on Theorem 4.2.1 for checking efficiently containment of partial tree-pattern

PTPQs.

In this section, we suggest a heuristic approach for checking two PTPQs for

containment with respect to a dimension graph g that reduces to checking the exis-

tence of a homomorphism only between two PTPQs.

4.3.1 The Basic Idea

Suppose that we want to check if PTPQ Q is contained in PTPQ Q' with respect to

C. If there is a homomorphism from Q' to the full form of Q, by Proposition 4.2.1,

we deduce that Q Cg Q'. However, if such a homomorphism does not exist, Q might
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or might not be contained in Q'. As an example, consider PTPQs Q2 and Q3 shown

in Figures 3.9 and 3.10. PTPQ Q3 is in full form. Consider also the dimension graph

g of Figure 3.4. As mentioned in Example 4.2.2, there is no homomorphism from Q2

to Q3. Therefore, we cannot, based on this fact, decide on the containment of Q3

in Q2 with respect to Q. Observe now that the following statement holds on g: if a

path from the root of g contains dimension A (that is, if it satisfies the precedence

relationship R A), it also satisfies the precedence relationship E A. We call

such a statement "rule instance" and the precedence relationship E A is qualified

as extracted. The PP p7 of PTPQ Q3 (which is in full form) contains the dimension

A. Therefore, if we add the extracted precedence relationship E A to p7 we obtain

a PTPQ which is equivalent to Q3 with respect to g. Similarly, one can see that the

following rule instance holds on g: if a path from the root of g satisfies the precedence

relationship D, it also satisfies the precedence relationships E D and A D.

Therefore, we can again add to p7 the extracted precedence relationships E D and

A D to obtain a PTPQ equivalent to Q3 with respect to g. Taking the full form

of the resulting PTPQ Q3, we obtain the PTPQ shown in Figure 4.6. PTPQ Q3 has

Figure 4.6 PTPQ Q3 .

more precedence relationships than Q3. It is not difficult to see now that there is a

homomorphism from Q2 to Q. Since C2 13 is equivalent to Q2 with respect to G, we

can deduce that Q3 Cg Q2.

Therefore, the basic idea is to extract precedence relationships from the di-
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mension graph g that can be iteratively added to PTPQ Q to produce appropriately

an equivalent PTPQ with respect to g (called augmented form of Q). The possibility

for the existence of a homomorphism from PTPQ Q' to the augmented form of PTPQ

Q is increased. If such a homomorphism exists we can deduce that Q Cg Q'.

There are two ways to implement the heuristic approach. The first one (called

precomputation heuristic approach) considers a rule instance pattern (called rule).

It computes in advance and stores all the rule instances of this rule that hold on

c. When a PTPQ Q emerges, the extracted precedence relationships of these rule

instances are used to compute the augmented form of Q. Using multiple rules instead

of one provides a more refined characterization of g, and increases the accuracy

(completeness) of the approach. The possibility of missing the detection of a PTPQ

containment case with respect to g is reduced. However, this gain in accuracy is

obtained at the expense of the space required to store the rule instances that hold on

g, and the overall time required to compute the augmented form of Q. Therefore,

a trade-off should be determined between the desired accuracy and the space and

time cost incurred by the multiple rules considered by the precomputation heuristic

approach.

The second way to implement the heuristic approach (called on-the-fly heuris-

tic approach) considers all the precedence relationships in a PP of PTPQ Q in order

to extract from g the precedence relationships that are used for computing the aug-

mented form of Q. Therefore, the precedence relationships are extracted from the

dimension graph at PTPQ time. We formally define below both heuristic approaches.
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4.3.2 Precomputation Heuristic Approach

We first introduce the concept of precedence relationship extraction rule.

Precedence relationship extraction rules

Definition 4.3.1. A (precedence relationship extraction) rule is an expression of the

form P  > C, where P and C are non-empty sets of precedence relationship types.

A precedence relationship type is a precedence relationship that involves dimension

variables (instead of dimensions), and (possibly) dimension R. 1171

For example, {R XI 	 > {Y XI is a rule, where X and Y are dimension

variables.

Definition 4.3.2. An instance of a rule P 	 > C is an expression of the form

PI 	 > CI obtained as follows: let αI be an assignment of dimensions to the di-

mension variables occurring in P.

(a) PI, the premise, is the set of precedence relationships obtained by assigning

distinct dimensions to all the dimension variables in P according to αI , and

(b) CI, theconclusion,is a set of precedence relationships where each of them is

obtained from a precedence relationship type in C by replacing in it: (i) every

variable X that occurs also in P by αI(X), and (ii) every variable Y that does

not occur in P by some dimension. 	 ❑

Note that as a consequence of the previous definition, a precedence relationship

type in the conclusion of a rule might contribute multiple precedence relationships to

the conclusion of an instance of this rule obtained by replacing a dimension variable

that does not appear in the premise of the rule by multiple dimensions. It is also

possible that a precedence relationship type in the conclusion of a rule does not

contribute any precedence relationships to the conclusion of an instance of this rule.
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Consider, for instance, the dimension graph g of Figure 3.4. An instance of the

rule {R XI > { 17 X, Y X} is {R D}   {R D, A D, E DI.

Intuitively, the premise of this instance characterizes all the paths from the root

of g that involve dimension D. The conclusion comprises descendant precedence

relationships to D.

Definition 4.3.3. A rule instance PI 	 > CI holds on a dimension graph g, if

the precedence relationships in CI are satisfied by every path from the root of g that

satisfies the precedence relationships in PI, and there is no rule instance 'PI 	 > C'

with the same property such that CI C C'1 . 	 ❑

Example 	 4.3.1. Consider 	 the 	 rule 	 {R 	 XI
{Y 	 X, Y 	 X} . One can see that the following instances of this rule hold on

the dimension graph g of Figure 3.4:

{R=A} 	 > {R A, E A, E— A},

{R =B} 	 > {R B, A B, E B} ,

{RAC} 	 > {R C},

{RED} 	  {R D, A D, E D},

{R E} 	  {R E}.

In the case of dimensions C and E, no new precedence relationships can be extracted

from g by the respective rule instances. 	 ❑

Adding precedence relationships to PTPQs

Given a PTPQ Q, precedence relationships extracted from a dimension graph g by

rule instances that hold on g can be appropriately added to Q to create the augmented

form of Q.
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Definition 4.3.4. Consider a PTPQ Q, a dimension graph g and a rule R. The

augmented form of Q with respect to g, and R, say Q', is constructed from Q as

follows:

Let initially Q' 	 Q.

Repeat the following steps until no more changes can be applied to Q':

- Put Q' in full form.

- For every PP p in Q' and for every instance 'PI 	 > C1 of R, that holds on g, if the

precedence relationships in 'P I appear in p, add to p the precedence relationships

in CI . 	 ❑

We can now state the following proposition.

Proposition 4.3.1. Let Q be a PTPQ, g be a dimension graph, and R be a rule.

The augmented form of PTPQ Q with respect to g and R, is a PTPQ equivalent to

Q with respect to g. 	 ❑

Proof: Let Q' be the augmented form of PTPQ Q with respect to g and R. In

constructing Q', whenever a precedence relationship P is added to a PP p of Q, there

is an instance of R, 7?,/ , such that R/ holds on g, all the precedence relationships in

the premise of 'R,1 appear in p, and P appears in the conclusion of 7?-/ . Therefore,

for every embedding of Q to a database T, the image of p satisfies P. Consequently,

Q' C Q. Clearly, Q C Q'. Therefore, Q Q'. 	 ❑

Generating the augmented form of a PTPQ Q involves adding repeatedly to it

precedence relationships extracted from the dimension graph and computing the full

form of the resulting PTPQ until a fixed point is reached. Computing the full form

of a PTPQ possibly adds structural expressions (precedence relationships and node

sharing expressions) to it. This process increases the possibility for homomorphisms

from other PTPQs to Q to exist.
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Example 4.3.2. Consider PTPQs Q2 and Q3 of Figures 3.9 and 3.10 and the dimen-

sion graph g of Figure 3.4. In Example 4.2.2, we showed that there is no homomor-

phism from Q2 to Q3. Consider now the rule R : {X Y} > {U V}. Figure

4.7 shows PTPQ Q'3 , the augmented form of PTPQ Q3 with respect to c and R.

PTPQ Q3 and rule R are simple and therefore, one iteration is enough for computing

Figure 4.7 PTPQ Q3, the augmented PTPQ Q3 with respect to g and R.

Q '3. Observe that Q '3 has more precedence relationships than Q3. Clearly, there is a

homomorphism from Q2 to CA. By Proposition 4.3.1, Q '3 Q3. Then, by Propo-

sition 4.3.1, Q3 G Q2. This result proves again what we showed in Example 4.2.4

using Theorem 4.2.1. ❑

The next proposition shows that if the dimension graph is a tree, a simple rule

can guarantee total accuracy for the heuristic approach.

Proposition 4.3.2. Let Q 1 and Q2 be two PTPQs in full form, g be a dimension

graph which is a tree, and R. be the rule {R X} > {Y X} . Let also Q1 be the

augmented form of PTPQ Q 1 with respect to g and R. Then Q 1 Cg Q2 if and only

if there is a homomorphism from Q2 to

Proof: If g is a tree, Q 1 (resp. Q 2 ) has a single dimension tree U1 (resp. U2 ) on g.

Clearly, Q 1 =g U1 .

If there is a homomorphism from Q2 to Q'1, then by Proposition 4.2.1, Q'1 Cg

Q2. Since g is a tree, Q'1 is equivalent to U1 . Since Q 1 	Q1 G Q2.
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If Q 1 G Q2 then, from Theorem 4.2.1, there is a homomorphism from U2 to

U1 . Then, since 	 is equivalent to U 1 , there is a homomorphism h from U2 to

By definition 4.2.2, there is a mapping m' from the nodes of Q2 to those of U2. The

composition of h on m', h o m', is a homomorphism of Q2 to Q1 .	 ❑

Using multiple rules

Using additional rules in the heuristic approach improves its accuracy.

Example 4.3.3. Consider PTPQ Q 12 of Figure .8 (a slight variation of PTPQ Q2

of Figure 3.9). Consider also PTPQ Q3 of Figure 3.10, and the dimension graph g

Figure 4.8 PTPQ Q2 .

of Figure 3.4. Figure 4.7 shows PTPQ Q 13 , the augmented form of PTPQ Q3 with

respect to g and rule I?, : {X Y}  {U V}. There is no homomorphism

from Q 12 to Q'3 . Therefore, a heuristic approach that uses only R fails to detect that

Q3 Cg Q. Let's assume now that the heuristic approach employs not only rule R. but

also rule 7-L' : {X Y} => {U V}. Figure 4.9 shows PTPQ Q3 , the augmented

form of PTPQ Q3 with respect to g and {R, R'}. Clearly, there is a homomorphism

from Q'2 to Q. Therefore, the heuristic approach that uses both rules succeeds in

deducing that Q3 Cc Q. ❑

The gains in accuracy are obtained at the expense of (a) additional time for

determining the rule instances that hold on g, (b) extra space for storing those

rule instances, and (c) additional time for computing the augmented form of the

PTPQ (possibly more rule instances to be checked for application, more precedence
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Figure 4.9 PTPQ Q3 , the augmented PTPQ Q3 with respect to g and {R, R'}.

relationships to be added to the PTPQ, and more iterations in the computation of

the augmented form of the PTPQ). These drawbacks can be alleviated if we use a

sequence of rules where each one is more refined than the previous one. We first

explain what "more refined" means.

Definition 4.3.5. Let R and RI be two rules. We say that TV is more refined than

R, denoted R R,', if for every instance PI 	 > CI of R, and every premise PI of

a rule instance of RI such that P'./ PI,¹ there is an instance PI 	 > CI of , such

that CI C

Example 4.3.4. Let R be the rule {R X} 	 > {Y X},

RI be the rule {R 	 X, R 	 Y} 	 > {U 	 V, U 	 V}, and R!' be the rule

{X Y} 	 => {U V, U V}, where X, Y, U and V are dimension variables.

It is obvious that R R', and RI RI'. 	 ❑

Clearly, is a partial order on the set of rules. One can see that if we disallow

the trivial rules {R 	 X} 	 > {R 	 X} and {R 	 X} 	 > {R 	 X} in the

set of rules, the rules {R 	 X} 	 > {R => X}, {R 	 X} 	 > {Y 	 X} and

{R X} 	 => {R Y} are minimal elements of -<.
'Implication of a set of precedence relationships is a straightforward extension of the implication

of a single precedence relationship: Pi' 	PI iff V8 E PI, PI 	 O.
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The utility of a sequence of rules where each rule is more refined than its

previous one is based on the following proposition.

Proposition 4.3.3. Let R, and RI be two rules such that R -< RI, and g be a

dimension graph. Then, for every instance PI 	 > CI of R', and every instance

PI 	 > CI of R, that hold on G, if P'/- PI then CI C

Proof: Let PI 	 > CI , PI 	 > CI be two instances of R and RI respectively, that hold

on g such that PI 'PI . Since P 1/ PI , the set S' of from-the-root paths in G that

satisfy all the precedence relationships in P'/- is a subset of the set S of from-the-root

paths in G that satisfy all the precedence relationships in PI. Therefore, the set of

precedence relationships satisfied by all the paths in S is a subset of those satisfied

by all the paths S'. Since R -< c CI. ❑

Example 4.3.5. Consider the instances RI, R'' and R,'; of the rules R, RI and R"

of Example 4.3.4.
: {RSA}   {R A, E A} ,

R'I : {R A, R C} 	 => {R E, R A, R C, E ----> A, E A}, and

R'I: {ABC} 	  {R E, R A, R B, R C, R E, E A, B C, E

A, E B, E C, A B, A C,B C}

Since {A C} 	 {R A, R C} 	 {R A}, rule instances 	 and R7

confirm Proposition 4.3.3. 	 ❑

As a consequence of Proposition 4.3.3, if two rules R and RI are employed in

the heuristic approach and R -< R', we can use an incremental technique for storing

their instances that hold on G, and for computing the augmented form of a PTPQ.

We explain below this incremental technique for rule instance storage and augmented

PTPQ computation.

Let PI 	 => be an instance of RI that holds on g, and Pi 	 > 	 , PI/ 	 >

C I; be the instances of 7? that hold on G such that P'/- 	 PI , i = 1, 	 , k. Then,
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instead of storing for rule instance 'pI' 	 > C/ , it suffices to store only the precedence

relationships in CI — Uie[1,k]CiI. The rest of the extracted precedence relationships for

P/' 	 > CI can be recovered from the precedence relationships stored for the rule

instances PI  > i = 1, . , k. Further, during the computation of the augmented

form of a PTPQ, if the precedence relationships in the premise PI of a rule instance

P"/  > appear in the PP p of a PTPQ, only the precedence relationships in

CI — UiE[1,k]C iI need to be added to p: since PI PI, i = 1, . , k, the precedence

relationships in the premise 'PI of the rule instances PI  => CI, i = 1, . . . ,k,also

appear in p and therefore, the precedence relationships in OD i = 1, . . . , k, will be

added to p during some step of the computation. Notice that the incremental rule

instance storage and augmented form computation technique can also be applied

recursively to the rule instances PI => =1, . . . ,k.

The previous incremental technique is called vertical because it exploits over-

lapping among rule instances of different rules. Besides the vertical, we can also ap-

ply a horizontal incremental technique for rule instance storage and augmented form

computation. This one exploits overlapping among rule instances of the same rule.

Consider, for instance, the rule R. : {X Y} > {U V}, and its two instances

: {RSA} => {R A, R E, E A} and R²I :B}  > {R A,

R E, E A, B, E B} that hold on the dimension graph g of

Figure 3.4. Since the premise R A of 7?,} appears in the conclusion of R,1-, the

precedence relationships E B , A B in the conclusion of 7Z,1- (that also appear

in the conclusion of VI) need not be stored with R. During the computation of

the augmented form of a PTPQ with respect to g and R , RI will be applicable

to a PP any time RI is applicable. Therefore, the missing precedence relationships

E B, A B from the conclusion of RI will be added to this same PP by the

mandatory application of

Both incremental techniques, the vertical and the horizontal one, are used in
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the experimental evaluation of the precomputation heuristic approach presented in

the next section.

Rule selection for the precomputation heuristic approach

Usually, we are interested in rules characterizing paths in the dimension graph that

gradually involve: (1) one dimension, (2) two dimensions with no specific order be-

tween them, (3) a descendant precedence relationship between two dimensions, and

(4) a child precedence relationship between two dimensions. We want these rules to

extract both child and descendant precedence relationships. We therefore initially

consider the following sequence of rules:

: {R X} 	  {U V, U V},

R2: {R X, R Y} 	 => {U V, U V},

R3: {X Y} 	 => {U V, U V}, and

R4: {X -4 Y} 	 => {U V, U —> V},

where X, Y, U, V are dimension variables. These rules can be simplified as we show

below.

Two rules are computationally equivalent, denoted =c, if they generate the

same augmented form, for any input PTPQ and any dimension graph. Computational

equivalence can be extended to sets of rules in a straightforward way.

Rule R4 is redundant in the presence of rule R3 . This is shown by the propo-

sition below and allows us to exclude R4 from further consideration.

Proposition 4.3.4. {R3,R4} 	 {R3 } . 	 ❑

Proof: Let A and B be two dimensions in the dimension graph G. Let n 	 => CI and

PI 	 > CI be the instances of R3 and R4 that hold on g for X and Y instantiated

to A and B respectively. If the PTPQ does not contain the precedence relationship

A –> B then PI 	 => CI cannot be used to compute its augmented form. Thus, the

proposition holds. Otherwise, if there is no edge from A to B in g, then PI 	 >
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does not hold on g and therefore, it cannot be used to compute the augmented form

of a PTPQ that contains A B, and the proposition holds again. Let's now assume

that the PTPQ contains A B and there is an edge from A to B in g. Then, CI

contains exactly all the precedence relationships that are satisfied by every path of

g from the root to A which does not go through B and the precedence relationship

A -4 B. CI contains exactly all the precedence relationships that are satisfied by

every path of g from the root to A which does not go through B and possibly the

precedence relationship A —> B. Since the PTPQ contains A B, the effect of the

two rule instances in the computation of the augmented form of the PTPQ is the

same. ❑

The next proposition states that in rule R'1, we can restrict our attention only

to extracted precedence relationships from some dimension to dimension X. Consider

the following rule:

Proposition 4.3.5. RI, 	 R1. 	 ❑

Proof: Let g be a dimension graph and Q be a PTPQ. Clearly, if a precedence

relationship is added to Q during the computation of its augmented form by rule

R, 1 , it is also added to it during the computation of its augmented form by rule R4.

Let now A B be a precedence relationship added to Q during the computation of

its augmented form by the instance of Ri whose premise is R 	 C. We show that

A 	 B will be also added to Q during the computation of its augmented form by

an instance of R1 If B and C are the same dimension, then A 	 B is also added

to the augmented form of Q by the instance R 1 whose premise is R 	 C. If B

and C are distinct dimensions, every path from the root of g to C also goes through

dimensions A, B and C in that order. This implies that every path from the root of

g to B also goes through A (since otherwise there would be a path from the root of
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G to C that goes through B without going through A, which contradicts that every

path from the root of g to C also goes through A and B). Since every path from the

root of G to C also goes through B, B C will be added to the PTPQ during the

computation of its augmented form (if not already there) by the instance of R1 whose

premise is R C. When the instance of R 1 whose premise is R B is considered

in the computation of the augmented form of Q, the precedence relationship A B

will be added to Q. Similarly we prove that if A B is added to Q during the

computation of its augmented form by an instance of R'1, it is also added to Q during

the computation of its augmented form by an instance of R 1 ❑

Rules R1 and R1 have the same premise, while the conclusion of R1 is more

restrictive than that of Rl. Therefore, if we use R1 instead of VI we reduce both: (a)

the storage space needed for the rule instances that hold on a dimension graph, and

(b) the attempts to add extracted precedence relationships to a PTPQ which have

already been extracted from other rule instances.

Clearly, it is R 1 	R2 -< R3. Thus, we can apply the "vertical" (across

the rules in the sequence) incremental technique for storing rule instances and for

computing augmented forms of PTPQs. This technique was discussed in Section 4.3.2.

The application of a "horizontal" (across the instances of the same rule) incremental

technique for rule instance storage and augmented PTPQ computation is based on

the following proposition.

Proposition 4.3.6. Let PI 	  C1 and PI 	 => CI be two instances of rule R3 that

hold on a dimension graph. Let also B and 0' be two precedence relationships. If

E	 E CI, and E C/' then O' E

Proof: Let G be the dimension graph. Since PI 	 > C1 holds on G, 0 E PI , and 0' E C1,

every path from the root of G that satisfies 0, also satisfies 0'. Since, PI 	 => 	 holds

on G, and 8 E CI , every path from the root of G that satisfies VI also satisfies O.
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Therefore, it also satisfies 9', that is, 9' E C. 	 ❑

As a consequence, if 9 is stored in CI , 9' need not be stored explicitly as an

extracted precedence relationship in 	 Precedence relationship 0' can be extracted

from 'PI 	 > CI using (possibly recursively) other rule instances. The contracted

form of 	 is also used in the application of rule instance PI' -	 > C. Precedence

relationship 9' which is not added to a PP by 7) "[ 	 > C"/- is added to it by a (possibly

recursive) application of other rule instances.

In the experimental evaluation part of the paper (Section 4.4), we examine a

family of three precomputation heuristic approaches H1, H2 and H3, which gradually

involve more rules: H1 involves R1; H2 involves R1 and R2; and H3 involves

and R3. The next proposition shows that the precedence relationships for rules R1,,

R2, and 'R,3 can be extracted efficiently.

Proposition 4.3.7. The precedence relationships for the instances of rules R1, R2,

and R3 can be extracted from the dimension graph g in polynomial time on the number

of dimensions in c. 	 ❑

Proof: The proof is similar to the proof of Proposition 4.1.2 where we showed how

to compute all the precedence relationships that hold on all paths containing a given

precedence relationship. ❑

Computing the augmented form of a PTPQ involves iteratively adding ex-

tracted precedence relationships to a PTPQ and computing its full form. As men-

tioned in Section 3.4, the full form of a PTPQ can be computed in polynomial time

on n, where n is the product of the number of PPs and the number of distinct dimen-

sions in the PTPQ. The number of precedence relationships that can be extracted

from g for a precedence relationships is 0(m 2 ), where m is the number of distinct

dimensions in g, and can be done in a polynomial time in m (Proposition 4.3.7).

A PP of a PTPQ can contain at most 0(m 2 ) precedence relationships. Thus, the
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augmented form of a PTPQ can be computed in time polynomial on n. Therefore,

the heuristic approach which involves rules R1, R2, and 'R,3 runs in polynomial time

on n.

4.3.3 On-the-fly Heuristic Approach

Using a rule instance whose premise comprises all the precedence relationships in a PP

of a PTPQ Q, we can extract for this PP, in general, more precedence relationships

from g compared to using the rule instances of a given set of rules. Based on this

remark, we provide a new augmented form for PTPQs.

Definition 4.3.6. Consider a PTPQ Q and a dimension graph g. The augmented

form of Q with respect to g is the PTPQ constructed from Q by iteratively: (a) adding

to every PP of Q (child and descendant) precedence relationships extracted from g

using all precedence relationships in the PP, and (b) computing the full form of the

resulting PTPQ. The process stops when a fixed point is reached. ❑

Clearly, the augmented form of PTPQ Q with respect to G is equivalent to

Q, and is not less restrictive than the augmented form of PTPQ Q with respect to G

and a given set of rules.

Example 4.3.6. Consider, the PTPQ Q4 of Figure 4.10(a), and the dimension graph

g of Figure 3.4. Figure 4.10(b) shows the augmented form of Q4 with respect to g.

This PTPQ is a fully specified tree-pattern PTPQ (without descendant precedence

relationships). It is not difficult to see that it cannot be obtained from Q4 using any

set of rules that have one precedence relationship type in their premise. ❑

Nevertheless, with the on-the-fly heuristic approach, the extraction of prece-

dence relationships can only be performed after the PTPQ is issued. Therefore,

PTPQ containment checking is subject to the additional cost of precedence relation-

ship extraction. In extreme cases the number of from-the-root paths in the dimension
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Figure 4.10 (a) PTPQ Q4, (b) Augmented form of Q4 w.r.t. g.

graph g is exponential on the number of nodes in the dimension graph. In practice,

the number of these paths in g is restricted and the approach performs much better

than computing all the dimension trees of the PTPQs.

4.4 Experimental Evaluation

The experiments were implemented and executed by our colleagues from the National

Technical University of Athens, S. Souldatos and T. Dalamagas, who collaborated on

the work presented in this chapter.

We present in this section an implementation of our approaches for checking

PTPQ containment and we report on their experimental evaluation.

4.4.1 Experimental Setup

To study the effectiveness of our PTPQ containment checking approaches, we ran

a comprehensive set of experiments. Checking PTPQ containment in the presence

of dimension graphs, is expected to be time consuming. However, our experimental

evaluation shows that the heuristic approaches for checking containment can save a

considerable amount of time, while maintaining high accuracy.

For the experiments, we considered tree structured data encoded as XML doc-

uments. We assumed that dimensions are syntactic "objects" that comprise exactly
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the elements with the same tag in the XML document. We used dimension graphs

whose number of root-to-leaf paths does not exceed five times the number of their

nodes. This is in conformance with the dimension graphs of several popular XML

benchmarks, like XMark 2 and XMach3 , where the number of root-to-leaf paths does

not exceed twice the number of their nodes.

We implemented a graph generator to construct random dimension graphs,

given a set of dimensions and a number of root-to-leaf paths in the graph. The

generator guarantees that the graphs constructed are dimension graphs (that is, they

satisfy the conditions of Proposition 1). We construct graphs as follows. First we

generate a random set of node (i.e., dimension) paths. Then, we merge these paths

to construct a dimension graph. If the graph does not have the requested number of

root-to-leaf paths, we add a new random path or we replace a path in the set with

another random path and we repeat the merging.

In our experiments, we compared the execution time and the accuracy for

containment check with respect to a dimension graph g. We measure accuracy by

the percentage of pairs (Q1 , Q 2 ) of PTPQs with Q 1 G Q2 out of a set of randomly

generated pairs (Q i , Q3 ) of PTPQs satisfying the following conditions: (a) Q, and

Q3 are satisfiable with respect to g, and (b) there is not a homomorphism from

Q3 to Q. Therefore, we consider pairs of PTPQs such that containment cannot be

detected based on Proposition 4.2.1. The accuracy of our heuristic approaches for

randomly generated pairs of PTPQs without the above restrictions is expected to be

even higher.

We implemented a PTPQ generator to construct pairs of randomly generated

PTPQs satisfying the conditions (a) and (b) above, given a dimension graph g, the

number p of PPs in the PTPQs, and the number n of nodes per PP. Since the

²http://monetdb.cwi.nl/xml/
³http://dbs.uni-leipzig.de/en/projekte/XML/

XmlBenchmarking.html
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generator needs to make sure that the PTPQs are satisfiable with respect to g, it

proceeds as follows to construct a PTPQ Q1: (a) it extracts a "dimension tree" from

g with p root-to-leaf paths, (b) it "splits" the paths in the tree by adding node sharing

expressions between the common nodes to create a partial tree-pattern PTPQ, (c)

it computes the full form of the PTPQ, and (d) it randomly removes precedence

relationships and node sharing expressions leaving 77 nodes in every PP. The PTPQ

generator repeats the process to construct another PTPQ Q .1 , and checks whether

there is a homomorphism from Q3 to Q i . If there is such a homomorphism, it repeats

the process until it finds a Q3 such that there is no homomorphism from Q3 to Q,.

Our measurements involve the following cases: (a) checking PTPQ contain-

ment based on Theorem 4.2.1 (case C), (b) checking PTPQ containment using the

on-the-fly heuristic approach (case CFH), (c) checking PTPQ containment using the

three precomputation heuristic approaches H1, H2 and H3 discussed in Section 4.3.2

(cases CH1 , CH2 and CH3 respectively).

We ran our experiments on a dedicated Linux PC (AMD Sempron 2600+)

with 2GB of RAM. The reported values are the average of repeated measurements.

Specifically, for every measure point, 100 pairs of PTPQs were generated (10 pairs of

PTPQs for each one of the 10 dimension graphs used).

4.4.2 Experimental Results

Execution time and accuracy varying the density of the dimension graph.

We measured the execution time and the accuracy for checking PTPQ containment

varying the number of root-to-leaf paths for different numbers of nodes in the dimen-

sion graph. In Figures 4.11 and 4.13, we present the results obtained for dimension

graphs having 10, 20, 30 and 40 nodes. The number of PPs in the PTPQs and the

number of nodes per PP are fixed to 2 and 4, respectively.

As expected, checking for homomorphisms between several pairs of dimension
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Figure 4.11 Execution time for checking PTPQ containment varying the number of
root-to-leaf paths for 10, 20, 30 and 40 nodes in the dimension graph.

trees is expensive compared to checking for a homomorphism between two PTPQs.

The larger the number of paths in the dimension graph, the more is the time taken

by case C. This is due to the increase in the number of matchings of the PPs to the

paths of the dimension graph. Such an increase causes more dimension trees to be

produced.

Overall, our results show that all of our heuristic approaches clearly improve

the execution time of case C. Note that CH1 is the fastest among all the heuristic

approaches we suggest, giving in some cases an improvement of more than two orders

of magnitude compared to case C.

The execution time for cases CHI , CH2 and CH3 slightly drops as the number

of paths in the dimension graph increases. The reason is that the density of the

dimension graph increases, too, which in turn decreases the number of precedence
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Figure 4.12 Execution time for checking PTPQ containment varying the number of
nodes per PP for 1, 2, 3 and 4 PPs in the PTPQ.

relationships extracted from the graph. Note that the precedence relationships from

the dimension graph are precomputed. Thus, the execution time does not include the

time required to extract the precedence relationships from the dimension graph.

For a growing number of paths in the dimension graph, the execution time for

the on-the-fly heuristic approach CFH increases. This is caused by the increase in the

number of paths examined during the (on-the-fly) precedence relationship extraction.

Regarding the accuracy, the on-the-fly heuristic approach CFH is clearly more

accurate than all the other heuristic approaches, approximating 100% of the accuracy

of the non-heuristic containment check approach C. Heuristic cases CH1 , CH2 and

CH3 have an accuracy higher than 45%, 65% and 85%, respectively, for dimension

graphs whose number of root-to-leaf paths does not exceed twice the number of their
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ACCURACY [ GRAPH SIZE (10 Nodes) 	 ACCURACY - GRAPH SIZE (20 Nodes)

Figure 4.13 Percentage of correct answers in checking relative PTPQ containment
varying the number of root-to-leaf paths for 10, 20, 30 and 40 nodes in the dimension
graph.

nodes.

Execution time and accuracy varying the density of PTPQs. We measured

the execution time and the accuracy for checking PTPQ containment varying the

number of nodes per PP for different numbers of PPs in the PTPQs. In Figures 4.12

and 4.14, we present the results obtained for PTPQs having 1, 2, 3 and 4 PPs. The

number of nodes and paths in the dimension graph are fixed to 30 and 15 respectively.

The execution time of case C goes up as the number of PPs in the PTPQs

increases. The reason is that a larger number of dimension trees are generated and,

thus examined in the containment check. On the other hand, the execution time of

case C decreases as the number of nodes per PP goes up, since more restricted PTPQs

result in a smaller number of dimension trees to be examined in the containment check.
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Figure 4.14 Percentage of correct answers in checking relative PTPQ containment
varying the number of nodes per PP for 1, 2, 3 and 4 PPs in the PTPQ.

Again, our heuristic approaches clearly improve case C, with Case CH 1 being

the fastest among all. For a growing number of nodes per PP in the PTPQ, the

execution time of the precomputation heuristic containment cases CH1 , CH2 and

CH3 is only slightly affected. On the contrary, the larger is the number of PP nodes,

the less is the time spent by the approach CFH. This is due to the decrease in the

number of paths examined during the (on-the-fly) precedence relationship extraction

from the dimension graph.

The accuracy of approach CFH is close to 100%. The accuracy for the other

heuristic approaches decreases as the number of nodes per PP in the PTPQs increases.

However, the accuracy of case CH3 is almost in all cases above 80% for an execution

time which is close to that of cases CH1 and CH2 .

Remarks. All of our heuristic approaches clearly improve the time of approach C.
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Even though these approaches are sound, they are not complete. Therefore, a trade-

off has to be determined between desired accuracy on the one side and time resources

on the other side. Our experiments show clearly the benefit of using the on-the-fly

heuristic approach CFH when accuracy is the goal. Approach CFH is more than

one order of magnitude faster than approach C, while scoring an accuracy close to

100%. When efficiency is important, a full spectrum of precomputation heuristic

approaches (including possibly those that involve additional rules besides R 1 , R2 and

R,3 ) gradually trade accuracy for efficiency.

4.5 Conclusion

In this chapter we studied the problem of PTPQ containment in the presence of

dimension graphs, and we provided necessary and sufficient conditions for PTPQ

containment. We further devised sound but not complete heuristic approaches that

exploit structural information extracted from the dimension graph either in advance

or at query time. A detailed experimental evaluation of our approaches shows that

they greatly improve the PTPQ containment checking execution time, and that they

gradually trade execution time for accuracy. These results allow their use for query

processing and optimization.



CHAPTER 5

HEURISTIC APPROACHES FOR CHECKING CONTAINMENT OF

PARTIAL TREE-PATTERN QUERIES

In this chapter we provide results and heuristic approaches for checking PTPQ con-

tainment in the absence of the dimension graphs. The language for PTPQ we consider

in this chapter is somewhat simplified, since we do not allow value predicates for the

elements. Also the answer of a PTPQ is a set of nodes instead of subtree, in compli-

ance with XPath.

5.1 Query Language

We start by formally presenting the query language and data model. Let S be an

infinite set of elements that includes a distinguished element r. A database is a finite

tree of nodes labeled by elements in 5, rooted at a node labeled by r (such a root

node can always be added to a data tree if it is not initially there). For simplicity,

we assume that the same element does not label two nodes on the same path. The

attributes of an XML document are modeled here using the element nodes of such a

tree.

Definition 5.1.1. A Partial Tree-Pattern Query (PTPQ) is a triple Q = (P,N,o ),

where:

(a) P is a nonempty set of pairs (p, R) called Partial Paths (PPs). p is the name of

the PP. R is a set of expressions of the form ei	ej (child precedence relationship)

and/or e i 	ej (descendant precedence relationship), where e i and ej are distinct

elements. The names of the PPs in Q are distinct. Therefore, we identify PPs in

Q with their names. The expression e[p] denotes the element e in PP p.

62
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b) N is a set of expressions of the form e[pi ] 	 eh], where pi and pi are PPs in

P, and e is an element. These expressions are called node sharing expressions.

Roughly speaking, they state that PPs p i and pi have element e in common (they

share it). Set N- can be empty.

(c) o[p] is a special node of a PP p in 'P called output node of Q. Intuitively, it

represents the node to be returned to the user. 	 ❑

The answer of PTPQ Q on database D is the set of the images of the output

node of Q under all possible embeddings of Q to D.

Graphical representation of a PTPQ is similar to the one described in Chapter

3. The two differences are: a) the output node of Q is denoted by a filled black node,

b) a node sharing expression e[pi ]';--- e [pi] is represented by an edge between element

e of the PP graph pi and element e of the PP graph pi labeled by Figures 5.1,

5.2, and 5.3 show three PTPQs.

Figure 5.1 PTPQ Q 1 Figure 5.2 PTPQ Q2. Figure 5.3 PTPQ Q3.

Figures 5.4 and 5.5 show the PTPQs QC . and Q'2 which are the full forms of

the PTPQs Q 1 and Q2 of Figures 5.1 and 5.2 respectively. Query Q3 of Figure 5.3 is

in full form. Observe that the full form of Q 1 shows that this PTPQ is also a TPQ.

5.2 Component TPQs

We show now that the answer of a PTPQ on any database can be computed from a

set of TPQs called component TPQs of Q. Consider a PTPQ Q. Observe that by

adding descendant precedence relationships between every two nodes in the same PP
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Figure 5.4 PTPQ 	 the full 	 Figure 5.5 PTPQ Q2, the full form of Q2.
form of Qt.

of Q, the resulting query is an unsatisfiable PTPQ or a PTPQ equivalent to a TPQ.

The following proposition determines when a PTPQ is equivalent to a TPQ.

Proposition 5.2.1. Let Q be a PTPQ. If Q is satisfiable and there is a precedence re-

lationship between any two nodes of the same PP in the full form of Q, Q is equivalent

to a TPQ. 	 ❑

Proof: The proof is straightforward if we observe that: (a) since Q is satisfiable, the

nodes in any PP form a total order that respects the precedence relationships in the

full form of the query (no cycles), and (b) for any node sharing expression a[p 1 ] ti a[p2 ]

in the full form of Q, the two sequences of nodes in the two PPs p 1 and p2 from

their roots to a[p i ] and ape ] respectively, are identical and the corresponding nodes

participate in node sharing expressions. Clearly, the pattern resulting by merging the

nodes participating in node sharing expressions is a TPQ. ❑

In the following, we might use the term TPQ for a PTPQ which is equivalent

to a TPQ.

Definition 5.2.1. Let Q be a PTPQ. A component TPQ (abbreviated as cTPQ) of

Q is a TPQ resulting by adding descendant precedence relationships to Q. 	 ❑

Therefore, a component TPQ of a PTPQ Q is a TPQ resulting by specify-

ing a total order for the nodes in every PP of Q that respects existing precedence

relationships in Q.



Figure 5.6 The four cTPQs of PTPQ Q2.

Consider the PTPQ Q2 of Figure 5.2. Figure 5.6 shows the four component

TPQs U1, U2, U3 and U4 of Q2. The PTPQ Q 1 of Figure 5.1 has only one cTPQ since

its full form shown in Figure 5.4 is a TPQ.

The cTPQs of a PTPQ Q can be used to compute the answer of Q as follows:

Proposition 5.2.2. Let {U1 ,... , Uk } be the set of cTPQs of a PTPQ Q and D be

a database. Let also A, A 1 ,..., Ak be the answers of respectively on D.

Then, A = H Ai. 	 ❑

Proof: Let a be a node in the answer Ai of a cTPQ U1 of Q. Clearly, the embedding

defining this node as an answer of U, is also an embedding of Q that maps the output

node of Q to a. Therefore, a E A. Let now, a be a node in the answer A of Q. The

embedding M of Q defining this node as an answer of Q determines, for every PP p of

Q, a total order for all the nodes in p that respects all the precedence relationships in

p. Then, M is also an embedding of the cTPQ U, of Q defined by these total orders,

and it maps the output node of U, to a. Therefore, a E

The previous proposition states that the answer of a PTPQ is the union of the

answers of its cTPQs.

5.3 Necessary and Sufficient Conditions for PTPQ Containment

For TPQs that involve the descendent axis (that is, descendent precedence relation-

ships), and branching ([]), but no wildcards (*), the existence of a homomorphism
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is a necessary and sufficient condition for containment [3, 33]. In order to check if a

similar result holds for PTPQs we extend the concept of homomorphism for TPQs

to homomorphism for PTPQs:

Definition 5.3.1. Let Q 1 and Q2 be two queries on D. An homomorphism from Q2

to Q 1 is a mapping h from the nodes of Q2 to the nodes of Q 1 such that: (a) nodes of

Q2 are mapped by h to nodes of Q 1 labeled by the same element, (b) nodes of Q2 on

the same PP are mapped by h to nodes of Q 1 on the same PP, (c) the output node of

Q2 is mapped under h to the output of Qi, or to a node involved in a node sharing

expression with the output node of Q i , (d) V ei —4 cu p] (resp. e i ej[p]) in Q2,

h(ei [p]) 	 h(ej[p]) (resp. h(e i [p]) 	 h(ej[p])) is in Q1 , and (e) V e[pi ] 	 e[pj ] in Q2,

h(e[pi]) and h(e[pj]) coincide or h(e[pi]) ti h(e[pj ]) is in Q1 	 ❑

The next proposition shows that the existence of a homomorphism is a suffi-

cient condition for PTPQ containment.

Proposition 5.3.1. Let Q 1 and Q2 be two PTPQs. If there is a homomorphism from

Q2 to Q1, Q1 g Q2• 	 111

The proof is not difficult. Since the full form of a query Q is a query equivalent

to Q we can also show the following corollary.

Corollary 5.3.1. Let Q 1 and Q2 be two PTPQs. If there is a homomorphism from

Q2 to the full form of Q1 , QV C (22. 	 ❑

The previous corollary forms a better basis for checking containment based

on the existence of a homomorphism: the full form of a PTPQ Q has at least the

precedence relationships and node sharing expressions of Q. Therefore, when checking

containment of Q into another PTPQ, the full form Q' of Q provides more chances

than Q for a homomorphism to Q' to exist.
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Example 5.3.1. Consider the PTPQs Q 1 and Q2 of Example 3.3.1 shown in Figures

5.1 and 5.2 respectively. One can see that there is no homomorphism from Q2 to Q1.

However, there is a homomorphism from Q2 to the full form of Q 1 which is shown in

Figure 5.4. This proves our claim of Example 3.3.1 that Q 1 C Q2. ❑

Unfortunately, the existence of a homomorphism from Q2 to Q 1 is not a nec-

essary condition even if Q 1 is in full form. Consider, for instance, the PTPQs Q'2

and Q3 of Figures 5.5 and 5.3 respectively. PTPQ Q 12 is the full form of PTPQ Q2

of Figure 5.2. One can easily see that there is no homomorphism from Q3 to Q.

However, as we mentioned in Example 3.3.1, Q2 C Q3.

We elaborate in Section 5.4.1 on the reasons of this behaviour of PTPQs and

we identify a subclass of PTPQs for which the existence of a homomorphism between

two PTPQs is a necessary condition for containment.

We now provide necessary and sufficient conditions for PTPQ containment in

terms of homomorphisms from a PTPQ to TPQs:

Theorem 5.3.1. Let Q 1 and Q2 be two PTPQs. Let also U1 be the set of com-

ponent TPQs for Q,. Q1 C Q2 if for every component TPQ U E U, , there is a

homomorphism from Q2 to U.	 ❑

Proof: (Sufficiency) If there is a homomorphism from Q2 to every cTPQ Ui , i =

1, 	 , k of Q,, Ui C Q2. Thus, if A', A2 , A 1 , 	 , Ak are the answers of Q,, Q2,

U1, .. ,Uk respectively on a database, A i C A2 , i = 1, ... k. Then, M 	 C A2 . UkE[1,k]Ai

Since A 1 = H kE[1,k] Ai, A1 C A2. Therefore, Q1 C Q2.

(Necessity) Let's assume that Q 1 C Q2 and there is no homomorphism from

Q2 to a cTPQ U of Q 1 We create a database (tree) D based on U, by replacing

descendant edges of U by simple edges. Clearly, U and therefore, Q, has an answer on

D. However, because there is no homomorphism from Q2 to U, there is no embedding
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of Q2 to D. Thus, Q2 does not have an answer on D. This contradicts our assumption

that Q 1 C Q2. 	 11]

Example 5.3.2. Consider again the PTPQs Q1, Q2 and Q3 of Example 3.3.1 shown

in Figures 5.1, 5.2, and 5.3 respectively. One can see that there is a homomorphism

from Q3 to each one of the cTPQs of Q2 which are shown in Figure 5.6. This proves

our claim of Example 3.3.1 that Q3 C Q2.

In contrast, it is easy to see that there no homomorphism from Q 1 to at least

one of the cTPQs of Q2 (in fact, there is no homomorphism to any one of the cTPQs

of Q 2 ). This proves our claim of Example 3.3.1 that Q2 g Q 1 ❑

Unfortunately, the previous result does not lead to a practical approach for

checking PTPQ containment. The reason is that the number of cTPQs of a PTPQ

can be exponential on the number of nodes of the PTPQ. As an example, consider

a trivial PTPQ which comprises n nodes in one PP (besides the root r) without any

precedence relationship between them. This PTPQ has n! cTPQs corresponding to

the different orderings of these nodes. Olteanu et al. [38, 37] also showed that even

though an XPath expression with reverse axes can be rewritten equivalently as a set

of XPath expressions with only forward axes, this conversion might result in a number

of XPath expressions with only forward axes which is exponential on the number of

steps of the input XPath expression. Clearly, in our context, it is inefficient to check

general PTPQ containment by checking the existence of homomorphisms between a

PTPQ and an exponential number of TPQs.

5.4 PTPQs for Which Homomorphisms Are Necessary for Containment

We show in this section why the existence a homomorphism between two PTPQs does

not fully characterize query containment. Then, we identify a subclass of PTPQs for

which the existence of a homomorphism is a necessary condition for containment.
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These results are exploited in the next section for devising heuristics approaches for

checking query containment for PTPQs.

The presence of two node sharing expressions a 	 a[p2] and b .p2] 	 b[p3 ]

in a PTPQ Q when no precedence relationship can be derived between a[p2] and

b[p2] can create discrepancies: it may force every tree in which there is an embedding

of Q to comprise a path that involves a number of nodes and satisfies a number of

precedence relationships which together cannot be derived in any PP of Q. We call

such a set {dp i] (42], b1292] 143]} of two node sharing expressions a 3-path swing

because the elements a[p2] and b[p2] in PP p2 (and their corresponding node sharing

expressions) can freely "swing" above or below each other. Another query Q' that

involves in the same PP all these nodes and precedence relationships might contain

Q. However, there will not not exist a homomorphism from Q' to Q since these nodes

and precedence relationships do not appear together in any PP of Q.

Example 5.4.1. Consider the PTPQ Q2 of Figure 5.2 whose full form is shown in

Figure 5.5. Clearly, no precedence relationships can be derived between a and b in PP

p2 since no such relationships exists in the full form of Q2 shown in Figure 5.5. This

PTPQ comprises the 3-path swing {a[p 1] a 132 ], b[p2 ] ti b[p3 ]}. One can see that in

every embedding of Q2 into a database, the elements a, b, and c appear in a path of

the database, even though these nodes together cannot be derived in any PP of Q2.

As a consequence a PTPQ that involves all three nodes a, b and c in one PP might

contain Q2 even though no homomorphism exists from this PTPQ to the full form of

Q2. This is the case of PTPQ Q3 of Figure 5.3 which does not have a homomorphism

to the full form of PTPQ Q2 even though, as proved in example 5.3.2, Q2 C Q.

Multiple 3-path swings involving the same PPs can force more nodes from

different PPs to be embedded to the same path of a database.

Example 5.4.2. Consider the PTPQ Q4 of Figure 5.7(a). This PTPQ is in full form.

Clearly, no precedence relationship can be derived between a and b and between b and
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c in PP p2 . This PTPQ comprises two 3-path swings {ary l ]	 a[p2], b _p2] ti 143 ]}

and {c[p1] 	 c p2 ] , b 132 ]	 143]}. One can see that in every embedding of Q4 into a

database, the elements a, b, c and d and the precedence relationship d e appear in

a path of the database, even though these nodes and precedence relationships together

cannot be derived in any PP of Q4. For this reason, PTPQ Q5 shown in Figure 5.7(b)

contains Q4. However, there is no homomorphism from Q5 to Q4. ❑

Figure 5.7 (a) PTPQ Q4, a PTPQ with two 3-path swings, (b) PTPQ Q5.

A similar phenomenon appears when two node sharing expressions a[p1]

a[p2] and b[p 1 ]	 b[p2] appear in a PTPQ Q along with the "chains" of child prece-

dence relationships a[p1] 	 a1[p1], a1[P1] 	 a2[P1], • • • ak-1[P1] 	 ak[p1] and

b[p2] b1[p2], b1[p2] —> b2 [p2], • • • , bl-1[p2] 1)42], when no precedence rela-

tionship can be derived between a[p 2] and b[p2]. An example of such a PTPQ is

shown in Figure 5.8(a). Then, every tree in which there is an embedding of Q com-

prises a path that satisfies the child precedence relationships a[p1] —> a1[p1], a1[p1]  —>

a2[p1], —p ak[p1], 142] b1[p2], b1[p2] b2 p2], , bl[p2]

even if these child precedence relationships together cannot be derived in any PP of

Q. We call such a set {a[p 1 ] ti a[p2], b[p1] ti b[p2]} of two node sharing expressions a

2-path swing.

Example 5.4.3. Consider the PTPQ Q6 of Figure 5.8(a). This PTPQ is in full

form and contains the 2-path swing {a[p 1 ] ti a p2], b[p1] ti b[p2]}. Consider also the
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PTPQ Q7 of Figure 5.8(b). There is no homomorphism from Q7 to Q6. However,

one can see that for every embedding of Q6 to a database, there is an embedding of

Q7 to the same database. Therefore, Q6 C Q7. 111

Figure 5.8 (a) PTPQ Q6, a PTPQ with a 2-path swing, (b) PTPQ Q7.

5.4.1 A Subclass of PTPQs

We now define a class C of PTPQs whose 3-path and 2-path swings appear in a

symmetric way.

Definition 5.4.1. Let C be the class of PTPQs Q such that: (a) if the full form

of Q contains the 3-path swing dp 1 ] 	 a[p2] and b[p 2 ] 	 b[p3], then it also contains

symmetrically the 3-path swing a[p2] ti a[p 3 ] and b 	 b[p2], and (b) if the full

form of Q contains the 2-path swing a[p 1 ] ti 42], bp 1 ] 	 142], and the chains of

child precedence relationships a[p1] 	 a1 	a1 [p1]	 a2 p1],• • • • ak-1[p1] 	 ak[p1]

and b 2 ] 	 b1[p2] --> b2 [p2], • • • • bl- [p2] —> b l [p2], k, 1 	 0, then it also

symmetrically contains the chains alp2] 	 a1 )32], a1 [p2] 	 a42], • • • , ak-1[p2] --->

ak[p2 ] and b [p 1 ] 	 b1[p1] 	 b2 11], • • • , 	 bl[p1], and the node sharing

expressions a1 [p1] 	 a1[p2], • • • ak[p1] 	 ak[p2], and b1[p1] ti b1[p2], • • • ,

bl[p2]•
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Clearly, class C comprises all TPQs. However, it also comprises queries which

are not TPQs as it contains PTPQs that involve two nodes in the same path with no

derived precedence relationship between them.

The next theorem shows that for a PTPQ Q in C, the existence of a homo-

morphism is a necessary condition for Q to be contained in another PTPQ.

Theorem 5.4.1. Let Q be a PTPQ in full form from class C and Q' be a PTPQ.

Then, Q C Q' if and only if there is a homomorphism from Q' to Q. 	 ❑

Proof: The "if part" is straightforward. We show now the"only if part". Without

loss of generality we assume that for any two PPs p1 and pk in Q, there is a sequence

of node sharing expressions a 1 [p1] a1 [p2], , ak-1 [19k-1] ak-1[pk] that starts in a

node of P1 and ends in a node of Pk (if this is not the case, we can consider "clusters" of

PPs of Q that satisfy this property). Let T be the set of cTPQs constructed by adding

descendant precedence relationships to Q so that in every PP of Q, every node that

does not participate in a node sharing expression lies below a node that participates

in a node sharing expression. This is feasible with any satisfiable PTPQ. However,

because Q e C, given a cTPQ U of Q: (a) every path p of U comprises exactly the

same nodes as the corresponding partial path p in Q, and (b) for every node sharing

expression a[p1] a[p2 ] (that is, for any node a occurring in two paths p1 and p2 in

the tree like form) in U, there is a node sharing expression a[p1 ] a p2] in Q. Since

Q C Q' there is a homomorphism from Q' to each one of the cTPQs in C. Because

of the properties of the cTPQs in C there is a 1-1 mapping N from the nodes of each

cTPQ U in C to Q that preserves the same path constraints and the node sharing

expressions and does not violate the precedence relationships. Therefore, there is a

1-1 mapping from Q' to Q which preserves the same path constraints and the node

sharing expressions and does not violate the precedence relationships. Let's assume

that none of these mappings preserves the precedence relationships (that is, none of

them is a homomorphism). Consider a PP p' of Q'. It there is no mapping that maps
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all precedence relationships of p' to a PP in Q, for each PP p of Q which is the image

if p' under some mapping and for each precedence relationship A [[p']	 B 51] in P'

we add to P the precedence relationship B[p]	 A[p] if the precedence relationship

A[p] B[p] does not exist in P and compute the full form of Q. Clearly, Q' will

not have any homomorphism to any of the cTPQs of the resulting query (which

are also cTPQs of Q) contradicting our assumption that Q c Q'. Otherwise, for

every mapping that maps all precedence relationships of p' to Q, there is another

PP p" such that the image p0 of p" under this mapping does not satisfy all the

precedence relationships of p". We consider each one of these mappings in turn.

For each precedence relationship A[p"] B[p"] in p" we add to p o the precedence

relationship B[p0] A[p0] if the precedence relationship A[p 0] B[p0] does not

exist in P0 and compute the full form of Q. We repeat this process with p' and

another mapping until all mappings are considered. Clearly, Q' will not have any

homomorphism to to any of the cTPQs of the resulting query (which are also cTPQs

of Q) contradicting our assumption that Q C Q'. Therefore, here is a homomorphism

from Q' to Q. ❑

In [3, 33] it is shown that the containment of tree-pattern queries involving

only branching and child and descendant relationships can be fully characterized by

the existence of a homomorphism between the two queries. The previous theorem

confirms this result since these tree-pattern queries can be represented by PTPQs

from class C.

5.5 A Heuristic Approach for Checking PTPQ Containment

As we saw in the previous section, we might fail to detect the containment of a PTPQ

Q 1 in another PTPQ Q2 based on homomorphisms. Even if Q 1 is contained in Q2,

there might be a PP in Q2 that contains precedence relationships and is involved in
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node sharing expressions which together cannot be mapped through a homomorphism

to the precedence relationships and node sharing expressions of a PP of Q1 Such a

homomorphism might not exist even if all possible derived precedence relationships

and node sharing expressions are equivalently added to Q 1 by computing its full

form. The main idea of our heuristic approach consists in computing additional PPs,

called virtual PPs, that contain precedence relationships from two PPs. The virtual

PPs along with node sharing expressions are appropriately added to Q 1 to produce

PTPQs, called adjustments of Q1.  It is important to note that an adjustment of

Q 1 is equivalent to Q1. Since an adjustment of Q 1 has new PPs, Q2 has increased

chances to have a homomorphism into it. This increases the possibility for detecting

the containment of Q 1 into Q2 based on the existence of a homomorphism.

5.5.1 Adjustment of a PTPQ with a Virtual PP

We define two types of virtual PPs which are based on 3-path and 2-path swings.

Definition 5.5.1. Let Q be a PTPQ that comprises a 3-path swing {a[p1 ] ti 42], 142]

b[p3]}. A virtual PP for p2 w.r.t. p1 and p3 in Q is a PP (set of precedence relation-

ships) that comprises: (a) a precedence relationship r 	 a for every node a partic-

ipating in a swing involving PPs 131, p2 and p3, and (b) all precedence relationships

that are common to p1 and p3 .	 ❑

The virtual PP v comprises precedence relationships from two different PPs.

Example 5.5.1. Consider query Q '2 of Figure 5.5 (which is the full form of query

Q2 of Figure 5.2). Figure 5.9(a) shows the virtual PP v of PP p 5 w.r.t. PPs p4 and

p6 in q2.

Figure 5.10(a) shows the virtual PP v 1 of PP p2 w. r. t. p1 and p3 of the PTPQ

Q4 of Figure 5.7(a). Note that besides the three nodes a, b, and c, v 1 includes also

the precedence relationship d e which is common in PPs p1 and p3. ❑
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Figure 5.9 (a) The virtual PP v of p 5 w.r.t. p4 and p6 in Q2, (b) The adjustment
of Q '2 with v, (c) the full form QT of 	 (d) PTPQ Q3, and an "outline" of a

homomorphism from Q3 to

We use the concept of virtual PP to define the adjustment of the query.

Definition 5.5.2. Let v be a virtual PP for PP P2 w.r.t. PPs p1 and p3 in a PTPQ

Q. The adjustment of Q with v is a query Q' such that: (a) Q' contains all the PPs

and node sharing expressions of Q, (b) Q' contains the PP v with a name (say v) that

does not occur in Q, (c) for every node sharing expression a[p i ] 	 j E [1, 3],

Q' contains the node sharing expressions a[v] 	 a[pi ] and a[v] 	 a[pj ], and (d) there

is no homomorphism from Q' to Q. 	 ❑

Note that condition (d) in the definition above guarantees that the adjustment

Q' of Q with v exists only if Q' contains constructs (precedence relationships and node

sharing expressions) that together do not appear in Q.

Example 5.5.2. Figure 5.9(b) shows the adjustment Q'2' of query Q2 of Figure 5.5

with the virtual PP v shown in Figure 5.9(a). The full form QT of Q2 is shown in

Figure 5.9(c). Figure 5.9(d) redraws query Q3 of Figure 5.3. As proven in example

5.3.2, Q2 C Q3 (and Q 12 C Q3 since Q2 Q'2). Also, as stated in Section 5.3

(and one can easily check), there is no homomorphism from Q3 to Q'2 . However,

Figures 5.9(c) and (d), show a homomorphism from Q3 to the QT (the full form of

the adjustment of Q. We prove later in this section that Q'2 (and of course the

same holds for the full form QT of 0). Therefore, using the concept of adjustment
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of a PTPQ with a virtual PP, the containment of Q2 into Q3 can be detected based

on the existence of a homomorphism. 	 ❑

The same observation can be made in a more complex context as the next

example shows.

Example 5.5.3. Figure 5.10(b) shows the adjustment, Q4, of query Q4 of Figure

5.7(a) with the virtual PP v 1 shown in Figure 5.10(a). As shown in example 5.4.2,

the PTPQ Q5 of Figure 5.7(b) contains the PTPQ Q4 of Figure 5.7(a), and there is

no homomorphism from Q5 to Q4. One can easily see that there is a homomorphism

from Q5 to Q. As we show below Q4 = Q4. Therefore, using the adjustment of Q4

we can detect PTPQ containment based on the existence of a homomorphism. ❑

Figure 5.10 (a) The virtual PP v of p 2 w.r.t. p 1 and p 3 in Q4, (b) The adjustment
(2 14 of Q4 with v.

Similarly to 3-path swings, 2-path swings can be used to define virtual paths:

Definition 5.5.3. Let Q be a PTPQ that comprises a 2 -path swing {a p 1 ] ti 42 ], b[p1 ]

b[p2]} in Q. Let also a[p1 ] —> a 1 p 1 ] , a1[p1] —> a 2 [p1 ], . • • , 	 ak[p1] and

b[p2] —> b [p2] b 1[p2] 	 b2[132], • • • , al— [p2] —> a t [p2] be the chains of child prece-

dence relationships attached to a[p 1 ] and b[p2 ]. A virtual PP for p1 and p2 in Q is a

PP (set of precedence relationships) that comprises: (a) the precedence relationships
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a 	 al, a 1 	a2 , 	 , ak-1 	ak and b 	 b1 , b1 	 b2, 	 , al-1 	al, and (b) all

precedence relationships that are common to p1 and p2 . 	 ❑

A PTPQ can be adjusted with virtual paths which are based on 2-path swings.

Definition 5.5.4. Let v be a virtual PP for PPs p1 and 132 in a PTPQ Q. The

adjustment of Q with v is a query Q' such that: (a) Q' contains all the PPs and node

sharing expressions of Q, (b) Q' contains the PP v with a name (say v) that does

occur in Q, (c) for every node sharing expression a[p 1 ] a[p2 ], Q' contains the node

sharing expressions a[v] a p 1 ] and a[v] ti 42], and (d) there is no homomorphism

from Q' to Q. 	 ❑

Example 5.5.4. Figure 5.140 shows the adjustment, Q6, of query Q6 of Figure

5.8(a) with the virtual PP v i shown in Figure 5.11(a). As shown in example 5.4.3, the

PTPQ Q5 of Figure 5.7(b) contains the PTPQ Q4 of Figure 5.7(a). However, there is

no homomorphism from Q7 to Q6. One can easily see that there is a homomorphism

from Q7 to Q 16 . As we show below Q'6 Q6. Therefore, also for 2-path swings, using

the adjustment of a PTPQ we can detect containment based on the existence of a

homomorphism. ❑

We can now show the following theorem for the adjustment of a PTPQ with

a virtual PP.

Theorem 5.5.1. Let v be a virtual PP of a PTPQ Q (based on a 3-path or a 2-path

swing). Let also Q' be the adjustment of Q with v. Then, Q' is equivalent to Q. ❑

Proof: Clearly Q' C Q. We now show that Q C Q'. Let's assume that v is a virtual

PP for PP p2 w.r.t. PPs p1 and p3 in Q. In any cTPQ U of Q, there is a total order for

the node sharing expressions of Q involving any two of the PPs p1 , p2 and p3 induced

by the precedence relationships between nodes in the PPs p1 , p2 and p3 of U. This

implies that at least one of p1 or p3 will comprise precedence relationships r a for



Figure 5.11 (a) The virtual PP v i of p1 and p 2 in Q6, (b) The adjustment Q6 of Q6
with v.

all the nodes a participating in the node sharing expressions of Q involving any two

of the PPs p1 , p2 and p3 along with all the precedence relationships that are common

to p1 and p3 . Therefore, all the precedence relationships of the virtual PP v in Q'

can be mapped to the cTPQ U and the same holds for the node sharing expressions

involving v in Q'. This means that there is a homomorphism from Q' to U. Since

Q' can be mapped to every cTPQ of Q through a homomorphism, by Theorem 5.3.1,

Q C Q'. We deal with the case of a virtual PP v which is based on a 2-path swing in

a similar way. ❑

Since the adjustment of a PTPQ Q with a virtual PP is equivalent to Q it can

be used instead of Q when checking containment of Q in another PTPQ Q'. Since the

adjustment of Q with a virtual PP has an additional PP with "new" combinations of

elements and precedence relationships, it increases the possibility of the existence of

a homomorphism from Q' to Q when Q is contained into Q'.
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5.5.2 A Heuristic Using the Adjustment of a PTPQ

A PTPQ Q might have multiple virtual PPs based on different swings in Q. Since the

full form of Q can only add precedence relationships and node sharing expressions to

Q, putting Q in full form can only increase the number of precedence relationships in

the virtual PPs of Q. Suppose that we need to check the containment of Q into another

PTPQ Q. Our first heuristic approach computes the full form Q' of Q, identifies all

the virtual PPs v of Q', and iteratively computes the adjustment of Q' with v. Clearly,

the PTPQ Qa resulting by this process is unique up to homomorphism, independent

of the order of computation of the adjustments. PTPQ Qa is called adjustment of Q.

The formal process is shown in Figure 5.12.

Input: a PTPQ Q
Output: the adjustment of Q.

Compute the full form Q' of Q.

Qt •= Q'.
for each virtual PP v of Q' /* virtual PPs can be

based on 3-path or 2-path swings of Q'*/
create the adjustment Q v of Q t with v.
if Qv exists then Q t := Qv

compute and return the full form of Q t .

Figure 5.12 Computation of the adjustment Qa of a PTPQ Q.

Based on Theorem 5.5.1, Q a is equivalent to Q. Our first heuristic approach

checks containment of Q into Q 1 by checking the existence of a homomorphism from

Q 1 to Qa . Clearly, this approach is sound but not complete: if there is a homomor-

phism from Q 1 to Qa , Q C Q1 However, it is possible that Q C Q 1 and there is

no homomorphism from Q 1 to Qa . As shown in the next example, this heuristic can

detect the containment of a PTPQ Q into a PTPQ Q 1 even when none of the PPs of

Q 1 can be mapped to (the full form of) Q trough a homomorphism.
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Example 5.5.5. Consider the PTPQs Q8 and Q9 of Figures 5.13(a) and (c) respec-

tively. PTPQ Q8 is in full form. Clearly, there is no homomorphism from Q9 to Q8.

Figure 5.13(0 shows the adjustment Q 8a of PTPQ Q8 which comprises two virtual

PPs v 1 and v2 . Figures 5.13(b) and (c) also outline a homomorphism from Q9 to

Q8a . This proves that Q8 C Q. Note that the detection of this containment through

a homomorphism became possible only because the adjustment of a PTPQ was used.

Figure 5.13 (a) PTPQ Q8, (b) The adjustment Q8a  of Q8, (c) PTPQ Q9.

5.5.3 A Heuristic Using the Complete Adjustment of a PTPQ

Computing adjustments of a query Q with virtual PPs can define new virtual PPs in

the resulting query that does not exist in Q. These "new" virtual PPs v can be used

to compute adjustments of the resulting query with v until a fixed point is reached.

This process is shown in Figure 5.14.

The resulting query is unique up to homomorphism It is called complete ad-

justment of Q, and is denoted Qca. Based on Theorem 5.5.1, Qca is equivalent to

Q.

Our second heuristic approach checks containment of Q into a PTPQ Q 1 by

checking the existence of a homomorphism from Q 1 to Qca . Since (2,, can only have

additional PPs and node sharing expressions compared to Qa , there might exist a

homomorphism from Q 1 to Qca even when no homomorphism exists from Q 1 to Qa .



81

Input: a PTPQ Q
Output: the complete adjustment of Q.

compute the full form Q' of Q
Qt:= Q'
compute the set V of the virtual PPs of Q t
repeat

Qf := Qt
for each v E V

create the adjustment Qv of Q t with v
if Qv exists then Q t := Q„

compute the full form Q' of Qt

Qt:= Q'
let N be the set of newly added PPs
compute the set V of all virtual PPs that
are based on swings involving at least one
PP from N

until Qf = Q t
return Q f

Figure 5.14 Computation of the complete adjustment Q,a of a PTPQ Q.

That is, the second heuristic has increased chances to detect containment through

the detection of a homomorphism compared to the first one. Like the first heuristic,

it is sound but not complete.

Example 5.5.6. Consider the PTPQs Ch0 of Figure 5.15(b). Clearly, there is no

homomorphism from Q 10 to the PTPQ Q8 of Figure 5.13(a) which is in full form.

One can also see that here is no homomorphism from Q 10 to the adjustment Q 8a of

Q8 shown in Figure 5.13(b). However, there is no homomorphism from Q10 to the

complete adjustment Q 8ca of Q8 shown in Figure 5.15(a). This proves that Q8 C

Q10. The detection of this containment through a homomorphism became possible

only because the second heuristic approach was employed. ❑
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Figure 5.15 (a) the complete adjustment Q8,a of Q8, (b) PTPQ Q i0.

5.6 Experimental Evaluation

The implementation and execution of the experiments were conducted by our col-

leagues from the National Technical University of Athens, S. Souldatos and T. Dala-

magas, who collaborated on the work presented in this chapter.

To study the effectiveness of our PTPQ containment checking techniques, we

ran a comprehensive set of experiments. Checking PTPQ containment is expected

to be time consuming for queries that involve a large number of component TPQs.

However, our experimental evaluation shows that the heuristic approaches for check-

ing PTPQ containment can save a considerable amount of time, while maintaining

high accuracy.

Setup. We ran our experiments on a dedicated Linux PC (AMD Sempron 2600+)

with 2G B of RAM. The reported values are the average of repeated measurements.

Specifically, for every measure point, 100 pairs of queries were generated. For all

pairs (Q1 , Q 2 ) of PTPQs used for containment check, Q 1 C Q2, but there is no

homomorphism from Q2 to Q 1 due to the existence of 2-path or 3-path swings.

Experiments. In our experiments, we compared the execution time and the ac-

curacy for PTPQ containment check among the following cases: (a) checking the

existence of a homomorphism from Q2 to Q1 (Horn), (b) checking the existence of

a homomorphism from Q2 to the adjustment of Q 1 (ComAdj), (c) checking the ex-
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istence of a homomorphism from Q2 to the complete adjustment of Q 1 (Adj), and

(d) checking the existence of a homomorphism from Q2 to all component TPQs of

Q1 (ComTPQs). We tested the impact of the size and the density of the PTPQs

on the execution time and on the accuracy for containment check in the above cases

for different structures of the PTPQs. The accuracy of a technique is defined as the

percentage of containment detections using this technique. Below, we present the

detailed results.

Execution time and accuracy varying the size of queries. We measured the

execution time and the accuracy for checking PTPQ containment varying the number

of elements in the queries for different numbers of PPs in the queries. In Figures 5.16

and 5.17, we present the results obtained for queries with 5 to 7 elements where the

number of PPs ranges between 2 and 5. All queries include the minimum number of

swings that involves all PPs. Queries with 2 PPs include one 2-path swing, queries

with 3 PPs include one 3-path swing, queries with 4 PPs include two 3-path swings,

and queries with 5 PPs include three 3-path swings.

For a growing number of elements in the queries, the execution time of the

homomorphism existence check (Horn) is almost unaffected. However, it increases as

the number of PPs goes up because of the raise in the number of matchings between

the PPs of the involved queries that need to be examined.

The execution time of PTPQ containment check (ComTPQs) goes up as the

number of elements or PPs in the queries increases. The reason is that a larger

number of complete TPQs are generated and, then, examined in the containment

check.

Our heuristic techniques clearly improves ComTPQs check. The execution

time of Adj and ComAdj is not generally affected by the number of elements in the

queries. However, similar to Horn, the execution time of Adj and ComAdj increases

as the number of PPs goes up, because of the raise in the number of matchings
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Figure 5.16 Execution time for checking PTPQ containment varying the size of the
queries.

between the PPs of the involved queries that need to be examined.

The accuracy of ComAdj is higher than the accuracy of Adj, although the

execution time of the former is not much Worse than the latter. For all measurements

of this experiment, the accuracy of ComAdj is above 80%. Note that the accuracy

percentages represent containment detection on pairs of contained PTPQs where

containment cannot be detected through the existence of a homomorphism. Clearly,

these percentages are much higher for random pairs of contained PTPQs since Adj

and ComAdj can correctly detect containment when a homomorphism exists between

the contained PTPQs.

Execution time and accuracy varying the density of swings in the queries.

We measured the execution time and the accuracy for checking PTPQ containment

varying the number of elements in the queries for different numbers of 3-path swings.
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Figure 5.17 Percentage of correct answers in checking PTPQ containment varying
the size of the queries.

In Figures 5.18 and 5.19, we present the results obtained for queries having 5 to 7

elements, while the number of 3-path swings ranges from 3 to 9. The number of PPs

in the queries is fixed to 5.

As expected, the execution time of the homomorphism existence check (Horn)

is not affected by the number of swings in the queries.

Similarly to the previous experiment, the execution time of containment check

based on component TPQs (ComTPQs) goes up as the number of elements in the

queries increases. It decreases slightly as the number of swings increases. The reason

is that a larger number of swings involves a larger number of node sharing expressions

among query nodes. Each node sharing expression restricts two query nodes to match

to the same nodes on the XML tree. Thus a smaller number of component TPQs are

generated and examined in the containment check.
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Figure 5.18 Execution time for checking PTPQ containment varying the density of
swings in the queries.

Our heuristic techniques again improve the execution time of ComTPQs.

When the number of swings in the queries goes up, the execution time of both Adj

and ComAdj increases with ComAdj being affected more importantly. The reason

is that the complete adjustment of queries with a larger number of swings generally

includes a larger number of virtual paths that need to processed in the containment

check.

When the number of elements in the queries increases, the execution time of

Adj and ComAdj slightly increases as well. In this case, the number of swings (and

consequently the number of virtual PPs) in the queries is not affected, but the increase

in the number of elements slightly increases the processing time for containment check.
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Figure 5.19 Percentage of correct answers in checking PTPQ containment varying
the density of swings in the queries.

The accuracy of ComAdj stays above 80% in all measurements.

Remarks. Our heuristic techniques clearly improve the time of PTPQ containment

check. Although these techniques are not complete, our experiments show that the

accuracy of the complete adjustment heuristic is very high, while it is orders of mag-

nitude faster than PTPQ containment check.

5.7 Conclusion

In this chapter we studied the containment problem for PTPQ in the absence of

dimension graphs, and we provided necessary and sufficient conditions for PTPQ

containment. We identified a subclass of PTPQs where containment can be fully
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characterized by the existence of homomorphisms. We further devised a sound but

not complete heuristic approaches that equivalently add additional partial paths to

PTPQs. Detailed experimental evaluations of our approaches show that they greatly

improve the query containment checking execution time, and that they gradually

trade execution time for accuracy. These results allow their use for query processing

and optimization.



CHAPTER 6

MINIMIZATION OF PARTIAL TREE-PATTERN QUERIES

6.1 The PTPQ Minimization Problem

When evaluating queries, we are interested in minimizing their evaluation cost. Ac-

cording to the analysis of [21, 22], the evaluation efficiency of XPath queries greatly

depends on their size. Therefore, similarly to [3, 17, 54] we consider the size of XPath

queries as a measure of their cost and we focus on minimizing the number of nodes in

a PTPQ and the number of PPs in the PTPQ. We define in this section the concept of

minimal PTPQ, we formally state the problem addressed, and we show its difficulties.

6.1.1 Minimal PTPQs

In defining minimality for PTPQs we are interested in minimizing the number of

number of nodes in the PTPQ. However, in PTPQs, nodes can participate in node

sharing expressions which indicate that the involved nodes are always embedded in

the same XML tree node. Since these nodes essentially represent the same node,

they should be counted as one node. Therefore, in defining minimal queries below

we consider equivalence classes of nodes as these are determined by node sharing

expressions: two nodes from different PPs belong to the same equivalence class iff

they participate in the same node sharing expression. In the following, minimizing

the number of nodes in a given query refers to minimizing the equivalence classes of

nodes.

However, as the next example shows, two equivalent queries that have a min-

imal number of (equivalent classes of) nodes, might have a different number of PPs.

89
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Example 6.1.1. Consider the queries Q and Q' of Figure 6.1. These PTPQs are

equivalent and one can see that they have the same number of (equivalent classes of)

nodes and there is no other equivalent PTPQ with less (equivalent classes of) nodes.

However, PTPQ Q has three PPs while PTPQ Q' has two PPs. 	 ❑

Therefore, in defining minimal PTPQs we also take into account the number

of PPs in them:

Definition 6.1.1. A PTPQ is minimal if (a) there is no equivalent PTPQ with less

(equivalent classes of) nodes, and (b) there is no equivalent PTPQ with the same

number of (equivalent classes of) nodes that has less PPs. ❑

Further, two nodes in different PPs may not belong to the same equivalence

class unless the query is put in full form (because the relevant node sharing expression

can be derived from the inference rules). Note that computing the full form of a PTPQ

does not add new PPs, or new equivalence classes of nodes to the PTPQ. It can only

add precedence relationships in existing PPs (which does not affect the number of

equivalence classes of nodes in the PTPQ), or node sharing expressions between nodes

from different PPs (which might reduce the number of equivalence classes of nodes).

Therefore, we can show the following proposition.

Proposition 6.1.1. If a PTPQ is minimal, its full form is also minimal. ❑

A minimal query is of interest if it is also equivalent to a given different query.
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Example 6.1.2. Figures 6.2, 6.3 and 6.4 show three PTPQs Q and for each of them

a minimal PTPQ Q' which is equivalent to Q. In Figure 6.2, Q has less nodes and

less PPs than Q'.

Figure 6.2 (a) PTPQ Q, (b) PTPQ Q' (minimal and equivalent to Q).

In Figures 6.3 and 6.4, Q' has less nodes than Q' and the same number of PPs

than Q'.

Figure 6.3 (a) PTPQ Q, (b) PTPQ Q' (minimal and equivalent to Q).

Figure 6.4 (a) PTPQ Q, (b) PTPQ Q' (minimal and equivalent to Q).

Though a tedious process, one can verify that the three queries Q' of figures

6.2, 6.3 and 6.4 are minimal and equivalent to the corresponding queries Q. 	 111
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6.1.2 Problem Addressed

We can now formally define the problem we address in this paper (called PTPQ

minimization problem): given PTPQ Q, find a minimal PTPQ Q' which is equivalent

to Q.

Before discussing the challenges involved in minimizing PTPQs we introduce

below the concept of homomorphism between PTPQs.

6.1.3 Homomorphisms between PTPQs

The minimization problem for different classes of TPQs can be fully characterized

through the existence of homomorphisms between TPQs [3]. In order to examine

whether similar results can be obtained for PTPQs, we define use the concept of

homomorphism between PTPQs defined in Definition 5.3.1.

As an example one can see that there is a homomorphism from the PTPQ Q

to the PTPQ Q' of Figure 6.2 and vice versa (from Q' to Q).

6.1.4 Challenges in PTPQ Minimization

In the example of Figure 6.2 above, the equivalent minimal PTPQ Q' can be obtained

by removing the "redundant" PP p 2 from Q. In general, we can define redundant

parts (PPs or nodes) in a PTPQ as follows:

Definition 6.1.2. Let Q be a PTPQ. A part (PP or node) is redundant in Q if the

PTPQ resulting by removing this part from Q is equivalent to Q.

Removing a node from a PTPQ implies that all the precedence relationships

and node sharing expressions that involve this node and the other nodes in its equiv-

alence class are also removed. Removing a PP from a PTPQ implies that all the

node sharing expressions that involve this PP are also removed. Clearly, the PP /3 2

of Q in Figure 6.2 is redundant because there is a homomorphism from Q the PTPQ
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obtained by removing p2 from Q (that is, PTPQ Q') which guarantees the equivalence

of Q and Q'.

In the example of Figure 6.3 the minimal equivalent PTPQ Q' is obtained by

removing the node c from the PP p2 of PTPQ Q which is in full form.

One might wonder whether, for a given PTPQ, a minimal equivalent one can

always be computed by removing redundant parts. The next example shows that this

is not possible even if the PTPQ is in full form.

Example 6.1.3. Consider the PTPQs Q and Q' of Figure 6.5. One can see that Q

is in full form and that Q and Q' are equivalent. Clearly, Q' is minimal. Observe

that the single PP of Q' is different (and in fact it has more nodes) than any PP of

Q.

Figure 6.5 (a) PTPQ Q, (b) PTPQ Q' (minimal and equivalent to Q).

Similar observation can be made about the PTPQs Q and Q' of Figure 6.6. Q

is in full form, and Q and Q' are equivalent. Clearly, Q' is minimal. Observe again

that the single PP of Q' is different (and in fact it has more nodes) than any PP of

Q. ❑

Another important question when minimizing PTPQs is whether a PTPQ has

a unique equivalent minimal PTPQ. For instance, in [3] it is shown that for a TPQ

involving descendant relationships, there is a minimal equivalent TPQ which is unique

up to isomorphism (an isomorphism is a 1-1 homomorphism whose inverse mapping

is also a homomorphism). The following example shows that unfortunately, this is

not the case with PTPQs.



94

Figure 6.6 (a) PTPQ Q, (b) PTPQ Q' (minimal and equivalent to Q).

Example 6.1.4. Consider the PTPQs Q 1 and Q2 of Figure 6.7. One can see that

Q1 and Q2 are equivalent and both of them are minimal. However, there is no iso-

morphism between Q 1 and Q2.

a
a 0—z —0—z —0 a 	 a 0— —0 a

co b 	 —0 b 	 c0 b 0— —0 b

d 0 	 e • 	 0 c 	 d0 	 e • 	 0 c

PP p' 	PP p2 	 PPp3 	 PPP/ 	 PP P2 	 PP P3

(a) PTPQ Q1 	 (b) PTPQ Q2

Figure 6.7 Two equivalent minimal queries.

For a more complex case consider the three PTPQs Q1, Q2 and Q3 of Figure

6.8. These PTPQs are equivalent and all of them are minimal. Again, there are no

pairwise isomorphisms among these queries. 	 ❑

Figure 6.8 Three minimal and equivalent queries.

Therefore, a minimal equivalent PTPQ cannot be computed by identifying and

removing "redundant" PPs and/or (equivalent classes) of nodes, and an equivalent
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minimal PTPQ might not be unique. These facts make the PTPQ minimization

problem more complex.

6.2 Minimizing a Subclass of PTPQs

In this section, we consider a subclass of PTPQs called component PTPQs, and we

show that a PTPQ is equivalent to a set of component PTPQs. We then show that

PTPQ containment (and equivalence) can be fully characterized through the existence

of homomorphisms from PTPQs to component PTPQs. We use this result to show

that minimization for component PTPQs can be achieved by removing redundant

PPs identified by a homomorphism.

6.2.1 Component PTPQs

A PTPQ Q is called component PTPQ (or cPTPQ for short) if in the full form of Q,

there is a descendant precedence relationship between any two nodes that participate

in a node sharing expression and lie on the same PP. Clearly, the class of cPTPQs

contains TPQs. Observe that by adding descendant precedence relationships between

every two nodes that participate in node sharing expressions and lie in the same PP

of a PTPQ and by taking the full form of the resulting PTPQ until no two nodes in

the same PP that participate in node sharing expressions are not linked through a

precedence relationship, the resulting PTPQ is an unsatisfiable PTPQ or a satisfiable

cPTPQ.

A PTPQ can be associated to a set of cPTPQs. The cTPQs of a given PTPQ

Q is the set of satisfiable cPTPQs resulting by this process. It is not difficult to see

that if no satisfiable cPTPQ can be obtained for Q from this process Q is unsatisfiable.
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Figure 6.9 A PTPQ Q.

Consider the PTPQ Q of Figure 6.9. Figure 6.10 shows the two cPTPQs U1

and U2 of Q.

Figure 6.10 The two cPTPQs for the PTPQ Q of Figure 6.9.

The cPTPQs of a PTPQ Q can be used to compute the answer of Q as follows:

Proposition 6.2.1. Let {P1,... , Pk} be the set of cPTPQs of a PTPQ Q and D be

a database. Let also A, A1,..., Ak be the answers of Q, P1, • • • • Pn respectively on D.

Then, A = Ui=1,...,k Ai. ❑

The previous proposition states that the answer of a PTPQ is the union of

the answers of its cPTPQs. This result generalizes a result from Chapter 5 where the

answer of a PTPQ is computed from a set of TPQs called component TPQs. Clearly,

the number of cPTPQs of a given PTPQ is not greater than the number of its cTPQs,

and in general is expected to be much smaller. Even though the number of cPTPQs

of a given query can be exponential in the number of its nodes, it is possible that

for a given query the number of its cPTPQs is polynomial while the number of its

cTPQs is exponential in the number of its nodes.
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6.2.2 Using cPTPQs to Characterize PTPQ Containment

As shown in Chapter 5 the existence of a homomorphism from a PTPQ Q' to a PTPQ

Q even though a sufficient condition is not a necessary one for the containment of Q

into Q'. This is so even if the full form of Q is considered instead of Q.

We now provide necessary and sufficient conditions for PTPQ containment in

terms of homomorphisms from a PTPQ to cPTPQs.

Theorem 6.2.1. Let Q 1 and Q2 be two PTPQs. Let also U1 be the set of component

cPTPQs for Q 1 in full form. Q 1 C Q2 iff for every component TPQ U E U1, there is

a homomorphism from Q2 to U. ❑

For instance, one can see that any PTPQ that contains the PTPQ Q of Figure

6.9 has a homomorphism to each one of the cPTPQs of Q shown in Figure 6.10 (which

are in full form).

A consequence of Theorem 6.2.1 is that the containment for cPTPQs is fully

characterized by the existence of homomorphisms provided that the contained cPTPQ

is in full form. We use this result to discuss minimization for cPTPQs.

6.2.3 cPTPQ Minimization

Given a cPTPQ, a minimal equivalent one can be obtained by removing from its full

form iteratively all redundant parts in any order until no more redundant parts can

be removed. Note that based on the results of the previous subsection, a redundant

part p in a cPTPQ Q can be identified by the existence of a homomorphism from Q

to the full form of Q — {p}.
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6.3 Heuristic Algorithms for PTPQ Minimization

In this section, we first elaborate on the reason PTPQs cannot be minimized using

homomorphisms to identify and remove redundant parts even though this is the case

with TPQs involving branching and descendant relationships [3]. We use these ob-

servations to show how a PTPQ can be equivalently put in different forms (called

adjustments of the PTPQ) that gradually comprise more PPs and are more likely

to be minimized through the removal of redundant parts. Finally, we exploit PTPQ

adjustments to design heuristic algorithms for minimizing PTPQs.

6.3.1 Why PTPQ Minimization Cannot Be Achieved Using Homomor-

phisms to Identify Redundant Parts

The presence of two node sharing expressions ay ]] 	 42] and b[p2 ] 	 bpi] in a

PTPQ Q when no precedence relationship can be derived between a[p2] and b[p2 ]

forces the image of Q under any embedding to comprise a path that involves r 	 a

and r 	 b and all relationships which are common between p1 and p3 . This is true

even though these precedence relationships together cannot be derived in any PP of

Q. Such a set {a p i ] 	 a[p2], by- 2 ] 	 b[p3]} of two node sharing expressions is called

a 3-path swing and it was described in detail in Chapter 5.

In the presence of a 3-path swing, it is possible that a PTPQ is not minimal

even though it does not comprise redundant parts in which case, of course, homo-

morphisms cannot help us in minimizing the PTPQ. Further, in the presence of a

3-path swing, it is possible that a redundant PP exists in the PTPQ, even though no

homomorphism exists from this PP to any other PP of the PTPQ. Again in this case

homomorphisms fail to help us in minimizing the PTPQ.
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Example 6.3.1. Consider the PTPQ Q of Figure 6.5(a) which is in full form. PTPQ

Q is not minimal (a minimal equivalent one is shown in Figure 6.5(b)). PTPQ Q

comprises the 3-path swing {a[p1 ] ti a[p2],b 132]	 143]}. Consequently, the image of

Q under any embedding comprises a path that involves the nodes a, b, and c. Clearly,

Q does not comprise redundant parts, and therefore homomorphisms cannot be used

to compute a minimal equivalent PTPQ.

Figure 6.11 A PTPQ Q with a redundant PP.

Consider also the PTPQ Q of Figure 6.11 which again is in full form. PTPQ

Q is not minimal. A minimal equivalent one can be obtained by removing PP p4 .

Observe that, even though p4 is redundant, its redundancy cannot be established using

homomorphisms. There is no homomorphism from p 4 to any one of p1 , p2 , and p3 .

The reason is that the 3-path swing {a p 1]≈a[p2 ], b[p2] ti b[p3]} forces the nodes a, b,

c, and d to appear in a path of the image of Q under any embedding of Q, and this

makes p4 redundant.	 ❑

A similar behavior can be observed when two node sharing expressions a[p1 ]

a[p2] and b[p1] b[p2] appear in a PTPQ Q along with the "chains" of child prece-

dence relationships a[p1] 	 a1[p1] —› a2 p1], 	 • ak-1 [p1] 	 ak [p1 ] and

b[p2] —> 1)1[p2], b1 p2] 	 b42], • • • , bl-1[p2] --> b l [p2], when no precedence rela-

tionship can be derived between 42] and 42]. Then, every tree in which there is

an embedding of Q comprises a path that satisfies the child precedence relationships
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ap1] --> a1 _pi], a 1 p1] a2 [p1] , • • • , ak-1 [p1] -4 ak _pH], b[p2] b1 [p2], b1 )32]

b2 p2], • • • bl-1132] —› bl [p2] even if these child precedence relationships together can-

not be derived in any PP of Q. We call such a set {a p 1] a[p2], b[p 1] bp2]} of two

node sharing expressions a 2-path swing. Similarly to 3-path swings, 2-path swings

are discussed in detail in Chapter 5.

An example of a 2-path swing ({a[p1]=p1]= a[p2], dp i] b[p2]}) is shown in the

PTPQ of Figure 6.12.

As with the case of 3-path swings, homomorphisms may fail to help us in

minimizing a PTPQ either because there are redundant PPs in the PTPQ that cannot

be identified through homomorphisms or because, even though the PTPQ is not

minimal, there are no redundant parts in which case homomorphisms cannot, of

course, be of help.

Figure 6.12 A PTPQ Q with a redundant PP.

Example 6.3.2. Consider the PTPQ Q of Figure 6.12 which is in full form. PTPQ

Q is not minimal. A minimal equivalent one can be obtained by removing PP p 3 .

Observe that, even though p3 is redundant, its redundancy cannot be established using

homomorphisms since there is no homomorphism from p 3 to any one of p1 and p2 .

The reason is that the 2-path swing {a p1] =a[p2], c[p1] ti c[p2]} forces the precedence

relationships a 	 b and c d to appear in the same database path of the image of Q

under any embedding of Q to this database, and this makes p3 redundant. 	 ❑
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6.3.2 Virtual Paths and Adjustments of PTPQs

In order to design heuristic algorithms for PTPQ minimization we use the concept of

virtual path and we slightly modify the concept of PTPQ adjustment introduced in

Chapter 5. We present these concepts below.

Definition 6.3.1. Let Q be a PTPQ that comprises a 3-path swing {a[p1 ] ti 42], 42]

43]}. A virtual PP for p2 w.r.t. p1 and p3 in Q is a PP (set of precedence relation-

ships) that comprises: (a) a precedence relationship r a for every node a partic-

ipating in a swing involving PPs p1 , p2 and p3 , and (b) all precedence relationships

that are common to p1 and p3 . 	 ❑

Therefore, the virtual PP v comprises precedence relationships from two dif-

ferent PPs.

For an example of the virtual path consider the PTPQ Q of Figure 6.11. A

virtual path v for PP p2 w.r.t to PPs p 1 and p3 of Q is shown in Figure 6.13.

Figure 6.13 The adjustment of the PTPQ Q of Figure 6.11 with a virtual PP v.

We use the concept of virtual PP to define the adjustment of a PTPQ. For

this definition, we assume that each PP in a PTPQ is marked as core or virtual.
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Definition 6.3.2. Let v be a virtual PP for PP p 2 w.r.t. PPs p1 and p3 in a PTPQ

Q. The adjustment of Q with v is a PTPQ Q' such that: (a) Q' contains all the PPs

of Q marked as they are marked in Q and all node sharing expressions of Q, (b) Q'

contains the PP v with a name (say v) that does not occur in Q marked as virtual,

(c) for every node sharing expression ap e ] a[pj ], i, j E [1, 3], Q' contains the node

sharing expressions a[v] a[p i ] and a[d a[pj], and (d) there is no homomorphism

from Q' to Q, which maps v to p1 , p2 , or p3 . 	 ❑

Figure 6.13 shows the adjustment of the PTPQ Q of Figure 6.11 with the

virtual path v.

Similarly to 3-path swings, 2-path swings can be used to define virtual paths:

Definition 6.3.3. Let Q be a PTPQ that comprises a 2-path swing a[p1] ti 42], b[p 1 ]

b[p2]} in Q. Let also dp1] 	 a1[p1], 	 a2[p1], • • • , ak-1[p1] 	 ak[p1] and

b[p2] b1[p2], b1[p2] b2[p2], • • • , bl-1[p2] bl[p2 ] be the chains of child prece-

dence relationships attached to a[p1 ] and b[p2]. A virtual PP for p1 and p2 in Q is a

PP (set of precedence relationships) that comprises: (a) the precedence relationships

a a l , a 1 a2, ak-1 ak and b 1) 1 , b1 b2 , , b l-1 b l , and (b) all

precedence relationships that are common to p1 and p2 . 	 111

Figure 6.14 The adjustment of the PTPQ Q of Figure 6.12 with a virtual PP v.

For an example of the virtual path consider the PTPQ Q of Figure 6.12. A

virtual path v for PPs p1 and 2)2 in Q is shown in Figure 6.14.
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A PTPQ can be adjusted with virtual paths which are based on 2-path swings.

Definition 6.3.4. Let v be a virtual PP for PPs p1 and p2 in a PTPQ Q. The

adjustment of Q with v is a query Q' such that: (a) Q' contains all the PPs of Q

marked as they are marked in Q and all node sharing expressions of Q, (b) Q' contains

the PP v with a name (say v) that does not occur in Q marked as virtual, (c) for

every node sharing expression a[p1] a[p2], Q' contains the node sharing expressions

a[v] a[p1 ] and a[v] ti a _p2], and (d) there is no homomorphism from Q' to Q, which

maps v to p1 or p2. ❑

Figure 6.14 shows the adjustment of the PTPQ Q of Figure 6.12 with the

virtual path v. As we shown in Theorem 5.5.1 adjustment of a PTPQ Q with a

virtual PP is equivalent to Q.

6.3.3 Heuristic Algorithms for Minimizing PTPQs

Our heuristic algorithms are based on the following remarks. Consider the PTPQ of

Figure 6.11, PP p4 in Q is redundant, but Q does not have a homomorphism to the

PTPQ resulting by removing PP p 4 from Q. In contrast, if we consider the adjustment

Q' of Q with v shown in Figure 6.13, we can see that Q' has a homomorphism to

the PTPQ resulting by removing PP p 4 from Q'. Therefore, we can remove the

redundant PP p 4 and the virtual PP v from Q' to obtain a PTPQ, which has less PPs

then Q and is equivalent to Q. Incidentally, this PTPQ is also minimal. Consider

also the PTPQ of Figure 6.12, PP p3 in Q is redundant, but Q does not have a

homomorphism to the PTPQ resulting by removing PP p 3 from Q. In contrast, if we

consider the adjustment Q' of Q with v shown in Figure 6.14, we can see that Q' has

a homomorphism to the PTPQ resulting by removing PP p 3 from Q'. Therefore, we

can remove the redundant PP p3 and the virtual PP v from Q' to obtain a PTPQ

equivalent to Q, which has less PPs then Q. In this case too, the new PTPQ is also

minimal.
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We call adjustment of a PTPQ Q the PTPQ Qa obtained by adding virtual

paths to the full form of Q based on all triplets or pairs of core paths that have

swings and by taking the full form of the resulting PTPQ. Clearly the adjustment of

the PTPQ Q is unique and equivalent to Q.

Heuristic Algorithm 1: Minimization using PTPQ adjustment.
Input: a PTPQ Q
Output: a PTPQ Q'.

Step 1
compute the adjustment Qa of Q.

Step 2
for every PP v marked as virtual in Qa do

for every core PP p i involved in the generation of v do
if there is a homomorphism from Qa to Qa — {pi } that
maps pi to v and all other PPs of Qa to themselves then

remove p i from Qa and mark v as core PP

Step 3
for every core PP pj of Qa do

if there is a homomorphism from Qa to Qa — {pj}, then
remove pj from Qa

Step
for every 3-path swing of Qa involving the core PPs p1 , p2 , and p3 , with
p2 being the axis of the swing, do

let set S contain all precedence relationships of p 2 not involving nodes
participating in node sharing expressions with nodes from p1 or p3 ,

if no node in the precedence relationships in S participates in a node sharing
expression in Qa and all precedence relationships in S appear in both
p1 and p3 , then

remove the nodes appearing in precedence relationships in S from p2

Step 5
compute Q' by removing all virtual PPs from Qa

Figure 6.15 Heuristic algorithm 1.
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Figure 6.16 A PTPQ Q.

Example 6.3.3. Consider the PTPQ Q of Figure 6.16. PTPQ Q is in full form.

PPs p1 , p2 and p3 are redundant but this cannot be identified by homomorphisms.

Figure 6.17 shows the adjustment of Q. Our first heuristic algorithm on Q is able

to identify the PP p1 of Q as redundant since there is a homomorphism from Qa to

Qa — {p1 } mapping the PP p1 to the virtual PP and removes it from Q. ❑

PTPQ Q

Figure 6.17 The adjustment of the PTPQ Q of Figure 6.16.

We can show the following theorem for Heuristic Algorithm 1.

Theorem 6.3.1. Heuristic Algorithm 1 on a PTPQ Q produces a PTPQ Q' which

is equivalent to Q and does not have more (equivalent classes of) nodes or PPs than

Q. 	 ❑
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Proof: Clearly, the algorithm does not add any additional PPs. Any time the virtual

PP is marked as core, at least one other core PP is removed from the PTPQ. The

fact that the PTPQ obtained by this step is equivalent to the original PTPQ can be

derived from the fact that the adjustment of a PTPQ Q with virtual path is equivalent

to Q. Whenever redundant PP p is removed from the current PTPQ Q in Step 3,

the equivalence is guaranteed by the existence of a homomorphism from Q to Q -

{p}. Finally, the nodes and precedence relationships removed by the algorithm from

the axis of a 3-path swing in Step 4 appear in the virtual path, and therefore the

resulting PTPQ is equivalent to the initial one. ❑

As shown in the Example 6.3.3, the first heuristic algorithm is able to identify

and remove redundant PPs or nodes, which cannot be shown to be redundant by

simply using homomorphisms on the PTPQ or the full form of the PTPQ. In this

sense, the algorithm is able to produce minimal equivalent PTPQs Q' from all the

PTPQs Q shown in Figures 6.3, 6.4, 6.11, and 6.12. Moreover, the first heuristic

algorithm is able to minimize PTPQs, whose minimal equivalent ones cannot be

obtained by removing redundant parts. For instance, the algorithm will produce

minimal equivalent PTPQs Q' for the PTPQs Q of Figures 6.5 and 6.6.

Our second heuristic algorithm exploits an extension of the concept of adjust-

ment of a PTPQ called complete adjustment: the complete adjustment of a PTPQ Q

is defined similarly to the adjustment of Q except that in the complete adjustment

virtual PPs that are defined recursively based on swings involving other virtual PPs

are also added to the adjustment.

Clearly, the second heuristic algorithm consumes more time since it has to

recursively compute the complete adjustment of Q instead of the "simple" adjustment

but it is expected to be able to identify and remove more core PPs. A theorem similar

to Theorem 6.3.1 can be shown for Heuristic Algorithm 2.
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Heuristic Algorithm 2: Minimization using PTPQ complete adjustment.
Input: a PTPQ Q
Output: a PTPQ Q'.

Step 1
compute the complete adjustment Q ea of Q.

Step 2 to Step 5:
are similar to the corresponding steps of Heuristic Algorithm 1.

Figure 6.18 Heuristic algorithm 2.

Example 6.3.4. Consider again the PTPQ Q of Figure 6.16 which is in full form.

PPs p1, p2 and p3 are redundant but this cannot be identified by homomorphisms.

Figure 6.19 shows the complete adjustment of Q. Our second heuristic algorithm on

Q is able to identify the redundancy of all three PPs p1 , p2 and p3 of Q, since there

is a homomorphism from Qa to Qa — {p1, p2, p3} mapping the PPs p1 , p2 and p3 to

virtual PPs as shown in Figure 6.19, and removes them from Q. 	 ❑

Result of the heuristic algorithm ²

Figure 6.19 The complete adjustment of the PTPQ Q of Figure 6.16.
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6.4 Conclusion

In this chapter we studied the minimization problem for PTPQ in the absence of

dimension graphs. We showed that PTPQs cannot be minimized by removing redun-

dant parts as is the case with TPQs involving branching and descendant relationships.

We demonstrated that, in general, a PTPQ does not have a unique minimal equiva-

lent PTPQ. We also showed that a PTPQ can be equivalently represented by a set

of partial tree-pattern queries called component PTPQs, which can be minimized by

removing redundant parts. Finally we devised sound, but not complete, heuristic tech-

niques for PTPQ minimization, which gradually trade execution time for accuracy.

They identify and remove redundant parts, which cannot by identified as redundant

using homomorphisms even if the full form of the PTPQ is used. Moreover, these

techniques are able to compute minimal PTPQs, even in cases where minimal one

cannot be obtained by removal of redundant parts.



CHAPTER 7

CONCLUSION

We have considered partial tree-pattern queries (PTPQs), which correspond to a large

fragment of XPath strictly containing tree-pattern queries. A central feature of this

type of queries is that the structure can be specified fully, partially, or not at all in a

query. Therefore, they can be used to query data sources whose structure is not fully

known to the user, or to query multiple data sources which structure information

differently. In this thesis we dealt with the processing of partial tree-pattern queries.

This issue has not been addressed previously for this class of queries.

In order to handle structural expression inference and to allow query compar-

ison, we defined a set of inference rules and a "normal form" for PTPQs, called full

form. Using the concept of the full form we provided necessary and sufficient condi-

tions for PTPQ satisfiability. We introduced the concept of homomorphism between

two PTPQs to characterize their containment. Further, we defined a construct that

summarizes the structural information of the database called dimension graph. A

dimension graph can be automatically extracted from a database and supports the

processing and evaluation of the PTPQs.

We studied the problem of PTPQ containment in the presence of dimension

graphs, and we provided necessary and sufficient conditions for PTPQ containment.

We further devised sound but not complete heuristic approaches that exploit struc-

tural information extracted from the dimension graph either in advance or at query

time. A detailed experimental evaluation of our approaches shows that they greatly

improve the PTPQ containment checking execution time, and that they gradually

trade execution time for accuracy.
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Next we focused on processing PTPQs in the absence of dimension graphs.

We studied the containment problem for PTPQs and we proved that a PTPQ can be

equivalently represented by a set of tree-pattern queries. We provided necessary and

sufficient conditions for PTPQ containment. We also identified a subclass of PTPQs

where containment can be fully characterized by the existence of homomorphisms.

Further, we devised two sound but not complete heuristic approaches that equiva-

lently add virtual partial paths to PTPQs. These heuristics gradually trade execution

time for accuracy. Empirical implementation of both approaches confirms that they

greatly improve the query containment checking execution time while maintaining

very high accuracy.

In the framework of this thesis we also studied the problem of minimization of

PTPQs. We demonstrated that PTPQs cannot be minimized by removing redundant

parts as is the case with tree pattern queries involving branching and descendant

relationships. Further, we showed that for some PTPQs there is no unique minimal

equivalent PTPQ. We also proved that a PTPQ can be equivalently represented by

a set of partial tree-pattern queries called component PTPQs. Finally, we devised

sound but not complete heuristic approach for minimizing PTPQs.

The presented results show that our techniques can be used by query optimiz-

ers in real world applications for the processing and optimization of partially specified

tree-pattern queries.
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