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ABSTRACT

ELECTRICAL AND OPTICAL PROPERTIES OF CARBON NANOTUBE
INTRA-CONNECTS AND CONDUCTIVE POLYMERS

by
Seon Woo Lee

Growth of individual carbon nanotube (CNT) intra-connects (bridges) between two pre-

fabricated electrodes is a great challenge and a pre-requisite to the development of single

electron devices. In this thesis, CNT intra-connects were fabricated and studied. Later on,

the intra-connects were deposited with electrically conductive polymer (ECP) in the

realization of CNT/ECP hybrids.

The process started by realizing two electrodes with sharp end on a silicon wafer

using e-beam lithography. The intra-connects were then grown by use of chemical vapor

deposition (CVD) technique. The intra-connects were later electroplated by various

conductive polymers. The morphology, electrical conductivity of these intra-connects as

well as their Raman spectroscopy signatures were studied. Scanning electron microscopy

(SEM) was also employed. The CNT intra-connects were well-aligned from tip to tip.

Their Raman spectra indicated the existence of CNT channels between metal tips and

nowhere else on the wafer. Enhancement of photoconductance has been shown to

correlate with a novel negative differential resistance (NDR) effect. Electroplated intra-

connects exhibited unique properties both for multi-walled and single-walled carbon

nanotube channels.
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CHAPTER 1

INTRODUCTION

Carbon nanotubes (CNTs) and electrically conductive polymers (ECPs) have been

extensively studied each for its own merit for various applications in nanotechnology [1-3].

Carbon nanotubes are rolled graphene layers into tubes whose diameter is on the order of 1

nm [4]. ECPs are polymers: unlike most polymers they exhibit conductance of charges and

are sometimes called synthetic metals [5].

Since the discovery of CNT by Iijima in 1991 [6], CNTs were considered for

biosensors, field effect transistors, single electron transistors, mechanical devices and

coatings [1-3, 7, 8], owing to their remarkable electrical, chemical and mechanical

properties [9-12].

However, growth of CNT at designated positions has been a great challenge. Most

metal contacts to CNTs for device purposes were made after dispersing, or, randomly

growing the tubes on the substrates [13]. Otherwise CNTs were randomly grown [14] or

mechanically attached [1] between two pre-fabricated electrodes or pads. Such techniques

were deemed crude and incompatible with modern integrated circuit (IC) fabrication

standards.

Electrically conductive polymers have been discovered in the late nineteen

seventies (1977) by Alan Heeger, Hideki Shirakawa and Alan MacDiarmid when

conjugated polymer polyacetylene exhibited electrical conductivity through halogen

doping [5, 15, 16]. In recent years, electrical and optical properties of conductive polymers

were applied to field-effect transistors, gas sensors, batteries, light emitting diodes and

flexible optoelectronic devices [17-21]. Typically, ECPs are mechanically weak and

1
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fragile. They are susceptible to oxygen, which degrades its conductance [22, 23]. The

strength of ECP may be improved by copolymerization with a second polymer at the

expense of conductivity [24]. One of the advantages of ECP is the ability to conjugate them

with oligonucleotides, thus making them useful biosensors [25]. The integration of CNT

and ECP did not escape researchers, yet, so far, such structures have only been realized as

bulk composites [13].

Effective field effect biosensors require narrow channels. Yet, polymers tend to

make good films and fabricating narrow channels has been demonstrated only recently

[26-28]. One would therefore, consider integrating the CNT and ECP components: grow a

narrow CNT channel and electroplate it with ECP for the realization of an efficient

biosensor. A schematic of such element is shown in Figure 1.1. It is made of as-grown

CNT channel between two electrodes (Figure 1.1a). The electrodes and the CNT are then

used to electroplate the ECP component (Figure 1.1b).

In Chapter 2, a brief introduction to carbon nanotubes, electrically conductive

polymers and negative differential resistance will be given.

Chapter 3 presents the experimental setup for this study, including metal electrode

preparation, the growth method of individual CNT intra-connects by chemical vapor

deposition (CVD), electro-polymerization process used to wrap the CNT intra-connect

with electrically conductive polymer, such as polypyrrole and polycarbazole,

current-voltage characteristic measurement setup, material characterization techniques

(SEM and AFM) and the system for Raman spectroscopy.

The experimental results are extensively discussed in Chapter 4, 5 and 6. In Chapter

4, multi-walled carbon nanotube (MWCNT) channels, electroplated with polypyrrole were
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characterized by electrical and optical techniques. Negative differential resistance was

observed for channels made of single-walled carbon nanotube (SWCNT) intra-connects.

Details of the experimental results are discussed in Chapter 5 as well. In addition, Chapter

6 describes single-walled carbon nanotube (SWCNT) elements with and without

electroplated polycarbazole (PCZ).

Conclusions are provided in Chapter 7. Future Work is suggested in Chapter 8.
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Figure 1.1 Schematics of 1-D device, which is based on CNT/ECP composite bridge. (a)
Growth of individual CNT intra-connect between two pre-determined addressable metal
tips by CVD. (b) Electro-polymerization of ECP on top of a CNT bridge.



CHAPTER 2

BACKGROUND

2.1 Carbon Nanotubes

Carbon nanotubes are cylindrically symmetric allotrope of carbon. In general, each carbon

atom has six electrons in the outermost shell. Two electrons fill the is orbital and the

remaining four electrons fill the sp3 or, sp2 orbitals. Such bonds, thus, contribute to the

formation of diamond, graphite or graphene, fullerene and carbon nanotube (Figure 2.1)

[4].

The sp3 hybrid orbitals in diamond have four valence electrons for each carbon

atom. Four other neighbor carbons are connected to each atom via four r covalent bonds.

This tetrahedral structure makes diamond the hardest material known. The electrons in

diamond are tightly bounded, which makes diamond an insulator [29].

Graphite has planar hexagonal structure, which is composed of three electrons in

planar sp2 hybrid orbitals and one electron in an out-of-plane it orbital. The electrons in

out-of-plane it orbital are loosely held on the graphite plane and contribute to its electrical

conductivity [30]. A monolayer of graphite is called graphene.

Carbon nanotube is a rolled graphene sheet to form a cylindrical hollow tube.

Nanotubes also have sp2 orbitals. However, the a and it bonds are rehybridized in carbon

nanotubes since the o bonds are a bit out of plane and the it bonds are out-of-plane as well.

This structure makes carbon nanotubes mechanically stronger and more electrically

conductive than graphene. Figure 2.2 shows transmission electron microscope (TEM)

image of carbon nanotubes [4].

5
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Figure 2.1 The bonding structures of carbon allotropes, diamond, graphite, carbon
nanotube, fullerene. Deformed sp2 structures give carbon nanotubes unique mechanical,
electronic, optical and chemical properties pH.
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Fullerenes, also known as buckyballs, are large molecular clusters [31]. Soccer ball

shaped C60 structure is made of 20 hexagons and 12 pentagons. Fullerenes have deformed

sp2 structure with high curvature, which results in interesting physical properties [32].

Carbon nanotubes may be either metallic or semiconducting depending on their

morphology [11, 33, 34]. Single-walled carbon nanotubes have direct band gap and quasi

one-dimensional band structure, which makes carbon nanotubes applicable for

optoelectronics. Bonding structures of carbon nanotubes make them biologically and

chemically active [35, 36] more than graphite or, graphene [4, 12]. Current size limitation

in silicon technology turned many to carbon nanotubes: their manometer diameter and

conductance properties raised hopes of realizing nano-size field effect devices.

Figure 2.2 Images of carbon nanotubes [4] (a), (b) and (c) multi-walled carbon nanotubes
[6] (d) STM image of single walled carbon nanotube [37] (e) SWCNT - TEM image [38]
(f) SWCNT ropes [39].
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2.1.1 Synthesis of Carbon Nanotube

There are various ways to grow carbon nanotubes: thermal chemical vapor deposition

(CVD), plasma enhanced chemical vapor deposition (PECVD), carbon arc discharge

method and laser ablation [40].

Figure 2.3 Laser vaporization method is employed in the growth of single-walled carbon
nanotube using quatz tubes at 1200 °C, a graphite target and a water-cooled copper
collector [41].

Arc discharge method was developed to produce macroscopic amount (several

grams) of carbon nanotubes by Fundamental Research Laboratory at NEC Corporation in

Japan. Voltage bias, of approximately 20 V, is applied between carbon rods, which are

separated by a distance of 1 mm. Carbon atoms are evaporated from the positive electrode

at high temperatures, and the growth starts on the negative electrode. Transition metals

such as cobalt, nickel, or, iron are required for the growth of single-walled carbon
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nanotubes (SWCNT). Catalyst is not necessary for the growth of multi-walled carbon

nanotubes. This method requires purification process to separate carbon nanotubes from

impurities (catalysts) and soot [42].

Figure 2.4 Schematic for Plasma Enhanced Chemical Vapor Deposition (PECVD)
technique [4].
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Figure 2.5 Images of carbon nanotubes (a) Vertically aligned MWCNT grown by PECVD
using CH4/H2 [4] (b) Randomly grown carbon nanotubes by CVD using carbon monoxide
gas as a precursor.
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Laser evaporation with intense pulses is another method to grow carbon nanotubes

[43, 44]. Targets are prepared by uniformly mixing nickel, cobalt and graphite. The

graphite target is heated up to 1200 °C. The laser pulses evaporate the carbon atoms in the

target. This method reduces the amount of contamination in a form of soot, or, amorphous

carbon. Carbon nanotubes with diameters of 10-20 nm and up to 10 long may be grown

by this method.

Figure 2.6 A carbon nanotube is a two-dimensional rolled-up graphene sheet. The vector
OA is defined as a chiral vector, Ch = na1 + ma2 , where a l and a2 are unit vectors on the
hexagonal structure, n and m are integers. The chiral angle , 0, defines the angle between
the unit vector al (the zigzag direction) and the vector OA (the chiral vector Ch) [12].

Chemical Vapor Deposition (CVD) is a widely used technique to grow carbon

nanotubes. It requires a flow of hot carbon feedstock in a form of gas containing carbon.

Most commonly used gases are ethylene, methane, carbon monoxide and ethanol.
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Transition metal catalytic layers are deposited on the substrate in order to initiate tube's

growth. Iron (Fe), cobalt (Co), nickel (Ni) are used as metal catalysts. The size of metal

particles dictates the diameter of the resultant carbon nanotubes [45, 46]. Typical

temperature range is within 700 °C - 1000 °C. The growth of CNT by CVD is rather

random in terms of position and direction. Efforts to align the tubes were made by applying

a large electric field [47]. The growth position is typically dictated by the position of

catalytic seeds. In this thesis we show that by defining the catalytic seed to be at a sharp tip

of an electrode, one may control the place at which the tubes are grown.

Figure 2.7 The integer set (n,m) will describe different types of carbon nanotubes. Zigzag
carbon nanotube can be expressed as the vector (n,0) or (0,m), which denotes zero degree
chiral angle. (n,n) states armchair carbon nanotubes. All other integer sets (n,m) states
chiral carbon nanotubes with a chiral angle between 0 ° and 30° . Carbon nanotubes can be
either semiconducting or metallic depends on their chirality' [12].



13

A modification to thermal CVD is plasma enhanced CVD (PECVD). The plasma

may be generated by a DC or AC, electric or magnetic fields. The plasma enhances the

tube's growth and typically results in vertically grown tubes. The carbon nanotube growth

follows the direction of the externally applied electric field. For example, a DC plasma

reactor, consisting of ground and positive electrodes is shown in Figure 2.4. Pressure levels

employed are normally in the range of 1 to 20 Torn

Figure 2.8 Some structures of single-wall carbon nanotubes (a) armchair nanotube, chiral
angle θ  = 30° and chiral vector (n,n) (b) zigzag nanotube, chiral angle θ  = 0° and chiral
vector (n,0) (c) chiral nanotube, chiral angle 0 ° < 0 < 30° and chiral vector (n,m) [12].

In this study, chemical vapor deposition process was used to grow carbon

nanotubes with various gases at different temperatures. Details of the chemical vapor

deposition process are provided in Chapter 3.
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2.1.2 Structure of Carbon Nanotubes

A graphene sheet is a monolayer of graphite. Carbon nanotubes are seamless cylindrical

rolled-up graphene sheet (Figure 2.6). The rolling orientation of carbon nanotube (CNT) is

called chirality. The physical properties of carbon nanotubes are determined by their

chirality factor. Two dimensional hexagonal structures may be expressed by a chiral vector

Here n and m are integers and a l and a2 are unit vectors of the hexagonal lattice.

Chiral vector states the rolling direction of a graphene sheet when forming a hollow tube. A

chiral vector is usually expressed by its integer set (n, m) [48]. The chiral angle 0 is defined

as an angle between the chiral vector Ch and the zigzag nanotube direction (Figure 2.6).

The rectangular unit cell of a graphene sheet is composed of a vector T and chiral vector

Ch. The chiral vectors (n,m) are used to specify the different types of carbon nanotubes.

The chiral vectors (n,0) and (0,m) define zigzag carbon nanotubes, which refer to a chiral

angle of zero degrees. Armchair carbon nanotubes may be expressed by the vector (n,n)

with a chiral angle of θ=30°. All other (n,m) carbon nanotubes in the range of 0° < θ  < 30°

are simply referred to as chiral carbon nanotubes (Figure 2.8). The diameter of carbon

nanotubes may be calculated from the chiral vector (n,m)

Here D is the diameter of carbon nanotube and a is the lattice constant (2.49 angstroms, see

also Figure 2.6). The chiral angle 0 is calculated using the relation

Carbon nanotubes appear in two flavors: metallic and semiconducting (Figure 2.7).

Carbon nanotube becomes metallic when its chiral vectors satisfy the condition,
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Here n, m and q are integers. Therefore, all armchair carbon nanotubes are metallic

tubes. One third of the tubes are metallic and the remaining two thirds are semiconducting

tubes. Current technologies do provide for separation between metallic and

semiconducting tubes yet, do not provide for full control of their chirality [12, 49].

There are two types of carbon nanotubes: single-walled carbon nanotubes

(SWCNT) and multi-walled carbon nanotubes (MWCNT). SWCNTs are made of a tube

with a single wall. MWCNTs are composed of several concentric cylindrical layers. Each

layer may be either metallic or semiconducting depending on its chirality. This makes

difficult to use MWCNT for electronic applications. Large current through the MWCNT

usually eliminates the metallic carbon nanotube layer leaving the semiconducting layer

intact [50-52].

2.1.3 Electronic Properties of Carbon Nanotube

The electronic energy dispersion relations for 2D graphite as a function of wave vector in

Brillouin zone is shown in Figure 2.9 and calculated by solving the eigenvalue problem

[33], det(H — ES) 0, for a (2 x 2) Hamiltonian H and a (2 x 2) overlap integral matrix

S,

Here kx and ky are the wave vectors in the x and y directions, yo is the nearest neighbor

overlap integral, a = √3dcc, ε2pp is the site energy of the 2p orbital [53].
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By linear k approximation for w(k) from near the K point at the hexagonal Brillouin zone

of graphite

The expansion of Equation 2.7 for small k values,

Figure 2.9 (a) The equivalent energy contour plot of 2D energy of graphite. (b) The
energy dispersion relations in 2D graphite [53].
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The 1D electron density of states of carbon nanotubes is given by zone folding of the 2D

energy dispersion relation of a graphene layer [54] and assuming a linear k approximation

for w(k), ε2p=0 and s=0 for the Equation (2.7)

The peak positions depending on the diameter of carbon nanotubes can be induced by the

linear dispersion approximation of Equation 2.11 [54, 55]. The energy difference εii(D) for

metallic and semiconducting carbon nanotubes are given by

where d„ is the nearest cabon-carbon distance, D is the diameter of carbon nanotube, γo is

the carbon-carbon tight binding overlap energy integral [49]. The band diagram of carbon

nantubes is comprised of discrete energy levels. The density of states, plotted as a function

of energy (the Fermi level is located at zero) contains peaks known as van Hove

singularities (VHS) as shown in Figure 2.10. The left hand side of Fermi level defines the

valence band. The right hand side of Fermi level defines the conduction band. The energy

band gap of semiconducting carbon nanotubes (zero density of state at the Fermi level) is

proportional to 1/D. The energy between the lowest resonance energy in the conduction

band and the highest resonance energy in the valence band is larger for metallic carbon

nanotubes and smaller for semiconducting carbon nanotubes. Figure 2.11 shows the energy

band gap for single-walled carbon nanotubes as a function of tubes diameter. The energy

difference between ith VHS peaks εii(D) in the conduction band and valence band decreases

with increasing diameter of carbon nanotubes. This result is from the tight-binding
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band-structure calculations and the one-dimensional quantum confinement of the electrons

in the nanotube [56].

Similarly to quantum wires, the conductance of a carbon nanotube may be written

as

Here Go = (2e 2 1 h)= (12.9kΩ )-1 is the quantized conductance and M is the number of

conductive channels. However, there are many factors which affect the value of M:

intertube coupling, electron-electron coupling, defects, impurities, distortion of structure,

contacts on carbon nanotubes and substrate effects. Therefore, the experimentally

measured conductance value of SWCNT is typically smaller than the theoretically

predicated value. For example, the calculated resistance value for a single-walled carbon

nanotube is 6.45 kΩ  and the experimentally measured resistance is approximately 10 kΩ  [4,

57-60].
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Figure 2.10 Electronic density of states (DOS) of (a) metallic and (b) semiconducting
carbon nanotubes [61].
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Figure 2.11 Energy band gap (8) for single-walled carbon nanotubes as a function of
tubes diameter. The index i denotes the transition between van Hove singularities of the
same index number. Small index i defines a closer position to the Fermi level [62].
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2.1.4 Raman Scattering from Carbon Nanotube

Raman spectroscopy is a useful technique to study the structure, electronic and phonon

properties of carbon nanotubes.

A carbon nanotube has N hexagons Each carbon nanotube has 6N phonon modes -

4 acoustic modes, including the rotation around the nanotube axis (R,) at the F point, and

6N-4 optical modes. The number of Raman active modes may be calculated by group

theory using the specified lattice structure and symmetry. The total number of phonon

modes varies as a function of tube chirality. Group theory selection rules have predicted

that there are between 15 or 16 Raman active modes for typical carbon nanotube [33].

Figure 2.12 Typical Raman spectra of single-walled carbon nanotubes. RBM: Radial
Breathing Mode. D: Defect mode. HEM: High Energy Mode — Tangential vibration [63].
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Figure 2.13 Raman spectra of purified single-walled carbon nanotubes using five different
laser frequencies. The high frequency mode at 1600 cm -1 shifts upward as the laser
frequency is increased. This is attributed to resonance enhancement, which is related to the
van Hove singularities [33, 64].
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Figure 2.14 Polarization dependence of Raman spectra of single-walled carbon nanotubes.
The chiral vector and the diameter of the carbon nanotubes are provided on the right. The
VV (the incident and the scattered polarization states are parallel) configuration is shown
on the left column. The VH (the incident and the scattered polarization states are
perpendicular to each other) configuration is shown on the right column [33].

Raman scattering of carbon nanotubes is typically divided into the three main

regions. Radial breathing modes (RBM) are located at the low-frequency range between

100 and 400 cm-1. A defect induced mode (D-mode) lies between 1200 and 1400 cm-1. The

high energy mode (HEM) is in the range of 1500-1600 cm-1. Typical Raman spectra are

shown in Figure 2.12.
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The Raman peaks depend on the laser frequency used. Intensity of the peaks is

enhanced by electron-phonon coupling when the excitation energy is close to a resonance

(transition between two van-Hove singularities) as shown in Figure 2.13.

Figure 2.14 shows the polarization dependence of the Raman intensity. The VV

polarization means that the linear polarization states for the incident and the scattered

optical beams are parallel to one another. The VH polarization means that the linear

polarization states for the incident and the scattered light are perpendicular to each other.

The intensity of Raman scattering is normalized to the maximum intensity value. At low

frequencies, the intensity of the Big and Egg modes is similar for the VV and VH

configurations. The intensity of the Ai g mode, the most dominant mode among low

frequency spectra, is greatly reduced for the VH scheme [33].

Low-frequency Raman modes depend on the diameter of the carbon nanotubes.

Figure 2.15 shows a log plot for the calculated Raman-active modes as a function of the

tube's diameter. Therefore, the diameter of carbon nanotubes may be assessed by the peaks

of its RBM modes. Larger force is required to deform small diameter tubes [63]. Therefore,

the smaller the diameter is, the larger is its corresponding RBM frequency. The

relationship between the diameter of a carbon nantube and its RBM peak frequency is

given by

where dt is the diameter of the tube [61].

The mid frequency range is characterized by the D modes signifying structural

defects. The ratio between the G mode (high frequency peak: 1500-1600 cm -1) and the D

mode (G/D) is used to assess the quality of carbon nanotubes grown. Sometimes referred to



25

as the disordered mode, the D mode is located in the range between 1330 and 1360 cm -1 .

Large intensity of the D mode is usually observed in multi-walled carbon nanotubes.

Defect free carbon nanotubes are expected to portray small D mode peak.

The high-frequency mode - the G mode or Tangential Mode, corresponds to the

stretching mode in the graphite plane. This mode is located around 1580 cm -1 . The peak

position of that mode is relatively insensitive to the tube diameter. Figure 2.16 shows the

calculated Raman frequency for the (10, 10) carbon nanotubes. The Raman modes in

Figure 2.16 do not have strong dependence of the tube's chirality either.

Figure 2.15 Low-frequency Raman lines as a function of the radius of carbon nanotubes
[33].
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Figure 2.16 Raman modes, atomic displacement and frequencies. These were calculated
for (10, 10) nanotubes. The modes shown above are independent of the chirality of the
nanotu be [33] .
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2.2 Conductive Polymer

Polymers are long chains of monomers, which are composed of repeated molecular units

and connected by covalent bonds. In general, polymers are good insulators: for example,

polyethylene is used for packaging of electronic devices due to its environmental stability.

In the late 1970s, Alan J. Heeger, Alan G. MacDiarmid and Hideki Shirakawa discovered

polyacetylene, a conductive polymer, which becomes conductive upon oxidation with

iodine. The iodine removes an electron from the it bonds and makes the remaining

electrons movable throughout the chain [65]. The discovery of conductive polymer

enabled new applications for otherwise insulating polymers. Polypyrrole, polythiophene,

polyaniline, poly(p-phenylenevinylene), polycarbazole and their derivatives are but a few

examples of commonly used conductive polymers. Unlike metals, conductive polymers are

light weight and flexible. Their characteristics may be chemically tuned by doping.

Nowadays, conductive polymers have been used as light emitting diodes (LED),

transistors, solar cells, flexible electronics and as part of flat panel displays [5, 16, 18, 40].

2.2.1 Polymerization

Conductive polymer can be doped by an oxidation and reduction (REDOX) process. There

are two primary methods of doping a conductive polymer. One is using chemical doping,

which is to expose the polymer to an oxidant, typically iodine or bromine. The other

employs electrochemical doping in the form of electron addition (n doping) or removal (p

doping) when applying external electrical bias. Negatively doped polymers are rare

because the oxygen rich atmosphere is an oxidizing agent. An electron rich n doped

polymer will immediately react with elemental oxygen to de-dope (re-oxidize to the
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neutral state) the polymer. Thus, chemical n doping has to be made in an inert environment,

such as argon atmosphere. Electrochemical n doping is far more common in research

because it is easier to exclude oxygen from a solvent in a sealed flask. However there are

likely no commercialized n doped conductive polymers [16, 66]. Film thickness may be

controlled by adjusting the polymerization conditions such as scan rate, biasing potential

and time. Various electrodes may be used for the deposition of a polymer film as long as

they are conductive. For example, in this study, polypyrrole and polycarbazole were

deposited on the surface of carbon nanotube intra-connects.

2.2.2 Polypyrrole

Polypyrrole is one of the most extensively studied conjugated polymers: it is chemically

stable, highly conductive and easily processable. Its good stability under electrochemical

conditions made it attractive as an organic material for electronic application. Polypyrrole

(PPy) has ring structures of series of pyrrole monomers that exhibit high electrical

conductivity when doped. The polymer is made by electrolytic polymerization of a pyrrole

monomer (Figure 2.17). Polypyrrole is one of the derivatives of polyacetylene: its

conductivity is similar to iodine doped polyacetylene. Typical conductivity of polypyrrole

is 102103 (S/cm). Details of the polymerization process are shown in Figure 2.18. A

radical cation is created by oxidation of the monomer. The positive charges become the

carriers through the polymer backbone by deprotonization to form dimer. Polymer chains

become longer as the procedure repeats itself [67].
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Figure 2.17 Polypyrrole (PPy) [67].

Figure 2.19 shows the Raman spectra of PPy film by Furukawa et al. [68]. The peak

at 1595 cm-1 is associated with an overlap of two oxidized structures, C=C stretching

modes. Peaks at 968 cm -1 and 1055 cm-1 are considered to be polarons. Bipolaron is located

at 934 and 1086 cm-1 [68].

Figure 2.18 Polymerization process of pyrrole [67].
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The conductivity of polypyrrole decreases as the temperature decreases. In

contrast, the conductivity of metals will increase when the temperature decreases. The

conductivity of polypyrrole depends on environmental conditions, such as temperature,

electrolyte concentration, doping concentration. Polypyrrole prepared at low temperature

will maintain larger conductivity, longer chains and a smaller number of defects [68].

Figure 2.19 Raman spectra of PPy film and bands assignment. (Furukawa et al. [68]).
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Polypyrrole (PPy) has low oxidation potential. The conductivity of PPy increases

initially as the solvent dries out. After a prolong time, the conductivity decreases due to

oxidation in air. The presence of moisture will accelerate the conductivity decrease of PPy

[68].

2.2.3 Polycarbazole

Polycarbazole has been synthesized only recently. Polycarbazole [69] may be synthesized

electrochemically by electropolymerization of carbazole in acetonitrile under anodic

potential. Anodic peak potential is observed at 1.4 V under cyclic voltammetry. The

electrolyte was consisted of 0.02M carbazole monomer and 0.2M TBABF4

(tetrabutylammonium tetrafluoroborate) in acetonitrile. The surface of the working

electrode was covered with dark green polycarbazole film while potential was applied to

the working electrode. The electrolyte also turned green due to formation of dimers and

trimers . Higher concentration of monomer helps the radical cation formation and increases

the rate of polymerization [69, 70].

Figure 2.20 shows the electrochemical polymerization of carbazole. First,

carbazole monomer is oxidized at the anode. Dimer is formed by combining two oxidized

monomers. Repeated procedure makes longer conductive polycarbazole chains. The

conductivity of polycarbazole (PCz) film is approximately 10 3 S/cm. Conductivity of PCz

was recorded for 150 days in air (Figure 2.21). The conductivity decreases substantially

during the first 20 days after which the decrease rate is smaller. The conductivity

approaches half of its original value after 5 months. Raman spectra of polycarbazole film

(Figure 2.22) are due mostly to C-H, C-N and C=C bonds.



Figure 2.20 Schematic of electropolymerization of polycarbazole [69].
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Figure 2.21 Time dependent conductivity of polycarbazole [69].
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Figure 2.22 Raman spectra of polycarbazole thin film on conductive glass.

2.3 Negative Differential Resistance

When voltage is applied to an electrical element, such as, a resistor, the current-voltage

relationship is typically linear. Other elements, such as transistors, exhibit current-voltage

saturation. In all of these examples, differential positive current changes follow differential

positive voltage changes. However, when the current decreases upon an increase of the

voltage, this region is known as negative differential resistance. It may exhibit S-shaped, or

N-shaped current-voltage characteristics.

2.3.1 N-shaped Negative Differential Resistance — Esaki Diode

Figure 2.23 shows temperature dependence I-V characteristics for the Esaki diode made of

SWCNT p+n+ junction. The Fermi level on the n side shifts down under reverse biasing.
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The electrons on the p side tunnel through the junction with increasing reverse bias voltage

(Figure 2.23(b)). For small forward bias voltage, electrons flow from the n to the p side

(Figure 2.23 (c)). In this region, the current is dominated by tunneling. However, current

decreases as we increase the forward bias further since the available states on the p side are

reduced as the energy bands pass by each other (Figure 2.23 (d)). Here, the current is

dominated by thermal diffusion for larger forward bias values beyond the negative

resistance region. Thermal diffusion current will be reduced at low temperature, while the

tunneling current will be affected by varying the temperature. Therefore, negative

differential resistance becomes clearer at low temperatures [4, 711

Figure 2.23 Negative differential resistance from CNT Esaki Diode [71J.
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2.3.2 N-shaped Negative Differential Resistance — CNT FET

Three-terminal devices are utilized in practical applications (Figure 2.24) [72, 73] taking

advantage of two metal work functions. Figure 2.25(a) shows a typical geometry of CNT

based, field-effect transistor (FET) with un-doped carbon nanotube channel. The channel

consists of a semiconducting SWCNT. CNT based FET exhibits ballistic transport if the

CNT channel is defect free. The current saturates when a high gate bias voltage is applied.

In the case shown in Figure 2.24, the metal work functions are 4.33 eV for Titanium and 5

eV for Cobalt, respectively. As shown in Figure 2.25, the band gap of a semiconducting

SWCNT will vary if a gate bias is applied.

Figure 2.24 Schematic of a nanotube device which exhibits negative differential
resistance. The gray regions are metal contacts to carbon nanotube. The cross-hatched line
represents the carbon nanotube channel across the metal contact. The gap between the
electrodes has a dielectric constant of u [74].
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Figure 2.25 (a) Conductance vs. gate voltage. (b)-(d) The valence band and conduction
band for the indicated gate voltage. The dotted line is the Fermi level. The NT channel
insulated by dielectric was 10 nm long (denoted as distance from -5 nm to +5 nm) [74].
CNT devices have been primarily studied using two-terminal devices [75, 76].

Figure 2.26 (a) Current as a function of drain and gate voltages. (b) The current vs. drain
voltage for fixed gate voltages, Vg = 6.5, 6.6, 6.7 and 6.8 V. The peak shifts from left to
right as the gate voltage increases [74].
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Figure 2.25(a) presents the calculated conductance as a function of a gate voltage,

Vg. The conductance is high at negative V g while the conductance is nearly zero at positive

Vg (Region I and II in Figure 2.25(a), respectively). The conductance increases and drops

as a function of Vg in region III. Band diagram corresponding to negative gate voltage is

shown in Figure 2.25(b). The high metal work function forces the Fermi level below the

valence band of the CNT. The gate voltage is used to induce channel inversion. The

conductance is high since holes can flow through the CNT channel without facing barriers.

The energy bands are pulled down with positive gate voltage. An energy barrier is formed

and turns off the current. In Figure 2.25(d), the conduction band is pulled down

electrostatically with increasing Vg, thus resulting in the formation of quantum

confinement with localized states. Electrons can tunnel through the quantum dot when the

lowest energy level of the quantum dot drops below the valence band. Tunneling through

nanoscale quantum dot may result in a negative differential resistance at room temperature.

This makes CNT based FET a gated resonant-tunneling device.

Figure 2.26 shows the current as a function of both drain and gate voltages. The

current can be calculated by the Landauer formula,

Here VD is the drain voltage with the source taken as ground. F is the Fermi function. The

source-drain current exhibits an abrupt transition for gate voltages (V g= 3-4 V)

corresponding to region I and region II in Figure 2.25. Negative differential peak appears at

high gate voltage. The current increases as the drain voltage increases. Then, the current

decreases as there are no available states for tunneling (Figure 2.26(b)). The gate voltage

controls the maximum current position by adjusting the energy of the resonant level.



38

2.3.3 S-shaped Negative Differential Resistance

The component having S-shaped negative differential resistance acts as a voltage un-stable

dynamic resistor. Electrically conductive polymer often shows negative differential

resistance, for example, polypyrrole [77]. Figure 2.27(a) and Figure 2.27(b) show the

current-voltage characteristics of electrochemically grown polypyrrole film. It exhibits a

typical S-shaped negative differential resistance. The current was swept up and down and

the curves followed the same traces (Figure 2.27(a)). Figure 2.27(b) shows S-shaped

negative differential resistance in current-voltage characteristics for various temperatures.
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Figure 2.27 (a) Negative differential resistance (NDR) is exhibited by polypyrrole film at
an applied electric field of 500 V/cm. Curves follows same traces for up-down current
sweeping direction. (b) NDR measurements at various temperatures [77].
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2.4 Schottky Barrier at CNT-metal junction

Carbon nanotube based field effect transistors typically have Schottky barriers (SB) at the

CNT-metal interface. SB is one of a key factor which affects the device performance. In

this study, metal electrodes are composed of Co layer on top of Ti layer. The work function

is 5 eV for Co layer and 4.33 eV for Ti layer, respectively. The electron transport through

the SB affects the tunneling current and the thermionic emission. Figure 2.28 is an example

of electrical properties of CNT FET by varying metal work function. Reduced metal work

function decreases p-channel conductance and increases n-channel conductance by

lowering SB barrier height [78].

Figure 2.28 Electron transport properties of CNT FET by varying SB height. Metal work
function is adjusted by exposure to hydrogen [78].



CHAPTER 3

EXPERIMENT

Carbon nanotube (CNT) intra-connects were grown by chemical vapor deposition (CVD)

between a layout of metal electrodes. The CNT intra-connects were later electroplated with

electrically conductive polymers (ECPs), such as polypyrrole (PPy) and polycarbazole

(PCZ). Ids-Vds characteristics, Ids-Vg, characteristics, and photo-conductance were assessed.

Raman scattering was analyzed in order to determine the type of CNT grown.

3.1 Metal Electrode Design

Metal electrodes were fabricated by optical lithography (Figure. 3.1). A 30 nm thick of

titanium (Ti) electrode was deposited on a Si substrate. The silicon substrate was oxidized

prior to the deposition of the electrodes. The oxide layer was approximately 20 nm thick. A

30 nm thick layer of cobalt (Co) was deposited for multi-walled carbon nanotube growth

and a 1 nm thick layer of cobalt (Co) was deposited for the growth of single-walled carbon

nanotubes . The thin catalytic layer of Co breaks into tiny islands at high temperatures (700

— 900 °C) thus enabling the growth of the CNT at the electrode tips. The distance from tip

to tip was approximately 1 gm.

41
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Figure 3.1 (a) SEM image of metal electrodes. (b) Magnified image of metal tips between
two electrodes. The distance between the two tips is approximately 1 um.
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3.2 Chemical Vapor Deposition (CVD)

Carbon nanotubes intra-connects have been grown by chemical vapor deposition (CVD)

process. The growth of the CNT intra-connects were performed under various conditions.

Various gases were used: carbon monoxide (CO), ethanol vapors, methane (CH 4) and

hydrogen (H2) mixture. Figure 3.2 shows the schematic of CVD setup. Temperature was

used as a variable, from 600 °C to 900 °C . Usually, multi-walled carbon nanotubes

(MWCNT) were grown at relatively low temperatures. It is likely that single-walled carbon

nanotubes were grown at higher temperature (approximately 900 °C). Temperature

diagrams are most helpful as process trailers and are shown in Figure 3.3.

Figure 3.2 Chemical vapor deposition (CVD) setup.
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Figure 3.3 Temperature diagrams: (a) CO CVD. (b) Ethanol CVD (c) Methanol and
hydrogen mixture.
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In CO CVD (Figure 3.3(a)), samples were placed in the middle of a quartz tube and

argon gas was introduced at a flow rate of 100 seem. Temperature was increased to 550 °C ,

the argon gas was pumped out and H2 gas was introduced at a flow rate of 100 sccm. The

H2 gas is used to reduce the metal oxide before the CO gas effectively reacts with the Co

catalyst. With 20 sccm of I-12 gas flow, temperature was increased to 780 °C . At 780 °C , the

H2 gas was pumped out and the CO gas was introduced at a flow rate of 200 sccm for 30

min. The sample was let cool down to room temperature under argon gas flow at a rate of

100 seem. Figure 3.4 shows a carbon nanotube intra-connect grown by CO CVD.

Figure 3.4 Carbon nanotube intra-connect grown by chemical vapor deposition using CO
gas.
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Ethanol CVD has been processed similarly to the CO CVD. Ethanol vapors were

introduced into the quartz tube with an argon bubbler (Ar flow rate of 100 sccm). The

argon and ethanol mixture was introduced into the quartz tube for 30 min (Figure 3.3(b)).

Methane gas (Figure 3.3(c)) was also used in our experiments. Here, the

temperature was elevated to 550 °C under argon gas flow. Argon gas was pumped out and

air was introduced for 10 minutes in order to oxidize the catalytic layer. The air was

pumped out and an argon gas was introduced again. The sample was heated to 900C under

argon flow. At 900 C, 112 was introduced for 5 min with at a flow rate of 20 sccm. Then,

methane and hydrogen mixture was introduced for one hour at a flow rate of 2000 sccm

and 20 sccm, respectively. The sample was cooled down to room temperature under argon

gas flow.

Methane gas was used to grow mostly single-walled carbon nanotubes. Ethanol and

CO CVD had a tendency to result in mostly multi-walled carbon nanotubes.

3.3 Electrochemical Deposition of Conductive Polymer on CNT Intra-connects

Carbon nanotube intra-connects were electroplated with electrically conducting polymer,

polypyrrole (PPy) and polycarbazole (PCZ). The electro-polymerization was carried out in

a three-electrode-cell compartment. The working electrode was as-grown carbon nanotube

intra-connect on metal electrode tips. A 1 mm thickness long platinum wire and Ag/AgCl

electrode were used as a counter electrode and a reference electrode, respectively. A 273

EG&G Princeton Applied Research Potentiostat/Galvanostat was used to perform the

electropolymerization process. Schematic of a three compartment electrochemical cell is

shown in Figure 3.5.
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Figure 3.5 Schematic of electrochemical cell.

3.3.1 Cyclic Voltammetry

Cyclic voltammetry is used to study electron transfer mechanisms reversibility, reduction

and oxidation potentials. The potential is cycled from an initial potential, E, to a final

potential, Ef and then back to E, (Figure 3.6). The potential, at which maximum current

occurs, is known as the peak potential, E p . At this peak potential, the redox species are

depleted at the electrode surface and the current is diffusion limited. The magnitude of the

anodic peak current, 'pa and cathodic peak current IPC is the rate at which the electrons are

being transferred between the electrode and the redox species. Generally, the cyclic

voltammetry process may be reversible or, irreversible [79].



Figure 3.6 Typical cyclic voltammogram for a reversible process [79].
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Figure 3.7 Typical cyclic voltammogram for an irreversible process [79].
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In a reversible electrode reaction, the concentration of both the oxidized and the

reduced species are in the equilibrium state. Figure 3.6 presents a typical cyclic

voltammetry (CV) for a reversible electrode reaction. The half-wave potential (E112) equals

the formal potential (E0'). The relation between the half-wave potential and the standard

potential (E°) is given by

Here, R is gas constant, T is temperature, F is Faraday's constant, [0] is the concentration

of oxidized species (mol/L) and [R] is the concentration of reduced species (mol/L). The

redox potential E°' is as follows:

Where Epa is the anodic peak potential and E pc is the cathodic peak potential. The number

of electrons transferred, n can be calculated as below:

The peak current at 25 "C can be calculated by the Randles-Sevcik equation.

Where Ip is the peak current, A is the electrode area (cm-2) and D is the diffusion coefficient

(cm2/s) and v is the scan rate (V/s).

An irreversible electrode reaction is due to slow electron exchange or slow

chemical reactions at the electrode surface. The electron transfer rate is insufficient to

maintain the oxidation and reduction process at equilibrium. The peak current, I p for an

irreversible electrode reaction is as follows:
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Where a is the electron transfer rate, c is the concentration of the active species in mol/L.

The CV experimental set up consist of a working electrode which can be gold, platinum,

glassy carbon etc., a reference electrode against, which the potential is measured can be

standard calomel electrode (SCE) or, silver/silver chloride (Ag/AgCl). The counter

electrodes is typically made of platinum wire. During the CV, the solution is kept

stationary and is not stirred in order to avoid movement of ions to the electrode surface by

mechanical means [79].

3.3.2 Polypyrrole

Polypyrrole was synthesized by electrochemical oxidation of pyrrole. Using the CNT

intra-connect as an electrode, the electro-polymerization process was carried out in a

three-electrode-cell compartment consisting of an aqueous solution of 0.5M pyrrole and

0.5M potassium chloride (KCl) (Sigma-Aldrich) without further purification. All

potentials were measured versus the Ag/AgCl reference electrode. A constant potential of

0.8 V (versus Ag/AgCl) was applied to electroplate the PPy for 30 sec. A black film,

signifying the polymerization process, covered the carbon nanotube intra-connect. The

sample was cleaned with deionized water and let dry out under nitrogen gas flow [80].
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Figure 3.8 Cyclic voltammogram of pyrrole on conductive glass in deionized water. Scan
rate of 100mV/s was used. The curve exhibits an irreversible trend.

3.3.3 Polycarbazole

The electrolyte was consisted of 0.02M carbazole monomer and 0.2M TBABF4

(tetrabutylammonium tetrafluoroborate) in acetonitrile. A constant potential bias of l.2 V

was applied to enable the deposition of PCZ [69, 70]. The film thickness was dictated by

the deposition time, typically on the order of 30 sec and measured by use of atomic force

microscope (AFM) later. A dark green film covered the metal electrodes and the carbon

nanotube intra-connect alike yet, was limited to only conductive surfaces. The sample was

later cleaned with deionized water and let dry out under nitrogen gas flow.
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Figure 3.9 Cyclic Voltammogram of carbazole on conductive glass in acetonitrile. The
scan rate was 100mV/s. The curve exhibits a quasi reversible trend.

3.4 I-V, I-Vg and Photoconductivity Measurement

The conductivity of CNT and CNT/ECP composite was characterized using Keithley 236

source-measure unit. The Keithely 236 was controlled by LabView software and

connected to the computer through a GPIB board. All measurements, I-V, I-V g and

photoconductivity were compared before and after the electrodeposition of ECP on the

CNT bridge. The Id s-Vds characteristics were measured from -0.5 V to 0.5 V or, from -l V

to 1 V. The I-V g characteristics were measured at Vd s l V: the bias Vg was swept from 0 to

-10 V repeatedly. The photoconductivity was measured after 10 minutes of exposure to

white light radiation.



Figure 3.10 The configuration for electrical measurements.
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Figure 3.11 Probe station setup: the Keithley 236 was controlled by a LabView program
through a GPIB board. Drain and Gate electrodes were properly grounded.
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Figure 3.12 Configuration for photoconductance measurement. The sample was exposed
to selected spectral bands of light.

3.5 Raman Spectroscopy

Raman spectroscopy is a useful technique to study the structures of carbon nanotubes and

conductive polymers. The schematic of Raman spectroscopy setup is shown in Figure. 3.13.

Raman spectra from CNT intra-connects were taken by using 514.5 nm argon ion laser, a

double spectrometer and a charge coupled device (CCD) detector. The Raman spectra were

collected for maximum for 30 minutes. An extended focal length x50 objective lens was

used at laser intensities in the range of 10-40 mW. The metal electrodes were imaged in the

far field and the laser beam was focused accurately between the electrodes' tips (Figure

3.14). The tip construction made it very easy to identify the CNT intra-connect under test.

The diameter of laser spot size is a bit larger (>1 μm) than the spacing between the two

electrodes and the Raman spectra could include signals from tubes which do not form a
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conducting path. The background signal was subtracted from the signal away from the

electrode region.

Figure 3.13 Schematic for the Raman spectroscopy setup.
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Figure 3.14 Laser light was focused accurately between the two sharp electrodes to collect
Raman scattering from carbon nanotube intra-connect.



CHAPTER 4

MWCNT/PPY

In this study, multi-walled carbon nanotube (MWCNT) intra-connects were grown by

chemical vapor deposition using ethanol vapor at relatively low temperatures (-780 °C).

MWCNT intra-connects were electroplated with electrically conducting polymer (ECP),

polypyrrole (PPy). The growth of MWCNT intra-connects was made between very sharp

metal electrodes at pre-determined positions as described in Chapter 3. The MWCNT

intra-connects were then used as a working electrode for electroplating of conductive

polymer, PPy. Characterizations were made by Raman spectroscopy and current-voltage

measurements. The current-gate voltage (Id s-Vgs) characteristics changed dramatically for

the electroplated structures when the polymer exceeded a threshold thickness, on the order

of 80 nm.

4.1 Electropolymerization and Raman Spectroscopy

Scanning electron microscope (SEM) pictures of electroplated MWCNT are shown in

Figure 4.1. Raman scattering was measured to evaluate the intra-connects. The background

signal was subtracted and the experimental data was fitted with several Gaussian

distributions.
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Figure 4.1 SEM images of multi-wall carbon nanotube intra-connects (a) before
polymerization (b) after polymerization with PPy [80].
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Figure 4.2 Raman spectra from multi-wall carbon nanotube intra-connects, electroplated
PPy film on conductive glass and CNT/PPy intra-connects. The peaks from each
component were at the following position: MWCNT intra-connects: 1350, 1585, 1619
cm -1; PPy film: 1330, 1370, 1584 cm -1 ; CNT/PPy intra-connects: 1357, 1585 cm-1 ,
respectively [80].

Figure 4.2 exhibits Raman spectra of multi-wall carbon nanotube (MWCNT)

intra-connects, polypyrrole film and carbon nanotube/polypyrrole composites,

respectively. Three major peaks were measured as expected for both CNT and PPy [81].

These are: CNT-only: 1350, 1585, 1619; PPy only: 1330, 1370, 1584 and CNT/PPy

composites: 1357, 1585cm 1 , respectively. The relative peak position of CNT/PPy

composites changed: the two CNT peaks at 1600 cm -1 merged into one, implying a weak

interaction between the two layers. From these results and from the absence of an RBM

peak, the Raman spectra indicate that these were MWCNT. No such signature was

obtained when the laser spot was irradiating spots away from the electrode region.
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4.2 Electrical and Optical Properties

Figure 4.3(a) shows current-voltage (Id s-Vd s) characteristics for CNT and CNT/PPy

intra-connects, respectively. The current was in .12 6i range when I Volt was applied

between the source and drain leads. After wrapping the CNT with PPy, the channel

conductivity has been enhanced by more than ten times. The current value measured at

Vds=1 V was 2.97 μA for CNT only intra-connect, and it was 52.18 μA for the CNT/PPy

intra-connect.
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Figure 4.3 (a) Id s-Vds characteristics before and after polymerization of CNT
intra-connects (b) Photosensitivity to white light and UV light on CNT only intra-connects
(c) Photosensitivity to UV light to CNT/PPy intra-connect [801.
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Figure 4.4 (a) Id s-Vgs characteristics of multi-wall carbon nanotube intra-connect. (b)
Id s-Vgs characteristics from CNT/PPy intra-connect with 80nm thickness of PPy. (c) Ids-V gs
characteristics from CNT/PPy intra-connect with thicker polymeric layer of 360 nm and
580 nm, respectively [80].

Photo-conductance was measured under white light and UV light exposure (Figure

4.3 (b)). The intensity of white light was 150 mW/cm 2 (X400 nm) and the CNT

intra-connect exhibited moderate increase of photo-conductance. Under UV light exposure

(intensity~4 mW/cm2 , X=355 nm) the conductance decreased probably due to oxygen

desorption.

Figure 4.3(c) shows photo-conductance from CNT/PPy intra-connect.

Photo-conductance from CNT/PPy intra-connect was small due to the fact that only the

CNT component is light sensitive. However, the CNT/PPy structure was very sensitive to

UV light exposure (intensity~4 mW/cm2 , λ = 355 nm). The current dropped to zero and the

intra-connect became open in less than a minute. It recovered to its previous state within a

minute when the UV light source was removed. UV irradiation effects on CNT may be
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attributed to oxygen desorption through reduction of hole carriers [82, 83]. As we shall see

below, the effect on the PPy may be attributed to deep level impurities.

As-grown carbon nanotubes (CNT) are naturally p-type. Therefore, it requires

negative gate voltage to operate in a gated configuration. A fixed 1 Volt was applied

between the drain and source while the gate voltage was swept from -5 to +5 Volts. Silicon

substrate was used as a back-gate electrode with 20 nm thick oxide layer (Figure 3.10)

serving as the gate oxide. Figure 4.4(a) shows a typical Id s—Vgs characteristic of an

as-grown multi-wall CNT intra-connect. The current abruptly increased when a negative

gate voltage was applied. The large saturation behavior may be due to weak gate

dependence of the metallic-like MWCNT and the large gate capacitance. We also note that

the position of the threshold voltage at which the transition occurs. The threshold value is

small yet negative (V g < 0 V) for the mostly MWCNT multiple and separated channels of

this study. The threshold gate value is also negative however, much larger (on the order of

—2 V to —5 V) for individual SWCNT intra-connects reported elsewhere [84]. Such

observation accentuates the difference between SWCNT and MWCNT p-type channels.

The current-gate voltage (Ids-Vgs) characteristics changed dramatically for the electroplated

structures when the polymer exceeded a threshold thickness, on the order of 80 nm (Figure

4.4 (b),(c)).
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4.3 Model and Simulation

A simplified model is presented in Figure 4.5 (a). The multi-wall carbon nanotube

intra-connect is assumed to be p-channel connected to the electrodes through back-to-back

diodes. The model for multi-wall carbon nanotube intra-connects were simulated by

MATHCAD. P-channel is characterized by a constant C1=μ*C0*(W/L)) where Ix is channel

mobility, CO is the gate capacitance and W/L is the ratio between the channel width and

channel length. The ratio W/L was very small since W was on the order of a few nanometer

and L was 1 lam. The channel mobility and gate capacitance was large. Relatively large

constant C1 value is led to a step behavior in the Id s-Vgs characteristics (Fig 4.5 (b), from

curves (1) to (2)). As the thickness of the polymeric sheath on the CNT intra-connect

increases, W/L increases only slightly; the capacitance of the structure CO remains

basically unaffected however; the overall channel mobility is substantially reduced—by

two orders of magnitude due to the low mobility value of the polymer. The mobility of

carbon nanotube and the mobility of polypyrrole are approximately 5 x 10 4 cm2/V*s and

500cm2/V*s, respectively [85, 86]. As a result, the Id s–Vg, curve becomes more linear (Fig

4.5 (b). from curves 1 and 3). The difference between the current amplitudes of Figure 4.4

(a)-(c) is attributed to the decrease in the overall circuit resistance since the polymers coats

the metal electrodes, leading to the intra-connect, as well. When the polymer coats the

electrodes and the intra-connect, the contact barrier between the CNT channel and the

electrodes is substantially reduced. The seemingly 2:1 factor between the ON and OFF

states of the bridge depends on the p-channel and the con-tact diodes' properties. Ratios of

3:1 for these CNT intra-connects have been experimentally observed and corroborated by

simulations.
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Figure 4.5 (a) Simplified equivalent circuit model of multi-wall CNT intra-connect (b)
Simulated results (1) R=1MΩ, C1=10 -5 . (2) R=11\40, C1=10 -4 . (3) R=100kΩ, C1=10 -5 . The
threshold voltage from simulated curves was very small, VT=0.01 V [80].



CHAPTER 5

SWCNT/NDR

As grown single-walled carbon nanotube (SWCNT) intra-connects grown by chemical

vapor deposition process using methane/hydrogen gas mixture were investigated as gated

structures. We demonstrated a negative differential resistance (NDR) effect at nonzero gate

bias even with seemingly ohmic contacts. Large differential photo conductance (DPC) was

associated with the NDR effect raising hopes for the fabrication of novel high-speed

optoelectronic devices.

5.1 Id Vas Characteristics and Raman Spectra

Two examples will be discussed here, one exhibiting nonlinear and the other linear

electrical characteristics.

Figure 5.1 (a)-(c) shows SEM, Id s-Vds, and Raman spectra of Sample 1. The

nonlinear I-V curve at zero gate voltage indicates a presence of potential barrier between

the tube and metal contact(s). The asymmetry in the curve points to one dominant barrier

(otherwise, the curve would have been symmetric). Its Raman spectra are shown in Figure

5.1 (c) low frequency spectra exhibit a narrow single peak (5 cm -1 wide and limited only by

the system resolution) for the radial breathing mode (RBM) at 191.9 cm -1 . The peak may

indicate a metallic tube (12,6) with an average diameter of 1.252 nm. It exhibits a very

large graphitic line at 1355 cm 1 , which may indicate defects or, large stress. The high

frequency region exhibits two peaks at 1594 cm -1 and 1567 cm 1 , respectively. Their

frequency difference 27 cm-1 corresponds to a tube diameter d= 1.716 nm if we follow [87]
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and assume a metallic type tube. It corresponds to a tube diameter d = 1.329 nm assuming

semiconductor type.

Sample 2 exhibits linear Ids-Vds characteristics at zero gate bias (Figure 5.1(e)). Its

low frequency Raman spectrum consists of a broader single RBM peak (30 cm -1 wide)

centered at 176.2 cm 1 , which implies semiconductor tube(s) (11,9) with an average

diameter of 1.365 nm. It exhibits a large defect line at 1352 cm 1 . The high-frequency

frequency exhibits two peaks at 1596 and 1578 cm -1 , respectively. Their difference 18 cm -1

implying tube diameters d = 2.101 nm and d = 1.628 nm for metallic or semiconductor

type tubes, respectively.
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Figure 5.1 Sample #1: (a) SEM image of CNT intra-connect. (b) nonlinear Ids-Vas
characteristic. (c) Raman spectra with RBM at 191.9 cm -1 . Sample #2: (d) SEM image of
CNT intra-connect. (e) linear Ids-Vas characteristic. (f) Raman spectra with RBM at 176.2

1cm- [84].



70

5.2 NDR in Id s-Vgs Characteristics and Photoconductance

Electrical properties in the dark and under white light illumination were measured for

Sample 1 (Figure 5.2) and Sample 2 (Figure 5.3). The channel formed by the intraconnects

exhibited a natural p-type characteristics owing to the presence of oxygen in the tubes.

Figure 5.2(a) shows a map of Vgs vs Vds for the non-illuminated intra-connect. Two

negative differential resistance (NDR) regions may be observed in the I ds-Vgs plot: one, in

the range between -3 and -6 V and the other, around -9 V (Figure 5.2(b)-(c)). The NDR

peak for the first region was shifting to the negative side as the Vd s value increased from

0.25 to 0.75 V (Figure 5.2(c)). The second NDR region was stable around -9 V.

Characteristics of the same intraconnect under illumination are shown in Figure 5.2(d)-(f).

Surprisingly, the light did not mask the NDR effect (Figure 5.2(f)) but locked it to the same

Vgs range for all Vds values used. The differential photo conductance (DPC, the difference

between conductance in the dark and under light illumination) was fluctuating rapidly

within the first NDR range (Figure 5.2(g)).

Figure 5.3(a) shows a map of Vgs vs Vds for nonilluminated intraconnect. Two

negative differential resistance (NDR) regions are observed in the Ids V gscurve as well:

one in the range between -3 and -6 V and another around -9 V (Figure 5.3(b),(c)). The NDR

peak for the first region was shifting albeit in both negative and positive directions as Vas

increased from 0.25 to 0.75 V. The second NDR region was stable around -9 V. The same

intraconnect under white light illumination is shown in Figure 5.3(d)-(0. Here, the light

somewhat masked the NDR effect (Figure 5.2(f)) for the first V gs region but left a small but

noticeable presence around V gs ~ -9 V. The DPC was stable and exhibited a marked

increase for increasing Vds (Figure 5.3(g)).
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NDR effect is the basis for many microwave oscillators. The effect may be

attributed to two competing transport venues, for example, nonlinear drift and thermionic

venues or tunneling and thermionic excitation processes. In addition, optimal construction

typically breaks the symmetry between the contact to and from the channel. For example, a

CNT channel extending between two different metals, which takes advantage of the

metals' different work functions and the distribution of the tube's electronic density of

states.

In contrast, both of our electrodes were made of the same metal and hence we

resorted to a gated configuration. The gate bias affects the distribution of carriers along the

tube. If we postulate the existence of a secondary interface between the CNT channel and

electrode, possibly in a form of a point Schottky contact or a quantum dot (QD), gate

biasing affects the distribution of electronic states across such barrier, as well. We point to

the very small, 1 tun thick catalytic seed film in our structures, which may result in a point

contact during the tube's growth process. Tunneling may now occur between the tube and

discrete states in this metal dot.

The secondary NDR region for both samples may imply tunneling through a

second QD band. Tunneling and transport must depend on the relative energy states'

distribution between dot and channel, as well as, on the gate bias. NDR was also noted in

our previous experiments while using another growth technique albeit at larger gate bias

[88].
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Figure 5.2 Electrical properties of sample #l before and after white light exposure. (a)
Ids-Vd s-Vg, characteristics. Negative differential resistance was observed for V gs between
-2 and -6. (b) Id s-Vd s characteristics for various V gs values from +10 to -10. I ds-Vds curves
become nonlinear when the gate voltages for a negative differential region are applied. (c)
G-Vgs characteristics. Panel a is converted into conductance, G. (d) I ds vs Vgs and Vds

characteristics after irradiation of white light. (e) Id s-Vd s characteristic for various Vgs

values from +10 to -10. Id s-Vd s curves become nonlinear when the gate voltages for a
negative differential region are applied. (f) G-V gs characteristics under illumination. (g)
Photo differential conductance [84].

Sample 1 is probably made of individual or of a few tubes as judged by the narrow

Raman RBM spectra; its current only weakly dependent on gate voltage and one may

attribute its behavior to mostly the Schottky point interface. Its sensitivity to the contact

with electrodes led to the asymmetry in the Id s-Vds curve. In contrast, sample 2 is probably

made of a small bundle thus is more likely to portray ohmic contact at zero gate bias.

Sample 2 is more responsive to the gate bias as expected of a semiconductor

channel. Raman classification of the tubes may be distorted by stress and contact to the

substrate. In addition and despite careful alignment (see Chapter 5.4), the laser spot may

cover tubes, which do not contribute to electrical conduction yet, may be at resonance with

the laser line thus, affecting the Raman spectra. This could imply that both samples were of

semiconductor type if we mainly base our conclusion on a self-consistent value for the
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tube's diameter. In that case, the samples differ only by the number of tubes in their

respective bundles. Nevertheless, Raman spectroscopy is an important characterization

tool, which corroborates the existence of nanotubes between electrodes and helps

determine their type, thus complementing conductance measurements.

The characteristics of the channel under broadband optical excitation corroborated

these findings, as well. Optical induced carriers in the channel overcame the tunneling

process, hence the marked conductivity change for the first NDR region (around -5 V). The

optical effect is smaller for the "nonlinear" sample 1 because of the interfering effect from

the contact barrier. Moreover, since photo-excited carriers are composed of both types

(holes and electrons), n-type characteristics at large positive gate voltages ought to be

exhibited. Indications to such behavior are provided in Figure 5.3(g). Furthermore, when

the graphs are plotted as log plots (not shown) such characteristics are greatly accentuated.

Both panels (c) and (f) of Figure 5.2 indicate a relatively sharp "ON" transition, which

implies large channel mobility with back-to-back leaky Schottky diodes. The ON

transition in Figure 5.3(c),(f) tends to have quadratic behavior as expected from an

ordinary semiconducting channel.
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Figure 5.3 Electrical Electrical properties of Sample 2 before and after white light
illumination. (a) Ids-Vgs-Vds characteristics. (b) Ids-Vds characteristic for various V g, values
from +10 to -10. (c) G-V gs characteristics. Panel a is converted into conductance, G. (d)
Id s-Vgs-Vd s characteristics under white light illumination. Overall current was enhanced
and the device became stable with less noise. (e) Id s-Vd s characteristic for various Vg,
values from +10 to -10. Ids-Vd s curves become nonlinear when the gate voltages for a
negative differential region are applied. (f) G-V gs characteristics under illumination. (g)
Photo differential conductance [84].

5.3 Hysteresis Measurement

Surface states play an important role in such devices. We observed hysteresis upon

ramping the gate voltage in the negative and positive directions (Figure 5.4). The lower

curves are always in the negative direction while the top curves are scanned from negative

to positive gate bias values. The hysteresis did not change the presence of NDR which

means that the latter is inherent to the tube/electrode contact but not to its surface. After a

few scans, the hysteresis became narrower. This is to be expected of surface states. In

addition, clockwise hysteresis is indicative of movable ions or, adsorbed water molecules

(in contrast to charge trapped in the underlined oxide layer - the latter results in

counterclockwise hysteresis curve). Yet, sample 1 exhibited a large hysteresis and sample

2 exhibited almost a replica of the curve in the negative and positive gate bias ramp. That

may be understood if the channel of sample 1 is composed of only few or even individual
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carbon nanotube. The effect of surface states must have been larger here than their effect

on sample 2 with a larger bundle of tubes.

Figure 5.4 Hysteresis curves under dark conditions (a) Nonlinear case, sample #l (b)
Linear case, sample #2. The arrows point the direction of the scan. In panel a, the overall
current increased for increasing numbers of scans until stabilizing [84].
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5.4 Electrical Measurement from More Intra-connects

Good quality bridges are often barely seen in these SEM pictures, hence the use of Raman

spectroscopy and conductivity measurements. Our present batch consisted of 14 samples

(9 samples conducting: 4 — linear; 5 — nonlinear), is taking into account cases, which do not

show up in SEM pictures yet, exhibited conductance and Raman signature. Temperature is

critical to a successful SWCNT growth: lower yield (2 conductive samples out of 14) was

exhibited at lower temperatures deviating only by 50 °C. Current-voltage (I-V) curves were

measured using Keithley 236 with current noise level <1 pA using sharp probes (-5 pm,

Cascade Microtech). The probes were placed under a microscope interfaced with a CCD

camera for better inspection. Gate-current measurements were made with the Si wafer

acting as a back electrode. The conduction through a CNT bridge at Vds=1 V was at least

three orders of magnitudes larger than the noise and/or the current through or, along the

silicon and/or electrode/silicon path. The signal, carried by triax cables, was averaged

during a period larger than the RC constant (r < 0.03 sec) of the circuit. Two more

examples of 'linear' and `non-linear' contacts are shown in Figure 5.5 and Figure 5.6,

respectively. The SEM images of the bridge under test are provided, as well. Clearly seen

is the breakdown of the upper Co layer. The resistance of the electrode (-10 ohms/ 100

microns) did not change much before and after annealing. This is to be compared to the

bridge resistance of several tens of megaohms. Both samples exhibited NDR around

Vgs =-5 V and -10 V, respectively. The clearer picture is again for the 'linear case'. We

note that previous measurements [88, 89] also exhibited NDR, which at the time, were not

fully pursued. These bridges were fabricated using CVD with another precursor (CO) and

similar layout of electrodes (with the exception of a thicker Co layer of 30 nm). Such
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precursor requires lower processing temperatures (-750 °C). Thicker Co layer resulted in

occasional growth of multi-walled carbon nanotubes. Due to the sensitivity of the process

to temperature fluctuations, a critical factor is therefore, the actual temperature at the

substrate surface. This is affected by several factors such as, the gas flow, the location of

the sample in the CVD chamber, the heat capacity of the sample holder, etc.

(a)



80

Figure 5.5 Another example of carbon nanotube intra-connects showing linear Id s-Vd s

characteristics and negative differential resistance in Id s-Vgs characteristics. (a) SEM image
of carbon nanotube intra-connects (b) Id s-Vds characteristics; linear (c) Ids-V gs
characteristics; NDR is observed [84].
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(b)
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Figure 5.6 Examples of carbon nanotube intra-connects (a) SEM image (b) Ids-Vds
characteristics; non-linear (c) Id s-Vgs characteristics [84].



CHAPTER 6

SWCNT/PCZ

Devices made by individual CNT intra-connect have gained much interest since diameter

of a CNT is just a few nanometers [90-92]. CNTs are functionalized with various

conducting polymers for doping, sensors, FET, photovoltaic cell, organic light emitting

devices, solar cell, etc [93-96]. However, functionalization has been studied mostly for

bulk CNTs and relatively fewer works were devoted for single CNT since the growth of

CNT between pre-defined positions is a challenging task [13]. Here, we present

individually addressable CNT based FET which were functionalized with polycarbazole

(PCZ) aiming at optical sensor applications. The CNT intra-connect was grown by

chemical vapor deposition (CVD) and later electroplated with PCZ. Electrical properties,

such as Ids-Vds and Ids-Vgs characteristics were measured under dark and white light

illumination. The effects of biasing and photosensitivity were assessed for both CNT and

PCZ-plated intra-connects.

6.1 Ids-Vds Characteristics and Raman Spectra

Current-voltage (Ids-Vds) characteristics were measured from Vds=-1 to +1 Volts under dark

and white light illumination (150 mW/cm 2, >400 nm) for both CNT and PCZ-plated CNT

intra-connect (Figure 6.1(a) and (c)). In both cases, the overall currents were increased

when irradiated with white light. After electroplating the CNT intra-connect with PCZ,

photosensitivity was greatly enhanced, by nearly ten times. Figure 6.1(b) and (d) show

Raman spectra from the CNT and PCZ-plated CNT intra-connects, respectively. The radial
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-1
breathing mode (RBM) was located at 191.9 cm . The peak corresponds to a metallic tube

(12,6) with an average diameter of 1.252 nm (Figure 6.l(b)) [34], however, as mentioned

before, the high-frequency peaks indicate semiconducting bridge. Figure 6.l(d)

corroborates the existence of electroplated PCZ on the CNT intra-connect.

Figure 6.1 (a) Id s-Vd s characteristics from individually addressable CNT intra-connect at
dark and when exposed to white light irradiation. (b) Raman spectra from single CNT
channel. The RBM peak is located at 191.9 cm -1 . (c) Id s-Vds characteristics from
individually addressable CNT intra-connect wrapped with PCZ. at dark and under white
light illumination. (d) Raman spectra from individually addressable CNT intra-connect
wrapped with PCZ.
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6.2 NDR in Id s-Vgs Characteristics and Photoconductance

Figure 6.2(a) shows a current map of Vgs vs. Vds for non-illuminated PCZ-plated

intra-connect. Two negative differential resistance (NDR) regions are observed in the

Ids-Vgs curve as well: one in the range between 3 and —6 V and another around —9 V (Figure

6.2(b) and (c)). The NDR peak for the first region was shifting albeit in both negative and

positive directions as Vds increased from 0.25 V to 0.75 V. The second NDR region was

stable around —9 V. The same intra-connect under illumination is shown in Figure

6.2(d)-(f). Here, the light somewhat masked the NDR effect (Figure 6.2(f)) for the first V gs

region but left a small but noticeable NDR effect around V gs ~ —9 V. The differential

optical conductance (the difference between conductance under darkness and light) was

stable and exhibited a marked increase for increasing Vds (Figure 6.2(g)).

Figure 6.3 shows the stability of current under dark and the sensitivity to white light

when it was turned on and off, repeatedly. Figure 6.3(a) shows the stability of current at

DC voltage of Vd s = 1 V. The curve was featureless and the current was constant. The

response to white light illumination was immediate (Figure 6.3(b)). Figure 6.3(c) shows

the effect of current stability under a DC drain-source voltage of Vd s=1 V for PCZ-plated

CNT intra-connects. The current increased and then saturated. The response to white light

illumination is shown in Figure 6.3(d). The current increases immediately at the moment

that white light was turned on, then, it exponentially decreased. The effect is due to the

long life-time of the photo-excited charges in PCZ.
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Figure 6.2 Electrical properties of CNT FET wrapped with PCZ under dark and white
light illumination. (a) Id s vs. V gs and Va s characteristics. Negative differential resistance
was observed for V gs between -2 and -6. (b) Id s-Vd s characteristic for various V gs values,
from +10 to -10. Id s-Vds curves become nonlinear when gate voltages were applied. (c)
G-Vgs characteristics. Figure 6.2a is converted into conductance, G (d) Id s vs. Vgs and Vas
characteristics after irradiation of white light. (e) Id s-Vd s characteristic for various V gs

values, from +10 to -10 Volts. Id s-Vds curves become nonlinear when gate bias was applied.
(f) G-Vgs characteristics under white light illumination. (g) Differential
photo-conductance.
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Figure 6.3 (a) Effect of biasing on individually addressable CNT intra-connect (Vds=1V).
(b) Sensitivity for white light illumination. (c) Effect of biasing on CNT intra-connect
wrapped with PCZ. Vd s=1 V (d) Sensitivity to white light illumination.



CHAPTER 7

CONCLUSION

In this thesis, low-dimensional gated structures were investigated. The channel were based

on carbon nanotube intra-connects. These were grown on pre-determined positions on a

wafer by use of chemical vapor deposition (CVD) without any post-processing. Growth

conditions were varied to obtain multi-walled carbon nanotubes (MWCNT), or

single-walled carbon nanotubes (SWCNT) intra-connects. High yield, as high as 50%, was

achieved for this growth technique.

Electroplated MWCNT with polypyrrole were successfully fabricated between two

electrodes for potential electro-optic and bio-sensor applications. For the latter, a large

response to a binding event is desired [29]. Such response may be enabled if the channel

mobility dramatically changes from a very large value (channel saturation, Fig. 4.5(b)

curve (2)) to a very small value (where initial linear behavior is observed, Fig. 4.5(b) curve

(1)). These considerations dictate that the polymer thickness ought to be smaller than 80

nm.

Negative differential resistance (NDR) was demonstrated with carbon nanotube

gated structures under bias regardless of the linearity (or nonlinearity) of the contacts. The

effect was accompanied by a large differential phoconductance (DPC) effect. Since NDR

enables the realization of microwave oscillators, one may envision that such DPC will be

instrumental in designing new high-speed opto-electronic oscillators.
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CHAPTER 8

FUTURE WORK

Controlled growth of carbon nanotubes remains a challenge despite advances in the field,

part of which was described in this thesis. Negative differential resistance (NDR) is an

important phenomenon, which may prove useful for future high-speed nano-optoelectronic

devices: it deserves further exploration.
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