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ABSTRACT

SENSORIMOTOR EXPERIENCE IN VIRTUAL ENVIRONMENTS

by
Katherine Grace August

The goal of rehabilitation is to reduce impairment and provide functional improvements

resulting in quality participation in activities of life, Plasticity and motor learning

principles provide inspiration for therapeutic interventions including movement repetition

in a virtual reality environment, The objective of this research work was to investigate

functional specific measurements (kinematic, behavioral) and neural correlates of motor

experience of hand gesture activities in virtual environments stimulating sensory

experience (VE) using a hand agent model. The fMRI compatible Virtual Environment

Sign Language Instruction (VESLI) System was designed and developed to provide a

number of rehabilitation and measurement features, to identify optimal learning

conditions for individuals and to track changes in performance over time. Therapies and

measurements incorporated into VESLI target and track specific impairments underlying

dysfunction. The goal of improved measurement is to develop targeted interventions

embedded in higher level tasks and to accurately track specific gains to understand the

responses to treatment, and the impact the response may have upon higher level function

such as participation in life. To further clarify the biological model of motor experiences

and to understand the added value and role of virtual sensory stimulation and feedback

which includes seeing one's own hand movement, functional brain mapping was



conducted with simultaneous kinematic analysis in healthy controls and in stroke

subjects. It is believed that through the understanding of these neural activations,

rehabilitation strategies advantaging the principles of plasticity and motor learning will

become possible. The present research assessed successful practice conditions promoting

gesture learning behavior in the individual. For the first time, functional imaging

experiments mapped neural correlates of human interactions with complex virtual reality

hands avatars moving synchronously with the subject's own hands, Findings indicate that

healthy control subjects learned intransitive gestures in virtual environments using the

first and third person avatars, picture and text definitions, and while viewing visual

feedback of their own hands, virtual hands avatars, and in the control condition, hidden

hands. Moreover, exercise in a virtual environment with a first person avatar of hands

recruited insular cortex activation over time, which might indicate that this activation has

been associated with a sense of agency. Sensory augmentation in virtual environments

modulated activations of important brain regions associated with action observation and

action execution. Quality of the visual feedback was modulated and brain areas were

identified where the amount of brain activation was positively or negatively correlated

with the visual feedback, When subjects moved the right hand and saw unexpected

response, the left virtual avatar hand moved, neural activation increased in the motor

cortex ipsilateral to the moving hand This visual modulation might provide a helpful

rehabilitation therapy for people with paralysis of the limb through visual augmentation

of skills. A model was developed to study the effects of sensorimotor experience in

virtual environments, and findings of the effect of sensorimotor experience in virtual

environments upon brain activity and related behavioral measures. The research model



represents a significant contribution to neuroscience research, and translational

engineering practice, A model of neural activations correlated with kinematics and

behavior can profoundly influence the delivery of rehabilitative services in the coming

years by giving clinicians a framework for engaging patients in a sensorimotor

environment that can optimally facilitate neural reorganization.
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CHAPTER 1

SENSORIMOTOR EXPERIENCE IN VIRTUAL ENVIRONMENTS

1.1 Introduction

The present research investigated whether visual sensorimotor experience in virtual

environments (VE) may be suitable to provide stimulation and feedback that is

differential to moving the hand with no visual feedback at all, that is, whether interacting

with the virtual hands avatar was somehow more compelling than exercising with no

hand-related visual stimulus and feedback during execution of simple observation,

observation with intent to imitate (OTI), and imitation execution tasks and how

manipulations of visual feedback during interaction in a virtual environment affect neural

activation in the brain. It is believed that through understanding behavior, kinematics, and

neural activations, motor skills acquisition and rehabilitation strategies advantaging the

principles of plasticity and motor learning will become possible and that many of the

tasks and sensorimotor experience required to establish the desired exercise conditions

may be realized through a VE. To understand the added value and role of concurrent and

selectively modulating visual stimulation and feedback which includes motor skills

practice while seeing one's own hand movement actuating the virtual hands proxy,

healthy controls and a subject who suffered a stroke participated in experiments, In the

present research, subjects used virtual reality teachers avatars in 1 st and 3rd person

perspective to observe and imitate, and virtual hands avatar 1st person hand proxies

representing their own hands, in imitation exercises in the behavioral laboratory and also

in the MRI where behavior and brain activations were recorded and analyzed. Gloves

with sensors recorded the subjects' hand movements and the kinematic data collected

1
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were used to generate concordant and modulated visual feedback experience in the

virtual environment, and to assess motor output of the subjects. For the first time,

subjects were able to observe their own hands actuating complex motion of virtual reality

hands while behavioral and kinematic measures, and neural correlates were recorded in

real time. Implications of this research span a wide range of fields and applications,

Activation of neural pathways over time has been associated with plasticity-based

changes in brain networks and together with motor learning principles provides

inspiration for motor skills acquisition strategies and therapeutic interventions including

close-to-normal movement repetition in a VE. For Aim 1, the fMRI compatible Virtual

Environment Sign Language Instruction (VESLI) System was designed and developed to

provide a number of interactive hand gesture imitation activities spanning various levels

of difficulty and incorporating assessment and measurement features, to identify optimal

learning conditions for individuals as well as to track changes in performance over time

in training and research conditions, Elements of the system provided simple and complex

hand gesture tasks such as action observation and action execution, and parametrically

modulated stimulating visual sensory experience in (VE) using 1 St and 3 rd person

perspective virtual agent models and a 1 st person perspective virtual hands proxy.

Therapies and measurements incorporated into VESLI present task-oriented training

within the conscious control of the subjects, and target and track specific impairments

underlying hand motor dysfunction to monitor specific gains and to more fully

understand the individual's response to treatment, and the impact the response may have

upon higher level function such as participation in life. Participation in life is essential to

quality of life,
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There is a need for effective therapy for the hand Early intervention is associated

with reduced loss of cortical representation, yet many patients are not capable of

producing satisfactory movements required for close-to-normal function in intense and

repetitive exercise sessions. In the absence of visual feedback that matches the intention

and expectation of the severely impaired patient, sensorimotor experience in VE might be

capable of providing safe and appropriate task-based sensory stimulation and feedback to

extend available therapies and to introduce new neural plasticity-based therapy

approaches. It is important to understand whether a virtual agent model and virtual hands

avatar may be accepted as a proxy for visual sensory experience observation and

feedback during exercise while imitating simple and complex hand gestures or

performing other tasks, It is also important to understand whether and under what

circumstance VE model observation actuates action-observation action-execution brain

networks as will observation of real world human actions.

To investigate this important VE motor skills acquisition tool, and to see if this

tool may offer some advantage through observation of the avatar model and of the avatar

proxy hands replacing the subject's own hands, over exercising the hands without

accurate visual feedback of the real world hands, a series of functional MRI experiments

was conducted. In Aim 2, the present research investigated activation of brain networks

associated with observation and imitation of hand gestures in the VE. There were three

main findings. Observation with intent to imitate (OTI), and imitation with real-time

virtual avatar feedback, were associated with activation in a distributed frontoparietal

network typically recruited for observation and execution of real-world actions. Second, a

time-variant increase in activation in the left insular cortex for OTI actions performed by
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the avatar was noted. Third, imitation with virtual avatar feedback (relative to the control

condition) was associated with a localized recruitment of the angular gyrus, precuneus

and extrastriate body areas, regions which are (along with the insular cortex) associated

with the sense of agency, Data suggest that the virtual hands avatar may have served as a

disembodied training tool in the observation condition and as embodied "extensions" of

the subject's own body (pseudo-tools) in the imitation condition Importantly, activation

of secondary motor regions significantly increased during the move condition while

seeing virtual hands avatar movement compared with the control condition, move while

watching non-anthropomorphic shapes, Activation of these important secondary motor

regions is associated with successful recovery of movement in patients with cortical

injuries. These data advance the understanding of brain-behavior interactions when

performing observation or actions in VE and have implications in the development of

observation and imitation based VE motor skills acquisition or rehabilitation paradigms.

In Aim 3, parametrically modulated quality of visual feedback was investigated,

Activation remained present in the insular cortex indicating that the subjects maintained a

sense of agency throughout the visual sensory modulations. However, the angular gyrus

and the premotor cortex activation were negatively correlated with the amount of

distortion introduced to the visual sensory feedback. Variations in gain observed as a

manipulation of visual feedback elicited changes in brain activation although subjects did

not change the actual movement of hands confirmed by kinematic measures, Lost quality

of the visual feedback appears to have a negative impact on the recruitment of motor

planning and action observation regions of the brain, In the behavioral portion of this

experiment, subjects were able to accurately report that the quality of the visual feedback
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had been modified during the exercises. These conditions with distorted visual feedback

appear to deny the brain of important sensorimotor stimulus associated with performance

and might be further investigated as a mechanism of learned disuse,

In Aim 4, a model for Mirror Virtual Therapy, or MVT was explored in a

functional MRI experiment. In order to provide a meaningful visual feedback for a

patient's movement with motor dysfunction such as hemiparesis, kinematics of the less

affected hand might be used to generate visual sensory mirror image to serve as a proxy

for the impaired hand in a number of diverse exercises in VE, Subjects moved the right

hand, and saw the left virtual hand proxy move. Brain activations were relateralized

resulting in activation of primary motor cortex ipsilateral to the moving hand In other

words, when the subject moved his or her right hand, and saw the left virtual hand move,

brain activation associated with moving the left hand was observed. In order to determine

if this protocol for treatment might be feasible for use with patients with motor

dysfunction, a patient who suffered from stroke was included in the study. The same

ipsilateral activation was observed when the patient performed the Mirror Virtual

Therapy (MVT). The data indicate that once a relationship is developed between the

subject and the virtual hands avatar, they may serve as a proxy and may enable

modulations of sensorimotor experience to selectively activate important real world

movement related brain regions. Consequently, accurate visual feedback of the

dysfunctional limb, not possible in the real world, may be created using VE for the

benefit of therapy.

In Aim 5, guided by the discoveries in Aims 2, 3, and 4, subjects observed with

intention to imitate, and practiced complex hand gestures in a VE, Unlike the
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experiments in Aims 2, 3, and 4 wherein simple finger flexion sequencing was studied, in

Aim 5 subjects imitated complex intransitive gestures, They observed a first and third

person avatar model demonstrate gestures while descriptions were presented as either text

or picture. The hand view treatment conditions were: see own hands, hidden hands, and

see virtual hands, Findings indicated that control subjects were able to exercise in all

conditions presented. Recall performance improved when exercising with the virtual

hands avatar when gesture definitions were presented as pictures and when recall

condition remained the same, The present research assessed successful practice

conditions promoting gesture learning behavior in the individual. The VESLI system

performed as designed, providing a flexible complex gesture exercise environment with

multiple visual augmentation stimulus and feedback conditions, and capable of

measuring performance of subjects in the experiment and during exercise.

In conclusion, an investigation was conducted to determine whether simple hand

observation, observation with intent to imitate, and motor execution practice rendered in

a VE can provide a skills acquisition environment for simple and complex hand gestures.

Via both means — behaviorally and through functional MRI -- modulated task and visual

sensory experience were investigated, A series of experiments was conducted to

investigate the unique properties that might be present as a consequence of exercising in

VE with the virtual hands avatar as a teacher model and proxy, and with modulated visual

sensorimotor experience, For the first time, subjects were able to observe the visual

feedback of their own hands actuating complex hand proxies in VE representing an

analog of motor skills acquisition and rehabilitation-like activities while inside the MRI

environment. The investigation determined that training in this VE with visual sensory
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feedback can engage brain network activations known to be involved with the sense of

agency, and can also engage brain networks similar to those found during action-

observation and action-execution in the real world. Resulting behavior and associated

kinematics were examined and unique brain network activations were mapped. Being

able to view modulated visual feedback of one's own hands actuating a virtual hands

proxy during motor practice of hand gesture imitation in the functional MRI environment

and in the laboratory establishes a unique method of studying potential mechanisms of

action-observation and action-execution brain networks, Some of these methods might

prove useful in motor skills acquisition, exercise, and may easily translate to

rehabilitation environments,

Visual stimulus in VE was successful in actuating important action-observation

action-execution brain networks and in establishing in the subjects a sense of agency,

Modulating the visual feedback in VE selectively influenced the activation of the motor

skills associated brain networks. Lost quality in the visual feedback reduced the desired

brain activation, These are compelling findings and also establish a credible case for use

of virtual body part avatars and visual modulations in VE with valuable applications in

motor skills acquisition, exercise, and rehabilitation,

A research and exercise model was developed to study the effect of visual

sensorimotor experiences in a VE on brain activity and related behavioral and kinematic

measures linked to high level quality of life measures, Such a model can profoundly

influence development of human computer interfaces and the delivery of motor skills

acquisition, exercise, and rehabilitative services in the coming years by giving clinicians

a framework for engaging patients in a sensorimotor environment that can optimally
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facilitate exercise and neural reorganization, The present research may hold particular

value for designing tasks and environments that promote exercise, visual sensory

therapies, and passive therapies for patients with paralysis from various motor conditions

including stroke,

Results of this research may translate to important and often overlooked

applications such as VE-based neuro-rehabilitation of hand motor skills,

1.2 Statement of the Problem

A goal of the present research was to investigate the possibility that virtual sensory

experience engages the subject so as to actuate target brain networks through task design

and visual sensory modulation, and to provide safe and motivating exercise to promote

plasticity and motor skills acquisition. Many aspects of the neural systems involved in

sensorimotor experience in VE's and how the experience compares with real world

interactions, remains unknown. There are researchers who indicate that virtual elements

are not effective in actuating target motor related brain regions in the way real world

action-observation action-execution does. Heretofore, technology limitations have

prevented investigations of the neural mechanisms of the observation (of the movement

of others), imitation (with observation of one's own movement), together with

observation with intent to imitate (OTI) and also the resulting stimulation of important

motor skills and learning related networks, in the functional imaging environment, An

fMRI compatible VE with features appropriate for action-observation action-execution

of simple and complex hand gestures would enable behavioral and brain mapping

experiments, Such a system would enable investigation of the potential for carefully

crafted action-observation action-execution experience in VE to elicit effective activation
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of target brain regions in humans in health and in cases of ageing or injury, in some

desired way, The activation of brain networks over time is associated with brain

plasticity, Once such a VE system is developed, specific modulations of visual sensory

experience in VE may be explored to determine effectiveness in recruiting target brain

regions with specific visual modulations, and to track behavior, kinematics, and

outcomes. In addition, recipes may be configured in association with various user groups

and applications, to achieve desired outcomes. Also in future research, individuals and

groups may be studied to determine prognostic indicators and to predict effectiveness of

specific recipes to achieve the desired goals, Then in the future, the same research model

can be used to investigate protocols, doses, and durations of treatment, other anatomic

and functional regions, and combinations, linking connectivity, injury, prognostic

indicators, prescription, target brain networks, behavior, and outcomes.

1.3 Hypotheses

The first hypothesis is that using an fMRI compatible VE (the VESLI system), neural

underpinnings of visual sensory experience that advantages properties of brain plasticity,

an ability for lifelong learning experience shaping networks in the brain, and

simultaneously measured behavior, may be systematically investigated, The same

features may be used in a flexible VE system for exercise and skills acquisition.

A hypothesis is that through experience in the VE, a relationship between the

subject and the visual elements may be developed, In the presence of practice experience

with virtual hands avatars in the VE moving in concordance with one's own movements,

sensations of involvement will develop that engage the insular cortex reflecting a sense of

agency. At that point, the virtual avatar hands might be incorporated, or accepted as a
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proxy, or tool, or extension of one's own body, Observation, OTI, and imitation of motor

sequences in VE's may modulate cortical properties, which when present over time, are

typically associated with plasticity. The experience in VE may serve as a proxy for

observation, OTI, and imitation of living models in certain situations such as motor skills

acquisition, exercise, or rehabilitation experience.

Another hypothesis is that following training with virtual hands avatars in a the

VE, visual sensory feedback of complex virtual hands avatars moving in concordance

with one's own hands will activate secondary motor regions in the brain associated with

action-observation action-execution during movement in the real world.

Another hypothesis is that brain activations associated with action-observation

action-execution might be selectively influenced using parametrically modulated

sensorimotor experience in VE's for motor skills acquisition, exercise, or rehabilitation.

Modulations include adjusting the gain or varying the accuracy of the VE viewed

movement compared with measured movement of the subject's hand movement.

Another hypothesis of the present research is that following training, hand motor

related regions become activated as a result of visual sensory modulations in VE's alone,

even when the hand ipsilateral to the viewed movement (of the virtual hands avatar) is

not moving. Following training with the virtual hands avatars in the VE, visual sensory

feedback of one's own right hand movement displayed in a mirror position representing a

left hand moving in concordance with one's own right hand will actuate ipsilateral brain

regions associated with moving the left hand Following the training period, the sense of

agency and visual sensory augmented stimulus may override other sensory experiences
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and establish a credible sensory feedback experience demonstrated in ipsilateral brain

activation.

Another hypothesis is that through concurrent visual feedback provided in VE of

a correctly performed movement, intention of the subject is satisfactorily reinforced. The

satisfactory visual feedback results in activation of target brain regions associated with

moving the hemiparetic hand in the case of a subject who has suffered from stroke.

Another hypothesis is that in the flexible VE environment, subjects will be able to

observe, OTI, and imitate the 1 st and 3 rd person avatar teacher, perform the gestures with

or without viewing their own hands or virtual hands reflecting their own practice

movements, with definitions in text or picture, and when tested, remember the gestures.

1.4 Specific Aims

The goal of the present research was to investigate the possibility that virtual sensory

experience engages the subject so as to actuate target brain networks through task design

and visual sensory modulation, and to provide safe and motivating exercise to promote

plasticity and motor skills acquisition. There were five Specific Aims in the present

research, In Aim 1, the Virtual Environment Sign Language Instructor (VESLI), a

functional MRI compatible VE, was designed and developed, The VESLI system

integrates protocols and sensorimotor experience for motor skills acquisition, training,

and research, in a flexible environment. In Aims 2, 3, and 4, functional MRI was used to

map brain networks involved in simple virtual hands avatar movement in tasks including

observation, OTI, and execution paradigms with 1 St and 3"I person perspective virtual

teachers, and 1 st person perspective virtual hands avatar proxy and modulated visual

sensory feedback responses, In Aim 5, memory, behavioral and kinematic aspects of
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interacting in VE, with complex intransitive hands gestures from the American Sign

Language dictionary accompanied with picture or text definitions, were investigated.

Visual sensory experience and tasks may be systematically manipulated in VESLI

providing significant functionality and personalization. Prior to this research, many of

the effects of training in a VE on brain activations were not known.

In one experiment subjects studied intransitive gestures with the 3rd person

perspective virtual teacher avatar, and one experiment subjects studied intransitive

gestures with the 1st person perspective virtual teacher avatar, The subjects practiced the

gestures in three visual sensory feedback conditions in the VE. The subjects were able to

view their own hands, or they viewed virtual hands during the learning tasks, or their

hands were entirely hidden from view during learning and practice tasks, The

experiments investigated whether seeing one's own hand while practicing hand gestures,

or whether seeing one's own hands actuating a virtual hands avatar in real time to

practice hand gestures, affects remembering the gestures as compared with the control

condition, wherein the subjects' hands were hidden from view.

The MRI compatible analog of VESLI was used to study cortical activations

associated with observation, OTI, and imitation of simple hand movement protocols such

as finger flexion or finger flexion sequences, and the systematic modulation of visual

sensory experiences such as feedback corresponding with subject movement, in VE's.

For the first time, an MRI compatible VE visual sensory feedback system enabled

subjects to observe and interact in real-time with a complex virtual hands avatar, viewing

the effects of their own movements embodied in the avatar. Revolutionary technologies

and widespread availability of tools has increased the appeal of virtual reality and
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associated peripherals and it is timely to investigate the affect of visual sensory

experiences in VE's on cortical activation and behavior. Methods demonstrated herein

contribute an important fundamental research framework for initial discovery in

neuroscience, rehabilitation, for human computer interface, and motor skills acquisition

task design. Implications are far reaching. Findings of the present research can inform a

wide number of fields,

All previous functional MRI studies investigating cortical activations associated

with observation of motor skills relied upon the subjects viewing still pictures, videos or

observation of subject movement which resulted in the movement of an image

representing essentially a hand shaped cursor on the screen. The hand shaped cursor in

previous studies moved with two degrees of freedom and with no individuated finger

movement,

The present study represents experiments wherein subject kinematic

measurements, visual displays of feedback, and brain imaging capture were

synchronized, Subjects were able to observe effects of moving their own hand with

concurrent synchronized visual feedback displayed by the virtual hands avatar in real

time while brain imaging data was captured, In addition, experiments in the functional

imaging environment have accompanying kinematic analysis to confirm compliance and

to correlate brain activations and degree of movement produced accounting for the

activation in the brain and its relationship with the motor efforts made by the subjects.

Also, behavioral data was taken, and inquiries determined subjective measures and

corresponding brain activation patterns in the modulation of quality of the visual

feedback experiment for Aim 3 wherein the gain of the feedback images of virtual hands
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avatars was modulated, and also correctness of fingers demonstrating the movements was

modulated,

The present experiments represent the first time brain imaging investigated the

subject's own movement of a virtual hand proxy capable of independent movement of

fourteen joints; the protocols used in the present experiments encompassed four fingers

on each hand in virtual reality compared with two degrees of freedom represented by

virtual hands in prior studies. The perspectives used in prior brain imaging studies used

an ambiguous point of view (hand appeared in a position where it may represent subject's

own hand or it may represent the hand of another agent) whereas the present study

employed a hand proxy for the subjects in the first person perspective in a position

overlapping the subject's own hands. The system used in the present study utilizes the

5DT MRI compatible glove with a capability to measure sixteen degrees of freedom,

Future work will investigate more complex protocols, for example, observation with

intention to imitate (OTI), followed by imitation itself, with actual accurate visual

feedback of the subjects actuating the virtual hands avatars themselves concurrently with

the viewed feedback, and associated cortical activations, related behaviors, subjective

opinion, and kinematics, For the first time, there is brain imaging evidence that virtual

hands avatars activate motor related brain regions during exercise differentially from

exercising while observing an unrelated image, In addition, the relationship developed

during training, evidenced by increased activation of the insular cortex over time, appears

to prime brain regions for further exercise protocols, for example, Left-Right Therapy or

Mirror Virtual Therapy (MVT), wherein the subject moves his or her right hand, and sees
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feedback of his or her left hand through modulation of visual sensorimotor feedback in

the VE.

An ideal application for sensorimotor experience in VE's is for motor skills

acquisition or for rehabilitation of the hand, In the case of motor skills acquisition or

rehabilitation as an example, it is important to understand whether replacing the natural

hand with a virtual hands avatar is a viable option, and whether there is any hope that

such a virtual hands model might engage the subject and or the patient in a lifelike real

world experience such that it might offer a greater value in the motor skills acquisition or

rehabilitation environment over and above viewing no hand at all,

In addition to developing a suitable research and exercise VE system, the research

presented herein answers the following questions: Does movement observation in a VE

stimulate important brain areas associated with action-observation action-execution as

does action-observation action-execution in real-world movement? Does action-

observation action-execution in a VE enable imitation exercises of intransitive complex

hand gestures with a flexible configurable sensory experience?

In order to accomplish Aim 5, to understand how subjects imitate complex hand

gestures in a VE with their own hands, with virtual hands, and with no view of hands,

two behavioral experiments were conducted using the system developed in Aim 1.

Subjects observed and practiced the gestures, and performed a memory task. The

hypothesis is that engaging in training and practice of complex intransitive gestures in a

VE will be possible with observation, OTI, and imitation of 1st and 3rd person avatars,

with pictures and text definitions, and with real hands or virtual hands proxy, or with

hands hidden from view (control condition) in the case of control subjects, In the case of
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persons with motor dysfunction or cognitive issues, personal learning styles will emerge

and the training system will provide personalization for imitation model (1 st or 3 rd person

perspective), for task design, and for augmentative visual and other sensorimotor

stimulus and feedback enabled through a number of convenient modulation programs.

Ongoing data gathered by the personalized system may enable features, tracking, and

monitoring of individuals, as well as provide informative research content regarding

treatment methods, disease, ageing, and trends,

To understand the neural mechanisms underlying sensorimotor experience in a

VE, a system was designed and created and several specific sensorimotor experiences

were manipulated. Resulting cortical activations were recorded, In particular, the research

showed that sensorimotor interaction with ecologically relevant virtual hand and finger

models in congruence and dissonance with simultaneous subject movement selectively

affected cortical activations. The experiments investigated use of virtual reality hands and

fingers for imitation and proxy models,

Aim 1) To design and develop an accurate and reliable MRI-compatible

interactive VE for training and research.

Aim 2) To see if observing virtual hand actions activates observation-execution

networks known to be activated when one observes real hand actions. This aim

investigated neural activation present when visual sensory stimulus of the virtual hands

matches subjects' own hand behavior in an imitation protocol, The subjects interacted

with the virtual hands while functional brain imaging records activated brain networks.

Aim 3) To investigate how quality of visual feedback affects brain activation

during observation of virtual hand motion. For the second objective, sensory
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manipulations of the virtual hand (that are not achievable in the real world) were tested in

behavioral studies wherein subjects interacted in a VE while receiving various visual

feedback that was of either high, moderate, modest, or poor fidelity of the subjects'

moving hand.

Aim 4) To investigate whether target brain areas may be activated through

specific tasks in a VE. Particularly, this aim investigated tasks that are not easily

performed in the real world by those with paralysis of the hand and therefore, would

make a good rehabilitation activity, The subjects moved the right hand and they saw the

left virtual hand move. The ipsilateral hemisphere was examined in functional brain

imaging to see if the sensory manipulation in virtual reality resulted in a shift of

activation laterality,

Aim 5) To investigate whether seeing one's hands helps in learning novel hand

gestures and to investigate whether interacting with the virtual hands helps in learning

novel hand gestures. In this behavioral study, subjects imitated and learned American

Sign Language gestures, They observed 1 St and 3 rd person perspective virtual teachers and

practiced while viewing their own hands, while observing 1 st person perspective virtual

hands as a proxy of their own hands, or without seeing hands for visual feedback of their

own movements,

In Chapter 2, Background of the present research is presented with a brief

overview of the plight of Americans who have suffered disabling stroke, the nature of

their injuries, and promise of recovery, Diverse neural mechanisms might facilitate motor

skills acquisition and rehabilitation through visual sensory support provided using more

widely available and flexible technologies such as VE's,
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Optimism for novel rehabilitation strategies is inspired by recent work in

rehabilitation using virtual reality systems for limb training and also by human brain

imaging of observation and imitation wherein it was discovered that brain networks are

activated by observing others and also by performing motor tasks oneself. Discovery of

this common brain network has led to a new interdisciplinary enthusiasm for the creative

development of innovative rehabilitation applications supported by technologies

including virtual reality and robotics and advantaging the plastic properties of the adult

brain to reorganize itself anatomically and functionally through experience and training,

or brain plasticity. Sensory systems seem to offer a strong means to influence the

activation of important and malleable brain networks associated with motor skills

acquisition. Sensory input integrated in the human brain is subject to influences of

heightened or diminished perception of counterpart senses; these senses may be cleverly

manipulated through augmentation to achieve attenuation or an extinction of one or more

of the senses to the advantage of another, providing a potential avenue to subtend target

networks in the human brain for rehabilitation or other purposes. A new concept of

sensory support inspiring the present research is discussed along with advances

technology holds for delivery of such services. There is a brief discussion of plasticity,

rehabilitation, and visual sensory-related research in Chapter 8, a summary of findings

and highlights of proposed future work in Chapter 9.

Guided by the understanding of the plasticity of the nervous system and the

relationship of that plasticity to motor learning principles regarding frequency of use, task

specificity, skill development and practice parameters, a computerized virtual reality

exercise system was developed to provide intensive motor re-education and skill
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acquisition in control subjects and in the hemiplegic hand of patients post-stroke.

Because of the complex sensorimotor control required for grasping and manipulating

objects, even mild to moderate deficits in upper extremity control can impair most

activities of daily living, especially when there is a loss or diminution of hand function,

This is an important but difficult and challenging aspect of rehabilitation, Bernstein

believed that the upper extremities are centrally linked and function as a coordinative

structure. Therefore, several exercises discussed in the literature and experiments

involving transfer of skills from one arm to the other, or involving practice of two hands

functioning in mirror synchrony provided inspiration for specific visual sensory

manipulations explored as part of the present research including but not limited to left-

right or virtual mirror therapy,

In Chapter 3, the Virtual Environment Sign Language Instruction (VESLI) system

design is described. The system provides first and third person observation and imitation

and virtual hands avatar visual feedback for practicing American Sign Language (ASL)

intransitive complex hand gestures, The system is MRI compatible and the virtual hands

avatar was used to conduct human subject research consisting of simple hand imitation

experiments with functional imaging. In Chapter 4, the fMRI compatible system

experiments designed to explore brain activations present during observation of virtual

hand motion are described and discussed. Movement in VE's while viewing virtual hands

avatars moving in concordance was demonstrated to be effective in provoking activation

of important secondary motor areas associated with recovery of motor skills in patients

who have suffered from stroke, whereas, movement while watching non-

anthropomorphic blobs led to very little brain networks activations. Importantly, gradual
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activation of the insular cortex, related to a sense of agency and involvement in the scene,

is observed prior to the activation of secondary motor areas in subjects.

In Chapter 5, the behavioral study and the functional brain imaging study

investigating the effect of modulating the quality of the visual feedback of the virtual

hands avatar behavior is described and discussed. Subjects were capable of determining

the degree of modulation of the visual feedback in a subjective experiment and brain

network activations were positively or negatively correlated in relationship to the loss of

quality of the associated visual feedback,

In Chapter 6, another functional imaging study investigated visual feedback

manipulations. When the subjects moved their right hands following the training period

in VE's, they saw unexpected visual feedback: they saw their left virtual hands avatar

move in correspondence with their own right hand movement. This protocol which may

be a potential treatment for patients with motor dysfunction called Left-Right Therapy, or

Mirror Virtual Therapy (MVT) resulted in relateralization of activation in the brain, The

ipsilateral motor cortex brain region became active during the move hand condition. The

ipsilateral brain region activation is associated with movement of the true left hand which

is not moving,

Then in Chapter 7, the VESLI American Sign Language study investigated more

complex hand sequences associated with intransitive gestures. Intransitive gestures in an

imitation model represent a direct method of preparing a hand exercise that does not

require decisions about aiming or grasping objects, and therefore it is a more simple

exercise to perform. Chedoke-McMaster scales were used to classify the complexity of

the gesture poses. Subjects learned gestures using real hands and virtual hands with first
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person and third person teacher avatars and with pictures and text descriptions of the

signs. The control subjects were capable of practicing the gestures and completing all the

tasks, When studying with natural hands, pictures helped to learn the gestures, and text

definitions helped to recall, Meanwhile with virtual hands avatars, the picture

descriptions resulted in better performance. This system represents a hand exercise

system suitable for early intervention, personalization, data capture, assessment and

monitoring, Left-Right Therapy, and MVT,

In Chapter 8, a brief discussion, outcomes, findings, and also recommendations

for future work are summarized, The new research model implemented in the present

research represents a novel means to investigate human behavior and corresponding brain

network activations of controversial hand therapy protocols with objective measures,

Specifically, visual sensory experience in VE's was investigated, Several important

findings were made: practice in the VE with virtual hands avatar led to increased

activation of the insular cortex, reflecting a sense of agency, and secondary motor areas,

important in recovery from cortical injury, Modulating gain of the visual feedback will

negatively affect important activations in the motor related regions of the brain. Visually

supported virtual mirrors may actuate brain regions ipsilateral to the moving body part.

Together these findings indicate that VE may provide an environment at once similar to

real world action-observation action-execution and also with certain advantages for

providing visual sensory support for training and exercise relating to motor skills

acquisition, for example.

All of these conditions may become features in effective skills acquisition

therapy, such as sensory augmentation support tools. Exercising in VE's with visual
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augmentation including the OTI and Left-Right Therapy shows exceptional promise for

the early intervention of stroke subjects who may be weak or hemiparetic and therefore

unable to participate in traditional therapies. The present research presents a new model

for studying the effects of visual sensorimotor experience in virtual environments upon

associated behavior, kinematics, and brain networks with significant contributions to

basic neuroscience research and translational engineering,



BACKGROUND AND SIGNIFICANCE

2.1 Neural Mechanisms of Action Observation

A growing body of evidence supports bolstering sensory information to improve human

performance (Haggard, Christakou et al, 2007), This appears to be true for healthy

subjects in some circumstances and is true in cases wherein one sensory skill is

diminished, such as is the case for some patient populations including those who have

suffered from stroke (Serino, Fame et al. 2007), and in aging (Ward 2006). Recent

theories of learning provide models to integrate selective experiences into VE's with

successful track records for facilitating skill learning in healthy and patient-based

populations, However, it remains unknown how visual sensory modulations implemented

to exploit a rich computer based VE might selectively affect the brain for a number of

important applications, It is also not known how these forms of feedback can be

optimally integrated into systems such as those that support training or rehabilitation of

the hand to elicit the desired outcome.

The pervasiveness and accessible cost of VE's presents a perfect opportunity to

investigate features wherein well defined parametrically adaptive modulated visual

sensory stimulus and feedback support systems can be crafted to accommodate various

techniques and experience in ways not possible using natural world settings and is

accompanied by an unprecedented degree of personalization providing liberal application

of appropriate features to accommodate individuals in health, age, cognitive state, or

disease, through a wide range of situations, and with various levels of task complexity

23
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management, employing various learning models. Therefore, this research is uniquely

enabled and timely. By creating a safe environment wherein sensory experiences can be

controlled, various mechanisms present in the human brain may be targeted potentially

leading to short term modulation of somatosensory cortical (SI) networks. Continuous

support of SI networks might be effective in promoting long term reorganization of target

areas, associated with properties of plasticity, and may be included in a training or

rehabilitation plan, Motor learning and rehabilitation may involve similar brain networks

or procedures, although the underlying mechanisms remain relatively unknown.

Modulation of visual stimulus and feedback through VE might provide an ideal

test case for sensory experiments to engage target brain regions, Visual sensory

experience by itself may be effective in influencing motor learning, may be manipulated

independently of other sensory experiences such as proprioception, may provide a potent

signal for reorganization of sensorimotor circuits, and can override other afferent

modalities in conditions of sensory conflict (Snijders, Holmes et al. 2007), For example,

when tactile information is limited as in the case of some patient groups, vision might

modulate tactile performance (Serino, Fame et al, 2007). In cases when subjects have

identified a goal, as in imitation or OTI, movement intention may additionally influence

the expectation of the content of feedback experiences. When visual feedback matches

expectation, there may be an online realtime reinforcement of learning behavior not

present when incongruous visual feedback is experienced in response to movement

intention and movement effort, A goal of the present research was to design and develop

a flexible MRI compatible exercise system to investigate effective ways of using visual

sensory experience to optimize observation, imitation, feedback, and imagery conditions
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and to identify methods tO selectively modulate brain activation in a target action-

observation and action-execution network through VE visual sensOry manipulatiOns that

may result in establishing a realistic and effectual environment for imitation and practice

for learning or rehabilitation.

A number of imitatiOn models have been investigated and there is a tradition of

using imitation Of gestures in clinical applications to observe the effects of injury upon

Figure 2.1Summary Of hand imitation studies.

motor programs. Imitation of actions, meaningful (MF) and or meaningless (ML) (such

as moving a key held at an inappropriate angle, moving a knife in an up and down motion

rather than in a slicing motion) may require multiple or differing strategies for a patient

undergoing physical therapy after suffering a stroke. Empirical studies of healthy subjects

with temporarily reduced capacities, as might happen after stroke, (Tessari and Rumiati

2004) demonstrate that MF actions may be stored semantically in long-term memory,

being retrieved in their entirety for imitation, whereas ML actiOns may be parsed into

many chunks, more than those already known and stored in long-term memOry, and that

these chunks are held in short-term and working memory with associated greater

cognitive burden. Mingling types, MF and ML, lead to compensatOry switching to the
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direct strategy and away from semantic strategies, reducing performance in speed and

accuracy for all the activities including the MF ones (Tessari and Rumiati 2004) with

implications on task design for learning and rehabilitation, Peak parietal activation found

in imaging studies on active imitation and pantomiming is illustrated below. Angular

symbols represent activation in experiments with control conditions of motor rest, round

symbols represent experiments with control conditions of movements. The following

color coding of the figure illustrates the task type: black, complex imitation; red,

imitation of simple finger movements; green, pantomiming; blue, imitation of and with

active object manipulation (Muhlau, Hermsdorfer et al. 2005;Krams, Rushworth et al.

1998; Iacoboni and Woods 1999; Moll, de Oliveira-Souza et al, 2000; Peigneux, Salmon

et al. 2000; Choi, Na et al. 2001; Tanaka, Inui et al. 2001; Chaminade, Meltzoff et al.

2002; Decety, Chaminade et al. 2002; Koski, Wohlschlager et al. 2002; Tanaka and Inui

2002; Grezes, Armony et al. 2003; Rumiati, Weiss et al, 2004).

Positron Emission Tomography (PET) brain imaging was used to study

preparation of and copied movement. In prior studies, subjects had been instructed using

arbitrary patterns of light whereas in the Krams study, subjects prepared to copy a

movement (Krams, Rushworth et al. 1998). There were 5 findings: (1) preparing to make

a copied movement causes rCBF changes in area 44 in posterior Broca's area; (2) set-

related activity can be recorded in the cerebellar hemispheres and midline; (3) the

supramarginal gyrus has a general role in preparing movements - there was more rCBF in

the Prepare Only than the Execute condition; (4) the cerebellar nuclei and the basal

ganglia may be particularly involved in the initiation and execution of a planned

movement; these regions were more active in the Prepare and Execute condition than in
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the Prepare condition; (5) the ventrolateral prefrontal cortex and a left anterior cingulate

area are part of a distributed system involved in the suppression of a motor response;

these areas were significantly more active in the Prepare than the Prepare and Execute

condition, These findings suggest a role for Broca's area in learning dexterous hand

behavior and rehabilitation, and illustrate characteristic neural activations associated with

the various steps of observing, OTI, planning, and executing imitated tasks.

An fMRI study of imitated index finger movements in the absence and presence

of visible goals (red dots that were reached for by the finger movement) (Koski,

Wohlschlager et al. 2002) demonstrated that the pars opercularis of the inferior frontal

gyrus showed increased BOLD signal bilaterally for imitation of goal-oriented actions,

compared with imitation of actions with no explicit goal. Bilateral dorsal premotor areas

demonstrated greater activity for goal-oriented actions, for contralateral movements and

an interaction effect such that goal-oriented contralateral movements yielded the greatest

activity, Implications for finger exercise targeting specific brain network activation

favors imitation tasks wherein subjects may become engaged in achieving goals rather

than imitating actions with no apparent goals.

Perception of target actions and mental image manipulation during imitation of

finger configurations was investigated in functional imaging (Tanaka, Inui et al. 2001).

Results suggest the involvement of the supramarginal gyrus especially for the imitation of

novel actions, Whereas in Tanaka, 2002, functional MRI was employed to study the

human imitation of hand/arm postures and finger configurations, only the finger

condition showed significant activation in Broca's area and symmetrical activation in the

bilateral inferior parietal lobes, while the hand condition showed left lateralized superior
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parietal activation. Findings suggest that Broca's area might be involved more in the

imitation of finger configuration than that of hand/arm postures and revealing an

interesting and potentially unique brain region to target to facilitate dexterous finger

training and rehabilitation. Parietal activation patterns, consistent with formerly reported

clinical findings, point to a relationship between lesion laterality and patients'

performance of hand/finger action imitation, These findings imply that finger imitation

and behavior may be linked to neuronal networks involving Broca's area, There might be

evidence, therefore, to investigate therapies that involve activation of neuronal networks

that include Broca's area and for individuation of fingers rather than limiting exercise to

moving the hand as a unit, reaching, pointing, or grasping.

Functional imaging investigated the neural basis of visual gesture analysis in

naming and orientation tasks using static pictures of intransitive (symbolic or

meaningless postures without objects) upper limb postures strongly activating the lateral

occipitotemporal junction, encroaching upon area MT/V5, involved in motion analysis,

or tridimensional objects activating mainly occipital and fusiform gyrus activity, resulting

in a significant functional segregation (Peigneux, Salmon et al. 2000). Findings suggest

that the lateral occipitotemporal junction, working with area MT/V5, plays a prominent

role in the high-level perceptual analysis of gesture, the construction of its visual

representation, available for subsequent recognition or imitation, Implications upon

training mechanisms and available brain networks must be considered in patient

populations.

A number of reports show that patient subjects have selective deficits for

imitation of either meaningless (ML) or meaningful (MF) actions (Goldenberg and
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Hagmann 1997; Bartolo, Cubelli et al. 2001) (Peigneux, Salmon et al. 2000; Tessari and

Rumiati 2004) , Training exercises directed at motor rehabilitation might advantageously

engage brain networks through task design and sensory augmentation, and through

understanding of the types of dysfunction associated with specific injury in specific

patients.

In reports of patients suffering from apraxia, subjects were asked to produce the

gestures to verbal command and to imitation. The subjects with left parietal damage were

unable to maintain proper linearity with verbal command and produced most pronounced

inter-joint coordination deficits of spatiotemporal attributes of their wrist motions under

that task condition. The subject with the left occipital and inferior temporal lesion that

spared parietal cortex, however, showed an opposite pattern exhibiting close to normal

performance during verbal command, but significant deficits when imitating (Merians

1997; Merians, Clark et al, 1997) and with implications for task design for individuals,

Imitation of intransitive movements is differentiated in neural mechanisms of action from

movement with goals or objects perhaps for a number of reasons, Differences in imitation

of transitive and intransitive movements in healthy control subjects' performance has

been previously explained within a dual route model ascribing deficits in imitating ML

actions to a defective sub-lexical or direct route and a deficit in imitating MF gestures to

a malfunctioning lexical-semantic route, and with actions stored in long term memory; in

some studies, subjects performed better with intransitive actions, implicating the direct

route for imitation of MF transitive actions (Tessari and Rumiati 2004; Tessari, Canessa

et al, 2007). Control subjects imitated intransitive better than transitive gestures providing

support to the complexity account of the impairments of apraxia.
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Control subjects under time pressure produced cognitive shortage and errors in a

study of transitive gestures or object-related actions (Boroojerdi, Ziemann et al. 2001;

Blake, Heiser et al. 2006) Findings indicated object-related actions to be generally more

difficult to imitate than intransitive gestures (actions having nothing to do with objects

and often conveying communication content, such as waving goodbye) (Carmo and

Rumiati 2009). Study participants imitated meaningful (MF) intransitive gestures

significantly better than MF transitive gestures associated with tool use, These findings

indicate that transitive actions pose greater processing demands on the cognitive system,

perhaps because they are intrinsically more complex, However, because MF and ML

actions resembled each other in kinematic analysis, the resulting differences in imitation

performance of subjects between MF and ML actions can not be interpreted as being

different in terms of motor complexity, Complexities in the tasks might be due to their

association with the object representations, and in the case of pantomiming tool use,

perhaps within the level of difficulty imaging the tool particularly when it is not present.

Elderly subjects have greater difficulty in producing transitive actions over

intransitive actions upon verbal command (Mozaz, Rothi et al. 2002) another reason to

test subjects with a variety of tasks and sensory augmentation when planning activities

for remediation of seriously impaired patients including persons who are older. Elderly or

patients with brain-damage experience deficits in imitation and their performance does

not reach ceiling; therefore it may be possible to use a testing instrument to determine

strongest skills in the individual and the teacher or therapist can arrange tasks

accordingly, Patients with apraxia and healthy elderly subjects performed intransitive

gestures better than transitive gestures upon verbal cue. The complexity of the
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movements seems to be the best explanation (Roy, Square-Storer et al. 1991; Foundas,

Macauley et al, 1995; Rapcsak, Ochipa et al. 1995; Roy, Black et al. 1998; Dumont, Ska

et al, 2000; Haaland, Harrington et al, 2000; Harrington, Rao et al. 2000; Roy, Heath et

al. 2000; Heath, Roy et al, 2001; Mozaz, Rothi et al, 2002), This task difficulty effect in

these cases seems to be driven by the actions' characteristic motor complexity, and also

perhaps by the subject's familiarity with the gesture or action, thereby simplifying a

specific task for an individual -- there may already be motor programs resident in some

form in the patient's memory. Intransitive actions are easier to imitate providing support

for the task difficulty argument and applied this model to explain the selective

impairment of transitive actions in individuals or in groups of patients with apraxia,

These findings suggest that there may not be different mechanisms, or different brain

structures dedicated to the imitation of transitive and intransitive gestures. Task design

and sensory experiences might establish a situation wherein performance is modulated,

2.2 Visual Sensory Experience in VE

Observation and imitation are among the most powerful and influential human

communication and learning experiences. Observation can affect action as well as skills

acquisition. There appears to be benefit to visual sensory augmentation in motor skills

acquisition. Technologies such as VE's offer options to support and possibly introduce

significant advantages over naturally occurring events including means to manage and

selectively modulate tasks and sensory experiences involved in complex skills

acquisition. Yet many aspects of the related neural systems involved in sensorimotor

experiences in VE's and how these special experiences compare with real world

interactions, remain unknown. Heretofore, technology limitations have prevented
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investigations of the neural mechanisms of the observation (of the movement of others),

imitation (with observation of one's own movement), together with observation with

intent to imitate (OTI) and also the resulting stimulation of important motor skills and

learning related networks, in the functional imaging environment, Visual augmentation

has been incorporated into the VESLI model focused upon individuation of the fingers in

dexterous tasks.

Various previous studies have alternatively investigated the viewing of an agent

moving in a movie clip or the agent in context in still images, often focusing on third-

person (allocentric) or ambiguous models. The novel present research was designed to

uncover relationships among: 1) observation, OTI, and imitation of hand and finger

behavior, 2), visual feedback of real hands, no visual feedback, and visual feedback of

virtual reality, 3) in simple, or more complex tasks, 4) with programmable visual models

of first person perspective (egocentric), and third person perspective (allocentric), 5) and

perfectly synchronized egocentric feedback, or unexpectedly altered visual feedback, or

without visual feedback, 6) in an exercise environment within the laboratory, and in the

MRI environment. Behavior, kinematics, and associated underlying neural mechanisms

of hand and finger function were examined, Using the VESLI system, the present

research investigated behavior and neural underpinnings of visual sensory experiences

that may advantage properties of plasticity (Cramer and Riley 2008)(Boroojerdi,

Ziemann, Chen, Butefisch, & Cohen, 2001), an ability for lifelong learning experiences

shaping networks in the brain .

The VESLI system uses virtual reality to depict and animate models of hands and

fingers for both demonstration of motor sequences (virtual teachers), and also for the
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engagement of the subject, to observe his or her own action, occurring simultaneously

with the viewed scene (virtual hands proxy or their own hands). Cognitive tasks access

motor programs and might provide an alternative means of influence (Kerzel, Hommel et

al, 2001) suitable for training of motor tasks. Therefore, a language-related imitation task

involving complex gestures was included in the training system. The subjects practiced

intransitive hand gestures (not tool related) using VESLI while viewing virtual teachers

in 1st or 3rd person perspectives and observing their own hands (Hamilton, Wolpert et al.

2006), their own hands actuating the virtual hands proxy, or with their hands hidden from

sight (control condition), In this way, the experimental conditions were capable of

comparing viewing hands with not seeing hands in both real hand and virtual hand

conditions, For the first time, a rehabilitation-like practice system has been developed

with an MRI compatible analog, to provide a window on the real-time action-observation

action —execution neural mechanisms elucidated in a functional MRI environment

wherein a subject may observe complex movements of individual fingers and joints of his

or her own hands actuating a virtual entity in simultaneous concurrent movement with his

or her own movement (August 2006), Brain mechanisms associated with observation,

OTI, and imitation of the virtual hands were investigated. Visual feedback of this

movement was synchronized or parametrically modulated and changes in brain

activations revealed the influence of visual sensory experience in VE' s on action-

observation action-execution brain networks,

One of the pathways to sensorimotor learning lies in the human ability to learn by

imitation (Iacoboni 2005; Pomeroy, Clark et al, 2005; Buccino 2006), Functional imaging

studies of imitation have shown activation of the mirror neuron system (pars opercularis
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of inferior frontal gyrus and inferior parietal lobule), a frontoparietal network active

during action imitation, Imitation is influenced by observation of the appropriate body

part (Dechent and Frahm 2003; Wheaton, David F. Abbott et al. 2004) which may not be

innate (Catmur, Gillmeister et al. 2008) but may be acquired, therefore, it seems likely

that body part related imitation might find a place in training and rehabilitation and in

addition, humans appear to be somewhat flexible with regard to the nature of the specific

associative sequences Imitation of simple body gestures requires a visuospatial

description of the observed model through visual perception areas (right occipitotemporal

and superior parietal cortices) and a visuospatial description of one's self (left inferior

parietal lobule) (Chaminade, Meltzoff et al, 2005). Automatic imitation of intransitive

gestures has been demonstrated in human research experiments based upon improvement

in speed and accuracy in imitation (Press, Bird et al. 2008), When longer imitation

sequences are considered, and when considering the imitation task itself performed

within sequences, performance suffered immediately following imitation of meaningless

gestures when compared with imitation following meaningful gestures (Press, Bird et al.

2008), VE's enable a personalized programmable computerized environment to present

observation and imitation models unachievable in the real world, yet may provide

effective neural sensorimotor stimulation similar to experiences in the natural world, and

even inclusive of biological motion (Grezes, Fonlupt et al. 2001) which may serve to

facilitate engagement of the subject during training. However, neural mechanisms are

still not understood.

In addition, it appears that humans have an ability to perceive goals of action

observed, and may be capable of accepting or understanding non-human entities
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(Gazzola, Rizzolatti et al. 2007) such as virtual agents or robots performing goal oriented

actions through the action observation brain network enabling proxies to establish

implicit learning models (Boyd, Quaney et al, 2007) demonstrated to be more effective

than explicit or mixed task models in populations of patients, for example.

Intransitive gestures imitation may be an interesting motor skills acquisition

exercise since humans appear to have a unique neural mechanism for that purpose.

VESLI incorporates intransitive gestures not reliant upon reaching a three dimensional

location in space (complicated by involving coordination of brain regions other than MO

in an implicit imitation learning task.

In imitation tasks there are effects of the specific stimulus response (Heyes, Bird

et al. 2005), and according to some research, perspective taking (Jackson, Meltzoff et al,

2006) however, healthy humans are often capable of rapidly shifting perspective and

adapting to mirror images. The associative sequence learning (ASL) (Brass, Derrfuss et

al, 2005) (Heyes, Bird et al. 2005), and Hebbian models (Keysers, Wicker et al, 2004),

suggest that the mirror system of action-observation develops through a learning process

(Hommel, Musseler et al, 2001), driven by experiences with concurrently observed and

executed actions and that implicit learning continues between training sessions (Press,

Casement et al. 2005; Press, Bird et al. 2008) providing researchers with another area of

affect to ponder and explore along with dose, maintenance, and order of treatment, which

are outside the scope of the present research, and are interesting topics to pursue in the

future.

The mirror neuron system might provide some support to the motor learning process

through facilitating the physical performance of training movements (Buccino 2004), in
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and of itself, a useful learning or rehabilitation mechanism. In recent literature it has been

suggested that action observation alone may be sufficient to induce a motor memory in

M1 similar to physical practice (Stefan, Cohen et al, 2005), whereas mental imaging, a

passive therapy, has been found to activate M1 briefly in initiating movement, and only

in some healthy subjects (Dechent, Merboldt et al, 2004) and yielding a keen incentive

for visually supported skills acquisition models as an alternative to a method that relies

on self-guided behaviors. Action observation modulates formulation of motor memories

if performed in synchrony with training motions relative to training alone, Recent

research demonstrated that observation of directionally congruent movements facilitated

response by an extra 11.2% (Stefan, Classen et al. 2008).

Activation of neural pathways over time has been associated with plasticity-based

changes in brain networks and together with motor learning principles provides

inspiration for therapeutic interventions including close-to-normal movement repetition

in a VE. Plasticity is broad topic related to the ability of the adult brain to modify

structure and to re-map functions, and has been demonstrated through studies in health

and in disease (for example, of stroke recovery), showing the region of motor control

shifting while adjacent tissue (Asanuma 1991; Jacobs and Donoghue 1991; Nudo 1996)

or the contralateral hemisphere (Glees 1980; Fisher 1992; Sabatini, Toni et al. 1994)

takes over functions of damaged cortical tissue. Cortical representation can be altered in

the adult system as a naturally occurring event, as a reaction to injury, or as a result of

experience,

Is it possible that carefully crafted action observation therapies can be effective in

engaging the patient in some helpful exercise? If so, are there recipes for these therapies?
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The present research confirmed that subjects can interact to imitate gestures and

that moving and viewing virtual hands activates important secondary motor regions

whereas moving and observing blobs did not. Researchers report that taken together, the

effect of simultaneous observation and practice may represent more value than either

intervention (Stefan, Cohen et al, 2005), particularly for older people (Celnik, Stefan et

al. 2006) where the individual interventions were insufficient, Observation of a model

agent performing the task in a proper dynamic environment (Celnik, Webster et al. 2008)

resulted in modulation of practice-dependent memory formation in subjects of a recent

experiment, while performance of competing movements during skill acquisition

interfered with action-observation dependent memory (Mattar 2005), Dysfunctional

limbs might be viewed as interfering feedback,

Whereas viewing non-congruent movements could impair performance through

competing mirror activity (Kilner, Paulignan et al. 2003; Grol, Majdandzic et al, 2007),

patients with hemiparesis might be experiencing this non-congruent visual feedback for

much of the time due to their own motor dysfunction, suffering untold affects on their

motor programs and with associated consequences on their ability to benefit from

rehabilitation.

Patients can use sensory augmentation generated in VE's to mitigate the effects of

meager visual feedback of their own dysfunctional limb. Further, patients of stroke are

more likely to experience tactile sensory dysfunction and vision is known to improve

performance of patients with such a deficit, possibly extinguishing influences of the other

sensory modalities (Serino, Fame et al. 2007). Providing real-time visual sensory

feedback might improve aspects of the formation of mental imagery of the tasks, This
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effect might particularly benefit patients who might be implicated in cognitive deficits,

and also in formation of motor memory representations since sensory information is

continually updated online during performance of a real task (Kennett, Taylor-Clarke et

a1.2001), With a dysfunctional limb, there is little opportunity to formulate either sensory

experience naturally. Even non-important visual information of the body part can

improve sensory discrimination (Haggard, Christakou et al. 2007) (Eng, Siekierka et al.

2007) lending significant credibility to the notion that visual augmentation such as VE

visual sensorimotor experience might improve motor acquisition and exercise conditions

and can outlast the sensory experience.

The present research demonstrated a paucity of neural activations in control

subjects when they moved while observing non-anthropomorphic  blobs, with possible

implications for patients with motor dysfunction and potential implications regarding

mechanisms of learned disuse (Dechent, Merboldt et al, 2004). Visual sensory

augmentation appears to be an important tool to modulate motor skill experiences. With

VESLI, options are now available to provide casual sensory feedback where none or

dysfunctional feedback previously existed, Deutsche is providing such visual feedback

for ankle rehabilitation (Deutsch, 2007). Morganti is providing a video table for arm

rehabilitation (Morganti, Gaggioli et al, 2003), Both establish a visual sensory experience

not present in the patient's real world experience. VESLI establishes a programmable

modulated visual sensorimotor modeling and feedback experience in the VE for the arm

and hand including the complex movements of all fingers and advantaging the

individual's own innate neuro-motor programming patterns.
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VE's can be programmed to enhance the sensory experience associated with

performance even in cases when the patient cannot perform the action independently,

Robotic assistance may be added to improve physical function and haptics may enhance

the sensory experiences during training, While many hemiparetic patients may not be

strong enough to participate in traditional rehabilitation exercises, VE's provide a

complex sensory experience suitable for the creation of agent model observations, and

complex virtual reality hands for patient visual sensory feedback, Features such as Left-

Right Therapy, and Mirror Virtual Therapy (MVT) (See Aim 4), improve self-

observation by recording the able limb, and playing the movement sequences in an

overlapping position replacing the dysfunctional limb movements with accurate limb

movements. The features may be used for unimanual, bilateral, symmetric, and mirror

movements exercises (Adamovich, 2007).

Intention, proprioception, and vision match in many healthy subjects. Yet

modulating one sensory experience can affect the relative contribution of another sense.

Modulating sensory experiences can attenuate or extinguish contributions of other

sensory experiences influencing overall performance as a result, When the expected

sensory experience is missing or dysfunctional, modulating remaining sensory input

might serve as an important aide in establishing a reasonable practice environment for

skills acquisition. The human motor system is relatively stable requiring intense practice

of close-to-normal movements in order to make incremental improvements in quality of

skills. Intensity of practice plays an important role in skills acquisition. Skills acquisition

as part of natural development trends in one direction and therefore, a major setback such

as a brain injury, is not a typical condition for the developing brain. In Multiple Sclerosis,
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for example, a somewhat gradual degradation of skills is observed that is not necessarily

equivalent to the observed brain injuries (Dobkin 2004), The injury occurs slowly in

Multiple Sclerosis, and the brain adapts in a different manner from brain injury in stroke,

There may be some phenomenon at play which relates to the fact the remaining brain

networks have suffered a sudden injury and a sudden calamity in a stroke changing the

available connectivity and rendering complex processes disjoint. Receptive field (RF) in

the hand region of the brain may have altered inhibitory properties, enabling competing

functions to occupy cortical representation previously dedicated to hand function and

further reducing function, One hypothesis of a possible therapy mechanism is that

through concurrent visual feedback provided in VE of a correctly performed movement,

intention of the subject is satisfactorily reinforced. Since visual stimulus can form a

motor memory on its own, combined practice, intention, and visual feedback enabled in a

VE might provide an excellent practice environment. Perhaps visual sensory

augmentation in itself can provide a useful therapy experience. The present research

demonstrates that hand motor related regions become activated as a result of visual

sensory modulations in VE's alone, even when the affected hand is not moving, More

likely, the intention to imitate establishes a condition in the brain that is receptive to the

visual feedback by aligning intention with sensory feedback, In the present research,

observation with intent to imitate (OTI) was the condition associated with activation of

the important insular cortex and frontoparietal motor related brain regions (see Aim 2).

The VESLI system integrates visual sensory experience of the virtual hands

avatar with a cognitive language related task with the intention to draw upon common

neural representations (Kerzel, Hommel et al. 2001; Binkofski and Buccino 2004;
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Binkofski and Buccino 2006). High level cognitive tasks can modulate motor networks

and might serve an important role in engaging motor networks for the purposes of motor

skills acquisition and rehabilitation.

Manipulations of tasks and sensory experience associated with motor skills

acquisition may also be achieved in VE's. Skills acquisition requires weeks or months of

training and skills may be lost if the skill is not practiced. VE's can provide a practical

and efficient means to deliver training and practice experience in intense long repetitive

sessions (Plautz, Milliken et al. 2000) over time, and to also gradually improve feedback

to engender the sense of improvement on the part of the learner. Gradually increasing

task difficulty or complexity, modulating improvements in the visual feedback, tapering

off robot and or visual support when the patient performance improves, may all be

incorporated into VE's, Providing feedback regarding successful goal achievement over

time creates a more effective training environment for motor skills acquisition and

rehabilitation. Of course with personalization and flexible VE's, goals can be iteratively

established, monitored, and modified.

VE's may be used to present models for observation with intent to imitate,

socially synchronous action, models for mental imaging, and various replications of limb

proxies. Proxies may be generated using the subject's own kinematic data gathered from

unaffected limb in the case of a patient with hemiparesis. In order to be somewhat

convincing, models that use biological movement programs may have an advantage, The

human brain is capable of distinguishing between biological motion (Servos, et al. 2002)

of human movement and biological motion of other animals (Pinto and Shiffrar 2009) in

a similar neural network, and linear or programmed movement and also understanding of
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actions across sensory modalities (Baumgaertner, Buccino et al, 2007). Self-perception

and other perception experiments suggest that perception and performance of the same

action alters visual-motion processes (Jacobs, Pinto et al. 2004; Jacobs, 2005) and may

provide some inspiration for further research into healthy and patient performance to gain

some additional insight into potential modulations that may be rendered through visual

sensorimotor augmentation in VE's,

To what degree will the subject's own body movement profiles augment the

therapy experience? Results of creating the VESLI proxy using biological motion and

even incorporating the subject's own motor profile, although in some cases, the motor

profile of the opposite limb, may enhance the acceptance of a virtual reality proxy and

thus provide a unique training environment wherein a patient with motor dysfunction can

achieve a level of practice not possible in his or her natural condition. Questions

regarding the success of accepting another person's biological movement profile are

beyond the scope of the present research, but leave an interesting query for future work.

Further study can investigate applications of VE exercises in specific domains of

skills acquisition, exercise, and physical therapies, and explore more of the features and

VE tools within context, It is important to investigate practical aspects as well as

effectiveness of training in the VE in control subjects and in patient populations. One

application is in the use of VE platforms for convenient and practical rehabilitation

therapies for stroke, early intervention even when the patient is weak and may not be able

to move, and to extend therapies to other motor conditions that might also advantage the

action observation network to drive plasticity for recovery of motor dysfunction,

particularly of the hand and arm, In Left-Right Therapy, or Mirror Virtual Therapy
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(MVT), the virtual proxy replaces the subject's own dysfunctional limb and associated

sensory feedback with a minor view of the functioning limb matching intention in the

same peripersonal space as the non-acting limb. Evidence demonstrates that exercise in

VE has improved the performance of patients in upper limb exercises (Adamovich,

Qinyin et al. 2007). Brain imaging studies in the present research demonstrate influence

of visual stimulation and task design on motor related brain networks (Genereux,

Augustyn et al. 2008). Increasing the potential power and influence of this novel practice

environment through methods demonstrated to recruit important motor related brain

regions might transform applications. Augmenting visual feedback using VE's for the

purpose of creating a suitable hand rehabilitation platform shows exceptional promise as

a means to substantially extend the tools available to therapists,

2.3 New Technology Improves Research and Practice

Technology innovations over the past few decades and the advancement of knowledge

within the fields of engineering and neuroscience have provided a new conceptual

framework, Multi-function sensors and transmitters with very low costs-to-entry enable

diversity in technology for a host of revolutionary applications delivered through a VE

penetrating a number of fields. The proliferation of technology advances (hardware and

software) provides an attractive platform for neuroscience research and also for motor

skills acquisition, training, and rehabilitation using existing and cutting edge

neuroscience principles; almost any experiential environment may be recreated, may also

be blended with real world objects, and may be presented through a VE safely bringing

the great majority of real world experiences into the laboratory or treatment facility for

experiments, treatments, and observation, With these innovations, the possibility of
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mapping the neurological underpinnings of sensorimotor experience in VE has become

relevant and practical.

These VE systems offer a wide range of sensory experiences, require a less

sophisticated level of development skills than previous versions, and are programmable

to the degree that they can accommodate requirements of individuals for personalization,

They can even provide accommodations for patients who have neurological disorders

making them attractive for rehabilitation, MRI compatible VE systems make significant

and important investigations into the nature of human neuroscience and motor control

and associated behavior possible, MRI compatible VE systems enable research that can

extend existing neuroscience knowledge, can provide translational applications, and can

bridge knowledge gained in animal model and human motor control research,

Exercise, training, and rehabilitation treatment interventions can exploit recent

technological advances in computing, biological signal processing, robotics and haptics.

Integrated solutions are poised to transform the nature of applications available to the

community through connectivity to extensive resources via communications channels

such as wireless, the web, private and public networks, and databases. The relative ease

of access to such technology advances enables a vast array of products and services in

many domains with compelling levels of sophistication, personalization, consistency, and

transparency never before possible,

A better understanding of the underlying neurological principles and theories of

task design manageable through design and parametrically modulated sensorimotor

experiences in VE may inform tools and protocols available for various applications, In

particular, implications of this research may serve an important role in motor skills
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acquisition, training, and in the rehabilitation of hand motor skills. There appears to be a

significant overlap of features enabled in flexible computer VE's and in the requirements

for a system to provide neuro-rehabilitation of hand function. The present research

focused upon designing and developing a suitable flexible MRI compatible virtual hands

training and research system to accommodate visual sensorimotor features appropriate for

gesture training and for rehabilitation,

Patients are assessed to determine their participation in Activities of Daily Living

(Fugl-Meyer and Jaasko 1980). Targeted interventions associated with hand rehabilitation

included in the VESLI system, are classified using the Chedoke-McMaster Inventory

(Gowland, Stratford et al. 1993), The Chedoke-McMaster is traditionally used to classify

patients by level of motor ability, and to prepare therapeutic interventions. Since the

Chedoke-McMaster has been incorporated into the VESLI system, each gesture task

relates directly to a level of function typically used to measure outcome in rehabilitation.

Each kinematic performance measurement of hand gestures included in VESLI is also

present in the Chedoke-McMaster Inventory clinical measurement system, Computerized

systems such as VESLI may offer configurable models for rehabilitation and research,

allow trials of controversial protocols, and for the development of evidence based

recommendations, The current prevailing paradigm for upper extremity rehabilitation

following a brain injury such as stroke describes the need to develop proximal control

and mobility prior to initiating training of the hand. During recovery from a lesion the

hand and arm are thought to compete with each other for neural territory (Muellbacher,

Richards et al. 2002). Therefore, training proximal control first or along with distal

control may actually have deleterious effects on the neuroplasticity and functional
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recovery of the hand. However, neural control mechanisms of arm transport and hand-

object interaction are interdependent. Complex multisegmental motor training is thought

to be more beneficial for skill retention and systems such as VESLI may serve an

important role to explore appropriate protocols and to investigate the underlying

neurological mechanisms within the same systems thereby providing advantages and

simplifying experiments. The VESLI system provides a means to easily compare findings

in behavioral studies with functional brain studies. The significant findings may then be

easily implemented into a motor skills acquisition or an exercise environment since it is

matched with the research environment.

Within the research domain, in vivo studies of the human brain in the laboratory

enabled through functional brain imaging including MRI provide a greater understanding

of the complex networks engaged during human sensorimotor experiences, This is an

exciting new path in research and translational engineering design. Innovations in human

brain research and the discoveries made through controlled manipulation of sensorimotor

experiences in current literature and also made in the present research described herein

offer a foundation for evidence-based VE human computer interface design, with

profound implications in such diverse fields as computational neuroscience,

neuroplasticity, neural prosthetics, and rehabilitation therapies, Greater understanding of

neuroscience and motor control informs design of interfaces, tasks, diagnostic

instruments, and also informs new therapies for motor rehabilitation.

Emerging evidence shows that interactive virtual environments (VE's) may be a

promising tool for studying sensorimotor processes and for a wide variety of applications

including rehabilitation. Activation of neural pathways in the brain over time has been
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associated with plasticity-based changes in various brain networks, A long term vision is

to identify the essential elements of the VE sensorimotor experience that may selectively

modulate neural reorganization for a number of applications including rehabilitation of

patients with neural dysfunction,

The very nature of the complexities of human brain networks, not present in

animal models, may be revealed through studies in human brain imaging, VE's can

support a wide array of sensory experiences, motor practice, and exercise protocols, By

using MRI compatible equipment and applications to study controlled and modulated

sensorimotor experiences, the present research uncovered important neurological

underpinnings of human interaction in VE's yielding an important research tool and also

important findings that may serve as a foundation for evidence based human computer

interface design and rehabilitation, Kinematic analysis synchronized with fMRI studies

show, for the first time, direct evidence of modulation of sensorimotor experiences and

corresponding shifts in brain activation during observation of one's own complex finger

movement, Behavioral studies and kinematic analysis using the same VE sensorimotor

experiences demonstrate personalization features, a wide range of parametrically

controllable visual sensory experiences, imitation exercises (of various models important

to rehabilitation), OTI, unimanual, mirror, and bilateral exercises, clinical evaluation,

kinematic analysis, and monitoring of movement in VE's. Instruments developed herein

can be used to identify optimal training conditions for individuals and associated

protocols including, for example, dosage, and intensity requirements. Also in future

research individuals and groups may be investigated using functional connectivity studies

to determine prognostic indicators and to predict effectiveness of specific recipes to
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achieve the desired goals. Then the same research model developed in the present

research can be used to investigate protocols, doses, and durations of treatment, other

anatomic parts, and combinations, linking connectivity, prognostic indicators,

prescription, target brain networks, behavior, and outcomes transforming the approach to

training and rehabilitation.
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2.4 Visual Sensory Experience in VESLI

Visual sensory experiences may lead in some cases to motor skills learning. VESLI is a

VE incorporating virtual hands avatars models and proxies, for visual sensory

augmentation (Kennett, Taylor-Clarke et al, 2001) for research, for brain imaging

experiments in the MRI, and for exercise of the nature typically found in rehabilitation.

Providing visual observation and imitation models incorporated into a variety of tasks

and sub-tasks with stratified complexities (Lestou, Pollick et al. 2008), establishes an

adaptive training environment to present visual stimulus and visual feedback to benefit

research, or for motor skills acquisition or for example, for the patient in rehabilitation,

Visual information alone can influence motor programs as well as multimodal sensory

experiences (Kennett, Taylor-Clarke et al. 2001), Visual errors can influence motor

cortical areas during motor learning (Muellbacher, Ziemann et al. 2001; Muellbacher,

Richards et al, 2002; Richardson, Overduin et al. 2006; Bray and O'Doherty 2007;

Hadipour-Niktarash, Lee et al, 2007) and the present research demonstrates that an

absence of visual feedback regarding movement of the hand results in significantly less

brain activation than moving and seeing the virtual hand avatar move in congruence with

the subjects' movement.

Active and rewarded practice by which one learns to use feedback to reduce

errors in movement shapes neural activity in motor and premotor areas (Wise, Moody et

al. 1998; Bray, Shimojo et al. 2007). Repeated and intentional observation of actions can

facilitate the magnitude of MEPs and influence corticocortical interactions (both,

intracortical facilitation and inhibition) in the motor and premotor areas (Strafella 2000;

Patuzzo 2003; Stefan, Cohen et al, 2005; Leonard and Tremblay 2007),
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Visual enhancement of touch has been shown to illicit changes in SI activity in

healthy subjects (Fiorio and Haggard 2005). Perception of hand and fingers appears to

take differential mechanisms. Identification of fingers is somatotopic, and identification

of hands appears to use a general body schema which is influenced by external spatial

location (Haggard, Kitadono et al. 2006) and may hold implications for methods of

exercising hands and fingers in patients, The effect of sensory stimulation (Taylor-

Clarke, Jacobsen et al, 2004; Taylor-Clarke, Kennett et al, 2004) outlasts the visual

sensory experience and occurs when concurrent visual information regarding the

stimulated body part is presented (Haggard, Taylor-Clarke et al, 2003)and has been

attributed to backward projections from multisensory brain areas (Macaluso, Frith et al,

2000; Bremmer, Schlack et al, 2001; Macaluso, Frith et al. 2005) probably in the parietal

lobe (Ro, Wallace et al. 2004) perhaps head centered within the ventral intraparietal area

(Fogassi, Gallese et al. 1996; Duhamel, Colby et al, 1998) with a representation of

peripersonal space (Graziano, Yap et al, 1994). Evidence supports the presence of direct

projections between different primary sensory areas (Schroeder and Foxe 2005;

Ghazanfar and Schroeder 2006). Even at the very basic levels, multiple sensory

integration appears to be taking place,

The VESLI avatar can provide a sensory experience whereby through

interactions, the fingers are assigned to the hands perhaps extending the possible benefits

for training and rehabilitation, Following a training experience with the avatar's

individual fingers wherein the present research demonstrates activation of the insular

cortex previously associated with a sense of agency, a number of therapies may be

readily experienced within the VE system. Neural activation during imitation exercises is
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found in the action observation action execution brain regions when using the VE system

following the training period, With VESLI, individuated finger exercises appear to draw

attention to each finger, This approach might have an advantage over other methods that

focus on moving the entire hand (Haggard, Kitadono et al, 2006) by means of directing

the brain to its model wherein each finger is represented.

An important feature of the VESLI system is that through virtual hand proxies, an

interfering effect produced by an incompatibility between body schema and body-related

visual information (Fame, Pavani et al, 2000; Pavani, Spence et al. 2000) may be

mitigated, at least for some time, during practice with VE presenting unavailable

feedback to bolster sensory experience, and also by removing views of dysfunctional

limbs. This might serve to enhance extinction effects of sensory experience of the non-

viewed limb since sensory experience benefit is enhanced for one limb when the other

limb is hidden. Bilateral condition or Mirror Virtual condition creates a duplicate of one

limb and overlaps the other limb with the desired visual feedback of a limb, Bilateral

movements are common in the real world, and bilateral exercise is an essential part of

achieving quality of life, Transfer strategies may train one limb, and then transfer the goal

to the other limb. Task oriented design offering implicit training of dexterous intransitive

gestures may be one important means to establishing an effective VE training

environment for hands. Observation, observation with the intent to imitate, and imitation

offer important vision-based protocols for exercise, There are several important

mechanisms involved,

Properties of the mirror neuron system believed to exist in the human brain may

explain the human ability to learn by imitation (Fadiga 1995; Maeda 2002; Patuzzo
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2003). VE systems might be capable of tapping into the properties of the human mirror

neuron system to stimulate secondary motor systems and plasticity of motor control

through hand imitation VE rehabilitation. Imitation exercises are more effective in

activating pars opercularis of IFG during finger lifting than symbolic or spatial cues

(lacoboni 1999 ). Higher level functioning mediates motor skills learning by imitation

(middle frontal gyrus for learning novel hand actions) (Buccino, Vogt et al, 2004), The

hypothesis is that in the presence of VE protocols, a complex visuo-neuro stimulus can be

achieved that engages mirror neurons for sensorimotor imitation, engage the insular

cortex representing a growing sense of agency, and engage secondary motor systems. It is

hypothesized that training and rehabilitation interactions in the VE might benefit

important cognitive networks, Higher level tasks that necessarily recruit brain regions

associated with movement and movement planning, or movement understanding, such as

tasks that engage Broca's Area, seem like good targets for these plasticity based

exercises.

Training in a VE that is matched for observation and action (Wheaton, David F.

Abbott et al, 2004) is appropriate since it has been shown that performance improves for

such task configurations, It has also been shown that presenting a first-person perspective

for imitation tasks, might stimulate more direct and stronger cognitive networks (Jackson,

Meltzoff et al, 2006) than third-person perspective, particularly when a subject may

encounter difficulties in performing rotations or translations,

It is hypothesized that part of the effect of viewing virtual hand movement during

VE exercises in VESLI might stimulate activation of hand-relevant parts of the brain

(right MT/V5, left and right anterior IPS, right precentral gyrus, and right inferior frontal
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sulcus (Wheaton, David F. Abbott et al. 2004)), and through action and visual feedback,

VE interaction with the virtual avatar hands might promote engagement in feelings of

ownership of the virtual hands (Ehrsson, Spence et al. 2004; Ehrsson, Wiech et al. 2007).

It is further hypothesized that during observation with intent the intent to imitate, subjects

may come to understanding goals of the observed virtual action (Hamilton and Grafton

2006), they may perceive and recognize biological movement (Servos et al. 2002) of the

virtual hand in the scene, and they may come to develop a sense of other and self-

awareness and agency (Decety, aDepartment of Psychology et al. 2006; Jackson,

Meltzoff et al. 2006). The MRI compatible VE might enable further analysis of the

feedback and feed-forward realtime dynamics of the brain network associated with the

interaction of visual recognition of actions and the control of actions (Hamilton 2006).

Studies involving humans observing computer generated, or recorded movements,

or static poses representing human movement provide some insight into the design of the

VESLI system. Humans are very good at discerning biological movements of other

humans compared with animals (Pinto and Shiffrar 2009) and linear motion even with a

few points of light defining the motion (Servos et al. 2002). Even when random dots are

used in a background, grating appeared to drift in a direction opposite to the points of

light human walking(Fujimoto 2003) activating premotor cortex (Saygin, Wilson et al.

2004). Humans are also capable of differentiating the gender present in a moving image

from points of light. Therefore, in the VESLI system, there appears to be a design

advantage for recording the subject's own movement and displaying the avatar proxy

representation using the recorded data for various visual sensory experiences (Agnew and

Wise 2008) and tasks that might be considered appropriate for training or therapy. It may
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be possible that an individual will adopt a representation created from his or her own

motor program more readily than a linear computer based program. Future work can

investigate whether a program based upon a person's own body schema may help to re-

set or reinforce many of his or her own movement characteristics, and whether a program

recorded from another human might also be effective.

2.5 Patients May Benefit from VE Training

Significant evidence of support exists for the use of features in VE's to promote motor

skills acquisition (Merians, Jack et al, 2002; Adamovich 2004; Merians, Poizner et al.

2006) and facilitate voluntary motor production. Evidence from the literature provides

insight into design principles that might be useful in a VE to augment traditional

therapies including observation of a model and imitation exercises since it is known that

action observation and action execution activate the same brain networks (Iacoboni 1999

; Buccino 2004), and while kinematic analysis demonstrates that movement observation

facilitates movement (Castiello 2003; Edwards, Humphreys et al. 2003). At the same

time, some patients with damaged action observation systems did not demonstrate the

same facilitation.

Complexity of the rehabilitation tasks themselves may present challenges for the

patient (Rushworth, Nixon et al. 1997; Rushworth, Nixon et al. 1998), There is evidence

and inspiration for visual guidance to support performance through a number of

mechanisms as in visual social models to facilitate movement through directly

(explicitly) or indirectly (implicitly) communicating the parameters or the intentions of

action (Becchio, Adenzato et al. 2006; Pierno, Becchio et al. 2006; Becchio, Sartori et al,

2008), simplifying the tasks and parametrically increasing levels of difficulty and
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complexity , and through the reduction of cognitive burden compared with self-guided

tasks (Hanlon, Buffington et al, 2005).

Direct task training appears to be important in yielding results from rehabilitation

when compared with impairment focused approaches, for example, strength training

(Kwakkel, van Peppen et al, 2004; Van Peppen, Kwakkel et al. 2004; Smidt, de Vet et al,

2005). Indeed sensory experience due to incoming information along with appropriate

task design (Merzenich, Wright et al. 1996), perhaps provided within a VE (Adamovich,

Merians et al. 2004; Adamovich 2007), might lead to an ideal platform for implicit

learning (Boyd and Winstein 2001) and intensive (Kwakkel, van Peppen et al. 2004)

exercise and practice (Liepert 2000; Liepert, Graef et al. 2000) with increasing task

complexity and motivating factors to promote sensory-enriched (Byl, Roderick et al,

2003) task-oriented (Richards, Mulavara et al. 2007) experience-dependent changes

(Nudo 1997) in synaptic and functional connectivity across multiple sessions (Press,

Casement et al. 2005), and could promote plastic reorganization (Robertson and Murre

1999; Taub, Uswatte et al. 2002 2002),

In particular, subjects who have suffered stroke may be too paralyzed to participate

in traditional rehabilitation therapies. Yet it is known that rehabilitation improves the

outcome of patients who have suffered from stroke (Jorgensen, Kammersgaard et al.

1999). These patients may be impaired in planning and guiding of hand shape posing

great demands on visual error-based processing, and putting them at a further

disadvantage. Approximately 5 to 20% of stroke survivors who have initial upper limb

impairment regain full use of the limb while about thirty to 66 percent regain no

functional use of the upper limb at six months (Sunderland, Tinson et al. 1992;
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Nakayama, Jorgensen et al. 1994) and about half of all stroke survivors are left with

severe problems (Lawrence, Coshall et al, 2001),

An interesting feature facilitated through technology enabled visual sensorimotor

experiences in VE's as therapy might involve training the upper limb using observed

virtual models and also through the use of virtual proxy feedback including mirror

images representing the subject's own limb. This technique has already been

demonstrated to facilitate learning in the untrained limb following mirror observation

training of one limb in healthy controls (Dionne and Henriques 2008). It has been

hypothesized as a beneficial therapy for patients with hemiparesis from stroke, and to

benefit amputees through pain reduction (Altschuler, Wisdom et al. 1999;

Ramachandran, Altschuler et al. 1999). Mirror images, and other likewise enabled virtual

visual sensory stimulations (see Aim 4) might be good candidates for technology

facilitated rehabilitation. By mapping the underlying neurological responses to

modulation of the selected tasks and sensory experiences in VE in the present research,

for computer interface design and rehabilitation applications, essential understanding of

the neural underpinnings enabled through this particular set of features of the technology

may become known and harnessed. The present research demonstrates a unique model

for neurorehabilitation investigation and the findings map some of the mechanisms of

virtual reality rehabilitation (August 2006; Lewis, August et al. 2006) that might lead to

plasticity based therapy.

A specific set of sensory experiences in VE's, visual stimulus for modeling and

augmented visual feedback mechanisms, such as Left-Right Therapy or Mirror Virtual

Therapy can potentially enable patients with recent stroke injury or hemiparesis who
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might be very weak to successfully participate in intensive computerized training

paradigms. A new VESLI system feature set for virtual reality hand training and exercise

was designed and developed, providing an inventory of imitation hand gestures (exercises

of intransitive hand gestures) across a range of kinematic difficulties corresponding with

the Chedoke-McMaster Inventory, and incorporating a library of language and graphic

describers based upon American Sign Language, which offers more than seventeen

unique hand shapes in its taxonomy and over 150 combinations not including finger

spelling,

In rehabilitation, compliance with mental imaging and mental practice tasks can

be difficult to confirm (Pomeroy, Clark et al. 2005). Intelligent VE can provide imitation

applications, visual guidance, and can monitor compliance, making VE an attractive

choice for rehabilitation. The hypothesis is that in the presence of VE protocols, a

complex visuo-neuro stimulus can be achieved that engages the action observation and

action execution network or mirror neurons for sensorimotor imitation, and secondary

motor systems, known to be necessary for motor output in stroke patients while providing

visual guidance, thus simplifying the tasks, and also known to benefit stroke patients as

well as older persons. It is hypothesized that training and rehabilitation interactions in the

VE might stimulate important cognitive networks. Since patients may still be in voluntary

control of cognitive networks, and may have lost motor skills, higher level tasks that

necessarily recruit brain regions associated with movement and movement planning, or

movement understanding seem like good targets for plasticity based rehabilitation, for

gain or salvage, The VESLI platform might provide helpful exercise for patients who

have suffered stroke.



58

In addition to mechanisms that directly support learning models, enhanced

sensory experiences may also support deficient sensory systems in healthy and in patient

populations, Somatosensory deficits in patients are typically related to lesions in the

primary somatosensory cortex (SI) (Wikstrom, Roine et al. 2000), Loss of body

sensations occurs in approximately fifty percent of stroke patients (Feigenson, McCarthy

et al. 1977; Feigenson, McDowell et al. 1977) affecting patients' ability to manipulate

and use objects, to feel stimuli, and can lead to a complete nonuse of upper limb even

when the limb shows normal function and limiting functional recovery of skills of

everyday living (Carey, Abbott et al, 2002), It is difficult to predict what recovery may be

possible for patients suffering the effects of stroke and in one recent case study of a

stroke subject recovery was limited to re-emergence of activation in the somatosensory

cortices (Carey, Abbott et al. 2002) while recovery of somatosensory skills preceded

neural changes observed . Perceptual and functional training methods were compared and

were found to yield similar results in stroke patients implicated in perceptual deficits

(Edmans, Webster et al, 2000)

In a recent study, visual enhancement effects were found to be inversely related to

a baseline measure of tactile acuity indicating that visual enhancement helped more when

subjects presented poor tactile abilities (Serino, Fame et al, 2007) and might be useful to

improve performance of patients. This effect is believed to be compatible with the inverse

effectiveness rule (Stein, Jiang et al, 2001; Stein, Wallace et al, 2002; Stanford, Quessy et

al. 2005; Rowland, Quessy et al. 2007) and appears to super-additively enhance

performance,
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The human brain may be capable of sophisticated levels of integration among

sensory regions, utilizing additional information presented to one modality when deficits

of other modalities or regions are present. Even in the case of healthy controls,

manipulation of sensory experiences, even without providing additional information

about the stimulus, was effective in improving performance. Serino and colleagues

hypothesized that where some residual function is present, vision might serve to enhance

tactile spatial resolution and make it more functionally useful (Serino, Fame et al. 2007).

This is an interesting area for investigation and might shed some light on important

mechanisms that if used in VE, might assist in creating an environment for learning and

rehabilitation through modulation of tasks and sensory information, By creating a safe

environment wherein sensory and task experiences can be controlled, various

mechanisms present in the human brain may be targeted, Since the system can

simultaneously monitor performance of the patient, performance may continually be

known. Variability in performance throughout sensory and task manipulation may yield

effective input for algorithms to update the rehabilitation application and to selectively

present appropriate tasks and customized sensory augmented stimulus for the individual

patient.

Functional and anatomical connections are both involved in the performance of

complex motor programs, When a person suffers a brain injury, location and physical

extent of the injury will affect the motor programs as well as the physical connection of

neural networks, blood supply, and physical structures involved in performing, Early

therapy has been credited with reducing loss of function as a plastic response, Animal

studies have resulted in such plasticity in the presence of therapy (Nudo 1997). It is
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theorized that neural networks are unmasked through Hebbian mechanisms (Hebb 1949)

and less sophisticated motor programs become activated, yielding compromised motor

functions. When this happens early in life, as in cerebral palsy, the interhemispheric

inhibition programs have not fully developed. In older stroke patients, disinhibition may

be seen between hemispheres as a result of the injury. The significance of unmasking,

changes in the balance of the inhibition and excitation, is the subject of controversy,

Structural synapses may no longer be functioning. Mechanisms advantaging bilateral

brain activities may play a role in the neural plastic recovery of these patients, (Bernstein

1967; Kwakkel, van Peppen et al, 2004) believed that the upper extremities are centrally

linked and function as a coordinative structure (Bernstein 1967), Since there is a tendency

for synchronization and coupling between limb movements, specifically a coupling

between the kinematic attributes of frequency, direction and amplitude, it has been

suggested that synergistic bilateral movements activate similar neural networks in both

hemispheres and facilitation of an inherent inter-limb coordination and might improve

functional therapeutic outcomes (Schwartz, Moran et al. 2004; Cauraugh and Summers

2005), After a stroke, the ipsilateral hemisphere plays an important role in the recovery of

function of the hemiplegic arm (Cohen, Dixon et al. 2003; Werhahn, Conforto et al.

2003) , Ipsilateral pathways from the undamaged hemisphere may contribute to the

improved movement patterns (Mudie 2000; Stinear 2004; Mudie and Matyas 2000;

Stinear and Byblow 2004). It is believed that during unilateral movement ipsilateral

neuronal activity is inhibited in order to prevent mirror movements of the opposite hand

(Cauraugh and Summers 2005; Cauraugh, Stinear et al. 2004), However, during

synergistic bilateral movements, both hemispheres are activated and cortical inhibition is
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reduced (Stinear and Byblow 2004; Cauraugh, Stinear et al. 2004; Stinear, Coxon et al.

2008). This disinhibition may allow for recruitment of undamaged neurons into new task-

related neural networks, In separate bodies of literature investigating bilateral training

positive outcomes have been shown in small studies (Mudie and Matyas 2000; Whitall,

McCombe Waller et al. 2000; Hesse, Schulte-Tigges et al, 2003; Hesse S 2003; Luft,

McCombe-Waller et al. 2004). In the system designs of VESLI in the present research,

unimanual, bimanual, hand alone, hand and arm separately, and hand and arm together

exercises (Adamovich, Fluet et al. 2008) are enabled thus providing a rich platform for a

continuum of therapies, experiments, and exercise protocols.

Training with the ipsilesional limb, or the unaffected hemisphere (UH), might

offer a paradigm to stimulate neurons associated with movement in the affected

hemisphere (AH). This conclusion has been made in a number of studies investigating

various mechanisms of motor skills learning. Depending upon the techniques used,

results appear to be related to the retained neural connections, Understanding the

combination of these retained neural connections and appropriately selected therapies

appears to be a key to improving recovery through training. There may be an important

role for the unaffected hemisphere. Meanwhile, the retained networks may have some

adaptive characteristics or alternative mechanisms that play a role in the lack of recovery

frequently observed in the population of patients, for example, a change in inhibition

among neural representations of the hand region may serve to enhance cortical loss to

other body parts, It is also important to consider brain mechanisms required by virtue of

the task design itself (Shallice, Stuss et al, 2008), Perhaps retained networks might

interfere with development of new networks in some types of therapies. Literature
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provides some inspiration to pursue investigating mechanisms of retained networks to

drive some skills acquisition in the affected limb, Programming and recognition of motor

actions involves the premotor cortex (Freund and Hummelsheim 1985; Fadiga, Fogassi et

al. 1995; Jeannerod, Arbib et al. 1995). Prefrontal cortex is involved with self control of

cognition and action and is also involved with selecting strategies for problem solving

and trouble-shooting (Damasio 1989;Vogt, Buccino et al. 2007;Shallice, Stuss et al.

2008). Prefrontal lesions may reduce the patient's awareness of these deficits. In addition,

it may become more difficult for the patient to apply compensatory strategies for

overcoming the deficits (Stuss, Murphy et al, 2003), Therefore, task design and strategy

of practice might support alternatives that accommodate patients implicated for this

dysfunctional strategy. Virtual visual sensory augmentation, stimulation and task design

might provide an important intervention in this situation.

Skills learned in one limb might be transferred to the other limb, offering another

mechanism of plasticity to tap for rehabilitation and skills acquisition. Handedness scores

are related to factors that might influence intermanual transfer, such as engagement of the

ipsilateral hemisphere during movement (Dassonville, Zhu et al. 1997) and corpus

callosum volume (Witelson 1985; Witelson 1989), Researchers tested whether the degree

of handedness is correlated with transfer magnitude of sensorimotor adaptation of

sequence learning in hand skills and results indicated that less strongly left handed

individuals exhibited better intermanual transfer, while less strongly right handed

individuals exhibited better intermanual transfer. These findings suggest that involvement

of the ipsilateral hemisphere during learning may influence intermanual transfer

magnitude (Chase and Seidler 2008). In a functional imaging study focusing on right
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handed subjects, prior right-hand practice led to reduced endpoint errors but not

trajectory errors for the left hand and is consistent with work showing that the right arm is

specialized for trajectory control while the left is specialized for endpoint control

(Sainburg 2005).

Early adaptation processes were associated with activation in frontal and parietal

regions, including bilateral dorsal premotor cortex. At transfer, activation was seen in the

temporal cortex as well as the right medial frontal gyrus and the middle occipital gyrus,

and findings suggest that the left dorsal premotor cortex contributes to trajectory control,

while the left visual and temporal cortices contribute to endpoint control (Anguera,

Russell et al. 2007), Therefore, unimanual exercises, transfer exercises, and bilateral

exercises might offer good practice for a patient and perhaps varying mechanisms by

which they influence rehabilitation of dysfunction, providing a feature for providing a

variety of therapy tasks and mixing it up, Even learning the skill with the unaffected

hand, particularly if it is the right or dominant hand, might offer some benefit through a

specialized mechanism that facilitates transfer of skills to the other hand. Definitions of

the goals and abstract representation of those goals in the memory of the patient might

cause some problems in imitation and hand gesture production (Hermsdorfer, Hagl et al.

2004), however, some retained skills might enable patients to produce desired skills

under certain conditions (Hermsdorfer, Goldenberg et al. 2001). Studies of apraxia

(Basso, Capitani et al. 1980; Kertesz and Ferro 1984; Basso and Capitani 1985) indicated

that parapraxias were found to accompany frontal, parietal and subcortical lesions. It

might be helpful to define neurological underpinnings of the complexities of these tasks

to provide a more informative guide to therapy,
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For example, there are various adaptations made by patients with apraxia that

seem to result in symptoms rather than the symptoms being an expression of the apraxia.

Research implies that the basic deficit manifesting in apraxic errors concerned the fact

that the patient had an inadequate representation of the motor target position and if

patients tried to compensate for their inadequate abstraction of the target location,

movement kinematics deteriorated although patients were not always aware of the nature

of the problem. They eventually succeeded in reaching the correct position or if they do

not succeed, apraxic errors and degraded movements resulted,

Research evidence implies that a rehabilitation practice environment that

compensates for inadequacies in problem solving strategies related to goals of the

movement might offer an accommodation for those who have prefrontal lesions thought

to interfere with awareness of deficits as well as the ability to apply compensatory

strategies for them (Stuss, Binns et al. 2002), The VESLI system offers intransitive

gestures imitation and practice with options to use the 1 St person proxy to view successful

execution action of the goals, and by offering Left-Right Therapy, or MVF that visual

sensory manipulation can be configured for bilateral, unimanual, or other movement

practice. The VESLI system seems to be ideally suited to accommodating these important

issues and this accommodation might be very difficult in the real world, In a traditional

rehabilitation environment, several challenged skills may be necessarily tapped in the

hemiparetic patient. The subject will almost always be required to perform motor skills

without perfect feedback of a well-functioning limb, with compromised sensations, with

compromised memory skills, or while attempting mental imaging of the movement and

or gazing at the ceiling. Even in the cases when therapists request the patient to close his
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or her eyes and imagine performing the skill, dysfunction may interfere with adequate

mental imaging, Some patients have difficulties following verbal orders or initiating

movement following another cue. Establishing an imitation model reduces the anxiety

and concern about mental imaging and other types of compliance. Reach to grasp tasks

necessarily complicate tasks by incorporating hand shaping and complex three dimension

location and positioning problems. The subject will almost always be required to abstract

the goal or target location and or follow instructions, often verbal, which challenge the

cognitive skills following a lesion. Patients perform better in implicit learning tasks than

in explicit tasks. VESLI transforms all these complexities providing an intransitive, direct

imitation model with no demand on memory, interpolation, or interpretation, In

sensorimotor experience in VE's, subjects may receive visual sensory input representing

the instructions for imitation, and also the 1 st person feedback of virtual limbs performing

the task. VESLI therapy might be well-suited to patients to have difficulties formulating

abstract goals and performing without perfect visual feedback, The latter condition has

not been easy to identify until the creating of the VESLI system wherein patients may be

studied for their response to seeing dysfunctional visual feedback of their limb, compared

with very good concordance of visual feedback based upon the Left-Right Therapy or the

MVF. There may indeed be particular groups of patients who will benefit more from the

visual support of a VE sensorimotor experience due to the nature of their dysfunction,

2.6 Stroke Statistics

Approximately	 906,000	 Americans	 sustain	 stroke	 annually	 (ASA

http://www,strokeassociation.org), with incidence remaining constant over the last 3

decades. Although mortality has decreased, stroke is the third leading cause of death in
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the United States behind diseases of the heart and cancer and is the leading cause of

disability, with an increasing number of survivors requiring rehabilitation. Stroke related

medical costs and costs of disability were forecasted to be $62,7 billion for 2007 .

2.7 Residual Deficits

With approximately two thirds of survivors experiencing residual neurological deficits

impairing function, and only about five percent regaining full arm function (Gresham,

Fitzpatrick et al, 1975) and about two thirds experiencing ongoing neurological deficits,

in spite of therapy, About fifty percent suffer hemiparesis after six months. About twenty

percent regain no functional use of the arm, interfering with activities of daily living such

as dressing, bathing, self-care, and writing (Gowland, deBruin et al. 1992), Even when

demonstrating high function in clinical tests, there is a reported reduced actual use of the

limb in real life situations, The result of these losses includes limitations of

independence, and reduced quality of life. This is an indication that research is needed to

increase the prospects of recovery for survivors of stroke. Research is needed that

addresses the recovery processes of more people who are more affected by stroke.

Improvement in recovery can offer hope to avoid dependence on relatives, nursing

homes, accidents, emergencies, hospitalizations or other interventions, Recovery can give

people back their lives.

2.8 Variability of Clinical Outcomes

Variability of clinical outcomes may be explained by a number of underlying

mechanisms including issues involving circulation and blood supply. There may be

reabsorption of the edema, variable perfusion, and collateral blood supply contributing to
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successful improvement, The ischemic penumbra, the tissue surrounding the lesion and

its necrotic region, has the potential to recover in the presence of sufficient blood supply,

However, if blood supply is not preserved, very quickly post-ischemic or post-anoxic

long-term potentiation occurs (believed to be a plastic mechanism) (Rossini and Dal

Forno 2004).

2.9 Shifts in Brain Activations During Recovery

In humans, early movement post-stroke is associated with massive recruitment of motor

regions (attention-dependent movement) whereas patients who experience a full recovery

have functional studies that are indistinguishable from healthy subjects (shift to

automated performance) (Ward, Brown et al. 2003; Ward, Brown et al, 2003), Changes

in brain activation during motor tasks may be observed in regions remote from the region

of the lesion. The remote activation seen in functional studies may represent diaschisis or

a compensatory strategy. Compensatory strategies might give clues to paths of or

obstacles to recovery, Or they might reveal other processes affected by the brain injury.

2.10 Motor Changes in Both Limbs

Motor skills changes take place in both limbs; in ipsilateral limb, changes are observed

such as subtle impaired dexterity (nonparetic hand), (Yelnik, Bonan et al, 1996; Marque,

Felez et al. 1997; Sunderland, Bowers et al, 1999; Sunderland 2000) , increased

movement segmentation, and impaired segment coordination.
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2.11 Brain Networks of Patients

Many people suffering hemiparesis following stroke fail to make a full recovery. The

potential for an individual recovery is not fully known, Functional brain imaging studies

are being used to reveal important information about the underlying neural basis of motor

skills learning and recovery, yet much remains unknown. Likewise, little is known about

the neuroanatomical conditions of patients, and how that condition relates to potential for

recovery or the nature of appropriate therapy, Research is needed to understand necessary

networks that might be required for therapies to be successful,

Recent advances in brain imaging demonstrate that connectivity may be

determined from resting state fMRI (Fox, Snyder et al. 2005) the patterns are shown to be

altered in patient populations using task-based methods (Quirk and Gehlert 2003; Heinz,

Braus et al, 2005; Pezawas, Meyer-Lindenberg et al. 2005; McClure, Monk et al. 2007).

Resting state fMRI can be used to investigate intrinsic differences in brain activation

networks of interest without potential confounds of the group differences (patients and

healthy controls) in task performance and might be useful in personalization or

determining therapy strategy for individuals. Still, the measures of patient groups will

yield important information needed to understand disease state and potential for recovery

including prognostic indicators, connectivity and anti-connectivity (Fox, Snyder et al.

2005), dynamics of the brain networks in active and deactive conditions, Such studies

might also yield important information about brain networks to target with therapies for

recovery (Price, Mummery et al, 1999).
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2.12 Rehabilitation

The goal of rehabilitation is to reduce impairment and provide functional improvements

resulting in quality participation in activities of life (Dobkin 1998; Cramer 2008).

Technologies play an important role in today's rehabilitation environment. In addition to

the intrinsic values of technologies such as increasing access and reducing work,

extending the rehabilitation capabilities from the clinic to the home and community

(Deutsch, Lewis et al. 2007; Holden, Dyar et al. 2007), maintaining consistency,

analyzing lots of data easily, measuring and tracking and more, there are implications of

customization, personalization, and perhaps most importantly, of affects on the brain

through various mechanisms (August 2006), of various types of technology-enabled

therapies including virtual reality, robots, haptics, and TMS (Patton, Kovic et al. 2006;

Riener 2007; Adamovich, Fluet et al. 2008; Bolognini, Pascual-Leone et al, 2009).

Technology supported platforms may uniquely facilitate multimodal and interdisciplinary

approaches to rehabilitation, neurorehabilitation and research (Hlustik and Mayer 2006).

Technologies can fill an important niche if they enable broad feature sets relating to the

activities appropriate in training and rehabilitation. Desired features include the ability to

apply systematic modulation of sensorimotor experiences, particularly if these

modulations are a benefit above real world experiences by virtue of their presence, ease

of use, accommodation of disabling conditions, through a number of means such as

clever presentation, repetition, manipulation, task design, cognitive support (McEwen,

Huijbregts et al, 2009), sensory support, to transform the therapy location, or to enhance

available experiences,
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2.13 Significance

The present research combined behavioral and brain mapping techniques to investigate

mechanisms of visual sensorimotor experience in VE in a new training and research

model, For the first time, as part of the present research, an MRI compatible flexible VE

capable of providing sensorimotor modulations and concurrent measurement of

performance, kinematics, brain imaging, and behavior has been developed for training,

research, analysis, and functional imaging brain mapping in health, in ageing, and

disease. Visual sensorimotor experience in VE were investigated covering observation,

OTI, and imitation of simple and complex hand gestures using virtual teacher models in

1 St and 3'1 person perspective, and virtual hands proxy in 1 St person perspective replacing

the subject's own hands in the tasks, and in control conditions. Future work may use the

same research and training model to uncover many aspects of interacting in a VE with

modulations in sensorimotor experience. Controversial protocols may be investigated

using the present model to elucidate conditions conducive to exercise and motor skills

acquisition in VE. Training conditions promoting safe and effective therapies early

following cortical injury (demonstrated to reduce loss of cortical representation) may be

investigated and implemented,



RESEARCH AIM 1

Aim 1) To design and develop an accurate and reliable MRI-compatible interactive VE

for training and research,

3.1 Virtual Environment Sign Language Instruction System

The VESLI System was designed and developed to provide a sensorimotor learning

platform for research and training, for motor skills acquisition, and rehabilitation, for

kinematic, subjective, and behavioral measurements, in the laboratory and for use

functional MRI imaging studies.

The fMRI compatible Virtual Environment Sign Language Instruction System, or

VESLI, provides VE sensory experiences incorporating the virtual arm and hand (1 st

person and 3 rd person virtual teacher avatars) for studying and for improving complex

fine and coordinated motor skills of the fingers, referred to as Hand-Alone (HA), or the

hand and arm as a unit referred to as Hand-Arm-Together (HAT), or Hand-Arm-

Separately (HAS). VESLI may be used as a motor skills acquisition training system, a

rehabilitation system, and to investigate the kinematic, behavioral, and neural correlates

of sensorimotor learning in a VE. A behavioral study was completed as part of the

research in Aim 5, Functional brain imaging was used to investigate the nature of neural

activations associated with training simple finger flexion and movement sequences with

these virtual hands avatars in 1 st person perspective in the VE, and the nature of neural

activations associated with modulated visual sensorimotor experiences in VE's

71
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including: training with virtual hands, modulating visual feedback — changes in gain

between subject's physical movement and the movement displayed by the virtual hands,

and the Left-Right Therapy, wherein a Mirror Virtual Feedback, left virtual hand

movement is displayed when the subject moves his or her right hand, Future research

will include fMRI studies incorporating practicing gestures and language tasks, The

future studies will investigate correlation between behavioral and neural correlates of

sensorimotor learning of transitive and intransitive gestures, observation and imitation of

gestures, influence of vision on complex hand motor skills, etc, in the VE, An important

feature of the VESLI system is that through virtual hand proxies, an interfering effect

produced by an incompatibility between body schema and body-related visual

information (Fame, Pavani et al, 2000; Pavani, Spence et al. 2000) may be mitigated, at

least for some time, during practice, It is the goal of the present research to begin to

uncover controllable aspects of the sensorimotor experience in VE's that might

strategically enhance the exercise experience for individuals and patients. The MRI

compatible VESLI system may be useful in the investigation of the neural underpinnings

of hand eye coordination and the complexities of how the vision system informs the

individual's perception of self and motor space,

3.2 VESLI System Introduction

This chapter describes the Virtual Environment Sign Language System Instructor

(VESLI) features and functionality including: the taxonomy of hand gestures selected for

VESLI, the procedure for classifying the hand gestures by levels of difficulty,

descriptions of the avatar models, and sample hand gestures rendered in VESLI,

Exercises included in VESLI are described in this chapter. Chapter 6 describes the
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behavioral experiment conducted using this system and all the experimental findings, A

complete list of hand gestures and associated levels of difficulty included in VESLI may

be found in this chapter.

There is little information on: the relationship between various virtual sensory

stimulations and neural processing, the effect of these stimuli and the perception of self

and other (agent or teacher) on motor learning (David, Bewernick et al, 2006;

Corradi-Dell'acqua, Ueno et al. 2008), the science of task design and relationships with target

neural processing, and how to exploit modalities available in VE's to access target neural

correlates (August, Lewis et al, 2006), Many of the studies regarding imitation of hand

gestures available in the literature rely on phenomenological data and or are limited in

action observation during brain imaging. Studies are limited by use of still images in the

fMRI for imitation hand shapes, fist, scissors, gun (Bhimani, Hlustik et al. 2006), and

sequential piano key tasks developed along the model of Luria's postulates, and is further

limited by the fact that the subject cannot see his or her own hand as he or she performs

the hand shaping task, creating a greater demand on the skills of proprioception in the test

environment and missing the opportunity to discover other visual influences and

associated networks engaged.

Learning or relearning a motor skill is hypothesized to involve a widespread and

distributed neural network where sensory input and proprioception are integrated in a

variety of configurations. Learning in controls and patients may be vastly different in a

number of ways. It may be some time before sufficient research can be conducted on

controls and patient populations to understand the neural underpinnings of rehabilitation

and how it may be similar to motor learning or differential to it (Baron, Cohen et al,
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2004), Engaging specific sensory experience in VE for motor learning and rehabilitation

may provide a select mechanism to address attention, and to selectively engage specific

sensory networks in a learning process, not necessarily the only learning process. Brain

regions involved include but are not limited to regions associated with 'mirror neurons,'

regions associated with action observation and action execution (Rizzolatti and Craighero

2004). Literature indicates that neural models fail to incorporate all known function for

given anatomic structures, Broca's area (Iacoboni and Wilson 2006), traditionally

associated with language, is also implicated in premotor function and is demonstrated to

be active when finger imitation tasks are performed (Tanaka and Inui 2002), providing

evidence for task design in dexterous finger rehabilitation. Tasks may be designed in

VE's that necessarily access neural correlates including Broca's area, VE's enable

observation of novel hand tasks for imitation and also enable the subject to observe his or

her own hands producing the hand gestures during rehabilitation, in the behavioral lab,

for fMRI, and for TMS studies, while sensory stimulus and feedback may be modified to

explore a variety of learning protocols.

A variety of hand and arm exercise games and simulations have been developed

in virtual reality and have been used successfully to train patients who have suffered

stroke, improving their function even after training ceased (Adamovich, Fluet et al.

2008). Another hand exercise system has been designed and developed to incorporate

additional features and to extend research to include functional brain imaging (August

2006; Lewis, August et al, 2006) and memory (Davachi 2006),

To further clarify the biological model of motor learning and to understand the

role of virtual sensory stimulation and feedback which includes seeing one's own hand
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movement, it is important to study the underlying science, to develop functional brain

mapping of sensorimotor learning in the VE and correlate the kinematics, behavioral

measurements, and outcomes. Understanding resting state connectivity (Biswal, Yetkin et

al, 1995) in health, aging, and disease is important in developing prognostic indicators

and in differentiating healthy and impaired populations, and in understanding the nature

of recovery and how it might relate to healthy learning processes and is outside the scope

of the present research. With such future efforts, one may predict the success of task,

application and interface design for sensorimotor learning in VE's that can accomplish

desired learning conditions for specific goals, and characteristics of target audiences may

become better understood.

For Aim 5 of the research, VE behavioral experiments were conducted in the

laboratory where the subjects followed a learning and memory protocol. The subjects

observed with intention to imitate (OTI) a virtual actor (avatar) in either 1st person

perspective (1PP) or 3rd person perspective (3PP) demonstrate American Sign Language

(ASL) gestures accompanied with either text or picture descriptions, The subjects

imitated the hand gestures beneath a special two-way mirror in either 1) a hidden

(control) or seen condition, or 2) hidden (control) or virtual hand condition. The subjects

then performed memory tasks to identify gestures as familiar or new, provided definitions

from two choices, and indicated source of the initial learning condition as either text or

picture, Speed and accuracy in remembering the item and source and accurately rejecting

new signs presented as lures during the memory session, determined whether seeing the

hands or seeing the virtual hands during practice contributed to remembering each sign,

its meaning, and also remembering source learning conditions. This research revealed
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whether seeing hands or virtual hands during motor learning of hand gestures improves

learning over not seeing hands or virtual hands during practice of hand gestures in a VE,

Findings indicated that for the healthy control subjects who participated in the

study, all subjects were able to follow instructions, to observe, OTI, and imitate the hand

gestures demonstrated by the virtual avatar instructor, and answer the memory questions

presented to them using the keyboard to indicate selections. The VESLI system

functioned as designed and was successful in presenting the VE sequences and in

capturing all experimental data,

The same experimental tasks may be repeated in future studies in the fMRI for

brain mapping of neural correlates associated with viewing virtual hands actively making

gestures, OTI, or imitating virtual agent in 1st or 3rd person perspectives during learning,

and to uncover neural correlates in initial condition when successful gesture memory has

taken place. Interesting comparisons for functional brain analysis include: initial brain

activation condition when gesture is successfully recalled, initial brain activation

condition when the initial study pair definition is recalled, differences in recognition

strategies of picture or text definitions, the effects of teacher perspective on brain network

activation and recall. Also, resting anti-correlation studies would provide interesting

contrast between successful learners and those who produce more errors, or between

ages, or between healthy control subjects and persons who have suffered from some

motor dysfunction injury such as stroke,

The present research study focused on virtual sensory experiences, the virtual

hands and gesture learning models including those described elsewhere in this document

may be incorporated into protocols for motor skills acquisition, or rehabilitation, It is
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believed that an action-observation action-execution network is activated when a human

observes another and when one observes another with intention to imitate (OTI)

(Buccino, Binkofski et al. 2004). Current rehabilitation models endeavor to employ

practice-induced plasticity, to stimulate action-observation action-execution networks or

`mirror neurons,' to stimulate other known neural mechanisms of skills acquisition or

learning (Buccino, Solodkin et al, 2006), employ protocols such as observation with

intent to imitate OTI, incorporate therapies such as bilateral exercises (Carson 2005), and

simulation for bilateral, unimanual, mirror, and contralateral hand exercises. VESLI

features include tasks involving intransitive meaningful hand gestures from the American

Sign Language (ASL) focusing on fine motor control, isolated finger control, and

coordination, In dyspraxia and apraxia, there is motor deterioration, diminished accuracy,

speed, and force, The Virtual Environment Sign Language Instructor (VESLI) system

incorporates hand postures or gestures for practice and learning, The VESLI system has

included intransitive and meaningful hand gestures from ASL in order to engage common

brain areas involved with motor planning networks and communication neural pathways

such as Broca' s area. Intransitive gestures are believed to simplify the imitation task,

particularly for persons with brain injuries, over transitive gestures involving tool use or

tool abstraction, Tool configurations and three dimensional space configurations are not

required in the ASL gesture imitation task, thereby simplifying the task from a neural

processing point of view. In addition, each hand gesture has been analyzed for difficulty

in motor skill production using the Chedoke-McMaster Impairment Inventory for Skill

Level. The ASL taxonomy and associated content provides an easy and systematic means

to reference the gestures (to be practiced and recalled). Of course, the same VESLI
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system may be used for tool demonstration, OTI, and imitation tasks using real, virtual,

or blended objects, Various protocols may be administered depending upon level of

impairment. Hand dexterity and imitation exercises may be presented in increasing levels

of kinematic, task component, or abstraction difficulty using the VESLI system. Reach to

a target may be separated from the basic hand practice task, facilitating the exercise for

patients who have diminished abilities to deal with abstraction of targets, or spatial goals,

Direct imitation may enhance abilities of those who have difficulties: following explicit

instructions, using mental imaging, or using another sensory modality (such as hearing),

An important feature of the VESLI system is that through virtual hand proxies, an

interfering effect produced by an incompatibility between body schema and body-related

visual information (Fame, Pavani et al. 2000; Pavani, Spence et al. 2000) may be

mitigated, at least for some time, during practice. It is the goal of the present research to

begin to uncover controllable aspects of the sensorimotor experience in VE's that might

strategically enhance the exercise experience for individuals and patients,

Dosages may be controlled within the system and analysis of progress may be

made from behavioral measures offered through tasks accomplished using the system and

from kinematic analysis of hand gesture production,

The VESLI System has a simple user interface to prepare and administer exercise

protocols, comprising a number of features including but not limited to: observation with

intent to imitate (OTI), observation for mental imaging, Left-Right Therapy, Mirror

Virtual Feedback (MVF), intense practice environment, error-less feedback, etc. A simple

text file is created to select the list of gestures for practice, to indicate the definition style,

and to arrange the speed, repetition, and components of the testing conditions. The
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VESLI System also records and automatically analyzes subject responses to simple

memory questions for gesture and meaning recall. Kinematics are recorded. Matlab

programs analyze kinematic properties of the gesture production recorded by the data

gloves and Flock of Birds and can also compare performance with a model. Kinematic

analysis may compare gesture production over time, and also may compare the affected

hand with the less affected hand to assess performance based upon the subject's own

neurological movement model.

Virtual Reality (VR) within a VE provides useful rehabilitation applications and

simulations, motivation, and feedback, for motor skills acquisition for healthy subjects,

and for rehabilitation for example, for chronic stroke patients, and others who might

benefit from intensive attended, massed therapies required to take advantage of brain

plasticity to modify neural organization and improve motor skills during the chronic

phase after a stroke and may also offer opportunities for acute stroke therapies. Several

features of the VESLI System may be used even when the subject is paralyzed.

Traditional therapies require that the person who has suffered from a stroke be capable of

moving the finger at least 10 degrees before participating in rehabilitation activities,

However, the VESLI system may generate visual therapy. By itself it may provide a

passive, or a visual sensory augmented activity,

The VE system may be used as a means to deliver therapy, as a method to

monitor patient compliance by measuring patient responses, as a method to objectively

measure patient motor skills and kinematics, behavior, and learning by direct and indirect

means, It is also as a means to deliver task experiences for functional MRI brain

activation studies. For these reasons, VE's such as VESLI play an important role in
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research for motor skills acquisition, for therapeutic methods and for their correlation

with motor skills performance, behavioral learning, subjective experience, and for

understanding the underlying mechanisms of plasticity-mediated therapies.

During brain imaging studies, training using virtual hands in a VE elicited desired

brain activations associated with motor skills thought to be important for rehabilitation of

the paretic hand, The systems used also enable low-cost freely-moving measurement of

joint excursions in a variety of settings including research, the clinic, community center,

or in the patient's home during free exercise or during imitation joint excursion

maneuver, VESLI combines sensorimotor stimulations with imitation tasks for the hand

and fingers for a rehabilitation and sensorimotor learning experience in a VE.

3.3 VESLI Gesture Training System

VESLI uses finger, hand and arm gesture imitation protocols. First person and third

person perspective avatars demonstrate American Sign Language hand gestures with

definitions given in text or picture thereby increasing the flexibility and customization

properties of training protocols.
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Figure 3.1 VESLI Teacher Avatar in Third PersOn Perspective and First Person

Perspective.

Subjects who are unable to read are not restricted: they may find picture

definitions Of hand gestures to be helpful in rehabilitation, Subjects might perform better

when imitating first or third person perspective avatars. Also, subjects might perform

better in either picture or text mode. VESLI System features may include audio

definitions or sound effects for increased sensory experiences. In addition to observation,

sounds such as tearing paper are also believed to actuate 'mirror neurons'. Sound is often

used as a stimulus for movement therapies, for example, metronome or music is used to

provide rhythm for gait training. Future research will investigate sound as a sensOry

stimulus in VE's for motor skills acquisition. RobOt assistance such as CyberGrasp

integrated with VESLI can assist the subject in performing the gestures, Analysis of

subject preferred sensory and learning modes may be evaluated using VESLI data

collection and analysis module, and results may be used to craft an ideal motor learning

VE experience for the subject.
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The initial VESLI System was designed to focus on hand and finger rehabilitation

and includes hand shapes associated with varying motor skills levels. American Sign

Language hand gestures with their Own codified taxonomy are included in the VESLI

designs. Hand shapes from ASL were compared with the scale described in the Chedoke-

McMaster Assessment Hand Impairment Levels frequently used to classify patients with

similar rehabilitation goals, as well as the Fugl-Meyer. These scales are used by

clinicians in order to measure changes in physical function, and to assess impairment in

physical function. Signs used in the present research studies were nOtated and organized

in the database for levels of difficulty according to the referenced scales and performance

measurement techniques with Angel, for example at level 3 and Cage, for example at

level 5.

Figure 3.2 ASL Sign "Angel" Difficulty Level 3



83

Figure 3.3 ASL Sign "Cage" Difficulty Level 5.

Of course, hand together with arm (HAT) performance might similarly be

assessed using Chedoke-McMaster Stroke Assessment and Fugl-Meyer hand and arm

impairment scales, and correlated with ASL or Other codified Or develOped gesture

system to include finger, hand and arm, or simply to focus on isolated arm protocols.

Skills may be traversed from simple to more complex as the individual progresses

thrOugh rehabilitation. Biometric data may be gathered from the sensors in the gloves

used in the VESLI System to determine functional level of performance of the individual.

VESLI features enable unilateral, bilateral, and mirror exercises or time shifted

exercises with or without concurrent robotic assistance. The VESLI system may be used

to reverse gestures. Movements noted for the right hand may be demonstrated and

imitated using the left hand, increasing the flexibility of the system to provide custom

rehabilitation protocols, Mirror protocols may be achieved simply by using biOmetrics

captured by the glove of the unaffected hand and actuating opposite or both virtual hands

with the same data. VESLI Mirror hand features may be incorporated into Hand Alone

(HA), Hand and Arm Together (HAT), Or Hand and Arm Separately (HAS) protocols.

Future research is to investigate transfer of the skill to the affected hand.
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Gestures in the database have been classified for Symmetric motion. These

Symmetric motion gestures are compatible with VESLI Mirror exercises enabling

simultaneous mirror image of the skilled hand to overlap the hemiparetic hand for

rehabilitation. In this VESLI Mirror feature, biometrics from the skilled hand are

captured and are used to animate the virtual hand representing the less-skilled hand,

providing a unique sensory experience for rehabilitation that may not easily be achieved

outside the VE. The subject may therefore participate in rehabilitation, even if he or she

cannot move his or her own hand enough to participate in traditional therapies.

Traditional rehabilitation typically requires a twenty degree minimal MCP joint voluntary

movement of the affected hand. VESLI features might offer rehabilitation even to people

who cannot participate in traditional therapies. VESLI Mirror therapy might be ideal for

early intervention for acute stroke. An example of a gesture that may be used in bilateral

symmetric exercise such as Left-Right Therapy or Mirror Virtual Therapy (MVT) is

Lobster figure. In addition to providing an environment wherein a proxy hand model may

be used, VESLI may be used with the subject's own hands hidden during practice.
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Figure 3.4 ASL Symmetric Gesture for Virtual Mirror Exercise.

The VESLI System may be used to provide sensory motor training and Memory

Exercises to engage target brain regions associated with learning hand gestures and

rehabilitation of the hand, Gestures may include transitive (associated with tool use or

pantomime of tool use) or intransitive (associated with language and not tools) and

believed to be easier to imitate, The system measures and provides feedback of

performance as the subject selects definitions of previously practiced hand gestures. It is

believed that such tasks necessarily actuate target regions associated with hand

movement planning such as Broca's Area, and provide observation opportunities, This

method represents a unique hand therapy technique. In the example, a subject sees two

pictures, Cat and Lobster, and One gesture, The subject selects the picture associated with

the gesture,
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Figure 3.5 VESLI Memory Task - Select the Definition for the Hand Gesture,

3.4 VESLI Uses American Sign Language

A database Of American Sign Language gestures and definitiOns including illustrations

has been included in the VESLI System fOr imitation protocOls. Gestures are

demonstrated by avatars in 3 rd Person Perspective and in 1 St Person Perspective for

flexibility and to accommodate to subject's individual learning style. Some individuals

have difficulty rotating signs demonstrated by 3' 1 person avatars and may benefit from

direct imitatiOn Offered by the 1 st person avatar,

Within the American Sign Language, there are approximately 150 hand shapes,

Not including finger spelling, there are seventeen ASL hand shapes cOnsidered to be

phonemically distinct, In order to identify the motor related complexity or difficulty in

producing hand gestures included in VESLI, the following classification systems were

used to rate and grOup the gestures:
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o	 Chedoke McMaster Stroke Assessment (CMA), The Impairment InventOry for the

arm and hand is quantified using a seven point staging system and has been shown to

have excellent validity and reliability (Gowland, Stratford et al, 1993).

o 	 Fugl-Meyer. The shoulder/elbow/wrist/hand section (Fugl-Meyer et al,, 1975). This

scale is perhaps one of the most commonly utilized tests of impairment and has strong

validity and reliability scores (Sanford, Moreland et al. 1993; Platz, Pinkowski et al.

2005; Woodbury, VelOzo et al, 2007) ,

The ASL hand shapes have been classified using the Chedoke-McMaster Stroke

Assessment and Fugl-Meyer. The following relationship between the hand shapes and

the Hand Impairment Levels was determined:

• the fist for ASL letters A, S, T, or 10 correlated with Chedoke-McMaster Stroke
Assessment, Mass Finger Flexion, Hand Impairment Level 3

• the "okay" hand with thumb touching index finger for ASL letters F, or 9,
correlated with Pincer Grasp, Hand Impairment Level 3

Figure 3.6 ASL Gesture for Cat,
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• the flat hand for ASL letters B, or 4 correlated with Mass Finger Extension, Hand
Impairment Level 4

• the spread and sometimes clawed hand for ASL letters E, or 5, correlated with
Abduction With Extension, Hand Impairment Level 5

Figure 3.7 ASL Gesture for Cage.

• the thumb touching pinkie as in ASL letters W or 6, correlated with Pinkie
Extended and Thumb Pincer, Hand Impairment Level 5

• the thumb, index, and middle finger extended as in the ASL 3 hand, correlated
with First, Second, and Third Digit Extension With Fourth, and Fifth Digit
Flexion, Hand Impairment Level 5

• the pinkie with thumb and/or index finger, or a spread hand with bent middle
finger as in the ASL letters Y, 8, "devil's horns", bent middle-finger, and "I love
you" or airplane hands, correlating with Isolated Thumb, Index, and Fifth Digit
Extension With Third and Fourth Digit Flexion, Hand Impairment Level 5

• the index and middle fingers together for ASL letters U, H, Or N, correlating with
Abduction With Finger ExtensiOn, Hand Impairment Level 5/6

• the index and middle fingers apart for ASL letters V or 2, correlating with Hand
Impairment Level 5/6
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Figure 3.8 ASL Gesture for Lobster.

• the thumb and index finger apart for ASL letter L, correlating with Thumb
Abduction With Index Finger Extension, Hand Impairment Level 6

• a pointing index finger for ASL letters D, B, Z, Q, and 1, correlated with Pistol
Grip Then Flexion, Hand Impairment Level 6

• a hooked index finger for ASL letter X, correlated with Pistol Grip Then Flexion,
Hand Impairment Level 6

• the "chopsticks" hand for ASL letters K, or P, cOrrelating with Third Finger
Lumbrical Extension With Second Finger Extension, Hand Impairment Level 6/7

• the thumb tOuching fingertips fOr ASL letters 0, or M, cOrrelated with Thumb
Touching Tips, Hand Impairment Level 7

• the cupped hand for ASL letter C, correlated with Cylindrical Grasp, Fugl-Meyer

• the crossed index and middle fingers as in ASL letter R, correlated with Extension
of First and Second Fingers, Adduction With Crossover, Fugl-Meyer

• a pointing pinky finger then hooked for ASL letters I, or J, correlated with
Isolating Fifth Finger Then Flexion, NO Associated Hand Impairment Level,
Fugl-Meyer,

3.5 VESLI — Hand Gesture Definitions

Hand gestures listed herein were used in the design of the behaviOral and fMRI Study

with First Person and Third Person Avatar for Imitation. Corresponding hand shape

description and level of difficulty corresponding to the Chedoke-McMaster Scale and

Fugl-Meyer are included.
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Figure 3.9 VESLI Avatar Third Person Perspective and First PersOn Perspective.

Third Person Avatar gestures were created using Jack software and movies were

recorded and included in the database, First Person Avatar gestures were created using

Virtools and CyberGloves, and movies were recorded and included in the database.

The VESLI System database also includes pictures for use as definitions during

rehabilitation exercises, during behaviOral and during functional imaging studies,

Some signs are described as 'symmetric' and they may be convenient for mirror and

bilateral exercises since both hands will perform the same action and the VE is ideally

suited tO depict the more affected or less skilled hand moving in unison with more skilled

hand, The virtual proxy hand may be conveniently displayed in a 'where is' position,

overlapping the less skilled or hemiparetic hand.

Since the Flock of Birds may be used, position of the hand in VESLI may be

obtained from the subject's own wrist position so a more extensive inventOry of gestures

and exercises may be included in rehabilitation activities. The flock of birds can position

the proxy hand in a suitable position in virtual reality to provide a stronger visual

feedback experience for the trainee, Performance and animatiOn data is gathered from

sensors in the gloves and the Flock of Birds. The Flock of Birds may also be used to
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drive a robot that assists the less skilled limb to match movements of the more skilled

limb,

For symmetric gestures, a selection may be made regarding which glove generates

animations for which visible virtual hand thereby providing Virtual Mirror Therapy,

unachievable in the real world, Signs with symmetric characteristics may use the same

hand biometric data (postures) for both hands even when the gesture involves varied or

overlapping positions of the hands, Symmetry of hand shape may be achieved using data

from unaffected hand, but motion of the two hands might vary with regard to position of

the wrist, or temporal aspects of the hand gesture itself. For example, the hand gesture to

be produced by the affected hand may have been previously recorded using sensors on

the less affected hand and may be alternately replayed to the subject at an appropriate

time, independently from the movement to be produced by the less affected hand thus

increasing the types and variations of the exercises.

Execution of the ASL and other gestures in the VESLI System might simplify arm

motion to provide hand gesture exercise, or might include the arm for combined Arm-

Hand Therapy. Hand gestures depicted herein may be reversed to target opposite hand

and to provide alternate hand unilateral exercise, Skills training may be conducted with

less-affected hand and then transferred to the affected hand, Future research will

investigate the transfer skills protocol. Future research will investigate hand-eye

coordination during practice and recall. More detailed descriptions of hand gestures may

be found in referenced dictionary.
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3.6 Third Person Avatar-Gestures for Imitation

The following gestures were included in the behavioral and functional imaging study

design involving the First Person Avatar.

3.7 Learning Session One

• Angry Text: Curved 5 hand, Impairment Level 5.

• Baby Picture: Bilateral — flat hands, Impairment Level 4.

• Love Picture: Bilateral S hands crossed at wrists, Impairment Level 3.

• Bear Picture: Symmetric - bilateral - curved hands, crossed at wrist, Impairment
Level 5.

• Cat Text: Symmetric motion — bilateral - F hands, Impairment Level 3,

• Flower Picture: Flattened right 0 hand, Impairment Level 7.

• Floor Text: Symmetric motion — bilateral — flat hands, Impairment Level 4.

• Fruit Picture: Right F hand, Impairment Level 3.

• Lobster Text: Symmetric motion - bilateral V hands, Impairment Level 5/6,

• Sheep Picture: Left flat hand, right V hand, Impairment Level 5/6,

• Drive Text: Bilateral S hands, Impairment Level 3.

• Pray Picture: Symmetric motion — bilateral open hands, Impairment Level 4.

• Book Text: Symmetric motion — bilateral open hands, Impairment Level 4,

• Game Picture: Symmetric motion — bilateral 10 hands, Impairment Level 3,

• Gift Text: Symmetric motion — bilateral X hands, Impairment Level 6.

• Machine Picture: Symmetric motion — bilateral curved 5 hands, Impairment Level
5,

• Cross Text: Symmetric — bilateral open hands, Impairment Level 4,

• Sketch Picture: Left open hand, right isolated pinkie, left Impairment Level 4,
right Isolated pinkie, Fugl-Meyer,

• Bread Text: flat left hand, bent right hand, Impairment Level 4.

• City Text: Symmetric - bilateral bent hands, Impairment Level 4,

• Chair Text: Symmetric - bilateral U hands, Impairment Level 5/6.

• Cup Text: left open hand, right C hand, left hand Impairment Level 4, right hand
Cylindrical Grasp, Fugl-Meyer.

• Plane Picture: right extended index and pinkie, bent middle and ring fingers,
Impairment Level 5.



93

• Café Picture: right C hand, Impairment Level Cylindrical Grasp, Fugl-Meyer,

• Cake Picture: left open hand, right curved 5 hands, left Impairment Level 4, right
Impairment Level 5.

• Child Picture: right bent hand, Impairment Level 4.

• Drill Picture: right L hand, Impairment Level 6.

• Kiss Text: right 0 hand, to open hand, Impairment Level 7,

• Bus Text: Symmetric — bilateral B hands, Impairment Level 4,

• Eat Picture: right flattened 0 hand, Impairment Level 7,

• Mother Picture: right 5 hand, Impairment Level 5.

• Dress Text: Symmetric motion - bilateral 5 hands, Impairment Level 5.

Control Signs

• East Text: right E hand, Impairment Level 5.

• Dig Text: Symmetric — bilateral modified X hands, Impairment Level 6,

• Eye Picture: right extended index finger, Impairment Level 6,

• Egg Picture: Symmetric motion - bilateral H hands, Impairment Level 5/6.

• Black Text: right extended index finger, Impairment Level 6.

• Door Picture: Symmetric — bilateral B hands, Impairment Level 4.

• Jacket Picture: Symmetric motion — bilateral A hands, Impairment Level 3.

• West Text: right W hand, Impairment Level 5.

• House Picture: Symmetric motion — bilateral extended index fingers, Impairment
Level 6,

• Luggage Picture: Symmetric motion — bilateral S hands, Impairment Level 3,
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3.8 First Person Avatar—Gestures for Imitation

The following gestures were included in the behavioral and functional imaging study

design involving the First Person Avatar,

3.9 Learning Session Two

• Guitar Picture: Left curved 5 hand — Level 5, right F hand - Level 3.

• Piano Picture: Symmetric motion - bilateral -- curved 5 hands — Level 5.

• Flute Text: Symmetric — bilateral — curved 4 hands — Level 4.

• Band Text: Symmetric — bilateral — open right hand, both C hands — Level 4 flat
hand, Cylindrical Grasp bilateral.

• Coffee Picture: Symmetric - bilateral — fist - Level 3.

• Cereal Picture: Symmetric - bilateral — open hands — Level 4,

• Bacon Picture: Symmetric motion — bilateral — H hands — Level 5/6.

• Certificate Text: Symmetric motion — bilateral — C hands — Cylindrical Grasp.

• Berry Picture: Isolated left pinkie -- right 0 hand - Level 7.

• Pear Text: Left 0 hand, Level 7 — right 5 hand, Level 5.

• Corn Picture: Symmetric motion — bilateral - C hands — Cylindrical Grasp.

• Bone Text: Symmetric - bilateral — A hands, Level 3 — bent V hands, Level 5/6,

• Calendar Text: Left open hand, Level 4 -- right C hand, Cylindrical Grasp,

• Celery Picture: Right G hand — Level 5,

• Cage Text: Symmetric motion - bilateral -- 4 hands — Level 5.

• Ball Text: Symmetric motion - bilateral — 5 hands — Level 5.

• Butterfly Picture: Symmetric — bilateral - open hands — Level 4,

• Lightning Text: Pointing index fingers — Level 6.

• Lake Picture: W hand, Level 5 — C hand, Cylindrical Grasp.

• Angel Text: Symmetric motion — bilateral — bent hands - Level 3,

• Temple Picture: Right T hand, left S hand — Level 3.

• Trophy Text: Isolated Thumb, and Fifth Digit Extension With Index, Third, and
Fourth Digit Flexion,

• Autopsy Picture: Symmetric motion - bilateral - open hands, Level 4 - 10 hands,
Level 3.

• Candle Text: Right index extended, Level 6 -- left 5 hand, Level 5,

• Church Picture: Right C, Cylindrical Grasp — Left S, Level 3.
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• Blue Text: Symmetric - bilateral -- Flat hand — Level 4.

• Bridge Picture: Right V hand — Level 5/6,

• Pennant Text: Left index finger, Level 6 -- right L hand, Level 6.

• Bird Picture: right G hand - Level 5.

• Person Text: Symmetric motion - bilateral -- P hand -- Third Finger Lumbrical
Extension with Second Finger Extension, Hand Impairment Level 6/7.

• Headlight Picture: Symmetric motion - bilateral — 0 hands, Level 7 to 5 hands,
Level 5.

• Corner Text: Symmetric motion - bilateral - flat hands - Level 4.

No Go - Control Signs

• Sketch Text: Open left hand - right I hand, Isolated fifth finger, Fugl-Meyer,

• Bus Text: Little-finger side of the right B hand touching index-finger side of left
B hand palms opposite directions, move right hand back and forth to right
shoulder, Impairment Level 4.

• Bear Picture: Symmetric — bilateral — curved hands, crossed at wrist, Impairment
Level 5,

• Leaf Picture: Left extended index finger, right 5 hand, bent wrist, swing right
hand, Left hand Impairment Level 6, Right hand Impairment Level 5,

• Cat Picture: Symmetric motion - bilateral - F hands, Impairment Level 3.

• Lobster Picture: Symmetric motion — bilateral — V hands, Impairment Level 5/6,

• Cake Picture: Left open hand, Hand Impairment Level 4 -- right curved 5 hand,
Impairment Level 5,

• City Text: Symmetric - bilateral - bent hands, Impairment Level 4,

• Dress Text: Symmetric motion - bilateral - 5 hands, Impairment Level 5,

• Gift Text: Symmetric motion — bilateral — X hands, Impairment Level 6.

• Cross Picture: Bilateral open hands, Impairment Level 4,

• Chair Text: Bilateral curved U hands, Impairment Level 5/6,

Control Signs

• Flashlight Text: Left hand holds right wrist, right 0 hand to open 5 hand,
Impairment Level 7.

• Baseball Text: Bilateral S hands, Impairment Level 3.
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• Bottle Text: Open left hand, right C hand, Impairment Level 4 left hand, Fugl-
Meyer Cylindrical Grasp right hand.

• Marble Text: modified X hand, Impairment Level 6.

• Banana Picture: Extended left index finger, curved 5 right hand, Impairment
Level 6 left hand, Impairment Level 5 right hand,

• Broom Picture: Bilateral S hands, Impairment Level 3.

• Burn Text: Symmetric motion — bilateral — curved 5 hands, Impairment Level 5,

• Peace Picture: Bilateral open hands, Impairment Level 4.

• Person Text: Symmetric motion — bilateral — P hands, Impairment Level 6/7.

• Pepper Picture: Right F hand, Impairment Level 3,

• Tent Picture: Symmetric motion — bilateral — Isolated index and pinkie, flexed
middle and ring finger, Impairment Level 5,

• Lime Picture: Closed left, right L hand, Impairment Level 3 left, and Impairment
Level 6 right hand.



RESEARCH AIM 2

4.1 Experiment 1 fMRI Analysis of Neural Mechanisms Underlying Rehabilitation

in Virtual Reality: Activating Secondary Motor Areas

A pilot functional MRI study on a control subject investigated the possibility of inducing

increased neural activations in primary, as well as secondary motor areas through virtual

reality-based exercises of the hand, These areas are known to be important in effective

motor output in stroke patients with impaired corticospinal systems. We found increased

activations in these brain areas during hand exercises in VR when compared to vision of

non-anthropomorphic shapes. Further studies are needed to investigate the potential of

virtual reality-based rehabilitation for tapping into the properties of the mirror neuron

system to stimulate plasticity in sensorimotor areas.

4.1.1 Introduction

Virtual Reality (VR), a flexible computer generated environment used to develop

exercise protocols for stroke rehabilitation, has been demonstrated to be effective in

improving upper extremity motor function in adults with chronic stroke-related

hemiparesis (Merians, Poizner et al. 2006). Underlying mechanisms of action, however,

are poorly understood, Functional MRI compatible VR can be used to assess and track

neural activation during exercises with somatosensory experience including manipulated

or altered virtual experiences (Brewer, Fagan et al. 2005) modeled to stimulate 'mirror

neurons' (Rizzolatti and Craighero 2004) associated with motor facilitation

97
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(Fadiga, Fogassi et al. 1995) (Maeda, Kleiner-Fisman et al. 2002), and to determine

activation of secondary motor systems important for effective motor output in stroke

subjects with corticospinal system (CSS) impairment (Ward 2006). Stroke rehabilitation

is moving into the realm of plasticity-mediated therapies (Stein 2004) related to the

ability of the adult brain to re-map functions, shifting regions of motor control to

adjacent tissue (Asanuma 1991) (Jacobs and Donoghue 1991) (Nudo, Wise et al. 1996),

or the contralateral hemisphere (Fisher 1992) (Glees 1980) (Sabatini, Toni et al. 1994) to

take over functions of damaged cortical tissue.



Figure 4.1 Move-Watch Hands and Move Watch Blobs Slices: Left - Move while

watching moving VR hand Right Move while watching BlObs.

In the figure, Move-Watch Hands and Move Watch BlobsSlices activations are

depicted at specified Talairach Z coordinate with highlighted significant increases in

activation relative to baseline, a) Condition 1: Left COlumn of Images - Move while

watching moving VR hand b) Condition 2: Right Column of Images - Move while

99
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watching static oval shape, Right side of the brain is shown on the left, In a recent study

involving patients post-stroke, a shift from primary to secondary motor networks was

observed corresponding to the impairment of the CSS, with both hemispheres engaged in

the generation of motor output, Secondary motor systems including ipsilesional posterior

primary motor cortex, contralesional anterior primary motor cortex, bilateral premotor

cortex, supplementary motor area, intraparietal sulcus, dorsolateral prefrontal cortex and

contralesional superior cingulate sulcus, are important for effective motor output when

there is impaired function of the CSS, although this strategy for movement is not optimal

(Ward 2006), Properties of the mirror neuron system believed to exist in the human brain

may explain the human ability to learn by imitation (Fadiga, Fogassi et al. 1995) (Maeda,

Kleiner-Fisman et al. 2002) (Patuzzo 2003). We are interested in tapping into the

properties of the mirror neuron system to stimulate secondary motor systems and

plasticity of motor control through our hand imitation VR rehabilitation. Imitation

exercises are more effective in activating pars opercularis of IFG during finger lifting

than symbolic or spatial cues indicating importance of mirror neurons (Iacoboni, Woods

et al, 1999), Visual guidance can reduce cognitive burden in stroke subjects compared

with self-guided tasks (Hanlon, Buffington et al. 2005), In rehabilitation, compliance can

be difficult to confirm (Pomeroy, Clark et al. 2005), Intelligent VR can provide imitation

applications, visual guidance, and can monitor compliance, making VR an attractive

choice for rehabilitation. Higher level functioning mediates motor skills learning by

imitation (middle frontal gyrus for learning novel hand actions) (Buccino, Vogt et al,

2004; Buccino, Vogt et al. 2004), Our hypothesis is that in the presence of VR protocols,

a complex visuo-neuro stimulus can be achieved that engages mirror neurons for
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sensorimotor imitation, and secondary motor systems, known to be necessary for motor

output in stroke patients while providing visual guidance, known to benefit stroke

patients and older persons, We hypothesize that training and rehabilitation interactions in

the VR environment might stimulate important cognitive networks. We believe that the

training and rehabilitation in a VR environment that is matched for observation and

action (Wheaton, David F, Abbott et al. 2004) is appropriate since it has been shown that

performance improves for such task configurations, It has also been shown that

presenting a first-person perspective for imitation, might stimulate more direct and

stronger cognitive networks than third-person perspective, Viewing virtual hand

movement during VR exercises might activate hand-relevant parts of the brain (right

MT/V5, left and right anterior IPS, right precentral gyrus, and right inferior frontal

sulcus (Wheaton, David F. Abbott et al, 2004)), might promote engagement in feelings

of ownership of the virtual hand (Ehrsson, Spence et al, 2004; Ehrsson, Wiech et al.

2007), understanding goals of the observed virtual action (Hamilton and Grafton 2006),

recognition of biological movement (Servos, 1 Department of Psychology et al. 2002) of

the virtual hand in the scene, and sense of self-awareness and agency (Decety,

aDepartment of Psychology et al. 2006; Jackson, Meltzoff et al, 2006). Ultimately, this

MRI compatible VR environment might enable analysis of the feedback and feed-

forward realtime dynamics of the brain network associated with the interaction of visual

recognition of actions and the control of actions (Hamilton, Wolpert et al, 2006). We

would like to determine whether secondary motor systems, recruited for motor control in

stroke subjects with CSS injury, can be activated through engagement in hand VR
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training. Therefore, we conducted an initial pilot experiment in a VR environment using

functional MRI.
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4.1.2 Methodology

Images were obtained using a 3T Siemens Allegra imaging system, Single shot gradient

echo (GE) axial EPI images (64'64, TR=1 s, TE=27 ms, FOV= 22 cm x 22 cm, slice

thickness = 4 mm, 32 slices) were acquired over 105 data points (210 secOnds), The scan

was obtained while subjects were instructed tO perform hand exercises. Images were

processed using AFNI software.

Figure 4.2VR representation viewed by subject, a) Condition 1: Move while watching
moving hand, b) Condition 2: Move while watching static oval shape

All data were tested for the presence of any head motion induced signal changes

using image registration algorithm, A synthesized box-car waveform corresponding tO

the stimulus presentation cycle was cross-correlated with all pixels on a pixel-by-pixel

basis fOr each data set to identify the regions activated by the task. The correlation-

coefficient threshold of 0.5, after a Bonferroni correction, corresponded to a statistical



104

significance of p < 0.001. All pixels that passed this threshold were considered activated

and belonging to the sensorimotor and its associated cortex.

In the trial experiment, the control subject is presented with a task to perform in the

MRI environment, and in analysis, changes relative to a control state are mapped, A 41

year-old right-handed control subject participated in an imitation of hand movement

protocol created in a three-dimensional VR environment, A 5DT MRI compatible VR

glove was used on the subject's right hand to control the VR animated hand, to correlate

brain activation with finger articulation, and to confirm subject compliance with

instructions. Eight experimental runs were conducted, each beginning with a thirty

second period of rest for baseline followed by four fifteen second test tasks separated by

thirty second periods of rest.

The subject is first asked to watch the virtual hand animation (opening and closing

of the hand at about 1 Hz), while intending to imitate the action, In Condition 1, he is

asked to reproduce the observed hand motion by moving his right hand while watching

the moving representation of his hand on the screen. In Condition 2, the subject moved

his right hand while looking at oval shapes displayed on the screen the same color and

size as the virtual hands,

4.1.3 Results

When Condition 1 was compared with Condition 2, greater activation in a number of

regions associated with the sensorimotor control of the hand is observed in Condition 1

while the subject sees the virtual hand moving, In addition to increased activation in the

primary motor cortex, we observed increased activation in a number of sensorimotor

areas including dorsal premotor and supplementary motor areas, as well as anterior
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cingulate cortex, anterior intraparietal cortex and superior temporal gyrus, Analysis of

the hand kinematics demonstrated that this increase in brain activation was nOt

associated with any significant increase in the amplitude or frequency of finger mOtion,

Figure 4.3 Representative example of angular displacements fOr the

metacarpophalangeal joint (MPJ) of the index finger during brain imaging in Condition 1

and COndition 2. ConditiOn 1: Move while watching moving VR hand, Condition 2:

Move while watching static oval shapes,

4.1.4 Discussion

The control subject showed distinctly different activation under each condition. Relevant

secondary motor systems were activated by observation of the virtual hand during

exercises in the VR environment and were not activated when the subject performed the

hand exercise in the absence of the virtual hand animation. The preliminary findings in

this pilot study suggest that an imitation hand exercise protocol in VR might be an

excellent choice for training stroke subjects since activation of secondary motor systems

has been associated with successful motor skills performance in stroke subjects with CSS

impairment. VR provides flexibility to manipulate visual feedback to the subject as part

of the therapy, a desirable feature for stroke rehabilitation. Additionally, VR may be used

to monitor compliance and to provide visual guidance for rehabilitation tasks.
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Since multiple theories exist about brain plasticity and its role in motor skills

recovery, we believe the computer-based intelligent VR physical therapy provides great

opportunities to deliver therapy in a low-cost architecture, to study the mechanisms of

human motor skills recovery, and to test these concepts through functional imaging while

simultaneously measuring motor performance, It has been shown that an environment

matched for observation and action improves performance (Jackson, Meltzoff et al,

2006), that first person perspective stimulates more direct cognitive networks, that

viewing hands activates specific hand-relevant brain regions (Wheaton, David F. Abbott

et al, 2004), that feelings of ownership of external objects can be developed (Ehrsson,

Spence et al. 2004; Ehrsson, Holmes et al. 2005), that a person can understand the goal

of the movement in an exercise (Hamilton 2006), that the brain can differentiate

biological and linear (Servos, 1 Department of Psychology et al, 2002) movement

through different regions (Decety, aDepartment of Psychology et al. 2006), and that the

effect of causal involvement, agency, can be experienced.

It is possible that use of the complex VR environment may expose the subject to

these experiences and may therefore activate many brain regions associated with motor

skills and related experiences. We also believe that complex feed forward and feedback

interaction of visual processing of body parts, actions and the motor control of actions

(Kennett, Taylor-Clarke et al, 2001; Hamzei, Dettmers et al. 2002; Haggard, Christakou

et al, 2007) may play a role in the rehabilitation of stroke subjects who are suffering from

paralysis of the hand, A person may see their hand and its function more than most other

parts of their body. Investigating the complex cognitive network associated with the

perception and motor action of the hand might help to uncover relevant clues for
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rehabilitation of motor skills following stroke, Specifically, we are encouraged by the

properties of mirror neurons and seek methods of accessing these properties to stimulate

secondary motor systems recruited for motor movement in stroke subjects with CSS

injury. VR enables development of rehabilitation systems and also investigation into this

area. Future work will include extending this preliminary work to include additional

control subjects, additional rehabilitation protocols, and studies including stroke subjects.

4.1.5 Conclusion

In our trial experiment, using functional MRI to understand underlying mechanisms of

action of VR rehabilitation exercises, the subject trained in a VR environment for an

imitation task resulting in desired activation of the brain regions associated with

secondary motor systems. We are encouraged that through functional imaging

experiments with VR, we will be able to understand underlying neural mechanisms

leading to the development of rehabilitation protocols for imitation hand therapies for

subjects suffering from various motor control issues such as stroke.
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4.2 Experiment 2 Design of an fMRI Compatible System to Explore Neural

Mechanisms Subserving VR Therapies

Since most functional activities of daily living, involving the upper-extremity, are

bilateral in nature, a rehabilitation system with functionally integrated activities could

result in stronger training effects on the sensorimotor abilities of patients. The virtual

reality piano trainer, described here, incorporates bilateral and multi joint movements to

exercise the hands, wrists and forearms. In an effort to better describe the underlying

mechanisms that may be driving improvement from virtual reality therapies, and to more

effectively develop such activities, a pilot fMRI study exploring simple VR tasks and

preliminary data are introduced in this paper,

4.2.1 Introduction

Guided by the understanding of the plasticity of the nervous system and the relationship

of that plasticity to motor learning principles regarding frequency of use, task specificity,

skill development and practice parameters, a computerized virtual reality exercise system

was developed to provide intensive motor re-education and skill reacquisition in the

hemiplegic hand of patients post-stroke (Merians 2002; Adamovich, Merians et al, 2005;

Merians, Poizner et al, 2006). Because of the complex sensorimotor control required for

grasping and manipulating objects, even mild to moderate deficits in upper extremity

control can impair most activities of daily living, especially when there is a loss or

diminution of hand function, This is an important but difficult and challenging aspect of

rehabilitation. Utilizing this system, patients post-stroke improved and retained gains

made in range of motion, speed and isolated use of the fingers after training with this
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system (Merians, Jack et al. 2002). These changes translated to improvements in real-

world outcome measures. When developing the activities for the original upper extremity

VR studies, exercises were selected that involved discrete movements designed to train a

single movement parameter at a time (e.g., range of motion). We assume that more

functionally integrated activities could result in stronger training effects on the

sensorimotor abilities of patients, The system was designed to train manipulative

functions of the hand; however, because of the interdependence between the transport

and object manipulation phases of prehension (Paulignan 1990), training the upper

extremity as a unit may lead to improved outcomes. Additionally, although treatment

benefits have been reported with unilateral robotic-assisted training (Krebs, Hogan et al,

1998) and training in a VR environment (Holden, Todorov et al. 1999; Adamovich,

Merians et al, 2005), most functional activities involving the upper extremities are

bilateral in nature, Bernstein (Bernstein 1967) believed that the upper extremities are

centrally linked and function as a coordinative structure, Since there is this tendency for

synchronization and coupling between limb movements, specifically a coupling between

the kinematic attributes of frequency, direction and amplitude, it has been suggested that

facilitation of this inherent interlimb coordination might improve functional therapeutic

outcomes (Cauraugh and Summers 2005). Several researchers have used bilateral

training to harness these spatial and temporal interactions (Mudie 2000; Whitall,

McCombe Waller et al. 2000; Lum, Burgar et al. 2002; Hesse, Schulte-Tigges et al.

2003). However, none of these utilized virtual reality to provide engaging, motivating

and adaptable training algorithms. A new system, described here, provides a bilateral,

functional interface to exercise the hand, wrist and forearm as an integrated unit, or to
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train each pivot independently. There are an ever increasing number of studies using

virtual environments for motor rehabilitation, It is therefore timely to consider what

underlying mechanisms may be driving these improvements. Many animal and human

studies have shown activation of the motor cortex while observing the motor actions of

others, in the absence of overt motor activity (Iacoboni 1999 ; Maeda, Kleiner-Fisman et

al. 2002; Rizzolatti and Craighero 2004), It is possible that this proposed "mirror neuron

system", thought to involve a complex network formed by various areas including the

ventral premotor area, the inferior parietal area and the superior temporal area, may

underlie many of the effects that we are getting in VR-based rehabilitation, It is

reasonable to assume that use-related neural plasticity is not necessarily limited to

reorganization of the primary sensorimotor cortex but would also include other higher

level areas related to sensorimotor processing and control, However, it is not clear

whether observation in a virtual environment will affect neural processing in a similar

manner to observing real hand actions. Some studies have proposed that they do not

(Perani 2001), though it is important to consider whether one is just watching an action,

even a realistic natural movement, or whether one attributes the observed action to

oneself, For the purposes of using virtual environments for motor re-education it is

important to understand the underlying neural mechanisms subserving VR therapies. We

will describe the development of a VR exercise system to incorporate bilateral and multi-

joint movements, We also hypothesize that, over time, training in VR will generate a

sense of being causally involved, inducing a feeling of ownership of the virtual hand. A

second aim is to present preliminary results using fMRI to investigate this hypothesis.
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4.2.2 Methods - Description of Training System

In response to the need for a system that integrates a range of bimanual activities, the VR

Piano Trainer was developed, This consists of a complete virtual piano which will play

the appropriate notes as they are pressed by the virtual fingers. The position and

orientation of both hands as well as the flexion and abduction of each of the fingers are

recorded in real time and translated into movement in their three dimensional

counterparts. The virtual environment was developed using Virtools (2006) with the

VRPack plugin which communicates with the open source VRPN (Virtual Reality

Peripheral Network) (Taylor 2006), The VRPN Server was modified to allow for

additional devices which are not currently in the supported library. The game

architecture was designed so that various inputs can seamlessly be used to track the

hands as well as retrieve the finger angles. Currently it supports the use of a pair of

Immersion CyberGloves (Immersion 2006) with the Ascension Flock of Birds

(Ascension). The 5DT fMRI compatible glove , which uses fiber optic sensors to avoid

interference with the magnet, has also been implemented for use in appropriate studies.

The game may be used with or without hand tracking and we are investigating the use of

MRI compatible tracking devices,
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Figure 4.4 Virtual Reality Piano Trainer

4.2.3 Description of the fMRI Experimental System

To investigate the underlying role of VR in facilitating movement, a task-based virtual

reality simulation was developed for use in an fMRI, Specifically, the fundamental

elements of the training system, the VR representations of the user's hands, are shown to

replicate the visual feedback during training activities, This virtual environment, also

developed with Virtools utilizing the VRPN, presents various tasks to the user while

displaying the scene. The subject wears a 5DT fMRI compatible data glove while inside

the magnet, With the 5DT glove, finger articulation was measured during the task and

used to translate into the hand movement within the simulation. Finger angles are stored

for correlation with brain activation,
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Figure 4.5 a) Subject View during Training Exercise, b) Subject View during fMRI
Experiment.

The subjects perform specific manual tasks moving in response to the images and

word commands, Figure 2b shows a typical display cOnsisting of twO virtual hands and a

command, During the WATCH task, the subject is to remain still while watching an

animation of a hand Opening and closing. The MOVE task required that the user cOpy

the open and clOse movement with their right hand, During this task, the subject would

either see hands moving in response to their movements or would see only non-

anthropomorphic shapes. Finally, a REST task was implemented where there would be

no change in visual stimulation and the subject was to keep their hands still.

4.2.4 Protocol

The fMRI compatible data glove was worn by the subject in the magnet and was plugged

into a PC in the contrO1 rOom which ran the simulatiOn, The simulation was displayed

through a projector behind the magnet, While inside the MRI, subjects cOuld view the

simulation through a mirror placed above their eyes, The data glove was calibrated by
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verbally cueing the subject to open and close their hands. Only visual commands were

used once the trial began, During each trial, the subject was presented with a sequential

set of tasks as specified above, These tasks were timed deliberately so they could be

identified within the data.

While the glove would only translate the finger movement into visual movement

during specific tasks, the data were recorded during the course of the entire trial, These

data were then used to verify how a subject was moving, or not moving, during specific

tasks throughout a trial.

In this pilot study, the control subject was presented with a task to perform in the

MRI environment, and in the analysis, changes relative to a control state were mapped,

Eight experimental runs were conducted each consisting of four fifteen second test tasks

alternating with 30 second rest periods, Thirty-second rest periods assure brain activation

settles to baseline while all task conditions are of equal duration, During the baseline rest

condition, the subject was looking at motionless VR hands, The following are the three

task conditions: 1) Watching the movement of the VR hands with the intention to imitate

that movement 2) Subject moving hand while watching VR hands move in relation to

their movement, 3) Subject moving hand while watching non-anthropomorphic shapes

on the screen. For this study, Trials #1 and #8 were run with Condition 1; Trials #2 and

#3 were run with Condition 2; Trials #4 and #5 were run with Condition 3. (A fourth

condition, tested in trials #6 and #7, is not covered in this paper) Aside from the

placement of Condition 1 trials, the order of conditions will be counterbalanced across

subjects. Images were obtained using a 3T Siemens Allegra imaging system, Single shot

gradient echo (GE) axial EPI images (64x64, TR=1 s, TE=27 ms, FOV= 22cm x 22 cm,
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slice thickness = 4 mm, 32 slices) were acquired over 105 data points (210 seconds).

Each trials started with 30 seconds of baseline condition followed by 15 seconds of task

condition and was done four times. D. Data Analysis Data were processed using the

AFNI software package. The presence of any head motion induced signal changes was

detected using image registration algorithm, Because the data collected especially from

naive subjects are susceptible to head motion, all data used in this study was analyzed for

the presence of motion-induced artifacts. In our experience, foam padding considerably

reduces head motion and allows only small motions. While a large number of algorithms

exist for the detection (and correction) of mis-registered images, a contour-based cross-

correlation algorithm (Biswal and Hyde 1997) was used for detecting the presence of any

head motion. It is believed that this method is an improvement over earlier registration

algorithms used in FMRI. A contour image of the first image in each data set was used as

a reference and the motion estimated for every other image in the data sets. The

estimated motion was tabulated as a function of time for each subject and for each data

set, The statistical significance of differences in estimated head motion comparing each

scan for every subject was calculated. An alternative automated image registration (AIR)

technique developed by Woods et al, (Woods, Grafton et al. 1998) that uses an iterative

procedure to minimize the variance in voxel intensity was also used. Because this study

involves small signal changes, data sets that exhibit head motion were corrected for

motion prior to further analysis and any data set with motion of more than 2 pixels was

discarded, Task-induced signal changes were analyzed by cross-correlation, assuming

that neuronal activity and FMRI task induced signals change proportionally with the

stimulus paradigm. In this method, the number of activated pixels is calculated for each
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activation correlation coefficient threshold. A synthesized box-car waveform

corresponding to the stimulus presentation is cross-correlated with all pixel time courses

on a pixel-by-pixel basis to identify regions activated by the task, The statistical

significance p is calculated using a semiempirical method that was described in an earlier

paper (Biswal and Hyde 1997) and is summarized here. The ideal reference waveform

used for cross correlation FMRI analysis of filtered task-activation pixel time courses is

applied to all filtered pixel time courses in the resting-state data set. The standard

deviation of the distribution of the resting-state correlation coefficients is typically

somewhat less than 0.1. A threshold of 0.5, five times the standard deviation, would lead

to p<0,0001 rigorously if the resting-state data exhibited a normal distribution and both

the resting-state and task-activation time courses were filtered in the same way, The

histogram of the correlation coefficient values obtained when the ideal reference

waveform is cross-correlated with filtered resting state pixel time courses appears to be

normal, which is the justification for the semi-empirical approach, All pixels that pass

the threshold in the data set are considered activated and their locations noted. A finite

impulse response (FIR) low-pass filter with a cut-off frequency at 0.1 Hz has been

designed to attenuate the fundamental respiratory and other high frequency noise

components, Although the respiration frequency can be reliably filtered, the heart rate

(which is typically in the range of 57-63 cycles/minute) will be aliased for FMRI data

sets with longer TR times. Although the effect of aliasing is a concern, no significant

problems have been detected in our work.
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4.2.5 Initial Results

The figure shows the brain related activity for the three different conditions relative to

the baseline rest condition, To test whether the subjects developed a sense of agency

(Farrer, Franck et al. 2003) with the VR hands and became causally involved we

compared Condition 1, "watching the movement of the VR hands with the intention to

imitate that movement (OTI)" pre and post training. During pre-training (Trial 1, OTI:)

there was minimal activation relative to the baseline, In post-training, activation can be

seen in the insular cortex (Trial 8, OTI:). Figure panels b and c compare the differences

in activation between the patient moving while watching the VR hands move and

moving while watching non-anthropomorphic shapes. There is greater activation in the

insula during the VR hand simulation demonstrated in panel b when compared to the

minimal activation during the non-anthropomorphic shape simulation illustrated in panel

c. The panels illustrate activity associated with: a) Observation of moving VR hands with

intention to imitate that movement, Pre Training; b) Right hand movement and

observation of VR hands moving in relation to hand movement; c) Right hand movement

and observation of non-anthropomorphic shapes; d) Observation of moving VR hands

with intention to imitate that movement, In post training, sections in panel b and d show

increased activity above the baseline in the insular cortex (highlighted in white), The

right side of the brain is shown on the right.
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Figure 4.6 Four coronal sections showing activation in insular cortex, a, b, c, and d.

4.2.6 Discussion

The goal of this initial work was to develop a bilateral system to be used in the

rehabilitation of patients post stroke, The piano provides a realistic bilateral functional

activity where both the proximal and distal components of the upper extremity can be

trained either as an integrated unit or as individual components. Rehabilitation training in

a virtual environment can provide an appropriate interactive, challenging and

encouraging environment where a subject can practice repetitively, execute tasks and be

guided and rewarded through systematic feedback. During the past few years, virtual

environments have been used experimentally for rehabilitation. This pianO simulation

will provide an environment in which the patient can learn a new skill. This is a realistic
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simulation in that one feels the sense of immersion, is rewarded with real world auditory

feedback through appropriate piano sounds and visual feedback through movement of

the keys. Finger, hand and arm movement can be trained using this simulation,

Additionally adaptive algorithms will drive the patient to perform at increasing higher

levels while kinematic measures will provide important performance outcomes. In a

recent study involving stroke patients, a shift from primary to secondary motor networks

was observed corresponding to the level of impairment of the corticospinal system. Both

hemispheres were engaged in the generation of motor output. Secondary motor systems

including bilateral premotor cortex, supplementary motor area, intraparietal sulcus, as

well as dorsolateral prefrontal cortex and contralesional superior cingulate sulcus, are

important for effective motor output when there is impaired function of the corticospinal

system (Ward 2006). We are interested in whether skill, developed during training in a

VR environment, will activate these secondary areas. This could be a potentially

facilitory mechanism for training induced recovery of motor function. However, we

hypothesize that for VR systems to be able to activate these secondary motor areas it has

to first induce a sense of agency of the virtual limb model. This sense of agency, the

feeling of being involved in an action and of attributing that action to ourselves, appears

to be related to the degree of concordance between the intent of the movement and the

sensory feedback related to actual movement; in other words to the feeling of control of

the action (Farrer 2003). This is thought to be a continuous mechanism, the greater the

sense of agency the greater the activation in the right posterior insula. It is not known

whether observation of VR hand models can induce this sense of agency, We have

shown in this preliminary fMRI study that after training in a virtual environment the
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insular cortex showed greater activation than before training, This was evident when the

subjects were moving while watching the VR hands (Trial 2, Figure 4b) but not when

they were moving while watching non-anthropomorphic shapes (Trial 4, Figure 4c) and

by the end of training (Trial 8, Figure 4d) even when they were watching the VR hands

with only the intent to imitate. These results suggest that the increased activation in Trial

2 is not simply a result of movement and that the insular activation in Trial 8 is perhaps a

result of the subject's development of a feeling of association with, or control of, the

movement of the VR hands,

4.2.7 Conclusion and Future Work

This preliminary study suggests that when provided with concordant feedback, VR has

the potential to induce a sense of control of the virtual movements. In future work we

will further investigate whether this finding is consistent and whether secondary motor

areas are activated through training in a VR environment.
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4.3 Experiment 3 A Virtual Reality-Based System Integrated with fMRI to Study

Neural Mechanisms of Action Observation-Execution: A Proof of Concept Study

Emerging evidence shows that interactive virtual environments (VE's) may be a

promising tool for studying sensorimotor processes and for rehabilitation, However, the

potential of VE's to recruit action observation-execution neural networks is largely

unknown. For the first time, a functional MRI-compatible virtual reality system (VR) has

been developed to provide a window into studying brain-behavior interactions, This

system is capable of measuring the complex span of hand-finger movements and

simultaneously streaming this kinematic data to control the motion of representations of

human hands in virtual reality, In a blocked fMRI design, thirteen healthy subjects

observed, with the intent to imitate (OTI), finger sequences performed by the virtual

hand avatar seen in 1 st person perspective and animated by pre-recorded kinematic data.

Following this, subjects imitated the observed sequence while viewing the virtual hand

avatar animated by their own movement in real-time. These blocks were interleaved with

rest periods during which subjects viewed static virtual hand avatars and control trials in

which the avatars were replaced with a moving non-anthropomorphic object, We show

three main findings. First, both observation with intent to imitate and imitation with real-

time virtual avatar feedback, were associated with activation in a distributed

frontoparietal network typically recruited for observation and execution of real-world

actions. Second, we noted a time-variant increase in activation in the left insular cortex

for observation with intent to imitate actions performed by the virtual avatar, Third,

imitation with virtual avatar feedback (relative to the control condition) was associated

with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area,
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regions which are (along with insular cortex) associated with the sense of agency. Our

data suggest that the virtual hand avatars may have served as disembodied training tools

in the observation condition and as embodied "extensions" of the subject's own body

(pseudo-tools) in the imitation, These data advance our understanding of the brain-

behavior interactions when performing actions in VE and have implications in the

development of observation- and imitation-based VR rehabilitation paradigms.

Keywords: Virtual environment, VR, motor control, imitation

4.3.1 Introduction

Technological advances, such as virtual reality (VR), are experiencing a period of rapid

growth and offer exceptional opportunity to extend the reach of services available to a

variety of disciplines, Virtual environments (VE's) can be used to present richly complex

multimodal sensory information to the user and can elicit a substantial feeling of realness

and agency on behalf of the individual immersed in such an artificial world (Riva,

Castelnuovo et al. 2006). VR is an indispensable training tool in many areas including

healthcare where physicians receive surgical training (McCloy and Stone 2001), patients

receive cognitive therapies (Powers and Emmelkamp 2008), and soldiers benefit from

post-traumatic stress disorder therapies (Rizzo, Graap et al. 2008), VR also demonstrates

great value for the rehabilitation of patients with disordered movement due to

neurological dysfunction (Holden, Dettwiler et al, 2005; Gaggioli, Meneghini et al. 2006;

Adamovich, Qinyin et al. 2007; Merians 2007), wherein new models including

observation (Altschuler 2005; Buccino, Solodkin et al, 2006; Celnik, Stefan et al. 2006),

imagery (Butler and Page 2006) and imitation therapies (Gaggioli, Meneghini et al,

2006) which might be instrumental in facilitating the voluntary production of movement,
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may be incorporated. In spite of showing promise at improving some aspects of

movement, the effect that interacting in VE's has on brain activity remains unknown -

even in neurologically intact individuals.

The experiences of interest in the VR environment would be observation with intent

to imitate, and the ability to integrate real experiences with virtual experiences of one's

own movement, Virtual environments might effectively serve as a never-tired model for

observation therapy for the facilitation of the voluntary production of movement.

Moreover, interactive VE can be used as a powerful tool to modulate feedback during

training and motor learning to facilitate recovery through various plasticity mechanisms.

However, there is little evidence to enable the testing of this hypothesis in patients with

neurological diseases (Pomeroy, Clark et al. 2005). Studies in control subjects are needed

to determine the effectiveness of such approach.

The purpose of this project was two-fold: 1) to develop a VE that could be used with

functional magnetic resonance imaging (fMRI) for concurrent measurement of motor

behavior and brain activity, and 2) to delineate the brain-behavior interactions that may

occur as subjects interact in the VE, Our overall hope is that a better understanding of

brain-behavior relations when interacting in VE may better guide the use of VE for

therapeutic applications. Our long term objective is to identify the essential elements of

the VE sensorimotor experience that may selectively modulate neural reorganization for

rehabilitation of patients with neural dysfunction. These discoveries will offer a

foundation for evidence-based VR therapies, with profound implications in diverse fields

as computational neuroscience, neuroplasticity, neural prosthetics, and human computer

interface design, Here we present a proof of concept of a novel VR system that can be
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integrated with fMRI to allow the study of brain-behavior interactions. A sample of our

currently developed virtual environments. A. Dining Table Scene, B. Piano trainer, C.

The virtual environment used in the current paradigm appears in the figure below. We

extracted the essential component common to all of our virtual environments, the virtual

hands, over a plane background, Below them is a picture of a subject's hand wearing

5DT data glove that actuated motion of the virtual hand model.

Our initial goal was to design a system capable of measuring complex coordination

of the hand and fingers (which have over 25 degrees of freedom), deliver reliable and

real-time visual feedback of a virtual representation of the moving hand, with

simultaneous acquisition of brain activation (via fMRI). We have developed a library of

VE's for re-training hand-arm function in patients with stroke (Merians, Tunik et al,

2008), In all of these VE's, subjects move their arm-hand to control a virtual

representation of their hands, in real-time, to interact with various virtual objects (i,e,

piano, household items, etc), To directly investigate how controlling a virtual

representation of one's hands, in real-time, affects neural activation, we have extracted

the essential elements common to all of our environments, a pair of virtual hands, We

imaged healthy subjects at 3T as they performed a simple finger movement task. We

used the MRI-compatible 5DT data glove to measure subjects' hand movements in real-

time to actuate motion of virtual hands viewed by the subjects in a 1 St person perspective.
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Figure 4.7 Training systems, A sample of our currently developed virtual

environments. A. Dining Table Scene, B. Piano Trainer, C, Virtual Hands in the MRI,

5DT Glove.

Subjects Observed virtual finger movements (animated with kinematic data that was

collected previously from healthy subjects) with an intentiOn to imitate afterwards.

Subjects were subsequently required to imitate the observed movements while observing

motion of the virtual hands animated in real-time by their actual movement, Perani and

coworkers (Perani, Fazio et al. 2001) investigated the effects Of observing animations of

virtual and real hands on brain activity, The authors noted that observing animated

virtual hands was associated with weaker activation in sensorimotor networks when

compared to observation of real hands. However, in these studies visual feedback was

not of the subject's own real-time movement and was not observed in 1 St person

perspective. Recently, Farrer and coworkers (Farrer, Frey et al. 2007) presented subjects

with visual feedback from a live videO feed of their moving hands during the fMRI

session. By manipulating the temporal delay between the movement and feedback, the

authors investigated neural networks involved in the sense of agency, or sense of control
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of the action, Their results from this and previous work (Farrer, Franck et al, 2003)

suggested that the angular and insular cortices may be involved in this function, The data

from the above studies leads us to hypothesize that interaction in a VE in the 1 st person

should elicit activation in the insular and inferior parietal cortices, regions that are known

to be recruited in agency-related tasks (Farrer 2003; Corradi-Dell'acqua, Ueno et al,

2008), Additionally, our study allows us to investigate whether these networks can be

recruited when observing with the intent to imitate movement of VR representations of

human hands. We hypothesize that in individuals who are naïve to our VE, repeated

exposure should induce an increase in activation of agency-related networks.

If we can show proof of concept for using virtual reality feedback to selectively

facilitate brain circuits in healthy individuals, then this technology may have profound

implications for use in rehabilitation and in the study of basic brain mechanisms (i.e.

neuroplasticity).

4.3.2 Methods

13 healthy (mean ± 1SD, 27.7 ± 3.4 years old, 9 males) and right-handed (Oldfield 1971)

subjects with no history of neurological or orthopedic diseases participated after signing

informed consent form approved by the IRB Committees of NYU and NJIT.

To investigate the underlying role of VR in facilitating movement and activating

motor related brain regions, a task-based virtual reality simulation was developed for use

in an fMRI. Figure 1 shows the fundamental element of the training system, the VR

representations of the user's hands. Movement of the virtual hand models is actuated in

real-time by the subject's own hand motion, The virtual environment was developed

using Virtools with the VR Pack plugin which communicates with the open source
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VRPN (Virtual Reality Peripheral Network) (Taylor 2006). For the present experiments,

we used an MRI-compatible right hand 5DT Data Glove 16 MRI ((Adamovich, Qiu et al.

2008) Fifth Dimension Technologies, 5DT Data Glove 16 MRI, http://www.5dt.com )

with fiberoptic sensors to measure 14 joint angles of the hand. The glove provided

measurements for each of the five metacarpophalangeal (MCP) joints, proximal

interphalangeal (Money, Pippin et al.) joints, and four abduction angles, The 5DT glove

is metal-free and therefore safe to operate in an MRI environment. The data glove was

worn by subjects in the magnet and a set of fiberoptic cables (5 meters long) ran from the

glove into the console room through an access port in the wall. In the console room, the

fiber optic signals were digitized and plugged into the serial port of a personal computer

that ran the simulation. The simulation was displayed to the subjects through a rear

projector behind the magnet and the subjects viewed this through a rear-facing mirror

placed above their eyes.

4.3.3 Experimental Protocol

Naïve subjects never exposed to our VE interface were tested in four conditions: 1) OTI:

Subjects observed with the intent to imitate a sequential index-middle-ring-pinky

movement performed by the virtual hand. The virtual hands were anthropometrically

shaped and resembled real hands. The virtual hands in this condition were animated by

data obtained from pre-recorded movements of a subject performing a finger sequence.

A new finger sequence was used on each trial. 2) MOVE h: Execute the observed

sequence. During movement, subjects received real-time visual feedback of the virtual

hand actuated by the subject's actual movement, 3) WATCH-e: Observe a non-

anthropometric object, an ellipsoid, rotating about its long axis, The ellipsoid matched



128

the virtual hand in size, color, movement frequency, and visual field position and

controlled for these non-specific effects. No intention to imitate was required in this

condition, 4) MOVE_e: Execute a previously observed finger sequence. In all

conditions, a pair of right and left virtual hands or ellipsoids was displayed but only the

right object moved, All movements were performed with the subject's right hand, The

scanning session was arranged as 16 nine-second long miniblocks, Each of the four

conditions (OTI, MOVE h, WATCH e, MOVE_e) repeated four times throughout the

session. During the miniblocks, subjects performed one of the tasks described above, In

blocks requiring observation without movement, subjects were required to rest their

hands on their laps and in blocks requiring movement, subjects were required to slightly

lift their hands off their lap just enough to allow finger motion. The miniblocks were

separated by a rest interval that randomly varied in duration between 5-10 seconds, to

introduce temporal jitter into the fMRI acquisition, During this interval, subjects were

instructed to observe the two virtual hand models displayed statically on the screen and

to rest both of their hands on their lap.

4.3.4 Glove Calibration

The glove must be calibrated separately for each user before the start of the session. Two

glove measurements are recorded: 1) with the hand fully closed into a fist such that the

five MCP and five PIP joints are maximally flexed and form a 90 ° angle, and 2) with the

hand fully open, palm down on a level surface (fingers abducted), To calibrate the

fiberoptic signal to a joint angle, the difference in the sensor readings for the MCP and

PIP joints between the open and closed hand postures positions is divided by 90 degrees.
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This determines a calibration "gain" which is applied in real time to make virtual hand

movements correspond to the subject's own movement,

4.3.5 Behavioral Measures

Finger motion data obtained from the 5DT glove during the fMRI session was analyzed

offline using custom written Matlab (Mathworks, Inc) software to confirm that subjects

conformed to the task instructions and that finger movements during the execution

epochs were consistent across conditions (to assure that differences in finger movement

did not account for any differences in brain activation), For this, the amplitude of each

finger's movement was recorded and submitted to a repeated measures analysis of

variance (ANOVA) with within factors: CONDITION (hand, ellipsoid), FINGER (index,

middle, ring, pinky), and MINIBLOCK (1, 2, 3, 4), Statistical threshold was set at

alpha=0. 05.

4.3.6 Synchronization with Collection of fMRI Data

Three components of this system are synchronized in time: the collection of hand joint

angles from the instrumented glove, the motion of the virtual hands, and the collection of

fMRI images, After calibration, glove data collection was synchronized with the first

functional volume of each functional imaging run by a back-tic TTL transmitted from the

scanner to the computer controlling the glove, From that point, glove data was collected

in a continuous stream until termination of the visual presentation program at the end of

each functional run, As glove data was acquired, it was time-stamped and saved for

offline analysis,
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4.3.7 fMRI Data Acquisition and Preprocessing

Magnetic resonance imaging was performed at NYU's Center for Brain Imaging on a

research-dedicated 3-T Siemens Allegra head-only scanner with a Siemens standard head

coil, Structural (T1 -weighted) and functional images (TR=2500 ms, TE=30 ms,

FOV=192 cm, flip angle=90°, bandwidth=4112 Hz/px, echo-spacing=0.31 ms, 3x3x3

voxels, 46 slices) were acquired. Functional data were preprocessed with SPM5

(http://www,fil,ion.ucl,ac.uk/spm/) . The first two volumes were discarded to account for

field inhomogeneities. Each subject's functional volumes was realigned to the first

volume, co-registered and spatially normalized to the Montreal Neurological Institute

template, and smoothed using an 8 mm Gaussian kernel,

4.3.8 fMRI Analysis

fMRI data was analyzed with SPM5, We were interested in two primary effects, First,

we analyzed task-specific activation related to interacting in VE; i.e. activation related to

observation of virtual hand motion with the intent to imitate and activation related to

execution. To rule out non-specific visual feedback effects, we subtracted activations in

the conditions with ellipsoids from those in conditions with virtual hands, Thus, the

resultant contrasts were: 1) OTI > WATCH_e and 2) MOVE h > MOVE_e. Second, we

were interested in whether increased exposure to the VE led to time-varying changes in

activation; i,e, as the virtual hand became embodied. For this, we modeled the miniblock

number as a separate column in the design matrix and analyzed whether activation

parametrically increased across the miniblocks, This analysis was performed for each

condition, Activation was significant if it exceeded a threshold level of P<0,001 and a

minimum extent of 10 voxels. Each subject's data was analyzed using a fixed-effects
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model and the resultant contrast images were submitted for group analysis using a

random-effects model.

4.3.9 Results

Figure 4.8 Simple main effects.

In the figure, left panes represent simple main effect of observation only in VR

versus rest, In red are regions activated when subjects observed, with the intent to imitate

(OTI), a virtual hand perform a natural pre-recorded finger sequence. In green are

regions activated when subjects passively viewed a rotating ellipsOid (WATCH e, see

Methods). In the right panes, the simple main effect Of executiOn versus rest is

represented, In red are regions activated when subjects imitated the finger sequence (that

they observed in the OTI condition) with real-time control of representations of their

hands in VR (MOVE_h). In green are regions activated when subjects performed the

finger sequence while viewing rotating ellipsoids that were not controlled by the
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subject's motion (Hamilton, a Department of Psychological and Brain Sciences et al,),

All yellow colors depict regions where the activations in red and green overlapped, All

activations are thresholded at p<.001 and extent of 10 voxels,In the imaging experiment,

we sought to answer two critical questions. First, are the networks recruited for

observing and executing actions in VE similar to those know to be engaged for

observation and execution of real-world actions? Second, does activity in these neural

circuits change as one becomes more familiarized with the VE?

4.3.10 Activation When Observing Movements in a Virtual Environment

The figure (left side) shows the activation patterns when subjects observed (left side of

the figure) and executed (right side of the figure) a sequential finger movement in the

virtual environment. Note that in the observation condition, subjects were instructed to

"observe with the intention to imitate afterwards". Therefore, in the ellipsoid condition,

subjects could observe all of the features that they saw in the virtual hands condition but

were unable to make an intention to imitate. This allowed us to dissociate "passive" from

"active" observation. Observing virtual hands perform a finger sequence was associated

with a distributed network (see the Table) including the left parietal cortex

(somatosensory and intraparietal sulcus) extending into the anterior bank of the central

sulcus (motor cortex), bilateral anterior insula, bilateral frontal lobes (right precentral

gyrus and left inferior frontal gyrus pars opercularis), bilateral occipital lobe, right

anterior/posterior intermediate cerebellum. Conversely, observing the rotating ellipsoids

was associated with activation limited to the bilateral occipital lobe and the left superior

lateral cerebellum (see the table). The contrast of OTI > WATCH_e was performed to

subtract out regions that may have been associated with low-level effects of observation
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in VR (such as object motion, position, color) and observation nOt assOciated with an

intentiOn to imitate an action, RegiOns activated in this contrast included the fusiform

gyrus of the temporal cortex, superior parietal lobe including the precuneus and

intraparietal sulcus, anterior insula, middle frontal gyrus, and the medial frontal lobe,

4.3.11 Activation When Executing Movements in a Virtual Environment

In the figure, (right side) shows activation when participants executed the sequential

finger movements while receiving feedback in VR of either the virtual hands driven by

the subjects' own mOtion (red areas) or Of ellipsoids (green areas). Both conditions were

associated with activation in the right cerebellar cOrtex, an extensive activation of the left

sensorimotor cortex that included much of the postcentral gyrus and precentral gyrus, the

right inferior parietal lobule, and the bilateral insular cortex (see the Table). Additionally,

feedback of the VR hands was assOciated with activation Of the right fusiform gyrus, The

contrast for feedback of VR hands minus ellipsoids revealed activatiOn of the bilateral
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angular gyri, precuneus, inferiOr occipital lobe, and the occipitotemporal junction. NOte

that since finger movement remained cOnstant between the two conditions (see

Behavioral Data section) it is not surprising that the sensorimotor cortex activation that

was associated with each condition was nOt evident after the subtraction,

4.3.12 Activation During Observation That Changed Over Time

Figure 4.10 Regions activated. Regions activated in the OTI > WATCH-e (red)

and MOVE h > MOVE_e (green) contrasts.

To understand if brain activation changed over time as subjects became familiar with

interacting in the VE, we analyzed the parametric changes in the BOLD signal across the

four execution and observation blocks, Increases in the BOLD signal were noted in the

OTI cOnditiOn in the left posterior insula and in the Move_h condition in the right
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inferior Occipital lobe, Note that the time-variant changes in the BOLD signal occurred

despite no difference in movement kinematics across the blOcks for the observation and

execution conditions (see Behavioral Data section), No other significant time-variant

changes in the BOLD signal were noted,

Figure 4.11 Bold signal and kinematic measures. Across conditions.

In the figure, A in the top left panel shows on an SPM glass brain the only region,

the insula, that showed a significant time-variant increase in activatiOn during the OTI

condition. The remaining three panels show bar plots of the beta values at three cortical

locations: in the insula shown in the glass brain and two control sites that were recruited
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in the simple main effect contrast, Note that the time-variant increase is evident only in

the insula and only in the OTI condition. The bar plots for the parietal site in the

Watch _e condition are not shown since this site was not recruited in the simple main

effect, In panel B, the simultaneously recorded time-series data for the BOLD signal

(top) (group mean ± 1SD) and the joint angles (bottom) (one representative subject) of

the four fingers is shown, Shaded vertical bars denote the condition epochs (wh, OTI;

mh, MOVE h; wb, WATCH_e; mb, MOVE_e),

4.3.13 Behavioral Data

Inspection of the finger kinematics acquired during the fMRI experiment revealed that all

subjects complied with the task by maintaining their fingers still during the observation

epochs and performing the correct finger sequences in the execution epochs. The bottom

panel of Figure 4 shows a representative subject's MCP joint angle excursion for the

index, middle, ring, and pinky fingers across one block. An ANOVA for peak joint

excursion (movement extent) at the MCP revealed a significant main effect of FINGER

(F(3, 9)=8.9; p=0,005). Indeed, the greatest excursion occurred at the index MCP (range:

27°-38°) and the least excursion at the pinky MCP (range: 17°-25°), No other significant

main effects or interactions were noted for movement extent (p>0.05), suggesting that

movement was consistent for each finger across the epochs and conditions.

4.3.14 Discussion

Observation and imitation are among the most powerful and influential aspects of human

skill learning. Since neural networks for observation and execution show a large degree

of overlap, stroke patients may benefit from observation of embodied actions/effectors
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during the acutely immobile phase after stroke. In support of this, it has been

demonstrated that simple observation of actions can accelerate functional recovery after

stroke (Celnik, Webster et al, 2008). To afford subjects the opportunity to embody

movement that they observe, we developed realistic representations of human hands in

virtual reality that can be actuated in real time by the actor's hands. We used an MR-

compatible interactive virtual environment to study the neural networks involved in

observation and imitation of complex hand movements.

A longstanding challenge to understanding the real-time link between brain and

motor behavior is partly due to the incompatibility of human motion measurement

technology with MRI environments. Recently, innovative devices capable of measuring

kinematics and kinetics of one- (1D) and two- (2D) degree of freedom movements

(Diedrichsen, Hashambhoy et al, 2005; Ehrsson, Wiech et al. 2007; Tunik, Rice et al.

2007; Tunik, Schmitt et al. 2007; Vaillancourt, Yu et al. 2007) as well as delivering

forces/torques to subjects' movements (Diedrichsen, Verstynen et al, 2005; Tunik,

Schmitt et al. 2007) have been successfully integrated with MRI environments with

negligible device-to-MRI and MRI-to-device artifacts, These devices allow one to study

brain-behavior interactions in real-time for 1D and 2D movements. Moreover, the visual

feedback presented in these studies was of a moving cursor rather than a moving body

part, As knowledge of brain function advances, it becomes critical to understand how

more complex movements (i.e. finger-hand actions) are controlled and how sensory

feedback can modulate brain activation,

The study demonstrates four important findings. First, the study demonstrates the

possibility of simultaneous integration of kinematic recording of hand movements,
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virtual reality-based feedback, and task-related measurement of neural responses using

fMRI, Second, the study shows that intentional observation of to-be-imitated hand

actions presented in VE recruits a bilateral fronto-parietal network similar to that

recruited for observation of actions performed in the real world, Third, the findings

demonstrate an increase in activation in the left insular cortex as participants became

more familiarized with the relationship between their own movement and that of the

virtual hand models. Fourth, the findings identify for the first time the involvement of the

bilateral angular gyri, extrastriate body area, and left precuneus when controlling a

virtual representation of your own hands viewed in real-time in the 1 St person. Each point

is discussed below,

4.3.15 Capabilities of our VE Training System

It is timely to consider how virtual environments can be exploited to facilitate functional

recovery and neural reorganization. Although exercising in a virtual environment is in

the nascent stage of exploration there are an ever increasing number of studies showing

VE to have positive behavioral (Merians, Boian et al, 2002; Deutsch 2004; Adamovich

2005; Holden 2005; Merians, Poizner et al. 2006) and neural (You, Jang et al. 2005;

You, Jang et al. 2005) effects. What remains untested is whether these benefits emerge

simply because VE is an entertaining practice environment or whether interacting in a

specially-designed VE can be used to selectively engage a frontoparietal action

observation and action production network -- which if the latter is evident, can have

profound implications for evidence-based neurorehabilitation methods and practices.

The overall VE architecture developed by our team was designed to be used in

rehabilitation of hand function in patients with various neurological disorders including
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stroke and cerebral palsy. The system is capable of accommodating patients with a broad

array of dysfunction and treatment goals, For example, our system can integrate various

sensors and actuators to track seamlessly the motion of the fingers, hands, and arms as

well as to induce mechanical perturbations to the fingers or the arms,
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4.3.16 Frontoparietal Involvement for Observing with the Intent to Imitate OTI

Actions in VE

For the OTI condition, subjects observed finger sequences performed by a virtual hand

representation. The finger movements were not performed by consecutive fingers and

varied from trial to trial, requiring subjects to actively observe each finger sequence for

reproduction on the subsequent trial. The simple main effect of observe-with-the-intent-

to-imitate afterwards (OTI) condition versus viewing static virtual hands was associated

with activation in a distributed, mostly bilateral, network including the visual cortex,

sensorimotor cortex, premotor cortex, posterior parietal cortex, and insular cortex. The

network we identified in the OTI condition is consistent with a host of neuroimaging

studies investigating neural correlates of observation of real-world hand movements. For

example, observation of intransitive (non-object oriented) actions involving pictures or

videos of real hands is associated with engagement of a distributed network involving the

frontal, parietal, and temporal lobes (Decety, Grezes et al, 1997; Buccino, Binkofski et

al. 2001; Grezes, Fonlupt et al, 2001; Suchan, Melde et al, 2008). In contrast, activation

in the simple main effect of observe ellipses (OE) versus static virtual hands was

predominantly localized to visual processing areas (occipito-temporal cortex), making it

unlikely that activation in the OTI condition was attributed to low-level effects such as

object shape, color, motion, or its position in the visual field. Activation in the OTI > OE

contrast confirmed this finding. It has been suggested that the above mentioned frontal

and parietal regions, particularly those involving the mirror-neuron system, may be part

of a network subserving internal simulation of action which may resonate during

intentional observation of movement (Rizzolatti and Luppino 2001; Gallese, Keysers et
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al, 2004; Kilner, Paulignan et al. 2004). Our data extend this hypothesis, suggesting that

observation of virtual, but realistic, effectors may also engage similar neural substrates.

An earlier fMRI study investigated observation of grasp performed by high and low

fidelity VR hands versus those performed by real hands (Perani, Fazio et al, 2001). The

authors noted that observation of grasp performed by real hands was associated with

stronger recruitment of the frontal and parietal cortices and that the degree of realness of

the virtual hands had negligible effect on higher-order sensorimotor centers. Along these

lines, activation in the left ventral premotor cortex, a presumptive mirror neuron site, has

been shown to be more strongly recruited when participants observe grasp performed by

a real versus a robotic (nonbiological) hand (Tai, Scherfler et al. 2004). However, in

these paradigms, subjects 1) passively observed the actions performed by another agent,

and 2) never engaged in practicing the observed action (with real-time feedback)

themselves. Particularly, in Perani et al's study, bilateral precuneus and right inferior

parietal lobule (BA39, 40) were recruited during observation of real but not virtual hand

grasping movements (see Table 2 in (Perani, Fazio et al, 2001)), In our study,

observation of virtual hand actions (with the intent to imitate the movement) paired with

rehearsal of the observed action, likely led to recruitment of these higher-order

sensorimotor centers during observation only (see OTI>OE in Table 1).

4.3.17 Time-varying Activation in the Insular Cortex

An additional component to interacting in VR pertains to the possibility that extended

exposure to the virtual model is needed to develop a sense of control or ownership over

the virtual representations of your own body. We tested this by performing a time-series

analysis of the BOLD data. The analysis revealed a parametric increase in the BOLD
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signal in the left posterior insular cortex for the OTI condition. Other cortical regions that

were recruited in the OTI or the OE conditions did not show such parametric increases,

Note too that in the OTI condition, subjects did not make overt movements (see Results),

but just observed with the intention to imitate immediately after, To our knowledge, this

is the first evidence showing a time-variant change localized to the insular cortex driven

by increased interaction with a virtual representation of one's hand. The increase in

insular activation likely reflects the neural substrate underlying the emergence of a

sensed relationship between self movement and the movement of the virtual hands that

were controlled by the subject throughout the experiment. This thesis is supported by

lesion and neuroimaging data implicating the insular cortex in awareness of actions

performed by the self and others (see discussion in the above section), For example,

several recent reports noted increased activation of the insula as subjects became

increasingly aware of being in control of an action (Farrer and Frith 2002; Corradi-

Dell'acqua, Ueno et al, 2008). Along these lines, we show a parametric increase during

observation with the intent to imitate but not during the MOVE-h condition, The

parametric increase in BOLD across the blocks is unlikely to be explained by any

movement-related changes across the blocks since our analyses of movement kinematics

(collected concurrently with fMRI by use of a data glove) did not reveal any significant

changes in performance in the movement blocks nor any movement in the observation

blocks. The parametric changes in BOLD likely reflects perceptuo-motor influences of

interacting in VR. The exact source of this modulation of brain activity is the focus of

our ongoing studies,
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4.3.18 Control of a Virtual Representation of Your Own Hands

Subjects executed sequential finger movements with simultaneous feedback of their

movement through VR hands (that they controlled) or through rotation of virtual ellipses

(not actuated by subjects). Movement under both sensory feedback conditions led to a

distributed activation in known networks recruited for sequential finger movement

(Grafton, Arbib et al. 1996), To identify regions sensitive to feedback from VR hand

models, we subtracted the VR ellipse contrast from the VR hands contrast, This

subtraction revealed activation in the left precuneus, bilateral angular gyri, and left

extrastriate body area. Our findings are consistent with recently hypothesized functions

of these regions.

4.3.19 Contralateral Precuneus

For example, functional neuroimaging work in humans and unit recordings in non-

human primates suggests that the parietal cortex is integral for sensorimotor integration,

a process wherein visual and proprioceptive information is integrated with efferent

copies of motor commands to generate an internal representation of the current state of

the body. A number of related tasks that presumably require sensorimotor integration,

such as motor imagery and the sense of degree of control of an action (i.e. sense of

agency) are associated with activation of regions within the parietal cortex, particularly

the precuneus in the case of imagery (Cavanna and Trimble 2006; Pellijeff, Bonilha et al,

2006; Vingerhoets) and the angular gyrus in the case of attribution of agency (Farrer,

Frey et al, 2007 2003, 2007). Tracing studies, mapping the corticocortical connections of

the precuneus, demonstrate that this region is reciprocally connected with higher-order

centers in the superior and inferior parietal lobule, lateral and medial premotor areas, the
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prefrontal cortex, and cingulate cortex, further substantiating its role in sensorimotor

integration.

4.3.10 Bilateral Angular Gyri

Tracing studies in monkeys demonstrate that area PG (the putative homologue of the

angular gyrus in humans) is connected with higher-order sensorimotor centers including

the rostra! regions of the inferior parietal lobule, pre-SMA, and ventral premotor cortex

(area F5b) (Gregoriou, Borra et al, 2006; Rozzi, Calzavara et al. 2006). Tractography in

healthy humans, performed using diffusion-weighted tensor imaging, reveals similar

findings, that the angular gyrus has strong connectivity with the ventral premotor cortex

and the parahipocampal gyrus (which is implicated in perception of space) (Rushworth,

Behrens et al. 2006), Cells in area PG (area 7a) have complex visual and somatosensory

response properties suggesting that this region is involved in egocentric and allocentric

space perception, particularly for guiding motor actions (Blum 1985; Blatt, Andersen et

al. 1990; MacKay 1992; Yokochi, Tanaka et al. 2003), perhaps as part of the operation of

the dorsal visual stream.

4.3.21 Extrastriate Body Area

The extrastriate body area (EBA), located in the occipito-temporal cortex at about the

posterior inferior temporal sulcus/middle temporal gyrus (Peelen and Downing 2005;

Spiridon, Fischl et al. 2006), near visual motion processing area MT (area V5) and a

lateral occipital (area LO in which cells are selective for object form (Downing, Jiang et

al. 2001; Downing, Wiggett et al, 2007)), A detailed review of EBA's role in perception

is provided by (Peelen and Downing 2007), Human neuroimaging work reveals that the
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EBA is selectively recruited when observing images of body parts (relative to images of

faces or objects) and, like the angular gyrus and insular cortex, seems to be important for

identifying the agent of the observed movement (David, Cohen et al. 2007), Transcranial

magnetic stimulation-induced virtual lesions of EBA lead to transient decrement in

performance on match-to-sample paradigms of images of body parts (Urgesi, Berlucchi et

al. 2004). This body of literature allows us to suggest that the EBA activation in the

VRhands>VRellipse contrast in our study indicates that increased activation in the EBA

was specific to observation of moving virtual body parts,

4.3.22 General Conclusion

In our study, subjects' interactions in VR alternated between the conditions of

observation of actions (performed by virtual hand models) to imitate, and the condition

of actually controlling the VR hand models (whose motion was temporally and spatially

congruent with the subject's own motion). A parsimonious explanation is that the VR

hand models served as disembodied training tools in the former condition, and as

embodied "extensions" of the subject's own body or as "pseudo-tools" in the latter

condition. Our results suggest that the time-variant activation of the insula in the

observation epochs may have reflected an improved ability to disembody the VR hands,

while the recruitment of a network involving the precuneus, angular gyrus, and

extrastriate body area for the execution condition may be attributable to the role of these

regions in integrating visual feedback of the VR hand models with concurrent

proprioceptive feedback and efferent copies of motor commands.
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4.3.23 Supplement - Design of the System

The hardware components of our VR system may include, but are not limited to: 1) left

and right Immersion CyberGloves used to measure 22 joint angles of the hand

(Immersion 2006), 2) left and right 5DT Data Glove 16 MRI which uses MRI-

compatible (fiberoptic) sensors to measure 16 joint angles of the hand; and 3) Ascension

Flock of Birds 6 degrees of freedom sensors (Ascension Technology Corporation, Flock

of Birds, http://www.ascension-tech.com) used to measure the position and orientation of

the wrist and/or arm, 4) ShapeWrap and ShapeGlove MRI-compatible sensors

(Measurand, Inc) used to measure hand and arm position and orientation, 5) CyberGrasp

(Immersion Corp,) used to mechanically perturb finger motion, and 6) HapticMaster

(FCS) which is a 3 degrees of freedom, force-controlled manipulandum to perturb arm

motion, 6) a visual display of an interactive virtual environment, These environments

have been designed using C++/OpenG1 or Virtools (Dassault Systèmes, Virtools Dev

3.5, 2006: http://www.virtools.com), Examples of virtual environments are depicted

herein. Movement of the hands depicted in the virtual environment is an exact

representation of the movement of the subject's hands in real space, For example, in the

Piano Trainer, movement of the keys of the virtual piano and appropriate musical sounds

are defined by the interaction between the virtual finger and the virtual key using a

collision detection algorithm. These and similar environments has been successfully used

by our group for training patients post stroke (Adamovich 2005; Merians, Poizner et al.

2006; Adamovich, Qiu et al. 2007; Merians, Lewis et al. 2007),



RESEARCH AIM 3

5.1 Quality Virtual-Reality Visual Feedback Facilitates Neural Activation in the

Motor Cortex and Secondary Sensorimotor Areas

A growing body of evidence supports bolstering sensory information to improve human

performance. This appears to be true for healthy subjects in some circumstances and is

particularly true in cases wherein one sensory skill is diminished, such as is the case for

some patient populations including those who have suffered from stroke, and in aging.

Recent theories of learning provide models to integrate selective experiences into VE's

with successful track records for facilitating skill learning in healthy and patient-based

populations. However, it remains unknown how visual sensory modulations

implemented to exploit a rich computer based virtual environment might selectively

affect the brain for a number of important applications. It is also not known how these

forms of feedback can be optimally integrated into systems such as those that support

training or rehabilitation of the hand to elicit the desired outcome.

The pervasiveness and accessible cost of virtual environments presents a perfect

opportunity to investigate features wherein parametrically modulated sensory stimulus

and feedback can be crafted to accommodate various techniques such as error-less and

error-based experiences in ways not possible using natural world settings and is

accompanied by an unprecedented degree of personalization providing liberal application

of appropriate features to individuals and situations. Training systems that offer a suite of

147
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sensorimotor stimulus and feedback options can provide a platform to accommodate the

sensory needs and learning style of an individual in health, age, or in disease. These VE

systems might provide a unique opportunity for well defined parametrically adaptive

modeling, sensory support and enhancement, error-less or error-based feedback,

adaptable learning models, and various levels of task complexity. Therefore, this

research is uniquely enabled and timely. By creating a safe environment wherein sensory

experiences can be controlled, various mechanisms present in the human brain may be

targeted. Some characteristics or level of sensory information (volume, brightness, color,

gain, temporal shifts, frequency, close-to-normal, etc,) that are not present in the

subject's world or that are not strong enough (sufficient in quality) as experienced by the

subject might be subject to specific modifications, intentionally presented, enhanced,

modulated, or re-presented through the VE, potentially leading to short term modulation

of somatosensory cortical (SI) networks. Continuous support of SI networks might be

effective in promoting long term reorganization of target areas and may be included in a

training, or rehabilitation plan.

Modulation of visual input and feedback through VE might provide an ideal test

case for sensory experiments. Visual sensory experiences may be manipulated

independently of proprioception sensory experiences. Visual information provides a

potent signal for reorganization of sensorimotor circuits and can override other afferent

modalities in conditions of sensory conflict (Snijders, Holmes et al, 2007), When tactile

information is limited as in the case of some patient groups, vision might modulate

tactile performance (Serino, Fame et al. 2007). Particularly in cases when subjects have

identified a goal, as in imitation or OTI, intention may additionally influence the
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expectation of the content of feedback experiences, A goal of the present research was to

design and develop a flexible MRI compatible exercise system to investigate effective

ways of using visual sensory experiences or illusions to optimize observation, imitation,

feedback, and imagery and to identify methods to selectively modulate brain activation

in a target action-observation and action-execution network.

Aim 3) For the third objective, sensory manipulations of the virtual hand (that are

not achievable in the real world) were tested in functional imaging and behavioral studies

wherein subjects interacted in a VE while receiving various visual feedback that was of

either high, moderate, modest, or poor fidelity of the subjects' moving hand.

Behavioral and functional brain imaging experiments were conducted to test the

capacity of the novel virtual environment system with virtual proxy hands controlled

through the movement of the subject, to drive specific neural actuations in target brain

regions. The vision of this research investigation is to begin to understand how virtual

environments might support selective neuroplastic changes through facilitation and

inhibition of the sensorimotor system as a novel form of therapy. An event-related

functional magnetic resonance imaging experiment was chosen for this investigation

because fMRI offers excellent spatial resolution and allows analysis of multiple

distributed sensory and motor regions, including but not limited to motor cortex,

5.2 MRI Methods

Five healthy subjects performed sequential finger flexion movements with their

dominant right hand (index through pinky fingers) as if they were pressing imaginary

piano keys at a rate of 1 Hz, Subjects' finger motion was recorded with an MRI-

compatible data glove (see Design and Methods section for details about the glove and
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VR architecture) and the joint angles were transmitted in real time to a computer

controlling the motion of a right-sided virtual hand, The virtual hand on the display was

sized in proportion to the subjects' actual hand and its movement was calibrated to the

user's hand before the experiment, Under optimally calibrated conditions, subjects

reported that the virtual hand's motion corresponded perfectly to their actual motion.

During each movement sequence, subjects' hand motion actuated motion of the virtual

hand, which was projected to the participants via a screen in the MRI room, We

parametrically manipulated the amount that the virtual hand's motion corresponded to

the subjects' own motion from: 1) poor correspondence (incorrect virtual fingers move),

2) fair correspondence (virtual fingers move at a 25% amplitude relative to the subject's

own movement), 3) fair+ correspondence (65%), to 4) perfect correspondence (100%).

Each subject performed four sessions (40 trials/session). During each trial, subjects were

required to evaluate the correspondence between movement of the virtual fingers and

their own motion, After each trial, subjects rated the correspondence on a scale of 1-4

(with '4' indicating perfect correspondence) by using their left hand to press one of four

buttons. Six functional runs were performed with 40 trials/run (240 trials total; 60

trials/concordance condition). All subjects completed an MRI screening questionnaire

and consent approved by the imaging center and university IRB committee prior to

participation. Magnetic resonance imaging was performed at NYU's Center for Brain

Imaging (3-T Siemens Allegra head-only scanner). We acquired a T1-weighted (1x1x1

mm3) 3D-MPRAGE pulse sequence structural image and T2*-weighted functional

images (TR=2500 ms, TE=30 ms, FOV=192 cm, flip angle=90°, bandwidth=4112

Hz/px, echo-spacing=0.31 ms, 3x3x3 voxels, 46 slices). Preprocessing was done using
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SPM5 (http://wwvv.fil.ion,ucl.ac.uldspm/) . The first two volumes were discarded to

account for field inhomogeneities. Each subject's functional volumes were realigned to

the first volume, and the functional and structural images were then co-registered and

spatially normalized to the Montreal Neurological Institute template, Condition-specific

differences in the BOLD signal were analyzed with a general linear model approach for

event-related fMRI using SPM5; activations were significant at a threshold.

5.3 Behavioral Study Methods

A study was conducted to investigate how quality of visual feedback affects brain

activation during observation of virtual hand motion. Five healthy subjects performed

sequential finger flexion movements with their dominant right hand (index through pinky

fingers) as if they were pressing imaginary piano keys at a rate of 1 Hz, Control subjects

were asked to rate the quality of visual feedback by determining how much they felt "in

control" of the action of the virtual hand that they viewed, Subjects pressed one of four

buttons to indicate their response. They determined whether the feedback was of either of

poor, fair, fair plus, or perfect fidelity in relationship with the movement of one's own

hand, The gain between the subject's actual movement and the virtual hand movement

was parametrically manipulated:

1. poor correspondence (incorrect virtual fingers move),

2. fair correspondence (virtual fingers move at a 25% amplitude relative to the
subject's own movement),

3. fair+ correspondence (65%),

4. perfect correspondence (100%).
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Figure 5.1 Aim 3 Pilot Data - Subject Rating - Control of Virtual Hand. The gain

between the subject's actual movement and the virtual hand movement was

systematically manipulated. Subjects rated the degree to which they were "in control of

the virtual hand" by pressing one of four buttons.

Aim 3 identified True concordance between the subject's motiOn and feedback Of

the right virtual hand's (VH R) motion parametrically varied from: 1) pOOr (incorrect VH R

fingers move), 2) fair (VH R fingers move at a 30% amplitude relative to the subject's

own movement), 3) fair+ (65%), to 4) good (100%). Following movement, subjects had

3 seconds to 'fficj,1 ,-e the concordance on a scale of 1-4 (by pressing a button with the left

hand). FactOrs true and judged concordance (levels: poor, fair, fair+, good) were

modeled with the BOLD signal as a 4x4 factorial design to delineate neural regions

underlying implicit versus explicit attribution of agency. Six functional runs were

performed with 40 trials/run (240 trials total; 60 trials/concordance conditiOn). Each

functional run lasted about 6.5 min,).
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Figure 5.2 Quality-related Brain Activation, Regions showing significant BOLD

activation in the Virtual Gain experiment, Contrasts are: move>rest (red); positive (green)

correlation and negative (blue) correlation between BOLD and the correspondence of the

virtual hand-to-real hand motion.

Each degree of congruence was modeled in a separate cOlumn in the design matrix.

Contrasts for positive and negative correlations between BOLD signal and degree of

congruence were made fOr each subject in a fixed-effects model using SPM5. Behavioral

data were compared with brain studies for correlation of active neural pathways and

associated subject judgment of concordance, Data acquisition and analysis as previously

described.

The present research contributes to the field by demonstrating a new method for

studying the effects of sensorimotor experiences in virtual environments using a flexible
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MRI compatible technique to investigate human performance in computer interface task

design and neural underpinnings of interactions in a modulated sensorimotor virtual

environment while simultaneously recording kinematic measures of human performance

and behavioral response, for analysis, Subjects in these studies were able to directly

observe their own hands actuating virtual reality representations of their own hands in

real time moving in concurrence with their own movements in an overlapping or 'where

is' position for the first time within the MRI environment, to develop a relationship with

these hands serving as a proxy for the subjects' own hands, and to then observe

unexpected modulations of the behavior of the proxy hands in response to the subjects'

actions when the subjects moved the right hand and saw the left hand move, Subjects

participated in experiments where virtual reality avatars were used in imitation exercises

in and outside the MRI environment, confirming consistency of the visual sensorimotor

manipulation, and the perception of the subject when participating in the virtual activity,

Once the subjects developed a relationship with the virtual proxy hands through training

experience in virtual environments (previously these researchers demonstrated increased

activation of the insula associated with a sense of agency during specific virtual proxy

hand OTI training in virtual environments), the unexpected visual feedback was

introduced, and was associated with the subject's own movement, Functional brain

imaging captured brain network actuations while sensors in the MRI compatible gloves

actuated virtual imagines, and measured all subject movement for the purpose of driving

the error-based visual feedback kinematics, for analysis, and to monitor compliance,



155

5.4 Findings

Activations in the motor cortex hand region and the insula were positively correlated

with the movement task and the associated visual feedback, However, the angular gyrus

and premotor cortex activation was negatively correlated, Therefore, when the subject

visual feedback was not in good correspondence with the perceived movement, the

angular gyrus and the premotor cortex were recruited to a lesser degree than when the

gain of the image of the virtual hands proxies was in perfect concordance with the

subject's own movements, Activation of the insula, which was present during the visual

feedback distortions is important to demonstrate that the visual feedback was recognized

by the subject: the action represented the subject's own involvement with the scene,

However, the lost quality of the visual feedback resulted in the reduced recruitment of

important motor planning and action understanding regions of the brain, Error-based

feedback appears to have a proportional affect upon the recruitment of motor planning

and action observation regions of the brain, Error-based feedback appears to deny the

brain of important sensorimotor stimulus associated with performance and might be a

mechanism of learned disuse, Longer experiments may explore this possibility, Since the

present experiment involved learning in the environment and then experiencing the

unexpected error-based visual stimulus, it would be reasonable to conduct another study

to determine habituation and the possibility of extinction of the effects of the negative

feedback in the total absence of perfect correspondence, or in the case of the naïve user.

Therefore, such an experiment might be conducted by implementing a novel design of

the brain study wherein the OTI training is eliminated, The error-based technique might

serve a role when a subject has had an injury, and movement is not expected for some
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time in one limb, and plasticity adaptation is expected to occur, such might be the case in

learned disuse. Error-correcting visual feedback of the remaining limb might serve a

short term purpose to reduce learned disuse until therapy may be initiated, This model of

feedback might serve an important purpose to gain further understanding of how certain

pathologies of the senses might affect the motor system over longer periods of time, such

as during recovery from trauma or injury, Experiments with unexpected sensory

feedback, not in concurrence with actual movement planning or execution, might provide

models to study specific mechanisms of dysfunction, Following observation with intent

to imitate, and also imitation with accurate visual feedback training, modulation of

movement in an unexpected manner may be explored, These modulations can be

presented following an OTI and at the movement initiation of the task. Such unexpected

events can be perturbations (for example, a robot that moves the hand in an unexpected

direction) in the MRI, while visual sensorimotor feedback provides good quality

feedback of the planned move (incongruent to the actual movement) and might provide

insights into the relationship between visual feedback and proprioception, The visual

feedback provided might actually be created using kinematics recorded from the

individual during previous rehearsals of the task, Therefore, there would be a strong

signal of visual feedback from the subject's own motor profile while the subject

experiences physical perturbation of the hand or fingers. Another interesting area for

further research may engage subjects in reviewing their own movements from previous

practice sessions to determine brain activations while watching one's own movement in

subsequent episodes, Perhaps reviewing one's own motor program over the course of
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training might lead to some effect to benefit training or to provide support during

recovery,

The behavioral portion of this study demonstrated that the visual sensory feedback

precisely corresponded with the subject's perception of the quality of the visual feedback

and how accurately the visual feedback represented his or her own hand movements.

This portion of the study demonstrated that the subjects were aware of the quality

changes in the visual feedback and that they were accurate in determining how close the

visual presentation represented the movements they made,

In conclusion, VE is a promising tool for neuroscientific discovery, and for

applications including but not limited to motor skills acquisition, exercise for training,

and rehabilitation. A specific set of sensory experiences in virtual environments, visual

stimulus for modeling and feedback mechanisms, can enable subjects to successfully

participate in intensive computerized training paradigms, Parametrically modulated

visual sensorimotor experience in virtual environments has been shown to recruit action-

observation action execution-understanding brain networks in concordance with the

quality (modulation of concurrence of subject's movement and the real time visual

feedback embodied in the virtual hands — modifications of gain in poor, fair, good, or

total correspondence with subject's movements, subject moves right and sees left hand

move, etc,). There are several implications of these findings, Patients may be continually

experiencing impoverished visual feedback of their hemiparetic limbs, The present

research demonstrates that the impoverished, or error-based feedback represented by the

virtual hands reduces activation of action observation and execution brain networks. This

activation was modulated even in the presence of activation of the insula, known to be
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involved with recognition of one's involvement in the scene, or sense of agency, By

implementing an increase in gain, with no other change in motor dynamics, activation in

the target important brain regions was increased, while the insula remained relatively

active throughout, As a therapy for patients suffering from hemiparesis, modulating the

gain to improve visual experiences of feedback in concordance with intended movements

might provide a therapy to support SI, Including such gain enhanced visual feedback

provided through sensorimotor experience in virtual environment may also enable

seriously disabled patients to participate in sensory therapies, or in passive therapies, by

demonstrating enhanced gain at even minor efforts of the subjects, Perhaps by reviewing

prior exercise sessions in the virtual environment, subjects may receive visual sensory

support for recovery, Evidence shows that early therapies reduce loss of cortical

representations, This and other sensorimotor experience in virtual environments may

offer significant value to early intervention even when the patient is unable to move.



RESEARCH AIM 4

6.1 fMRI Analysis of Neural Mechanisms Underlying Training in a Virtual

Environment: Activating Ipsilateral Cortical Motor Areas

Stroke patients who suffer hemiplegia with paralysis of a hand, may be unable to

participate in rehabilitation exercises during the acute phase of injury, thereby making

them vulnerable to loss of cortical representation, Virtual Environment (VE) therapy is

proposed employing the virtual hands avatar for bimanual and unimanual somatosensory

feedback to engage and actuate relevant motor cortical regions in the presence of

hemiplegia and to promote plasticity-based neuro-functional changes promoting

recovery of hand function, A functional MRI study on healthy controls investigated the

possibility of inducing increased neural activations in primary, as well as secondary

motor areas through virtual reality-based exercises of the hand, These areas are known to

be important in effective motor output in stroke patients with impaired corticospinal

systems, Specifically, the effect of viewing a virtual left hand avatar move when subject

moves only his or her own right hand, was investigated, Increased activations were found

in the motor related brain areas responsible for left hand movement during this novel

rehabilitation protocol, right hand exercises in VE while viewing virtual left hand, when

compared to viewing of virtual right hand avatar motion accompanying subject right

hand movement, Findings indicate that increased activation of the ipsilateral motor

cortex during hand exercise modulated by viewing the contralateral virtual reality hand

avatar may be an improved strategy for rehabilitation during acute phase of stroke when

the patient may be unable to participate in rehabilitation exercises, The presented

protocol may create an improved plasticity context promoting recovery of hand function

159
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for rehabilitation and may increase evidence-based treatments available to patients who

cannot move voluntarily including acute, and also sub-acute, and chronic stroke patients

or those with motor related or traumatic brain injury,

6.1.1 Introduction

Virtual Environments (VE), flexible computer generated environments used to develop

exercise protocols for motor skills acquisition and stroke rehabilitation, have been

demonstrated to be effective in improving upper extremity motor function in adults with

chronic stroke-related hemiparesis (Merians, Jack et al, 2002), Many acute stroke

subjects cannot perform effective voluntary movement, and are unable to participate in

rehabilitation exercises delaying important interventions, Delay in therapies may lead to

loss of cortical representation,

6.1.2 Competition for Neural Territory

The prevailing paradigm for upper extremity rehabilitation describes the kinesiological

need to develop proximal control and mobility of the shoulder prior to initiating training

on the hand (Lennon, Baxter et al. 2001). This has been the accepted rehabilitation

method for many years, An increasing number of human and animal studies (Nudo,

Jenkins et al, 1990; Pascual-Leone, Grafman et al, 1994; Karni, Meyer et al, 1995;

Hlustik, Solodkin et al. 2004) have reported that movement practice increases the area

and density of motor cortex correlated with that movement, and that new patterns of

representation emerge after intensive motor practice; with the possibility that this

expansion of motor territory influences representations occupying adjacent territory

(Hlustik, Solodkin et al, 2004) or ipsilateral territory (Small, Hlustik et al, 2002), It is not
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clear whether this expansion of cortical representations occurs through sharing of cortical

tissue among representations (Kossut and Siucinska 1998) or through competition for

cortical territory (Merzenich, Wright et al, 1996), The mechanism of expansion of

cortical movement representations may also differ depending on whether plasticity

occurs in an intact brain or after a cortical lesion (Pascual-Leone, Graman et al, 1994;

Karni, Meyer et al, 1995; Nudo, Plautz et al, 2001) and on lesion location (Hamzei,

Liepert et al. 2006), These findings prompt us to reconsider the rehabilitation strategy

that encourages early shoulder activation post-stroke. In general there is better return of

upper arm function post-stroke than of the hand (Lang, Wagner et al, 2006), Does early

motor activity of the upper arm and shoulder hinder recovery of hand function because of

cortical competition facilitated through intensive motor activity? Can early intervention

for hand function be enhanced through the use of a virtual environment hands avatar and

associated rehabilitation protocols?

Underlying mechanisms of action of VE therapies, particularly for the benefit of

motor skills acquisition and for acute stroke subjects, have not been thoroughly

investigated, Functional MRI compatible VE can be used to assess and track neural

activation during exercises with somatosensory experience protocols that correspond

with training in the rehabilitation exercises enabled in the virtual environment, including

manipulated or altered virtual experiences (Brewer, Fagan et al. 2005) modeled to

stimulate 'mirror neurons' (Rizzolatti and Craighero 2004) associated with motor

facilitation (Fadiga 1995; Maeda, Kleiner-Fisman et al, 2002), Functional MRI may be

used in conjunction with VE rehabilitation protocols to determine activation of primary

and secondary motor systems important for effective motor output in stroke subjects with
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corticospinal system (CSS) impairment (Ward 2006; Ward, Newton et al, 2006), Stroke

rehabilitation is moving into the realm of plasticity-mediated therapies (Stein 2004)

related to the ability of the adult brain to re-map functions, shifting regions of motor

control to adjacent tissue (Asanuma 1991; Jacobs and Donoghue 1991; Nudo 1996), or

the contralateral hemisphere (Glees 1980; Fisher 1992; Sabatini, Toni et al, 1994) to take

over functions of damaged cortical tissue, Activation of primary and secondary cortical

motor regions in the absence of voluntary movement may improve the likelihood of

recovery through mechanisms of plasticity, Properties of the mirror neuron system

believed to exist in the human brain may explain the human ability to learn by imitation

(Fadiga 1995; Maeda 2002; Patuzzo 2003). Recent concepts in neurorehabilitation

inspire the interest in. tapping into the properties of the mirror neuron system to stimulate

primary and secondary motor systems and to create a context for plasticity of motor

control rehabilitation through novel hand imitation and sensory feedback VE

rehabilitation protocols.

Imitation exercises are more effective in activating pars opercularis of IFG during

finger lifting than symbolic or spatial cues indicating importance of mirror neurons

(Iacoboni 1999 ). Visual guidance can reduce cognitive burden in stroke subjects

compared with self-guided tasks (Hanlon, Buffington et al. 2005), In rehabilitation,

compliance can be difficult to confirm (Pomeroy, Clark et al, 2005), Intelligent VE can

provide highly structured task presentation, imitation applications, visual guidance, and

can monitor compliance, making VE an attractive choice for rehabilitation, Higher level

functioning mediates motor skills learning by imitation (middle frontal gyrus for learning

novel hand actions) (Buccino 2004), The hypothesis is that in the presence of VE
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protocols, a complex visual-neural stimulus can be achieved that engages mirror neurons

for imitation, and secondary motor systems, known to be necessary for motor output in

stroke patients while providing visual guidance, known to benefit stroke patients and

older persons. Further, the hypothesis is that training and rehabilitation interactions in the

VE might stimulate important cognitive networks, Another hypothesis is that training

and rehabilitation of tasks should involve some protocols wherein interactions with

elements are matched for observation and action (Mattar 2005), VE's are appropriate

since it has been shown that performance improves for such task configurations, It has

also been shown that presenting a first-person perspective for imitation, might stimulate

more direct and stronger cognitive networks than third-person perspective, Viewing

virtual hand movement during VE exercises might activate hand-relevant parts of the

brain (right MT/V5, left and right anterior IPS, right precentral gyrus, and right inferior

frontal sulcus (Wheaton, Abbott et al, 2004)), might promote engagement in feelings of

ownership of the virtual hands (Ehrsson, Spence et al, 2004; Ehrsson, Wiech et al, 2007),

understanding goals of the observed virtual action (Hamilton 2006), recognition of

biological movement (Servos, et al, 2002) of the virtual hand in the scene, and sense of

self-awareness and agency (Decety, Grezes et al, 1997; Decety, et al, 2006), Ultimately,

this MRI compatible VE might enable analysis of the feedback and feed-forward

realtime dynamics of the brain network associated with the interaction of visual

recognition of actions and the control of actions (Hamilton and Grafton 2006). In the

present research experiments were conducted to determine if it is possible to manipulate

the activation of motor related regions by altering sensory feedback to engage activation

in brain regions associated with successful movement of target body regions thereby
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providing an evidence-based rehabilitation protocol for motor skills acquisition and for

acute stroke subjects who cannot generate effective voluntary movement, The inability to

move compromises the stroke subject's ability to participate in rehabilitation and through

properties of plasticity, makes them vulnerable to loss of cortical representation,

Therefore, research was conducted in a functional MRI experiment using virtual

environment hands avatars to alter the visual sensory experience during hand exercises in

healthy control subjects.

6.1.3 Sensory Feedback of the Contralateral Hand Can Facilitate Ipsilateral Motor

Networks

The present research explored whether providing feedback of the non-moving hand,

contralateral to the moving hand, could facilitate motor networks in the ipsilateral

hemisphere, Subjects performed sequential finger movements with their right hand while

receiving one of four types of feedback of finger movement: 1) left VR hand motion, 2)

right VR hand motion, 3) left blob motion, 4) right blob motion, Blobs were non-

anthropomorphic shapes (matching the virtual hand in size, color, movement, and visual

field position) thus controlling for these non-specific effects. Six functional runs were

performed with 50 trials/run (300 trials total; 75 trials/concordance condition), The

conditions were modeled according to a 2x2 factorial fixed-effects model,
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Figure 6.1 Ipsilateral Brain Activation Left-Right Therapy.

A representative subject performed a finger sequence with the RIGHT hand, The

contrast shows activations that were significantly greater when viewing the

corresponding finger motion of the LEFT > RIGHT virtual hand. Note that viewing the

LEFT virtual hand led tO significant activation of the primary motor cortex

1PSILATERAL to the moving hand (i,e. contralateral to the observed virtual hand) (see

arrow). the intentiOn to imitate afterwards, Shown are BOLD correlation with block

number; i,e,, the development of activation in this condition. Significant BOLD activity

(p<,01) is rendered on an inflated cortical surface template, Figure shows a

representative subject's BOLD activation for actuating motiOn of the virtual left hand

more than actuating the virtual right hand. Note that the only difference between these

conditions is the feedback (left versus right hand) while the physical movement is always

generated by the subject's own right hand. Left hand > right hand feedback produced

significantly greater activation of the right sensorimotor cortex (i,e. the cortex ipsilateral

to the physically moving hand), In other words, this simple sensory manipulation was

sufficient tO significantly facilitate lateralized activity in the cortex representing the

physically static hand, This physiological response may explain a previously reported

phenomenon in limb amputee patients, who feel attenuation of phantom limb pain when
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using a mirror reflection of their non-amputated limb to simulate their amputated limb

(Ramachandran 2005), This type of sensory illusion has been hypothesized to have

utility for stroke patients as well (Altschuler, Wisdom et al, 1999; Ramachandran,

Altschuler et al, 1999), However, until now, the physiological mechanisms have not been

explored, The present data suggest that these neuroplastic changes may occur at the level

of the primary motor cortex and that VE may be an effective way of providing stroke

patients in the acute phase, when the affected limb is immobile, with illusions of limb

motion (actuated by their non-affected limb),

6.1.4 Materials and Methods

Images were obtained using a 3T Siemens Allegra imaging system, Single shot gradient

echo (GE) axial EPI images (64'64, TR=1 s, TE=27 ms, FONT= 22cm x 22 cm, slice

thickness = 4 mm, 32 slices) were acquired over 105 data points (210 seconds). The scan

was obtained while subjects were instructed to perform hand exercises, Images were

processed using AFNI software,

All data were tested for the presence of any head motion induced signal changes

using image registration algorithm. A synthesized box-car waveform corresponding to

the stimulus presentation cycle was cross-correlated with all pixels on a pixel-by-pixel

basis for each data set to identify the regions activated by the task. The correlation-

coefficient threshold of 0,5, after a Bonferroni correction, corresponded to a statistical

significance of p < 0,001. All pixels that passed this threshold were considered activated

and belonging to the sensorimotor and its associated cortex,
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Figure 6.2 VE representation viewed by subject Condition 1: MOve while watching
mOving hand.

In the trial experiment, each subject is presented with a task to perform in the MRI

environment, and in analysis, changes relative to a contrO1 state are mapped, Five right-

handed subjects, four healthy controls and one 70 year old woman who had a right

hemispheric subcortical ischemic stroke 7 years ago participated in an imitation of hand

movement protocol created in a three-dimensional VE. A 5DT MRI compatible VE

glove was used on each subject's hands to control the VE animated hand, to correlate

brain activatiOn with finger articulation, and to cOnfirm subject compliance with

instructions,

Each subject is first asked to watch the virtual hand animation (opening and closing

of the hand at about 1 Hz), while intending to imitate the action, In Condition 1, he is

asked to reproduce the observed hand motion by moving his right hand while watching

the moving representation of his hand on the screen. In Condition 2, the subject moved

his right hand while looking at animated virtual hands displayed On the screen, however,

the left hand moves in response to his or her right hand movement.

6.1.5 Results

When comparing Condition 1 with Condition 2, greater activation is seen in a number of

regions associated with the sensorimotor control of the hand in COndition 1 while the

subject sees the virtual left hand moving (see page 167), In addition to increased
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activation in the primary motor cortex, increased activation is observed in a number of

sensorimotor areas including dOrsal premotor and supplementary motor areas, as well as

anterior cingulate cortex, anterior intraparietal cortex and superior temporal gyrus.

Analysis of the hand kinematics demonstrated that this increase in brain activatiOn was

not associated with any significant increase in the amplitude or frequency of finger

motion.

Figure 6.3 Left-Right Therapy Healthy Subject and StrOke Patient.

Most importantly, the recruitment of ipsilateral activatiOn was also seen in the

subject who had suffered a stroke. The shift in laterality of the activation associated with

the Left-Right Therapy represents brain activation in the region of the brain affected by

the stroke and also associated with the hemiparetic limb, If activation of important motor

related brain networks is associated with recovery of motor function, then visual

sensorimotor experience in virtual environments may serve an important role in

establishing a therapeutic cOnditiOn for hemiparetic patients,
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Aim 5) For the fifth objective, visual feedback of seeing one's own hand or seeing a

virtual hand was compared with the absence of seeing a hand during a sensorimotor

experience, Unlike Research Aims 2-4 where we investigated effects of movement

observation during simple finger sequencing, Research Aim 5 was utilizing more

complex hand movements, This objective investigated whether seeing one's hand helps

during imitation of novel hand gestures and whether seeing one's hand actuating a virtual

hand helps during imitation of novel hand gestures.Introduction

Open access architecture, public communications infrastructures, flexible software,

actuators, and input devices have become highly functional and inexpensive offering

options in monitoring, assessment, learning, tele-learning (Patton, Dawe et al, 2006), and

healthcare applications like never before, Simple, yet sophisticated applications may be

used to assist in transforming learning sessions and motor skills treatments or training

from short term and episodic to a more comprehensive persistent model, ready to assist

the individual in his or her everyday life challenges, Neuroscience research has extended

the understanding of correlates associated with important experiences, skills, and

behaviors of humans (Friston 2005), Brain mapping has provided a window into the

complex brain activations associated with learning and a variety of important human

functions (Grafton, Mazziotta et al, 1992). Virtual Environments allow designers to

represent ecologically relevant experiences to which humans are sensitive, and in many

169
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convenient models (Jacobs, Pinto et al, 2004), Convergence of technologies (Patton

2006) and communications integrated with neuroscience is revolutionizing fields of

education, training (Rizzo, Bowerly et al, 2006), and rehabilitation (Adamovich, Qiu et

al, 2007), At the same time, these new technologies have provided the means to integrate

delivery of neural therapies and also to provide for the real-time performance support

during difficult or stressful tasks, for example, when patients are unable to participate in

traditional rehabilitation due to extreme weakness or hemiparesis (Kwakkel, Meskers et

al, 2008),

In addition to providing rehabilitation for patients, carefully crafted virtual

environment platform features and applications based upon sound research principles

may benefit a wide range of fields (Adamovich, Qiu et al. 2007) including primary

neuroscience research, human computer interface design, the general education

marketplace, and applications for specialized skills development for example, defense,

surgery, and flight, and for cognitive prosthetics and psychotherapy. The VESLI

technique and platform uniquely trains the brain through task design and sensory

stimulation and feedback using targets identified by brain mapping — targets recruited

through specific training protocols resulting in recruitment of important action

observation and action execution neural networks including language and motor planning

related Broca's area (Heiser, Iacoboni et al, 2003; Iacoboni 2005), VESLI provides

personalized sensory augmentation and sensory stimulation enabled in virtual

environments (Haggard, Christakou et al, 2007).

Many services may be offered through a system developed using such an

architecture, One such service includes a Motor Skills Disease Management model
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following a patient through the logical health management cycle from initial stages and

providing adaptive and pervasive long-term support and services in the clinic and in the

community, Such a system may be introduced in a phased approach offering effective

features to targeted clients during a particular phase of their treatment, such as those who

have suffered from stroke or traumatic brain injury, and during the acute and sub-acute

phase of care,

At present, there are few options available for rehabilitation for patients who are too

weak or too severely disabled to participate in traditional therapy, Over time, additional

features may be included on the platform making it multi-purpose; at that point,

additional patient populations may be targeted increasing impact. Other patients who

would benefit from such a platform offering personalized early intervention and long-

term treatment and follow up performance support include but are not limited to those

with traumatic brain injury, amputation, spinal injury, those with brain implants,

prosthetics, Parkinson's Disease, Cerebral Palsy, or those for whom imitation experience

is daunting, as it may be for people who suffer from social or communication issues such

as Autism, Benefits gained in typical social interactions may be missed by some

segments of the population, Traditional performance training and support targeting

intensive, repetitive skills acquisition may also be offered on such a platform (Dobkin

1997), The platform provides for the delivery of dynamic and adaptable personalized

augmented sensorimotor action-observation and action-execution, exercise, treatment,

imitation, OTI, and training protocols in a compelling pervasive virtual environment.

The Motor Skills Management feature of VESLI wherein symptoms or performance

indicators are measured and tracked, and protocols using predictive reinforcement
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formulated by experts, carefully crafted tasks (Kerzel, Hommel et al, 2001) and

feedback, inform and assist the individual through protocol compliance. Sensorimotor

and task accomplishment feedback is given in the promotion of learning and good health

through a combination of behavioral instructions managed by the system and

prescriptions (modifying the algorithms in exercise programs) based upon professionally

designed protocols. Over time, additional features may be incorporated to provide

extensive and feature rich services platforms for revolutionary interventions in a

connected and pervasive computing environment,

Peripheral devices integrated into the system measure kinematics and provide input

to programs enabling features and tracking performance. In the near future additional

devices and applications enabled through an ad hoc wireless networks and internet

connectivity will easily support data acquisition in a variety of locations and situations to

measure and support everyday life in the home of a person who has motor skills,

communications, social, or cognitive needs. Eventually, systems of this type with mixed

real-world and virtual environment elements may provide enough features to individuals

to enable them to obtain performance support and to maintain and manage significant

portions of their own health and independence in the community for longer periods of

time, Such applications may lead to improved quality of life for many people and less

reliance on direct medical care that will lead to fewer emergency interventions,

hospitalizations, and specialized care facility admissions, The present research

incorporates an exercise system with visual sensory augmentation features demonstrated

to recruit specific neural correlates associated with a sense of involvement or agency in

actions viewed, and also the neural correlates of action observation and action execution,
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of body parts, VESLI was designed and developed as a motor skills acquisition training

and research system, In the present behavioral experiments, interacting with visual

sensory modulations and feedback were investigated in an observation and imitation

protocol involving intransitive hand gestures.

The significance of the present research is to bring about understanding of the

effects of sensory feedback on the neural correlates of simple finger imitation sequences,

and understanding of high level task performance and to integrate that understanding into

the virtual reality motor skills acquisition and training environment,

7.2 Platform and Services Approach

Early intervention and individualized therapies may optimize the potential for recovery

from hemiparesis and other motor dysfunction. Because of the advent of computerized

rehabilitation and neural-plastic approaches, platforms that offer the opportunity for the

service provider or therapist to assess and prescribe a protocol early following injury

(thereby reducing possible loss of cortical representation) and to offer customized or

unique therapies for individuals are possible, Through brain mapping, connectivity

mapping, evaluation of damage and understanding of retained functional abilities of

patients, and knowledge of target networks, customized protocols may soon be

established, With such a flexible computerized platform, the abilities and needs of the

individual may be systematically and objectively identified, Progress may be easily

tracked and reflected in iteratively updated treatment plans, The integrated system itself

tests the abilities of the subject, The VE system also presents sensory conditions

manipulated through computer programs that are not traditionally accessible in a clinic

or home environment thus extending the impact of clinical care to include the VE
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practice environment where the individual can receive more intensive therapy important

for plasticity based rehabilitation, Elements within the home may be integrated within

the application as features in the system grow. This is important for people who cannot

get out and for those who are limited in their ability to interact with their environment.

For example, sensors installed in common household or workplace elements may be

integrated into the system to monitor motor skills and activities and may be integrated

into the learning paradigms increasing the influence on Activities of Daily Living,

VESLI is a connected model for everyday motor skills support and for monitoring the

patient performance and participation in Activities of Daily Living,

7.3 Profiles for Learning

The VESLI approach is to consider specific brain injury or learning need of an

individual, identify target skills, remaining abilities, and their associated brain networks

within the individual through skills or diagnostic evaluation and brain imaging. Then the

plan is to introduce a learning paradigm through virtual environment and sensory

feedback targeting activation of the specific brain correlates associated with target

behavior, Even when the subject cannot perform the specific behavior as in the case of

hemiplegic stroke patients, the VESLI system has been demonstrated in functional brain

imaging experiments to engage neural correlates known to be associated with the desired

behavior through task design (OTI) and enhanced visual sensory biofeedback. This

extends the system reach to patients who are paralyzed and also to those who might be

training for use of prosthesis, It also allows VESLI to include customers for whom

mental imaging is the goal of the learning protocol, while demonstrating brain
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activations that are motor related when compared with research findings of brain

networks associated with mental imaging,

The VESLI approach differs from traditional stroke therapy approaches that use

statistically demonstrated therapies for each and every patient, only engage the patient

after the acute stage of recovery, and can only engage the patient in therapies when they

can actually perform a task. For hand therapies, the patient must have at least a minimal

range of motion in order to participate in traditional therapies, For passive therapy or for

visual sensory augmented therapy provided through VESLI, subjects may have severe

paralysis and still participate,

Aim 5) For the fifth objective, visual feedback of seeing one's own hand or seeing a

virtual hand was compared with the absence of seeing a hand during a sensorimotor

experience, This objective investigated whether seeing one's hand helps during imitation

of novel hand gestures and whether seeing one's hand actuating a virtual hand helps

during imitation of novel hand gestures.

This objective further clarifies the biological model of the sensorimotor experience

and helps in the understanding of the role of virtual sensory stimulation and feedback

which includes seeing one's own hand movement, or seeing a virtual hand actuated by

one's own hand, during action-observation action-execution (Buccino, Binkofski et al,

2004), OTI, and imitation of novel hand gestures (Arbib, Billard et al. 2000; Carmo and

Rumiati 2009), Visual and auditory language learning activates target neural networks

(Binkofski and Buccino 2004; Newman-Norlund, Frey et al. 2006), Since VESLI uses

American Sign Language, subjects were screened for their understanding of English,

Gestures were defined in Pictures and in Text, A variety of hand-shapes are included in
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VESLI applications from among the 17 used in American Sign Language (Costello

2002) (not including finger spelling), Included hand signs range in motor skills difficulty

and are assessed with the Chedoke-McMaster scale, The study includes signs ranging

from Level 3 through 7, The study questions are as follows: (Chadwick-Dias,

Investments et al.) Does viewing one's own hands facilitate imitating sign language hand

gestures? Imitating Gestures with a Virtual Agent: Seeing One's Own Hand In Practice,

Does seeing one's own hand during practice facilitate imitating gestures in a Virtual

Environment? (4B) Does viewing computer-generated hand models actuated by one's

own hands facilitate imitating sign language hand gestures? Imitating Gestures with a

Virtual Agent and Virtual Self: Seeing One's Own Hand Actuate a Virtual Hand in

Virtual Environment, Does seeing one's own hand actuate a Virtual Hand facilitate

gesture imitation in a Virtual Environment? (4C) Does viewing text or picture, or

viewing an agent (computer-generated human) in either first person perspective or third

person perspective facilitate imitating sign language hand gestures? Imitating Gestures

with a Virtual Agent: Imitating 3 rd Person and 1 st Person Virtual Agents Does 3PP or 1PP

Virtual Agent Facilitate Imitating Gestures? Does seeing your hand affect the virtual

hands (El-Shawarby, Ravhon et al,) effect imitating in 3PP or 1PP Virtual Agent Gesture

Experience?

This study investigated the role of visual feedback in sensorimotor experience and

neurorehabilitation. In particular, the study investigated whether viewing one's own

hands (Poizner and Tallal 1987) will facilitate implicitly imitating intransitive sign

language hand gestures (Hamzei, Dettmers et al, 2002), Virtual environment behavioral

experiments were conducted in the lab where the subjects watched a virtual agent
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(computer-generated human) in either first person perspective or third person perspective

(Jackson, Meltzoff et al. 2006), The agents demonstrated American Sign Language

gestures (Corina and Knapp 2008), accompanied with either text or picture descriptions

(Kahn, Rymer et al. 2004;Davachi 2004; Davachi 2006), and with an agent (computer-

generated human) in either first person perspective or third person perspective (Corina

and Knapp 2006), The study investigated how the above conditions might facilitate

experiences in implicitly imitating intransitive complex sign language hand gestures

(Jackson, Meltzoff et al, 2006), In addition, the effects of viewing one's own hands

during the imitation process was compared with the effects of viewing computer-

generated hand models actuated by the subject's own hands in real time. In future work,

brain networks activated (initially during gesture study) when the subject successfully

learns the gestures (tested in the memory task) will be mapped to understand needed

networks for hand gesture imitation, The goal is to understand which neural networks are

activated when successful behavior, imitation, OTI, exercise, takes place, and results in

successful memory, Brain activations present in recall will also be investigated,

The present work may provide a basis for the development of cognitive and

language tasks such as implicit intransitive gesture imitation within the conscious control

of the subject, utilizing sensory manipulation and incorporated into motor task action-

observation action-execution, OTI, imitation and learning paradigms for personalized

complex motor skills acquisition and training, practice, and rehabilitation utilizing

implicit learning and simplifying dexterous hand activities, Through visual sensory

support, passive and active therapies might be realized, even therapies that might be used

in early stages of stroke when patients are weak, Behavioral, clinical measures, and
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future fMRI studies may be used to determine relevant brain networks associated with

each specific voluntary motor task imitation and learning paradigms. Further work may

be conducted to include healthy and patient subjects who have suffered stroke, brain

injury, or other condition such as autism resulting in motor dysfunction, Through the

mapping of relevant brain networks associated with task performance and by

understanding the effects of stroke or other injury on the brains of individuals, strategies

might be developed to identify the cognitive and language tasks and sensory

manipulation that may be appropriate for use in skills acquisition, training, and or

rehabilitation of an individual, An important question for future research is to identify

whether the task of selecting between definitions with picture or definitions with text

selectively actuate important target brain regions associated with complex hand skills

motor planning and execution and or complex hand skills acquisition,

It is hypothesized that subjects who have suffered stroke (with reduced

proprioception sense) or other injury or condition might benefit more from viewing

hands while performing the imitation or learning task (engaging cognitive networks) and

will differ from healthy control subjects during these tasks, High level tasks can

modulate motor skills, The present ASL intransitive gesture imitation research study

includes only healthy controls, Future studies should include subjects who might

selectively benefit more from bolstered or augmented visual feedback, In addition, future

studies should include mapping dorsal and ventral visual processes in functional imaging

and comparing patient populations with healthy controls in this processing,

Anatomic and functional studies of individuals, for example, subjects who have

suffered from stroke, compared with required networks revealed in this research, might
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shed light on the potential effectiveness of these tasks in a rehabilitation strategy,

Comparison of brain mapping with patient brain studies might reveal prognostic

indicators, Future work may include correlating functional motor skills performance, and

location and extent of lesion, for selecting stroke patients who might benefit from virtual

reality therapies and specific tasks within those VE therapies as a means to stimulate

neural plasticity — targeting brain regions associated with for example, implicit tasks

such as imitating intransitive gestures, Further research in brain imaging and

corresponding motor skills performance analysis before, during, and following

rehabilitation activities might lead to a better understanding of optimal time to participate

in such therapies and the learning processes that take place between sessions across the

recovery interval, Individual neural networks such as secondary motor regions,

recognition of biological motion (Servos, et al, 2002), body part (Wheaton, Abbott et al,

2004), self-other (Farrer and Frith 2002), activation of a sense of agency and self-

involvement, and attenuation of some of these sensations will be investigated in the

future as part of understanding how virtual experiences engage the brain. Work proposed

may provide the basis for understanding the underlying mechanisms of action of

important physical therapies.

Therapies involved include practice-induced neural plasticity associated with virtual

reality physical therapies in hand and finger rehabilitation, Corresponding clinical

effectiveness of these therapies are objectively measured and represent motor skills

acquisition. Behavioral learning responses are also measured in the memory tasks of the

present research, Faster response time in memory tasks is believed to result from

transformation of cognitive processes into motor memory representations, This study
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will use response time in memory tasks as a proxy for motor learning and has been

demonstrated to correspond with correctness of responses, In addition, kinematic

measures will be used to characterize motor skills performance during gesture imitation,

and is used to demonstrate compliance, but kinematics analysis is not within the scope of

the present research, Future work would include additional functional brain imaging

studies that track repetitive exercises to further understand the changes in brain

activations throughout an individual rehabilitation session and between rehabilitation

sessions, Future work will present kinematic analysis of gesture practice and

performance,

For subjects suffering hemiplegia or other motor skills issues, initial functional

connectivity in the brain and clinical motor skills associated will be investigated in the

future, Mapping control subjects for connectivity, mapping the tasks, and comparing

with patient connectivity might reveal important clues to impediments of recovery, and

might lead to innovations in rehabilitation. Particularly, monitoring patients throughout

intervention might reveal important information about mechanisms of recovery not yet

completely understood, The present research establishes a model for research and might

help to develop novel practice-induced plasticity computer-based virtual environment

physical therapy programs optimized for sensorimotor experiences that selectively

actuate target brain regions and that yield desired behavioral outcomes for skills

development for healthy persons and for stroke and other patients suffering from brain

injury-related motor dysfunction such as hemiplegia. The same research may result in

important information about how to provide sensory support for specific groups and for

specific tasks. These experiments combining virtual environments to augment sensory
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experiences might provide a suitable model for the more widespread use of functional

MRI to identify prognostic indicators and therapy targets (in the brain) associated with

motor skills recovery in stroke and other conditions.

The present research provides a flexible MRI compatible virtual environment and

proof of concept human experiments through which a systematic series of experiments

demonstrated an example of neurophysiologically driven sensorimotor experience that

activates target brain networks; one application is to apply this research to develop a

hand imitation rehabilitation strategy, In the future, as more subjects who have

hemiparesis participate in such research studies, when taken together with the present

findings, results might lead to greater understanding of the fundamental impact of injury

upon the neural networks in proximity to the lesion and distant function, to the principal

neural networks traditionally associated with the motor skills and dysfunction, and in

various dispersed functions of the brain some of which might affect prognostic indicators

and recovery strategies, This exciting new frontier of in vivo human brain behavior

research assisted using MRI compatible virtual environments will reveal the fundamental

and complex interactions of networks in the brain. Various strategies revealed through

systematic study of sensory experiences will reveal tasks that can functionally stimulate

target networks for example, those cognitive and sensory networks associated with motor

function, to benefit recovery, The present model of research in the MRI compatible

virtual environment training system establishes an effective means to transfer research

findings readily into the clinical environment.

Knowledge gathered in this study of the sensory mechanisms leading to successful

sensorimotor imitation in virtual environments, such as mirror or feedback modulated
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sensorimotor experiences, avatar model choice, 3 rd person/1st  person (Jackson, Meltzoff

et al, 2006), text and picture support, implicit instructions, intransitive gestures

(compared with transitive tool-based gestures), and the presence or absence of subject

hands proxy, along with future work on understanding of neural connectivity available

for rehabilitation in the injured brain (location and extent of damage), and an

understanding of the dynamics associated with spontaneous and facilitated recovery,

combined with the improved understanding of which patients will benefit from

plasticity-mediated therapies, will bring about promising evidence based therapies. Many

additional high level and cognitive tasks may be tested in the same platform in order to

identify good tasks for learning and rehabilitation, Understanding the neural

underpinnings of motor skills acquisition and motor skills memory formation will

provide the potential for revolutionary training and rehabilitation options to be delivered

through a comprehensive service platform using technologies such as the virtual

environment and based upon theories of brain plasticity,

7.4 Experimental Design — Aim 5

Subjects were informed about the nature and goals of the experiment, They were

instructed in their role and activities associated with participation, They provided

informed consent in order to participate, The subjects were freely able to withdraw from

the experiment at any time,

7.5 Summary of the Study Design

In a Learning Session, each subject was instructed to imitate hand gestures beneath a

special two-way minor in either a See Hands or Hidden Hands condition, The gestures
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were presented in close proximity to the subject's hands on the same mirror viewing

surface using a laptop and a multi-media projector, In the Hidden Hands condition, the

light behind the mirror was turned off, In the See Hands condition, the light behind the

mirror was turned on, enabling the subject to see his or her own hand through the special

two-way mirror while also viewing the avatar model demonstrating the gesture, The

subjects were then asked to perform a Memory task to identify gestures as Familiar or

New, provide Definition from two choices, and indicate source (Source Task) as Picture

or Text recalled from the initial Learning Session, This method assures the memory is

from the specific episode of learning the gesture, Since the words and pictures are

familiar, the Source Task checks subject memory of this particular episode of hand

gesture and definition, and not some generalized knowledge, Speed and accuracy in

performing the Memory Task and the Source Task, remembering the Item and Source,

and accurately rejecting new Lure signs is measured using a customized software

package and data capture application within the VESLI System, Practice time and recall

time for each question was limited and precisely administered through the custom

software and included parameters, Time constraints assure that subjects do not perform

at ceiling. Practice in the Virtual Hands condition was measured with the instrumented

data glove (CyberGlove, Immersion Inc) and determined subject compliance with the

gesture practice portion of the task. Analysis investigated whether Seeing the hands

during practice contributed to performance of the Memory Task (Item and Source) for

each sign practiced with Text or Picture descriptions, The special minor used in this

experiment has the advantage of providing an environment wherein a subject can see his

or her own hand or a virtual hand moving in concordance with his or her own hand
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movement by virtue of the computer virtual experience, The virtual hand proxy was

positioned in an overlapped ("where is") position with the subject's own hands, The

special mirror also concealed the hands during the Control Condition of Hidden Hands in

each of the experiments.
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Figure 7.1 Custom built multimedia system with two-way mirror,

7.5.1 Position of the Virtual Agent, 1 st Person Perspective versus 3rd Person

Perspective

In a separate future study, these tasks may be repeated in the fMRI for brain mapping of

neural cOrrelates associated with viewing virtual hands, or imitating virtual agent in first

or third person perspectives, using biologically driven avatars and linear programmed

avatars, Neural cOrrelates associated with kinematics and successful Memory Task will

be identified.

7.5.2 Procedure

The Virtual EnvirOnment Sign Language Instruction (VESLI) System consists of: a

laboratory Dell computer, Jack human avatar software, VirtoOls avatar, a multimedia

projector, a database containing American Sign Language animation files, CyberGloves

containing bend sensors, and a custom built multimedia twO-way mirror display,

Subjects were asked to sit in a chair close to the special two-way mirror and to view the
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animation of hand gestures performed by the virtual agent and displayed on the special

mirror using a multi-media projector,

Figure 7.2Virtual Agent 3rd Person	 Figure 7.3 Example definition of hand
Perspective presenting hand gesture for gesture presented during Learning
Lobster,	 Session: picture of Lobster,

At the same time, definitions of the hand gestures were displayed in either text or

pictures. Subjects viewed animations and were instructed to practice making the hand

gestures while the definitions and avatar animation remained visible. Signs were pseudo-

randomly ordered.

For half of the practice sessions, the subjects were able to view his or her own

hands, For half of the sessions, the mirror light was off obscuring the subject's view of

his or her hand. Hand gestures were presented by the Virtual Reality Agent during the

Learning Session.



Figure 7.4Ex ample
choices in Memory
Session: Picture Cat.

Figure 7.5 Example
choices in MemOry
Session: Picture Lobster.
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A Memory Session following the Learning Session tested the subject's ability to

remember the hand gesture, the meaning of the hand gesture, selected from two choices,

and the source definition format in the initial gesture presentation, text or picture. Eight

of ten additional novel signs were presented during each Of the Memory SessiOns and

served as Control Conditions for each of the two experiments. Subjects were instructed

to reject signs they did not practice in the initial Learning Sessions. In experiment 2, the

subject viewed a Virtual Reality hand in place of his or her own hand, The subject's own

movement controlled the movement of the virtual hands during practice and visual

feedback was error-less, In this experiment, subjects viewed the person avatar

demonstrate the signs, Again, Picture or Text descriptions were presented to the subjects.

This study cOnsidered the neural mechanisms of action perception/execution and

language/picture processing for clues abOut successful conditions for imitation and

sensorimotor experiences in a virtual environment,
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Figure 7.6 VR Lobster Sign (left panel) and VR Cat Sign (right panel),

In experiment 1, the view of the virtual agent was in the 3 rd person perspective, In

experiment 2, the view of the virtual agent was in the 1 st person perspective. In

experiment 1, subjects saw their own hands through the mirror, and in experiment 2,

subjects viewed virtual hands displayed on the special mirror, In bOth experiments 1 and

2, subjects practiced half of the gestures with their 'own hands' obscured beneath the

special mirrOr for a No Hands condition and serving as a contrOl. Novel signs as Lures

served as a ContrO1 Condition. Subjects were asked to participate in both experiments

with breaks after each apprOximately twenty minute segment. Healthy control subjects

who understand English, who are right-handed, and who are not proficient in American

Sign Language or other formalized gesture systems participated in the experiments.

Learning Session: Subject sees Virtual Agent demonstrate sign gestures, with

corresponding picture (Wong, Bjarnason et al.), text (VA-T), of sign meaning.

Practice: Subject is asked to imitate the sign

• Condition Hidden Hand (HH) — Subject cannot see his or her own hand because
light is Off beneath the special mirror

• Condition See Hand (SH) — Subject can see his or her own hand because light is
on beneath the special mirror
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• Condition See Virtual Hand (El-Shawarby, Ravhon et al,) — Subject can see the
Virtual Hand displayed in the same location as his or her own hand projected onto
the special mirror

Memory Session: Subject sees the Virtual Agent demonstrate signs, and is asked

if he or she remembers having seen each sign, Several Lure signs have been added that

have not been presented previously to the subject,

Response Coding: Correctly Remembered Item (I), Correctly Remembered Item

and Source (IS), Not Remembered, Miss (M), False Alarm (FA), Novel Gesture (N),

Meaning: Subject is asked to identify sign meaning with same or changed virtual,

• Condition 1A Same (S) or Changed (C) - Subject sees sign - selects one of two
pictures as the Definition of the gesture.

• Condition 1B Same (S) or Changed (C) — Subject sees sign — selects one of two
words as the Definition of the gesture,

Source Identification: Subject is asked to remember learning condition, Picture,

Text, or Novel.

Response Coding: VA-Picture (P), VA-Text (T), Novel (N)

7.5.3 Conditions

Experiment 1 — 3rd Person Perspective Agent Seen Hand versus Hidden Hand, 2 x 2

See Hand; Hidden Hand

Picture; Text

Experiment 2 - 3 rd Person Perspective Agent See Virtual Hand versus Hidden Hand, 2 x 2

See Virtual Hand; Hidden Hand

Picture; Text

Experiment 1

Imitating Gesture with a Virtual Agent: Seeing One's Own Hand In Practice,
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Does seeing one's own hand during practice facilitate imitating gestures in a Virtual

Environment?

Learning session: Subjects watched an agent present thirty-two gesture & description

pairs (descriptions: 16 pictures, 16 text), While each gesture was presented, subjects

practiced the gesture, Practice: Subjects practiced each gesture - conditions randomized

(8 pictures, 8 text with Hidden Hands; 8 pictures, 8 text with See Hands),

Memory, Meaning, & Source session: Subjects viewed all forty-two gestures to

select Meaning of each gesture with voice from 21 picture pairs, and 21 text pairs [10

Novel gestures, 32 Familiar gestures; Source: 16 Same (pictures-text), 16 Different

(pictures-text)], Subjects used keyboard and identified, Definition, Familiar and Novel

gestures, Hidden Hands served as a control condition, In the Memory session, Novel

gestures served as a control condition, In the Memory session, source conditions

(picture-text) were reversed for half of the gestures compared with learning session.

Custom application timed, scored, and reported results,

7.6 Experiment 2

Imitating Gestures with a Virtual Agent and Virtual Self: Seeing One's Own Hand

Actuate a Virtual Hand in Virtual Environment,

Does seeing one's own hand actuate a Virtual Hand facilitate imitating gestures in a

Virtual Environment?

7.7 Procedure

Learning session: Subjects watched 1 st Person Perspective agent present thirty-two

gesture & description pairs (descriptions: 16 pictures, 16 text), While each gesture was
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presented, subjects practiced the gesture. Practice: Subjects practiced each gesture —

conditions randomized (8 pictures, 8 text with Hidden Hands - HH; 8 pictures, 8 text in

condition See Virtual Hands - VH).

Memory, Meaning, & Source session: Subjects viewed forty-two gestures (32

previously learned — Familiar; 10 new gestures - Novel), Subjects viewed each gesture in

random conditions — 21 Text, 21 Picture. Subjects identified Definition, Familiar and

Novel gestures with keyboard, Subjects selected Meaning of each gesture from picture

pairs, and text pairs in randomized order and source same-source different (10 Novel

gestures, 32 Familiar gestures), Hidden Hands served as a control condition, Novel

gestures served as a control condition, Subjects used a keyboard to identify whether

gesture was initially accompanied with a Picture or Text, Custom application timed,

scored, and reported results,

7.8 Analysis

Subjects' responses and biometric data were captured using keyboard input, a

customized software package for data recording and analysis, and CyberGloves with

sensors, For Experiment 1, Virtual Agent condition was 3rd Person Perspective, with

Text or Picture definitions of thirty two hand gestures from the American Sign Language

dictionary. For Experiment 2, Virtual Agent condition was 1 st Person Perspective, The

retrieval conditions corresponding with responses of subjects include: Virtual

Environment Plus See Hands, when the subject could See the proxy hands actuated by

his or her hands in real time while learning the hand gesture; Virtual Environment Plus

Hidden Hands, when the subject's hands were in darkness and visibility was prevented

by the special two-way mirror. In Novel — Correctly Rejected, the subjects determined
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that a lure sign and definition was not studied during the Learning Session. The subjects

were asked to remember the definitions of each of thirty-two hand gestures for each

experiment previously studied by selecting one of two definitions presented either as

Pictures or as Text or identifying the gesture as Novel (Control Condition), Ten

additional signs were inserted into the Memory Sessions, Old Items were those that were

presented during the Learning Session, The subject choices during the Memory Session

included remembering that the hand gesture was presented with a picture or with a text

definition (Item Plus Source), which was defined as a correct response, may have

remembered the sign plus the definition (Item), an error, or may have forgotten the item

entirely (Miss), another error type, Memory Conditions associated with subject responses

are: Old - Item Plus Source (familiar and recollected), Item Only (familiar but not

recollected), or Missed (less familiar or forgotten), For New items, the subjects may have

made a Correct Rejection, realizing that the hand gesture presented during the Memory

Session is actually a new gesture (Lure), or may have believed the hand gesture to be

familiar, resulting in a False Alarm, Correct Item Plus Sources were analyzed based upon

initial condition, See Hands, See Virtual Hands, or Hidden Hands, and Picture or Text,

3 rd Person Agent or 3 rd Person Agent, and were also analyzed based upon Memory

Condition, Same (Picture Practice/Picture Memory, Text Practice/Text Memory) or

Changed (Picture Practice/Text Memory, Text Practice/Picture Memory), Control errors

were analyzed for Picture or Text effects, Motor responses and kinematics in imitation

were analyzed from biometric data gathered using the CyberGloves for speed of response

and hand shaping.
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3rd Person Agent 	 Hidden Hands Practice

Figure 7.7 Experiment 1 — 3' d Person Perspective - Encoding, Retrieval, and MemOry
Conditions,

7.9 Data Analysis - Aim 5

VESLI study data were analyzed using three-way repeated measures ANOVA with the

fOllowing factors:

Experiment 1

• Feedback (See Hands, NO Hands), Definition (Picture, Text), and Recall (Same,
Change).

Experiment 2

• Feedback (See Virtual Hands, No Hands), Definition (Picture, Text), and Recall
(Same, Change).
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Figure 7.8 Experiment 2 — 1 st Person Perspective - Encoding, Retrieval and Memory
COnditiOns.
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7.10 Experimental Results Aim 5

Significant findings in Experiment 1 include the following:

• For Average Response Time - Recall (Same, Change) — F (1, 9) = 5.8, p = .039,

• For Average Source Time — Definition (Picture, Text) — F (1, 9) = 14,28, p = ,004,

Significant findings in Experiment 2 include the following:

• For Average Response Time — Definition (Picture, Text) — F (1, 9) = 31,7, p =
.0003.

• For Average Response Time — Interaction of Feedback (See Virtual Hands, No
Hands) and Recall (Same, Change) — F (1, 9) = 38,8, p = ,0002.

• For Average Source Time - Definition (Picture, Text) - F (1, 9) = 6,96, p = .027.

• For Average Source Time — Interaction of Feedback (Hidden Hands, See Virtual
Hands) and Recall (Same, Change) - F (1, 9) = 13.9, p = .0047.

In experiment one for Control Subjects, findings indicate that when practicing hand

gestures in virtual environments, Picture Definitions improve performance of Memory,

Average Response Time was faster in Picture than in Text: F (1,9) = 5.8, p = .039, The

Average Source Time was faster in Picture than in Text: F (1,9) = 14.28, p = ,004,

In experiment two for Control Subjects, Average Source Time was faster when the

sign was defined as Picture: F (1,9) = 6,96, p = .027. The Average Response Time was

faster when recall was the same as in the training conditions, in the presence of the

Virtual Reality Hands Avatars: F (1,9) = 38,8, p = .0002. The Average Source Time was

faster when signs were defined as Pictures during both training and recall, For

Remembering hand gestures in virtual environments with a virtual hand representing

one's own hands, there is an interaction of Feedback (Hidden Hands, See Virtual Hands)

and the Recall condition (Same, Change),
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Figure 7.9 Interaction Bar Plot for Response Time Real Hands vs. Virtual Hands

by Definition by Recall.

When comparing Real Hands with Virtual Reality Hands Avatars, there was an

effect of the Virtual Reality Hands, Control Subjects performed best when using Virtual

Reality Hands Avatars to replace their own hands in practice when the definitions were

presented as Pictures and recall conditions matched the practice conditiOns, whereas

when Text definitions were used in practice and then Picture definitions were used in

recall, Control Subjects response times were longest of among all conditions. Individual

subjects were evaluated to identify personal Memory style for practicing hand gestures,

The VESLI system is helpful to identify individual strengths and possibly to improve

performance.

Future research can investigate sensorimotor conditions improving memOry for

individuals and fOr patients. The VESLI system provides significant flexibility in the
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user interface. The therapist or teacher can easily create a list of gestures and practice

conditions that match the patient's style to provide a training experience, Future studies

can also be implemented in the MRI environment to map neural correlates of successful

gesture memory with and without viewing one's own hand actuating the proxy, with

picture or text descriptions, with 1 St and 3 rd person avatar models, In that experimental

condition, the relationship between the student and the teacher can be investigated.

Further research proposes to study subjects who have suffered from stroke or other brain

injuries or conditions of motor dysfunction to determine if viewing hands or viewing

virtual hands in a virtual environment will help individuals imitate and learn hand

gestures.

The VESLI system can be used to investigate the differential neural mechanisms

of grasping objects, transitive gestures, and imitating intransitive gestures. VESLI can

provide an exercise system for the hand and arm, hand alone, hand and arm separately,

for unilateral exercise, and for bilateral exercise. VESLI is suitable for Mirror Virtual

Therapy (MVT), to present tasks of varying levels of difficulty, and with means to

measure and track kinematics and performance over time,



CHAPTER 8

DISCUSSION

Observation and imitation are among the most powerful and influential aspects of human

skill learning, Since neural networks for observation and execution show a large degree

of overlap (Iacoboni 1999 ; Buccino 2004) and kinematic analysis demonstrates that

movement observation facilitates movement (Castiello 2003; Edwards, Humphreys et al,

2003) , individuals may benefit from observation of embodied actions/effectors during

the motor skills acquisition or during the acutely immobile phase following stroke.

Viewing hands (Wheaton, David F, Abbott et al. 2004) and viewing body parts (Dechent

and Frahm 2003) in the real world actuates characteristic brain networks, Physical

therapy may induce brain plasticity in subacute and also chronic stroke subjects

(Johansen-Berg, Rushworth et al. 2002; Calautti and Baron 2003; You 2005) and has

been demonstrated to be effective when implemented early following stroke (Nudo,

Wise et al. 1996) however, many patients might be too weak to participate. Significant

evidence of support exists for the use of features in VE to promote motor skills

acquisition (Merians, Jack et al, 2002; Adamovich 2004; Merians, Poizner et al. 2006)

and facilitate voluntary motor production. It may be possible to provide ecological

models, by representing real world scenarios in a wide variety of tasks and sensory

experience in VE using flexibility of programming, lower cost platforms, and

personalization enabled by technology (Carignan and Krebs 2006) for customized,

attended, massed, intense, and repetitive training and to deliver support (Reinkensmeyer,

Pang et al. 2002) including robotics and haptics. Vision and associated mechanisms

impose a strong influence on motor learning (Buccino 2004) , can extinguish effects of

198
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other senses (Azanon and Haggard 2009), compensate diminished senses, and may be

modulated independently of proprioception. Through vision, the mirror neuron system

might provide some support to the motor learning process, the acquisition and/or

modification of movement (Shumway-Cook 2007) , through a number of mechanisms;

action observation alone may be sufficient to induce a motor memory in M1 similar to

physical practice (Stefan, Cohen et al, 2005) , and can accelerate functional recovery.

following stroke (Celnik, Webster et al. 2008) . Perhaps vision augmentation in VE may

help to avoid learned non-use (Taub, Uswatte et al. 2006) , improve encounters wherein

individuals must perform tasks without perfect visual feedback (Plautz, Milliken et al,

2000) , or without required intensity and repetition (Taub, Uswatte et al, 2002) credited

with preventing loss of function, and cortical representation, for implicit learning models

(Boyd and Winstein 2006), and for abstract goal formulation, and provide activities in

which patients with limited function can participate while targeting specific neural

networks including Broca's area with language and motor function (Binkofski and

Buccino 2004), Complexity of rehabilitation tasks may present challenges (Rushworth,

Nixon et al. 1997; Rushworth, Nixon et al, 1998 #5631) particularly to patients . There is

inspiration for visual guidance to support performance through a number of mechanisms

as in visual social models to facilitate movement through modeling the task, directly

(explicitly) or indirectly (implicitly) communicating the parameters or the intentions of

action (Becchio, Adenzato et al. 2006; Pierno, Becchio et al, 2006; Becchio, Sartori et al,

2008) , simplifying tasks by reducing complexity, and through reduction of cognitive

burden (Hanlon, Buffington et al. 2005) . To afford subjects the opportunity to embody

movement providing afferent information to an affected function that they can observe
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(Plautz, Milliken et al. 2000) to stimulate recovery (Wilson 1998) to participate in

experience-dependent (Dobkin 2000), that match intention with feedback, realistic

representations of human hands in VE that can be actuated in real time by the actor's

hands were developed, Viewing mirror image of limbs during training has already been

shown to facilitate learning in the untrained limb (Dionne and Henriques 2008) in

healthy controls and has been hypothesized to be helpful in patients of stroke and in

reducing pain in amputees (Altschuler, Wisdom et al, 1999; Ramachandran, Altschuler et

al. 1999) and might be an ideal vision augmentation therapy supported by VE and

computer generated non-human models may be adopted for that purpose (Press,

Gillmeister et al, 2007). Until the present research, it was unclear whether viewing

virtual hands avatars in a VE will actuate action-observation action-execution brain

networks as will real-world observation, The present research explored effectiveness of

visual sensorimotor experience in VE to go beyond providing interesting activities for

subjective benefits associated with motivation and the like; sensorimotor experience

modulated in VE's activated differential neural pathways associated with action-

observation action-execution of real world experience (Buccino, Solodkin et al, 2006),

Behavioral, kinematics, and neural brain mapping in VE together reveal not only the

`what' is happening, but also the 'why'.

In the future, resting state connectivity (Biswal, Yetkin et al. 1995) and mapping

anti-correlated brain regions, as well as longer term studies, before during, and following

training or treatments may capture effects not observed in a single imitation study

episode, and will also lend insight to between episode effects of training, implicit
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learning processes, brain states in correctly remembering the hand gestures, and or the

nature of recovery, relapse, or recidivism, which are important research topics,

Although it may be difficult to apply findings of basic research to practice, in

addition to providing a means to study underlying neural mechanisms of interacting in

the VE, the model presented herein provides a translational recipe to incorporate the

effective mechanisms in a training system. Functional brain imaging has successfully

differentiated mechanisms underlying motor skills in an unambiguous manner and

remains an important method for mapping neural underpinnings of human behavior and

experience whereas behavioral studies may not. Interpretation of findings in functional

brain studies of patients might be difficult and may not result in understanding all

mechanisms of recovery or dysfunction, Tasks thought to be functionally similar actually

involve different cortical networks, for example, in inhibition of over learned and

imitative response tendencies (Brass, Derrfuss et al. 2005) . Emerging evidence shows

that interactive VE's may be a promising tool for studying sensorimotor processes and

for a wide variety of applications including exemplars or paths for rehabilitation and

essential discovery of neuroscience such as mechanisms of recovery which at present,

may be unclear. Activation of neural pathways in the brain over time has been associated

with plasticity-based changes in various brain networks and changes in neural programs

affect processes of recovery (Heller and Goodwin 1987) over time (Boroojerdi, Ziemann

et al, 2001). VE's can be used to trigger supportive visual feedback in response to

minimal efforts (Agnew and Wise 2008) and may be particularly helpful when the patient

has impoverished movements. Systematic comprehensive exploration of training

mechanisms with healthy and patient populations may be performed in the new model
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presented herein with exceptional control over features and with the goal to increase

access to hand and finger therapies (Begliomini, Wall et al. 2007) to avoid loss of quality

of life and reduce loss of cortical representation suffered by stroke patients for example,

and to strategically position the patient for a more effective recovery, perhaps through

mechanisms of plasticity (Boroojerdi, Ziemann et al, 2001), A long term vision is to

identify the essential elements of the VE sensorimotor experience that may selectively

modulate neural reorganization for applications including training, education, basic

neuroscience, rehabilitation of patients with neural dysfunction (August 2006; Lewis

2006) and to extend access and reduce costs of treatment,

VE's provide engaging, motivating, interactive, customizable flexible applications

utilizing a variety of therapeutic techniques, and have been recently shown effective in

improving upper extremity motor function in adults with chronic stroke-related

hemiparesis (Merians, Jack et al. 2002), VE can support diminished senses, task

structure, or cognitive processes.

For the first time, a VE training system and an MR-compatible version of the VE

were used to study the neural networks involved in observation, observation with intent

to imitate (OTI) with 1 st person perspective and 3 rd person perspective virtual teachers,

and imitation of complex hand movements with complex 1 st person virtual proxy

representing the subject's hands, moving synchronously with his or her own movement,

with unimanual, bilateral or symmetric action, VE's are found to embody specific

qualities of sensory experience that can selectively modulate activation in target brain

regions in healthy and in a person with specific motor dysfunction, Loss of hand function

is directly related to loss of quality of life and participation in activities of daily living.



203

Indeed, many of the key elements associated with the dexterous hand motor repertoire

enable an engaging and fulfilling lifestyle. Appropriate intervention may be provided to

those who are weak in the Virtual Environment Sign Language Instruction System.

Laterality changes, associated with plasticity, were measured in the regions of

interest (ROI's) in the present study as subjects responded to sensorimotor modulation —

Moving the right hand and Seeing the left hand move, the Left-Right therapy or Mirror

Virtual Therapy (MVT). Even in the stroke subject, laterality shifts were observed during

this experiment, providing some inspiration that the VESLI methods may be useful in

inducing plasticity through activation of target neural networks. The novel Left-Right

Therapy or MVT, of the present research made novel rehabilitation practical using VE

visual sensory feedback, and therefore may provide an important training and therapy

device for motor skills acquisition and rehabilitation. Discovered in the present research,

intensity of activation was correlated with viewing changes in gain between actual hand

movement and the temporally synchronized movement of the 1st person proxy, Also

found in the present research, following the initial training period, subjects experienced

activation associated with the sense of agency facilitating activation of secondary motor

areas of the brain during observation with intent to imitate (OTI), and also with imitation.

The subjects appeared to be able to accept the virtual hands as proxies for their own

complex hand and finger actions. It appears from the present research that the ability to

accept the virtual hands proxy further enabled modulation of visual sensory experiences

to selectively recruit brain activations that were at once similar to real world experience,

and also not possible for some users, for example patients with disabled upper

extremities, There are important implications of these findings for research on skills
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acquisition and training using VE's, Technology improvements in engineering and

neuroscience portend the fruitful and optimistic future wherein comprehensive

translational gains may be made to extend evidence-based rehabilitation options for

serious conditions such as stroke,

Aims of the present research including but were not limited to Aim 2) exercise

and experience in VE with visual feedback of a concurrently moving virtual hands proxy

demonstrated to result in a relationship over time in OTI, and imitation, including a sense

of agency, and resulting in actuation of motor-related brain networks, Aim 3) modulated

quality of feedback which influences brain activations, and Aim 4) move hand and view

unexpected visual feedback such as Left-Right Therapy, or MVT wherein specific simple

visual modulations were investigated and found to relateralize brain activations, The

accuracy or quality of visual feedback may be altered or modulated, Objects may be

incorporated with or may replace gestures in practice and exercise for reach to grasp and

hand pre-shaping experiences. Therapy models can follow various protocols: hand and

arm together (HAT) or hand alone (HA), or hand and arm separately (HAS), Future

studies can investigate more of the complex combinations of these conditions,

More work is needed to translate the findings in studies to practice, to clarify

details of protocols, task design, properties of sensory variables, and doses (Celnik and

Cohen 2004). Such research is not simple, however it may be systematically approached

using the model presented in the present research.

Various neural mechanisms might be accessed through sensorimotor experience

in VE. Direct task training appears to be important in yielding results from rehabilitation

when compared with impairment focused approaches, such as strength training
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(Kwakkel, van Peppen et al. 2004; Van Peppen, Kwakkel et al, 2004; Smidt, de Vet et al.

2005). Indeed sensory experience due to incoming information along with appropriate

task design (Merzenich, Wright et al, 1996), perhaps provided within a virtual

environment (Adamovich, Merians et al. 2004; Adamovich 2007), might lead to an ideal

platform for implicit learning (Boyd and Winstein 2001) and intensive (Kwakkel, van

Peppen et al. 2004) exercise and practice (Liepert 2000; Liepert, Graef et al, 2000) with

carefully managed increasing task complexity and employing motivating factors to

promote sensory-enriched (Byl, Roderick et al. 2003) task-oriented (Richards, Malouin et

al, 2004) experience-dependent changes (Nudo 1997) in synaptic and functional

connectivity across multiple sessions (Press, Casement et al. 2005), and could promote

plastic reorganization (Robertson and Murre, 1999; Taub, Uswatte, and Elbert, 2002) , It

may be possible through technology to provide significant personalization, motivation,

attention attractors, engaging and beneficial sensorimotor experiences,

Although it is known that rehabilitation improves the outcome of patients who

have suffered from stroke (Jorgensen, Kammersgaard et al. 1999) , many individuals may

be too paralyzed to participate, however, they may be capable of participating in some

passive and modest activity. VE experience with sensory augmentation provides afferent

information to an affected function to stimulate recovery (Wilson 1998). Patients may be

impaired in planning and guiding of hand shape consequently suffering great demands on

visual processing, and putting them at a further disadvantage. Approximately 5 to 20% of

stroke survivors who have initial upper limb impairment regain full use of the limb while

about thirty to 66 percent regain no functional use of the upper limb at six months
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(Sunderland, Tinson et al. 1992; Nakayama, Jorgensen et al, 1994) and about half of all

stroke survivors are left with severe problems (Lawrence, Coshall et al. 2001) .

Successful repetitive task specific methods of improving functional skills of the

fingers and hand following stroke (French, Thomas et al, 2007) are needed . Hand related

therapies typically focus on tool use (transitive) and reach to grasp tasks, further

complicating the exercise. Early sensory evoked potentials recording predicts the degree

of motor recovery in the upper limb (Kusoffsky, Wadell et al. 1982) . Visual sensory

augmentation may serve to improve performance in persons with a sensory deficit

(Serino, Fame et al. 2007) indicating a likely means to improve conditions for patients,

Somatosensory deficits in patients are typically related to lesions in the primary

somatosensory cortex (SI) (Wikstrom, Roine et al. 2000). Loss of body sensations occurs

in approximately fifty percent of stroke patients (Feigenson and McCarthy 1977;

Feigenson, McDowell et al, 1977) affecting patients' ability to manipulate and use

objects, to feel stimuli, and can lead to a complete nonuse of upper limb even when the

limb shows normal function and limiting functional recovery of skills of everyday living

(Carey, Kimberley et al, 2002). It is difficult to predict what recovery may be possible for

patients suffering the effects of stroke and in one recent case study of a stroke subject

recovery was limited to re-emergence of activation in the somatosensory cortices (Carey,

Kimberley et al, 2002) while recovery of somatosensory skills preceded neural changes

observed . Perceptual and functional training methods were compared and were found to

yield similar results in stroke patients implicated in perceptual deficits (Edmans, Webster

et al. 2000),
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Visual enhancement of touch has been shown to illicit changes in SI activity in

healthy subjects (Fiorio and Haggard 2005), Many stroke subjects suffer sensory deficit

whereas tactile sense is improved through visual sensory enhancement when viewing the

body (Kennett, Taylor-Clarke et al, 2001; Press, Taylor-Clarke et al. 2004) that persists

following the visual stimulus (Taylor-Clarke, Kennett et al. 2004), and that this

improvement is not due to attention (Haggard, Christakou et al, 2007),

Visual input results in a strong influence over the brain and often overrides other

afferent modalities, for example when a sensory conflict is intentionally introduced

(Snijders, Holmes et al. 2007). The individual's view of his or her own paretic arm may

be obscured in VE to eliminate the dysfunctional visual scene, In the present research,

activations of the insular cortex developed over time through a sequence of interactions

with the virtual hands in the system (see Aim 2), (Lewis 2006), indicating that a protocol

involving observation (Altschuler 2005; Buccino 2006; Celnik, Hummel et al. 2007;

Celnik, Webster et al. 2008), imagery (Butler and Page 2006), observation with intent to

imitate, and then executing the imitation sequence was successful in establishing a sense

of agency or a sense of ownership (Ehrsson, Spence et al. 2004), perhaps resulting in

accepting the virtual hands as a proxy for his or her own hands and perhaps interacting

with them in relationship to his or her own body schema (Berlucchi and Aglioti 1997), or

perhaps accepting them as tools or extensions of the body (Maravita and Iriki 2004;

Fame, Dematte et al. 2005), or projecting his or her own action to the avatar outside his

or her body (Corradi-Dell'acqua, Ueno et al. 2008). Humans can readily adapt to many

transpositions and configurations presented in peripersonal space. Once the virtual hands

have been accepted as a proxy for one's own hands (Caria, Veit et al,), capabilities of the
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VE are transformed to provide a wide range of practical training activities. These

capabilities exceed those available in the real world, wherein the subject is faced with a

dysfunctional limb, pathological sensory experiences, reduced tactile senses, and a

diminished ability to participate in the traditional therapies requiring intense repetitive

close-to-normal movements, In this case the virtual world is providing sensory

augmentation to the individual, A role of therapy is to provide afferent information to an

affected function to stimulate recovery (Wilson 1998). In addition, the present functional

MRI studies demonstrated activation of brain regions associated with viewing the hand

(Wheaton, David F. Abbott et al, 2004), important in exercise and learning body-related

skills. Within a rehabilitation situation, there may be a benefit to being able to view body

parts (Dechent, 2003) when practicing or mentally modeling skills. Objects in space can

have an impact on all the sensory systems (Craig and Rollman 1999) and arranging an

appropriate experience with regard to objects within the space will likely differentially

affect neural activations,

A variety of neural mechanisms may become facilitated within the therapy

environment to affect a training or rehabilitation model and characteristics should be

evaluated systematically to understand the duration of effects, attenuation and extinction,

with populations, so that effective protocols for exercise and therapy may become more

clearly understood. VE's can be used to present complex multimodal sensory information

to the user and have been used in military training, entertainment simulations, surgical

training, training in spatial awareness and more recently as a therapeutic intervention for

phobias (Buccino 2004; Wheaton, David F. Abbott et al, 2004) and may become

important in the future for delivery of various services including rehabilitation, In the
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present study, within the VE, once the insular cortex was actuated through initial

experience, additional training in observation and imitation resulted in activation of the

secondary motor regions in the individuals. These brain regions are implicated in

successful recovery of stroke patients. Protocol in addition to visual sensory

augmentation appears to be influential in recruiting the target activations. The extrastriate

body area (EBA) responds when a subject views the body in its entirety more than when

viewing parts and may be related to viewing one's own body parts (Astafiev, Stanley et

al. 2004; Arzy, Thut et al, 2006), differentiating them from others(David, Cohen et al,

2007; Saxena, Ng et al. 2007), and moving them (Astafiev, Stanley et al, 2005). In the

present research, functional MRI experiments demonstrated involvement of the EBA

when subjects viewed movement of the virtual hand moving concurrently with his or her

own hand (see Aim 2) (Adamovich et al., 2009) . One conclusion of the involvement of

the EBA in the present study condition may be that interacting with the virtual hands

presented in the visual sensorimotor experience in VE's may indeed recruit similar brain

networks to those involved with the real world, including secondary motor regions

associated with movement recovery in stroke (August, Lewis et al. 2006).

Significant evidence of support exists for the use of features in VE's to promote

motor skills acquisition (Merians, Jack et al, 2002; Adamovich 2004; Merians, Poizner et

al, 2006) and facilitate voluntary motor production (Morganti, Gaggioli et al. 2003), It is

known that action-observation and action-execution activate the same brain networks

(Iacoboni 1999 ; Buccino 2004), and kinematic analysis demonstrates that movement

observation facilitates movement (Castiello 2003; Edwards, Humphreys et al. 2003),

another benefit of visual augmentation. At the same time, some patients with damaged
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action observation systems did not demonstrate the same facilitation, Careful

investigation is needed to uncover some of the mechanisms in brain injury that prevent

recovery.

Through this unique research model, distinctive mechanisms of VE might come to

be better understood — neurorehabilitation strategies and various mechanisms which

might be used to stimulate plasticity-based changes in the human brain (Lewis 2006), A

basic principle of rehabilitation is to provide afferent information to an affected function

to stimulate recovery (Wilson 1998), VE's and associated technologies may provide a

flexible training and rehabilitation tool that can be used to exploit the nervous systems'

capacity for sensorimotor adaptation throughout one's life and thus provide plasticity-

mediated therapies even when patients may experience changes in learning styles due to

injury or fatigue,

There is potential for applications within the VE to perform a major function in

the evaluation of patients, measuring kinematics, in standardizing therapies, tracking

progress, and in training therapists (Riener and Burgkart 2001). High level and cognitive

tasks under conscious control may initiate motor behavior. However, sensory feedback

that accompanies motor movement may be difficult to achieve following brain injury, In

the absence of the production of close-to-perfect performance, intense repetitive practice,

with the rewards of matching intention with feedback, and implicit learning is difficult to

achieve, providing a natural role for sensorimotor experience managed using VE

technology. Physical therapy programs have focused on neurological recovery including

neurodevelopmental technique, proprioceptive neuromuscular facilitation, sensorimotor

integrative treatment, etc. although trials have failed to demonstrate benefit over
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compensatory therapies (Stein 2004) and do not meet the needs of severely impaired

individuals,

Proliferation of lower cost augmentative technologies, modern communication

networks, distributed service platforms, and models such as telerehabilitation hold great

promise to transform options (Carignan and Krebs 2006) and deliver much needed

support to persons with motor dysfunction (Reinkensmeyer, Pang et al. 2002), among

other chronic conditions, Such a configuration can enable progress in research as well as

delivery of services including sensorimotor learning in VE, Patients may be unlikely to

use dysfunctional limbs potentially resulting in learned non-use (Taub, Uswatte et al,

2006), In the clinic and in the community, augmentative technologies may enable

attractive solutions, For example, when patients are too weak or paralyzed, therapists

may assist the patient in moving whereas with technology, passive therapies, and sensory

support through VE's might play an important role, Robots may provide assistance to

bridge the impairments of patients improving access and increasing options for patients

with more seriously disabling conditions (Hogan and Krebs 2004; Krebs, Volpe et al,

2007; Lunenburger, Colombo et al. 2007). Robotically-facilitated repetitive movement

training might be an effective stimulus for normalizing upper extremity motor control in

persons with moderate to severe impairments who have difficulty performing unassisted

movements (Patton and Mussa-Ivaldi 2004; Lum, Burgar et al. 2006) while haptic

devices provide force feedback of realistic sensory experiences. An important feature of

the robots is their ability to measure the kinematic and dynamic properties of a subject's

movements and provide the assistive force necessary for the subject to perform the

activity, with the robot adjusting the assistance and transitioning to resistance as the



212

subject's abilities expand (Lum, Burgar et al, 2006), Auditory or visual cuing, such as

external pacing in repetitive syncopated training can provide support for motor therapy

(Ackerley, Stinear et al. 2007) delivered in VE, Mental imagery, sometimes used to assist

the patient formulate new motor programs may be delivered through VE to augment

cognitive deficits; and imagery may represent a complex cognitive task (Cabeza and

Nyberg 2000) particularly when one must imagine objects that are not present.

Compliance cannot readily be assessed, Patients with conditions such as apraxia might

benefit from task simplification since complexities impair execution of the motor skill.

With the mirror therapy, Left-Right Therapy or MVT, sensory feedback (vision),

and mental imagery (where the patient learns to mentally visualize motor programs), or

mental practice (an exercise of viewing or imagining movement is experienced, with or

without the patient actually performing the exercise with the paretic limb) (Butler and

Page 2006) may be presented in VE. The present research investigated the neural

correlates of Left-Right Therapy, or Mirror Virtual Therapy (MVT) and found that when

the sensation of agency was present following training in the virtual environment, in both

the healthy control subjects and also in the patient who suffered from stroke, increased

brain activation was present ipsilateral to the moving hand and fingers as a consequence

of subjects viewing the Left virtual hand avatar moving concurrently with the subject's

right natural hand and fingers movement, The brain activation seen was related to the

non-moving hand. The visual sensory modulation was successful in recruiting additional

motor related brain networks associated with the target brain region. In the case of the

patient, the actuated brain region was located within the hemisphere of the stroke injury.
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Robotic devices provide exercise and assistance performing tasks and may be

helpful (Volpe, Krebs et al. 2001) for the patient with hemiparesis. Early robotic devices

train unilateral gross motor movements (Krebs, Hogan et al. 1998; Kahn, Lum et al,

2006), elbow and shoulder (Fasoli, Krebs et al, 2003), and a few upper extremity devices

train bilateral motion (Lum, Burgar et al. 2006). None of these systems allows three

dimensional arm movements with haptic assistance. Robotics for wrist and hand

rehabilitation is much less developed (Daly, Hogan et al, 2005) and systems for training

the hand and arms together are non-existent,

Virtual reality simulations when interfaced with robots, movement tracking and

sensing glove systems can provide an engaging, motivating environment where the

motion of the limb displayed in the virtual world in the first person perspective is a

replication of the motion produced in the real world by the subject. The first person agent

(egocentric) provides a proxy to replace the subject's own limb wherein the movement

viewed may be an exact representation of the subject's own movement, or it may be

modified to provide sensory feedback that enhances the subject's movements through

mirror image, or it may represent change in the gain of the subject's own movements, or

it may represent inconsistent, unexpected, and erroneous movement, In addition to

investigating mirror movement visual feedback, the present research investigated

changing gain or creating random finger movement feedback displayed by the virtual

hands avatar in response to the subject moving his or her hand. Neural correlates were

found to be less actuated in the conditions of incongruent visual feedback (see Aim 3),

VE/robotic systems for rehabilitation with various kinematic and performance

measurement and adaptive features can be used to present sensory augmented therapies,
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monitor the specificity and frequency of visual and auditory feedback, provide imitation

models, and virtual proxies, mirror therapies through use of a teacher model or the

subject's own ipsilateral motor program (Merians 2007), can present goals and feedback

to the subject, and can provide adaptive learning algorithms and graded assistive or

resistive forces (Adamovich, Qinyin et al. 2007) that can be objectively and

systematically manipulated to create personalized experience,

Research evidence implies that a rehabilitation practice environment that

compensates for inadequacies in problem solving strategies related to goals of the

movement might offer an accommodation for those who have prefrontal lesions thought

to interfere with awareness of deficits as well as the ability to apply compensatory

strategies for them (Stuss, Binns et al. 2002) . The VESLI system seems to be ideally

suited to accommodating these important issues and the same level of accommodation

might be very difficult in the real world, In a traditional rehabilitation environment,

several challenged skills may be necessarily tapped in the hemiparetic patient, The

individual will almost always be required to perform motor skills without perfect

feedback of a well-functioning limb, with compromised sensations, with compromised

memory skills, or while attempting mental imaging of the movement and or gazing at the

ceiling. Establishing an imitation model reduces the anxiety, embarrassment, and concern

about mental imaging compliance, Reach to grasp necessarily complicates task design by

incorporating hand shaping and complex three dimension location and positioning

reaching problems. The individual will almost always be required to abstract the goal or

position to a target location and or follow instructions, often verbal, which challenge

cognitive skills following a lesion. Patients perform better in implicit learning tasks than
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in explicit tasks. VESLI transforms all these complexities providing an intransitive, direct

imitation model with low demand on memory, interpolation, or interpretation. In

sensorimotor experience in VE's, individuals may receive visual sensory augmentation

representing the instructions for imitation, and also representing the 1 St person feedback

of virtual limbs performing the task, VESLI therapy might be well-suited to patients to

have difficulties formulating abstract goals and performing without perfect visual

feedback, The latter condition has not been easy to investigate until the creating of the

present system wherein individuals may be studied for their response to seeing

dysfunctional visual feedback of their limb, compared with very good concordance of

visual feedback based upon the Left-Right Therapy or the MVF. If the healthy controls

are any indication, there is reduced recruitment of activation in conditions of lower

quality visual support. There may indeed be particular groups of patients who will benefit

more from the visual support of a VE sensorimotor experience due to the nature of their

dysfunction,

Response to explicit information following stroke was uniformly negative

regardless of task or lesion location with stroke groups showing an interference effect of

explicit information while healthy controls did not. The interference effect of explicit

information experienced by the stroke subjects was not task dependent and indicates that

explicit information delivered before task practice may not be as useful for learning as

discovering the solution to the motor task with practice alone and in the experiment, the

effect held regardless of the task being learned (Boyd and Winstein 2006). Performance

was found to remain stable with implicit motor learning and encouraged cognitively

efficient motor control more so than explicit motor learning when time constraints called
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for a complex decision made at the same time as performance of a motor task (Masters,

Lo et al. 2008).

Perhaps some of the differences observed in performance between populations of

healthy controls and patient groups may be partially explained by the differential

involvement of brain networks in action understanding, goal formation, and action

execution and in light of the nature of the injury. Individuals may have unique injuries

leading to disruptions of somewhat different brain networks. At the same time, behavior

is not a source of reliable evidence regarding the location and extent of a brain injury.

Evidence exists for differential involvement of ventral premotor, parietal, and temporal

regions in action understanding. It has been proposed that fronto-parietal and visual areas

involved in action understanding mediate a cascade of visual-motor processes at different

levels of action description including a range from exact movement copies to those of

abstract action goals achieved with different movement styles (Lestou, Pollick et al.

2008). Stages of learning processes necessarily actuate differential networks in the brain

of healthy controls and patient groups wherein immediate and final goals in action

planning actuate differential brain network and yet require similar movements,

Preparatory activity resulted in activation bilaterally along the frontal gyrus and in the left

inferior parietal cortex while in the Immediate Goal activity involved occipito-parietal

and occipito-temporal cortex, Tasks can be performed at different levels engaging

different fronto-parietal circuits when planning the same action modulated by the

emphasis on either selecting a sequence of movements or selecting movements spatially

compatible given object properties (Grol, Majdandzic et al, 2007).
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Together, these findings inspire a quest to identify task and sensory conditions

that facilitate movement in patients, The findings in the present study, demonstrating

visual augmentation for rehabilitation exercises together with evidence from literature,

inspire further brain mapping and connectivity studies in individuals, In addition, the

findings inspire investigation to further the understanding of mechanisms leading to

improved movement facilitation through rehabilitation. Visual information alone can

influence motor programs as well as multimodal sensory experiences (Kennett, Taylor-

Clarke et al, 2001). Visual errors can influence motor cortical areas during motor learning

(Muellbacher, Ziemann et al. 2001; Muellbacher, Richards et al, 2002; Richardson,

Overduin et al. 2006; Bray, Shimojo et al, 2007; Hadipour-Niktarash, Lee et al. 2007)

and the present research demonstrates that an absence of visual feedback regarding

movement of the hand results in significantly less brain activation than moving and

seeing the virtual hand avatar move in congruence with the subjects' movement,

Active and rewarded practice is the means through which one learns to integrate

feedback in motor learning, Vision might modulate tactile performance when tactile

information is limited as in the case of some patient groups such as patients who have

suffered stroke and who have a deficit in the tactile modality (Serino, Fame et al, 2007).

Combined sensory input improves performance when each one individually fails to do so

as in the case of elders,

Perception of hand and fingers appears to take differential mechanisms. Whereas

identification of fingers is somatotopic, identification of hands seems to use a general

body schema which is influenced by external spatial location (Haggard, Kitadono et al.

2006) and may hold implications for methods of exercising hands and fingers in patients.



218

Meanwhile, results of experiments suggest that identification of fingers occurs in a

somatotopic representation or finger schema. The effect of sensory stimulation (Taylor-

Clarke, Jacobsen et al. 2004; Taylor-Clarke, Kennett et al. 2004) outlasts the visual

sensory experience and occurs when concurrent visual information regarding the

stimulated body part is presented (Haggard, Taylor-Clarke et al, 2003) and has been

attributed to backward projections from multisensory brain areas (Macaluso, Frith et al.

2000; Bremmer, Schlack et al, 2001; Macaluso, Frith et al. 2005) probably in the parietal

lobe (Ro, Wallace et al. 2004) perhaps head centered within the ventral intraparietal area

(Fogassi, Gallese et al, 1996; Duhamel, Colby et al, 1998) with a representation of

peripersonal space (Graziano, Yap et al, 1994), In addition, recent evidence supports the

presence of direct projections between different primary sensory areas (Schroeder and

Foxe 2005; Ghazanfar and Schroeder 2006). Even at the very basic levels, multiple

sensory integration appears to be taking place,

In a recent study, visual enhancement effects were found to be inversely related to

a baseline measure of tactile acuity indicating that visual enhancement helped more when

subjects presented poor tactile abilities (Serino, Fame et al. 2007) and might be useful to

improve performance of patients. This effect is believed to be compatible with the inverse

effectiveness rule (Stein, Jiang et al. 2001; Stein, Wallace et al. 2002; Stanford, Quessy et

al. 2005; Rowland, Quessy et al. 2007) and appears to super-additively enhance

performance.

The human brain may be capable of sophisticated levels of integration among

sensory regions, utilizing additional information presented to one modality when deficits

of other modalities or regions are present. Even in the case of healthy controls,
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manipulation of sensory experiences, even without providing additional information

about the stimulus, was effective in improving performance. Serino and colleagues

hypothesized that where some residual function is present, vision might serve to enhance

tactile spatial resolution and make it more functionally useful (Serino, Fame et al. 2007).

This is an interesting area for investigation and might shed some light on important

mechanisms that if used in VE, might assist in creating an environment for learning and

rehabilitation through modulation of tasks and sensory information. By creating a safe

environment wherein sensory and task experiences can be controlled, various

mechanisms present in the human brain may be targeted. Since the system can

simultaneously monitor performance of the patient, performance may continually be

known, Variability in performance throughout sensory and task manipulation may yield

effective input for algorithms to update the rehabilitation application and to selectively

present appropriate tasks and customized sensory augmented stimulus for the individual

patient.

In a recent review article (McCombe Waller and Whitall 2008), it is posited that

bilateral arm training might be a necessary adjunct to unilateral training, Bilateral skills

are common in the real world and are therefore, likely to be a necessary and natural part

of rehabilitation, Bilateral re-training may be strategically important benefiting more

through bilateral not unilateral training, Bilateral training may help unilateral skill

recovery through alternative putative mechanisms, VESLI visual sensory augmentation

features enable Left-Right Therapy, or Mirror Virtual Therapy (MVT), symmetrical limb

exercises, unimanual, and bilateral experiences. Bilateral exercises might access neuronal

programs through inter-hemispheric disinhibition. More research is needed to determine
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the function of disinhibition in rehabilitation. Researchers (Floel, Hummel et al, 2008)

demonstrated reduced interhemispheric inhibition with anesthesia to explore potential

mechanisms of CIMT therapy and (Butefisch, Wessling et al. 2008) observed decreased

short interval cortical inhibition in some stroke subjects, which appears to be a promising

mechanism for rehabilitation.

Findings in a recent study (Romei, Thut et al. 2009) suggest a contralateral (right)

M1 involvement in retrieval and transformation of motor information during left-hand

reproduction of previously acquired right-hand motor-skills, Modulatory interactions of

an inhibitory nature were observed from the dominant (left) to the non-dominant M1 in

the same transfer-condition. These results provide evidence that M1 is essential to

intrinsic movement-based skill-learning and not extrinsic spatial aspects of learning the

motor skill. The authors present insight on models of motor-learning and hemispheric

specialization, suggesting involvement of interhemispheric inhibition, It seems possible

that separating the spatial location-based component of a hand and arm task would

reduce complexity of the task, and increase availability of simpler exercises for

rehabilitation. BATRAC (Whitall, McCombe Waller et al. 2000) demonstrates

successful training of the arm in chronic stroke using bilateral exercises. The present

research demonstrates implementation of observation with intent to imitate, activating

secondary motor regions (see Aim 2), and bilateral exercises enabled in virtual

environment visual sensory augmentation and Left-Right Therapy (see Aim 4), The

mirror virtual therapy (MVT) and Left-Right Therapy seem ideal for the purpose of

rehabilitating severely paralyzed individuals and have demonstrated to have promoted
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desired brain activations likely to be helpful in plasticity-based therapy and to promote

recovery from stroke.

In a recent study of learning a bilateral task with visual feedback, new bilateral

learning overshadowed the influence of the intrinsic patterns. Learning was also greatly

affected by augmented feedback: dynamic, on-line pursuit tracking information was more

effective in transfer than static, terminal feedback with implications of these findings

upon theoretical constructs in motor learning (Hurley and Lee 2006). In another study

involving both younger and older adults, both groups benefitted from concurrent visual

feedback; however the older adults gained more from the concurrent feedback than the

younger adults, relative to terminal feedback conditions suggesting that when learning

bimanual coordination patterns, older adults are more sensitive to the structure of the

practice conditions. The effect was seen particularly with relationship to the availability

of concurrent visual information. This greater sensitivity to the learning environment may

reflect a diminished capacity for inhibitory control and a decreased ability to focus

attention on the salient aspects of learning the task and providing some evidence for

controlled visual sensory environments for learning motor tasks, with concurrent visual

feedback benefiting all participants but providing particular benefit to older adults

(Wishart, Lee et al. 2002). Findings influence design considerations for systems to be

used with aging populations and lead one to investigate visual sensory upper limb

rehabilitation, making a strong case for VESLI techniques,

Bilaterally identical movements are believed to involve both hemispheres in an

identical way. This theory is consistent with the findings that unimanual practice alone

did not improve the hemiplegic upper limb's movement in those who were incompletely
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recovered as in recent research where it was hypothesized that enhanced ipsilateral CM

activity is not helpful in recovery (Turton, Wroe et al, 1996). In their study, however,

median Motricity Index for well-recovered group changed from 66 to 96 while the

poorly-recovered group was statistically noteworthy, according to analysis conducted by

Mudie, et al. Netz et al. using unilateral sustained grasp to observe ipsilateral

disinhibition also found this was not positively correlated with recovery(Mudie and

Matyas 2000); Netz, 1997). These studies, however, do not report initial stroke loss and

therefore, results are difficult to interpret. Therapies for patients who cannot move a limb

are not simple to execute. Virtual reality may provide one practical means to explore

bilateral therapies with and without robot assistance, Bilateral exercises enabled through

virtual environments might facilitate study of the effectiveness of this type of therapy and

other theories about motor skills acquisition in patients suffering from more severe stroke

injuries, and may help in the pursuit to understand the nature of interhemispheric

disinhibition and any role it might play in skill acquisition.

In the case of the present experiment modulating the gain of the viewed virtual

reality hand proxies, subjects' brain activations responded proportionately to the change

in gain of the visual feedback (how similar or dissimilar it was to the subjects' own

movement) demonstrating another virtual environment enabled sensorimotor experience

valuable for visual therapy.

Activation responses observed in the present studies illustrates a learning period

where the subject becomes familiar with the virtual hand proxies, and then ultimately

recognizes the agent of action is him or herself, Following this training period, the brain

activation remains even in the condition of observation with intent to imitate (OTI). The
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virtual environment sensory experiences, presented in this protocol, become a powerful

tool to selectively actuate human brain regions associated with motor skills and motor

skills planning. This activation persists even in cases when the subjects are not moving

their own hands. Following the training period when the subject experiences the sense of

agency, this important motor-related activation is present even in cases when the subject

is experiencing Left-Right therapy, an illusion wherein the virtual hand proxy responds to

the subject's own movement with a visual manipulation - the proxy provides a view of

the concurrent movement of the hand opposite to the subject's own hand movement,

There is indirect evidence that there is a correspondence between visual sensory

experience, such as observation with intent to imitate, and performing the action. There

is also an important role in rehabilitation and learning in imagining motor action (Grezes,

Fonlupt et al, 2001). Recent research reveals that the field of neuroscience is on the cusp

of a new age wherein evidence-based and technology supported flexible highly

personalized training can support sensorimotor learning, perhaps offering significant

value over and above traditional therapy.

The VESLI system contributes to the field a model and exercise system to provide

visual sensorimotor experience in virtual environments for research and for training.

Technology supported passive or minimally active therapy extends the possible

interventions available to severely impaired patients and contributes to translational

research, VESLI follows this new model (Morganti, Gaggioli et al, 2003),



SENSORIMOTOR EXPERIENCE IN VIRTUAL ENVIRONMENTS

9.1 Overall Outcomes

A pivitol role that technology can play is to provide for some experience or skill absent

in the individual student, or patient and to allow for the systematic testing of

controversial treatment interventions associated with behavioral, kinematic, and neural

mapping. Through highly flexible personalized technology systems providing

performance augmentation and enhanced task structure including visual sensorimotor

experience in VE, training and rehabilitation may become possible even for

inexperienced, very weak, or severely impaired patients so that they may practice

intensely and repetitively not previously possible with traditional real-world methods.

Through VE visual sensory support, and compliance monitoring (Pomeroy, Clark et al.

2005) , Sensory augmentation introduces important visual stimulus and feedback for

observation, mental imaging, observation with intent to imitate, OTI, and action

execution, with computer generated virtual hands representing movement where no

close-to-perfect example previously existed, for example, for those studying dexterous

motor tasks or for patients who have suffered stroke or paralysis, and altogether making

visual sensorimotor experience in VE a good options to accommodate individuals.

Studies involving humans observing computer generated, recorded movements, or

static poses representing human movement provide some insight into the design of the

VESLI system which has a laboratory version and a functional imaging component

compatible with the MRI environment so that kinematic, behavior, and neural activations

224
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may be correlated and so that solutions may be easily transferred from the MRI

experimental environment to the training environment. Kinematic data used to activate

movement viewed in VESLI is generated from recorded human movement. Humans can

discern biological movements of humans compared with animals (Pinto and Shiffrar

2009), by gender, and by individual (Agnew and Wise 2008), and is differentiated from

linear motion even with only a few points of light (Servos, et al. 2002) , or when random

dots in a background drift in a direction opposite to the points of light of human walking

(Fujimoto 2003) and activating premotor cortex (Saygin, Wilson et al. 2004), There

appears to be a design advantage for recording and displaying the avatar proxy

representation using human recorded data for visual sensory experience and to embody

tasks that might be considered appropriate for imitation and practice. An individual may

adopt a representation created from his or her own or another human's motor program

more readily than a linear computer based program. A program based upon a person's

own body schema and sensorimotor experiences may help to re-set or reinforce many of

his or her own movement characteristics since they may match copies of motor

memories already present in some form, a topic for future research.

Properties of the mirror neuron system believed to exist in the human brain may

explain the human ability to learn by imitation (Fadiga 1995; Maeda 2002; Patuzzo

2003) and tapping those properties might serve to stimulate insular cortex, and

consequently, secondary motor systems and plasticity of motor control. VE exercise may

help to shift attention from external space based body schema of the hand, to

somatosensory perspective of the individual fingers thereby enabling bolstering sensory

systems in motor learning. Imitation exercises mediated by higher level functioning
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(middle frontal gyrus for learning novel hand actions) (Buccino, Vogt et al. 2004), are

more effective (in activating pars opercularis of IFG during finger lifting) than symbolic

or spatial cues (Iacoboni 1999) , and may provide performance support compared with

self-guided tasks (Hanlon, Buffington et al, 2005) simplifying tasks ,

In the presence of VE protocols, a complex visuo-neuro stimulus can be achieved

that engages mirror neurons for sensorimotor imitation. Through experience visual

feedback in VE engages insular cortex (August) , and secondary motor systems (August)

known to be necessary for motor output in stroke patients, Task design stimulates

important cognitive networks. Since patients may still be in control of cognitive

networks, and may have lost motor skills, higher level tasks that necessarily recruit brain

regions associated with movement and movement planning, or movement understanding

appear to be good targets for plasticity based learning, or to prevent loss of cortical

representation following injury.

Training in a VE that is matched for observation and action (Wheaton, David F.

Abbott et al. 2004) may provide an advantage since research shows that performance

improves for such task configurations and since first-person perspective, might stimulate

more direct and stronger cognitive networks than third-person perspective (Jackson,

Meltzoff et al. 2006) in imitation, and reduce complexity of the task. Viewing the virtual

hand movement might activate hand-relevant parts of the brain (right MT/V5, left and

right anterior IPS, right precentral gyrus, and right inferior frontal sulcus (Wheaton,

David F, Abbott et al. 2004) ), might promote engagement in feelings of ownership of

the virtual hand (Ehrsson, Spence et al. 2004; Ehrsson, Wiech et al, 2007) ,

understanding goals of the observed virtual action within the task (Hamilton and Grafton
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2006) , recognition of biological movement (Servos, et al, 2002) of the virtual hand in

the scene, and sense of self-awareness and agency (Decety, aDepartment of Psychology

et al. 2006; Jackson, Meltzoff et al. 2006). To systematically verify the neural

underpinnings and behavior and features useful to sway the balance of sensory

experiences, even when individuals may be experiencing compromised senses, the novel

MRI compatible VE model enables parametric modulation task and sensory experience

for analysis of real-time dynamics of brain networks associated with interaction of

recognition and control of actions (Hamilton, 2006) in health, ageing, and disease,

associated effects, and to investigate attenuation and extinction over time. A new

research and practice proof of concept model has been demonstrated, and in addition,

new findings applicable to sensory training in VE's for hands and fingers have also been

demonstrated. Specific modulations in the visual aspects of the VE yielded predictable

outcomes in brain activation patterns in healthy controls and patients as well. Future

work would involve a deeper understanding of the integration of those and additional

sensory experience, and attenuation and extinction of those effects in complex tasks over

time. Further work would involve mapping neural networks and functional connectivity

networks (neuroanatomic underpinnings) of healthy controls and subjects who have

suffered from injury; these subjects would be evaluated before, during, and following

therapy experiences to develop prognostic indicators and to identify appropriate therapies

for individuals and to understand the complex dynamics of recovery.

Because of the compatibility of the fMRI research system with the motor skills

acquisition and rehabilitation training system, visual sensory modulation features found

to be effective in the functional MRI environment in actuating desired brain networks
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may easily be translated into the motor skills acquisition and rehabilitation training

system and may be translated from research to practice. Importantly, the new model for

research demonstrated in the present work represents a significant contribution to

translational neuroscience. Significantly, this research has demonstrated a new model for

neuroscientific discovery — providing experiments for the first time using views of

complex hand and finger models in the MRI environment, and behavioral data associated

with avatar imitation exercises using personalized hand proxies, This research has also

provided much needed objective data regarding successful imitation in the VE using

virtual hands proxies, and also providing the map of human brain networks actuated

when interacting with sensorimotor experience in VE's, to lay groundwork for the

optimization of application designs including interventions that target important motor

learning networks of the brain especially significant for revolutionary plasticity-based

therapies involving the repetitive practice and acquisition of motor skills, This

information will be relevant whether the rehabilitation is performed using more

traditional means or whether it is delivered through newer technology, Findings are also

relevant to the research of health and ageing, developmental, and issues of motor skills

dysfunction. A new model for further research in this field has been provided herein. In

addition, as technology opportunities extend to include virtual reality in wider

applications, a clear understanding of the effects of certain virtual reality experiences on

the human brain and behavior will inform design and human factors in a number of

fields.

Technology embodying careful task design and optimization of strategies with a

means to deliver the intensity of practice required for modifying neural architecture and
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function has the potential to change the way therapists deliver rehabilitation, Increasing

access to therapy through technology can make a significant impact on the number of

individuals who can participate and the amount of therapy they can receive, the duration

of access to the therapies, the associated costs, and holds the potential to provide

continual support over time.

Particularly relevant is the ability, through VE's, to improve rehabilitation methods

available to weak or seriously impaired patients, for example, those with hemiparesis

from stroke, or those with paralysis from brain or spinal cord injury and who may not be

able to participate in traditional therapies, With passive and sensory augmented exercises

such as those investigated herein, there may be good reason to believe visual

sensorimotor experience in VE's can provide an effective therapeutic experience:

compelling enough to engage a sense of agency, increasing activation in appropriate

motor-related brain regions during observation with intent to imitate, activating

secondary motor regions associated with recovery of motor skills in patients with

corticospinal injury, activating ipsilateral brain regions through visual modulation alone,

even in a stroke patient, even when the contralateral limb is not moving, and modulation

of brain activation based upon quality of visual feedback that might possibly be helpful

in activating action-observation action-execution brain networks while viewing scenes

compatible with action intention, with a potential to bolster sensory experience in

individuals especially applicable to those with altered natural sensory conditions and to

simplify tasks. This present research findings may be directly translated from research to

the application design in the specific case of training for skills acquisition, practice, or

rehabilitation of motor skills, particularly for the hand.
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This system is capable of measuring the complex span of hand-finger movements

and simultaneously streaming this kinematic data to control the motion of representations

of human hands in virtual environments and a plethora of features and services. This

novel system also records experimental and behavioral responses for tracking and

analysis. Results of the present research demonstrate that in addition to providing an

initial proof of concept, the virtual environment rehabilitation system allows for the

systematic testing of controversial treatment interventions

This research demonstrated the suitability of sensorimotor experience in virtual

environments to support observation, observation with intent to imitate, and exercise of

complex intransitive hand gestures, and simple hand gestures. The present research also

demonstrated that an exercise and training environment practical for research and training

can be replicated in an MRI compatible instantiation for the purposes of mapping neural

correlates of sensorimotor experience in virtual environments pertaining to virtual hands

avatars, observation, observation with intent to imitate, and exercise, accomplishing Aim

1. The present research also demonstrated a specific manner of modulation of visual and

task related sensory experiences within the virtual reality system for selectively activating

networks associated with moving hands and fingers including tasks that may also be

integrated into rehabilitation situations for remediating hand function (Aims 2 through 4).

The findings in Aim 1 trough 5 advance our understanding of the behavioral (Aim 3, and

Aim 5) and neurophysiological mechanisms (Aims 2, 3, and 4) underlying interventions

such as sensorimotor experiences delivered using virtual environments with potential for

a wide array of applications including but not limited to neuroscience, training,

rehabilitation and education, Importantly this research has demonstrated a new model for



231

neuroscientific discovery — providing experiments for the first time using complex hand

and finger models in the MRI environment, and behavioral data associated with avatar

imitation exercises using personalized hand proxies, This research has also provided

much needed objective data regarding human brain networks actuated when interacting

with sensorimotor experiences in a virtual environment, to lay groundwork for the

optimization of application designs including therapeutic interventions that target

important motor learning networks of the brain especially significant for revolutionary

plasticity-based therapies involving the practice and acquisition of motor skills, This

information will be relevant whether the rehabilitation is performed using more

traditional means or whether it is delivered through newer technology. Findings are also

relevant to the research of healthy, developmental, and dysfunctional motor issues. A

model for further research in this field has been provided herein. In addition, as

technology opportunities extend to include virtual reality in wider applications, a clear

understanding of the effects of certain virtual reality experiences on the human brain and

behavior will inform design and human factors in a number of fields.

Careful task design and optimizing rehabilitation strategies with a means to deliver

the intensity of practice required for modifying neural architecture and function has the

potential to change the way therapists deliver rehabilitation, Increasing access to therapy

through technology can make a significant impact on the number of people who can

participate and the amount of therapy they can receive, and the duration of access to the

therapies, Particularly relevant is the ability, through virtual environments, to improve

rehabilitation methods available to seriously impaired patients, for example, those with

hemiparesis from stroke, or those with paralysis from brain or spinal cord injury, With
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passive and sensory augmented exercises, the brain imaging findings from this research

demonstrates that there may be good reason to believe virtual environments can provide

a therapeutic experience: activating secondary motor regions (associated with recovery

of motor skills), and activating ipsilateral brain regions, possibly helpful in activating

action observation and action execution brain networks,

This present research findings illustrate targets activated by specific sensory

experiences in virtual reality that may be directly applied to applications design in virtual

environments and in the specific case of training for skills acquisition, practice, or

rehabilitation of motor skills, particularly for the hand.

9.2 Conclusion

Emerging evidence shows that interactive virtual environments (VE's) may be a

promising tool for studying sensorimotor processes and for a wide variety of applications

including rehabilitation, Activation of neural pathways in the brain over time has been

associated with plasticity-based changes in various brain networks. A long term vision is

to identify the essential elements of the VE sensorimotor experience that may selectively

modulate neural reorganization for a number of applications including rehabilitation of

patients with neural dysfunction. However, the potential of VE's to recruit action

observation-execution neural networks is largely unknown. Virtual Environment Sign

Language Instructor (VESLI), an accurate and reliable MRI-compatible interactive

computerized virtual environment for training and research purposes, was designed and

developed, VESLI provides an imitation-based gesture learning system with a third and

first person avatar that may be used as a model or as a proxy for the subjects' own hands

during training and research. For the first time, a functional MRI-compatible virtual
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reality system (VR) has been developed to provide training and also a window into

studying brain-behavior interactions, This system is capable of measuring the complex

span of hand-finger movements and simultaneously streaming this kinematic data to

control the motion of representations of human hands in virtual environments and a

plethora of features and services. This novel system also records experimental and

behavioral responses for tracking and analysis.

Results of the present research demonstrate that in addition to providing an initial

proof of concept, the virtual environment rehabilitation system allows for the systematic

testing of controversial treatment interventions accomplishing Aim 1. Consistent with

Aim 1, experiments demonstrated that the VESLI system may be used in the intended

modes to provide 1 st and or 3 rd person avatar models for imitation and exercise, a first

person agent to create the visual modulation of subject hand movement intended in direct

imitation, bilateral and mirror movement, and modulated visual feedback such as gain

changes to test effects in experiments, Of course, other sensorial modulation may be

included such as auditory and haptic in the laboratory and in the MRI environment. This

system may be used to provide protocols for learning and therapy, to conduct data

collection for applications to enable features, for subject monitoring, kinematic analysis,

status, evaluation, clinical notes, and tracking. The element of VESLI tested in the MRI,

the virtual hands in 1 st person perspective, functioned as designed and was used in the

present research to investigate underpinnings of sensorimotor experiences in virtual

environments,

In a blocked fMRI design, thirteen healthy subjects observed, with the intent to

imitate (OTI), finger sequences performed by the virtual hand avatar seen in 1 st person



234

perspective and animated by pre-recorded kinematic data to investigate Aim 2. Following

this, subjects imitated the observed sequence while viewing the virtual hand avatar

animated by their own movement in real-time. These blocks were interleaved with rest

periods during which subjects viewed static virtual hand avatars and control trials in

which the avatars were replaced with a moving non-anthropomorphic object, There are

three main findings. First, both observation with intent to imitate and imitation with real-

time virtual avatar feedback, were associated with activation in a distributed

frontoparietal network typically recruited for observation and execution of real-world

actions. Second, a time-variant increase in activation in the left insular cortex was noted

for observation with intent to imitate actions performed by the virtual avatar. Third,

imitation with virtual avatar feedback (relative to the control condition) was associated

with a localized recruitment of the angular gyrus, precuneus, and extrastriate body area,

regions which are (along with insular cortex) associated with the sense of agency. Data

suggest that the virtual hand avatars may have served as disembodied training tools in the

observation condition and as embodied "extensions" of the subject's own body (pseudo-

tools) in the imitation (Iriki 2006). Once again, the present research establishes a unique

relationship between sensorimotor experiences in virtual environments and selective

actuation of brain networks. Furthermore, the research demonstrates that a specific

protocol involving a period of training in the virtual environments, and that protocol was

implicated in the corresponding increase in a specific target network associated with a

sense of agency, recorded in the functional brain imaging data.

In order to understand the impact of seeing unexpected visual feedback when

moving in virtual environments, Aim 3 endeavored to investigate this compelling
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condition using a behavioral and a corresponding functional imaging study, In the

behavioral experiment, the affect of simple unexpected visual feedback perturbations,

that involved parametrically modulated changes in the visual feedback represented by the

ordinarily synchronized virtual hand avatars serving as a proxy for the subject's own

hands was investigated. In the experiment, subjects moved his or her hands and saw first

person avatar hands in virtual reality that moved either in perfect correspondence, in

moderate, fair, or poor correspondence with his or her own movement, represented in the

visual feedback by the proxy virtual hands. Subjects were accurately able to describe the

level of correspondence between the movement depicted by the virtual hands and his or

her own movement. In the MRI, neural activations varied with the correspondence of the

visual feedback, confirming that modulation of the visual feedback, a sensorimotor

experience, was reflected in the level of actuation in the target brain regions. The data

confirm that virtual environments provide a unique opportunity to selectively stimulate

neural activations not possible in the real world, Meanwhile, brain region activation

associated with agency, the sensation that one is engaged in the scene and responsible for

the movement, remained active throughout, In addition, the physical movements

produced by the subjects remained consistent and therefore, the modulation of the gain in

visual feedback is implicated for the change in brain network activation and not change in

motor task compliance. These experimental findings may provide some insight into the

neural conditions patients experience when faced with dysfunctional limb visual

feedback,

For Aim 4, functional imaging experiment investigated brain activations

associated with virtual mirror movement. In the experiment, subjects moved one hand
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and visual feedback was manipulated: the subjects saw the contralateral hand move in

real time. Brain activations were observed that were associated with moving the

contralateral hand, although the subjects were not moving the contralateral hand at all,

Again, findings demonstrate that opportunities presented through modulations in

sensorimotor experiences in virtual environments selectively actuate target brain

activations.

Behavioral experiments of Aim 5 used VESLI to investigate visual sensorimotor

stimulus conditions affecting imitation of hand gestures in virtual reality, The system

worked very well to provide a practice and an experimental environment, Findings

indicate that control subjects remembered hand gestures better when imitation training

involves picture definition of gestures and when recall testing employs text definitions.

Control subjects could remember the hand gestures using the VESLI system when they

had studied in any of the three viewing conditions: viewing his or her own natural hands,

viewing his or her own hands actuating virtual hands in real time, or while the view of his

or her own hands during practice was obscured within the virtual reality training system,

Control subjects could remember the hand gestures while imitating a virtual reality

teaching agent employing both avatar perspectives of either the third person or first

person, When real hands are replaced by virtual hands avatars in control subjects, the

initial practice condition of Picture with a memory condition of Picture definition yielded

the best results in terms of memory and time. It is believed that patients with varying

cognitive and motor issues will benefit from access to a variety of imitation models in

VESLI, and that personal learning style may be accommodated by the VESLI training

system. Flexibility of the virtual environment enables personalization. An agent model



237

and a definition style may be selected that matches an individual's style based upon

performance of that individual on the instrument used in these experiments. To illustrate

this point, individuals were evaluated for their performance in the various protocols

included in the study,

The present research contributes to the field by demonstrating a new method for

studying the effects of sensorimotor experience in virtual environments using a flexible

MRI compatible technique to investigate human performance in computer interface task

design and neural underpinnings of interactions in a modulated sensorimotor virtual

environment. The data presented advances the field through understanding the brain-

behavior interactions when performing actions in VE for in a number of diverse fields

and for diverse applications with implications in the development of observation- and

imitation-based VE rehabilitation paradigms. The results of this research provide the

foundation for a new model to describe parametric modulation of sensorimotor

experiences and corresponding neural underpinnings in virtual environments,

Rehabilitation of the upper extremity is difficult, It has been reported that 75%-

95% of patients post stroke learn to walk again, but 55% have continuing problems with

upper extremity function (Mayo, Wood-Dauphinee et al, 1999) and as many as 77.4%

experiencing weakness of the upper limb (Lawrence, Coshall et al, 2001). The

complexity of sensorimotor control required for hand function as well as the wide range

of recovery of manipulative abilities makes rehabilitation of the hand even more

challenging. Walking drives the integration of both the affected and unaffected limbs,

while functional activities performed with the upper extremity may be completed with

one limb, therefore allowing the individual to transfer a task to the remaining good limb
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and neglect the affected side reducing potential exposure to exercise through daily

activities. By offering more practical exercises for those who have severe hemiparesis,

based upon principles of plasticity, and enabled using virtual environments, support may

be provided to intervene and potentially avoid this damaging spiral,

Early virtual environment system designs demonstrated positive outcomes with the

solutions most appropriate for patients with mild impairments, Newer systems, such as

the novel VESLI system presented herein, may readily combine movement tracking,

virtual environment therapeutic activities and gaming simulations and extend potential

exercise models, Parametrically modulated sensorimotor experience and robotics, easily

integrated into the system, appears to be a viable means to extend virtual exercises so

that patients with more significant impairments may benefit from upper extremity

therapies. Notably, visual sensory modulations such as virtual mirror therapies and

modification of gains (improving visual feedback during exercise), possible in the novel

virtual environment, might provide a safe exercise environment even to those patients

unable to move, severely weakened, or those who can move using robots or prosthetics,

Benefits include the ability to provide practical personalized therapies early following

brain injury, and to offer a means to avoid loss of cortical representation. The haptic

mechanisms incorporated into recent virtual environments such as the spring assistance,

the damping to stabilize trajectories and the adaptable anti-gravity assistance allowed

patients with greater impairments to successfully participate in activities in which they

could not previously partake and to receive additional sensory stimulation to important

brain areas, In addition, virtual reality therapy systems have shown promise in improving

performance of upper limb in patients who suffered stroke. Therefore, it is reasonable to
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investigate combining the vision and haptic features in a new hand and arm system in the

future.

The newest systems provide great flexibility in an easy to use package, and

therefore, therapists can easily tailor interventions to address the specific needs of each

patient or patient group, and collect group data to learn more about the nature of effective

therapies and the progression of disease states, In recent system testing of the novel hand

and arm therapies, patients reported that they enjoyed the virtual environment activities

through which the therapies were delivered, and that they were challenged by the

intervention.

The novel VESLI system addressed another important aspect of interventional

therapies for the hand which is to provide visual sensory augmentation to promote

observation, mental imaging, observation and imitation therapies, imitating intransitive

gestures as exercise, and using a virtual hands proxy to replace one's own hands in

exercise, thereby reducing exposure to dysfunctional limb. VESLI hand exercises

specifically map the relationship between training parameters and functional outcomes,

The classifications of Chedoke-McMaster used to classify skills levels in patient

populations are incorporated into VESLI. When therapists plan hand gesture activities,

they can select a level of difficulty and the corresponding inventory of hand gestures will

be accessed by VESLI. In this manner, the exercises provided to the patients have

membership in the clinical measures and reflect real world abilities.

Another innovation in the VESLI system is the introduction of imitating

intransitive language hand gestures to the rehabilitation of hand dexterity. Many

rehabilitation activities involve reach and grasp activities and target goals such as tools.
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Tasks are designed to use implicit learning strategies to improve skills acquisition.

VESLI hand gesture system is organized around a language task and omits tools as a

primary means to establish a goal for the reach and grasp, The language based gestures

represent intransitive hand exercises instead of predominantly transitive hand exercises

typically associated with tools and tool pantomime. There is a tradition of evaluating

patients using gesture imitation with implications pertaining to symptoms of apraxia.

Intransitive gestures appear to be easier for healthy subjects and also for patients to

imitate, relying on different brain networks from tool based gestures where it is assumed

that one can easily imagine the tool. In the case of a patient with an injury, this imagery

of the tool may actually present a difficult problem.

It is widely believed that language, preparation for hand movement, and hand

gestures share a common brain network, and that this network has different properties

from the grasping tools brain network. VESLI provides an entirely new model for hand

therapy and rehabilitation through parametrically modulated sensorimotor experience in a

virtual environment. The scale of a system effective in rehabilitating complex motor

skills of the hand has not been demonstrated, It is quite possible that extensive practice of

an intense nature may be required in order to effectively recover hand function following

a brain injury. It is also possible that training, unsupervised training, consolidation

breaks, and follow-up testing might help to identify how much training an individual will

require to achieve optimal recovery, VESLI offers all these capabilities by virtue of the

programmable system and individualized features. It is widely known that very little

attention is presently paid to rehabilitation of these important quality of life skills. It is

also possible that strength training and exercise with tools alone may lack important
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references in the higher level, complex hand behavior-related brain networks required for

satisfactory recovery associated with quality of life, With virtual environments, greater

flexibility enables therapies that address these needs, VESLI offers a never tired imitation

and practice model for complex hand exercises drawing upon intransitive gestures, and

sensorimotor experience in virtual environments, demonstrated in behavior and brain

studies to have properties conducive to skills acquisition.

In addition to their use in assisting to provide more intense therapy of longer

duration, Brewer (Haggbloom and Brewer 1989) suggests that robotics have the potential

to address the challenge of conducting clinically relevant research. An example of this is

the comparison of training the hand and arm separately (HAS) to training them together

(HAT) (Adamovich, Fluet et al. 2008). It is a point of controversy whether training the

upper extremity as an integrated unit leads to better outcomes than training the proximal

and distal components separately. The current prevailing paradigm for upper extremity

rehabilitation describes the need to develop proximal control and mobility prior to

initiating training of the hand, During recovery from a lesion the hand and arm are

thought to compete with each other for neural territory, Therefore, training proximal

control first or along with distal control may actually have deleterious effects on the

neuroplasticity and functional recovery of the hand. However, neural control mechanisms

of arm transport and hand-object interaction are interdependent, Therefore, complex

multisegmental motor training is thought to be more beneficial for skill retention,

Particularly important is the need to investigate rehabilitation methods that increase the

likelihood that hand function will be improved and that cortical mechanisms of plasticity
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leading to lost representations will be avoided. Additional research is needed to

understand these issues,

Very little research is focused upon the plight of persons suffering from motor

dysfunctions of the hand. VESLI can assist in comprehensively describing a new model

for rehabilitation, testing the model, and can enable the personalized rehabilitation

exercises.

Disambiguating cues when related to the speech (Skipper, Goldin-Meadow et al.

2009) may provide an additional potential avenue of therapeutic intervention to induce

neural activation and inspire the imitation hand gestures in VESLI, simultaneous implicit

instructions and disambiguating language cues. There might be an advantage in VESLI

design in creating a language around the gestures, and reinforcing the language cues as a

means to disambiguate motor configurations. Since the subjects or patients are not

necessarily fluent in American Sign Language, the task of learning the meaning of the

gestures and the act of differentiating among the gestures becomes part of the therapy

itself.

To provide accommodation and personalization, the model avatar may be

presented in first person or third person perspective. Some people might be more capable

of imitating the hand gestures when a first person model is used, thus removing

transformation issues and reducing cognitive burden (Karniel and Mussa-Ivaldi 2002),

The present brain imaging research demonstrates that after some training, the subjects

accepted the VESLI hands, indicated by increase in activation of regions of the brain

associated with agency (Iriki, Tanaka et al, 1996), The VESLI proxy hand model takes

the place of the subject's own hands and thereby offers an excellent opportunity to
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provide close-to-normal visual feedback, This visual feedback is optimally delivered

through the virtual environment technology.

Some studies have previously indicated that neural processing is not the same

when observing real actions and when observing virtual actions suggesting that observing

virtual models of human arms could have significantly less facilitation effect when

compared to video clips of real arm motion (Perani 2001). In the present experiments

when subjects viewed the movement of the virtual hands, with the intention of imitating

that action (OTI), the pre-motor and posterior parietal areas were activated. Furthermore,

this activation was observed in both healthy subjects and in one subject post-stroke, that

when the left virtual hand was actuated by the subject's physical movement of their right

hand this selectively facilitated activity in the cortex ipsilateral to the real moving hand

(contralateral to the moving virtual hand). This finding demonstrates an important new

tool for therapy relying on VE to bring new experiences not easily rendered in the real

world,

In an example of sensory augmentation, a person with tactile deficits may be

presented with augmented visual stimulus to improve performance in tactile

discrimination, even when there is no additional information about the tactile stimulation

provided through the visual augmentation, This inspires exploration of sensory

augmentation to supplement losses associated with brain injury,

A significant range of experiences is made possible through virtual environments

and not necessarily through the natural world, For example, virtual environments may be

used for intense and repetitive exercise selectively designed to facilitate activation of

precise brain networks, including frontoparietal networks associated with action
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observation and action understanding. In addition, as the present research demonstrates,

sensory experiences modulated in a virtual environment may recruit brain regions

associated with movement even when the subject cannot move his or her own body part

voluntarily.

A hypothesis of the present research is that viewing a virtual hand corresponding to

the patient's affected side and animated by movement of the patient's unaffected hand

could selectively facilitate the motor areas in the affected hemisphere. This sensory

modulation takes advantage of the capabilities of a virtual environment to induce

activation through observation. The system enables visual sensorimotor perturbations to

target specific brain networks. Preliminary optimistic findings with a patient who

suffered stroke suggest that this visual manipulation in VE should be further explored to

determine effectiveness in facilitating sensorimotor areas and plasticity in a lesioned

hemisphere. Various sensory modalities should be explored, Various tasks and

complexities of conditions should be explored.

Virtual environments are believed to be a promising tool for human computer

interaction in a variety of fields, VE is particularly promising as a tool to augment

rehabilitation of motor dysfunction and other conditions.

From previous studies, it is known that adding haptic control mechanisms to the

system enabled patient subjects with greater impairments to successfully participate in

intensive computerized training paradigms. In the present research, training of an

intransitive gesture was investigated. Teacher avatar models and personal proxies were

investigated (Jackson, Meltzoff et al, 2005). Language and motor related tasks were

investigated (Binkofski and Buccino 2004). Results indicate that various novel tasks may
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be implemented in virtual environments offering a wide variety of appropriate tasks for

training and rehabilitation. Further research should investigate effects of additional task

designs and dosages of practice in virtual environments with a variety of augmented

sensory stimulation.

Finally, the present research tested the underlying mechanism of interacting

within a virtual environment using brain imaging. It was found that the value of training

in a virtual environment is not just limited to its ability to provide an intensive practice

environment but that specially-designed VE's can be used to selectively activate

important brain regions, Activation of these important brain regions may help stimulate

skill acquisition or plasticity of brain functions. One important region activated by visual

sensory modulation in virtual environments is a frontoparietal action-observation and

action-execution network, The findings in the present research open a doorway to a

potential suite of tools for clinicians treating patients with a variety of neuropathologies.

9.3 Recommendations for Future Research

Modern flexible VE systems offer a wide range of sensory experience, require a less

sophisticated level of development skills than previous versions, and are programmable

to the degree that they can accommodate requirements of individuals for personalization.

They can even provide accommodations for patients who have neurological disorders

making them attractive for rehabilitation. MRI compatible VE systems make significant

and important investigations into the nature of human neuroscience, motor control, and

associated behavior possible. MRI compatible VE systems enable research that can

extend existing neuroscience knowledge, provide translational applications, and can

bridge knowledge gained in animal model and human motor control research,
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Exercise, training, and rehabilitation treatment interventions can exploit recent

technological advances in computing, biological signal processing, robotics and haptics,

Integrated solutions are poised to transform the nature of applications available to the

community through connectivity to extensive resources via communications channels

such as wireless, the web, private and public networks, and databases. The relative ease

of access to such technology advances enables a vast array of products and services in

many domains with compelling levels of sophistication, personalization, consistency, and

transparency never before possible,

A better understanding of the underlying neurological principles and theories of

sensory experience and task design manageable through parametrically modulated

sensorimotor experiences in VE may inform tools and protocols available for basic

neuroscience research and various applications. In particular, implications of this research

may serve an important role in motor skills acquisition, training, and in the rehabilitation

of hand motor skills. Very little research is focused upon the plight of persons suffering

from motor dysfunctions of the hand, There appears to be evidence for optimism that

future research can yield fruitful protocols for new therapeutic interventions,

Of key importance for future rehabilitation applications is the fact that visual

sensory input can help patients with brain injury. In the present study, a flexible

architecture was employed in VESLI so features employing visual sensory stimulation

and feedback could be varied to optimize the number of visual conditions for exercise

and testing.

There is a need to map brain areas involved in various tasks, and specific effects

on performance of practicing tasks in parametrically modulated virtual environments, and
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the potential differential ways the engaged neural network may be affected in health and

injury, Future research should identify and investigate additional potential networks to

target for basic neuroscientific discovery, for motor skills acquisition, training,

rehabilitation and to understand the complexities of successful skills acquisition or

learning in healthy and in patient populations, Future research should also investigate

confounding multidimensional influences preventing recovery of skills.

It is important to consider the fact that healthy subjects may achieve a high level

of performance with or without visual augmentation and support, Whereas, some patients

may find visual sensorimotor augmentation provides needed performance support for a

number of important applications from mechanisms relating to specific visual sensory

experience including but not limited to embodiment of movement of limbs,

disambiguation of instructions, and OTI of implicit teacher models. Future research can

help to define the specific benefits of such sensory interventions in VE,

Many high level tasks within conscious control and capable of being rendered in a

VE with potential for recruiting underlying function (the target of a training or

rehabilitation experience), may be systematically investigated using the model developed

herein, For example, socially simultaneous hand movement, as in 'patty cake' hand

games, possibly requiring understanding of intention and synchronization, might result in

activating differential networks related through action-observation action-execution,

Additional examples, obvious to those skilled in the art, will become clear.

Visual sensorimotor experience in a functional MRI compatible virtual

environment provides a unique opportunity to use synthetic computer-generated virtual

hands avatars to embody the motor behavior of an individual in action-observation and
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action-execution tasks, and to examine neural correlates, kinematics, and behaviors

associated with the experience. Evidence-based plasticity oriented therapies in VE show

potential to provide effective exercise conditions for rehabilitation of motor dysfunction

of the hand, Improved hand function can increase quality of life, Indeed, many of the key

elements associated with the dexterous hand motor repertoire enable an engaging and

fulfilling lifestyle.



APPENDIX A

NEURAL CORRELATES OF FMRI EXPERIMENT AIM 2

Tables A.1 and A.2 show brain regions activated during fMRI study of Aim 2.

Table A.1 Regions in MNI space showing significant activation for the main contrasts of
interest. Data are thresholded at p<0,001 at the cluster level, uncorrected, and a voxel
extent of k=10, IPL, inferior parietal lobule, IPS, intraparietal sulcus, ITG, inferior
temporal gyrus, MTG, middle temporal gyrus, STG, superior temporal gyrus, MFG,
middle frontal gyrus, SFG, superior frontal gyrus, SFS, superior frontal sulcus,

Side x,y,z [min) K
t-
value

z-
value p(FDR) p(unc)

OTI > WATCH_e
Precuneus, IPS, SPL,
IPL, angular gyrus,
postcentral gyrs,
central sulcus R 16 -68 50 7595 14,4 5.64 0.001 0.000
Central sulcus,
anterior-posteior bank R 66 -14 24 66 6.14 3.97 0.002 0.000
Lateral parieto- -34 -80
occipital L 18 273 7,97 4.5 0,001 0,000

R 44 -74 12 2848 12.87 5.43 0.001 0,000
Anterior insula L -32 14 10 40 6.63 4,13 0,002 0.000

L -40 18	 0 41 5,77 3.84 0,003 0,000
R 38 18 2 1783 10,5 5.05 0.001 0,000

Frontal pole L -28 64 6 24 5,8 3,85 0,003 0.000
Caudal SFG,
precentral gyrus L -20 -4 62 712 7.86 4.47 0.002 0,000
Rostral SFS, SFG,
MFG R 34 4 56 2522 9.3 4,81 0,001 0.000
Rostral MFG L -58 10 34 121 8.1 4.53 0.001 0,000

R 46 44 26 376 10 4,95 0,001 0.000
Pars orbitalis L -44 52 14 59 6,02 3.92 0.003 0,000

249
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Pars opercularis,
precentral gyms L -62 4 18 58 6.33 4.03 0.002 0.000

R 46 20 26 285 9.56 4,86 0.001 0.000
-26 -104 -

left occipital pole L 2 1005 8.84 4.71 0.001 0,000
ITG R 26 -32 -2 87 6,19 3.98 0.002 0,000

38 -20 -
R 10 51 9.45 4,84 0,001 0.000

-64 -34
Rostral lateral sulcus L 22 28 5,97 3.91 0.003 0.000

-50 -36
L 26 73 5.82 3.86 0.003 0.000

Cerebellar vermin R 6 -62 -34 65 6.84 4,19 0,002 0,000
Intermediate inferior -20 -74 -
cerebellum L 48 156 6,78 4.17 0.002 0,000

-34 -62 -
L 34 41 4.98 3,53 0.005 0,000

40 -58 -
R 44 193 6,79 4.17 0.002 0.000

Posterior putamen R 20 0 20 79 8.18 4.55 0,001 0,000
Caudate L -14 20 -4 125 8.05 4,52 0,001 0,000

MOVE_h > MOVE _e
-26 -70

IPL, angular gyrus L 32 88 6.29 4,02 0.239 0.000
R 38 -68 38 124 7.25 4.31 0.239 0.000

Precuneus R 18 -62 46 53 4.89 3.49 0,239 0.000
Occipital pole L -26 -86 -4 122 5.19 3,62 0.239 0,000

R 26 -86 -6 253 6.77 4,17 0.239 0.000
58 -54 -

ITG, intermediate R 14 56 6.34 4.03 0.239 0,000
40 -68 -

R 12 40 4,96 3.52 0.239 0.000

WATCH _e > OTI
Cuneus, calcarine -12 -94
sulcus L 20 97 7 4.24 0.511 0,000
Cuneus R 18 -80 24 10 5 3.54 0,541 0,000
Inferior occipital R 6 -62 0 110 6,8 4,18 0.511 0.000

MOVE_e > MOVE_h
-10 -16

Corpus callosum L 32 112 12,33 5,35 0,009 0.000
-10 -88

Cuneus L 34 331 6.85 4,19 0.075 0.000
Frontal pole L -16 58 14 94 8,9 4,72 0.049 0.000
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STG, rostral R 62 4 -6 21 5,44 3,71 0,096 0.000
SFS, intermediate L -20 20 50 54 7,11 4,27 0.075 0.000
MFG, rostral R 22 46 16 68 6.15 3.97 0,075 0.000
MFG, precentral
sulcus R 34 -6 38 76 7,73 4.44 0.075 0.000
Pars orbitalis L -36 56 -4 37 5.62 3.78 0,091 0,000

OTI block 4>3>2>1
Posterior-intermediate -46 -16
insula L 14 163 9,04 4.75 0,066 0.000

Table A.2 Regions in MNI space showing significant activation for the secondary
contrasts of interest not reported in Table 1. Data are thresholded at p<0.001 at the cluster
level, uncorrected, and a voxel extent of k=10. IPL, inferior parietal lobule, IPS,
intraparietal sulcus, ITG, inferior temporal gyrus, MTG, middle temporal gyrus, STG,
superior temporal gyrus, MFG, middle frontal gyrus, SFG, superior frontal gyrus, SFS,
superior frontal sulcus.

Side x,y,z [mm) K
t-
value

z-
value p(FDR) p(unc)

OTI > REST
Anterior insula R 34 20 -4 350 10.07 4.96 0,005 0.000

L -34 20 2 50 7,93 4,49 0.005 0,000
-44 -32

IPL, angular gyrus L 44 2686 9,31 4,81 0.005 0.000
-66 -16

IPL, postcentral gyrus L 20 23 5.48 3.73 0.005 0.000
Precuneus, IPS, IPL R 14 -76 56 3893 8,92 4,73 0.005 0.000
Caudal SFS L -24 2 50 158 7.55 4.39 0,005 0,000
MFG, precentral
sulcus/gyrus L -52 12 38 382 6.8 4.18 0.005 0.000
Pars orbitalis R 46 50 -10 261 8.09 4.53 0,005 0.000

-46 46 -
L 16 34 6.16 3.97 0.005 0.000
L -26 64 4 25 5,06 3,56 0.006 0,000

Pars triangularis L -48 28 12 12 7.02 4.24 0.005 0.000
Pars opercularis,
precentral gyrus R 66 -12 34 122 6.68 4.14 0.005 0.000

R 52 18 22 1975 7.2 4.29 0,005 0.000
L -54 18 4 39 5.43 3.71 0.005 0,000

26 -16 -
ITG R 28 114 6,31 4.02 0.005 0,000

38 -24 -
ITG R 12 48 6.1 3.95 0.005 0,000
Anterior cingulate R 18 22 42 65 6.96 4.23 0.005 0.000

L -8 30 38 35 6,15 3.97 0.005 0.000
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L -8 12 60 145 6,03 3,93 0.005 0.000
Putamen L -24 16 12 20 5.34 3.68 0.005 0,000

24 -60 -
Dentate R 38 23 5,03 3,55 0.006 0.000

-26-72
Occipito-parietal L 22 154 4.99 3.53 0.006 0.000
Occipital-temporal R 46 -68 2 4701 7,7 4.43 0,005 0.000

-26 -102 -
Calcarine sulcus L 4 2729 6.9 4.21 0.005 0.000

WATCH_e > REST
Inferior occipito-
temporal R 48 -68 2 1218 7.96 4.5 0.068 0.000

-44 -70 -
L 16 644 8,06 4.52 0,068 0,000

Occipital pole R 20 -96 10 284 6.07 3.94 0.068 0.000
-8 -104 -

Occipital pole L 4 35 7.4 4,35 0,068 0.000
L -22 -96 6 84 5.11 3.58 0.068 0,000

Caudal IPS R 36 -44 54 10 4.38 3.26 0.068 0.001
-36 -46

L 38 17 6.29 4.02 0.068 0.000
-34 -44

L 48 34 5,01 3,54 0.068 0.000
Anterior intermediate -38 -48 -
cerebellum L 28 203 6.2 3,98 0,068 0,000

-54 -66
MTG L 16 15 5,25 3.64 0.068 0.000
MFG, intermediate L -44 14 52 16 4.69 3.41 0.068 0.000
Anterior cingulate L -8 40 40 16 4.57 3,35 0.068 0,000

MOVE _h > REST
Intermediate 28 -38 -
cerebellum, dentate R 50 1260 7.39 4.35 0.01 0.000
SFG, precentral gyrus L -22 -4 74 4045 6.76 4,16 0.01 0,000

R 16 2 58 303 6,78 4.17 0.01 0.000
44 -66 -

Occipito-temporal R 10 1856 6.18 3,98 0.01 0,000
Posterior insula L -44 -8	 4 732 6,08 3.94 0.01 0.000
Intermediate insula R 50 6 4 1185 6.06 3,94 0.01 0.000
Anterior, intermediate
cingulate L -6 4 48 638 5,94 3.90 0.01 0.000
Central sulcus,
pre/post-central gyri R 46 -26 32 1572 5,73 3.82 0.01 0,000
Precuneus R 16 -70 52 103 5,70 3.81 0,01 0.000
Lateral inferior L -46 -74 - 1007 5.51 3,74 0.01 0,000
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occipital 20
IPL, angular gyrus R 32 -70 22 53 5.30 3.66 0.01 0.000
Intermediate putamen R 24 -2	 6 52 5.26 3.64 0.01 0.000
Pars opercularis R 56 6 42 20 4,61 3,37 0,01 0,000
Occipital pole L -26 -86 -4 96 4.54 3,34 0,01 0,000

MOVE _e > REST
Intermediate insula,
frontoparietal
operculum, central
sulcus, pre/postcentral
gyrus L -58 -2 2 8268 8.05 4.52 0,006 0.000
Central sulcus,
pre/poscentral gyrus R 56 -20 44 2614 7.97 4,5 0.006 0.000
Anterior-posterior
insula R 54 16 -6 2687 7.66 4,42 0.006 0.000
Inferior occipital-
temporal R 44 -64 0 543 6.76 4.16 0,006 0.000
Inferior lateral -38 -76 -
temporal lobe L 18 482 6,09 3,95 0.006 0,000
Intermediate, superior 44 -56 -
cerebellum R 40 653 5,9 3.88 0,006 0.000

-27 -70 -
L 38 434 5,92 3,89 0.006 0,000

-14 -54
Precuneus L 54 63 5.59 3.77 0,006 0,000
Caudal MFG L -56 2 44 19 5.56 3.76 0.006 0.000
Anterior insula L -32 18 4 59 5.52 3,74 0,006 0,000
Intermediate putamen R 18 2 12 70 5,33 3.67 0.006 0,000
Rostral SFS R 22 50 20 36 4.96 3.52 0,007 0,000



APPENDIX B

VESLI STATISTICS EXPERIMENTS 1 AND 2

Figure B,1 to B. 19 show statistical analysis of the two VESLI Experiments.

Figure B.1 ANOVA Table for Average Response Time Experiment 1.

Figure B.2 ART Effect: Recall Experiment 1,

Figure B.3 ART Feedback * Definition Experiment 1,
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Figure B.4 ART Effect Definition Experiment 1,

Figure B.5 ANOVA Table Average Source Time Experiment 1.

Figure B.6 AST Effect Definition Experiment 1.

Figure B.7 AST Effect Definition Experiment 1.



Figure B.8 AST Effect Feedback * Recall Experiment 1.
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Figure B.9 AST Effect Definition * Recall Experiment 1,

Figure B.10 ANOVA Table for Average Response Time Experiment 2.

Figure B.11 ART Effect Feedback Experiment 2.



Figure B.12 ART Effect Feedback * Recall Experiment 2,
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Figure B.13 ART Effect Feedback * Recall Experiment 2.

Figure B.14 ART Effect Feedback * Definition * Recall Experiment 2.



Figure B.15 ANOVA Table for Average Source Time Experiment 2.

Figure B.16 AST Effect Definition Experiment 2.

Figure B.17 AST Effect Feedback * Recall Experiment 2.
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Figure B.18 AST Effect Feedback * Recall Experiment 2.



Figure B.19 AST Effect Feedback * Definition * Recall Experiment 2.
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APPENDIX C

VESLI SUMMARY STATISTICS

Figures C,1 through C.17 show statistics of VESLI experiments comparing Viewing

Natural Hands and Viewing Virtual Hands with Hidden Hands as a control condition,

ANOVA Table for Response Time
DF Sum of Squares Mean Square F-Value P-Value Lambda Pow er

Subject
Visual Feedback
Visual Feedback * Subject
VR
VR* Subject
Definition
Definition * Subject
Recall
Recall * Subject
Visual Feedback * VR
Visual Feedback * VR * Subject
Visual Feedback * Definition
Visual Feedback * Definition * Subject
Visual Feedback* Recall
Visual Feedback * Recall * Subject
VR * Definition
VR* Definition * Subject
VR* Recall
VR" Recall * Subject
Definition * Recall
Definition * Recall * Subject
Visual Feedback* VR* Definition
Visual Feedback * VR * Definition * Subject
Visual Feedback" VR* Recall
Visual Feedback * VR * Recall * Subject
Visual Feedback * Definition * Recall
Visual Feedback* Definition * Recall *Su...
VR* Definition * Recall
VR * Definition * Recall * Subject
Visual Feedback * VR * Definition * Recall
Visual Feedback * VR * Definition * Recal...

9 52.169 5.797
1 .178 .178 .147 .7106 .147 .063
9 10.935 1.215
1 .984 .984 .524 .4875 .524 .097
9 16.894 1.877
1_ 20.301 20.301 8.549 .0169 8.549 .746
9 21.373 2.375
1 .127 .127 .072 .7940 .072 .057
9 15.819 1.758
1 2.791 2.791 8.490 .0172 8.490 .743
9 2.958 .329
1 .003 .003 .002 .9621 .002 .050
9 10.283 1.143
1 6.017 6.017 4.938 .0534 4.938 .503
9 10.967 1.219
1 13.367 13.367 25.853 .0007 25.853 .997
9_ 4.653 .517
1 16.183 16.183 9.264 .0139 9.264 .781
9 15.721 1.747
1 2.765 2.765 1.324 .2796 1.324 .171
9 18.803 2.089
1 3.719 3.719 7.925 .0202 7.925 .712
9 4.224 .469
1 10.512 10.512 12.380 .0065 12.380 .890
9 7.642 .849
1 .301 .301 .212 .6560 .212 .069
9 12.747 1.416
1 .005 .005 .006 .9415 .006 .051
9 8.301 .922
1 .188 .188 .117 .7405 .117 .061
9 14.502 1.611

Figure C.1 ANOVA Table for Response Time,
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Figure C.2 RT Effect: Visual Feedback * VR Recall.
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Figure C.3 RT Effect: Visual Feedback * Definition * Recall.
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Figure C.4 RT Effect: Visual Feedback * Definition * Recall, VR * Definition * Recall.
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Figure C.5 RT Effect: Visual Feedback * Definition * Recall, VR * Definition * Recall.

Figure C.6 RT Interaction Effect: Definition.



Figure C.7 RT Interaction Effect: Visual Feedback * VR.
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Figure C.8 RT Interaction Effect: Visual Feedback * Definition,



Figure C.9 RT Interaction Effect: Visual Feedback * Recall.
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Figure C.10 RT Interaction Effect: VR * Definition,



Figure C.11 RT Effect: VR * Recall.
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Figure C.12 RT Effect: Definition * Recall,



Figure C.13 RT Effect: Visual Feedback * VR * Definition.
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Figure C.14 RT Effect: Visual Feedback * VR * Recall.



Figure C.16 RT Effect: VR * Definition * Recall.
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Figure C.17 RT Effect: Visual Feedback * VR * Definition * Recall.
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HUMAN SUBJECT RESEARCH REVIEW FORM
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PLEASE PRINT OR TYPE

Date: I7 April 2007 	

HUMAN SUBJECT RESEARCH REVIEW FORM
NEW JERSEY INSTITUTE OF TECHNOLOGY

INSTITUTIONAL REVIEW BOARD APPLICATION
Revised January 16, 2007

Name of Principal Investigator(s): Sergei Adamovich, (Katherine August - corresponding team member)
Faculty members and/or staff must be principal investigators. Students can serve as co-principal investigators under
faculty/staff supervision for expedited projects.

NJIT Address: _Fenster Hall, Room 616 	

Department: 	 _Biomedical Engineering 	

E-mail Address: 	adamovic@njit.edu , ka38@njit.edu (kitty123@optonline.net )

NJIT Affiliation of Principal Investigators (Check all that apply):

❑ X Faculty 	 ❑ X Student 	 1:7 Other (Describe: 	 )

*Note students and doctoral candidates applying for IRB approval must submit written documentation from their
faculty advisors (via e-mail) stating that research is being conducted under their supervision.

Project Title: Use of Virtual Reality in Studying Sensory Influences on Motor Learning

This project will be conducted:

Ll X On Campus ❑ Off Campus (Location: 	 ) 1:J Both

Is this research funded by outside source(s)? 	 1:1 X Yes 	 ❑ No

If yes, indicate name(s) and type of funding source(s):

Name of Funding Source(s): National Institute of Disability and Rehabilitation Research_

Type: 	 ❑ X Government (County, State or Federal) 	 ❑ Foundation 	 ❑ Corporation
❑ Other (Describe: 	 )

Anticipated Starting Date of Project:_ May 2007 	

Anticipated Closing Date of Project: 2010 	

Number of Subjects: 30 	

NOTE: All principal investigators, faculty, and students who will be interfacing with human subjects in this study must complete
an online training course in the protection of human subjects. This course can be accessed by going to the US Department of
Health and Human Services' Office for Human Research Protection website (htto://www.hhs.gov/ohro/)  and clicking on
"Education." At the bottom of this page, you will see the tutorial for the training module for assurances. All certificates indicating
course completion must be submitted with this application.
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TO Principal Investigator: In addition to the questions below, please furnish copies of any
questionnaires interview formats, testing instruments or other documents necessary to carry out the
research, Any advertising materials used to recruit subjects must also be submitted.

The completed forms should be sent tO: 	 Dawn Hall Apgar, PhD
dawn.apgar@njit.edu

Chair, IRB
DD Planning Institute — CABSR
Campbell 330
New Jersey Institute of TechnOlogy
University Heights
Newark, NJ 07102-1982

I.	 Project Title: Use of Virtual Reality in Studying Sensorimotor Influences on
Motor Learning

2.	 List the names and status (faculty, student, etc.) of the persons conducting the research:

a. Principal Investigator(s): Sergei Adamovich, Assistant Professor

b. Other Members of Research Team: Katherine August, Ph,D.
Candidate

c.	 NJIT Faculty Advisor(s) if Student Project: Sergei Adamovich,
Assistant Professor

3, 	 Describe the objectives, methods and procedures of the research prOject, This summary
will used to describe your project tO the IRB. Use up to 2 pages, if necessary, YOu may
also attach a copy of an abstract or full research proposal describing this work.

Background

In this study, we plan to investigate the role of visual feedback on sensorimotor learning.
In particular, we will study whether viewing one's own hands (Poizner, 1987) will
facilitate learning sign language hand gestures (Hamzei, 2002) or grasping or moving
objects. Also in this study, we will conduct virtual environment experiments in the lab
where the subject will watch a virtual agent (computer-generated human) in either first
person perspective or third person perspective (Jackson, 2006). The agent will
demonstrate American Sign Language gestures (Corina, 2006) accompanied with either
text or picture descriptions (Kahn, 2004; Davachi, 2006) or grasping or moving objects,
In addition, the effects of viewing one's own hands during the learning process will be
compared with the effects of viewing computer-generated hand models actuated by one's
own hands or learning while hands are concealed,
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Although it has been shown that goal-oriented, intensive, prolonged, and rewarded
practice is necessary to promote brain plasticity and reorganization according to the
biological model, and that skill development (acquisition or adaptation) is a necessary
component of the process, the specifics of the sensory stimulation have not been
identified. Virtual environments, enabled through an ever increasing abundance of
practical equipment presenting realistic yet synthetic experiences, allow for systematic
manipulation of sensory stimuli and feedback that is not achievable through conventional
means (Merians, 2006). There is little information on the relationship between various
virtual sensory stimulations and neural processing, Moreover, little is known about the
effect of these stimuli and the perception of self and other (agent or teacher) on motor
learning (Decety, 2006). There is little information about how to exploit modalities
available in virtual environments to access target neural networks for learning facilitation,
Virtual environments enable observation of novel hand tasks for imitation and also enable
the subject to observe his or her own hands producing the hand gestures or object grasp
or movement in the lab, for fMRI, and TMS studies, while sensory stimulus and feedback
may be modified to explore a variety of learning protocols. To further clarify the
biological model of motor learning and to understand the role of virtual sensory
stimulation and feedback which includes seeing one's own hand movement, it is
important to study the underlying science, to develop functional brain mapping of motor
learning in the virtual environment and correlate to the behavioral/phenomenological
measurements and outcomes, In this way, one can predict the success of application and
interface design for virtual environments that can accomplish desired learning conditions
for specific goals and with target audiences. As an initial portion of this body of research,
we have developed the Virtual Environment Sign Language Instruction (VESLI) System
that can utilize biometric information to provide rehabilitation for hand skills and to
provide a means of measuring behavioral aspects of learning. Visual and auditory sensory
feedback, virtual agent, assistance, instruction, and measurement are controlled in a
virtual reality environment, Visual and auditory language learning activates targeted
neural networks (Newman-Norlund, 2006). Since we are concerned with American Sign
Language and instruction with text or pictures, our subjects will be screened for their
understanding of English. Our selected signs (gestures, grasps, or movements) will be
described in Pictures and in Text and therefore, most signs will be nouns, verbs,
adjectives, or adverbs, We will integrate a variety of hand-shapes from among the 17
used in American Sign Language (Costello, 2002) and grasping or moving typical
objects,

• Merians AS, Poizner H, Boian R, Burdea G, Adamovich S, Sensorimotor training
in a virtual environment: does it improve functional recovery poststroke?
Neurorehabil Neural Repair, 2006 Jun;20(2):252-67.

• Decety J, Grèzes J. The power of simulation: Imagining one's own and other's
behavior. Brain Research. 1079 (2006) 4-14.

• Bhimani AA, Hlustik P, Small SL, Solodkin A. Complex motor function in
humans: validating and extending the postulates of Alexandr R. Luria, Cogn
Behav Neurol. 2006 Mar;19(1):11-20.
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• Hamzei, F., Rijntjes, M., Dettmers, C,, Glauche, V., Weiller, C., Michel, C,, 2003.
The human action recognition system and its relationship to Broca's area: an
fMRI study. Neurolmage. 19, 637-644.

• Newman-Norlund RD, Frey SH, Petitto LA, Grafton ST. Anatomical substrates of
visual and auditory miniature second-language learning, J Cogn Neurosci. 2006
Dec;18(12):1984-97.

• Poizner H, Klima E, Bellugi U, 1987. What the Hands Reveal About the Brain.
MIT Press, Cambridge MA.

• Hamzei F, Dettmers C, Rijntjes M, Glauche V, Kiebel S, Weber B, Weiller.
Visuomotor control within a distributed parieto-frontal network. Exp Brain Res.
2002 Oct; 146(3):273-81.

• Buccino G, Vogt S, Ritzl A, Fink GR, Zilles K, Freund H, and Rizzolatti G,
Neural Circuits Underlying Imitation Learning of Hand Actions: An Event-
Related fMRI Study. Neuron, April 22, 2004, Vol. 42, 323-334.

• Schubotz, RI, Fiebach, CJ. Integrative Models of Broca's Area and the Ventral
Premotor Cortex. Cortex. (2006) 42, 461-463,

• Jackson PL, Meltzoff AN, Decety J. Neural circuits involved in imitation and
perspective-taking, Neuroimage. 2006 May 15;31(1):429-39,

• Corina DP, Knapp H. Sign language processing and the mirror neuron system,
Cortex. 2006 May;42(4):529-39.

• Kahn I, Davachi L, Wagner AD. Functional-Neuroanatomic Correlates of
Recollection: Implications for Models of Recognition Memory. J, Neuroscience.
April 28, 2004. 24(17):4172-4180.

• Davachi L, Item, context and relational episodic encoding in humans,
Curr Opin Neurobiol. 2006 Dec;16(6):693-700.

• Costello, E. Random House Webster's Concise American Sign Language
Dictionary. Bantam Books, 2002,

Experimental Design

Subjects will be informed about the nature and goals of the experiment, They will be
instructed in their role and activities associated with their participation. They will be
asked to provide informed consent in order to participate. The subjects will be able to
withdraw from the experiment at any time.

Methods and Analysis may be found in Chapter 5 of this document.

4. List name and institutional affiliation of any research assistants, workers student that will
be working on this project.
Ms, August holds an MS in Computer Science and is currently a Ph,D. candidate
in the Department of Biomedical Engineering, at New Jersey Institute of
Technology.

5. If research assistants, workers, students will be working on the prOject describe their
qualifications, special training and how they will be supervised.
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Ms, August holds an MS in Computer Science, she is a former Member of the
Technical Staff of Bell Laboratories, and is currently a Ph.D. candidate in the
Department of Biomedical Engineering, at New Jersey Institute of Technology.
She holds thirteen US Patents. She will be closely supervised by Dr. Adamovich.
Ms. August and Dr. Adamovich have designed the study, and assembled the
materials, Current team members have been trained in the study design and
purpose of the study, and in the use of human subjects and safety. Dr, Adamovich
has supervised the training of all members of the team, Any new members to join
the team will be supervised by Dr. Adamovich who will assure that they have
been trained in Human Subject Safety, that they have reviewed the experimental
procedure and analysis methods, and that they are aware of the lab procedures,
study equipment, materials, and procedures of the lab, and that they can find
important contact information for other team members and safety personnel, Any
new members of the team will be required to observe an experienced
experimenter as a subject experiment is conducted, The new team member will
be required to operate the study instruments while Dr. Adamovich observes. The
new team member will learn to turn on all the lab equipment used in this
experiment, will learn how to operate the equipment, and will learn how to turn
the equipment off. The new team members will learn how to administer the
experimental materials including the VESLI Learning Sessions and the VESLI
Memory Sessions. New team members will be trained by Dr, Adamovich to
ensure that they are aware of safety procedures in the lab.

6. What is the age of the subjects and how will they be recruited?
Subjects will be 18 and up, The experiment will be conducted with healthy
controls. Healthy control subjects will be recruited through fliers on the campus
at NJIT. (Please see Attached Recruitment Posters,) Subjects must be fluent in
English, and may not be experienced with American Sign Language, BSL, Tic-
Tac, or other formalized hand sign gesture systems, Subjects will be asked to
identify the dominant hand. Subjects who are recruited to be healthy controls
must be free of neurological diagnoses. If a subject is eliminated for some reason
relating to the requirements of the experiment, the records will remain
confidential,

7. Attendant risks: Indicate any physical, psychological, social or privacy risk or pain,
which may be incurred by human subjects, or any drugs medical procedures that will be
used. (This includes any request fOr the subjects to reveal any embarrassing, sensitive, or
confidential information about themselves or others.) Also, indicate if any deceptiOn will
be used, and if so, describe it in detail. Include your plans for debriefing,

The risks to the subjects are minimal, To reduce the potential for fatigue, each
task will be broken into two portions with a break in the middle, After the subject
participates in the study, he or she will be asked for input about how to improve
the study experiment experience for the participant, and for general feedback
about the study experience,

	8.	 Evaluate the risks presented in 7.
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a. Is it more that wOuld normally be encountered in daily life?
The subject will be asked to sit in a chair, watch a virtual agent projected onto the twO-
way mirror, will be asked to move his or her hands to imitate the virtual agent
demonstrating hand gestures from the American Sign Language dictionary, These hand
gestures will be accompanied with text or picture definitions. The subjects will be wearing
gloves containing bend sensors. The subject may experience occasional fatigue in their
hand or arm. This will be addressed through frequent rest periods. These movements are
not extraordinary. These hand gestures do not require movements that are different from
those encountered in any everyday hand tasks or gestures.
b. Do your procedures follow established and accepted methods in your 	 field?

The equipment that will be used in these experiments (cameras,
electromagnetic motion trackers, sensor instrumented gloves, a two-way mirror, a
virtual reality projector) is commercially designed for use in experiments with
human subjects, They are electrically shielded and grounded, and subjects are at
no risk of electrical shock, All equipment may only be connected to UL, TUV,
CSA, or CE approved equipment,

Materials

Hardware includes: The CyberGlove	 and instrumentation unit (CGIU)
including 22 sensor CyberGlove ® (CG2202) with 10' cable and 44 pin, high-
density D-sub male connector, a CyberGlove ® Interface Unit (CGIU2402)
including: a) CyberGlove 44 pin female high-density connector, b) on/off
indicating LED on the front panel, c) DE-9 male serial port connector (RS232C),
d) DE-9 female analog/sync port connector, e) 5 pin female DIN power plug, f) 8
position DIP switch, g) on/off switch and h) momentary reset switch on the back
panel. In-line power supply with 5 pin male DIN connector and standard 3-prong
AC plug. 10' serial cable to connect the CyberGlove to the host computer. Velcro
TM pad and nylon screws to mount a position sensor to the CyberGlove wristband.
The CyberGlove is installed so that the power outlet into which it is plugged is
near the equipment and is easily accessible, Instructions for donning the
CyberGlove are available for experimenter and test participant to use before
during and following the study experiment. The Flock of Birds position and
orientation measurement system from Ascension Technology Corporation will be
used with sensors attached one each to the wrist straps of the CyberGloves
mentioned above, and configured as prescribed by the manufacturer in the user
manual. The Flock of Birds (FOB) is a six degree-of freedom measuring device
that can be configured to simultaneously track the position and orientation of up
to thirty receivers by a transmitter, Each receiver is capable of making from 10 to
144 measurements per second of its position and orientation when the receiver is
located within +/- 4 feet of its transmitter, An extended range transmitter
increases this operating range to +/- 8 feet. The FOB determines position and
orientation by transmitting a pulsed DC magnetic field that is simultaneously
measured by all receivers in the flock, From the measured magnetic field
characteristics, each receiver independently computes its position and orientation
and makes this information available to the host computer. In this manner, the
subject's hands and wrist orientation will be tracked and along with the finger
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positions captured by the CyberGlove, these biometrics will be captured to
provide information about the subject responses, wrist position, and movements
and will be used to drive the virtual reality animations. A work lamp with UL
certification will be used, The lamp will be used to illuminate the subject's hands
while he or she is practicing the hand gestures demonstrated by the virtual agent,
which they may view on the special reflective mirror, This work lamp is
connected to a UL approved serge-protection device. The virtual agent will be
projected by a Texas Instruments DLP Cinema projector, connected to one of the
lab's DELL computers, onto a special reflective virtual reality multi-media
screen, then through a rear projection screen, and onto a special two-way mirror
arranged in a custom-made presentation frame which is adjustable to
accommodate varying protocol designs. The CyberGlove, Flock of Birds, DLP
projector, and work lamp are only connected to UL, TUV, CSA, or CE approved
equipment, The two-way mirror or mirrored glass is a technique that exploits the
use of a darkened space and an enclosed well-lighted work-area separated by a
pane of highly reflective glass that will serve in this experiment as the practice
space where the subject will rehearse the hand gestures, This special glass is
coated with a very thin layer of metal to enhance its reflective properties. When
the hands of the subject are brightly lighted using the work lamp, they may be
viewed easily through the special glass, Simultaneously, the animated virtual
agent and other images may be projected onto the glass and may be easily viewed
by the subject. When the hands of the subject are in darkness, they may not easily
be viewed through this special glass, yet the animated virtual agent and other
images may still be projected onto and viewed on the surface of the special glass.
The images projected onto the glass serve to increase the illusion and the subject's
hand will be much more difficult to view during the Hidden condition, Hand
gestures are inspired by illustrations and descriptions available in the Random
House Webster's Concise American Sign Language Dictionary with Elaine
Costello, Ph.D., founder of the Gallaudet University Press and author of Signing.
Virtual Reality animations are produced using Jack and a suite of authoring tools
developed by NJIT' s Dr. Richard Foulds and his students, Jack is a software
package developed at the Center for Human Modeling and Simulation and is
available from UGS. Jack provides a 3D interactive environment for controlling
articulated figures. It features a detailed human model and includes realistic
behavioral controls, anthropometric scaling, task animation and evaluation
systems, view analysis, automatic reach and grasp, collision detection and
avoidance, and many other useful tools for a wide range of applications. Inverse
Kinematics using Analytical Methods (IKAN) is a complete set of inverse
kinematics algorithms suitable for an anthropomorphic arm or leg. IKAN uses a
combination of analytic and numerical methods to solve generalized inverse
kinematics problems including position, orientation, and aiming constraints, The
combination of analytic and numerical methods results in faster and more reliable
algorithms than conventional inverse Jacobian and optimization based techniques.
IKAN allows the user to interactively explore all possible solutions using an
intuitive set of parameters that define the redundancy of the system. Protocol
procedures follow standard learning-memory protocols resembling those found in
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current literature. Our procedures follow established and accepted methods in the
field of sensorimotor rehabilitation. For a background or relevant details, please
see the following:

9. 	 How will the risk be kept at a minimum? (E,g. describe how the procedures reflect respect
for privacy, feeling, and dignity of subject and avoid unwarranted invasion Of privacy or
disregard anonymity in any way.) Also, if subjects will be asked to reveal any
embarrassing, sensitive, or confidential information, how will confidentiality of the data be
insured? Also include your pans for debriefing, If subjects will be placed under any
physical risk, describe the appropriate medical support procedures.

Confidentiality will be insured by keeping the data in a locked file cabinet
in the laboratory, Room 655 in Fenster Hall, Data should be kept in a locked file
cabinet. Since NJIT is not certified under HIPPA, subject data will not be
transmitted electronically from NJIT to any individual or institution,
Furthermore, subject confidentiality will be strictly maintained, Research data
maintained at NJIT on subjects will not contain any personal identifiers such as
name, age, gender, social security number, address, zip code, Subject names will
never be used in reports; rather subjects will be assigned initials or numbers as
identifiers.

Only healthy subjects will be recruited for this study,

If there is any need of immediate medical assistance, for any reason, the
experimenter will call 911 and ask for emergency transportation to get to the local
hospital emergency room (St. Michael's Medical Center ER: 973-877-5525).
Every student in the lab will be informed of this procedure. Special attention will
be given to international students who might not be familiar with the emergency
phone service. A message detailing this procedure will be posted on the wall of
the experimental room. All experimenters will be trained on this study protocol,
on all the equipment involved in the study, and on safety of human subjects
before becoming involved with this study.

IO. 	 Describe the benefits to be derived from this research, both by the subject and by the
scientific community (this is especially impOrtant if research involves children),

In this case, the subjects may benefit from learning some gestures
associated with the American Sign Language. For the scientific community:
better understanding of the effect of viewing one's hand (visuo-sensory stimulus)
during practice on learning hand gestures, better understanding of the effect of
viewing a virtual hand actuated by one's own hand during practice (visual-
feedback mechanisms) on learning hand gestures, and better understanding of the
effect of viewing first-person and third-person virtual agents (observation with
intent to imitate) on learning hand gestures. If a person with a paretic (partial
motor paralysis) hand cannot see his or her own hand move during practice,
virtual reality may provide that sensory input during practice. We wish to
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understand if a subject with a paretic hand can learn a hand gesture better when
watching a hand positioned as if it is his or her own hand while he or she practices
the gesture, thereby gaining the value of visual sensory input provided by the
virtual reality system. We also endeavor to understand if the position of the
"teacher", which is presented herein as first-person or third-person perspective for
observation and imitation, influences the success of learning the hand gesture,
perhaps from the underlying mechanisms of action observation and execution
networks including "mirror neurons". Since the subject and also real-world stroke
subjects may not be able to voluntarily produce the sign, we will ask our subjects
to identify the meaning from two choices, We believe the process of making such
a selection necessarily actuates the neural network engaging Broca's Area, an area
common to premotor regions, and is a likely brain region target, and as such may
therefore be beneficial to plasticity-based rehabilitation for paretic persons. We
believe the scientific community will benefit from findings of this study. It has
been determined that stroke patients who are successful in moving have
recruitment of secondary motor regions including premotor regions during
movement output. Outcomes of this study represent significant new understanding
of sensory stimulation on hand gesture learning in the healthy subject, and
correlate performance assessment using rehabilitation tasks that target specific
neural networks demonstrated in functional imaging studies, therefore
performance using this paradigm may be observed and measured in a simulated
rehabilitation environment. The potential benefits are large and include
development of new methods for rehabilitating individuals after stroke or other
forms of brain injury when they may not be capable of voluntary movement, and
may increase our understanding of motor and cognitive rehabilitation and the
relationship between cognitive and motor tasks. Thus, the risk/benefit ration is
extremely low.

II. Describe the means through which human subjects will be informed of their right to
participate, not to participate, or withdraw at any time. Indicate whether subjects will be
adequately informed about the prOcedures of the experiment sO that they can make an
informed decision on whether or not tO participate.
All procedures of the experiment will be documented and discussed with the
subjects so that they may make an informed decision about whether or not to
participate. The subjects will be provided with a summary description of the
study design. The consent form will be reviewed with each subject. The subject
will be reminded that at any time, he or she may choose not to participate and
may also withdraw at any time.

12. Complete the attached copy Of the Consent Form and the Institutional Review Board will
make a determination if your subjects will be at risk. This Consent Form must include the
following five pieces of information: (I) The purpose of the research, (2) the prOcedures
involved in the work, (3) the potential risk of participating, (4) the benefits of the
research, (5) that the subjects are free to withdraw from the research at any time with no
adverse consequences.
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13. Furnish copies of questionnaires, interview formats, testing instruments or Other
documents to carry out the research. If questionnaires are nOt complete pleas submit an
outline of the questions to be used. You will have to submit the completed questionnaire
to the Committee before the research can begin.

14. If the subjects will be minor children, complete Consent Form as prescribed in paragraph
12 for signature by parent or guardian. If the project is approved (regardless of the
Board's determination concerning risk), it will be necessary that a Consent FOrm be
secured for every minor child.

I S, 	 Attach copy of permission of facility to conduct the proposed research (if Other that
NJIT).
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