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ABSTRACT

CLUSTERED WIRELESS SENSOR NETWORKS

by
Renita Margaret Machado

The study of topology in randomly deployed wireless sensor networks (WSNs) is

important in addressing the fundamental issue of stochastic coverage resulting from

randomness in the deployment procedure and power management algorithms. This

dissertation defines and studies clustered WSNs, WSNs whose topology due to the

deployment procedure and the application requirements results in the phenomenon of

clustering or clumping of nodes. The first part of this dissertation analyzes a range of

topologies of clustered WSNs and their impact on the primary sensing objectives of

coverage and connectivity. By exploiting the inherent advantages of clustered topologies

of nodes, this dissertation presents techniques for optimizing the primary performance

metrics of power consumption and network capacity. It analyzes clustering in the

presence of obstacles, and studies varying levels of redundancy to determine the

probability of coverage in the network. The proposed models for clustered WSNs

embrace the domain of a wide range of topologies that are prevalent in actual real-world

deployment scenarios, and call for clustering-specific protocols to enhance network

performance. It has been shown that power management algorithms tailored to various

clustering scenarios optimize the level of active coverage and maximize the network

lifetime. The second part of this dissertation addresses the problem of edge effects and

heavy traffic on queuing in clustered WSNs. In particular, an admission control model

called directed ignoring model has been developed that aims to minimize the impact of

edge effects in queuing by improving queuing metrics such as packet loss and wait time.
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CHAPTER 1

INTRODUCTION

1.1 Objective

This dissertation addresses the issue of 'naturally clustered' WSNs, a term which we use

henceforth in this proposal to define networks of wireless sensor nodes that are randomly

distributed throughout the deployment region. To emphasize the concept of clustered

topologies in wireless sensor networks, a typical example of a clustered WSN is shown in

Figure 1.1a, as opposed to the widely- used measure of a stationary Poisson point process

of node distribution in the deployment region (Figure 1.1b). A quick examination of

Figure 1.1 reveals the inherent feature of clustered networks: varying coverage in the

deployment region. In fact, as we show in the next chapter, clustering has been shown to

increase the area of vacancy compared to uniformly distributed nodes, and this

preliminary observation signals the need for analysis of clustering properties to design

protocols and algorithms that optimize WSN network performance. Although this

proposal aims at clustered networks of wireless sensor nodes, it can easily be extended to

include a structured analytical model for ad hoc networks of clustered stationary and

power constrained nodes.

Clustering is one of the widely prevalent topologies of nodes in random

deployments of dense networks. The nature and scale of most WSN applications makes it

difficult to arrange the nodes in regular topologies across the deployment region. Despite

the impracticability of the widely used assumption of uniform Poisson processes for node

distribution, it continues to dominate current literature as the foundation of most

1
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Figure 1.1a. 	 Figure 1.1b

Figure 1.1 (a) shows clustering of nodes in wireless sensor networks and (b) shows
random distribution of nodes in the network.

algorithms designed to optimize network performance. In this proposal, we identify the

phenomenon of clustering in a wide range of topologies and present results for the

probabilities of varying degrees of coverage in the deployment region. The knowledge of

coverage is essential in developing algorithms for optimizing the tradeoff between

coverage and power consumption of densely clustered WSNs. These results are derived

from the development of an analytical model of cluster densities of nodes and cluster-

heads (CHs) and validated in a simulated environment. The CHs are inherently more

robust than regular nodes in terms of energy expenditure for communication and

computation, and hence aggregate data from the nodes in the cluster and forward it to a

central base station or sink, where the end-user interface makes higher-level decisions

from the gathered data from the network of nodes and CHs in the sensing field.

Depending on the densities of nodes and CHs, we design power-conserving modes of
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operation and perform adaptive density control of nodes and CHs to maximize coverage

of the deployment region. We show that although clustering increases vacancy in the

deployment region, an understanding of clustering properties can be efficiently leveraged

to take advantage of the energy conservation properties offered by the clustering

approach in dense WSNs.

The properties of naturally clustered WSNs are analyzed using the theory of

coverage processes. The theorems presented here provide the foundation for a study of

varying densities of nodes and CHs encountered in real-world deployment scenarios,

where the densities of nodes and CHs are dictated by device failure, battery energy

exhaustion or other causes that can occur in remote and hostile deployment regions. For

each of these scenarios of naturally clustered WSNs, we provide algorithms for power

optimization and present results on capacity and latency in these networks.

While the nature of naturally clustered networks encompasses varying definitions

of network topologies, this proposal is highly focused, employing just that subset of

topologies necessary to establish the findings of this proposal. The purpose of studying

clustered WSNs arises from the need for sensitivity analysis to the topology of nodes in

the network, which initially sparked our interest during the Master's project where we

studied the impact of mobility of nodes on power performance studies of MANETs. The

development and related analysis led to the study of impact of topologies on performance

of wireless sensor networks, which are characterized by stricter power constraints that

limit their communication and computation abilities. This in turn calls for algorithms that

consider this impact of topologies to optimize network performance for naturally

clustered WSNs.
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1.2 Organization of this Dissertation

Section 1.3 of this chapter summarizes relevant literature on clustered WSNs and

highlights the differences between existing research and our proposal. Chapter 2 reviews

background necessary for naturally clustered WSNs and explains prerequisite concepts,

particularly the nature and scope of power-constrained WSNs, clustering and coverage,

capacity, latency and power consumption metrics of WSN performance. Chapter 3

presents the analytical framework for optimizing the tradeoff between coverage and

power consumption of nodes and presents results of network operation validating the

study and consideration of clustering in networks. In Chapter 4, we present the queuing

analysis in clustered WSNs that takes into account the problems of edge effects and

starvation in clustered WSNs. Finally, Chapter 5 presents directions for further research

in naturally clustered WSNs and proposes a framework for cognitive WSNs.

1.3 Background

The resource-constrained nature of WSNs in terms of their size, cost, weight and lifetime

is a primary area of concern for most potential applications using WSNs. At their best,

the constraints of size, weight and cost of individual nodes have propelled their use in a

wide variety of military and civilian applications. At their worst, constraint of the power-

limited nature of nodes which also constrains their computational, communication and

sensing capabilities calls for research into optimizing tradeoffs between reliability and

prolonged network operation. Coupled with the inherent unreliability of the wireless

channel, possible hostile environment in certain application-specific deployment regions

and device unreliability of individual nodes, WSNs are subject to unique challenges for
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efficient power management to prolong network lifetime in addition to fulfilling sensing

objectives of the application.

Energy efficiency and achieving reliability of data collection is a key issue in

WSNs. Energy efficiency has been investigated widely and the various approaches to

achieve an energy efficient network include scheduling sensor nodes to alternate between

energy-conserving modes of operation, efficient routing algorithms, clustering,

incorporating intelligence and use of spatial localization at every sensor node to reduce

transmission of redundant data. These approaches draw upon theories from mathematics,

game theory, physics and even observation of biological phenomena. The unreliability of

the wireless channel also poses security challenges in WSNs similar to those encountered

in other ad hoc networks. Clustering has frequently been cited as a hierarchical approach

to reduce energy expenditure of networks by data aggregation, reducing number of

transmissions from individual nodes to the sink and promoting scalability in dense

networks. The parameters for cluster formation and cluster-head selection are chosen

from a subset of or a combination of factors such as residual energy, node degree and

mobility. A survey and of various clustering schemes in WSNs and mobile ad hoc

networks can be found in (Dechene, 2006) and (Yu and Chong, 2005) respectively, where

the authors classify the existing literature on clustering in WSNs and mobile ad hoc

networks (MANETs) and discuss key features of these algorithms. Another survey of

clustering in ad hoc networks is presented in (Wei and Chan, 2006), where the authors

survey clustering schemes for ad hoc sensor networks and mobile ad hoc networks. While

the parameters for cluster formation focus on energy efficiency and load balancing in

these surveys, a key difference is the mobility of the nodes in MANETs which
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significantly changes the protocol development for energy efficiency and routing in ad

hoc networks. Below we provide a brief overview of various clustering schemes in dense,

stationary networks of homogeneous, power constrained wireless sensor nodes and

highlight the major difference between them and our proposal: the uniqueness and

prevalence of naturally clustered networks and yet lack of a framework that studies the

properties of naturally clustered WSNs.

1. 4 Related Work

One of the earliest literature on clustering in WSNs in LEACH- Low Energy Adaptive

Clustering Hierarchy (Heinzelman, Chandrakasan and Balakrishnan, 2002), where cluster

formation is designed to achieve prolonged network lifetime by local data processing,

rotation of the CH position among nodes and low energy MAC access. The probability of

becoming a CH is function of the node energy level relative to the total residual energy

level in the network. Since the CH is responsible for data aggregation and data

transmission to the sink (communication and computation tasks) that are more energy-

intensive than the tasks of sensing and communication to a CH that occur at a regular

node, rotation of the CH position relative to node energy levels achieves distribution of

the computation and communication as well as cluster maintenance tasks of the CH. The

authors also present a modification of LEACH, called LEACH-C (LEACH- Centralized),

where the sink centrally coordinates cluster formation and CH selection. In LEACH-C,

the base station takes over the tasks of node energy computation, cluster formation ad CH

assignment. The authors also provide an analytic framework to determine the optimal

number of clusters to optimize the communication and computation energy expense at
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nodes. The authors assume a network model where nodes are continuously transmitting

sensed data to the nearest CH (LEACH) or the sink (MTE). Simulation results show that

the LEACH clustering algorithm reduces the energy dissipation and data transfer latency

in the network compared to an MTE (Minimum Transmission Energy) approach. In the

MTE approach, a node selects the nearest node as its next hop to relay its data to the sink.

This is in contrast to the clustering approach, where the nodes communicate to the sink

via the CH and thereby reduce the number of transmissions to the sink. They also study

the quality of the clustering algorithm in terms of amount of data reaching the sink, since

a large amount of data reaching the sink enables accurate reproduction of the parameters

of the sensed environment. Assuming that all nodes in a cluster sense the same

phenomenon due to proximity of location, simulation results show that LEACH and

LEACH-C sense higher amount of data per unit energy than MTE. This is due to the fact

that LEACH and LEACH-C enable local data processing through the clustering

mechanism.

In (Vlajic and Xia, 2006), the authors provide analytic results to validate the need

for clustering in WSNs. They show that when the monitored phenomenon can be grouped

as `isoclusters' (areas within the sensing field that have similar values of the monitored

phenomenon), clustering nodes to lie within such isoclusters helps in achieving network

objectives such as prolonged network lifetime. This is because, within the isoclusters, the

sensed phenomenon, e.g. temperature in a sub-region of the sensing field has a high

probability of being reported by all sensors in that sub-area P with same values. This high

correlation between data allows for data aggregation at the CH, which results in shorter

messages being transmitted from CH to BS. The authors use the bit-hop metric to
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evaluate the total energy expenditure of transmissions and receptions of bits across the

network as a comparison for the energy expenditure in clustered and non-clustered

networks. Non-clustered networks are characterized by direct reporting of measurements

from individual nodes to the sink, whereas in clustered networks, nodes report their

measurements to their respective CHs, who then transmit the aggregated (if possible,

compressed) data to the sink. The cluster formation strategy is dictated by the a) size of

cluster b) choice of nodes to be included in cluster (i.e. nodes belonging to an isocluster

yield energy savings if they are formed as a cluster). The authors show that clustering is

beneficial in the event of data correlation in node's reported values. In the absence of or

very low correlation, clustering increases the energy expenditure of the network. The

authors assume a dense WSN of homogeneous nodes deployed for continuous monitoring

in a sensing area, forming a multi-hop network for relaying data to the sink. With the help

of two simplified cases of horizontal and vertical array of nodes, the authors determine

the optimal cluster size in each case which reduces the energy expenditure (bit-hop

metric) of the nodes. They show that the optimal cluster size is a function of the cluster,

and the distance of the nodes in the cluster to the sink node.

In (Shu, Krunz and Vrushula, 2005), the authors study power balancing in

clustered WSNs in terms of maximizing the coverage time of CHs. The network model

used by the authors consists of clusters of nodes uniformly and randomly distributed in a

circular deployment region of size A. Cluster formation is modeled as follows: A node's

distance from the centrally located sink determines its association in a ring. The network

is deployed for continuous sensing, where nodes continuously transmit data to the CH,

which forwards this data directly to the sink or through other CHs. Defining coverage
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time as the time until the first CH runs out of battery energy, the authors optimize this

metric by proposing two algorithms that take into consideration the mutual impact of

clustering and routing on the coverage time of the CH. These two algorithms are as

follows:

1. Routing aware optimal cluster planning

This approach deals with optimal cluster planning. A CH in the i th ring forwards

traffic to the sink from CHs in the (i-1)th ring. By reducing the radius of clusters in the ith

ring and thereby accommodating more clusters and hence more CHs in the ith ring, we

have an increased number of CHs in the ith ring forwarding the same amount of traffic

from the CHs in the (i-1)th ring. This leads to decrease in the forwarding traffic load per

CH in the ith ring and hence reduced power consumption at CHs in the ith ring. However,

reduction in the radius of the ith ring has to be compensated by increase in the cluster size

of another ring j, since the total number of the rings in the deployment region A is

constant. This leads to increase in power consumption in ring j. Thus, by trading off

cluster radius in a ring with power consumption, cluster planning can help to increase

network coverage lifetime.

2. Clustering aware optimal random relay

This approach deals with load balancing at CHs to increase coverage lifetime. In

this scheme, a CH may relay data to the closest CH in the next ring, or directly forward it

to the sink. Denoting a as the fraction of load that the CH directly transmits to the sink,

each CH has a probability relay vector that determines power consumption at the CHs.

The authors model this problem of optimizing coverage lifetime with the aforementioned

two algorithms as a standard signomial optimization problem on the average
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communication power consumption of any CH in a ring. The power consumption for

communication is a function of the power consumed in the transmission, reception and

the radio interface with the choice of routing algorithm.

Simulation results show that for a given number of rings, the optimal cluster

planning algorithm results in longer coverage time and smaller number of clusters than

the load balanced scheme. This is due to the fact that the cluster planning algorithm

allows for CHs with less traffic forwarding load to carry more traffic from within the

clusters, thus expanding cluster size and reducing the number of clusters required to

cover the deployment region.

In (Younis and Fahmy, 2003), the authors propose HEED (Hybrid Energy

Efficient Distributed clustering], a distributed clustering protocol that uses residual node

energy, cluster size and available power levels at a node for communication with the CH

as parameters for CH selection and cluster formation. Defining a parameter AMRP

(average minimum reachability power) as the mean of power levels used by the nodes in

a cluster to reach the CH, they show that using AMRP to select CHs is better than the

distance-based CH selection approach. They compare the protocol with LEACH, and

show that HEED outperforms an optimized version of LEACH by prolonging network

lifetime.

The authors in (Xing and Shreshtha, 2006) propose a scheme to determine the

reliability of hierarchical clustered WSNs. Figure 2 shows a sample architecture that

illustrated the hierarchical model. The connectivity of nodes in the network is modeled as

a graph G= (V,E). The reliability analysis is based on the concept of k-coverage set,

which is the set of nodes in a cluster such that all points in the cluster are covered at all
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times by at least k nodes. The coverage-oriented reliability in a cluster is defined as the

probability that at least one of the k-coverage sets is optional. Assuming no overlaps

between nodes of various clusters, the reliability of the WSN performance is obtained by

analyzing the reliability of each cluster independently using link failure, node and CH

failure probabilities. These parameters are then integrated to find the measure of

reliability for the whole WSN.

In (Cha, Jo, Lee and Lee, 2007), the authors propose a clustering algorithm

SNOWCLUSTER that creates a 3-tiered hierarchy of nodes, clusters and regions. They use a

central framework administrator SNOWMAN, proposed in an earlier work that is

responsible for maintaining location information of nodes, monitoring node status and

making local decisions and policy allocation for individual nodes. The use of this

framework allows nodes to rely on a central framework for policy enaction instead of

using its own resources for neighbor discovery and other management tasks.

The hierarchical framework for routing is as follows: The data gathered by nodes

is transmitted to the respective CH, which in turn performs data aggregation and

transmits the data to the next and final higher-level of nodes in the hierarchy, the region

heads. The region heads are responsible for communication with the sink, after

aggregating data from the CHs. The selection of CHs and region heads is based on the

residual energy of nodes, and SNOWCLUSTER periodically performs a check on the

residual energy of nodes to select those with highest residual energy to determine CHs,

and a similar check on the CHs to determine the region heads.

Since SNOWMAN uses location information of nodes to implement CH and

region head selection, simulation results for transmission of management messages from



12

BS to sensor nodes shows that SNOWCLUSTER requires lesser energy than LEACH. In the

absence of location information, LEACH requires greater energy consumption for

discovering routing paths. The authors show that SNOWCLUSTER outperforms the energy

consumption in LEACH by requiring lesser energy for data transmission to the sink. This

is attributed to the presence of region heads that communicate to the sink instead of CHs,

and thus reduce the energy expenditure of communication to the sink from CHs.

In (Tian and Coyle, 2007), the authors study the distributed binary hypothesis

problem for clusters in sensor networks. The nodes make a binary decision '0' or `1'

depending on the occurrence of an event. This decision bit is then transmitted to the CH,

which makes a final decision based on all the decision bits received from all nodes in the

cluster. The authors study the network performance in terms of the probability of error at

individual nodes in making the decision, propagation errors that affect a decision bit

while being forwarded to the sink, and decision fusion errors at the CH due to the

communication errors while propagation from node to sink. Since nodes at the outer edge

of a cluster are more vulnerable to their decision bits being corrupted while travelling to

the CH via relay nodes compared to decision bits from nodes closest to the CH, the

authors propose a weighted median algorithm at the CH for decision fusion that takes into

account the communication errors. With increase in cluster size, the number of decisions

arriving at the CH are greater in number than those arriving from nodes closest to the CH.

Thus the decision bits from the outer nodes of a cluster form the dominating set of

decision bits which are also more vulnerable to errors. The weighted median algorithm

for decision fusion at the CH assigns larger weights to decision bits from nodes closest to
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the CH by duplicating them several times. This algorithm discounts the weight of the

error-prone bits and improves the decision performance of the CHs and the sink.

The closest related work to ours is (Comeau, Sivakumar, Philips and Robertson,

2008), where the CHs are not chosen from among the nodes in a randomized rotation

manner (Heinzelman, Chandrakasan and Balakrishnan, 2002), or any other algorithm for

CH selection from among the nodes. Rather, the CHs are a separate set of nodes that

receive data from nodes, perform data aggregation and sensing tasks. The authors present

an energy model for clustered WSN, which consists of N nodes randomly and uniformly

distributed in the deployment region, The process of choice of CHs or the geometry of

deployment in unclear. The authors assume a radio model, where propagation path loss

exponent is assumed to vary with the distance of transmission, i.e. n= 2 for transmission

within the cluster and /V>2 for transmission outside the cluster. They model the energy

consumption at both CHs and regular nodes. They use the optimization of energy at

regular nodes to obtain the total number of clusters in the network. The authors use a

ratio PH, where 1-- length of packet transmitted by CH to sink. The optimum number of

CHs denotes the minimum total energy, and increases with an increase in compression.

This is because an increase in the compression ration equals an increase in the minimum

total energy and hence increase in optimum number of clusters. The optimum number of

CHs has also been shown to depend on the crossover distance d,, which determines the

value used for the propagation path loss exponent.

Another closely related work is (Perevalov, Blum and Safi, 2006), where the

authors study the impact of cluster density on the capacity of ad hoc networks, instead of

the widely used assumption of randomly uniformly distributed nodes distributed
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according to a stationary Poisson point process in the sensing area. They assume a

network model where clustered nodes with density p c, in a 'sea of nodes' of density p„

such that ρs pc . They show that the throughput of clustered networks switches at a

critical size that is dependent on the sensing area A. Before reaching the critical size, the

per-node throughput is almost independent of A, and depends on cluster size and cluster

density. They derive bounds on the throughput of clustered networks and help to quantify

the concept of 'large' networks, i.e. networks whose size exceed the critical size. Large

networks are characterized with increase in capacity as size further decreases.

In the next chapter, we obtain the coverage properties of clustered WSNs using

the theory of coverage processes. We show that vacancy decreases in a clustered

topology of nodes, and we present results for k-coverage in a clustered WSN. These

results have significance in positioning applications, situations which require stronger

environmental monitoring capability (Huang and Tseng, 2003) and high reliability.



CHAPTER 2

COVERAGE AND CONNECTIVITY PROPERTIES OF CLUSTERED WSNs

Sensing coverage is an important functional metric to a wireless sensor network since it

determines how well the sensor network can monitor the environment and generate

corresponding data. In addition, the knowledge of coverage and redundancy is essential

in developing algorithms (Heinzelman, Chandrakasan and Balakrishnan, 2002) to

schedule the listening/sleeping cycle of sensors for optimizing the tradeoff between

coverage, communication connectivity and power consumption. Currently the assumption

of the uniform Poisson process for node distribution dominate the literature as the

foundation of most algorithms designed to optimize network performance. However, the

assumption is not practical in many situations. The nature and scale of the most WS

applications makes it difficult to arrange the nodes in regular topologies across the

deployment region. The deployments for random placements of nodes for environment

monitoring (Biagoni and Bridges, 2002), (Mainwaring, Polastre, Szewczyk Culler and

Anderson, 2002) or military applications is typically done through spraying nodes from

an airborne device or randomly scattering nodes manually. A significant consequence of

this process is the clustering or clumping of nodes, where node positions form clusters

resulting in redundancy of coverage in certain area and coverage 'holes' in the other area.

We call this scenario 'naturally clustered' networks as opposed to the more prevalent

notion of clustering by choice. Clustering is one of the widely prevalent topologies of

nodes in random deployments of dense networks. To emphasize the concept of clustered

topologies in wireless sensor networks, a typical example of a clustered WSN is shown in

15
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Figure 2.1, as opposed to the widely used measure of a stationary Poisson point process

of node distribution in the deployment region (Figure 2.2).

Figure 2.1 Clustering of nodes in WSNs.

Figure 2.2 Random distribution of nodes in WSNs.



17

A quick examination of Figure 2.1 reveals the inherent feature of clustered

networks: varying coverage in the deployment region. In fact, as we show in the next

section, clustering has been shown to increase the area of vacancy compared to uniformly

distributed nodes, and this preliminary observation signals the need for analysis of

clustering properties to design protocols and algorithms that optimize WSN network

performance. In addition to the increased vacancy and vacancy distribution which

requires more study, the natural clustering of WSN also have impact on the design of

those clustering algorithms (Dechene, 2006), (Shu, Krunz and Vrushula, 2005) for

routing, data aggregation and energy conservation. An understanding of clustering

properties can be efficiently leveraged to take advantage of the energy conservation

properties offered by the clustering approach in dense WSNs.

To sum up, there are fundamental reasons why we investigate the properties of

coverage in naturally clustered networks instead of using the widely used theory of

uniformly distributed nodes in a Poisson model of node distribution, some of which we

enumerate here:

• Models for naturally clustered networks show that coverage properties in

clustered networks are significantly altered than those in Poisson models of

uniform and random node distribution. As we show in the rest of this chapter,

vacancy due to clustering is higher than in the widely used model of a stationary

Poisson point process used to model node distribution.

• These models can provide a foundation for future work on placement of nodes in

randomly deployed WSNs, thus making it easier to understand and extend the

model of clustering.
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• Even though clustering exhibits increased vacancy, this vacancy can be

compensated by mobile nodes who can travel to the region of vacancy and cover

the vacant region.

• With the insights from this work, researchers can create new models of clustering

by customizing the properties that are appropriate to the WSN application for

which the network is deployed.

In this dissertation, we study 'naturally clustered' WSNs. Random deployments of

nodes in WSNs do not have any order in the placement of nodes. The objective of this

dissertation is to investigate how to model the randomness in the placement of nodes by

examining the coverage attributes resulting from randomness in clustering. In particular,

the attributes of coverage in naturally clustered networks are extensions of the Poisson

model of node distribution widely used in modeling the distribution of nodes in WSNs.

We show how to extend Poisson distribution of nodes to support clustering with an

analytical framework using the Poisson cluster point process (PCPP). We analyze the

properties of naturally clustered WSNs using the theory of coverage processes (Hall,

1988). This analysis provide the foundation for a study of varying densities of nodes and

cluster heads encountered in real-world deployment scenarios, where the densities of

nodes and cluster heads are dictated by node failure due to device failure, battery energy

exhaustion or other causes that can occur in remote and hostile deployment regions. In

addition, we study the affect on the coverage properties of obstacles in clustered WSN.

Obstacles exist in a large number of outdoor applications, which are a major portion of

WSN applications. The dissertation has the following contributions: (1) study the

coverage property of clustered WSNs and provide a foundation for the design to optimize
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network performance and (2) study the presence of obstacles and how they impact

coverage in clustered WSNs.

The remaining of the chapter is organized as follows. Section 2.1 reviews background

necessary for naturally clustered WSNs and explains prerequisite concepts, particularly

the nature and scope of power-constrained WSNs, clustering and coverage metrics of

WSN performance. Section 2.2 discusses vacancy estimation in a clustered network. In

Section 2.3, we analyze the impact of clustering on coverage properties. Section 2.4

presents the coverage analysis in the realistic scenario of deployment in the presence of

obstacles. In section 4, we present the results of simulation. The performance evaluation

of our model is presented in Section 2.5. Finally, Section 2.6 concludes the chapter.

2.1 Problem Statement

Though the assumption of a Boolean model (Poisson process) offers ease of calculation,

is not reflective of the coverage and connectivity properties of a real-time random

topology. The key assumptions in our formulation are:

• We define naturally clustered networks, where clustering is not facilitated by

choice. Rather, it is a consequence of the deployment process in large-scale, dense

networks created by scattering/ spraying of nodes.

• To investigate clustering, we leverage the concept of a Poisson cluster point

process (PCPP) (Hall, 1988) as opposed to the widely used Boolean model

(Poisson driving point process).
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• We further assume that the CHs are a distinct set of nodes scattered over the

region with a smaller intensity than that of regular nodes. Thus we assume a 2-tier

hierarchy comprising of 2 distinct sets of nodes: sensor nodes and CHs.

• The CHs are assumed to be robust, less power-constrained, and larger (akin to

localized processing stations) that are capable of intensive processing,

computation compared to the sensor nodes. The CHs are also responsible for to

other CHs and relaying cluster data to the BS.

The focus of coverage studies in WSNs deployed for environmental modeling has been

on random topologies, and the model of choice for the topology is that of Poisson

distributed nodes. The coverage problem has also been studied in terms of a set

intersection problem using results from integral geometry in (Lazos and Poovendran,

2006). In this dissertation, we use the results from coverage processes, specifically,

Poisson cluster point processes (PCPP) to study random topologies of WSNs. The use of

PCPP models to model environmental phenomena has been suggested in (Cox and Isham,

1980) and (Kingman, 1993) and has been studied for modeling air temperature and

rainfall in (Onof et. Al, 2004), (Kilsby et. Al, 2007) and (Bilgin and Camurcu, 2005). A

detailed study of applications of PCPP models to ecological modeling can be found in

(Cox and Isham, 1980).

The coverage properties of random topologies in a WSN have been studied with

the help of coverage processes previously in (Saito, Shiado and Harada, 2008). In (Saito,

Shiado and Harada, 2008), the authors study the coverage in a Poisson process of node

topology, where the WSN is deployed for target detection. They consider the scenario of

Boolean model of coverage, where a target point is considered to be sensed if it lies
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within the coverage area of a sensor node and considered to be un-sensed otherwise.

They extend this analysis to the interesting case of an expanding target, for e.g. detecting

oil spills or infected animals in a herd. Variations of the Poisson process in the study of

coverage in WSNs have also been considered in (Manohar, Ram and Manjunath, 2006).

We study the problem where for a given placement pattern for wireless sensor nodes,

in a deployment region, we have to find the probability that every point in the

deployment region is covered by m nodes, with some probability p, where 0 <p <1. We

assume that the deployment process results in k-redundancy of nodes, and we find the

probability that a given point (x,y) in the region is covered by m-redundancy, where m

<k. The decrease in the degree of redundancy can be attributed to power management

that turns off redundant sensors or to sensors that have run out of battery energy or

suffered device failure.

Our research is the first known work that analyzes the interaction between points of

the coverage process resulting from a clustered topology. Realistic random deployment

patterns result in clustering of nodes. Salient attributes of using PCPP models to study

coverage in random topologies are evident, and help us to see the need for using cluster

point processes. First, various ecological models display clustering in the spatial and

temporal domains. Many spatial cluster processes have been described and modeled in

(Neyman and Scott, 1972). Second, realistic deployment models result in clustering of

nodes. One of the particular strengths of this dissertation is that it can be used to pre-

determine the degree of coverage required to study an ecological model that has been

shown to display clustering (Onof et. Al, 2004), (Kilsby et. Al, 2007), (Bilgin and

Camurcu, 2005), (Neyman and Scott, 1958). Since the spatial distribution of the
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phenomenon demonstrates clustering, deploying random topologies in a clustered pattern

can help in effectively isolating and capturing the phenomenon. This has been conversely

studied earlier in (Vlajic and Xia, 2006) as isoclusters, where the nodes in a geographical

region sense same values of the target phenomenon and form a cluster (isocluster) to

reduce redundancy in data processing and transmission. The other strength of this

analysis lies in the inherent limitation of the Poisson process in approximating realistic

random deployments. Most real world deployments of random WSNs display clustering

due to the deployment phenomenon and hence a PCPP is more appropriate to study the

coverage properties in such topologies.

A clustering process allows for a degree of interaction between the points of the

coverage process. In this work, we study the properties of a Poisson cluster point process

(PCPP) (Hall, 1988), which possesses a degree of clustering not present in a Boolean

model. The properties of coverage and vacancy in a 2-dimensional region R2 due to

clustering processes vary significantly from that of the widely used Boolean model of

node placement. Realistic random deployment patterns result in clustering of nodes. The

properties of coverage and vacancy in a 2-dimensional region R2 due to clustering

processes vary significantly from that of the widely used Boolean model of node

placement. In fact, as we show in the rest of this article, clustering results in increasing

the expected vacancy per unit area of the region R2 . We now present some terminology to

facilitate our discussion of coverage in cluster point processes.

Terminology:

Stationary point process:
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A point process II is stationary if for each Borel set S , the distribution of the

number of points of II that fall within x + S is independent of x .

Stationary (homogenous) Poisson point process of intensity 2:

A stationary point process is Poisson with intensity X, if

1. the points ξi in any Borel subset S of P2 is Poisson distributed with mean 2114

where 11•11 denotes the Lebesgue content (area in 2-dimensions) of a shape.

2. the number of points in any number of disjoint Borel subsets are independent

random variables

3. if and only if X, is constant everywhere,

4. mean and variance of number of points in the process equals 2 V|| and

5. probability that no points lie in S= exp (-λ||S||) •

Let II.	 11 be a stationary Poisson process of intensity k in P 2 . Let S1 , s2 , s3 ,... be

independent and identically distributed (i.i.d.) random sets independent of II. Then the

coverage model C = +s,}, i 1. A point (x, y) in the deployment region is said to be

covered if the point lies within the circular sensing region of a node. In dense networks, k

(where k > 1) nodes can sense any given point resulting in k- redundancy. However,

power management or node failure can dictate that any m, (where m < k) sensors are

sensing that point resulting in actual m-redundancy of coverage in the coverage. A

Boolean model of coverage in 2-dimensional Euclidean space is R2 just the coverage

pattern created by a Poisson-distributed sequence of random sets. Similarly, k-

connectivity exists when for any given two nodes, a and b, multiple (k) paths exist

between them. Dense networks through their topology create conditions for both k /m-
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redundancy and connectivity. In the rest of this chapter, we will obtain analytical

solutions for the probability of coverage in either k or m- redundancy and expected

number of connected sensors in the WSN of PCPP process. These results will help us

develop an efficient routing protocol that considers the unique coverage and connectivity

properties inherent in WSNs of PCPP nodes and CHs.

As we show in this chapter, clustering results in increasing the expected vacancy

per unit area of the region R. We now present some terminology to facilitate our

discussion of coverage in cluster point processes.

A clustering process allows for a degree of interaction between the points of the

coverage process. In this work, we study the properties of a Poisson cluster point process

(PCPP), which possesses a degree of clustering not present in a Boolean model.

In a PCPP P, the points of P are the 'children of parent' points. The parent points

form a stationary Poisson process in R 2with intensity 20 , given by { 77 , , 	 i > . Each

parent point produces progeny represented by points in space in an i.i.d. manner. The

number N. of progeny born to a parent point 77, which is independent of i. Let

pn =	 = n).

The j th child of η is the point 77. +ηi j 	j Ni Conditional on all Ni and

and on the locations of a11 progeny of a11 parents other than the ith, the vectors ηij are
71Y

i.i.d. with density h defined on P2 . The points 	 + 77u , 	 1, 1 < j < Ni } comprise a

PCPP II=I 	 i
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We assume the particular case where the progeny N has a Poisson distribution

with mean p, i.e ,µne-µ In The total density of random sets in C per unit content of R2

equals plc, , which we henceforth call the clump factor. This is also the average intensity

of the driving point process P. A point (x, y) in the deployment region is said to be

covered if the point lies within the circular sensing region of a node. In dense networks, k

(where k >1) nodes can sense any given point resulting in k- redundancy. However,

power management or node failure can dictate that any m , (where m <k) sensors are

sensing that point resulting in actual m-redundancy of coverage in the coverage. A

Boolean model of coverage in 2-dimensional Euclidean space R is just the coverage

pattern created by a Poisson-distributed sequence of random sets. Similarly, k-

connectivity exists when for any given two nodes, a and b, multiple (k) paths exist

between them. Dense networks through their topology create conditions for both k or m-

redundancy and connectivity. A systematic evaluation of the maximum likelihood

estimation for a PCPP and demonstration of the convergence of the procedure with a

sample small data set has been presented in (Castelloe and Zimmerman, 2002). We refer

the interested reader to (Castelloe and Zimmerman, 2002) for an analysis empirical

quantification of similarity in actual node distribution to the one predicted by the PCPP.

In the rest of this chapter, we will obtain analytical solutions for the probability of

coverage in both k or m- redundancy and expected number of connected sensors in the

WSN of PCPP process. These results will help us develop an efficient routing protocol

that considers the unique coverage and connectivity properties presented in WSNs of

PCPP nodes.

2.2	 Vacancy Estimation in a Clustered Network
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The vacancy V within P2 is defined to be the 2-dimensional content of that part of P 2 that

is not covered by any of the random sets of C , where C is the coverage process

(2.1)

The expected vacancy within a region E (V) is given by [13],

(2.2)

where, A, is the intensity of the point process for nodes, ||R|| is the area of the deployment

region and ||S|| is the expected area of the node coverage. This vacancy denotes that part

of deployment region that is not covered by any node.

This vacancy denotes that part of deployment region that is not covered by any node. Let

s c P2 be a fixed set. Conditional on ηi= x and Ni = n , the chance that none of the points

(2.3)

Conditional only on i7 = x , the chance that none of the progeny of η i be within —S is

(2.4)
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Since the points 
ii comprise a stationary Poisson point process Fl o with intensity 20 , then

the number of points M of which have at least one child lying within —S must be

Poisson with mean v ,

(2.5)

The probability that no random sets in the coverage process = 	 i_11 cover

the origin equals the chance the M takes the value zero, i.e. it equals e-v .

E (V) = || R|| e-v

(2.6)

If the distribution N of the progeny of parent points has a Poisson distribution

(2.7)

(2.8)

(2.9)

Now, the total density of random sets in C per unit content of 1/1 2 equals µλ0  . This is

also the average intensity of I I. But
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(2.10)

equals expected vacancy for a Boolean model having same type of set and same density

of sets as C . Hence clustering increases the expected vacancy per unit area.

Since obtaining the density if the progeny points q• +ηij as well as classifying the

nodes as parents and progeny in the deployment region is not feasible, an alternate way to

determine the expected vacancy is as follows.

Vacancy can be determined alternately by finding the expected number of sets

that intersect a given set v (S0 ), where S0 is some convex subset of v (S) . Let v (S,) be

the mean number of coverage disks of nodes intersecting any fixed coverage disk So in

the deployment region R. Let 1t2 (So , S) be the mean area of the region into which centers

of coverage disks intersecting S, must fall. Consider the set A of all points x, x E R such

that x +S intersects S. If the coverage disks distributed as S are centered at points of a

stationary point process with intensity 2, then expected number of random sets

intersecting S, equals

(2.11)

where, f (x, LS) is a coverage function denoted as

(2.12)
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Let a E (11S112) be the area of the coverage disk and p= E (||∂||1) denote the perimeter

of the coverage disk. This gives the probability that no disks intersect the coverage disk

So as

(2.13)

In this dissertation, we study clustering of nodes in random deployments with the help of

the PCPP process. Modifying this analysis to account for the PCPP process, we substitute

the intensity 2 , for the intensity of the PCPP process µλ 0  , which we call the clump

factor.

Hence in a PCPP with average intensity µλ0 , the expected vacancy [8] is given by

(2.14)

The mean number of sets that intersect a given set gives the probability of

forming intersected coverage areas and depends on the area of S . In a PCPP with

average intensity p20 , the expected vacancy is given by

(2. 15)
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Equation (2.15) gives the expected vacancy in PCPP. Figure 2.3 shows the expected

vacancy in a deployment region of 300 nodes as a function of the intensity of the

deployment process.

- Poisson distribution
- Poisson cluster point process  (PCPP) 

Figure 2.3 Expected vacancy in Poisson and PCPP distributions of 300 nodes without
obstacles

The vacancy decreases with increase in the intensity of nodes. However, this vacancy can

be further decreased by increasing the degree of clustering.

2.3	 Impact of Clustering on Coverage Properties

In this section, we obtain the properties of clumping of the nodes scattered as a PCPP. A

realization of a PCPP is a pattern of voids and clumps as shown in Figure 2.4.
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Figure 2.4 Pattern of clumps of coverage areas of sensor nodes and coverage
voids due to absence of sensors

We denote the clumps as the coverage area of a pattern of redundant nodes

sensing a given point in the region. Defining the number of m-redundancy for a given

point as the order of the clump, the area covered by a clump is simply the order of the

clump multiplied by the expected coverage area of a single node. In a perfect Poisson

process of nodes, the distribution results in nodes that 'avoid' each other (Shu, Krunz and

Vrushula, 2006), thus distributing the nodes throughout the deployment region to achieve

uniformity of coverage properties. Though this assumption offers ease of calculation, a

random deployment can easily result in formation of clumps and voids in the region. The

voids denote coverage voids due to sensors that are no longer sensing due to possible

battery energy exhaustion, sensor nodes in power-saving sleep states or sensors that have

stopped working due to device failure. To obtain the properties of clumping of coverage

disks in the deployment region, we use the principle of Euler characteristic of a figure.



Once again, we start with the derivation for a Poisson model for the nodes and then

extend it to a PCPP model to reflect the clumping. The Euler characteristic of a figure

equals the number of disjoint components minus the number of voids. The Euler

characteristic of a figure x (s) equals the number of disjoint components minus the

number of voids.

Let R (C) be the set formed by intersection of sets from the Boolean model

C	 within a given region	 Let W., denote a connected oriented

polygonal region without voids.

From the above figure, R(C) = (27r) {expected curvature of shaded sets}

This quantity is different from the 'expected visible curvature of the pattern within w!,

because the former includes contributions to curvature arising from boundary of w,

(2.16)

(2.17)

Hence, mean Euler characteristic per unit area of this pattern

(2.18)

The mean total curvature of R(C) =

(a) + (b) +(c),

where, (a) = expected contribution to total curvature arising from uncovered crossings of

boundary of W, from boundaries of random sets,

(b) = expected contribution to total curvature from curvature of boundary of W, and

(c) = Expected total curvature within W.,
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In a deployment region, the Euler characteristic is thus the number of isolated

coverage disks (those that do not intersect with other disks due to overlapping coverage

areas) minus the number of areas that are vacant and bounded by the perimeters of the

coverage disks of surrounding nodes. Since the intensity of coverage disks is Poisson

with intensity 2, the expected visible curvature of the coverage disks per unit area is

2πχλe-αλ, where x = x(S) denotes the Euler characteristic of the set S. Assuming that

the coverage areas are isotropic, the number of disjoint coverage disks per unit area

Expected number of clumps minus voids in a PCPP per unit area is given by A. If we

know that the coverage disks have smooth boundaries, then any discontinuities in the

Boolean model can be identified as an uncovered region which can be removed from the

calculation of total curvature. Hence the expected total curvature from uncovered

crossings of random coverage disks centered in the deployment region R is given by

(2.19)

Thus the expected number of clumps minus voids in the deployment region of Boolean

model of nodes following the Poisson distribution is given by

Thus the expected number of clumps minus voids (m-redundancy) in the

deployment region with PCPP distributed nodes is a straightforward extension of the

above equation by substituting the clump factor µ2λ 0 for 2. Thus the expected m-

redundancy per unit area in the coverage in a deployment region with PCPP distribution

of nodes is given by
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For a 2-D region R populated with PCPP nodes, expected area of coverage a ,

perimeter of node coverage 16 , and binary function for coverage x denoting the

presence/absence of a node that covers a point (x, y), and 2 is the intensity of the Poisson

process of Boolean model denoted by C(8,2), where, 8S is the distribution of coverage

areas and , 2 and 8 are related as 77 = 8 2 2. Finally, we obtain the expected number of

clumps of coverage disks of sensors per unit area (denoting the k- redundancy in the

region). The expected number of coverage disks in a Boolean model C that intersect a

fixed coverage disk S is given by equation (2.13). The probability that no sets from C

v
intersect S is given by e 2

(s)
 . Hence the mean number of coverage disks per unit area

with no sets intersecting them is given by the expected number of clumps per unit area is

given

(2.21)

Once again, we extend this analysis to that of the PCPP model for clustered nodes

and present the formula for the k-redundancy in a region with the clump factor given by

(2.22)

2.4 	 Coverage Properties in the Presence of Obstacles

We now present the properties of a PCPP WSN node placement in the presence of

obstacles in the 2-D deployment region R (Figure 2.5).



Figure 2.5 Illustration of node deployment in a 2-D region with obstacles

Even though the positions of some nodes are very close to the obstacles, in these

cases, the coverage area of a node has been reduced. However, the nodes are not in the

same location as the obstacles. We assume that the area occupied by an obstacle is a disk

of random radius r and does not allow the presence of a sensor node in that area. Further,

we assume a Poisson distribution, i.e. a Boolean model of coverage for the distribution of

obstacles. The subscript 'o' in the expressions for coverage, vacancy and clumps indicate

properties in the presence of obstacles in the deployment region. In the presence of

obstacles, the vacancy in R is defined as that area of R that is not covered by obstacles.

The vacancy due to obstacles is given by

35

(2.23)
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This area V0  is the expected area in which we can deploy sensors according to a

PCPP of average intensity µλ0 .The vacancy in the region Vs after deployment of PCPP

nodes and Poisson distribution of obstacles is given by

(2.24)

The expected m -redundancy in the region with nodes and obstacles is given by

(2.25)

Similarly, the expected k- redundancy in the region with nodes and obstacles is given by

(2.26)

If the m-redundancy is due to the power-saving algorithm implemented to

schedule sleep states for nodes, then this redundancy can be increased to achieve n-

redundancy to satisfy reliability of data collection in the network, albeit at increased

energy consumption. Another technique to achieve increased sensing redundancy in a

region of voids present due to node failure is to deploy mobile sensors that can navigate

to that sub-region of the deployment grid that has a void in the sensing coverage (Wang,

Cao and Porta, 2006).

Next, we obtain the number of neighbors of a node to obtain the connectivity

properties of PCPP process of nodes. The expected number of neighbors of a node N is

given by the mean number of coverage area disks of other nodes intersecting a given

node's coverage area (equation (2.13)). Modifying it for the PCPP process, the number of

neighbors is given by,
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With N neighbors, the probability that a sensor has at least k neighbors, where

1	 is given by 1-Pr (no neighbors)= 1- Pr(N = 0). Here, N=0 implies

This implies that a) 20 = 0 representing only one sensor in the entire region or b)R=0

denoting that the coverage area of a node is a point.

2.5	 Performance Evaluation

In this section, we present the results of our simulation for coverage properties of nodes

in a PCPP process over the deployment region. Figure 2.3 shows the expected vacancy in

a region without obstacles, assuming the Poisson process and the PCPP distribution of

node placement. We compare this with the results in Fig. 2.6, where we assume nodes in

a PCPP process in a deployment region with obstacles. A common feature in both these

figures is the decrease in vacancy with increase in the intensity of nodes in the region.

However, the PCPP process exhibits higher vacancy in the region than a Poisson process

of node placement. Although the coverage radius is fixed in real-time deployment, we

vary it to show the obvious effect on the vacancy. A smaller coverage area of a node

increases the total vacancy.
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Figure 2.6 Expected vacancy in a deployment region of PCPP nodes and Poisson
distributed obstacles with varying coverage.

We also show the results for when the obstacles are small enough and are only

about the size of a node. As obstacle radius increases for a given intensity of a PCPP

process for nodes, the expected vacancy reduces. Figure 2.7 shows the number of clumps

minus voids (m-redundancy) in a region with PCPP nodes and obstacles, where m < k

denotes the redundancy that can be increased to a level k.



Figure 2.7 Expected m-redundancy in node coverage
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Figure 2.8 Expected number of neighbors of a node



Without  stacles
With obstacles
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Figure 2.9 Comparison of vacancy in a WSN of PCPP-distributed nodes with and
without obstacles

As the intensity of nodes increases, the m-redundancy increases in the region.

Finally, Figure 2.8 shows the number of neighbors of a node in a WSN PCPP process of

node distribution. As expected, the number of neighbors increases with the intensity of

the PCPP nodes. The coverage in the presence of obstacles is compared in Figure 2.9. We

assume the obstacles to be 10 times larger in radius than the WSN nodes and we assume

that they are Poisson distributed in the deployment region. We also assume that obstacles

and nodes cannot occupy the same area, hence the expected vacancy with obstacles is

lesser than without obstacles. This is verified in Figure 2.9, where the vacancy with

obstacles is significantly lower than without obstacles. These results draw attention to the
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need for realistic simulation of the placement process of nodes in WSNs by considering

the natural tendency of clustering in a random deployment process and the presence of

obstacles in the deployment region.

2.6 Conclusions

We have given an introduction to coverage properties in clustered networks of wireless

sensor nodes. We looked at coverage in terms of the expected vacancy, m-coverage and

k-coverage, (k < m) where coverage in m-redundancy indicates the coverage that can be

decreased to that achieved by k-redundancy by power management. Having built up the

theory for clustered nodes in a deployment region, we analyze the coverage properties in

a realistic scenario with obstacles in the deployment region. These results started with an

initial guess to the properties of coverage in clustered networks, where clustered

networks have larger vacancy in the deployment region which has been verified by

simulation results. Although this chapter studies clustered networks of wireless sensor

nodes, it can easily be extended to include a structured analytical model for ad hoc

networks of mobile nodes. In general this analysis replaces the often used notion of

coverage in a Poisson deployment of nodes. The next chapter incorporates exploiting the

coverage properties of clustered networks for adaptive density through power

management schemes for WSNs.



CHAPTER 3

POWER MANAGEMENT THROUGH ADAPTIVE DENSITY CONTROL

3.1 Introduction

We study active coverage in naturally clustered wireless sensor networks (WSNs), a term

which we use to define the topology of WSNs arising as a consequence of the random

deployment process as opposed to clustering by choice. We find that the natural

clustering can be used to exploit the inherent redundancy in the topology, which can be

characteristically used for power management in these networks. By employing coverage

processes and optimization theory, we show that any topology of WSN derived from

random deployments can result in maximum coverage for the given node density and

power constraints by satisfying a set of conditions. Although the framework of naturally

clustered networks is not a pre-requisite for the study of coverage optimization and

network lifetime extension, we discuss how it plays a key role in determining network

behavior. We discover a functional relationship between the redundancy, density of

nodes and cluster-heads for active coverage, and the network lifetime. This relationship is

much less pronounced in the absence of natural clustering.

Considerable attention has been given to the issue of density control for power

management in dense randomly deployed WSNs (Machado and Tekinay, 2007),

(Machado and Tekinay, 2008). The motivation for this research area arises from the

redundancy afforded by dense WSNs, where k-redundancy refers to k> 1 sensors sensing

any given point (x, y) in the deployment region at all times. Random deployment

procedures may result in such topologies with k redundancy; however, power
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management and reliability constraints require that we do not need all k sensors sensing

the point (x, y). This has given rise to the notion of n-coverage, where at least n (1 <n<k)

of the k sensors are in the awake mode of operation. This method of scheduling a node to

operate in awake/sleep states contributes to power management by reducing the duration

of idle mode of transceiver operation in a node. Previous studies (Kahn, Katz and Pister,

1999), (Heinzelman, Chandrakasan and Balakrishnan, 2000) and (Asada et. al. 1998)

have shown that the power consumption in the 'awake' state is at least an order of

magnitude greater than that in the sleep state. Within the awake mode of operation, the

idle mode of listening for transmissions from the BS or other nodes consumes as much

energy as the transmit operation. Clustering of nodes (Heinzelman, Chandrakasan and

Balakrishnan, 2000), (Vlajic and Xia, 2006) to reduce transmissions of redundant data is

one approach for power management in WSNs.

There are two general ways in which clustering may be facilitated. The first is clustering

by selection, which is the most common method cited in current literature on clustering in

WSNs. The second way to facilitate clustering is manifested in naturally clustered WSNs,

which lacks attention. However, naturally clustered sensor networks are quite common

due to the uncontrollable deployment in many situations and thus their characteristics can

provide valuable reference for sensor network design. In this chapter, we study density

control for 'naturally clustered' WSNs. As opposed to clustering by selection, we define

naturally clustered networks, where CHs are not chosen from among the nodes. We

assume that CHs are a distinct set of nodes scattered over the region with a smaller

intensity of distribution than that of regular nodes. Thus we assume a 2-tier hierarchy

comprising of 2 distinct sets of nodes: sensor nodes and CHs. The CHs are assumed to be
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robust, less power-constrained and larger (akin to localized processing stations) that are

capable of intensive processing and computation as compared to those of the sensor

nodes. The CHs are also responsible for communicating to other CHs and relaying cluster

data to the BS. The nodes that lie within the communication region of a CH are assumed

to lie within its cluster.

In order to study the impact of natural cluster formation on energy conservation,

we formulate two objectives. The first objective is the minimization of vacancy, where

vacancy in the deployment region is defined as the area which does not lie within the

sensing range of any node. The second is improvement of network lifetime.

Mathematically, it is equivalent to the following question: What should be the densities

of CHs and active nodes to ensure minimum vacancy and extend network lifetime with

given k- redundancy of nodes? Note that, as mentioned earlier in the introduction, k-

redundancy refers to the actual redundancy as a result of deployment, while active

coverage resulting from n- redundancy (n < k) refers to the actual number of nodes that

are in the awake mode sensing a given point.

This chapter addresses the problem of density control for active coverage in

naturally clustered WSNs. Assuming that the deployment region is covered with nodes

and CHs according to Poisson processes with intensity A1 and 22 respectively, where A2

< Ai , we study density control for the following two cases:

1) All-on network, where all the nodes are continuously on, providing k-active coverage

in a network with k- redundancy.

2) Power management, where a node can be in one of two states- on (awake) or off

(sleep), where the off state denotes that the node powering down its sensors and
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actuators, transceivers and computation circuitry. The 'on' state denotes that the state can

be transmit, receive or idle state while also performing sensing for the duration of the

'on' state. This power management models more realistic deployment scenarios for

WSNs to prolong network lifetime.

We analyze both the 'all-on' case and 'power management' cases for various

network configurations resulting from combinations of densities of CHs and nodes in the

deployment region. Specifically, we analyze the following combinations:

1) Dense networks with high density of nodes and CHs

2) Regular density networks with high density of nodes but low density of CHs

3) Sparse networks with low density of nodes and low density of CHs

4) The fourth case of low densities for nodes and high density of CHs is not feasible, and

hence will not be investigated.

The 'all-on' and power management cases are analyzed with respect to meeting

power management and coverage objectives. In the 'all-on' case, the emphasis is on

efficient network design and coverage by choosing the optimum ratio of intensities for

CH and node distributions. In the power management case, the emphasis is on

minimizing vacancy (maximizing coverage) by increasing the density of active coverage

while satisfying network power constraints to enhance network lifetimes over the 'all-on'

case. In this chapter, we make the following contributions: we provide expressions to

optimize coverage in the deployment region. We also analyze the optimization of active

coverage in a k-redundancy WSN with various topologies while ensuring that power

constraints of network operation are satisfied. While the latter case of power management

does provide closed form solutions to the problem of coverage optimization versus
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network lifetime extension, we show with the help of numerical simulations that the

proposed model for network lifetime extension by optimizing active coverage for various

densities of nodes and CHs increases network lifetime while simultaneously achieving

maximum coverage. This work lays the groundwork for analysis of coverage properties

and power control in various topologies of naturally clustered networks and opens

research issues for other topologies of naturally clustered networks.

Related work: One category of related work is the study on network clustering by

selection, which is the most common method cited in current literature on clustering in

WSNs. We now provide a quick overview of literature on clustering in WSNs. For a

detailed section on related work, we refer the reader to Section 1.4 of this dissertation.

Clustering of nodes and selecting a cluster-head (CH) for a cluster of nodes are

techniques for power management that emerged due to the features of data redundancy

arising from the geographical proximity of nodes and k-redundancy in WSNs. The CH is

chosen based on metrics such as highest residual battery energy (Heinzelman,

Chandrakasan and Balakrishnan, 2002), closest to the base station (Shu, Krunz and

Vrushula, 2005) and AMRP (Younis and Fahmy, 2003). This approach of clustering and

CH selection offers the convenience and economy of in-node/in-cluster processing of

data to reduce transmissions of redundant data, power control scalability, and

improvement in network lifetime. We call these clustering approaches as clustering by

selection where clusters are chosen according to some pre-determined criteria.

The rest of the chapter is organized as follows: Section 3.2 presents the coverage

model for various densities of nodes in a WSN. In section 3.3, we develop the analytical

model to obtain the optimum ratio of densities of nodes and CHs to maximize coverage
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in WSNs in an 'all-on' network. We perform this analysis for different topologies offered

by combinations of densities of CHs and nodes. Section 3.4 discusses the power

management constraint that is to be satisfied while performing coverage maximization

for various densities of clustered WSNs. Section 3.5 presents the numerical results of the

proposed power management model. Finally, Section 3.6 concludes the chapter and

presents future research directions.

3.2 	 Coverage Model

A process P is said to be a stationary or homogenous Poisson point process P with

intensity A. if (Hall, 1988):

1) The number of points 	 in any Borel subset S of R is Poisson distributed with mean

211S1 and

2) The numbers of points in any number of disjoint Borel subsets are independent random

variables.

A process is called stationary if and only if the function A is constant almost everywhere.

A Boolean model in k-dimension Euclidean space is just the coverage pattern created by

a Poisson-distributed sequence of random sets. Specifically, let P 1} be a

stationary Poisson process of intensity Ain R, the points	 being indexed in any

systematic order. Let S,, S2 ... be i.i.d. random sets, independent of P. Then,

is a Boolean model, where the Poisson process P is said to drive the Boolean model, and

the shapes S, are said to generate the model. The expected vacancy within a region R

denoted by E(V) [13] is
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(3.2)

where 2 is the intensity of the point process for nodes, 1R11 is the area of the deployment

region, and  S is the expected area of the node coverage. This vacancy denotes the part

of the deployment region that is not covered by any node. In contrast to this moderate

distribution of nodes in the deployment region, some WSN applications may call for

dense networks with higher concentration of nodes resulting in lesser vacancy in the

region. The high intensity of nodes in the deployment region differs from the case of

moderate intensity, in that vacant areas of the region are fewer and smaller. The vacancy

in a 2-D deployment region due to high intensity distribution of nodes with circular

coverage disks is given by [13]

(3.3)

where a is a constant given by

a =	
(3) 

(2r(1.5)) 2
111.5)

In the other case of sparse networks with low intensity distribution of nodes, where the

vacancy in the 2-D deployment region R is almost equal to the area of the region R, the

probability that any two coverage disks will not intersect each other is very high. In such

a scenario, an approximation to the vacancy in a sparse network is given by [13]

(3.4)

where N is the number of nodes in the deployment region, E (1S11) is the area of the

coverage disk of any node S, and 8 denotes the scale parameter as a function of the
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intensity A of distribution of nodes. We will use these results from the theory of

coverage processes for varying densities of nodes in a Boolean model for optimizing the

tradeoff between coverage and network power consumption in the rest of this chapter.

3.3 Coverage Optimization in All-On WSN

In this section, we perform coverage optimization in WSNs of various topologies to

obtain the maximum coverage with given intensities of distribution of nodes and CHs in

the deployment region. The optimization for each topology follows the simple procedure

below:

1) Obtain the objective function f (Ai A2 ) in each of these cases the objective is to

minimize vacancy for the given topology.

2) Obtain the constraint function g (20 Ã2 ). In this section, since we are assuming an 'all-

on' network, the constraint is that all nodes are in the 'on' state.

3) Finally, we perform convex optimization of the vacancy subject to the all-on

constraint. In the mathematical analysis, some of the objective and constraint functions

are non-convex, quadratic and/or conic. We follow the standard procedures outlined in

(Jensen and Bard, 2002) and (Kliemann and Srivastav, 2008) to linearize the optimization

problems. We now present the final results of the optimization.

Dense Networks

Owing to the high density of nodes and CHs, we expect the vacancy in the deployment

region to be low (approximately equal to zero). We perform this optimization subject to

the constraint that area no more than that of the sensing region of a node should be

vacant.
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where h is some constant greater than the number of nodes, EV —Cluster is the vacancy in the

region after deploying the CHs in the deployment region and EV-N0de is the vacancy in

the region after deploying the nodes, and Anode is the area of the circular coverage disk of

a node with radius R 1 . The vacancy due to high density A, of nodes in a 2-dimensional

deployment region is given by (3.3) from Section 3.2. For densities A2 for CHs and

for nodes, the objective function of vacancy in the 2-D deployment region becomes

(3.6)

where n2 and n1 are the number of CHs and nodes, respectively, in the deployment

region. The objective function f 	 A2) is given by

(3.7)

where b= πh/a is a constant subject to the constraint that all nodes are 'on'. Applying

the Lagrange duality theory for the original problem, we take the constraints into account

to formulate the Lagrangian of (3.5). The Lagrangian optimization (Boyd and

Vandenberghe, 2004) is thus

(3.8)

Regular Networks

We call regular networks as WSNs with high density A l of nodes and low density of A2

of CHs in the deployment region. In such a network, we approximate the vacancy in the
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region after deployment of CHs and nodes to be approximately equal to zero. To

determine the vacancy, we use the equations from vacancy for low density of disks for

CHs and high density of nodes from Section 3.2. Thus the objective function f for

vacancy minimization is

(3.9)

The objective and constraint functions for sparse networks are as follows:

(3.10)

Simplifying the constraint function using expressions from inequality theory (Kazarinoff,

1961), we get

(3.11)

for the density of nodes, and,

(3.12)

for the density of CHs. Thus, the ratio of densities for efficient coverage of the

deployment region in WSN applications for regular networks is given by A i /112 .

Sparse Networks

Due to the low density of nodes and CHs, we expect the vacancy in the deployment

region to be high, but no larger than that of the sensing range of a CH to ensure
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connectivity. We perform this optimization subject to the constraint that area no more

than that of the sensing region of a node should be vacant.

(3.13)

where c is some constant equal to the number of CHs, and ACH is the area of the circular

coverage disk of the CH with sensing radius given by R2. Using the equations for sparse

networks from Section 3.2, the objective function for minimizing vacancy is given by

(3.14)

Minimizing f (Ai, A2) subject to g , A2 ) which is the same as those in previous two

sections, we get

(3.15)

This gives us the ratio of densities for the case of all on WSN for maximizing coverage

with given topology of sparse nodes.



3.4 Coverage Optimization in a WSN with Power Management

A key challenge in energy optimization for densely deployed WSNs is selecting the set of

sensors that remain awake for a given cycle. Some of the criteria developed for choosing

the set of active nodes are environment probing (Ye, Zhang, Lu and Zhang, 2003), k-

coverage (Wang et. al. 2003), and connectivity-based participation in multi-hop network

(Estrin and Cerpa, 2004). In an on-demand network, the BS can query the network on

either a random schedule or in response to the changes in the underlying phenomenon

monitored by the WSN. For example, a rapidly changing physical parameter calls for

higher number of 'awake' nodes that can observe and report the change in phenomenon.

In this case, the rate of change of the environmental parameter influences the energy

consumption at nodes, causing a higher number of transmissions from nodes to CHs or to

the sink through other nodes that act as relays. While we do not consider the pattern of

environment variation that triggers queries from the BS, prior work in (Machado and

Tekinay, 2008) develops an energy model which considers reliability of WSN operation

and impact of sensing environment variation and studies their impact on the network

lifetime. However, we use the number of broadcast messages as an indication of network

activity, through which we study the latency and network lifetime performance of the

WSN with and without power management.

Problem Formulation

How do we ensure that the power consumption of the network yr with n nodes does not

exceed a threshold 2, while still minimizing vacancy for different topologies? We

assume that a node j can be in either one of two states: on with a probability p, or off with

53
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a probability 1- pi for an amount of time t. We also assume the power consumption for a

node j in either state is given by w1, where wj-off 0 wj-on , i.e. power consumption in off

state is much less than that in on state and pi denotes the probability of node j being in

either on state and 1- pi denotes probability of node being in off state.

To proceed with the formulation of the power constraint yr , we define the power

consumption yr as the sum of the power consumption of very node j in the on/ off state.

The state of very node in the network is represented by X, where for all j= 1; 2,...N , the

states of any two nodes A and B are mutually independent of each other. We assume this

for simplicity of calculation, since in practice the decision to switch a node to the on/off

state depends on various factors such as the amount of coverage desired for the

application, residual battery energy and the reliability constraints. Since the states Xj

alternate between one of two states (on/ off), the power constraint yr can be formulated

as a binomial random variable with mean ;1 = np and variance o.2 = np(1 - p). Hence,

(3.16)

Since the power consumption of the network should satisfy the constraint of being < 2 ,

we need to find the probability of

which is equivalently given by

(3.17)

Since for some t,

(3.18)

(3.19)
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(3.20)

where wj is the power consumption of node j.

(3.21)

With further simplification, we get,

(3.22)

(3.23)

(3.24)

Hence,

(3.25)

Thus, the complement of the power constraint becomes

(3.26)

Substituting (25) into (26), we get

(3.27)
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(3.28)

(3.29)

The RHS of (3.26) becomes

(3.30)

Neglecting the power consumption of nodes in the 'off' state since it is very small as

compared to that in the 'on' state, the operand of the summation in the denominator of

the RHS is dominated by the power consumption of nodes in the on state. Denoting

won as the power consumption in the on state, and λ p as density of nodes in the 'on' state,

the RHS can now be re-written as

(3.31)

(3.32)

Using slack variables as in [28] to convert (26) to canonical form, we get,

(3.33)

which can be written as

(3.34)



Equation (3.17) can further be written as

(3.35)

which gives us the power constraint for the power management problem for clustered

WSNs.

We now summarize the coverage maximization vs. power management problem

for various densities of nodes and CHs. Unlike the case for an all-on network, we cannot

provide straightforward closed form equations for the ratios of densities of CHs to that of

the nodes in the on state. This is due to the difficulty of obtaining a closed form solution

for the problem of minimizing vacancy to that of maximizing network lifetime. In the

next section, we provide numerical results for Monte Carlo simulation of the WSN with

the constraints discussed in Section 2 and equation (3.35). In each case, we minimize

vacancy subject to the power constraint in (3.35).

• Dense WSNs: From Section 3, the vacancy in a dense network of nodes and CHs

given by (3.7) is optimized w.r.t. (3.35), i.e.,

(3.37)

• Sparse WSNs: From Section 3, the vacancy in a sparse network of nodes and

CHs given by (3.15) is optimized w.r.t. (3.35), i.e.,

(3.38)
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• Regular density WSNs: From Section 3, the vacancy in a regular network of

nodes and CHs given by (3.10) is optimized w.r.t. (3.35)

(3.39)

Moderate density WSNs: From Section 3, the vacancy in a moderate network of

nodes and CHs is given by (3.2) and optimized w.r.t to (3.35)

(3.40)

3.5 Results

First we present network performance results after density optimization in clustered

networks without power management. Figure 3.1 shows the network lifetime in a WSN

of randomly deployed nodes without taking into account of the clustering phenomenon.

Defining network lifetime as the time until the first node runs out of battery energy, we

obtain results for network lifetime with varying levels of network activity. We see that as

the network activity ( number of BC messages) increases, the network lifetime decreases

due to the increased radio power consumption at nodes. The network lifetime also

significantly decreases with the increase in the network size. For network size of up to

100 nodes, with fourfold increase in network activity ( i.e. BC messages=10 vs. BC

messages equal to 40), the network lifetime decreases almost four times as much. For

network sizes greater than 150 nodes, as network activity increases, the network lifetime

rapidly tends to zero.



Figure 3.1 Network lifetime in a random deployment.

Figures 3.2 and 3.3 show a comparison of network lifetime simulation results for

network performance obtained by density optimization versus those in random networks

for the case of a mostly 'on' network, where the networks do not perform any power

management through energy-saving modes of operation. In our model, nodes relay their

data to the nearest CH, which then performs data processing and aggregation, and

forwards it to the nearest CH. With clustering, the end-users of the data can benefit by

reducing the amount of data-processing to obtain relevant information at the BS. Figure

3.2 shows the results of network lifetime in random and density optimized networks. For

all levels of network activity, we see that density optimization results in higher lifetime

than random networks.
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Figure 3.2 Network lifetime in a clustered WSN without power management,
BC=1 O.

The improvement in network lifetime is significant for lower network activity

(number of BC messages =10). For increased network activity (BC=30), the

improvement in network lifetime is less significant. Within density optimized networks,

we see that for low network activity, dense networks have higher network lifetime than

sparse networks and networks with high density of nodes and low density of CHs. This is

because for low network activity, network lifetime is greatly dependent on the node's

radio consumption and microprocessor power consumption is much smaller than the node

radio consumption.
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Figure 3.3 Network lifetime in a clustered WSN without power management,
BC=3 0 .

For higher activity, sparse networks have larger inter-node distances, while

networks with high density of nodes and low density of CHs have larger cluster sizes.

The large inter-node distances in sparse networks prevent communication between nodes,

and hence resulting in higher network lifetime. Dense networks have the lowest network

lifetime for high network activity since the increased number of clusters and higher

activity cause faster depletion due to the radio and microprocessor activity. The best case

to satisfy coverage and connectivity is a high density of nodes and low density of CHs,

since it results in a small number of clusters that dense networks and provides the same

level of coverage and connectivity.

Figures 3.4 and 3.5 presents results for the time until the last node runs out of

battery energy. Similar to the network lifetime results (Figures 3.2 and 3.3), density

optimization increases the time until the last node runs out of battery energy for all levels

of network activity. Within density optimization, sparse networks still have the longest
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	Without density optimization

	  High node density, low CH density
0 	 Low node density, low CH density

 High node density, high CH density

Number of nodes in the network

Figure 3.4 Last node lifetime in a clustered WSN without power management, BC=10.

Number of nodes in the network

Figure 3.5 Last node lifetime in a clustered WSN without power management, BC=30.

time until the last node runs out of battery energy. However, this scenario is not feasible

due to the reduced coverage and connectivity in the WSN. Dense networks and regular

density networks both have comparable time until the last node runs out of battery energy
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due to high network activity, with the latter case exhibiting slightly higher network

lifetime due to reduction in number of clusters.

Next, we present network performance results after density optimization in

clustered networks with power management. In this section we present results for the

case where power management is implemented in the network such that nodes can be in

one of two states: 'on' or 'off. We use the following simulation parameters for obtaining

the expected battery lifetime of sensor nodes and CHs and their impact on network

lifetime and latency. These specifications are obtained from the product specifications for

the MICAZ 2.4 GHz, IEEE/ZigBee 802.15.4 wireless modules for low power wireless

sensor networks. Model 1 refers to the state where nodes are in the 'on' state all the time

(continuously sensing and data gathering and transmission), whereas Model 2 refers to

the case where nodes stay in the 'on' state according to some duty cycle. We present

simulation results for different probability p that a node is in the 'on' state. The

optimization here is performed for the highest network activity (number of BC messages

= 40) with respect to minimizing the vacancy for each scenario of node and CH densities,

and subject to the power constraint imposed by the given value ofp.

Figures 3.6 and 3.7 present comparison of network lifetime between random and

density optimized networks for different values of p. Similar to WSNs without power

management, sparse networks exhibited the highest network lifetime due to the minimum

number of node connections as compared to other networks. With the increase in p from

0.2 to 0.7, the network lifetime reduces due to increased activity of nodes in the 'on'

state. Dense networks had the lowest network lifetime due to the increased cluster

maintenance and intra- and inter-cluster activity.
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Networks with dense nodes and low density of CHs reported highest network

lifetime with power management. A comparison between Figures 3.3 and 3.7 show that

power management results in higher network lifetime for WSNs. Table 3.1 shows the

simulation parameters used in calculation of network lifetime for the two models (all-on

network and power-management network) using the IEEE 802.15.4/ZigBee model.

Table 3.1 Simulation parameters for battery life in clustered WSNs

Currents 	 Duty Cycles

	

Value Units 	 Model 1 	 Model 2 Units
Micro Processor (Atmega128L)
Current (full operation) 	 6 	 Ma 	 100 	 0.5 	 %
Current sleep 	 8 	 Ua 	 0 	 99.5 	 %
Radio
Current in receive 	 8 	 Ma 	 75 	 0.4 	 %
Current xmit 	 12 	 Ma 	 25 	 0.1	 %
Current sleep 	 2 	 Ua 	 0 	 99.5 	 %
Logger
Write 	 15 	 Ma 	 20 	 0 	 %
Read 	 4 Ma 	 20 	 0 	 %
Sleep 	 2 	 Ua 	 60 	 100 	 %
Sensor Board
Current (full operation) 	 5 	 Ma 	 99 	 0.5 	 %
Current sleep 	 5 	 Ua 	 1 	 99.5 	 %
Battery Specifcations
Capacity Loss/Yr 	 3 	 %

Computed mA-hr used each hour 	 Model 1 	 Model 2
uP 	 0.06 	 0.0380
Radio 	 0.09 	 0.0460
Flash Memory 	 0.003 	 0.0020
Sensor Board 	 0.0550 	 0.0300
Total current(ma-hr) used 	 0.2375 	 0.1159

Source: http://www.xbow.com/Products/productdetails.aspx?sid=164,  accessed March 12, 2009.



Figure 3.6 Network lifetime in a clustered WSN with power management for
p=0.2.
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Figure 3.7 Network lifetime in a clustered WSN with power management for
p=0.7.

Figures 3.8 and 3.9 compare the time until the last has run out of battery energy

for random and density optimized networks for different values of p. With increase in p,
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the time until the last node runs out of battery energy drops due to the increased battery

exhaustion in the 'on' state.

	Moderate density of nodes and CHs

	 High node density, high CH density
0 	 High node density, low CH density

Low node density, low CH density

Figure 3.8 Last node lifetime in a clustered WSN with power management for
/3=0.2.

Figure 3.9 Last node lifetime in a clustered WSN with power management for
p=0.7.
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Similar to the network lifetime results (Figures 3.6 and 3.7), sparse networks have

the longest time until the last node runs out of battery energy. Dense networks have the

highest network lifetime with the exception of sparse networks, closely followed by

networks with high density of nodes and low density of CHs.

3.6 Conclusions

In this chapter, we have used the concepts of coverage processes and optimization theory

to explore coverage in various topologies of naturally clustered WSNs. We show that in

naturally clustered WSNs, where cluster formation and CH selection are a consequence

of random deployment procedures. While the definition of naturally clustered networks

encompasses many different topologies, we focus on the topologies generated by various

combinations of densities of nodes and CHs. In each case, we provide expressions to

optimize coverage in the deployment region. We also analyze the optimization of active

coverage in a k-redundancy WSN with various topologies while ensuring that power

constraints of network operation are satisfied. While the latter case of power management

does provide closed form solutions to the problem of coverage optimization versus

network lifetime extension, we show with the help of numerical simulations that the

proposed model for network lifetime extension by optimizing active coverage for various

densities of nodes and CHs increases network lifetime while simultaneously achieving

maximum coverage. This work lays the groundwork for analysis of coverage properties

and power control in various topologies of naturally clustered networks and opens

research issues for other topologies of naturally clustered networks. Our future work in

this area will be analyzing the network lifetime for dense WSNs, where the definition of

network lifetime provides a more accurate representation of the residual sensing and
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communication capacity, as opposed to the conventional definition of network lifetime

which uses the time until the first node runs out of battery energy. In the next chapter, we

analyze the queuing properties of clustered networks that address the issues of edge

effects and starvation in WSN operation.



CHAPTER 4

CONNECTIVITY AND QUEUING IN CLUSTERED WSNs

This chapter concerns the study of connectivity from nodes to CHs and the impact of

edge effects on admission control at CHs. In the first section, we investigate the amount

of randomness in establishing a link from any node in the network to a CH. We present

tight bounds on this randomness for different scenarios of network density. The

knowledge of the entropy to establish connectivity is crucial in determining the

connectivity graph of dynamic networks. The bounds presented verify the impact of

cluster density on routing in WSNs. In the next section, we study the impact of edge

effects on admission control at CHs. We formulate the directed ignoring model and

evaluate the performance of a clustered network. We show that the directed ignoring

model improves system performance by optimizing the tradeoff between packet loss and

waiting time in large networks.

The rest of this chapter is organized as follows: Section 4.1 studies the entropy E,

to establish connectivity from a node to a CH in the WSN. describes related work in

admission control and queuing policies in wireless networks. Section 4.1.1 presents

bounds on E, for various scenarios of clustered networks. In Section 4.2, we present the

background for queuing analysis in wireless networks. Section 4.3 describes related work

in queuing admission control. Section 4.4 presents the directed ignoring model for heavy

traffic in clustered networks. As in previous chapter, we perform this analysis for varying

topologies (dense/ sparse/moderate) of WSNs. Finally, Section 4.5 presents the numerical

results to evaluate the performance of the proposed directed ignoring model.

69
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4.1 Connectivity in Clusters

In this section, we study the following problem: What is the entropy of establishing

connectivity E, to a CH from any node in the WSN? Nodes can connect to a CH through

multiple nodes that act as relays. Intuitively, the sparser the distribution of CHs in the

WSN, the larger will be the cluster sizes of individual CHs. We provide an analytical

framework for deriving the dependence between E, and the distributions of CHs and

nodes in the deployment region. Since the stochasticity of the wireless channel plays an

important role alongside node locations in determining the connectivity graph of the

network, we model the wireless channel with randomness introduced by a lognormal

shadow fading environment. This implies that a link between two nodes u and v separated

by a Euclidean distance s(u,v) = d1 exists only if the signal attenuation between the

nodes does not exceed the threshold attenuation ratio for communication between the

nodes. Knowing the Euclidean distance between the nodes u and v, we denote the

probability of forming a link between the nodes by P (A (u, v) I s(u,v)). In a shadow

fading environment, the expression for P (A (u, s (u, v)) is given by (Bettstetter and

Hartmann, 2005)

where, a is the path loss exponent due to the deterministic geometric component of

attenuation in a shadow fading environment. a denotes the standard deviation of the

stochastic component chosen from a normal probability density function of attenuation.
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r0  is the normalization term denoting the maximum distance granting a link in the

absence of shadow fading. For threshold attenuation β , r0 is given by

We model the links between nodes and the base station as a connected random graph,

where the nodes and the CHs comprise the vertices of the random graph, and the links

between nodes comprise the edges of the random graph (Figure 4.1). This is shown in

Figure 4.1, where the numbered circles denote the coverage area of the wireless sensor

nodes, while the circles labeled CH denote coverage area of CHs in the WSN. The links

between nodes represent the connectivity between nodes and CHs and the number of

nodes attached to a CH comprise the cluster size. We assume that a node can be either in

'sleep' or 'awake' states. In the sleep state, a node's transceivers are turned off and hence

cannot form links with any other nodes. In the awake state, a node can actively form links

with other nodes and can belong to multiple clusters by even forming links with nodes

that lie beyond the distance d1 that allows nodes to communicate in the presence of

attenuation due to fading. This is because lognormal shadow fading environment allows

nodes to create longer links by taking away shorter links in the vicinity of the node. The

subsequent random graph then looks like Figure 4.2. Figure 4.2 shows the connectivity

graph with power management for sleep-mode scheduling. The nodes labeled with

subscript denote nodes in sleep state. Links to and from these nodes are shown by dashed

arrows. The dotted arrows represent the links between nodes and CHs due to lognormal

fading. The random graph from Figure 4.1 is transformed as Figure 4.2.



Figure 4.1 Connectivity of all-on WSN
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Figure 4.2 Connectivity graph of WSN with sleep scheduling for power
management

Next, we model the entropy to establish connectivity as a random sequence of

vertices that a node i traverses as it proceeds to establish connectivity with the base

station. The probability of choosing another node j as the next hop node is proportional to

the weight of the edge linking nodes i and j and is given by Pij . The weight of an edge is

given by the probability of forming a link between the nodes i and j subject to the shadow
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fading environment. Pi,/ can be expressed as the ratio of the weight of edge Wu between

nodes i and j, to the total weights of all edges W emanating from node i. Thus Pij is given

by

Additionally, since nodes are assumed to be randomly assigned the 'sleep' or 'awake'

states and since a node in the sleep state cannot form links with other nodes, the weight of

an edge linking node i to another node j in the sleep state is taken to be zero. We also

assume that node i knows the number of neighbors it has, by counting the number of

links it can form. The node j with the highest edge weight (lowest signal attenuation) is

chosen as the next hop node for node i. The sequence of nodes that a node i uses to reach

the base station is modeled as the sequence of random states {S, , where the maximum

value of n is given by the number of nodes in the network. The sequence of states can be

expressed as

(4.4)

S1 = Pr (Randomly choosing any node in the cluster as the starting vertex)

(4.5)

Thus the entropy to establish connectivity E, is the entropy of the random sequence of

states { S, } and is given by,

(4.6)



74

(4.7)

where, (40) is due to the chain rule of entropies, (41) is due to property of Markov chains

and (42) is obtained from (39). Let 1 be the number of edges emanating from node i, i.e

the probability of forming a link to / other nodes exists. Thus, the second term of the

expression can be expressed as,

EH(Wij|Wi)=  (probability of forming a link from node i to jth node)/ sum of
1=2

probabilities of forming a link from node i to all / nodes.

where 1 is the number of awake neighbor links that a node has in presence of shadow

fading environment. The entropy of starting the graph at any node is given by

(4.8)

where n = number of nodes in the cluster. To obtain the second term of the expression for

E, , we note that P (A (u, v)|s (u, v)) is given by (4.) and W is obtained as the sum of the

probabilities P (A (u, v) I s (u, v)) on all links emanating from node i.

4.2 Bounds on E,

In this section, we provide upper and lower bounds on Ec and show its dependence on the

intensity of CH distribution as well as on the probability of connectivity between nodes,

P (A (u, v) I s (u, v)). To study this, we consider the clustered WSN model of two types of

nodes: a homogeneous set of wireless sensor nodes that perform sensing and another

homogeneous set of CHs, where each CH aggregates data from the nodes belonging to its

cluster. The deployment region is assumed to be a 2-dimensional Euclidean space of area
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A in which for simplicity of calculation, the wireless sensor nodes are distributed as a

Boolean model formed by a Poisson-distributed sequence of random sets. These random

sets are the disk-shaped circles of coverage of individual nodes with radius r. The

coverage circles are assumed to form a stationary Poisson process of intensity A l . We

define another similar stationary Poisson process of intensity /12 for the CHs. If the WSN

is designed for operation such that all wireless sensor nodes as well as CHs are awake at

all times, the probabilistic nature of a node being in the 'awake' or 'sleep' states is

eliminated. The sequence of states {S,} thus depends only on the probability of forming

links between nodes, i.e. when the signal attenuation stays below the threshold required

for communication. The upper bound on the entropy Ec-maxis obtained when all the

nodes are awake and every node i maintains links to all its neighbors who lie within the

one-hop communication range (Fig. la). Additionally, the assumption of the log-normal

distribution allows for forming links with nodes located greater than distance di away

from a node i. The sequence of states {S, } can then be modeled by a random walk on a

connected graph with a stationary Markov chain, and its entropy E c-max is given by

(4.9)

where ,u, is the stationary distribution of the Markov chain. The lower bound on the

entropy Ec-min can be similarly obtained. When the attenuation due to fading results in

zero probability of connectivity for any node pair, the graph formed by the wireless

sensor nodes and CHs does not contain any edges. Thus the lower bound Ec-min is just the
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entropy of choosing any given node as the starting vertex to analyze the entropy of

connectivity to the CH.

(4.10)

While the above analysis holds for a given intensity A2 of distribution of CHs, we

can also present bounds on k for varying levels of CH distribution. The bounds in this

case are readily obtained. If the intensity of distribution of CHs , is increased to be

equal to the intensity Al of wireless sensor nodes while keeping the area of the

deployment region constant, the distribution of CHs relative to that of the nodes becomes

a high -intensity distribution and the expected number of nodes per cluster is one. In this

case the entropy of the sequence of states, assuming connectivity between nodes and

CHs, is just the entropy of choosing one out of n nodes in the WSN and provides the

lower bound on entropy for equal distributions of CHs and wireless sensor nodes. Thus,

(4.11)

Similarly, when the distribution of CHs is much less than that of nodes, the expected

cluster size per CH increases. The largest cluster size is obtained when the intensity of

distribution equals zero. This results in a WSN with only one CH for all n = kA/ AS

wireless nodes, and the entropy k is the highest. Thus the upper bound on E, , assuming

connectivity among nodes and CHs is given by

(4.12)
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4.3 Queuing Analysis in Clustered WSNs

This section concerns the problem of edge effects and the resulting starvation in queuing

access in clustered WSNs. The problem of edge effects and starvation has been studies in

terms of the unfairness in channel access in the IEEE 802.11 MAC protocol (Durvy,

Dousse and Thiran, 2008). This problem arises due to the topology of large wireless

networks, where nodes at the borders of the network get increased access to the channel

due to lesser interference than nodes in the center of the network. This results in

edge/border effects, where the nodes in the center of the network are starved off channel

access due to increased interference from more neighbors. However, the problem of edge

effects is not confined to channel access alone. The topology of the network and the

routing algorithm can also result in edge effects in queuing of data at the central base

station to which all the network data is routed. This problem is more relevant in clustered

topologies, where clusters of nodes route their data to respective CHs.

Clustered WSNs are miniatures of the order of the whole scale of dense WSNs.

Instead of reporting the sensed data to a central base station, individual nodes report the

sensed data to local processing stations like cluster-heads (CHs) which are assumed to be

more robust, computationally intensive and less power constrained than individual nodes.

The problems of edge effects and starvation in channel access, commonly studied in large

WSNs, are also present in clustered networks, due to the same reasons of increased

interference at the center of the cluster. The density of clusters in the networks leads to

the propagation of edge effects from every cluster, impacting the entire WSN throughput.

We study edge effects in admission control and queuing in clustered networks and

present the motivation for this study in this section.
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We continue with the assumption of naturally clustered WSNs, where the deployment

process of CHs and nodes results in cluster formation. We assume disk model of

coverage for both CHs and nodes, where RCH and Rnode•

In clustered WSNs, the density of CHs dictate the size of a cluster, and nodes at

the edge of a cluster can 'belong' to more than one cluster. In clustered networks, with

given densities of nodes and CHs, the cluster size affects the distance of a border node

from its CH. A dense network with high density of nodes and CHs has a smaller d-hop

distance between a border node and a CH than in a network with low density of CHs and

high density of nodes. In the latter case, a larger average cluster size results in higher

value of the d-hop distance between a border node and CH.

An illustration of the edge effect in shown in Figure 4.3. The nodes at the edge of

a cluster A lying at a k-hop distance from CH A, may also lie at the intersection of

perimeters of clusters A and B, and be at some d-hop distance from CH B. In the event

of data routing, nodes in the center of a cluster have access to only one CH, where nodes

at the edge of a cluster can have access to more that one CH. We call the nodes at the

center of the cluster as 'core' nodes, compared to the nodes at the edge of a cluster which

we denote as 'border' nodes. In Figure 4.3, nodes b, c, d and g are the core nodes, while

nodes f h, a and k are the border nodes.
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Figure 4.3 Illustration of the edge effect in clustered WSNs. Node a at the perimeters of
clusters A and B can choose to route its data in 4 hops to CH A (a-b-c-d-CH A) or in 2

hops to CH B (a-e-CH B).

The data from border nodes may end up being processed multiple times in the data

aggregation algorithms being carried out at the CH, thus affecting the reliability of the

information obtained from data processing in the cluster.

One way to address this problem is through strict cluster formation strategies,

where nodes are assigned to a cluster for the duration of the network lifetime. In the

scenario of Figure 4.3, this ensures that nodes of cluster A report only to CH A. However,

in the event of device failure or battery failure at CH A, we need to run centralized

algorithms to redesign the cluster strategy for load balancing throughout the network. The

large scale of WSN operation and the data intensive operations carried out at CHs also
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impacts the queuing at CHs. Heavy traffic, characterized by a traffic intensity almost

close to unity resulting in system capacity occupying almost all available bandwidth is a

significant consequence of both on-demand and continuous sensing operation scenarios

in WSNs. In this dissertation, we address the problem of queuing at the CH for data

arriving from two types of nodes, core nodes and border nodes in the presence of heavy

traffic through the network. We use a diffusion-based model for obtaining the expected

queue length in a heavy traffic scenario and evaluate the performance of a optimal control

problem to improve the throughput of clustered WSNs.

We formulate our heavy traffic model for queuing analysis in a clustered WSN as

follows: We characterize a cluster as having two types of nodes: core nodes and border

nodes. These nodes are expected to share the same CH for data processing; however

border nodes may resort to choosing a different CH to send their data based on

knowledge of hop-distance to nearest CHs. In order to avoid potential redundancy

information processing from border nodes in multiple clusters, we consider an admission

control scheme for the border and core nodes. The core nodes are characterized by best-

effort (BE) admission policy, similar to the model adopted in the Internet. The border

nodes are characterized by a guaranteed-performance (GP) admission control policy. We

call this model as the 'directed ignoring' model, where redundant messages from border

nodes are ignored in the admission control policy. Here, we realize that although the aim

is to eliminate/ reduce redundant processing of data from border nodes with minimum

control overhead, a stringent control policy can result in a larger number of GP packets

from border nodes being dropped. The goal therefore is to minimize the loss of GP

packets from border nodes while reducing the waiting time for BE packets from the core
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nodes. Since the nodes in a cluster are located in geographical proximity, the potential

loss of GP packets from border nodes due to the admission control policy does not

greatly impact the information obtained from data processing in dense WSNs. Thus, the

proposed directed ignoring model can provide a convenient approach for admission

control to reduce edge effects in clustered WSNs.

4.4 Related Work in Queuing in Wireless Networks

The problem of scheduling in networks has been widely studied in the context of queuing

and scheduling (Bharghavan, Lu and Nandagopal, 1999). One of the earliest works in

analysis of scheduling in queues is (Tassiulas and Ephremides, 1992), where the authors

study the problem of scheduling N parallel queues to be served by a single server. At any

given time slot, the connectivity between queues and the server depends on the value of a

connectivity variable which can be 0 or 1. The allocation of a queue to the server depends

on this connectivity variable and the queue length. The authors propose an allocation

policy for stability (finite queue length) based on parameters such as buffer length, arrival

and service policies and connectivity. They obtain the necessary and sufficient conditions

for stabilizability and show that the allocation policy that serves the longest queue

stabilizes the system when stabilizability conditions hold.

In (Wu, Srikant and Perkins, 2007), the authors study the efficiency of greedy

scheduling policies for link scheduling in wireless networks. They study the category of

greedy algorithms, where a node attempts to independently schedule transmission on a

link. If it finds the link busy, it randomly picks another link. This process continues until

all attempts have failed or a link is found free. They obtain bounds on the efficiency of
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distributed scheduling policies for the greedy scheduling algorithm for the case of traffic

passing in one-hop networks and then extend their analysis to that of data traversal in

multi-hop networks.

In (Lin and Rasool, 2006), the authors study a distributed link scheduling problem

for obtaining the set of active links that are free of mutual interference and yet achieves a

large capacity region. As opposed to most distributed scheduling algorithms where the

time taken to compute a schedule increases with the network size, the authors propose a

constant-time policy that requires only one round of computation and achieves

comparable data rates as other non constant-time scheduling policies.

Other scheduling policies for distributed wireless networks have been

discussed in (Joo, 2008), (Joo and Shroff, 2007) and (Sanghavi, Bui and Srikant, 2007)

with the emphasis on parameters such as reduction of control overhead, scalability,

throughput and computation time. Our work focuses on the queuing admission control

policy at the CH to reduce edge effects in clustered WSNs. The next section presents the

directed ignoring model and key assumptions.

4.5 Directed Ignoring Model

The paradigm of directed ignoring is derived from analogous processes in human

cognition (Cavanagh, 2004), where the human cognitive system selectively ignores data

gathered from the sensory system while processing information. This is similar to

filtering out noise except that in the case of directed ignoring, the filtered information is

not noise, but relevant data that is not considered while making a decision. Such activity

gives tacit support to the underlying cognitive system to make informed decisions based
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on a subset of total available data. We use this paradigm to design the directed ignoring

model for clustered WSNs, where a CH selectively ignores data from the border nodes

and always processes data from the core nodes. Since the border nodes are capable of

routing their data to multiple CHs, selectively ignoring their data only minimally affects

the reliability of data gathered from the cluster. We further assume that the border nodes

are characterized as guaranteed performance (GP) nodes, where every node is guaranteed

a fixed bandwidth for the duration of this session. We also assume that the remaining BW

is available to share by BE nodes, however there is an upper limit to the BW that can be

shared. This assumption of an upper limit on the BW accounts for the loss in usable BW

to control overhead, noise and channel randomness. The random number of border nodes

that access the processing services of a given CH affects the BW available for core nodes.

The fraction of nodes in a cluster at any given time slot that are communicating with the

CH depends on the number of active nodes allowed by the power management

algorithms and the interference model. In our work, we use the node exclusive model,

where a node cannot simultaneously transmit or receive, and cannot communicate with

two or more nodes in the cluster. We use the adaptive density control algorithms from

Chapter 3 to obtain the subset of active nodes. Thus in any given scenario of

dense/sparse/moderate networks, the number of packets from core/border nodes is a

fraction of the cluster size.

We use controlled reflected stochastic diffusion approximation to study the

performance of the clustered WSN with border nodes and core nodes in the presence of

heavy traffic. The assumption of heavy traffic creates a system that is built to handle the

processing demands resulting from response to queries for data from the BS. However,
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the heavy traffic assumption results in systems that are not always Markovian. Even if the

system can be resolved into a set of Markovian states, the number of states is large to be

modeled. The reflected diffusion approximation makes use of the central limit theorem

for large numbers and allows for the formulation of state equations that are linear. These

linear state equations and limit equations enable the development of algorithms for

admission control in queuing with the help of cost functions that optimize the various

processes that compose the state and limit equations. Specifically, in our case, as we shall

show, the state and limit equations comprise of the following:

1. Wiener processes for arrival and service processes for packets from border and

core nodes at the CH

2. Initial conditions of the network, i.e. number of packets initially queued at the CH

from BE and GP nodes.

3. Number of packets from border (GP) nodes not admitted by time t, and number of

packets from core (BE) nodes denied admission due to the bandwidth limitations.

The goal is to estimate the number of packets x (t) in the queue at the CH at some real

time k. We give some background in the heavy traffic estimation for a simple M/M/1

queue before developing the directed-ignoring models for two types of packets in a

clustered WSN. For a M/M/1 queue, the reflected diffusion process to estimate the

number of packets x (t) in the queue at the limits of heavy traffic can be written as

(4.13)

where, x (0) = number of packets at time k= 0 (initial condition) of the queue, wa 0 and

wd 0 are mutually independent Wiener processes for the arrival and service processes
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2" and 2 respectively. The terms wa 0 and w d 0 represent the asymptotic effects of

the randomness in the arrival and service processes. The term z (t) is called the reflection

term which considers the fact that there might not always be customers in the queue.

z (t) can only increase when x (t) is zero or is scaled by the limit of large time defined

by the central limit theorem, where k = nt and t represents scaled time. Thus the

reflection term z (t) , which is non-decreasing and continuous keeps the other terms from

driving x (t) negative. The parameter b represents the scaled and asymptotic difference

between input and service arrival rates.

We now present the development for the directed ignoring model for clustered WSNs.

We use the subscripts b and g to denote BE and GP packets. The bandwidth is

normalized so that each GP packet gets one unit of bandwidth. We assume the arrival

process for packets of the BE and GP users are Poisson, so the variance of the wa 0 and

wd 0 processes are o =1 and σ²d = 1 . The service times for the packets of GP nodes

are assumed to be mutually independent, exponentially distributed with rate λ-d. We

assume that GP packets denied by the admission control algorithm at the CH disappear

from the system. To satisfy with the assumption of heavy traffic, the basic system

variables are scaled by 1√n , where n is the order of the mean number of GP packets and

the arrival rates of GP and BE packets. Let Fig' (t) denote times the number of GP

packets not admitted by time t. Let Ub (t) denote 1/n times the number of BE packets

that are rejected by time t, because on their arrival there were nBb  users already in the

system, where we suppose that there is a Bb <00 such that the maximum number of BE

_A
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packets in the system at any time is nBb  . Suppose that B (t) is the total bandwidth

unused by the GP packets in time t, and there are N (t) > 0 BE packets in the system. We

assume that the maximum bandwidth that any individual BE packet can use is C b . Define

4(0 to be the number of BE packets in the system at time t minus the scaled deviation

that is centered around a mean value due to the restriction on the bandwidth usage.

(4.14)

-d
where, .1,g is the exponentially distributed rate of service times for GP packets.

However, the service time for the BE packets depend on the history of available

bandwidth during their stay in the system. The conditional probability that any particular

BE packet will depart the system in the interval [t, t + 8) is

(4.15)

We set the scaled number of GP users to be equal to x ng (t) , where

(4.16)

Thus xng (t) is the scaled number of GP packets, centered about the mean that would hold

if there were no rejections and an infinite channel capacity. For the heavy traffic

condition, suppose that there is a constant b such that the channel capacity is defined by

(4.17)
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The term n -a/λg-d accounts for the mean GP packets usage. Rewriting the limit

equation (4.1) for the case of a clustered WSN with GP and BE users, we get for the BE

(4.18)

(x) = min {b — xg , Cb xb 	(4.19)

and the integral term arises due to the Doob-Meyer decomposition of the sub-martingale

of the departure process wb d 0 into a martingale and a continuous increasing function for

either class of packets (GP or BE). A detailed development is presented in (Kushner,

2001).

Similarly, the limit equation for the expected queue length of the GP packets at the CH is

given by

(4.20)

Thus we see from (4.18) and (4.20) that the GP traffic affects the performance of BE

packets at the CH.

Next we formulate a discounted cost function with controls c, for admission control that

obtains the number of lost GP packets in the queue. Let /3 > 0 , where /3 can be any small

number. Let 4.) be a non negative continuous function with k (0) = 0 . The discounted

cost function is defined by

(4.21)
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where i denotes the two classes of packets from the BE and GP nodes. The second term

penalizes the rejections. The loss U; is not penalized, since it tends to zero in the limit as

n —> oo , irrespective of the controls. If k0 is linear, then it penalizes the waiting time for

packets from BE nodes. Thus the allowed generality of the cost function enables

flexibility in the design of controls for various classes of nodes in more realistic

scenarios.

Since n depends on the density of CHs and nodes in the network scenario

(dense/sparse/moderate), the first step in the modeling of the clustered WSN with cost

controls is to obtain the value of n in various clustering scenarios. We use the theory of

intersecting sets from Chapter 2 to obtain the number of border and core nodes in each

scenario and summarize the results here for convenience.

• Dense networks

where, 11/2 denotes the area of the 2-D deployment region, 11S112 = Anode denotes the disk

model of coverage area of a node with radius Rnode and ACH denotes the disk model of

coverage area of a CH with radius RCH  . The intensity of nodes and CHs is given by λnode

and λCH  respectively. The constants a and b for a 2-D deployment region are given by



• Moderate networks

In the next section, we present the simulation model and results for queuing control in

WSNsS. We show that a simple linear queuing control results in considerable savings in

global performance with minimum rejection of packets from GP nodes.

4.6 Simulation Results

We evaluate the performance of the directed ignoring model for queuing admission

control in clustered WSNs. We compare their performance under the lognormal

shadowing model for dense, sparse and moderate intensities of clustered networks. We

assume the traffic intensity is generated according to a Poisson process, and the ratio of

arrival and service rates is close to unity (in our case, 0.98). Any packet that is rejected at

the CH due to the queuing admission control of the directed ignoring model is considered

to disappear from the system. We use the IEEE 802.15.4 ZigBee power model of the

MICAZ mote for the sensor nodes. We use a network graph generated in a circular

deployment region with radius 1000 m by randomly placing nodes and CHs according to

varying levels of intensity. This generates the different scenarios for dense, sparse and

89
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moderate networks. Two nodes are considered by a link if they are within distance of 2

meters. We assume that the nodes are 'on' with a probability of 0.7; this changes the

connectivity graph dynamically at both the cluster- and network-level. Each link has unit

capacity, i.e. it can transmit one packet of data when active. We assume that the slotted

time transmission. We use a linear cost function C1 (t) = cxb (t) + Fb (t) + 5Fg (t) for the

simulation of the directed ignoring model. cxb (t) penalizes the waiting time for BE

packets from core nodes. Fb (t) 5Fg (t) penalizes the rejections of the GP packets from

border nodes. We compute the fraction of lost GP packets from border nodes as

F
g
 1(2, λgN). We assume that the arrival rates for both GP and BE packets are equal to

one per second. We assume the variance of the Wiener processes used to model the

arrival and departure rates under heavy traffic is unity. Further, we take the service rate of

GP packets to be equal to 0.5 and that of BE packets to be equal to 1. Figures 4.4 and 4.5

show the results of simulation of the directed ignoring model for clustered WSNs in

various scenarios of dense/sparse/moderate density of nodes and CHs. From Figure 4.4,

we see that for large number of nodes (-40) in the cluster, the percentage of lost GP

packets is of the order of 0.78%. Also, as the control variable c in the cost function

increases from 2 to 7, the percentage rejection of lost GP packets decreases due to the

fact that the controls only decrease xg , the number of GP packets in the queue at the CH.
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Figure 4.4 Percentage rejection of GP packets from border nodes in a cluster.

Figure 4.5 shows that similar to the behavior observed in a cluster, the percentage

rejection of GP packets decreases with increase in network size.
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Figure 4.5 Percentage rejection of GP packets from border nodes in a WSN.

We now present results for comparison of reduction in wait time of BE packets versus the

percentage rejection of GP packets. Table 4.1 indicates the tradeoff in potential loss of

GP packets versus reduction in wait times for BE packets. With no control, i.e. c = 0 , the

percentage rejection of GP packets is 0. However, the results in Table 4.1 indicate that

c = 0 also corresponds to the case where the queue lengths are the longest. This results in

larger wait times for the BE packets. The introduction of controls results in shorter wait

times for the BE packets at the CH, and also lowers the percentage rejection of GP

packets for larger network sizes.
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Table 4.1 Tradeoff of waiting time for BE packets versus loss of GP packets.

Expected	 Percentage rejection of GP packets from border nodes for

queue	 varying N

lengths for	 (N = number of nodes in a cluster)

BE packets N=5	 N =10	 N = 20	 N = 40

from core

nodes, xb

No control	 0.793	 0	 0	 0	 0

c = 2	 0.452	 4.889	 4.737	 3.170	 1.235

c = 7	 0.267	 2.316	 2.202	 1.985	 0.796

With regards to network scenarios, although sparse networks offer the lowest rejection of

GP packets, they also have larger cluster sizes and the connectivity graph in sparse

networks omits a number of nodes due to nodes being outside of the CH's coverage area.

We thus conclude that in moderate networks with optimal control and operating in the

heavy traffic regime, we may gain considerably in system performance under the directed

ignoring model. At the cost of rejection of small amounts of GP packets from border

nodes, the directed ignoring model mitigates the effects of unfairness in queuing

admission control for clustered networks. In the next chapter, we present a framework for

cognitive WSNs and conclude this dissertation.



CHAPTER 5

COGNITIVE WIRELESS SENSOR NETWORKS

5.1 Introduction

The large, rapidly growing field of wireless sensor networks (WSNs) offers the ability to

collect and process massive amounts of information from various environments. This

distributed data gathering and computation with the help of tiny, power-limited devices

enables their use in surveillance, target detection and various other monitoring

applications. In the previous chapters, we analyzed a realistic scenario of clustered

topologies in WSNs deployed for applications like environmental monitoring. We studied

coverage in clustered topologies, and showed that clustering increases vacancy. However,

by exploiting the redundancy to design sleep scheduling algorithms for adaptive density

control, it was shown that coverage in clustered WSN could be optimized while still

improving network lifetime. The problems of starvation and edge effects commonly

observed in large wireless networks were investigated for queuing at CHs. While the

scenario of clustered topologies studied in this dissertation is not unique in that clustering

can be modeled using various processes, for e.g. Cox processes, we showed that topology

modeling plays an important role in network design and management. Also, the studies

on coverage, power management and queuing in WSNs form a subset of the many

research issues that confront large-scale, distributed networks. As the range of

applications envisioned for WSNs increases, the need for smart networks that utilize

algorithms for intelligent data gathering and processing also increases. In this context, the

role of a sensor network can be viewed as that of a system that pays attention to a
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phenomenon of interest. Thus, the current body of literature on WSNs falls into two

major categories: developing networks that a) pay attention to the environment to detect

the phenomenon under consideration and b) improving the quality of attention paid by

WSNs to these phenomena. In this chapter, we lay the foundation for a theoretical

framework for the context of attention in WSNs. This dissertation is the first step in

understanding the association between the nature of attention in WSNs and their real-

world applications. Although we structure this framework for cognitive WSNs around

clustered WSNs, it can easily be extended to various topologies of WSNs. Through the

rest of this chapter, the terms clustered WSNs and WSNs will be used interchangeably.

5.2 WSNs: Developing an Analogical Framework to the Nature of Attention

In this chapter, we introduce the concept of attention in clustered wireless sensor

networks by framing a relationship between the nature of attention at the cognitive level

and the parallel data-gathering and processing functions carried out by WSNs. Wireless

sensor networks are aptly named for their ability to sense the deployment region, gather

data and use it for higher levels of processing. Multi-hop links or a single direct link is

used to route this gathered data to a central base station (sink) in order to reconstruct the

desired parameters of the deployment region (Marco, Duarte-Melo, Liu and Neuhoff,

2003). The power-limited nature of sensor nodes effectively constrains the processing

and data dissemination that are necessary to achieve sensing objectives of reliable

network operation while also prolonging network lifetime. This constraint has spawned

research in deployment, signal processing, communication and networking within WSNs.
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In particular, these issues can be classified within the context of attention into two

main categories. The first category deals with developing networks that pay attention to

the environment: i.e. the range of WSN applications. This is evident in the study of

WSNs developed for habitat monitoring (Mainwaring, Polastre, Szewczyk, Culler and

Anderson, 2002), weather detection (Sims, Kurose and Lesser, 2005) and structural

monitoring (Li and Liu, 2007) to name a few. The other category deals with improving

the quality of attention paid by the WSN to the phenomenon under consideration.

Deployment, density control, routing, data processing and security are themes used to

improve the quality of attention paid by the WSN to the environment. Our work unifies

current research in terms of attention: the fundamental ability of sensor networks to pay

attention and process data gathered from attentive sensing to fulfill sensing objectives. In

our knowledge this is the first work that addresses WSN applications and performance as

a function of attention paid by the network. Below, we provide a brief introduction to the

nature and scope of WSNs and then outline the analogy between the limits of attention in

human cognitive science and the limits of data gathering, processing and routing in

WSNs.

Clustering in WSNs has emerged as an efficient model for data aggregation and

processing, especially in redundant WSNs. A sample depiction of a clustered WSN is

shown in Figure 5.1, where the nodes are represented by their circular coverage areas.

Figure 5.1 can also be used to depict the model of a general WSN, where nodes send their

data to a central sink. There are two major sensing scenarios: continuous sensing in

which the nodes continuously gather data and route it to the sink and event-driven sensing

where the nodes respond to the base station's request for data, viz. what was the
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temperature in region A of the deployment region at 10 am? For a WSN to be efficient, it

has to satisfy the sensing objectives, viz. temperature measurement, intrusion detection,

etc. in the deployment region while achieving maximum possible network lifetime.

(a)	 (b)
Figure 5.1 A clustered wireless sensor network (WSN). (a) shows a WSN with a

CH and wireless sensor nodes. The arrows indicate possible routing paths in the network.
(b) shows redundancy in a cluster in the WSN.

This redundancy may arise in random deployment strategies (scattering nodes

from a height on remote terrains) or deterministic deployments, where dense networks of

nodes are deployed in the deployment region, e.g. networks of cameras for intrusion

detection. In the absence of redundancy, all nodes in the network might have to stay in

the 'awake' state to achieve coverage and connectivity in the network. Redundancy

presents ways to let some nodes 'sleep', while others stay 'awake' to perform data

gathering, computation and routing. Figure 5.2a shows redundant nodes in the 'sleep'

state (darkened circles). The equivalent network without the sleeping nodes is depicted in

Figure 2b. As demonstrated in Chapter 3, this alternation between the 'sleep' and 'awake'

modes' of operation helps in increasing network lifetime.
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(a) 

Figure 5.2 Power management by 'sleep' scheduling. The darkened nodes indicate 
nodes in the 'sleep' state. The equivalent network is shown in (b). 

From the above brief introduction to the structure and operation of WSNs, we see an 

analogy between the working of clustered WSN s and human cognition in terms of the 

data gathering, computation and routing (Figure 5.3) from clusters of neurons. Though 

the human cognitive system does not face similar constraints of working with power-

limited data gathering units, it encounters constraints on the attention that can be paid to 

the environment. In this dissertation we examine the analogy between cognitive attention 

that deals with the visual sensory input and WSNs that gather data from the deployment 

region for various applications. The relevance of attention to WSNs merits a series of 

questions that we frame to set the tone of the rest of this chapter. 



Vision routines

( E.g. Grouping, shape selection)

Gather data from sensors ,

e.g. temperature detection

Attention routines- selection

(No intermediate steps)

Select a subset of the entire set of data to
perform higher processing

Cognition routines
(Multiple steps, e.g. cooking, surgery) Perform higher processing on data

Hierarchy employed by the brain for task
solving

Hierarchy employed by the WSN for data
gathering, computation and routing
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Figure 5.3 Analogy of task solving in human cognition (Cavanagh, 2004) and the WSN

The first question that the framework evokes is: How do we extend the concept of

attention to wireless sensor networks? One of the essential prerequisites for WSN

applications is to create architectures for reliable data gathering and processing, so that

the network fulfils sensing objectives while achieving longer network lifetimes with

nodes that have constraints on battery energy and processing power. The scope of WSN

applications includes data gathering in environment monitoring, surveillance, target

detection and intrusion and medical applications. Though these application scenarios are

unique, they all display a common feature: the WSN pays attention to the deployment

region to obtain information about the parameter of interest in the sensing application.

For instance, a temperature monitoring WSN pays attention to the temperature in the

deployment region. In an intrusion detection system, nodes are supplied with the data set

corresponding to intruder identification and the network attentively scans the

environment and reports intruders to the base station. This paradigm of attention can be

applied to many other sensing scenarios as well.
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Having extended the concept of attention to WSNs, the next question that arises

is: How do we quantify attention in WSNs? The best interpretation of this is the density of

`awake' nodes that sense the environment for any of the two main sensing scenarios:

event-driven and continuous. An 'awake' node gathers data from the area covered by its

sensing radius, communicates the data to the nearest node or base station. A higher

density of 'awake' nodes results in a network that is k-connected and depending on the

deployment pattern in the region, it is also k-redundant. In this interpretation, attention in

WSNs can be used to study efficiency of WSN operation as a function of node

deployment, data processing algorithms and routing protocols. Similar to attention in

humans, where a higher amount of it is linked to greater efficiency, creating attention-

paying WSNs improves the network operation. This may be only trivially true, and we

elaborate on this in Section 5.5 of this chapter.

Finally, how do we improve attention? It is helpful to understand the structure of

attention to answer this question. The structure of attention routines defines limits to the

amount of information available for higher processing and hence limits the amount or the

capacity of attention (Cavanagh, 2004). In this dissertation, we draw on the work of

(Cavanagh, 2004) where the author summarized three independent limits on the

information available for higher processing. These three limits are the capacity, acuity

and the coding singularity of the selection region which commands attention. While the

framework of attention described is not unique in that, there exist different types of

attention, we focus on the attention routines that lie as an intermediate step between

vision routines and cognition routines. The vision and cognition routines represent the

first and last steps of a hierarchy that the brain employs to solve tasks. Within the set of
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attention routines, (Cavanagh, 2004) focused on one particular routine, selection and

described it with the help of the three limits of capacity, acuity and coding singularity.

We use the same approach to quantify attention limits in WSNs and detail them in

Section 5.3 of this chapter.

The idea of employing cognition to wireless networks is not new; cognitive radio

(Haykin, 2005) is already being researched for wireless communication as a means to

improve the utilization of scarce radio spectrum. In the tradition of WSN research,

cognition can be applied to a broader framework where network applications resemble

the attention paid by human sensory systems to the environment. Although this is the first

formal attempt to defining cognitive WSNs, the existing research in WSNs is wide

enough to be encapsulated in the framework of cognitive WSNs. The understanding of

what constitutes cognitive WSNs and using the analogy between the limits of attention in

human cognition and the limits of data gathering and processing in WSNs shapes the rest

of this chapter.

The objectives of the study on the analogy between attention in human cognition

and WSNs are summarized below. The study of wireless sensor networks within the

context of attention is important to achieve the following three objectives:

Capacity: If the network is deployed for continuous sensing, what is the density of

information that can be sensed by the network? What element of it can be used for higher

processing that reliably fulfils the objectives of the sensing operation?

Acuity: In case of multiple objects in a tracking application, what is the minimum spacing

between objects that can permit access and detection of the object of interest?
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Coding singularity: A third and less obvious objective is to study the sensing resolution

of the network. How do we focus on the features of the desired phenomenon from the

entire selection region? The answer to this lies in accurate recognition of the phenomenon

despite its seemingly sparse nature of description as encountered in most real-world

sensing applications and developing 'attention -paying' WSNs.

The organization of this chapter with respect to each of the above limits is as

follows: Section 5.3 describes the capacity limit of attention. In section 5.4, we address

the acuity and coding singularity limits and show the relationship between them. Section

5.5 provides emerging directions for future research and concludes the dissertation.

5.3 The Capacity Limit

In (Cavanagh, 2004), the author showed that the capacity limit of attention in human

cognition is set by the constraints of representing the initial and final routines in

awareness. In WSNs, the capacity of a WSN may refer to the amount of information

sensed by the network for the duration of network operation, network throughput or the

transport capacity. In addition to being a function of the deployment pattern in the

sensing region (Moscibroda, 2007; Machado and Tekinay, 2007), we show that the

capacity is also a function of the reportability. With respect to data gathering networks,

the capacity is often measured in terms of the transport capacity or network throughput.

In a WSN with a given density of 'awake' nodes that are sensing the environment in

event-driven or continuous sensing applications, the information capacity of the network

is proportional to the number of 'awake' nodes. However, the reportability required of

nodes to transmit data to a sink reduces the capacity, in part due to the receiver encoding
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ability. This feature of the capacity limit in attention is also shown in (Marco, Duarte-

Melo, Liu and Neuhoff, 2003). In (Marco, Duarte-Melo, Liu and Neuhoff, 2003). the

authors show that the amount of data received at a single receiver from the network of

sensors in the deployment region depends on the density of sensors. They consider a data

gathering applications, where the receiver reconstructs a snapshot of the sensed field

from the data received. The compression rate at the encoder poses a constraint on the

reconstruction of the sensed field, since this rate is less than the transport capacity of the

network. They show that as the sensor density increases, there is more correlation in the

data leading to greater compression at the encoder. However, since the single-receiver

transport capacity of the receiver remains constant, the amount of time it takes to

transport the sensed field/ reconstruct a snapshot of the field does not decrease, but goes

to infinity.

The other factor contributing to reduction in capacity is the requirement to

accurately reproduce the spatial and temporal nature of the sensed environment from the

data gathered. Without this constraint, the data obtained from nodes would be

compressed at the sink after an amount of time dictated by the density of nodes and

efficiency of the compression algorithms used, surpassing even the encoding limit at the

receiver.

5.4 The Effects of Crowding

In this section, we show the effect of crowding on attention paid by WSNs with the help

of the acuity and the coding singularity limits.

5.4.1 Acuity
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Acuity in human cognition refers to the limit imposed by crowding on selecting an object

from a region of interest. In WSNs, acuity has been studied in terms of visual acuity of

networks of camera sensors (Miao, Qi and Wang, 2005). However, acuity in the context

of an attention limit can have further implications. Acuity is an important issue for

detecting/tracking applications in WSNs. In the case of a multiple target tracking

application, what is the extent of crowding permissible in the selection region that can

permit access and reporting of the desired target? This problem holds for the case of both

crowding of multiple desired targets or a single desired target in a crowd of other objects.

In order to detect more than one target, a widely used approach is to incorporate multiple

transducers of the same type on board to indicate the presence of multiple targets

(Mainwaring, Polastre, Szewczyk, Culler and Anderson, 2002; Chen et al., 2006;

Werner- Allen, Johnson, Ruiz, Lees and Welsh, 2005). While the inclusion of multiple

target detectors on-board is a way to increase the detection capacity of the WSN, there is

a clear difference between this method and the method of detection using an increased

density of 'awake' nodes with a single target-detector on board. This can be illustrated by

an example: in a habitat monitoring application to spot a certain species, two organisms

of the same species in close proximity might register as one organism with the sensors in

the nearby area. Unless the sensors are equipped with collocated multiple target detectors,

an increased density of sensors might be less effective than a single sensor with efficient

detecting/tracking abilities. This brings us back to the problem of crowding. Since the

probability of target detection across the deployment region is non-uniform and since

activating multiple detectors on-board is not energy-efficient, one way to accommodate a

sensitivity to acuity would be to develop intelligent networks that study the pattern of
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variation of the target and then perform adaptive density control. The analysis of

coverage properties on clustered WSNs helps to resolve the acuity limit through the use

of clustering techniques for data gathering and processing. In the context of target

detection applications, WSNs of mobile nodes that adaptive form clusters to track

properties of a mobile target is a solution to the acuity problem.

5.4.2 Coding Singularity

The coding singularity is relevant in understanding the coverage paradigm in WSNs,

where coverage and connectivity are the primary factors in obtaining reliable network

operation. In human cognition, the coding singularity limit refers to the constraint of

selecting a given object or attributes of an object from the selection region. It differs from

the acuity limit in that while the acuity limit focuses on the minimum spacing between

items that allows access to individual items, coding singularity refers to the sparse

description of the target in the selection region. Coding singularity in WSNs refers to the

sensing resolution of the network which is defined by the resolution of the fundamental

sensing unit: the sensor nodes. The area covered by a node that lies within its sensing

radius is the finest level of detail that can be accessed by the sink for data processing. The

next higher level of detail that can be accessed is the data from a CH. This data and the

equivalent information is obtained from data aggregation and represents higher reliability

than relying on the data from a single sensor.

Given this, the next question is: what should be the sensing resolution? The

answer to this is application and objective dependent, although having data available at

the finest resolution increases the reliability. This comes at a cost, since a high level of
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reliability requires a greater density of nodes sensing and transmitting data to the base

station for further processing. Within this reliability constraint, the coding singularity

poses two more issues. Firstly, there is the issue of what to transmit in a continuous

sensing application like environment monitoring. Secondly, in an event-driven

application like a target tracking/intrusion detection application, how do we recognize the

target? Does merely increasing the density of 'awake' sensors guarantee an accurate

response?

In a continuous sensing application, the uninterrupted nature of sensing and data

dissemination has led to research into determining the subset of actual data that may be

transmitted to the base station. Redundancy in deployment patterns has been exploited to

reduce the transmission of redundant data due to spatial correlation in sensor locations or

temporal correlation due to the pattern of variation in the sensed environment. While the

coding singularity limit for attention in the neural system refers to the inability to process

the features of more than one object in a selection region, this limit does not apply to

WSNs. This is due to the presence of multiple transducers on board a sensor node that

can sense multiple parameters of the sensed environment. However, coding singularity

plays a role in information selection when the data processed at the base station is

required to yield more information than merely the variation of the sensed parameters.

Equivalently, this is a case of more unknowns than parameters, where the sensed

parameters are processed to provide more information about the sensed field than can be

obtained from transducer data in individual nodes. Coding singularity in a continuous

sensing application is thus more relevant at the base station than at the nodes where the

base station has to intelligently decide the amount of processing to be done on the
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gathered data to obtain relevant information. Alternately, in case of networks where

nodes perform processing, it increases the complexity of determining what is relevant,

since a node by itself has access only to the data within its sensing radius and to know the

data from other nodes, it has to resort to increased inter-node communication which

results in faster battery energy depletion and consequently affects network lifetime.

In response to the second issue, we recall that in the introduction, we mentioned

the correlation between attention and performance. While increased attention improves

performance, it does not hold true in the absence of a selection region. This is best

illustrated in the case of a WSN deployed for target tracking or intruder detection

application. If the features of the target are not provided to the network, there can be no

awareness of the target even though all sensors are 'awake' and are transmitting gathered

data to the sink. This holds also in case of inadequacy of the supplied features. If the

target features are accurately outlined, it increases the efficiency of the target detection

application in terms of decreasing/ eliminating the data propagation time from nodes to

sink and the processing time at the sink to identify the target. Alternately, a faulty

selection region that focuses on detecting objects other than the desired target have the

same effect of resulting in loss of network resources such as battery power due to

increased density of 'awake' sensors. The adequacy of supplied features acts like cues to

the network to aid in efficiency of detection. The same argument can be used for

continuous sensing scenario such as environment monitoring applications such in weather

detection and temperature monitoring; however, the nodes do not have to perform the

same level of processing as in detection applications to sense and report temperature. In

other words, coding singularity is more relevant to tracking/detection applications with an
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emphasis on accurate selection. Figure 5.4 shows a cognitive WSN with the capacity,

acuity and coding singularity limits that impact WSN performance.

Performance limits in a cognitive WSN

Capacity limit

What is the density of information obtained
by the network? How is it affected by
factors such as the wireless channel,
encoding limit, deployment pattern?

Crowding limit

Acuity

What is the minimum separation required
between objects/targets to effectively
track them in an intrusion detection

scenario ?

Coding singularity

What is the sensing resolution of the network?
How does it impact the acuity limit?

Figure 5.4 Guidelines for developing a cognitive WSN considering the capacity, acuity
and coding singularity limits that impact WSN performance

5.4.3 Relationship between Coding Singularity and Acuity

In this section, we illustrate the relationship between acuity and coding singularity limits

for tracking application in WSNs. Acuity and coding singularity both derive from the

issues of sensing resolution in the network. In the absence of a limit for coding

singularity, the base station would have access to infinite amount of data obtained from

the base station and not perform any compression to process the information from the raw

data. The finest resolution of sensing would thus determine the quality of the sensing

operation. However, in WSNs, clustering and in-network data processing performed at

nodes allow for a certain leniency in estimating the information content from a given

region of the deployment region. For example, spatial and temporal correlation from

sensor locations and knowledge of variation in sensing field can be used to extrapolate

the data from sensors that have been turned off due to power-saving mechanisms
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implemented at the nodes. The acuity limit is related to the crowding of targets in the

selection region. While the region of interest (ROI) can be densely covered with an

increase in the number of 'awake' sensors, they do not capture the amount of detail as

fewer sensors with multiple transducers on-board. Thus similar to attention in

neuroscience, the acuity limit for detection exists only because of the coding singularity

that defines the sensing resolution of the network (due to coverage). However, the coding

singularity does not determine the minimum separation between targets, i.e. limit for the

acuity of detection.

5.5 Concluding Remarks

The nature of WSN operation by distributed data gathering and processing in large-scale

networks of nodes suggests that the primary goal of a WSN is to pay attention to the

environment to sense the phenomenon of interest. The concept of attention in cognition

can be leveraged to understand the nature of data gathering in WSNs. The knowledge of

the limited nature of attention has led neuroscience research to explore among many

avenues, the cognitive impact of limited attention. In this chapter, we showed that the

limits of capacity, acuity and coding singularity that limit attention in human cognition

are also found in clustered WSNs. In WSNs, these limits are manifested in the form of

capacity of the network, ability for multiple target detection and sensing resolution of the

network. We believe this framework of attention limits, which has been illustrated in this

chapter with the help of comparisons to the problems encountered in clustered WSNs,

will provide a unifying framework for studying the performance of WSNs. This study is

worth pursuing in order to develop application-specific WSNs that do not just pay
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attention to the environment, but also adaptively learn to harness different 'types' of

attention to provide the highest reliability of operation. The insights gained from an

attention-oriented study can be used to develop self-organizing WSNs that allow for a

combination of dynamic network topology, power management and routing techniques

according to the variation of the sensing field.
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