





ABSTRACT

A BIOINFORMATICS FRAMEWORK FOR RNA STRUCTURE MINING,
MOTIF DISCOVERY AND POLYADENYLATION ANALYSIS

by
Mugdha Khaladkar

The RNA molecules play various important roles in the cell and their functionality
depends not only on the sequence information but to a large extent on their structure. The
development of computational and predictive approaches to study RNA molecules is
extremely valuable. In this research, a tool named RADAR was developed that provides a
multitude of functionality for RNA data analysis and research. It aligns structure
annotated RNA sequences so that both the sequence as well as structure information is
taken into consideration. This tool is capable of performing pair-wise structure alignment,
multiple structure alignment, database search and clustering. In addition, it provides two
salient features: (i) constrained alignment of RNA secondary structures, and (ii)
prediction of consensus structure for a set of RNA sequences. This tool is also hosted on
the web and can be freely accessed and the software can be downloaded from

http://datalab.njit.edu/biodata/rna/RSmatch/server.htm . The RADAR software has been

applied to various datasets (genomes of various mammals, viruses and parasites) and our
experimental results show that this approach is capable of detecting functionally
important regions.

As an\ application of RADAR, a systematic data mining approach was developed,
termed GLEAN-UTR, to identify small stem loop RNA structure elements in the
Untranslated regions (UTRs) that are conserved between human and mouse orthologs and

exist in multiple genes with common Gene Ontology terms. This study resulted in 90



distinct RNA structure groups containing 748 structures, with 3° Histone stem loop
(HSL3) and Iron Response element (IRE) among the top hits.

Further, the role played by structure in mRNA polyadenylation was investigated.
Polyadenylation is an important step towards the maturation of almost all cellular
mRNAs in eukaryotes. Studies have identified several cis-elements besides the widely
known polyadenylation signal (PAS) element (AATAAA or ATTAAA or a close variant)
which may have a role to play in polyA site identification. In this study the differences in
structural stability of sequences surrounding poly(A) sites was investigated and it was
found that for the genes containing single pdly(A) site, the surrounding sequence is most
stable as compared with the surrounding sequences for alternative poly(A) sites. This
indicates that structure may be providing a evolutionary advantage for single poly(A)
sites that prevents multiple poly(A) sites from arising. In addition the study found that the
structural stability of the region surrounding a polyadenylation site correlates with its
distance from the next gene. The shortest distance corresponding to a greater structural

stability.
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CHAPTER 1

INTRODUCTION

1.1  Objective
The objective of this dissertation is to present a bioinformatics framework conceived for
the study of RNA molecules. This research was aimed specifically towards RNA
secondary structures and the functionality conferred upon the RNA molecule due to this
structure.

To achieve this goal, a tool named “RADAR” which stands for RNA Data
Analysis and Research was developed. It comprises of novel algorithms for the detection
of conserved secondary structures present in RNA sequences which in turn provides
valuable indication of an associated functionality of the molecule. RADAR was tested on
several biological datasets and the results exemplify that the method is successful in
achieving its purpose.

The framework also comprises of a computational approach termed GLEAN-
UTR for the discovery of hitherto unknown RNA structure elements that may be playing
important roles in the cell. It was applied to un-translated regions (UTRs) of human and
mouse genome and yielded several unique results.

Further, the regulatory role of RNA structure in the process of mRNA
polyadenylation was investigated. Polyadenylation is a crucial step in the post-
transcriptional gene regulation of most mammalian mRNAs. This study found some
correlation between polyadenylation strength and structural stability, and attempted to

identify other factors that may increase the efficiency of this process.



1.2 Overview

Ribonucleic acid (RNA) plays various roles in the cell. Many functions of RNA are
attributable to their structural particularities (herein called RNA motifs). RNA motifs
have been extensively studied for noncoding RNAs (ncRNAs), such as transfer RNA
(tRNA), ribosomal RNA (rRNA), small nuclear RNA (snRNA), small nucleolar RNA
(snoRNA), etc. (1). More recently, small interfering RNA (siRNA) and microRNA
(miRNA) have been under intensive studies (2,3). Less well characterized are the
structures in the un-translated regions (UTRs) of messenger RNAs (mRNAs). However,
biochemical and genetic studies have demonstrated a myriad of functions associated with
the UTRs in mRNA metabolism, including RNA translocation, translation, and RNA
stability. Chapter 2 describes an approach developed to mine novel structures from this
region that are conserved between human and mouse orthologs and exist in multiple
genes with common Gene Ontology term. This methodology was termed GLEAN-UTR
(4) and it uses an RNA structure alignment tool called RSmatch (3) which can efficiently
align RNA secondary structures for motif detection. RSmatch can find the optimal global
and local alignment between two RNA secondary structures using two different scoring
matrices, one for single stranded region and one for the double stranded region. It follows
a dynamic programming algorithm of time complexity O(mn), where m is the size of the
query structure and 7 is the size of the subject structure.

RSmatch algorithm suffers from a drawback in that it does not allow the users to
specify characteristics specific to the input RNA structures which could enhance the
alignment and thus, improve the results. To tackle this program, the framework includes a

novel method named constrained structural alignment that is capable of performing a



dynamic alignment based on user-specified constraints, if provided with the input. This
algorithm is described in Chapter 3 along with the experimental results. The algorithm is
part of the web server and standalone tool RADAR (5) which provides a platform
consisting of multitude of functionality for RNA structure analysis. Chapter 4 describes
this web server. RADAR was tested on several different biological datasets. Chapter 5
describes its application to find conserved structures from viral genome.

The final focus of this work was on polyadenylation which is a very important
process for post-transcriptional regulation of most mRNAs in mammals. Post-
transcriptional regulation is the mechanism that controls/regulates the synthesis of protein
by genes after the RNA synthesis has begun (6). This field of study has become hugely
important since the several discoveries which show that it is a key mechanism that can
rapidly change the expression of genes. Chapter 6 describes the work which investigates
into the factors that may affect the strength of polyadenylation, with an emphasis on the
role played by structure in this process.

This dissertation concludes with a summary of the results obtained, implications

of this work and the future research that would go towards further strengthening it.



CHAPTER 2

MINING SMALL RNA STRUCTURE ELEMENTS IN UNTRANSLATED
REGIONS OF HUMAN AND MOUSE mRNAs USING STRUCTURE-BASED
ALIGNMENT
UnTranslated Regions (UTRs) of mRNAs are involved in various steps of mRNA
metabolism, including mRNA localization, translation, and mRNA stability. Regulation
of gene expression through UTRs occurs at various developmental stages and is involved
in diverse cellular pathways. Several RNA stem-loop structures in UTRs have been
experimentally identified, including the histone 3’ -UTR stem-loop structure (HSL3) and
iron response element (IRE). These stem-loop structures are conserved among
mammalian orthologs, and exist in several genes with similar functions. It is not known,
however, to what extent RNA structures like these exist in all mammalian UTRs. This
chapter describes a systematic approach using the tool RSmatch (3), named GLEAN-
UTR, to identify structural elements in human and mouse UTRs that are conserved
between human and mouse orthologs and exist in multiple genes with common Gene
Ontology terms. This approach resulted in 90 distinct RNA structure groups containing
748 structures, with HSL3 and IRE among the top hits based on conservation of structure.
The result indicates that there may exist many conserved stem-loop structures in
mammalian UTRs that are involved in coordinate post-transcriptional regulation of

biological pathways.



2.1  Background

RNA cis elements residing in the UnTranslated Regions (UTRs) of mRNAs have been
shown to play various roles in post-transcriptional gene regulation, including mRNA
localization, translation, and mRNA stability (7-10). The function of a cis element can be
attributable to its primary sequence or structure. For simplicity, they are called sequence
elements and structural elements, respectively. Well-known sequence elements include
AU-rich elements (ARE), some of which contain one or several tandem AUUUA
sequences and are involved in modulation of mRNA stability (11,12), and miRNA target
sites, which base pair with their cognate miRNA molecules and are involved in the
regulation of translation or mRNA stability (13,14). Well-characterized structural
elements include Internal Ribosome Entry Site (IRES) (15) and Iron Response Element
(IRE) (16) in the 5’ UTR, Selenocysteine Insertion Sequence (SECIS) (17), IRE, and
histone 3’ UTR stem-loop structure (HSL3) (18) in the 3° UTR. Each element type exists
in multiple genes, and thus can be considered as an RNA motif (similar to the concept of
protein motif). IRE and HSL3 elements are highly similar to one another within each
type; some divergence has been reported for SECIS (17) and there is no extensive
similarity in primary sequence or secondary structure among IRES elements (15). These
characteristics may reflect the ways that the RNA structures function. In addition, various
gene-specific structure elements in 5° or 3’UTRs have been shown to play roles in RNA
metabolism (7).

Functional RNA sequence e¢lements in the human genome have been heavily
studied in recent years, including elements responsible for pre-mRNA splicing,

polyadenylation, and miRNA target sites (19-23). In contrast, RNA structure elements



have been investigated to a much lesser extent, partly due to the difficulties in accurately
predicting and aligning RNA structures, and assessing false discovery rate (FDR). Recent
developments of genome-wide prediction of RNA structures based on aligned genomes
(24,25) or unalignable regions (26) have resulted in large numbers of conserved RNA
structures. On one hand, all methods reported high potential FDR. On the other hand,
these results vary from one another in coverage, indicating that there may exist even
more structures to be discovered. Here, the approach described is not based on genome
alignments, and is dubbed GLEAN-UTR (grouping by structural distance and ontology
for RNA elements in UTRs) to uncover conserved RNA structures in UTRs. The focus
was on detecting small stem-loop structures. The folded RNA structures in UTR
sequences for orthologous genes were compared by using RNA structure alignment tool
RSmatch (3). Similar orthologous structures were then compared in an all-against-all
fashion to derive RNA structure groups. Using cluster analysis and Gene Ontology (GO)
information, the RNA structures that exist in multiple genes that share common
biological pathways were identified. For 10,448 human genes which were analyzed, 90
RNA structure groups, containing 748 distinct RNA structures in 3' or 5' UTRs from 698
genes were obtained. HSL3 and IRE are among the top hits based on conservation of
structure. Using a randomized data set, estimated FDR of 15% for all the structures was
determined. About 12% of the structures overlap genomic regions identified by other
whole-genome wide studies for RNA structures. This bioinformatics study lays
groundwork for future wet lab examination of putative conserved RNA structure

elements in human and mouse UTRs.



2.2 Results

2.2.1 Mining RNA Structural Elements in UTRs

The aim was to identify functional structure elements in human UTRs. Previous studies
have used aligned vertebrate genomes to predict conserved structures in the whole
genome (24,25). However, a recent report indicated that many human genome regions
containing RNA structures cannot be aligned with the mouse genome (26). This suggests
that reliance on genome alignments containing divergent species, such as human and fish,
may result in many false negatives. This situation can be exacerbated for UTRs, which
typically do not exhibit large rates of sequence conservation. To explore approaches other
than using aligned genomes, this method was designed and named GLEAN-UTR, which
is based on the rationale that there exist structure elements in 5' and 3' UTRs that are
encoded by a group of genes involved in the same biological pathways, similar to IRE
and HSL3 structures (see Figure A.1). This method was applied to human and mouse

UTRs. Figure 2.1 shows the overall design and procedure of this method.



UTR sequences
Human Mouse
(35,999) (28,694)

{ Sslide and fold

RNA structures in UTRs

Human Mouse
(575,410) (445,106)

10,667 orthologs \'/COmParison between
orthologous genes

Human structures conserved in \
mouse (6,345) —

¢ All-against-all comparison

Structures with similarity to >3
other structures (2,054)

* Cluster analysis

57,904 groups, 2,054 structures

GO analysis
CoV filtering
— 214 groups, 1,125 structures

¢ Remove redundant groups

90 groups, 748 structures

Cross-validation with mouse structures to
identify highly conserved structure groups

Figure 2.1 The flowchart represents the overall methodology termed “GLEAN-UTR”.
The number of RNA structures and structure groups are indicated in each step.



First, the UTR sequences were extracted from NCBI RefSeq sequences. Then a
"slide and fold" method was used to construct RNA structures in 5' and 3' UTRs (Section
2.4.1). With this method, subsequences in UTRs, 100 nucleotides (nt) long or less, were
folded according to thermodynamic properties using the Vienna RNA package (27).
Adjacent subsequences were overlapped by 50 nt. This method can derive RNA
structures accurately and efficiently for two reasons: (1) Predicting small structures is
more accurate and efficient than for large ones; (2) Structures with size less than 50 nt
were folded twice as subsequences of two different larger structures, further increasing
the chance of getting accurate RNA structures. Further, the setting in the Vienna package
that yields multiple RNA structures with the same minimum energy for a given sequence
was used to further improve the folding accuracy. On the other hand, since only RNA
structures derived from 100 nt subsequences of UTRs was used, the discovery is limited
to small structures, such as short stem-loops. Thus, large RNA structures, such as IRES
and SECIS, are not analyzed in this study. This step resulted in 575,410 RNA structures
from human UTRs and 445,106 RNA structures from mouse UTRs.

Next, the RNA structures from human and mouse orthologs (10,667 pairs in total)
were compared. For each orthologous gene pair, the set of RNA structures from the
human gene were compared with the set of structures from the mouse gene using
RSmatch (3), which aligns RNA structures by taking into account both sequence and
structure information. Alignments with a positive score were kept and the rest were
discarded. In order to assess the significance of the alignments, three values of a structure

alignment were used: size of the alignment, size of the double stranded region of the









12

In order to select significant structures, a randomization method was applied to
obtain expected values. Since most known RNA sequence elements in UTRs have the
length around 6 nt, the sequences were randomized by shuffling hexamers in UTRs with
the goal of separating sequence conservation from structure conservation. For each
aforementioned value type, the cutoff value was the 95th percentile of all values from the
randomized set. They were found to be 23 nt, 14 nt, and 17 for the size of an aligned
structure, the size of a ds region, and the RSmatch score, respectively. To balance
selectivity and sensitivity, the structure alignments that had at least two of three values
higher than the respective cutoff values were retained. The structure alignments in which
two matching structures had identical sequences were eliminated, as the focus of this
study was to find elements conserved on the structure level, and it was not possible to
differentiate structure conservation from sequence conservation for those alignments. The
reasoning was that the ~100 million years since the split of human and mouse ancestors
should have given functional RNA structures enough time to have random mutations in
insignificant parts of the structure and compensatory mutations in the structure, and the
sequences are not expected to be identical unless sequence constraint is also in play. This
step resulted in 6,345 alignments.

Then all-against-all pairwise comparisons of all 6,345 RNA structures were
carried out. To make the approach computationally efficient, this was done only on
human RNA structures obtained from the alignments. Each comparison yielded an
alignment score. The structures that were similar to at least two other structures with the
alignment score > 17 were selected. This step resulted in 2,054 RNA structures (see

Figure 3A for distribution of scores). Both alignments in the single-stranded (ss) and
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double stranded (ds) regions can contribute to the final RSmatch score. To assess the
contribution of sequence to the selection of these structures, the RNA structures were
randomized by swapping nucleotides in both ss and ds regions, while keeping the overall
secondary structure intact. With the same selection criteria, 851 structures from the
randomized set were selected. Thus, about 40% of the selected structures are primarily
due to their structure information, and the remaining 60% are due to both sequence and
structure information.

To group similar RNA structures together, hierarchical clustering was applied to
the data. First, using pair-wise structure alignment scores, normalized dissimilarity scores
were derived to represent distances among the structures (Section 2.4.3). Then a
hierarchical tree was constructed containing all 2,054 structures based on their mutual
dissimilarities (Figure 2.3(B) and Figure B.1). The hierarchical tree can be "cut" to yield
sub trees that represent RNA groups. Figure 2.3 (C) gives the distribution of the number
of structure groups obtained by cutting the tree at every value of normalized dissimilarity
score. Values at every percentile of this distribution were selected to derive 100 cut
heights, i.e. 1st percentile, 2nd percentile, etc. Using these 100 values to cut the tree, 57,
904 groups of structures were obtained, each containing several RNA structures.

In order to find structures that exist in multiple genes involved in the same
pathways, the RNA structure groups were further examined by their Gene Ontology (GO)
information for the biological process category. The hypergeometric test was applied to
measure the significance of association between the genes for a structure group and GO
terms (Section 2.4.4). A structure group was selected for further analysis if the group was

significantly associated with a GO term (p-value < 0.05), and there were at least two
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genes in the group that were annotated with the significant GO term. To measure how
member structures in each selected group are similar to one another, a measurement
called Cohesive Value (CoV) was used, which is the average of all pair-wise similarity
scores among structures in the same group. Figure 2.3(D) shows the distribution of CoVs
against group size for all groups. To assess the significance of the CoVs, the same
numbers of structures from 2,054 structures were randomly selected to form groups and
their CoV values were calculated. For a given group size, this process was repeated 100
times and then the mean value is used as the expected CoV for groups of the given size.
Since the numbers of structures in a group ranged from 4 to 20,the expected values were
derived for groups with 4-20 structures (Figure 2.3(E)). Groups which had a CoV below
the expected values were eliminated. After GO analysis and CoV filtering, 214 structure
groups, corresponding to 1,125 distinct structures were obtained.

Since one structure may exist in several groups due to the 100 height values used
in cutting the hierarchical tree, the groups that overlapped with other groups with a
greater number of structures and lower p-values for the associated GO terms were
eliminated while giving preference to groups that were highly conserved between human
and mouse based on a cross-validation method (Section 2.4.5). This resulted in 90
structure groups in all, corresponding to 748 distinct structures from 698 genes. Of the
structures, 74 are from 5' UTRs and 674 are from the 3' UTRs. Of the groups, 58 groups
contain only 3' UTR structures, 30 groups contain structures from both 5' and 3' UTR and
2 groups contain only 5' UTR structures. The top 10 groups based on CoV are shown in

Table 2.1. All the structure groups identified by this study, including the ones that are
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overlapping with other groups, have been provided in an online database named GLEAN-

UTR. It can be accessed freely at http://datalab.njit.edu/biodata/ GLEAN-UTR-DB/.
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HSL3 and IRE are ranked among the top hits with respect to CoV values (1st and
2nd) as can be seen in Table 2.1. This result not only validated the approach, but also
indicated that other groups of RNA structures may also exist, though probably not as well
conserved as HSL3 or IRE. Using the multiple alignment function of RSmatch (3), a
consensus structure was generated for each structure group. In a sense, each structure
group represents a putative RNA structure element type. The sizes of the consensus
structures ranged from 15 to 31. All groups and structures can be searched, retrieved and
viewed through an on-line database named GLEAN-UTR DB (4).

To assess the false data rate (FDR) for this method, all the above steps were
repeated using randomized human and mouse UTR sequences maintaining overall dimer
frequencies, and the number of selected entries at each step was calculated (Figure C.1).
In the last step, this randomized set resulted in 17 groups consisting of 110 human
structures. Thus, the FDR is ~18.89% for the groups and ~14.71% for the structures. Of
these groups, 3 groups with 14 structures also passed the cross-validation with mouse

orthologs, giving FDR ~8.82% for the groups and ~5.96% for the structures.

2.2.2 Comparison with other Genome-wide RNA Structure Studies

Three recently carried out studies for finding conserved RNA structure regions in the
human genome (24-26) were selected. Their results were examined for structures that
differed from and overlapped with the results obtained in this study. Using 8-way human-
referenced vertebrate genome alignments, Washietl et al. (24) detected 91,676 conserved
RNA structures (at P > 0.5) using the RNAz program, which identifies RNA structures

with similar thermodynamic stabilities across species. Pederson et al. (25) developed
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with those in these two studies. Of the 178 structures predicted by Torarinsson et al. (26)
that overlapped with UTR regions, none overlapped with the results on this study. A
detailed analysis found that this was caused by differences in human and mouse UTR
coverage (127 cases), gene ortholog information (27 cases), or structure alignment (24

cases).

2.3  Discussion
This chapter describes a systematic approach that was designed to identify RNA structure
elements conserved in human and mouse UTRs which may function coordinately in post-
transcriptional regulation of biological pathways. The approach contains three major
steps: (1) compare RNA structures between orthologous genes; (2) compare RNA
structures among all genes; and (3) select RNA structure groups significantly associated
with certain GO terms. Presumably, mRNAs containing RNA structure elements from the
same group can be coordinately regulated via frams-acting protein factors, like those
having HSL3 and IRE, leading to concerted modulation of a biological pathway. This
method was applied to mining small RNA structures in this study, primarily because
those structures can be more accurately predicted by RNA prediction programs using
only thermodynamic parameters. As more powerful RNA structure prediction programs
become available, particularly those reliant on phylogenetic information for structure
prediction, this approach can be extended to larger RNA structures. The major strength of
this approach is the ability to assign functions to candidate RNA structures in the

genome. In addition, it may help improve the accuracy in RNA structure identification, as
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structures shared by multiple genes can be more reliable than those encoded by a single
gene.

The assessment of FDR is critical in RNA structure analysis (28). Using
randomized sequences, FDR of 15% was estimated for the structures identified in this
study. False negative rate or sensitivity is another important issue, particularly in this
study in which stringent cutoff values were applied at multiple steps. However, it is
difficult to address due to lack of knowledge on true positive structure groups.Two well-
known RNA structure elements, HSL3 and IRE, were examined for sensitivity. For HSL3
and IRE genes that have orthologous gene information, about 35% (6 out of 17) HSL3
elements and 60% (6 out of 9) IRE elements are included in the final result. Thus the
sensitivity can be low for some structure groups and high for others. Several steps can
result in exclusion of conserved functional RNA structures in our method. First, the
current coverage of orthologous genes and UTRs is not complete. In fact, most of the
human HSL3 true positive structures (44 in total) were not even analyzed in this study
due to lack of orthologous gene or UTR information. This will improve as more
comprehensive gene annotations, and more accurate transcription start sites and
polyadenylation sites are available. Second, it is known that RNA structure prediction by
thermodynamic parameters has limitation in accuracy (29). Third, some structures may
reside in genes for which GO information is not adequately annotated.

One potential approach to improve sensitivity is to search the genome with
consensus RNA structures derived from the groups. This idea was tested by first
generating RNA structure patterns for the groups and using them to search human UTRs

by PatSearch (30). Candidate elements were further analyzed for GO terms to ensure
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consistency in their association with biological pathways as the original groups. As
expected, the group size increased exponentially (Figure E.1). While this approach seems
promising in reducing the false negative rate, the control for false positive rate needs to
be further developed. This work is left for future exploration.

About 12% of the structures identified in this work overlap those reported by
other studies (Figure 2.4). Interestingly, each genome-wide approach resulted in a large
fraction of unique structures, suggesting that RNA structure identification is largely
influenced by the chosen method. Many structures in UTRs identified by other studies are
not in our final result (Figure 2.4). This is attributable to several aspects of the design of
our study, in addition to the technical difference and false negative issues described
above. First, this analysis is based on RNA structure groups, and functional structures
located in individual genes are not included. It was found that this is the case for several
recently reported RNA structures in UTRs (31,32). Second, RNA structures with similar
functions but different secondary structures, like IRES, cannot be identified. Third, large
structures, like SECIS, are not examined. Notwithstanding these issues, the structures that
overlap between this study and others are of higher importance for further wet lab
validations (Table D.1).

In summary, the result indicates that there may be present many conserved stem-
loop structures in human UTRs that are involved in coordinate post-transcriptional gene
regulation of biological pathways, similar to HSL3 and IRE structures. This
bioinformatics study lays a ground work for future wet lab validations of putative RNA
stem-loop groups and represents a framework which can be used to analyze RNA

structures identified by other approaches and in other species.
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2.4 Materials and Methods

2.4.1 UTR Sequence and Structure Databases

28,926 human and 26,243 mouse RefSeq mRNA sequences were downloaded from
NCBI. UTRs of RefSeq sequences were extracted according to RefSeq's GenBank
annotation. The information regarding human and mouse orthologs was obtained from
the HomoloGene database (ftp://ftp.ncbi.nih.gov/pub/HomoloGene/). RNA structures in
the UTRs were prepared by a method called “slide and fold” as described in (3). Briefly,
for each UTR sequence, 100 nt subsequences were taken at every 50 nt nucleotide
position from 5° to 3” resulting in consecutive subsequences overlapped with one another
on a 50 nt segment. Subsequences shorter than 100 nt, e.g. at the 5° or 3’ ends, were also
kept. Then all of the subsequences were folded using the RNAsubopt function from the
Vienna RNA package (27), with the setting “-e 0”. With this setting, multiple structures
with the same minimum energy can be generated. Using this method, 575,410 structures

from human UTRs, and 445,106 structures from mouse UTRs were obtained.

2.4.2 RNA Structure Comparison

Pairwise comparisons of RNA structures (human vs. mouse and human vs. human) were
carried out by RSmatch (3), with the “dsearch” function and default scoring matrices for
ss and ds regions. Specifically, nucleotide match scores were 1 and 3 in ss and ds regions,
respectively; and mismatch scores were -1 and 1, in ss and ds regions, respectively. Gap

penalty was -6 for both ss and ds regions. This scoring scheme in effect gave more
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weight on matches in ds regions than those in ss regions. Randomization of RNA

structure was carried out by a PERL script.

2.4.3 Cluster Analysis of RNA Structures

To cluster RNA structures, the normalized dissimilarity scores D;; were calculated
between all structures: Djj=(Smax-Sij)/Smax, Where Si; was the similarity score derived
from RSmatch using the local structure alignment function between structures i and j, and
Smax Was the maximum similarity score obtained from all structure comparisons. For
cluster analysis, the hierarchical clustering function in R was used (33) with the “average
linkage” method for joining nodes. To select groups of RNA structures, the “cutree”
function was applied to cut the hierarchical tree obtained from R into groups using the
normalized dissimilarity scores, which were also called heights in the tree. Structures in
each group were aligned by the multiple structure alignment function of RSmatch (3)
with default scoring matrices. Structures in the same group were also compared in a
pairwise manner; the average of all pair-wise similarity scores for the group was called
the Cohesive Value (CoV) of that group, which indicated the degree of similarity ainong

structures in the group.

2.4.4 Gene Ontology Analysis

The biological process (BP) category of Gene Ontology (GO) was downloaded from the
Gene Ontology database (34). The mapping between genes and GO entries was obtained
from NCBI Gene database (35). Hypergeometric analysis was used to assess whether an

RNA structure group was significantly associated with some GO entries.
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-
S (x,m,n,k) ARy 2.1)

)

Briefly, in the hypefgeometric test, there are four parameters: (1) m, the number
of white balls in an urn, (2) 7, the number of black balls in the urn, (3) %, the number of
balls drawn from the urn, and (4) x, the number of white balls drawn from the urn. The
probability that x out of the £ balls drawn are white from the urn containing m + » balls is
For each RNA structure group M containing multiple genes, all GO entries are examined
to evaluate their associations with M . Through the mapping information between M and
a GO entry G in a GO category C, we are able to calculate four numbers: (1) NI, the
number of genes associated with any GO entry in C, (2) N2, the number of genes
associated with G in C, (3) N3, the number of genes in M associated with any GO entry in
C, and (4) N4, the number of genes in M associated with G in C, where NI > N2 and N3 >
MN4. Th¢ p-value of the GO entry G is calculated by p(G) =f(N4, N2, NI — N2, N3), where

the function f'is defined in Equation 2.1.

2.4.5 Cross-validation with Mouse UTR Structures

After performing the GO analysis and CoV filtering, the selected human RNA structure
groups were cross-validated with their orthologous mouse structures. For each group,
mouse UTR structures corresponding to each human structure in the group were
retrieved. Then the mouse UTR structure which is most similar to the human structure is
selected. All these selected mouse structures are compared by the multiple structure
alignment function of RSmatch which gives the consensus structure. The consensus

structure of human RNA structures was then compared to that of mouse ones. An RNA
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structure group is considered to be highly significant if: (1) the human consensus was
identical to the mouse one or (2) the human consensus was contained within the mouse
one or vice verse. In case (2), a consensus of human and mouse structures was built to

represent the structure group.

2.4.6 Comparison with Structural Elements from other Studies

The datasets for Pedersen et al. and for Washietl et al. were downloaded from their
respective web sites (24,25). The dataset from Torarinsson et al. (26) was obtained from
the authors. BLAT was used to find genomic locations for all structure elements,
including for the ones predicted by this study, and overlapped ones were identified by

their locations.



CHAPTER 3

DETECTING CONSERVED SECONDARY STRUCTURES IN RNA
MOLECULES USING CONSTRAINED STRUCTURAL ALIGNMENT

Constrained sequence alignment has been studied extensively in the past. Different forms
of constraints have been investigated, where a constraint can be a subsequence, a regular
expression, or a probability matrix of symbols and positions. However, constrained
structural alignment has been investigated to a much lesser extent. Here, described is an
efficient method for constrained structural alignment which is applied to detecting
conserved secondary structures, or structural motifs, in a set of RNA molecules. The
proposed method combines both sequence and structural information of RNAs to find an
optimal local alignment between two RNA secondary structures, one of which is a query
and the other is a subject structure in the given set. This allows a biologist to annotate
conserved regions, or constraints, in the query RNA structure and incorporate these
regions into the alignment process to obtain biologically more meaningful alignment
scores. A statistical measure is developed to assess the significance of the scores.
Experimental results based on detecting internal ribosome entry sites in the RNA
molecules of hepatitis C virus and Trypanosoma brucei demonstrate the effectiveness of

the proposed method and its superiority over existing techniques.

29
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3.1 Introduction

In recent years, it is becoming clear that post transcriptional processes at the RNA level
play a major role in determining the complexity of the proteome along with a significant
amount of regulation of gene expression (36,37). Numerous examples of co-regulation of
sets of transcripts in RNA regulons have also been described (38). The identification and
characterization of RNA sequence and structural regulatory elements, therefore, is of
fundamental importance to molecular biology (1,2).

Inspired by the success of proteomics using sequence-based techniques,
researchers anticipated achieving the same level of success in RNA study. Unfortunately,
till now the accomplishment is far from what had been expected. A typical example is
with RNA motif exploration: unlike protein motif searching which can be accomplished
through the development of sophisticated amino acid substitution matrices and sequence
alignment tools, detecting RNA motifs is still at a primitive stage without broadly
accepted methods in the literature. One important reason for the failure of substitution
matrices-based alignment methods in analyzing RNA sequences is that nucleotide bases
do not carry as much functional information as amino acid residues do (39). To properly
characterize an RNA motif, information concerning both distant base interactions and
sequential nucleotide composition is required to define its structure, and hence its
function.

At the sequence level, one important topic is to measure the similarity of two
biosequences (40,41). The next step is to find an alignment between two sequences or

among several sequences. Tools capable of performing sequence alignments include
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BLAST (42), FASTA (43), ClustalW (44), with their primary goal of detecting homologs
from sequence databases.

However, biological activities of many molecules, such as non coding functional
RNAs, are largely dependent on their secondary or tertiary structures. Furthermore, it has
been observed that myriad functions involved in post-transcriptional gene regulation are
accomplished by RNA protein binding mechanisms, which require conserved structural
RNA motifs to be present at the binding sites. Thus, it is biologically justifiable that
conserved RNA motifs in the form of secondary or tertiary structure could be more
important and informative than those in the primary sequence format (45).

This research proposes a new approach to RNA secondary structure alignment
and also applies it to the search for conserved secondary structures, or structural motifs,
in RNAs. The problem tackled here is defined as follows: given a query structure Q and a
set of RNA subject structures, find the subject structures that are most similar to the
query structure where the similarity between the query structure O and a subject
structures S is measured by the score of local matches between Q and S. When the query
structure is a structural motif or a conserved secondary structure, the problem becomes
finding those subject structures containing the conserved secondary structure and
displaying the locations of the conserved secondary structure in those subject structures.

Central to the approach is an efficient constrained structural alignment (CSA)
method for comparing two RNA secondary structures with quadratic time and space
complexities. The CSA method allows the user to annotate a portion of the query
structure, or the entire query structure, as conserved, and then uses this information, or

constraint, to align the query structure Q with each subject structure S in the given set.
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The constraint guides the alignment process, which dynamically varies the alignment
scores between portions of O and S to obtain a more accurate alignment between the two
structures.

The RNA structures are obtained by folding RNA sequences using either mfold
(46) or RNAfold (27). In (47) a general edit distance was considered for comparing RNA
secondary structures. RNAforester (48) extended the tree model to a forest model.

Corpet and Michot (49) designed RNAlign to provide more rigorous RNA
structural comparisons at the cost of computing efficiency: O(n*) in space and O(’) in
time where » is the length of the RNA structures to be compared. Several other tools are
available that carry out RNA folding and alignment at the same time, such as Dynalign
(50) and FOLDALIGN (51). These tools can achieve better structure prediction and
alignment at the expense of computing time. In addition, algorithms using derivative-free
optimization techniques, such as genetic algorithms and simulated annealing (52,53) have
been proposed to increase the accuracy in structure-based RNA alignment. Most of these
methods suffer from high time complexities, making the structure-based RNA tools much
less efficient than sequence-based tools.

There are pattern-matching methods for RNA analysis (39,54,55). In (55) a
sequence-scanning technique was proposed, called PatSearch. The pattern present in an
RNA secondary structure is depicted by a series of pattern description units. The
sequences in a dataset are scanned one by one to decide whether the given pattern can
match these sequences. In another related study (39), a profile-based sequence-scanning
algorithm was proposed and implemented under the name ERPIN. Like most statistical

model based methods, ERPIN requires a multiple alignment of sequences with secondary
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structure annotation and infers a statistical secondary structure profile (SSP). This SSP is
then matched with the sequences in the dataset by using a dynamic programming
algorithm to calculate scores of the best matches.

Some probabilistic models, such as stochastic context-free grammars (SCFGs)
(56) and covariance models (CMs) (57), have been applied to RNA structural alignment.
A model is first trained by a set of manually curated sequences with known structural
similarities. The trained model is then used to compare with other related RNA
structures. Since a prior multiple sequence alignment (with structural annotation) is
needed to train the model, its applicability is limited to RNA types for which structures of
a large number of sequences are available, such as snoRNA and tRNA (56,58). In (59)
SCFGs were extended to find homologs of structured RNA sequences using RIBOSUM
substitution matrices derived from ribosomal RNAs to score the matches in single-
stranded (ss) and double-stranded (ds) regions. The pairwise SCFG method requires
computing time as high as O(#) (59). More recently, better algorithms based on the
probabilistic models have been developed (60,61). However these methods do not deal

with constrained alignments as described in the next section.

3.2  Methods
Constrained structural alignment (CSA) constructs the alignment between a query RNA
structure and a subject RNA structure based upon the knowledge of the conserved region
in the query structure. This method has been implemented as part of the web server

RADAR which is described in Chapter 4.
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without crossing any bond. The extended loops considered here differ from the
commonly used loops described by (46) in that the extended loops can be part of a stem
in an RNA secondary structure.

The above obtained extended loops can be organized into a hierarchical tree
according to their relative positions in the secondary structure, where each node
corresponds to an extended loop (Figure 3.3(B)). The tree construction is as follows. The
root node is established as the extended loop containing the 5° most and 3° most bases.
Within the root loop, each base-pair 7 is used to form a subtree (or child tree) whose root
corresponds to another extended loop containing #. This process is iteratively performed
until no further extended loop can be found and the tree is completely constructed.
Furthermore, we require that the nucleotide pairs be processed from 5' to 3' within the
extended loops. Consequently, the final tree is an ordered tree in which the order among
sibling nodes is important.

In describing the relative positions between two structural components (single
base or base pairs), the precedence and hierarchical relationships between them are taken
into consideration. Let ¢; and ¢, be two structural components in an RNA sequence and
its secondary structure. It is said that ¢; precedes c; if at the sequence level the 3'-base of
c1 is closer to the sequence's 5'-end than the 3’-base of ¢;. To specify the hierarchical
relationship of ¢; and ¢;, a mapping from the structural components to extended loops in
the tree needs to be established that will represent the RNA secondary structure. It is
obvious that each single base component can be mapped to a unique loop. However, a
base pair component can be mapped to up to two alternate loops where one is an ancestor

of the other. To resolve this ambiguity, the ancestor loop is chosen as the base pair's
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structures, and the DP scoring table will be fully filled with alignment scores from which
we can find the optimal local alignment between the two given RNA secondary

structures.

3.2.3 Scoring Scheme

To measure the quality of an alignment, a scoring scheme must be provided. The
proposed CSA method leaves great latitude for the choice of various scoring schemes.
One important aspect of a scoring scheme is to define an alignment function of two
structural components to measure the quality of matching one component to the other.
The other important aspect is a penalty parameter, which punishes the action of aligning
structural component(s) to gap(s). During the course of computation, one structural
component (single base or base pair) could be matched to a gap; or one parent
substructure or child substructure could also be matched to a big gap. Intuitively, the
bigger the gap, the heavier the penalty is. In this implementation, a basic penalty was
used for the smallest gap involving only one base. Then the larger gap is punished

proportionally to the number of bases involved in the gap. Let 1 denote the basic penalty

in the following discussions. Let x be a structural component in the query structure and
let y be a structural component in the subject structure. Let A(x, y) denote the alignment
score between x and y. This function can be extended to represent the alignment score
between two substructures Dy, Dg from the query structure Q and the subject structure S,

respectively, as follows:
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@(Dy,Dg) = D h(i, ) + uG 3.1)

i_eDQ
Jebg

where G represents the total number of gaps in aligning Dg and Ds.

In calculating the alignment function A, the constraint, or conserved region,
annotated in the query structure needs to be considered. Refer to Figure 3.1. Each
position of the conserved region in the query RNA structure is marked using a special
character ‘*’ underneath the position. This is termed binary 0/1 conservation since any
position in the query RNA structure is treated to be either 100% conserved (if it is marked
with ‘*’) or not conserved at all. If it has been found, from wet lab experiments or other
sources, that a particular RNA structure contains a motif that needs to be searched for in
other RNA structures from a data set, then that particular RNA structure can be used as a
query structure and that motif region can be marked by ‘*’ to indicate that it is conserved
in the query structure.

Let g(a, 8) be the alignment score between two structural components «, f
where no constraint is involved. In our implementation presented here, g( & , 8) is similar

to that defined in (3), as shown below:

1 if o, 3 are single bases and ot =8

-1 if &, B are single bases and o #

-2 if a is a single base and 3 is a gap, or vice (3.2)
g(a, f)= . : '

3 if a, B are base pairs and o =3

1 if a, B are base pairs and o # 8

|\~ 4 if o is a base pair and f is a gap, or vice versa
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The alignment function % in Equation (3.1) is calculated by:

_ Ag(X',¥)  if x is constrained
h(x,y)
g(x,y) otherwise

(3.3)
where x (y, respectively) is a structural component in the query RNA structure (subject
RNA structure, respectively), and 4 is used to increase or diminish the score to take into
account the conserved region in the query structure. When x is constrained, we use x’ to
represent the corresponding structural component without the constraint.

With binary 0/1 conservation, 4 is defined as

L
A=1+=— 3.4
N G4

where L is the length of the conserved region and N is the total length of the query RNA

structure.

3.2.4 Recurrence Formulas

This subsection presents scoring formulas for aligning partial structures induced by
structural components from the query structure Q and the subject structure S respectively.
The recurrence formulas in the proposed dynamic programming algorithm take into
account the constraint occurring in the query structure. When a structural component
involved in an alignment is a base pair, only the child and partial structures induced by
the base pair need to be considered (3). The reason is that the parent structure induced by
a base pair can always be derived as a partial structure induced by another structural
component and hence is considered when the alignment score of that structural

component is calculated (3).
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Given the query RNA structure Q and the subject structure S, the proposed CSA
method is a dynamic programming (DP) algorithm that matches partial structures from Q
and S, respectively. Let x be a single base in Q and let y be a single base in S. Let x°
denote the structural component that precedes x. In matching the partial structure S, with
the partial structure Sy there are three cases: (i) x is aligned with y; (ii) x is aligned with a
gap; and (iii) y is aligned with a gap. Thus the score of matching S, with S, can be

calculated by the following equation:

o(S,,,8,,)+h(x,)
@(S,,S,) =max {@(S,,S,)+u (3.5)
P(S,,8 )+ u
where Ah(x,y) is defined in Equation (3.3) and # = -2 is the basic penalty for aligning a
base with a gap, cf. Equation (3.2).

Next, consider the situation where x is a base pair and y is a single base. (The
situation where x is a single base and y is a base pair is similar and hence omitted.) As
discussed before, besides the partial structure S, the child structure C, for the base pair x
also needs to be compared. First the structural alignment score between the child
structure C, and the partial structure Sy is calculated. There are two cases: (i) the single
base component y is aligned with a gap; and (ii) the base pair x is aligned with a gap.

Therefore,

P(C..S )+ i

C.S ) =max
9(C,,S,) {¢(Sx,,,Sy)+2.,u (3.6)
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In aligning the partial structure S, with the partial structure S), there are three
cases: (i) the single base y matches with a gap; (ii) the partial structure S, matches with

the child structure C,; (iii) the partial structure S, matches with the parent structure P;.

Thus,

0(S,,8,)+ p
(D(Sx’Sy) = max ¢(Cx’Sy)+|Px |'Iu (3'7)
(P, S )+IC, .1

Then, consider the situation where x is a base pair and y is also a base pair. This
requires the computation of four alignment scores because each base pair corresponds to

two structures: one child structure and one partial structure. While aligning the child

structure C, with the child structure C,, it is clear that

0(S,,,S ;) +h(x, )
@(C,,C))=max yo(S ,,C,)+2.u (3.8)
¢(Cx9Syp ) + 2’#

since both x and y are the last components in the respective child structures.

Equation (3.9) gives alignment score between the partial structure Sy and the child

structure Cy:

PSS, ) +2u
q)(Sx’Cy):maX q)(Px?Cy)-l_le |'/’t (3'9)
P(C,CH+| P, |1

The first case corresponds to that y is aligned with a gap. If y does not match with

a gap, it can be shown that, the second and third cases in Equation (3.9) cover all possible
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situations. Similarly, we can calculate the score of aligning the child structure C, and the

partial structure S, as shown in Equation (3.10):

P(S,,.8,)+2.u
o(C,,S,)=max 1p(C,,P,)+| C, | .1 (3.10)
qo(cxbcy)-'- | Py | /u

In aligning the partial structure Sx with the partial structure Sy, there are five
cases: (i) the parent structure Px is matched with the parent structure Py and the child
structure Cx is matched with the child structure Cy; (ii) the child structure Cx is matched
with gaps; (iii) the child structure C, is matched with gaps; (iv) the parent structure Px is

matched with gaps; and (v) the parent structure P, is matched with gaps. Therefore,

(0(P,,P,)+9(C,,C,)

PP, S, )+|C, | .u

@(S,,S,) =max <o(S,,P,)+|C, |.u (3.11)
o(C,,S,)+| P, |.u

0(5,,C,)+| P, |4

It can be shown that this CSA method for aligning the query structure Q and the
subject structure S allowing constraints to exist in Q has a polynomial time complexity of

O(mn) where m is the length of the query structure and » is the length of the subject

structure.
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3.2.5 Computation of p-Value

To determine what match is likely or unlikely to occur by chance, the computation of a
statistical measure, namely a p-value, is incorporated into the CSA method (Figure 3.2).
In (62) it was showed that in the case of a gapless alignment, the distribution of
alignment scores of random sequences is the Gumbel or extreme value distributiqn (63).
However for a gapped alignment, there is no theory that predicts the distribution of
alignment scores for random sequences. It has been conjectured based on numerical
evidence that the score distribution is still of the Gumbel form (64-66). This assumption
is adopted while computing the statistical measure. For the comparison of random
sequences of sufficient lengths m and », the number of distinct local alignments with

score at least x is approximately Poisson distributed, with mean

E(x) = Kmne™ (3.12)

where A and K can easily be calculated (62). The optimal alignment score S’ follows an

extreme-value distribution with

Prob(S'> x)=1-¢™%® (3.13)

Accurate estimation of A and K is essential to using these equations. The Island
method (67,68) has been used to do the estimation. As suggested by this method, first the
constrained structural alignments of biologically occurring RNA secondary structures

chosen randomly from Rfam (1) is computed. While performing the alignment between
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two RNA secondary structures, one of the structures are annotated to be constrained.
Thus the scores obtained from the alignments are consistent with the proposed
constrained structural alignment scoring scheme. The local alignment results are several
locally optimal matches, each being comparable to an island in the large sequence. All
the scores that are greater than a threshold ¢ are selected. In this study, the ¢ value is set
to 10. The threshold value is chosen such that it is a reasonable score obtained when
aligning short RNA motifs of the commonly occurring length. Let the set ; of such local

alignment islands have cardinality R, and the mean score in excess of ¢ for these islands

be S;:

SIS -c]

R 3.14
, =t (3.14

Cc

where S(i) is the score of island i. Then the maximum-likelihood estimator for 4 is

1 =4
b =In(l+ ) (3.15)

4

The maximum likelihood estimator for K is

K. =Re 3 (3.16)
where 4 is the aggregate “area” of the search space from where the local alignments are
taken. If a single pair of structures of length m and » is used, then 4 = mn. If B such
comparisons are performed, then 4 = Bmn. Once A, and Kc are determined, these values
are used to calculate the p-value for an alignment score x by plugging A, and K, in
Equations (3.12) and (3.13). The p-value is the probability, by chance, that there is

another alignment with a similarity score greater than or equal to the score x. The p-value
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is a measure of the reliability of the score x. The smaller the p-value, the more reliable x

is.

3.4  Experiments and Results

The proposed constrained structural alignment method was tested by detecting internal
ribosome entry sites in the RNA sequences of 7. brucei and hepatitis C virus respectively.
An internal ribosome entry site (IRES) is a nucleotide sequence which functions to allow
for translation initiation in the non-coding region of an mRNA sequence (69). An IRES
element is able to attract the eukaryotic ribosome to close vicinity of a start codon and
thus to initiate its translation. The secondary structure of an internal ribosome entry site
in T. brucei mRNA sequences is portrayed in Figure 3.5.

Two different datasets were used in these experiments. For the first dataset D1, 20
non-redundant untranslated regions (UTRs) of 7. brucei mRNA sequences that contain
internal ribosome entry sites were extracted from UTRdb (70). These IRES containing
mRNA sequences, listed in Table 3.1, formed the positive data for the dataset D1. Their
lengths are in the range 85-993 nt. The presence of IRESs in these sequences was
suggested by UTRscan (70) which is a sequence analysis tool provided by UTResource.
UTRscan analyzes user-submitted sequences for the functional elements defined in the
UTRsite database of UTResource. Notice that even though the 20 UTRs of T. brucei
mRNA sequences contain internal ribosome entry sites, there are no known conserved
secondary structures, or structural motifs, in the IRES-containing UTRs. Also, 30 other
sequences were added from UTRdb that were not known to contain internal ribosome

entry sites. These 30 sequences formed the negative data for the dataset D1. All these 50
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sequences were folded using RNAfold (27). Finally, 5 of the 20 IRES-containing 7.
brucei sequences were randomly selected and the IRES-containing region in each of the 5
sequences was extracted. These IRES-containing regions were separately folded using

RNAfold and that formed the query structures in our experiment involving D1.

A A

C G

U—AaA A A AU
C—G AG

U—Aa A—U
cC—G A—U
U—A A G—U
U—a A A
U—A A c
U—A Cu—a
A—U U—A
C—G G—C
G—C G—C

CACUUG AGCGAUCAUCAUAAUAA GAU

Figure 3.5 The secondary structure of an internal ribosome entry site in T. brucei mRNA
sequences.
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Table 3.1 The 20 IRES-containing 7. brucei UTR Sequences used as Positive Data in D;

EMBL Description IRES | IRES
accession start end
number
AB033824 | 5'UTR in T. brucei GP110 mRNA for GPI anchor 5 92
biosynthesis protein, complete cds.
AF007547 | S'UTR in T. brucei Trab5SB mRNA, complete cds. 73 158
AF049901 | 5'UTR in T. brucei rthodesiense prohibitin mRNA, 72 166
complete cds.
AF068705 | S'UTR in T. brucei rhodesiense transferring-binding 475 558
protein (ESAG 6-d) mRNA, complete cds.
AF101480 | S'UTR in T. brucei pf20 homolog (TWD1) mRNA, 1 101
complete cds.
AF189284 | 5'UTR in T. brucei nucleolar G-protein NOG1 168 254
(NOG1) mRNA, complete cds.
AF226674 | S'UTR in T. brucei 20S proteasome beta 5 subunit 267 346
(PSB5) mRNA, complete cds.
AF301417 | S'UTR in T. brucei procyclin-associated gene 2 9178 | 9265
polypeptide (PAG2), procyclin-associated gene 4
polypeptide (PAG4), GU2 (GU2), and GU1 (GU1)
genes, complete cds.
AF404116 | S'UTR in T. brucei proteasome regulatory non-ATP- 135 235
ase subunit 8 (Rpn8) mRNA, complete cds.
AJ242519 | 5'UTR in T. brucei mRNA for cyclin 2 (CYC2 gene) 6 103
AM159084 | 5'UTR in T. brucei mRNA for RNA polymerase I 3 97
subunit RPA12 (RPA12 gene)
AM159570 | S'UTR in T. brucei mRNA for RNA polymerase I 213 308
subunit RPC40 (RPC40 gene)
AY157028 | S'UTR in T. brucei putative G1 cyclin CycE2 124 217
mRNA, complete cds.
AY157032 | S'UTR in T. brucei putative mitotic B-type cyclin 142 239
CycB3 mRNA, complete cds.
AY370775 | 5'UTR in T. brucei strain Lister 427 Rab23 mRNA, 22 116
complete cds.
K02198 5'UTR in T. brucei spliced leader mRNA (pSLc4) 11 109
from procyclic stage.
K02945 5'UTR in T. brucei gambiense calmodulin mRNA 2 15 104
with a spliced leader sequence.
L03777 5'UTR in T. brucei protein kinase (nrkB) allele nrkB- | 901 993
2 mRNA, complete non-functional cds and alleles
nrkB-1 and nrkB-3.
U18329 5'UTR in T. brucei small GTP-binding protein 75 157

mRNA, clone rtb9, complete cds.
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Table 3.1 The 20 IRES-containing T. brucei UTR Sequences used as Positive Data in D,

(Continued)
EMBL Description IRES | IRES
accession start end
number
U80910 5'UTR in T. brucei ribonucleotide reductase large 8 85
subunit (RNR1) mRNA, complete cds.
Table 3.2 The 20 IRES-containing HCV Sequences used as Positive Data in D,
EMBL Description IRES | IRES
accession start end
number
AF021888 | HCV strain GE 174 5' non-coding region type la 1 190
AF021898 | HCV strain GE 56 5' non-coding region type 4 1 190
AF021904 | HCV strain SL 34 5' non-coding region type la 1 190
AF034628 | HCV type 3 5' noncoding region, partial sequence 2 253
AF041264 | HCV isolate 498 5' untranslated region 1 191
AF041266 | HCV isolate 611 5' untranslated region 1 191
AF041267 | HCV isolate 614 5' untranslated region 1 191
AF041300 | HCV isolate 966 5' untranslated region 1 191
AF055303 | HCV type la strain CHCH3 5' untranslated region, 1 240
partial sequence
AF055305 | HCV type la strain CHCHS 5' untranslated region, 1 239
partial sequence
AF041309 | HCV isolate 982 5' untranslated region 1 191
AF041329 | HCV type 2c isolate 760 5' noncoding sequence and 1 267
core protein gene, partial cds
AF056005 | HCV type 1b strain CHCH6 5' untranslated region, 1 237
partial sequence.
AF055301 | HCV type la 5' untranslated region, partial sequence. 1 238
AF057147 | HCV type 2b strain CHCH13 5' untranslated region, 1 240
partial sequence.
AF057150 | HCV type 3a strain CHCH16 5' untranslated region, 1 237
partial sequence.
AF077228 | HCV isolate patient 20 5' non-coding region, partial 1 250
sequence
AF141989 | HCV isolate 8-63 polyprotein mRNA, 5' untranslated 1 195
region, partial sequence
AF216795 | HCV isolate SOM1 5'UTR, partial sequence 3 205
AF217298 | HCV clone Sotl10 S'UTR sequence 1 256
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The second dataset D2 was made up of 20 non-redundant hepatitis C virus (HCV)
sequences, which contained internal ribosome entry sites, from Rfam (1). These
sequences belong to the IRES HCV family in Rfam. Table 3.2 lists these sequences,
which formed the positive data for the dataset D2. Their lengths are in the range 190-267
nt. In Rfam, these 20 HCV sequences share a consensus or conserved secondary
structure. Another 30 sequences were taken from UTRdb and added to the dataset D2.
These 30 sequences did not belong to the hepatitis C virus, and were not known to
contain internal ribosome entry sites. These 30 sequences formed the negative data for
the dataset D2. All these sequences were folded using RNAfold (27). Separately, 5 of the
20 IRES containing HCV sequences were randomly selected from the dataset D2 just the
IRES region from each of the 5 sequences was extracted. These IRES containing regions
were folded using RNAfold (27). The resulting 5 structures formed the query structures
in the experiment involving D2.

On these two datasets D1 and D2 , constrained structural alignment (CSA)
method was applied, first using the binary conservation option (0/1 constraints), and then
using sequence logos, by aligning each of the 5 selected query structures one by one with
the RNA secondary structures in D1 and D2, respectively. (For the binary conservation
option, every base in a query structure was marked with “*””). For comparison purposes,
two other methods were also applied to the same datasets. They were the regular pair-
wise structural alignment method without constraints offered in RSmatch (3) and the
RNAforester structural alignment method (48). Thus, a database search was carried out
with each of these alignment methods by aligning the corresponding query structures one

by one with the subject structures in D1 and D2, respectively. Then, from the top 20 hits,
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i.e. the top 20 RNA subject structures with the largest alignment scores, in a search result,
the true positives and false positives were computed. True positives are those hits in
which an internal ribosome entry site is actually present. False positives are those hits
that appear in the search result as containing internal ribosome entry sites, though in
reality they are not known to contain internal ribosome entry sites. The error rate (e),

defined below, is used to evaluate the effectiveness of an alignment method:

FP
TP+FP

(3.17)

where TP is the number of true positives, FP is the number of false positives, and TP +
FP =20 in these experiments.

Table 3.3 shows the results and presents the average error rate obtained from
using the S different T. brucei query structures for each alignment method. Table 3.4
presents this data for the 5 different queries belonging to the HCV dataset. As can be seen
from the tables, the proposed CSA method with 0/1 constraints gives the lowest average
error rate, outperforming the other three alignment techniques. These results were
obtained by using the optimal structure for each sequence. The alignment algorithms
were also compared by using twenty percent suboptimal structures for each sequence,
and the qualitative conclusion remains the same.

It was observed that there is little similarity shared by the IRES-containing T.
brucei sequences. The average pairwise sequence identity for the 20 IRES-containing T.
brucei sequences is 29%. This explains why the three alignment algorithms have high
error rates for the 7. brucei dataset (Table 3.3). On the other hand, the 20 IRES-

containing HCV sequences are conserved at both the sequence and the secondary
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structure level. The average pairwise sequence identity for the 20 IRES-containing HCV
sequences is 88%. Under this circumstance, all the three alignment algorithms have good
performance; the algorithms have much lower error rates for the HCV dataset (Table 3.4)

than for the T brucei dataset (Table 3.3).

Table 3.3 The Average Error Rate Calculated by using 5 . brucei Queries against the
Dataset D,

Query CSA with RSmatch RNAforester
0/1 Constraints
TP’ FP TP FP TP FP
Ql 14 6 15 5 11 9
Q2 11 9 10 10 11 9
Q3 11 9 10 10 12 8
Q4 12 8 11 9 10 10
Q5 12 8 10 10 12 8
Average 0.40 0.44 0.44
error rate

* TP = True positive, FP = False positive that occur in the top 20 hits of a search.

Table 3.4 The Average Error Rate Calculated by using 5 HCV Queries against the
Dataset D;.

Query CSA with RSmatch RNAforester
0/1
Constraints
TP [FP TP |FP TP | FP
Q1 18 2 18 2 16 4
Q2 20 0 20 0 17 3
Q3 19 1 17 3 18 2
Q4 20 0 20 0 18 2
Q5 19 1 19 1 17 3
Average 0.04 0.06 0.14
error rate

* TP = True positive, FP = False positive that occur in the top 20 hits of a search.
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From Table 3.3, it can be seen that among the top 20 hits, the CSA method with
0/1 constraints found 11-14 positive structures and 6-9 negative structures. The consensus
of the found positive structures may suggest a conserved secondary structure or structural
motif in the 7. brucei UTRs. Figure 3.6 shows the consensus secondary structure together
with its Vienna style Dot Bracket representation of the top 10 positive structures most
similar to query Q1 in Table 3.3 according to the CSA method with 0/1 constraints. The
consensus secondary structure is computed by the multiple structural alignment (MSA)
function of the RADAR tool (5). For the HCV data in Table 3.4, the consensus
secondary structure found by the proposed constrained structural alignment method in

combination with RADAR’s MSA function is consistent with that documented in Rfam

(1).
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Figure 3.6 A putative structural motif in 7. brucei UTRs obtained from the multiple
structural alignment of the top 10 positive structures that occurred in the search result of
query Q1 in Table 2.3 using the proposed CSA method with 0/1 constraint.
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3.5 Conclusions

Here a constrained structural alignment algorithm for matching two RNA secondary
structures was introduced. A statistical measure was developed for assessing the
significance of alignment scores. The proposed techniques are applied to searching for
internal ribosome entry sites in RNA sequences of 7. brucei and hepatitis C virus,
respectively. For the HCV sequences, there is a known consensus secondary structure, as
documented in Rfam (1), and our method accurately detected the consensus secondary
structure in the HCV sequences. For the T. brucei sequences, there is little similarity
shared by their IRES containing sequences, and our experimental results suggested the
possible existence of a conserved secondary structure in the IRES containing 7. brucei
sequences. The results also showed the superiority of the proposed techniques over

existing methods.



CHAPTER 4
RADAR: A WEB SERVER FOR RNA DATA ANALYSIS AND RESEARCH

RADAR is a web server that provides a multitude of functionality for RNA data analysis
and research. It can align structure-annotated RNA sequences so that both sequence and
structure information are taken into consideration during the alignment process. This
server is capable of performing pairwise structure alignment, multiple structure
alignment, database search and clustering. In addition, RADAR provides two salient
features: (i) constrained alignment of RNA secondary structures, and (ii) prediction of the
consensus structure for a set of RNA sequences. RADAR will be able to assist scientists
in performing many important RNA mining operations, including the understanding of
the functionality of RNA sequences, the detection of RNA structural motifs and the

clustering of RNA molecules, among others.

The web server together with a software package for download is freely

accessible at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm.

4.1 Introduction

The web server, RADAR (acronym for RNA Data Analysis and Research), performs a
multitude of functions related to RNA structure comparison, including pair-wise structure
alignment, constrained structural alignment, multiple structure alignment, database
search, clustering and consensus structure prediction. The aim behind developing this

web server was to have a versatile tool that provides a computationally efficient platform
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for performing several tasks related to RNA structure. RADAR has been developed using
Perl-CGI and Java. In each run, the server can accept at most 50 RNA sequences or
secondary structures for pair-wise structure alignment and constrained structural
alignment and at most 10 RNA sequences or secondary structures for the other functions
where each sequence or structure has at most 300 bases, though the downloadable version
does not have this restriction. For the sample data provided by the server, it takes a few
seconds for most of the server’s functions to complete and display results on the web. It
takes about one minute to produce a multiple structure alignment when RNA sequences
are fed as input. The database search function needs several minutes to search the Rfam
database (1); the results of this function are returned to the user via email, rather than on

the web.

42  Method

RADAR employs the RSmatch algorithm (3) for computing the alignment of two RNA
secondary structures. Briefly, it decomposes each RNA secondary structure into a set of
basic structure components that are further organized by a tree model. With this model,
pseudoknots are not allowed. A dynamic programming algorithm is employed to align
the two RNA secondary structures. RSmatch is capable of performing both global and
local alignment of two RNA secondary structures. The time complexity of the algorithm
is O(mn), where m and n are the sizes of the two structures, respectively. This method is
an efficient solution to the problem of RNA structure alignment. By using this structure
comparison algorithm, other functionalities were developed such as pair-wise structure

alignment, multiple structure alignment, database search, clustering, constrained
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structural alignment and consensus structure prediction, and incorporated into RADAR.
Pair-wise structure alignment involves the alignment of a query structure with each of the
subject structures in a set. Multiple structure alignment uses the same alignment
algorithm along with a position specific scoring matrix to build up an alignment by
including one structure at a time until no appropriate structure can be included in the
alignment (3). Database search is done by aligning a query structure one by one with the
consensus structures of the non-coding RNA families stored in the release 8.0 of Rfam
(1) to find the consensus structures similar to the query structure. This function returns
the top k hits as the search result, where £ is an adjustable parameter. Clustering is done
to compute and display a similarity matrix for a set of RNA secondary structures. A
constrained version of RNA structure alignment has been developed to improve the
sensitivity of the alignment (as described in Chapter 3). This allows the user to annotate a
region of an input RNA structure as conserved. The conserved region, or constraint, is
incorporated into the alignment process to produce biologically more meaningful
alignment results. RADAR also includes a novel method for computing the structure of a

group of closely related RNA sequences. This method is explained below.

4.2.1 Consensus Structure Prediction
This method works in four steps, as described below:
i.  Determine individual RNA structures: For the input RNA sequences, compute
their structures having energies that fall within a particular range of the minimum

energy using the Vienna RNA package’s RNAsubopt function (27). Therefore, for
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each sequence there can be more than one possible structure. The result consists
of the predicted RNA structures for all the RNA sequences in the input file.
Compute a pair-wise scoring matrix: In this step, the pair-wise alignment scores
between all structures except for the structures that represent the same RNA
sequence are computed. The result is a matrix that gives the score of alignment
for every pair of structures. The score of comparison between RNA structures of
the same sequence is set to 0, since these structures are for the same RNA
sequence and so they are treated as being very close to each other.

Select one structure for each RNA sequence: From the matrix produced in step ii,
select the pair of structures which have the best score. These structures are then
said to be the chosen structures for the RNA sequences they correspond to. The
pair-wise scoring matrix is modified to eliminate all the other structures of these
RNA sequences. Once again the same process of selecting the best pair of
structures and then eliminating the other structures of the sequences they belong
to is carried out. This is repeated until we a structure is selected for each of the
input sequences.

Predict the common RNA substructure: This step deals with predicting the
consensus RNA substructure that is common to as many RNA sequences in the
input file as possible. This is obtained by computing a multiple structure

alignment of the RNA structures selected in step iii.



60

4.3 Web Server

The RADAR web server together with a standalone downloadable version is freely

available at http://datalab.njit.edu/biodata/rna/RSmatch/server.htm.

43.1 Input

RADAR accepts, as input data, either RNA sequences in the standard FASTA format or
RNA secondary structures in the Vienna style Dot Bracket format (27). The input data
can be stored in a file to be uploaded to the server or entered directly into the text boxes
provided by the server. Figure 4.1 shows the input interface of RADAR for aligning an
RNA secondary structure with a set of subject structures. When RNA sequences are fed
as input, RADAR invokes Vienna RNA v1.4 (27) to fold the sequences into RNA
secondary structures. Based upon the function chosen, there are different alignment
parameters such as gap penalty, scoring matrix, alignment type (global or local) or
folding parameters such as minimum free energy, sliding window size, etc. that can be
customized by the user. For performing constrained structural alignment, it is required
that users annotate the query RNA structure to indicate which region is conserved by

marking the region with “*’.

43.2 Output

Upon completion of a structure alignment job, RADAR presents the alignment result on a
web page where the alignment result can be downloaded to a file on a local machine. In

Figure 4.2, the common region of two RNA secondary structures given in an alignment
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The input sequences are shown on the top of the ’ﬁgure and the consensus
structure is shown at the bottom of the figure. The consensus structure is that of an iron
response element (IRE) (72) and all the input sequences are known IRE-containing
sequences. The IRE motif is displayed as a multiple structure alignment where the
alignment shows the positions at which the motif occurs in each input sequence. These
positions indicate the offsets within a sequence. For example, in NM_014585:151-250,

the motif begins at the 55th position and ends at the 77th position of the sequence.

4.4 Conclusions

’i‘he RADAR web server provides multiple capabilities for RNA structure alignment data
analysis, which includes pair-wise structure alignment, multiple structure alignment,
constrained structural alignment, database search, clustering and the prediction of a
consensus RNA structure from structure alignments for a set of RNA sequences. The web
server is implemented in Perl-CGI, rather than SOAP, and hence it requires human—

computer interaction.



CHAPTER 5

DETECTING CONSERVED RNA SECONDARY STRUCTURES IN VIRAL
GENOMES: THE RADAR APPROACH

5.1 Introduction

Conserved regions, or motifs, present among RNA secondary structures serve as a useful
indicator for predicting the functionality of the RNA molecules. Automated detection or
discovery of these conserved regions is emerging as an important research topic in health
and disease informatics. In practice, biologists favor integrating their knowledge about
conserved regions into the alignment process to obtain biologically more meaningful
similarity scores between RNAs. Constrained alignment method (described in chapter 3)
was used for detecting conserved regions in RNA secondary structures of some viral
genomes. The experimental results show that the proposed approach is capable of
efficiently detecting conserved regions in the viral genomes and is comparable to existing

methods.

5.2 Implementation and Experimental Results
Several experiments have been conducted to evaluate the performance of the proposed
constrained structural alignment algorithm by applying this method to finding structural
motifs in viral genomes. Study of viral genomes has shown that they often contain
functionally active RNA structural motifs that play an important role in the different
stages of the life cycle of the virus (73). Detection of such motifs or conserved regions

would greatly assist the study of these viruses.
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One of experiments designed was to search for a short GC-rich hairpin (tetraloop) which
follows an unpaired GGG element, shown in Figure 5.1, present at the 5° end of the
Levivirus genome (73). Constrained structural alignment algorithm, with the binary
conservation option, was applied to a dataset comprising 6838 RNA structures each with
length 200 nt formed from ten Levivirus genomes and four other randomly selected viral
genomes. The query structure used was the GC—rich hairpin. There were ten structures in
this dataset containing the region of interest. The algorithm was able to correctly identify
8 out of the 10 structures. The same experiment was repeated using the non-constrained
alignment method of RSmatch (3), and it could identify only 6 out of the 10 structures.
These six structures were part of the eight structures found by the constrained structural
alignment (CSA) algorithm. This shows that the CSA method improves upon the
performance of the existing RSmatch method and has a better sensitivity. The Infernal
tool (45) was also applied to this same viral genome dataset. Infernal also detected only 6
out of the 10 structures. Again, these six structures were part of the eight structures found

by the CSA method.






CHAPTER 6

THE STRENGTH OF A POLYADENYLATION SITE IS INFLUENCED BY THE
STRUCTURAL STABILITY OF THE SURROUNDING REGION AND ITS
DISTANCE FROM THE NEIGHBORING GENE
Polyadenylation is a crucial step towards the maturation of almost all cellular mRNAs in
eukaryotes. Studies have identified several cis-elements besides the widely known
polyadenylation signal (PAS) element (AATAAA or ATTAAA or a close variant) which
may have a role to play in polyA site identification. This study investigated the
differences in structural stability of sequences surrounding poly(A) sites. It was found
that for the genes containing single poly(A) site, the surrounding sequence is most stable
as compared with the surrounding sequences for genes with alternative poly(A) sites.
This suggests that structure may be providing some evolutionary advantage for genes
containing a single poly(A) sites that prevents other poly(A) sites from arising. In
addition this research shows that the structural stability of the region surrounding a
polyadenylation site correlates with its distance from the closest neighboring gene. The

shorter the distance, higher was the structural stability.

6.1 Background
Polyadenylation is an important post-transcriptional regulation step towards the
generation of mature mRNA transcripts that can be translated to proteins (74). This is a
two step process that includes a specific cleavage at the 3’ end of nascent mRNA and
then the addition of poly(A) tail (75). The poly(A) tail is located at the 3’-end of all
mature mRNAs except some histone genes (18,74), and is critical for many aspects of

mRNA metabolism, including mRNA stability, translation, and transport (76,77).
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The polyadenylation process involves the use of two major components: the cis-
elements or poly(A) signals of the pre-mRNA, and the trans-acting factors that carry out
the cleavage and the addition of the poly(A) tail at the 3’-end (78). Sequences flanking
the poly(A) site is called the poly(A) region. Several cis-elements residing near to
poly(A) sites have been found to promote polyadenylation. A hexamer AAUAAA or
AUUAAA or a close variant, usually referred to as the polyadenylation signal (PAS), is
located 10-35 nt upstream of most human poly(A) sites (79). In addition, TGTA, TATA,
G-rich and C-rich elements in upstream or downstream regions have been implicated in
regulation of polyadenylation by different experimental and/or bioinformatics studies
(19,80,81). Some studies have also identified RNA structure to be a critical determinant
of poly(A) site definition (82,83). Here, the primary goal was to further investigate the
role played by RNA secondary structure in polyadenylation and to study the different
types of poly(A) sites for factors that affect their strength.

More than half of all human genes have been found to contain multiple poly(A)
sites (79,84), which leads to alternative gene products, while others have only a single
poly(A) site. The multiple poly(A) sites can be located downstream of the stop codon in
the 3°-most exon, leading to transcripts with variable 3’-untranslated regions (UTRs), or
in internal exons, leading to transcripts with variable protein products and 3°-UTRs (85).
In this study, the analysis deals with the genes that contain only one poly(A) site, referred
henceforth as S-type poly(A) sites, and with genes that have multiple poly(A) sites
downstream of the stop codon in the 3’-most exon. The alternative poly(A) sites are

further classified into three types as follows: 5° most poly(A) site is referred as F-type, 3’
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6.2  Results
All poly(A) sites used in this analysis have been obtained from the PolyA DB 2 database
(86). This study only deals with the poly(A) sites of type: Single (S), First (F), Middle

(M) and Last (L) (Section 6.3.1).

6.2.1 Structural Stability of the Poly(A) Region for the Different Types of Poly(A)

Sites
Sequences flanking the poly(A) sites (-200 to +200 and -100 to +100) of type: S, F, M
and L are extracted and their minimum folding free energy (mfe) is computed using
RNAfold (27). Each set of poly(A) sites are divided into conserved and non-conserved
sites (Section 6.3.2) and the density plots of mfe were obtained separately for the
conserved and non-conserved set of each type. From the distribution of the mfe for all the
conserved polyA sites of different types it was observed that the S-type polyA site
sequences showed the maximum stability (Figure 6.2(A-C)).The mfe for the conserved S-
type sequences is significantly less than that of the other types (Wilcoxon test p-value <
2.2e-16 when compared with conserved L-type). The same pattern was also observed for
the poly(A) region of mouse poly(A) sites (Figure 6.3). It also indicated that the S-type
poly(A) region is most stable.

Furthermore the stability of conserved poly(A) regions is more than that of non-
conserved (Figure 6.4). Comparison of the observed stability of S-type sequences with
the expected stability (using 1-order Markov randomized S-type sequences) shows a clear

bias of the observed data towards lower energy (Figure 6.2(D)). Both KS test and
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6.2.2 Structural Differences between different Regions surrounding the Poly(A)
Sites

Next, the poly(A) region was divided into subsequences 50 nt long upstream and
downstream of the polyA site (-200 to +200). The resulting 8 regions are labeled as a, b,
c, d, e f, gand h as can be seen in Figure 6.5. Then the number of base pairs between
each of these regions is found. Base pairing is an indicator for judging the capability of
the region to form stable structures and so it was used to find out how the stability varies
for the regions surrounding the poly(A) site. Figures 6.5(A-D) show heat maps of the
ratio of observed to expected (using 1-order Markov randomized sequences) average base
pairing among the different regions for each type of conserved poly(A) site. An
interesting observation‘from this is that the “d” region seems to have a general avoidance
for structure with other regions except with itself and with region “e”. This avoidance is
most pronounced for the S-type poly(A) site sequences.

To further verify the above results, the free energy contributed by each region
towards the free energy of the structure for the entire sequence was calculated using
RNAeval (27). Here again it was observed that there was higher energy (hence less
structural stability) when the region “d” is involved (Figure 6.5(E-H)). It’s also seen that
the conserved S-type sequences have overall lower energies than the others which again
reiterates the previous result that showed S-type poly(A) regions to have the least

minimum free energy.
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Figure 6.5 The sequence 200 nt upstream and downstream of the poly(A) site is divided
into regions 50 nt long and labeled from a-h. (A-D) Ratio of the observed vs. expected
base pairing amongst the different regions upstream and downstream of the poly(A) site
of conserved S, F, L and M-type respectively. (E-H) Ratio of the observed vs. expected
free energy contributed by the different pairs of regions upstream and downstream of the
poly(A) site.
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6.2.3 Differences in the Co-occurrence of cis-regulatory Elements Surrounding
Poly(A) Sites

A previous study had identified several cis-elements that were over-represented in
frequently used poly(A) sites as compared to the weaker poly(A) sites (19). The goal here
was to find a network of co-occurring interactions between these cis-elements (and
possibly other unidentified cis-elements) existing uniquely in the stable poly(A) regions.
This information will further lead to the discovery of cis-elements that co-occur
structurally to provide some functionality.

This analysis was done on the conserved S-type poly(A) regions as they were
found to be the most stable group from previous results. The region 100 nt upstream and
100 nt downstream of the poly(A) site was selected and divided into regions 50 nt long as
before and labeled ¢, d, e and f (Figure 6.6). Between every pair of regions, the Z-scores
for the co-occurrence frequency of every existing tetramer pair in that region (Section
6.3.3) were computed. The pairs with a Z-score >= 2.5 were selected for further analysis.
These significant interactions were visualized using the program Cytoscape (87). The
network between the different pairs of regions is shown in Figure 6.6. Each edge is
color-coded based on the Z-score of the interaction. The co-occurring tetramers between
regions d-e are largely A-T rich and most of them involve the poly(A) signal (PAS)
element whereas the extreme upstream and downstream regions (cf) contain more GC-
rich tetramers as was also seen previously (19). Some of these pairs are also
complementary to one another suggesting that they may be base-pairing together such as
AAAA-TTTT (de), CCCA-TGGG (cf), CCCA-TGGQG (ce).

Several of the tetramers could be selected to extend this network to involve more

regions such as c-d-e, c-d-f so on (Figure 6.6), which shows that there may exist a



77

complex circuitry of interactions between cis-elements which occurs during the process
of polyadenylation.

For more detailed analysis, the conserved S-type set was divided into two groups:
1) containing the sites with minimum free energy of their poly(A) region in the first
quartile (minimum free energy < 25" percentile i.e.,most stable), and 2) containing the
sites with minimum ﬁee energy of their poly(A) region in the third quartile (minimum
free energy > 75" percentile i.e. , least stable). For each of these two groups all the
significant tetramer pairs (Z-score >= 2.5) between every pair of regions were obtained
(Figure 6.7). It was observed that the co-occurrence of tetramers differs significantly for
these two groups. For the structurally more stable group (I quartile), the number of
tetramer pairs found significantly co-occurring is the highest between two extreme
upstream (c¢) and downstream (d) regions whereas this is much less for the structurally
least stable group (III quartile). On the other hand the first group has lower number of
significant interactions between the d and e regions (immediate upstream and
downstream of the poly(A) site) as compared to the second group, for which this number
is very high. It also shows that there are fewer interactions amongst the upstream regions
and more interactions amongst the downstream regions for the first group and this is the
opposite for the second group. This difference between these two structurally extreme
groups suggests that the variation in the nucleotide composition in the different regions
may lead to formation or avoidance of structures which might affect poly(A) site

recognition.
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6.2.4 Separation of the Poly(A) Site from the Neighboring Gene is Correlated with
its Structural Stability
This analysis has so far indicated that the S-type poly(A) regions are most stable. Further
investigating into the reasons, it was found that the distance separating the poly(A) site
from its neighboring gene on the same strand (head to tail) as well as the distance from
the closest poly(A) site on the opposite strand (tail to tail) is the least for the poly(A)
regions having the least energy and it is found to be higher for regions with higher
folding energy (Figure 6.8(A)).

Next, the conserved S-type poly(A) sites were divided into two parts: 1) all the
sites for which the closest poly(A) site on the opposite strand is also S-type, and 2) all
remaining S-type poly(A) sites. For the first group, the energy of the poly(A) region and
the distance from the neighboring poly(A) site is lower than that of the second (Figure
6.8(B) and Figure 6.8(C)). Further dividing each group based on their energy, we find
that the distance is closest in both cases for the sequences with least energies and it
increases as the energy increases (Figure 6.8(D)). This suggests that the structure might
be playing a role in strengthening the poly(A) site especially in situations where it
becomes crucial for the transcription termination to occur in a timely manner to avoid

interference with surrounding genes.
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6.3 Materials and Methods

6.3.1 Poly(A) Site Dataset

The information about the poly(A) sites was obtained from the PolyA_DB 2 database
(86). All the 54, 686 Human poly(A) sites and 30, 235 Mouse poly(A) sites were
downloaded. The poly(A) sites which are of types: Single (S) and the exonic alternative
polyadenylation sites : First (F), Middle (M) and Last (L) were selected. These poly(A)
sites were identified as described in (79). Briefly, human, mouse and rat cDNA/EST
(NCBI, August 2005 versions) sequences were aligned with their respective genomes
(UCSC; hgl7 for human, mm5 for mouse and 3 for rat) by BLAT (88). Dangling
poly(A) tails (> 8nt) of the aligned cDNA/ESTSs were used to find the poly(A) sites. Sites
located in A-rich regions, i.e., 8ix or more consecutive As or seven or more As in 10-nt
window in the -10 to +10 nt region surrounding the site were considered as internal
priming candidates and were not used in this study. cDNA/ESTs without poly(A) tails
were also used if their 3’ ends were located within 24 nt from a site supported by
poly(A/T)-tailed ¢cDNA/ESTs. The orientation of a cDNA/EST on the genome was

inferred by its splicing sites as previously described (79).

6.3.2 Identification of Conserved Orthologous Poly(A) Sites

Orthologous poly(A) sites were identified as described in (89) by using UCSC human
versus mouse (hgl7 vs. mm5), mouse versus human (mm5 vs. hgl7), human versus rat
(hgl7 vs. m3), and rat versus human (rn3 vs. hgl7) whole genome alignments (axtNet
files) (90). A pair of human and mouse/rat poly(A) sites were considered orthologous

when (a) the human and mouse/rat sites are located within 24 nt in the human and



83

mouse/rat genome alignment; and (b) they are nearest to one another in a reciprocal
manner, i.e., the mouse/rat poly(A) site is the nearest one to the human poly(A) site using
hg17 versus mm35 or hgl7 versus rn3, and the human one is the nearest to the mouse/rat
one using mmS5 versus hgl7 or r3 versus hgl7. Further, if these orthologous poly(A)
sites are of the same type then we select the poly(A) site pair as being conserved

orthologous poly(A) sites.

6.3.3 Network of Co-occurring Tetramers Using Z-score Calculation

For any given tetramer pair: k1~k2 where k1 falls in region “r1” and k2 falls is region
“r2” surrounding the poly(A) site, first we find the frequency of their co-occurrence, say
its Fy1: k2r2. We then find the frequency of co-occurrence of k1 in region rl1 with all
other tetramers in region r2. Next, the mean (m1) and standard deviation (sd1l) of these

frequencies is calculated using which the first Z-score is obtained as follows:

Z1 = (Fevs: 100 —ml) / sdl (6.1)

Using a similar procedure, we then obtain the frequency of co-occurrence of k2 with all

the tetramers in region r1. Again, we obtain the mean (m2) and standard deviation (sd2)

for this distribution. This gives the second Z-score:

72 = (Fan:on — m2) / sd2 (6.2)
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These Z-scores are a measure of the significance of co-occurrence of the pair k1~k2
between regions rl and r2. We select the pairs where both the z-scores are >= 2.5 to be

significant in this study.

6.3.4 Statistical analysis
Wilcoxon rank sum tests and mKS tests were carried out using the statistical analysis

software R (http://www.r-project.org). For mKS test, we followed the method described

in (91). Briefly, given a set of values N containing » entries and another set M containing
m entries, the following method was used to assess whether values in M were
significantly higher or lower than those in N. N and M are joined together, and the
combined set (M+N) is ordered from high value to low value. A running sum is computed
across all entries starting at the highest value. A value of v/ was added to the running
sum if the entry is from the set N, and otherwise v2 is added, where v1 = (m/n), and v2 =
-~ (n/m). Thus, the overall sum comes out to be zero. The maximum and minimum values,
Omax and Omin respectively, of the running sum were used as empirical statistics and
can be considered as observed values. To obtain their significance, we randomly selected
m entries from (3+N), and calculated the maximum and minimum values, Emax and
Emin respectively, which are considered to be the expected values. The process was
repeated 1000 times. The probability for rejecting the null hypothesis that M contains
larger values than N was the fraction of 1000 Emax that were higher than Omax. The
probability for rejecting the null hypothesis that M contains smaller values than N was the
fraction of 1000 Emin that were smaller than Omin. These probabilities were called E-

values in this study.



CHAPTER 7

CONCLUSIONS AND FUTURE RESEARCH

The primary objective of this research was to undertake a bioinformatics approach to the
study of RNA secondary structures and discover novel biological results. This chapter
reviews the findings of this study, implications of the results and the additional research

in future that will further consolidate the work.

7.1 GLEAN-UTR
GLEAN-UTR approach was developed to discover novel putative conserved ncRNAs
from the untranslated regions (UTRs) of orthologous Human and Mouse genes. This
approach resulted in 90 distinct RNA structure groups containing 748 structures (Chapter
2). These groups were formed of RNA sequences that have a similar structure and also
share Gene Ontology annotations of the Biological Process category which indicates a
possibility that the structures in these groups may have some common function in the
biological pathway. The approach also discovered the well known Histone 3° UTR stem
loop structures and the Iron Response element structures as the top two groups in the
results. This provides some validation for the approach that it does group structurally and
functionally similar structures together. However, for the other groups it is hitherto
unknown what function these structures carry out in the cell and if they do so at all. So,
the next step will be to design wet-lab experiments that can find out whether any of these

structures are functional in the cell.
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The GLEAN-UTR approach is generic and can be applied to other species as well
to analyze and identify conserved RNA structures. Recently large numbers of species
have been sequenced and this data is publicly available. Taking advantage of this fact, in

future GLEAN-UTR approach will be used to study other organisms.

This method was applied to mining small RNA structures in this study, primarily
because those structures can be more accurately predicted by RNA prediction programs
using only thermodynamic parameters. With the development of more sophisticated RNA
prediction algorithms, the accuracy will increase and it will also be possible to identify

large conserved RNA structures.

In summary, this study indicates that many more conserved stem-loop structures
are present in human UTRs and they might be involved in coordinate post-transcriptional
gene regulation of biological pathways, similar to HSL3 and IRE structures. This
bioinformatics study lays a ground work for future wet lab validations of putative RNA
stem-loop groups and represents a framework which can be used to analyze RNA

structures identified by other approaches and in other species.

7.2  Method Development

Computational analysis of biological data has opened a great deal of avenues for ground-
breaking discoveries. Development of various software tools, databases and efficient
algorithms in conjunction with statistical analysis has wielded the path towards an

exciting exploration of the complex cellular machinery.
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In order to aid this research of RNA secondary structures, a powerful software
framework was developed termed as RADAR (Chapter 4). This is an online web-based
as well as standalone tool that provides wide range of functions such as database search,
multiple structure alignment, consensus structure prediction, clustering and so on, which
aid in detecting conserved RNA secondary structures. By using this predictive approach,
biologists will be able to reduce the expensive wet-lab experiments by rejecting data that
may not seem interesting while being able to find promising results very quickly. This
tool is based on alignment of RNA structures using a dynamic programming algorithm
(O(mn)) RSmatch (3). It also incorporates a novel algorithm that improves the structure
alignment function of RSmatch termed as Constrained Structural alignment (Chapter 3)
which significantly increases the specificity of the results and provides more flexibility

for the user to provide special characteristics of the input data as per their requirements.

Several applications of this framework are possible and have been described in
this dissertation (Chapter2, Chapter 3, Chapter 5) resulting in good findings. Since this
tool depends on the accuracy of the RNA secondary structures provided as input, the
performance can be greatly enhanced as newer more powerful methods for prediction are
developed especially the ones based on phylogeny. Currently it also incorporates a p-
value for each alignment as a statistical indicator for the reliability of the results (Chapter
3). This p-value depends on the score of alignment, which is computed by RADAR using
very basic scoring matrices. Development of more complex and biologically obtained
matrices will lead to a better outcome. Finally, through the application of these methods
to various different RNA sequences coupled with biological experiments will lead to a

stronger validation.
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7.3  Polyadenylation Analysis

In Chapter 6 of this dissertation, focus was on the post-transciptional gene regulation
process: Polyadenylation, which is a crucial step towards the maturation of almost all
cellular mRNAs in eukaryotes. The process involves cleavage at 3° end of mRNAs and
addition of poly(A) tail. This study set out to inquire into the questions pertaining to the
strength and usage of poly(A) sites by focusing on Human poly(A) sites. Several genes
have multiple poly(A) sites leading to alternate gene products (Alternative
polyadenylation) and others have only a single poly(A) site. Presumably genes that have
a single (S) poly(A) site would depend more on it to be efficiently detected and cleaved
to have proper functioning. This gives rise to an interesting question as to whether these
poly(A) sites have some evolutionary advantage that gives them a higher strength.
Research undertaken attempts to answer this by investigating into the structural
differences between the S-type poly(A) region as compared to that of multiple poly(A)
sites present in 3° UTR : First (F), Middle (M) and Last (L). It was found that the S-type
region is significantly more stable than the others and further the S-type site which are
also conserved in Mouse have the highest stability as compared to those that are not
conserved. It is known from previous studies that RNA structure is a critical determinant
of poly(A) site definition.

Another factor that might influence the selection of poly(A) site is the distance
that separates it from the neighboring gene on the same strand and distance from the
closest poly(A) site of opposite strand. A correlation was seen between this distance and
the structural stability: shorter the distance, lower is the minimum free energy of the

poly(A) region hence higher stability. It can be hypothesized that a short distance would
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mean that the poly(A) site would be stronger to prevent transcription interference. This
also then means that there is a correlation between structural stability and poly(A) site
strength. Future work involves designing wet-lab experiments that would prove this
theory.

Ths study also found a network of co-occurring interactions between tetramers in
different regions surrounding the poly(A) sites and it was observed that these interactions
differ based on the structural stability of the sequence. Further research need to be done
that would unequivocally model these interactions for different types of poly(A) sites and

tie it to the strength of polyadenylation.






APPENDIX B

HIERARCHICAL CLUSTERING RESULTS

The GLEAN-UTR approach found 2,054 structures that were similar to alteast two other
structures and satisfied the alignment score cutoff. In order to group the similar structures
hierarchical clustering was applied. Figure B.1 shows the heatmap for the outcome of

clustering. The results show that several structures are similar to one another and they

have been clustered together.

<4— RNA Structures ——»

<4—— RNA Structures ———»

Figure B.1 Heat map for all-against-all comparisons of 2,054 human RNA structures.
The normalized dissimilarity score is represented by color based on the scale shown at
the bottom. The structures are in the same order as those shown in the hierarchical

clustering tree in Figure 5.3(B).
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APPENDIX C

GLEAN-UTR FOR RANDOMIZED UTR SEQUENCES

Figure C.1 shows the result GLEAN-UTR approach to randomized (using 1-order

Markov model) human and mouse UTR sequences.

UTR sequences
Human Mouse
(35,999) (28,694)

v  Slide and fold

RNA structures in UTRs

Human Mouse
(548,198) (422,995)

10,667 orthologs YComparison between
orthologous genes

Human structures conserved in
mouse (1,300)

¢ All-against-all comparison

Structures with similarity to > 3
other structures (229)

¢ Cluster analysis

8,819 groups, 229 structures

GO analysis
l ‘

CoV filtering

54 groups, 197 structures

$ Remove redundant groups

— 17 groups, 110 structures

Cross-validation with mouse structures to
identify highly conserved structure groups

Figure C.1 UTR sequences randomized by 1-order Markov chain were subject to the
same GLEAN-UTR approach as shown in Figure 5.1. The number of structures and
structure groups are shown at each step.

92



93

CCCCCEEEEce=Mmnnnn YNaw ‘T juetxea 3draosuexl ‘ (2dVdY) T 6£9¢€
d IOVUVLIVILIVIOVODIVYLILLIY | urejoad Joyoue (VMyd) oseury y suotdes owoH -09S€:€0TLO0 WN €61
COCCeeeeee - MMM N (Tzavd) 9€9¢€
d DIOLIOVNYYINYIDLLLIOVYIVL (3quod -g) Botowoy Tzawy sustdes owoH -Z6SE592900 WN 9ST
YNHW ‘T JuRTIRA
CCCCEEC =M adraosuerl ‘ (PMEJYN) P OSEUTY SSeuTy Sseurd z€0S
d VINDVILIVIVYIOIYL ursjoxd pejeatrioe-usbojtw sustdes owoH -L005:2Z6500 WN STT
JANm deppaQ InpPNYg uoyejouuy al bagpou i
) dnoas)

9007 “Te 19 uas1apad 10 00T 1B 10 [eIyse M Aq se [[om se yoeorddy Y 1LN-NVATO 91 Aq paynuap] sarmonng 1°( dqeL

‘somponns urddeproso
9y} SMOUS 9[qel SUIMO[[0] ‘9007 e 10 UOSSULIRIO], UM punoj sem de[Ioao ou seardym 90(g “[e 10 uasidpsd pue SO0z “Te 10
perysep\ pIm def1oao 0) punoj a1om sormonas 1€ (900 T 1° UOSSULIRIO ], pue 9007 “'Te 10 UasIopad ‘S00T “Te 12 [IPISeA)) SIIpnis

Te[IwiIs JOU0 Aq paureiqo sarmonis Yim paredwod a1om yoeordde WY1 N-NVATO 9Y} WOI] PAUIE)qO SAINJONIS PIAIISUOD Uewny oY,

SHIANLS YHHLO WOJA SHINLIONYLS HLIA ONIddVTIIAO SL'INSHY YLA-NVIATI

d XIANAddY



94

TCCCCCC NN N (sxad) § opradedAtod ¥z

d IOOVILLLIVVOYYYDIID xoq (dsy-eTy-nid-dsy) avaq suordes owoy -€8TZ:96E€700 WN 98T
...... CCCCEEeCe=MNn Ny - TNRIW 6Z90T

M ‘a LLINLINOOIVVYIYLIIOLLIV)OLLL ‘(ya7inl) v urezoxd oyIT Aqqny suordes ouwoy ~Z090T: 572020 WN 2T
(e MM $80%

d IVYIOIDOIOLIIVIVIDIDDLLY VI ‘ (ZaNad) zd-urayde sustdes owoH -G€0F:€60%00 WN STT
CCCCCEEe = m) YW ‘ (ZT626D0T) 162

d YLLLOVYDIVIDILOVYYL 1626007 urejoxd fentisyiodAy suetdes OwoH -8€8Z:69VELT WN 8ZT
CCCCCEEe =N YRW L6ET

M ‘d DINLOIVOLLLIVIVIOL ‘ (d19%04d) €19 ¥oq pesyxioj sustdes OWoH ~LTET:6¥TS00 WN 08T
(e IRRRRD YNgw ‘gz juetxea 3draosuerl ! (TAYZYA) Z8LT

d VIV IVVVYYVOVYYLIDIVL T ursjoxd pezeroosse zyd sustdes omoH ~0PLT6S68T0 MWN yze
CCCCCCe-nmN YN{W ‘ (ZTS¥AS) TT YO TI-durIss/suturbae 8L9¢€

d LOVYV.IOIVIOV.ILIOD ‘zo30ey burorrds susides owoH -¥p9€:89T6ET WN 6LT

al

[ depaeaQ 21NN uonejoUNY ai basyoy !
dnoan
(penunuo))

900 “Te 10 USSISPAJ 30 GO0T T 19 PRIgse M £q se [[om se yoroiddy YLN-NVETO 9P £q poynusp] saImonng @ qeL




95

Ceeeeeeer e )N ¥Ngw ‘ (0TdVd) ATTwes 80ST

d VLLLIVOVYLINYOVLLOVVY.L suaboouc sV xoquew ‘oTdyy sustdes ouwon -60PT:TETITO WN LLZ
(CCCCe =N N uNau ‘ (GTXHAZ) Z9TS

d LLIVILLINOVYINYY qr xoqoauwoy xsbuty ourz sustdes owon ~€L0S°S6LFTO WN L8
COCeeeeee e MM VMW ‘ (8YE€JYH) 8 OSPUTY OSPUTH SSeuTy LILZ

M ‘d INVYOILLIOIVOIOOVIYYILIY uroz0ad pejearioe-usboaTu sustdes OUOH ~9€LZ: 502500 WN L9
(CCCEee==nnn YNaw f (pATA) 85¥vZ

d YOVILOLLIVYINYOOLOL (anb) ¥ xo3oeI oYTT-Toddnxy sustdes OWOH ~T0%Z:SEZF00 N 6ST
(CCCECe==nn YNRW 6%v¢

d YYVODLLIVIVYOOLLL ‘ (IS¥D) oseasjysuerjfijeoe-0 sustdes Owol ~8ZVE€:006220 KHN STT
CCCCCCe--mnM N (MIDS) eseuty 6261

d VOYYDOLLIVIYOOLIDL pajenbsa proorijaoooonth /unIas suatdes OUCH ~TL8T:LZTI9S00 NN €T

N (%arT)

(OO INNN uteloxd xT1ey-dooT-XTTay saTIRboU JueuTwOp 60€T

M ‘d DINDYIVYYYLLIOILIVIDIYD ‘y Burpurq ¥Nd O X03tqryut sustdes ouwoy ~L8ZT:9%ST00 WN 1T

X al

{4 depioag ER1EE) BT uonviony ai baspoy !
dnous)
(ponuruo))

900C “T& 9 USSI9PaJ 10 GO0T “Te 39 POTYSe A £q Se [jom se yoeoiddy Y1.N-NVHTO o 4q peynuopy semonys [ dqeL,




96

COCCEEeCee == v (TOWD) LOLY
d YYOLVYIVYLIOVY.LIY LLIYDLLL (swospuds oTTTBeTy) 1 psbbel sustdes ouwoH -$L9%:¥TTO00 WN 60T
(e YN (0s¥ad) oS opradedAtod 89%C
d INIOVYVYYILLLLLIVID xoq (dsy-eTy-n1d-dsy) qvag sustdes oOuoH -ZEYTISHOPZ0 WN €61
yNqu ‘T quetaea jdraosuean
(O S G I ‘(TTISANL) TT Ioqusu ‘ArTwegxadns 90LT
d ININOYDIIOLIOLLDLOINYY (puebTT) Io310eI STSOIDAU Joumy suoTdes OWoH -$S9T:TOLE00 WN 8%Z
(OO NN VW ¢ (€IDIN)  €TOUM z0ZT
d LLLLIIVOOLDODLIVLLOYYYOY uteyo by Arojeinber ursolw sustdes owol ~TLIT:TLY900 WN 9zT
(CCCCECe =N nN 1€52
d JOODOVVDIVOOLLIDLOY YNEW ‘ (Sd1D) Sseyjuds 41) suotdes OWoOH -TTISZ:S06T00 WN 8ZT
COCCEEEEECe == L80T
d DODLLIOVVYDIOLILLIOVOVILD YNMW ‘ (Z68TVYYIN) Z6STVVIN suotdes ouop -TS0Z:L6ESTO WN €6T
UNW  (TY0FDTS)
CCOOEEEEe e e NN NN 1 aequeu ‘ (x93x0dsuerl pa3eINbSI-UOIAT)
d LIOVYIDOVILOIOVOVIDOVDLIOVY 0% ATTwe3 IoTiaed ojnjos suotdes OwoH | L€T-L6TS8SPTO WN 6
(CCCCCCEe =10 N (TIWYIW) 9€¥S
M ‘a YOVLLLOLYVYIVYYIOL (e1Tydosoxqg) T SYIT-purTwidlsew susTdes OuWoH -ZTPSLSLYTO WN LIT
d aa
UMM ABLIDAQ 2NPNYS uonejoUN Y LEINEN | !
dnoun
(panuyuo))

900 “T 10 UasIPaJ 10 00T “Te 19 PRIse A £q se [[om se yoeoiddy YLN-NVHTO o4} Aq PAUHUSP] soImonng 1°( Aqe.L,




97

OO NN IR 199
d DIVVYOIVIVLLLLIVOILIOD ‘ (0gzaN) ursjoxad xeoTonu 0zzdN sustdes OwoH -60¥9:L6VPT0 WN 19
¥Ngw ‘Y juetaea jdraodsuell ‘ (ZSIHAN)
OO e IR RRRRY (esnow) z BoTowoy T 2378 UOTIeIBIIUT 6¥62C
d VIDDHLIVYOOLOIOOLOIVOUIIVL | Teata oTdoijope proraiul ‘fsTo sustdes OUOH -$682:9TETLT WN €8
CCCCECEE =m0 viaw ‘zST/eyqToud guetxesa jdraosuril 9%9T
d YINYIVILIOVVYIVIIOL ‘{edTD) € oseury SYTIT-0aD sustdes OUOH -TZ9T:ZT6TT00 WN 98T
O N ¥NMw ‘T juetiea jdraosuery ‘ (8ds) 990¢
d VOYIOLIDLLLIIVIOVIVIOL I030ey uotidiaosueil gdg suotdes OWOH -£66T:00LZST WN a4
CCCCOEEEEECe MmN YNEW ‘ (HIND)
d VVYLLLLLINLIDDIDVDINYYYYYLLL (erTydosoag) Horouwoy uoyorTuioo sustdes OWOH | 999-L6S:9LLS00 WN 8TT
UMW ‘z juetIea
CCCCCCECe =N adtaosuexy ' (IdIvd) T utezoid Huryoeasijut $99T
d VIOINIIVILLOVINY.IVIVL utajoad Surpurq (v)Atod sustdes owol -€P9T:68LZ8T WN 9ZT
YW ‘ (Z¥DS) (T UuTXele ‘JuUeUTWOp
(g~ NIy n) Tewosojne ‘Z BIXejle JITI¥2I5003u0dOATTO) SLT¥
d EDOVYODLIOVYIDIVYLILILDOL Z erxeie Jeiregarsooutds susrdes OWOH -Z¥TH:EL6200 WN 55
OO NN VW ‘ (T@Dd) (Swolpuhs 33005-Boysaey) 0sz¥
d VYYVVOYYLLLLLLLLIILLL erserdsip fejrusboroey suetdes OWOH -8ZTH:E9PF00 WN 002
RLI al
Ja deaeag aInjInNg uonejoUNY ai bospou !
dnous)
(ponumuo))

900T “Te 10 U3SISPa 10 GOOT “Te 10 PRIYse A £q se T[om se yoeorddy YILN-NVETO o Aq poynuspy saImponng [ dqe.L




98

(Ceeeeegrermmmes ))))1)))) UMW (TIZOWH) T °¥TT Y6TYH
d DYLOLLLIVYVYIVVYOVYYIYLD -z urejoxd dnoxb A3TiTqouw-yb1y suotdes OWOH -Z%T¥:L8PS00 WN ¥ZZ
(OO 1)) UNw f (D¥4L) (TLaD 60G€E
d LVELYDDLLODDIOYOOVYDDILY.LLY ‘06d) xoadsosx utaasgsueal susTdes OWOH -T8¥E£:PEZTE00 WN 6
N
(CCCCEe-=mnn ) ‘(2ITF¥S) T STTo° I Aq peoztubooox usbriue 9¥6¢
d YYCIVYYLODLILLYLLL ewouTOIRD TTe0 snowenbs susTdes oOwol ~6T6E:ZSEETO WN 08T
OO o)) YNJw ‘ (ZTAYOHAY) TT 6%9¢
d OLILVILOLLOLOLIVYLY.IV.L utojoad Burjearioe 95eILO OWY susrtdes OuUOH -LT9€:L8Z8TO WN 6€T
(CCCCe-0n LOLE
d YOVLOIVOVYYYLVLDL ¥NAW ‘ (L0dX) L urlxodxe suotdes OWOH -Z89€:PT0OSTO WN 0ST
(O e NN YNYW ‘ (zdIHd) T Xo3adez uoridraosuersn SPIE
M ' DOLAOLIYYIDLIOYEIYID utewopoawoy aaT3eInd sustdes Owol -LOTE:ZEH020 MWN 60T
CCCCEe==nnn ¥ ‘ (ZSMD) z atungns Axzojernbsa
M ‘d OVLVYDILOVOLIYLYD oseutry utreajoxd gzpap sustdes OwoH TPP-L8ELZTSTO0 WN 602
UNgW ‘g
(CCEe e IDRRRRY juetxesa 3draosuer’ ‘(IZISd) IojdeSIOUNUMT
d TOTDOODLOOOYIIIDILOIDL ‘oprided Butonputr desTs earop sustdes OwoH 989-959:680%00 NN G8
14 deproa ai
P QELRAQ aanpNYS uonEIOUNY a1 basyoy !
dnoax
(panupuo))

900 “e 10 USSIAPAJ 10 GOT “T¢ 19 PRIYseA Aq se [[om se yoeoiddy YLN-NVATD o Aq poynusp] sermpnng [°d AqeL




99

CCCCEECe =N YN ¢ (ZxWE) (eTTydosoxa) 6L8T

d DIELOVYOVYODLLOYIY.L z BoTowoy satoeatds Ajdwe sustdes owoH -88LZ:860%00 WN 87T
O )1 YNgu ‘ (TIYNS) LS9T

d LIOYOVIOIVINILOVIVIOLLL (ertudosoxq) T Horowory [reus susTdes OWOH -Z€9T:586500 WN LST
(CCCECe - vNuuw ‘ (0Tdsn) v€6T

d VILLLLIVYYOUYYYYYL [ 0T ®sesjoxad orgroeds urarnbrqn sustdes OUOH -858Z:€STS00 WN LTT
Ceeeeeee - NN ENRW 952¢

d LELLLIVOVIOLOLIDINVYYVY ‘(6¥D1I) 6 eydie ‘utabejur suotdes OWOH -€£ZE€1L02Z00 WN 992

NI
‘T juetxea jdriosuery ‘ (HAWY) (usbBtiueojne

CCCCCEEe eQy8ZT ISNUED 3SedIq UITM SWOIPUAS 6%8¢2

d OYYYYIDDIVYIIDOLLLLD uen-33135) ursdydrydue sustdes OWOH -8Z8TISE9T00 WN €T
(- N £I8€

M ‘4 YOVYDLINIVOLIDL VIR (TEHJH) 1gyds sustdes OwoH -LTLE TPPY00 WN LT
CCCCEEECe =N N ¥N¥w ‘¢ Juetaea jdrapsueal ‘ (ANQH) I0aded 6221

d VOVIVLLLOVYDIVYYIVIOL 2TydoIjoInsu pSATISP-UTRIq susTdes OWOH -SPTIT:TELOLT WN 9ZT

m de ai

MM dBLdAQ ImPNYS uoyeoUUy a1 bagyoy !
dnoan)
(ponunuop)

900 “Te 10 BISIAPIJ 30 SO0T e 12 POMse A £q se [om se goeorddy YLN-NVETO o4 49 paynusp] saxmonng [d JqeL




100

VW ‘T JUeTIRA
(e ) adraosuers ‘(T710D) (ertydosoag) ursioad 6967
d YYYVOVYDOUYOLLLL | JuswsderdsTp IWVDD ‘1 oIT-Ind suotdes owoH -€V67:2SSTST WN €L
((CCCCe Ny YN (PNEIAS) ¥ OT3IL00ay3AIs zEEs
M 'a DOLIDIDOTIVODDOVDD -uou ‘e3sq ‘urxjosds suotdes owoH -%928:€TTST0 WN 9%T
(CC e )Ny YW ‘T juetaes jdraosueil ‘ (ZzdWd)
d DOIDIDIYIVYIVIVIOLYOVYOLL zz urojoad utrieiw Texsydrasd sustdes OWOH | 698-6£8°H0E£000 WN z2T
CCOCEEEee NN
d JINIVINIVOVIOIVIVINIVY VNIW  (ZNIOVL) Z utrrabsuexl sustdes OWOH | THL-€69:$95€00 WN 9¢€T
e ) UNJW ‘ (TAYDHEY) T 9c€eE
d VYV IVYOLLIVIOLILLL utajoxd Burjeatrioe 9sedld oy sustdes OuwoH -0TE€ 80EF00 KN 861
COOCQEe - IRRRRRRN YNAW  (NTIdY) IOITATUUT LSZS
d VYYLLLIVVILLIVIOVYYILL | uoriexarroad paosnput-usboipue sustdes OWOH -6029:Z€0STO WN 154
(e =m0 n uNw ‘ (4aN)
d YOVDLILOVYIYOVIIDL (ewotTbopnosd) osessTp oTIIoN sustdes OWOH | 06T-8£1°992000 WN 98T
CCCEEe-mn N ) N ¢ (2DOWS) z Burtpurq S09T
d IOIYLOIYYOYIVOY UnEOTeD JIeTNpow pojeTsi NIVdS sustdes OuoH -Z8ST:8€TTTO WN TST
i depx ai
[ ABLIAQ Imponyg uonjvjouUNy ai bosyou !
dnouan)
(panunuoD)

900 “Te 10 UdSISPad 10 GOOT “T& 19 [IRIYse £q se [[om se yorolddy YLN-NVITO o4 £q paynusp] sompnng [°( I[qe.L




101

T YI1rye YW ‘ (TDaxXdSd) T Burturejuod S6Z€

d OLOLYYYDLOVYYYVOYDLLLYLL UTBWOP X I030eI Ax0jernbex suotrdes oOuoH -£9ZE€:09SELT WN SPT
CCCCEEEEEEe =N YN (sgE¥D) § uteloxd Burtputq $602

d OIVYYOD IV LIY.LIOVLIY.LLLLILYD JusweTe daTsuodsexr quyo sustdes OwoH -4Z02:86828T WN €6T
O IBRRRRRRR YN ¢ (€dDSId) ZELT

d YIYILYIYD - LIVOYL - L~ -OIYINLLL ¢ oserquexds prdrroydsoyd sustdes oOwoH -90LT:09€020 WN S8
(CCCEECe-nnnn R (€dad) 880C

M 'a HYIVYYYOLOLILLLIOLL € 9pradadAtod yota-surgoad sustdes ouwoH -9502:€92520 WN 8¥T
COCOOEee - IDRRRRRERY YN (£4dD) $Z8T

M ‘ad YOOOVYOVVILLLLLIYLLLLLLODL ¢ z03dooax poydnon-ursjoad o sustdes owoH -07LT:T82500 WN T8T
(CCCCEEe==nnnn YNMW  (PYNANM) (€ eydTe 69€E

d YYOOLVLLOVYYV.IVODLL urjzodur) % eydre urasydoliey sustdes owoH -60€€:892200 MWN LZT

N

CCCCEEe =M ‘z Juetxea 3dTIOSURIY ‘ (€ANY) (D urakue) 1s%¥

d OLLLININYIOVINYOYD ISTAURY JO 9pou ‘¢ uridyue sustdes OuoH -8Z¥¥:6¥TT00 WN ZET

vNgu ‘1 juetaesa jdraosueal

COCCECeCe =N ‘(T¥Wsd) T ‘odA3 eydie ‘3rungns (uredoxoew SPPT

d DUYDLLIDLINYYYINYYDLYD ‘suwosoxd) swosesjoad sustdes ouoH -TZHT:9L68TT WN LTIT

qx

[P depaaaQ aInpPNYS uonejoUUy a1 basyoy !
dnoas
(panunuo))

900T “Te 1 UssISpad 10 00T “Té 12 IRIYse A £q se [om se yoroiddy YLN-NVATO oy £q paynusp] samonng 1°( 9L,




102

(e DIMIINN vNaw ‘ (Tzzaroldzada) Tezzatsoldzaid 162¢

d YYYYYLOLOLLOVYIVILLLL utejoxd TeorysylzodAy sustdes OWOH -6STEIT6EZTED WN T€L
COCLEEqQ - NN oW ‘(9 £€65¢C

d HLIDIHLIDDOOIIDVYIVONVYD | -DIN) 9 susb oTqronput-usbojtu sustdes owoH -TLSZT:8%68T0 WN 12

¥Ngw ‘gz auetiea jdraosuexl

COCeee - MMM ‘(HzEdn) (3sesd ‘Borowoy gddan) HIH 0S0T

d IVIVINLINININIVINIY swkzue Burtjyebnluoo-urjtnbrqn sustdes OwoH -TS6:L.69Z8T WN €5

COCEEEeee e IDRRRRDDE

d LIVIVINYYLOVYYLLLLIVIVINY N/ (LTTwB) LTTwh sustdes OwoOH | S06-088:LL0S6T WM 58
(CCCCEEe NN YNIW  (TOWY'I) (ZEWy'T 806L

d INVVVINYIVLLIVLLLIY Arzsuxoz) T eumeb ‘urutwer sustdes owoH -SL8L:E€6ZZ00 WN 8¥%T

VW ¢ (0TS¥4S) (erTydosoaa ‘Borouwoy

e NNINH ¢ Iswiogsuexl) 0T YPTA-sutass/sulutbae 6L2T

d LLLLLLIVIOINODLLLIOINIOVYYY ‘zo3pey Hurorids sustdes owoH -98TT:€65¥00 WN 31T
OO IMIINM ¥Nu ‘ (DEd4L) (TLaD ZI6€

d INVINDDLIDLOLOYIOVOODDINLLY ‘06d) zo3depsx urarejsuerl suatdes OWOH -%88€:FETE00 WN 6
a
[P depaaQ INPNNS uoneoUUy A1 bagoy !
dnoas
(penunuo))

900T “[& 19 BISIOPSJ 10 GO0T “Té 19 PRIYseA 4q se [jom se yoeorddy Y LN-NVATO oG £q poynuap] sarmonng 1°d dqeL




103

OO NN 689
d IOINYYIVVIODDINLLIVIY YN ($0TAVE) ¥0TAY¥d sustdes owoH -TS89:€9LTZTO WN 002
YR
S G NN ‘1T auerxea adraosuerl ‘(zadW) z urejoad 8%9T
d LDINIVIVIOIVOLLLLIVIOIVOY utewop burtpurq pdp-Tdyasu sustdes OwoH ~009T:LZ6E00 MWN TZT
w1
CCCCEEe =00 juetxea jdriosuery ‘(SZJUNS) eaisz ‘urojord 0E¥T
d VYOILYDOIYLLIVOOLYLL pajetoosse-Trwosoldeuds sustdes owoH ~TEET:T80E00 WN 1z
T ‘'z
S U G ))))1))))) | Auerxea adirosuexry ’ (TIOW) (pe3ersa-zIdd) T 059t
d VOVLLLLIVL-VIVIOL-IVVUVVIDL | oouonbos eiwoynay [T proraiu sustdes ouoH -LT9T:€9LZ8T WN S8
YNEw ‘ (€QT)
CCCCCCEC MM urojoxd XTTaY-dooT-XTT8Y SATjebeu JUeUTWOp 69TT
d IDIDLLIOVOLODVYOOYOY ‘¢ burpurq ¥Nd 3O I03TqIyur suotdes OwoH -€FTTIL9TZ00 WN 66
OO I UNgW ‘ (TFTJIH) €8€C
d YLLIYIVYYVYYLOIVIVYVL ursjoxd peojelsi-IdIH suotrdes OwoH -TPETI8TO6TO WN S8
OO )N YN¥W ¢ (TALFA) T I0IDRIF UOTIRUTWIDL 96LT
d YYLLLLLLIVDIVYVYYYYYDL uoTjersueil orioireyns sustdes owoH -00LT:0ELP00 WN Z9T
(e NN ¥NEw ¢ (dzHE) I9butg S98%
d I¥YVDDVOVYODLLLLD outz dr3orodojewsy A1ive sustdes ouoH -GZ8¥TI9PSTO WN OLT
i depoaQ sImponng uonejoUTY ai bagyoy il
dnouas
(ponunuo))

9007 “Te 19 U3SIOpad 10 GOOT “[e 10 [I_TYse A Aq se [jom se Yoeorddy Y LN-NVHTO U 4q peynuop] sermonng 1°( dqel




104

CCCCCCE MMM e ¢ (TdEEvd) T uTe3oxd 0309339 zoze
d VYDLVINVYYLIVIVILL Burtputq sedld gvd ‘urideqel sustdes OWOH -€5ZE€:E0LF00 WN L6T
M YN/ (8TS6EDDM) 8LIT
d VYYYOVYYYYLLIOLLLL 8T56€00ON ureonoxd TeorieylodAy sustdes OwoH -8STZ:ZTBELT WN 13
N YNEW ¢ (2I9VId) < 9295
d LIYLLIDLLOYIOIYY 9YTT-9uab wwouspe otydromototd sustdes OWoH -1865: 59200 WN €02
(e 1)) YNw Y (DTWHEL) 8292
d LINININYINIYDOVINIVY (suebaTa D) o Borowoy T-we3y suotdes OWOH -8LSZ:4LT0T0 WN i£44
N ¢ (P
COCCCC (LMD v (vr0D) o88e
d ININIVYIDOILVYVYOVYOLLLYIDLYIOLY % utsjoxad xsbury Hutx suotdes OwoH -8¥8E:TO6¥T0 WN T1IZ
(e ) VMW ‘ (TTIZOWH) T ®YTT SZIE
M 'd ILIVOVLIDLDIVYY | -z ursjoxd dnoxb A3ryrqom-ybry sustdes ouwoy -€H0€: L8500 WN 012
YNdW ’ (DFYYWES)
5% (utxoydewss) ‘urewop oTwserdolko xoys
e N0 pue (ML) uTewop sueiquawsuexl ‘(bI) uTewop SLZY
Mg IOLIVLLINIDINVDINYOY urnqoThounuwt ‘Utewop eBuwes susTdes OuwoH -L¥Z¥:€68LTO WN LZZ
e 1)) toge
I —
M 4 LILLIVVYOLIVYYD.LLLVYVY UMW ‘ (THSN) TSN suoatdes OwoH -PLZZTIGLTSYT WN 06T
CCCCEEe =N ¥Ngu ‘ (€TFIOETD) €T Swexy 9112
M ‘4 YYYYIDLIOVIVIVILLL putpesx usdo g1 swosowoiyo sustdes OWOH -L€0Z:8LSSTO WN 0ST
s depag Ul
AL AIMINIS uoneouuy LN BN
dnoan
(penunuo))

900T “T2 10 UOSISPOJ 10 GO0T [ 19 IRIYse M £q se [[om se goeoiddy YLN-NVATO oW 4q paynuspy saxmonng [ dqe.L




105

YN ¢ (Taams
CCCCCCCC ) ¢ ) ~
d VOIOLIDLIVIVVOVDOUIL T Buturejuoo urewop amy sueTdes OWOH | 9L6-PT6:TS6STO WN zE€T
YNRIW
LG 0 ‘z aueTiea draosural ‘ (YIAINY) (SATT -IMS) S8¥L
d DOLIDOVIIDDIOYID Y1 UTBWOP SATIDRISIUT YDTI I¥ suotdes owoH -8ZTHLISET6ET WN 9%z
YN 5992
e nnn ~
d VINOVYLOLLLOLYL ‘(YI4N) ¥/I xo3ioegy IeoTonu suotdes owoH -L9%Z 565500 WN 99T
* (SS0DdSH £9¢€
L 131))) N (SS0045H) te
d VY LIOLLIVIOVIOVOVVLLL L08EITAV urejoxd xsburgz-ourz sustdes OWOH -Z09€:ESTPTO MWN 244
(e 11)0)) YW ¢ (TETdiv) spradeditod T eleq $66T
d SOYVYYVYVOYYIDLOLILLLLL ‘butiyzodsuell +y/+eN ‘osediv sustdes OuoH -868T:LLITO0 WN 00z
viuw ‘e quetxea jdraosuexl ‘ (ZSTHEW)
- I (esnow) z boTowoy T 9318 uUOTIRILSIUT LEOT
d YINDDOIOYOODOIVL | Teata o1doxjoos profaAw ‘TsTSN sustdes OwoH -LL6:LLIOLT WN 952
W
.. ... ‘T juetxea jdraosuexan ‘ (Tddid) T ursioad 0Z6T
L ) T ¢ ) ¢
d LLLLIOLOOVLLIOVDIVYYOVOVYY Butputq 3oexy surpturiiditod sustdes OWoOH -6598T:6T8200 WN z9¢
&4 $9a) $zsTY99sdz LEET
G D 0D VMW ($ZSTY99SdZAAA) 5T¥995dzaxd €
d INUDVLIIYIOLOLIOVINY.LIOLY utojoxd Teorisyzodiy sustdes ouoH -0SZT:L6LOEO WN 6€C
YNEW ‘ (8298€0T LTTE
CLLLLCCC MMM (8298€LT4) ¢
d LOVVYOLOLIOLOYILLLLY 8z98¢r14 urajoad Teo139ylr0dAy sustdes OuoH -80T€:L9225T WN LT
,aI
JNA depeag EXTTRI RIS uoneyouny a1 bosyoy
dnoux)
(ponunuo))

900T “T& 19 USSIdPOJ 10 GOOT “Te 19 PRIYseM £q sE [[om se yororddy YLN-NVH'IO o4 £q poynuop] semponng [ AqEL




106

OO I RRRRRRRDRRD] uNgu  (zddid) ¢ urezoxd 8262
M LIVOVYILLIOVLLOVIOLYOLLYYYOLLLL butputq 3oe13 sutpruriddArod sustdes ouoy -€L8T:06TTZ0 KN /%4
COCCOEeee - NN ) YNEW ‘ (ZDOHS) (suebsTe D) Boiouwoy €82
M VINIVIDDIVYDVINIVIOIVIVIV-L Je9To Jo Josseiddns z-oos susTdes OwoH -LZ8T:E€LELOO KN 122
(- )1))) ovo€
M YOVYOLIYIVOLIOL UNw ‘ (egudd) ¢quds sustdes owoH -9T9€: €¥¥P00 WN LT
(((({ (e 1))))) YNyw ‘1 juetaea 3draosuexl ‘ (S4Y-9TH) 1882
M DODOYDDIIDDOIIIDIDONDD | § utojoxd pojeToosse-eqss-g91d sustdes ouol ~L582:0%0L00 WN 8LT
CCCCEEEee==mnnn YN ¢ (PISDE) vT Burrreubrs 3 844
M DILIDIIIIIDODDDODITODYD urejoxd-p jo Iojernbox suotdes Owol -£6TZ:08%900 WN SLT
CCCQeeeE e N NI (YL109) 099¢€
M LLINLILIVIVODLLINYOLYDY v, ewoydwi1/TID TTo0-9 suotdes OwoH -6£9€:€66020 WN T9
..... (CCe -y R
d WODIYIIOVOVDLLILLDIIDOYYYDIIOVY ‘(ATHTISIH) °TH ‘T Suojsty suotrdes OwoH | $8L-TZL:TZTES00 WN €
g defraaQ (X
A AINPNNg uonegjouny a1 basyoy
dnoan)
(penunuo))

900C “Te 19 UasI9PaJ 10 00T “Te 30 RISeM 4q st [[om se yoeorddy Y LN-NVATD 94 £q pOYRUSp] saimonng 1°( dqeL




107

YW ($aI)
uroroxd xTTou-dooT-XTToy 2aT1ebou BUTWO
(e I 193 T19Y T-XTISY 9AT3 JuRUTWOP mmma
M DIVOYIVYYV.LLIOLIVIDIYD ‘p BuTpurq ¥Nd JO IOJTqIUUT suoTdes OwoH -6TET:9¥STO0 WN 1T
CCCCCCC M) b Leez
M SIVIOIVOLILIVIVIOL ‘(d19X04) 91D ¥Ooq pesyxrog susTdes OUWCH -LTET:67TS00 WN 08T
Nyawm wAzus b =)
L)) R (NTE0A) - (SuAzne BurassTo oTEe
M ID9DOIDDDIDOOOIIDOY | pToe outwe dIseq peited) urany suotdes OWOH -0TEE:695200 WN 0%Z
MmN ¥Naw ‘ (TQOWI) T TSPT
M VOOVLIDLOVVOVYIOLL SUTeWOpP YDTI-suTelsho pue WIT sustdes OuoH -8ZHT:€8SPTO WN 98T
YNIW  (€S9IamI)
(e 1)) € po3eroosse uoTldnpsuerl Teubrs ‘burpurq 66LT
M INLILLIYLIOVLLIVYOVLIY ¥ ‘BurtuTejuod uTewop I suotdes OWOH -6FLT:855900 WN 19
e )NNINN) L9T¢€
M DIDLIVIVIILLOVYDOVVYIDIOVOVI N ¢ (IVD) uTusunied sustdes owoH -0%Z€:6TTT00 WN 09T
CCCEEECe =N NN UNgw ‘ (paded) ¥ T1L0ZT
M OVILLLLIOIVIDIVOVYYLY | urejoxd Burpurq ruwolselqouridx sustdes OwoH -T€0Z:0T9500 KWN 9¢T
CCCCEECCe =0 VIR ¢ (ZDHHAZ) T Buturejuod 80%¢C
M VYYIOVYYIVOVOLLIOV.LLL uTewop DHHA ‘Isbury outrz sustdes owoH -6LET:ESEITO WN €6T
al
DM deaag aanPNYg uoneIoUUY a1 bosyoy !
dnoan)
(panunuo))

900 “& 10 UOSISpad 30 G00Z e 19 IIvTYse M Aq se Tfom se yoeoiddy YIN-NVATO o £q peynusp] sormonng [ dqe.L




108

"900T “Te 1 UOSIOPaJ £q 3UO 3T 0} ., PUE S00T “T& 10 [IIYSeM Aq Aprus oty 0} SIJOI M.,

“oseqeIep YLN-NVATO 9 A1onb 03 pasn 9q ued gorym “Isqumu [eiss € si (0f dnoip |

(O ) vNgw ‘T quetxea 3draonsuerl ‘ (TIXINY) £80%
M YELOLOYDODLODLIOVOLL T xoadedsx uTx03 Xeayjue suotdes OWOH -G50%:802Z€0 WN L6
¥y ‘¢ juetaea jdriosueis
e =N - ‘(SIVdIN) @aTsuodsox-A3ToTuol ‘g STTSD LESL
M LLLIVIOVIYIODILYYYOD -1 Pe3leATIOR JO JO3IDBRI IBITONU sustdes owoy -$9LL:665900 WN 68
(e 1)) YN (EgHIL) SwAzueolns burpeabsp 08¢
M LIOVYDLLIDLLLIYOLOVY suowxoy BursesTsx-utrdoxjoxiyl sustdes owoH -08LE:TBEETO WN 522
e 13133 ))) W (T jueries 3dpIosueay ! (AIVW) UEEmOp
M DLIDLYYDDDLIDLIDLLYEOVD yaesp BUTIRATIOR OSRUTY-JVH suoTdes OWOH | TLZ-6%T:0LFOET WN 5%
N 1d utojoad
7)) ) e (zdatd) @ oee
M LIVOVVOLLIOVLLOYIOLYOILLVYVYOLLLL butputq 1oex3 surptwiiAditod sustdes oOwoH -LPZ2Z°06TTZ0 WN ¥IZ
T
(s ))1))))) 668
M DLLLIVVYLIVYYLIVLOLLLYY YYD YNgW ¢ (YT¥D) urrnoTiLares sustdes owoH -SFQTEFEF00 WN Z8T
e NN mmmm
M YODDIDIODIONDIDILY YW ¢ (TaNdF) Tg-utayde suordes ouol -6L22:6Z7P00 N 69
! {TEN
e M) e (TENG) ooee
M LLIDVLOVYDVIIDOY T e39q (urixodwr) utrasydodaey sustdes OWOH -GLZE592200 WN z€T
YN{w ‘T juetxes j3draosueal
CCCCCCCC 0000 )) ' (Tovad) sewoydudr T199-L pedueape Tese
M LOLOYODDIYDOILLOYOY ut pobuerresx ATjusnbeaz sustdes owol -8EPZTI6LFS00 WN 0%z
ax
Nﬂ—ﬁmg Qﬂ—h0>o Ny uoneouuy al Uomﬁﬁm i
dnouas
(ponunuo))

900 “Te 10 U9SISPad 10 GOOT “[2 19 IRIYse A Aq se [[om se yoreoiddy YILN-NVIATO o4 £q poYRUSp] sarmponng 1°q AqeL







10.

11.

12.

13.

14.

15.

16.

17.

REFERENCES

Griffiths-Jones, S., Moxon, S., Marshall, M., Khanna, A., Eddy, S.R. and
Bateman, A. (2005) Rfam: annotating non-coding RNAs in complete genomes.
Nucleic Acids Res, 33, D121-124.

Ambros, V., Bartel, B., Bartel, D.P., Burge, C.B., Carrington, J.C., Chen, X.,
Dreyfuss, G., Eddy, S.R., Griffiths-Jones, S., Marshall, M. et al. (2003) A
uniform system for microRNA annotation. RNA, 9, 277-279.

Liu, J., Wang, J.T., Hu, J. and Tian, B. (2005) A method for aligning RNA
secondary structures and its application to RNA motif detection. BMC
Bioinformatics, 6, 89.

Khaladkar, M., Liu, J., Wen, D., Wang, J.T. and Tian, B. (2008) Mining small
RNA structure elements in untranslated regions of human and mouse mRNAs
using structure-based alignment. BMC Genomics, 9, 189.

Khaladkar, M., Bellofatto, V., Wang, J.T., Tian, B. and Shapiro, B.A. (2007)
RADAR: a web server for RNA data analysis and research. Nucleic Acids Res, 35,
W300-304.

Alberts, B., Wilson, J.H. and Hunt, T. (2008) Molecular biology of the cell. 5th
ed. Garland Science, New York.

Mignone, F., Gissi, C., Liuni, S. and Pesole, G. (2002) Untranslated regions of
mRNASs. Genome Biol, 3, REVIEWS0004.

Wilkie, G.S., Dickson, K.S. and Gray, N.K. (2003) Regulation of mRNA
translation by 5'- and 3'-UTR-binding factors. Trends Biochem Sci, 28, 182-188.
Kuersten, S. and Goodwin, E.B. (2003) The power of the 3' UTR: translational
control and development. Nat Rev Genet, 4, 626-637.

Keene, J.D. and Tenenbaum, S.A. (2002) Eukaryotic mRNPs may represent
posttranscriptional operons. Mol Cell, 9, 1161-1167.

Bakheet, T., Frevel, M., Williams, B.R., Greer, W. and Khabar, K.S. (2001)
ARED: human AU-rich element-containing mRNA database reveals an
unexpectedly diverse functional repertoire of encoded proteins. Nucleic Acids
Res, 29, 246-254.

Wilusz, C.J. and Wilusz, J. (2004) Bringing the role of mRNA decay in the
control of gene expression into focus. Trends Genet, 20, 491-497.

Bartel, D.P. (2004) MicroRNAs: genomics, biogenesis, mechanism, and function.
Cell, 116, 281-297.

Filipowicz, W., Bhattacharyya, S.N. and Sonenberg, N. (2008) Mechanisms of
post-transcriptional regulation by microRNAs: are the answers in sight? Nat Rev
Genet, 9, 102-114.

Baird, S.D., Turcotte, M., Korneluk, R.G. and Holcik, M. (2006) Searching for
IRES. RNA4, 12, 1755-1785.

Rouault, T.A. (2006) The role of iron regulatory proteins in mammalian iron
homeostasis and disease. Nat Chem Biol, 2, 406-414.

Grundner-Culemann, E., Martin, G.W., 3rd, Harney, J.W. and Berry, M.J. (1999)
Two distinct SECIS structures capable of directing selenocysteine incorporation
in eukaryotes. RNA, §, 625-635.

110



18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

111

Marzluff, W.F. (2005) Metazoan replication-dependent histone mRNAs: a distinct
set of RNA polymerase II transcripts. Curr Opin Cell Biol, 17, 274-280.

Hu, J., Lutz, C.S., Wilusz, J. and Tian, B. (2005) Bioinformatic identification of
candidate cis-regulatory elements involved in human mRNA polyadenylation.
RNA, 11, 1485-1493.

Rajewsky, N. (2006) microRNA target predictions in animals. Nat Genet, 38
Suppl, S8-13. ‘

Matlin, A.J., Clark, F. and Smith, C.W. (2005) Understanding alternative splicing:
towards a cellular code. Nat Rev Mol Cell Biol, 6, 386-398.

Ladd, ANN. and Cooper, T.A. (2002) Finding signals that regulate alternative
splicing in the post-genomic era. Genome Biol, 3, reviews0008.

John, B., Sander, C. and Marks, D.S. (2006) Prediction of human microRNA
targets. Methods Mol Biol, 342, 101-113.

Washietl, S., Hofacker, LL., Lukasser, M., Huttenhofer, A. and Stadler, P.F.
(2005) Mapping of conserved RNA secondary structures predicts thousands of
functional noncoding RNAs in the human genome. Nat Biotechnol, 23, 1383-
1390.

Pedersen, J.S., Bejerano, G., Siepel, A., Rosenbloom, K., Lindblad-Toh, K.,
Lander, E.S., Kent, J., Miller, W. and Haussler, D. (2006) Identification and
classification of conserved RNA secondary structures in the human genome.
PLoS Comput Biol, 2, e33.

Torarinsson, E., Sawera, M., Havgaard, J.H., Fredholm, M. and Gorodkin, J.
(2006) Thousands of corresponding human and mouse genomic regions
unalignable in primary sequence contain common RNA structure. Genome Res,
16, 885-889.

Hofacker, I.L. (2003) Vienna RNA secondary structure server. Nucleic Acids Res,
31, 3429-3431.

Babak, T., Blencowe, B.J. and Hughes, T.R. (2007) Considerations in the
identification of functional RNA structural elements in genomic alignments. BMC
Bioinformatics, 8, 33.

Mathews, D.H., Sabina, J., Zuker, M. and Turner, D.H. (1999) Expanded
sequence dependence of thermodynamic parameters improves prediction of RNA
secondary structure. J Mol Biol, 288, 911-940.

Grillo, G., Licciulli, F., Liuni, S., Sbisa, E. and Pesole, G. (2003) PatSearch: A
program for the detection of patterns and structural motifs in nucleotide
sequences. Nucleic Acids Res, 31, 3608-3612.

Sarnowska, E., Grzybowska, E.A., Sobczak, K., Konopinski, R., Wilczynska, A.,
Szwarc, M., Sarnowski, T.J., Krzyzosiak, W.J. and Siedlecki, J.A. (2007) Hairpin
structure within the 3'UTR of DNA polymerase beta mRNA acts as a post-
transcriptional regulatory element and interacts with Hax-1. Nucleic Acids Res,
35, 5499-5510.

Brenet, F., Dussault, N., Delfino, C., Boudouresque, F., Chinot, O., Martin, P.M.
and Ouafik, L.H. (2006) Identification of secondary structure in the 5'-
untranslated region of the human adrenomedullin mRNA with implications for the
regulation of mRNA translation. Oncogene, 25, 6510-6519.



33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

43.

44,

45.

46.

47.

48.

49.

50.

112

Venables W.N. , R.B.D. (2002) Modern Applied Statistics with S. In Statistics
and Computing Edited by: Chambers J, Eddy W, Hardle W, Sheather S, Tierney
L. Springer.

Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M.,
Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T. et al. (2000) Gene ontology:
tool for the unification of biology. The Gene Ontology Consortium. Nat Genet,
25, 25-29.

Pruitt, K.D. and Maglott, D.R. (2001) RefSeq and LocusLink: NCBI gene-
centered resources. Nucleic Acids Res, 29, 137-140.

McKee, A.E. and Silver, P.A. (2007) Systems perspectives on mRNA processing.
Cell Res, 17, 581-590.

Sanchez-Diaz, P. and Penalva, L.O. (2006) Post-transcription meets post-
genomic: the saga of RNA binding proteins in a new era. RNA Biol, 3, 101-109.
Keene, J.D. (2007) RNA regulons: coordination of post-transcriptional events.
Nat Rev Genet, 8, 533-543.

Gautheret, D. and Lambert, A. (2001) Direct RNA motif definition and
identification from multiple sequence alignments using secondary structure
profiles. J Mol Biol, 313, 1003-1011.

Bork, P., Ouzounis, C., Sander, C., Scharf, M., Schneider, R. and Sonnhammer,
E. (1992) Comprehensive sequence analysis of the 182 predicted open reading
frames of yeast chromosome III. Protein Sci, 1, 1677-1690.

Green, P., Lipman, D., Hillier, L., Waterston, R., States, D. and Claverie, J.M.
(1993) Ancient conserved regions in new gene sequences and the protein
databases. Science, 259, 1711-1716.

Altschul, S.F., Gish, W., Miller, W., Myers, E.W. and Lipman, D.J. (1990) Basic
local alignment search tool. J Mol Biol, 215, 403-410.

Pearson, W.R. and Lipman, D.J. (1988) Improved tools for biological sequence
comparison. Proc Natl Acad Sci U S A, 85, 2444-2448.

Thompson, J.D., Higgins, D.G. and Gibson, T.J. (1994) CLUSTAL W: improving
the sensitivity of progressive multiple sequence alignment through sequence
weighting, position-specific gap penalties and weight matrix choice. Nucleic
Acids Res, 22, 4673-4680.

Eddy, S.R. (2002) A memory-efficient dynamic programming algorithm for
optimal alignment of a sequence to an RNA secondary structure. BMC
Bioinformatics, 3, 18.

Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization
prediction. Nucleic Acids Res, 31, 3406-3415.

Jiang, T., Lin, G., Ma, B. and Zhang, K. (2002) A general edit distance between
RNA structures. J Comput Biol, 9, 371-388.

Hochsmann, M., Toller, T., Giegerich, R. and Kurtz, S. (2003) Local similarity in
RNA secondary structures. Proc IEEE Comput Soc Bioinform Conf, 2, 159-168.
Corpet, F. and Michot, B. (1994) RNAlign program: alignment of RNA
sequences using both primary and secondary structures. Comput Appl Biosci, 10,
389-399.

Mathews, D.H. and Turner, D.H. (2002) Dynalign: an algorithm for finding the
secondary structure common to two RNA sequences. J Mol Biol, 317, 191-203.



51.

52.

33.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

113

Gorodkin, J., Stricklin, S.L. and Stormo, G.D. (2001) Discovering common stem-
loop motifs in unaligned RNA sequences. Nucleic Acids Res, 29,2135-2144.

Kim, J., Cole, J.R. and Pramanik, S. (1996) Alignment of possible secondary
structures in multiple RNA sequences using simulated annealing. Comput Appl
Biosci, 12, 259-267.

Notredame, C., O'Brien, E.A. and Higgins, D.G. (1997) RAGA: RNA sequence
alignment by genetic algorithm. Nucleic Acids Res, 25, 4570-4580.

Laferriere, A., Gautheret, D. and Cedergren, R. (1994) An RNA pattern matching
program with enhanced performance and portability. Comput Appl Biosci, 10,
211-212.

Pesole, G., Liuni, S. and D'Souza, M. (2000) PatSearch: a pattern matcher
software that finds functional elements in nucleotide and protein sequences and
assesses their statistical significance. Bioinformatics, 16, 439-450.

Sakakibara, Y., Brown, M., Hughey, R., Mian, 1.S., Sjolander, K., Underwood,
R.C. and Haussler, D. (1994) Stochastic context-free grammars for tRNA
modeling. Nucleic Acids Res, 22, 5112-5120.

Eddy, S.R. and Durbin, R. (1994) RNA sequence analysis using covariance
models. Nucleic Acids Res, 22, 2079-2088.

Lowe, T.M. and Eddy, S.R. (1999) A computational screen for methylation guide
snoRNAs in yeast. Science, 283, 1168-1171.

Klein, R.J. and Eddy, S.R. (2003) RSEARCH: finding homologs of single
structured RNA sequences. BMC Bioinformatics, 4, 44.

Holmes, 1. (2005) Accelerated probabilistic inference of RNA structure evolution.
BMC Bioinformatics, 6, 73.

Yao, Z., Weinberg, Z. and Ruzzo, W.L. (2006) CMfinder--a covariance model
based RNA motif finding algorithm. Bioinformatics, 22, 445-452.

Karlin, S. and Altschul, S.F. (1990) Methods for assessing the statistical
significance of molecular sequence features by using general scoring schemes.
Proc Natl Acad Sci U S A, 87, 2264-2268.

Gumbel, E.J. (1958) Statistics of extremes. Columbia University Press, New
York,.

Altschul, S.F. and Gish, W. (1996) Local alignment statistics. Methods Enzymol,
266, 460-480.

Collins, J.F., Coulson, A.F. and Lyall, A. (1988) The significance of protein
sequence similarities. Comput Appl Biosci, 4, 67-71.

Smith, T.F., Waterman, M.S. and Burks, C. (1985) The statistical distribution of
nucleic acid similarities. Nucleic Acids Res, 13, 645-656.

Altschul, S.F., Bundschuh, R., Olsen, R. and Hwa, T. (2001) The estimation of
statistical parameters for local alignment score distributions. Nucleic Acids Res,
29, 351-361.

Olsen, R., Bundschuh, R. and Hwa, T. (1999) Rapid assessment of extremal
statistics for gapped local alignment. Proc Int Conf Intell Syst Mol Biol, 211-222,
Hellen, C.U. and Sarnow, P. (2001) Internal ribosome entry sites in eukaryotic
mRNA molecules. Genes Dev, 15, 1593-1612.



70.

71.

72.

73.

74.

75.

76.

71.

78.

79.

80.

81.

82.

83.

84.

8s.

86.

87.

114

Pesole, G., Liuni, S., Grillo, G., Ippedico, M., Larizza, A., Makalowski, W. and
Saccone, C. (1999) UTRdb: a specialized database of 5' and 3' untranslated
regions of eukaryotic mRNAs. Nucleic Acids Res, 27, 188-191.

Rijk, P.D., Wuyts, J. and Wachter, R.D. (2003) RnaViz2: an improved
representation of RNA secondary structure. Bioinformatics, 19, 299-300.

Theil, E.C. (1993) The IRE (iron regulatory element) family: structures which
regulate mRNA translation or stability. Biofactors, 4, 87-93.

Hofacker, I.L., Stadler, P.F. and Stocsits, R.R. (2004) Conserved RNA secondary
structures in viral genomes: a survey. Bioinformatics, 20, 1495-1499,

Edmonds, M. (2002) A history of poly A sequences: from formation to factors to
function. Prog Nucleic Acid Res Mol Biol, 71, 285-389.

Colgan, D.F. and Manley, J.L. (1997) Mechanism and regulation of mRNA
polyadenylation. Genes Dev, 11, 2755-2766.

Mangus, D.A., Evans, M.C. and Jacobson, A. (2003) Poly(A)-binding proteins:
multifunctional scaffolds for the post-transcriptional control of gene expression.
Genome Biol, 4, 223.

Wickens, M., Anderson, P. and Jackson, R.J. (1997) Life and death in the
cytoplasm: messages from the 3' end. Curr Opin Genet Dev, 7, 220-232.

Loke, J.C., Stahlberg, E.A., Strenski, D.G., Haas, B.J., Wood, P.C. and Li, Q.Q.
(2005) Compilation of mRNA polyadenylation signals in Arabidopsis revealed a
new signal element and potential secondary structures. Plant Physiol, 138, 1457-
1468.

Tian, B., Hu, J., Zhang, H. and Lutz, C.S. (2005) A large-scale analysis of mRNA
polyadenylation of human and mouse genes. Nucleic Acids Res, 33, 201-212.
Gilmartin, G.M. (2005) Eukaryotic mRNA 3' processing: a common means to
different ends. Genes Dev, 19, 2517-2521.

Zhao, J., Hyman, L. and Moore, C. (1999) Formation of mRNA 3' ends in
eukaryotes: mechanism, regulation, and interrelationships with other steps in
mRNA synthesis. Microbiol Mol Biol Rev, 63, 405-445,

Graveley, B.R., Fleming, E.S. and Gilmartin, G.M. (1996) RNA structure is a
critical determinant of poly(A) site recognition by cleavage and polyadenylation
specificity factor. Mol Cell Biol, 16, 4942-4951.

Das, A.T., Klaver, B. and Berkhout, B. (1999) A hairpin structure in the R region
of the human immunodeficiency virus type 1 RNA genome is instrumental in
polyadenylation site selection. J Virol, 73, 81-91.

Yan, J. and Marr, T.G. (2005) Computational analysis of 3'-ends of ESTs shows
four classes of alternative polyadenylatlon in human, mouse, and rat. Genome
Res, 15, 369-375.

Lee, J.Y., Ji, Z. and Tian, B. (2008) Phylogenetic analysis of mRNA
polyadenylation sites reveals a role of transposable elements in evolution of the
3'-end of genes. Nucleic Acids Res, 36, 5581-5590.

Lee, J.Y., Yeh, I, Park, J.Y. and Tian, B. (2007) PolyA DB 2: mRNA
polyadenylation sites in vertebrate genes. Nucleic Acids Res, 35, D165-168.
Shannon, P., Markiel, A., Ozier, O., Baliga, N.S., Wang, J.T., Ramage, D., Amin,
N., Schwikowski, B. and Ideker, T. (2003) Cytoscape: a software environment for



88.

89.

90.

91.

115

integrated models of biomolecular interaction networks. Genome Res, 13, 2498-
2504,

Kent, W.J. (2002) BLAT--the BLAST-like alignment tool. Genome Res, 12, 656-
664.

Tian, B., Pan, Z. and Lee, J.Y. (2007) Widespread mRNA polyadenylation events
in introns indicate dynamic interplay between polyadenylation and splicing.
Genome Res, 17, 156-165.

Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C.,
Haussler, D. and Miller, W. (2003) Human-mouse alignments with BLASTZ.
Genome Res, 13, 103-107.

Mootha, V.K., Lindgren, C.M., Eriksson, K.F., Subramanian, A., Sihag, S., Lehar,
J., Puigserver, P., Carlsson, E., Ridderstrale, M., Laurila, E. et al. (2003) PGC-
lalpha-responsive genes involved in oxidative phosphorylation are coordinately
downregulated in human diabetes. Nat Genet, 34, 267-273.



	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract (1 of 2)
	Abstract (2 of 2)


	Title Page

	Copyright Page

	Approval Page

	Biographical Sketch (1 of 2)
	Biographical Sketch (2 of 2)


	Dedication Page

	Acknowledgment (1 of 2)
	Acknowledgment (2 of 2)


	Table of Contents (1 of 4)
	Table of Contents (2 of 4)

	Table of Contents (3 of 4)

	Table of Contents (4 of 4)

	Chapter 1: Introduction 

	Chapter 2: Mining Small RNA Structure Elements in Untranslated Regions of Human and Mouse mRNAs Using Structure-Based Alignment

	Chapter 3: Detecting Conserved Secondary Structures in RNA Molecules Using Constrained Structural Alignment 

	Chapter 4: Radar: A Web Server for RNA Data Analysis and Research 

	Chapter 5: Detecting Conserved RNA Secondary Structures in Viral Genomes: The Radar Approach 

	Chapter 6: The Strength of a Polyadenylation Site in Influenced by the Structuraal Stability of the Surrounding Region and Its Distance from the Neighboring Gene 
 
	Chapter 7: Conclusions and Future Research 

	Appendix A: HSL3 and IRE Motifs 

	Appendix B: Hierarchical Clustering Results 

	Appendix C: GLEAN-UTR for Randomized UTR Sequences  

	Appendix D: GLEAN-UTR Results Overlapping with Structures from Other Studies 

	Appendix E: Extending RNA Structure Groups Found by GLEAN-UTR 

	References 


	List of Tables 

	List of Figures (1 of 4)
	List of Figures (2 of 4)

	List of Figures (3 of 4)

	List of Figures (4 of 4)



