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ABSTRACT

PREDICTIVE DECODING OF NEURAL DATA

by
Yaroslav 0. Halchenko

In the last five decades the number of techniques available for non-invasive functional

imaging has increased dramatically. Researchers today can choose from a variety of

imaging modalities that include EEG, MEG, PET, SPECT, MRI, and fMRI.

This doctoral dissertation offers a methodology for the reliable analysis of neural

data at different levels of investigation. By using statistical learning algorithms the

proposed approach allows single-trial analysis of various neural data by decoding them

into variables of interest. Unbiased testing of the decoder on new samples of the data

provides a generalization assessment of decoding performance reliability. Through

consecutive analysis of the constructed decoder's sensitivity it is possible to identify

neural signal components relevant to the task of interest. The proposed methodology

accounts for covariance and causality structures present in the signal. This feature makes

it more powerful than conventional univariate methods which currently dominate the

neuroscience field.

Chapter 2 describes the generic approach toward the analysis of neural data using

statistical learning algorithms. Chapter 3 presents an analysis of results from four neural

data modalities: extracellular recordings, EEG, MEG, and fMRI. These examples

demonstrate the ability of the approach to reveal neural data components which cannot

be uncovered with conventional methods.

A further extension of the methodology, Chapter 4 is used to analyze data from

multiple neural data modalities: EEG and fMRI. The reliable mapping of data from

one modality into the other provides a better understanding of the underlying neural

processes. By allowing the spatial-temporal exploration of neural signals under loose



modeling assumptions, it removes potential bias in the analysis of neural data due to

otherwise possible forward model misspecification.

The proposed methodology has been formalized into a free and open source

Python framework for statistical learning based data analysis. This framework,

PyMVPA, is described in Chapter 5.
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LIST OF TERMS

Abbreviation
ANOVA
BCI
BEM
BMA
BOLD
DC
DECD
ECD
EEG
EIT
EMF
F/MEG
EM
EMSI
EPI
ER
ERF
ERP
FDA
FDM
FEM
FFA
FG
FLIRT
FMRI
FMRIB
FOSS
FSL
GLM
GPR
HbO
HbR
HbT
HR
HRF
ICA
IED
LCMV
LFP

Analysis of Variance
Brain Computer Interface
Boundary Elements Method
Bayesian Model Averaging
Blood Oxygenation Level Dependent
Direct Current
Distributed ECD
Equivalent Current Dipole
Electroencephalography
Electrical Impedance Tomography
Electromotive Force
EEG and/or MEG
Expectation Maximization
Electromagnetic Source Imaging
Echo Planar Imaging
Event-related
Event-related Magnetic Field (in MEG)
Event-related Potential (in EEG)
Food and Drug Administration
Finite Difference Method
Finite Elements Method
Fusiform Face Area
Fusiform Gyrus
FMRIB's Linear Image Registration Tool
Functional MRI
Oxford Centre for Functional MRI of the Brain
Free and Open Source Software
FMRIB Software Library
General Linear Model
Gaussian Process Regression
Oxy-hemoglobin
Deoxy-hemoglobin
Hemoglobin (Total Count)
Hemodynamic Response
HR Function
Independent Component Analysis
Interictal Epileptic Discharge
Linearly Constrained Minimum Variance
Local Field Potential



LO	 Lateral Occipital
LP	 Linear Programming
LTIS	 Linear Time Invariant System
MAP	 Maximum a Posteriori
MANOVA Multivariate Analysis of Variance
MCMC	 Monte-Carlo Markov Chain
MEG	 Magnetoencephalography
MFG	 Middle Frontal Gyrus
ML	 Machine Learning
MR	 Magnetic Resonance
MRI	 MR Imaging
NIRS	 Near-Infrared Spectroscopy
NMR	 Nuclear Magnetic Resonance
PCA	 Principal Component Analysis
PCC	 Posterior Cingulate Cortex
PD	 Proton Density Imaging
PDF	 Probability Density Function
PET	 Positron Emission Tomography
PCUN	 Precuneous
PHG	 Parahippocampal Gyrus
PLS	 Partial Least-Squares
PyMVPA Python Multivariate Pattern Analysis Toolbox
pSTS	 Posterior Superior Temporal Sulcus
RFE	 Recursive Feature Elimination
ROC	 Receiver Operating Characteristic
ROI	 Region of Interest
SMLR	 Sparse Multinomial Logistic Regression
SNR	 Signal-to-noise Ratio
SOBI	 Second Order Blind Identification
SPECT	 Single Photon Emission Computed Tomography
SPM	 Statistical Parametric Mapping
SQUID	 Superconducting Quantum Interference Device
STS	 Superior Temporal Sulcus
STG	 Superior Temporal Gyrus
SVD	 Singular Value Decomposition
SVM	 Support Vector Machine
SVR	 Support Vector Machine Regression
TOFC	 Temporal Occipital Fusiform Cortex
TR	 Time of Repetition (in fMRI)
VEP	 Visual Evoked Potential
WMN	 Weighted Minimum Norm



Symbol
O Zero matrix of appropriate dimensionality
C	 Covariance matrix
F	 BOLD fMRI data matrix (N x U)
Fi	 Spatial filter matrix for the i-th dipole (M x L)
G General E/MEG lead matrix
In 	Identity matrix (n x n)
K Number of simultaneously active voxels
K Matrix of correlation coefficients
L Number of orthogonal axes for dipole moment components, L E

{1,2,3}
M	 Number of EEG/MEG sensors, i.e., spatial resolution of low spatial

resolution modality
N	 Number of voxels, i.e., spatial resolution of high spatial resolution

modality (fMRI)
Q	 General dipole sources matrix (LN xT)
Q	 Dipole sources strength matrix (N xT)
T	 Number of time points of high temporal resolution modality (EEG,

MEG)
U Number of time points of low temporal resolution modality (fMRI)
X	 General E/MEG data matrix; can contain EEG or/and MEG data

(M xT)
General E/MEG lead function, incorporating information for EEG
or/and MEG

O	 Dipole sources orientation matrix (LN xT)
Deviation

7- , 	 General time-frequency transformation function
Variance

Function
MT 	Matrix transpose
M+ 	Generalized matrix inverse (pseudo-inverse)
null M	 The null space of M, the set of vectors {x Mx = 0}
diag M	 The diagonal matrix with the same diagonal elements as M



GLOSSARY OF TERMS

Chunk
A group of data samples which are independent from the other samples. This
information is important in the context of a cross-validation procedure. Different
chunk ids could correspond to different subjects, experimental runs, etc.

Cross-validation
A technique for assessing how the results of a statistical analysis will generalize to
an independent dataset. It is mainly used in settings where the goal is prediction, and
one wants to estimate how accurately a predictive model will perform in practice
(Description from the Wikipedia).

Dataset
A combination of data samples and related attributes (e.g., samples labels and
chunks, channel ids, etc.).

Label
A value associated with a data sample (or multiple samples). It can correspond to
a certain category, experimental condition or, in case of a regression problem, to a
variable of ordered numbers. Labels therefore define the model that a learner has to
learn, and are used when cross-validating the performance of the learner.

Learner
A method capable of devising a mapping from the space of data samples into the
space of labels. If labels belong to a non-ordered set, learner is called a classifier.
If labels are ordered and there is a corresponding distance metric, regression.

Machine Learning
A field of Computer Science which aims at constructing methods, such as learners,
to integrate available knowledge extracted from the existing data.

Mass-univariate
An analysis scheme when a univariate method applied to all observables (variables)
one observable at a time.

Multivariate
Having or involving a number of independent mathematical or statistical variables
(Definition from the Merriam-Webster Online Dictionary). In statistics it describes
a collection of procedures which involve observation and analysis of more than one
statistical variable at a time.

Neural Data Modality
A reflection of neural activity collected using some available instrumental method
(e.g., EEG, MEG, fMRI, etc.).
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Sensitivity
A score assigned to a particular feature with respect to its impact on the learner's
decision.

Statistical Learning
A field of Computer Science which aims at exploiting statistical properties of the
data to construct reliable learners (hence it is related to Machine Learning), and to
assess their convergence and generalization performances.

Univariate
Characterized by or depending on only one random variable (Definition from the
Merriam-Webster Online Dictionary). In mathematics univariate refers to an
expression, equation, function or polynomial of only one variable. Objects of any
of these types but involving more than one variable may be called multivariate. In
statistics, this term is used to distinguish a distribution of one variable from a
distribution of several variables.
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CHAPTER 1

INTRODUCTION

The average Ph.D. thesis is nothing but the transference of
bones from one graveyard to another

— Frank J. Dobie "A Texan in England", 1945

The brain is a complex, massively-parallel computing system composed of billions of

neurons that it uses to extract, process, and store information about the physical world.

The brain is capable of carrying out complex behavioral and cognitive tasks that range

from walking to writing a Ph.D. dissertation. It does this through complex neural

networks that recode the physical data available in the world into neural data, that is, it

performs the information processing necessary for biological organisms to function in

the physical world. The mechanisms that underlie information processing, the

specialization of network function, and the interactions among different networks are

issues of considerable interest and debate in the neuroscience community.

Neuroscientists can use existing technology to record the epiphenomena

associated with neural activity and to extrapolate from this data the mechanisms

underlying cognitive processing. These neural data represent large volumes of discrete

signals which are complex, noisy, and non-stationary; a rather gross reflection of neural

activity across spatial and temporal extents. For this reason, the use of advanced

signal-processing methods, although underutilized in neuroscience, could potentially

resolve many debates about brain function.

One debate in neuroscience involves the identification of functional specificity in

the brain and the mapping of specific modules to a set of cognitive or perceptual processes.

Another debate concerns the nature of the interaction among brain modules that facilitate

data flow and data processing while engaged in cognitive tasks.
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Current signal-processing methods used to analyze neural data are geared

primarily toward identification. These methods are used to map functional modules or

spatio-temporal components of the brain signal specific to some form of information

processing, for example early visual processing. Such methods are often able to detect

brain areas engaged in a given mental task, but make limited use of neural data, and

consequently are often inefficient. Moreover, it remains an open question whether such

methods can be used to claim specificity of a given area for a unique aspect of

information processing (e.g., recognition of the human face).

Because most of the signal-processing methods that are used in neuroscience

studies are univariate, any particular basic unit in the temporal and/or spatial dimension of

the signal is considered to be independent of any other. Such basic units correspond to a

single channel of acquisition in space (e.g., in fMRI), or to a specific temporal offset from

stimulus presentation in the temporal domain (e.g., in EEG). Since each basic unit carries

a very noisy and information-laden signal, univariate methods are capable of detecting

only large gross level effects of neural activation. This feature of univariate approaches

requires certain pre-processing steps that necessarily ignore some information embedded

in the signal.

Several limitations exist when using univariate methods to analyze neural data.

For example, it is often necessary to average registered neural responses over a large

number of trials to boost the signal-to-noise ratio. This averaging obfuscates the variance

in signals that are not precisely locked to the onset of the stimulus trials. Another problem

is that the independence assumption of univariate approaches essentially ignores potential

covariance between neighboring or distant units. A third problem is that identification

approaches do not account for various sources of signal variance, nor do they address the

causal structure of information processing in the brain. This feature of univariate methods

makes them inherently unable to provide adequate mapping between a stimulus context

and a given brain state. These problems make univariate methods very limited in their



ability to either provide insight into the specific nature of the encoding in each module,

or to assess the similarity among stimulus conditions. Finally, it should be noted that

conventional methods do not promote model testing, which makes it difficult to assess the

reliability of the findings.

Multivariate methods do exist that can hypothetically account for all the data.

Unfortunately most of the classical multivariate methods (e.g., multivariate analysis of

variance or MANOVA) require a large number of data samples to reliably assess the

underlying structure of the signal. Because neural data has high dimensionality, the

number of samples that are available is limited. This fact makes it hard (if not impossible)

to use classical multivariate methods.

In the past decade though, in the domain of statistical learning theory, new methods

have been developed. These methods often do not require large number of samples to

achieve reasonable performance. Moreover, they inherently provide adequate decoding

capabilities together with promoting model testing. These features of statistical learning

methods make it possible to develop new strategies for the analysis of neural data. The

goal of this dissertation is the construction and analysis of methods that can be used to

decode brain signals and that will further our understanding of the mapping between brain

state and the experimental conditions.

Learning theory methods will be of particular interest in that they are able to

decode brain states, and to discover functional structures of the brain signal at a level of

detail univariate approaches are not able to provide. These methods are used to examine

identification, specificity, causality, and similarity features of neural data from the level of

neurons to the level of interacting neural systems. Thus, learning theory methods are well

suited to the task of revealing the distributed functional networks underlying perceptual

and cognitive processing.

This dissertation will also provide a new methodology for conjoint multi-modal

data analysis. The proposed method provides reliable mapping of the brain state reflected
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in one acquired data modality (EEG) into that of another data modality (fMRI). Because

data in both modalities are convoluted with modality-specific inclusions (e.g.,

instrumental noise, modality-specific neuro-physiological processes), the reliable

mapping between modalities should allow the recovery of any common structure

between them, i.e., the effective neuronal activity.

The following sections of this chapter will overview existing neural data

modalities and provide further reasoning for the exploration of decoding methods using

unimodal and multimodal analysis of brain data.

1.1 Neuroscience Overview

Neuroscience is a field of research devoted to the study of the nervous system. The

brain (see Figure 1.1) receives the greatest attention from neuroscientists inasmuch as it

constitutes the main functional unit of the nervous system. It controls all parts of the body,

dictates patterns of behavior, empowers thoughts, and provides the mechanism to acquire,

encode, and store knowledge about the world. Hence, brain function research is relevant

for anyone with intellectual interest in human behavior, whether that interest is driven

philosophically, experimentally, or clinically. Increasing knowledge about brain function

also has a pragmatic aspect. Improving the techniques used to decode brain signals can

make it easier to "read minds" or to increase the independence of handicapped individuals

through brain-computer interfaces.

The brain of a human is composed of a network of neurons and other supportive

cells (e.g., glial cells) that number in the tens of billions. Each neuron on average has

thousands of connections to other neurons which allows them to form functional networks,

each responsible for specific tasks from simple reception and transmission of information

to much more complex processes underlying human behavior. Thus, neuroscience can be
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Figure 1.1 Side view of the human brain. Only right hemisphere is visualized.

studied at many different levels (as depicted in Figure 1.2), ranging from the molecular

level to that of complex neural systems.

The most basic level of investigation in neuroscience happens at the cellular

level, where the fundamental questions focus on the mechanisms underlying the ability

of neurons to process signals physiologically and electrochemically. Researchers

investigate how signals are processed by the dendrites, somas, and axons, and how

neurotransmitters and electrical signals are used to conduct information between

neurons. At a higher level, neuroscientists focus on networking of neurons including how

these networks are formed. At this level of investigation, the goal is to model how

particular networks are used to produce the physiological functions that range from

simple reflexes to the complex processing involved in learning and memory. Research

that is specifically aimed at understanding the role of complex systems and networks in

cognitive behavior is designated as "cognitive neuroscience".

While behavioral experiments allow scientists to uncover high-level aspects of

human performance and behavior, they are incapable of uncovering the complexities



Figure 1.2 Different levels of human brain investigation 1-11.
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involved in brain activation. Analysis of brain function must rely on data derived from

the neural activity in the living brain.

One possible approach to understanding brain function is the use of simulation.

There is an ongoing project "Blue Brain" [2], which aims to simulate the human brain

down to the molecular level using existing neural models and available high-performance

computing facilities. Thus far they have succeeded only in simulating a single rat

neocortical column. This structure can be considered the smallest functional unit of the

neocortex¹ . Such a column is about 2 mm tall, has a diameter of 0.5 mm, and contains

only about 60,000 neurons in humans. Rat neocortical columns are very similar in

structure but contain only 10,000 neurons (and 108 synapses). Despite this advancement,

modeling of the whole human brain remains an ambitious and distant goal and even if

possible would not provide direct answers about the higher-level functional structure of

the brain.

The alternative approach available to neuroscientists interested in the exploration

of brain function is the analysis of the neural signals of the brain. Unfortunately, at this

point in time there is no single technology advanced enough to allow a "snapshot" of the

complete neural system at either a molecular or neuronal level. Even if there were such

technology available a format for precisely describing the billions of neurons with trillions

of connections among them does not exist. However, even overcoming these technological

problems would not magically resolve the debates in neuroscience. What is required are

new data analysis approaches, which are able to extract relevant information from huge

amounts of data. Moreover, these analysis methods would need to be customized for

the level of investigation being followed (i.e., cellular, network) as the questions being

asked are quite different. It is for this reason that researchers interested in a given level of

¹Neocortex is the part of the brain thought to be responsible for higher functions such as conscious
thought
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investigation have developed specialized analysis methods to capture and process neural

activity at temporal and spatial scales of interest.

Research of human brain function presented a particular challenge in that a

non-invasive2 means of assessing the characteristics of neuro-physiological processes

inside the brain was necessary. Invasive techniques, such as extracellular and

intracellular recordings, which have been useful in describing neural .functioning in

animals, are not appropriate for the study of humans. Invasive techniques in humans are

limited to those ancillary to medically required surgery such as that used to treat

epilepsy. By adopting certain assumptions about the nature of neuronal signals, neuronal

activity can be measured and modeled as biomedical signals. These signals can be

obtained through several different types of non-invasive brain imaging modalities such as

electroencephalography (EEG), magnetoencephalography (MEG), nuclear magnetic

resonance (NMR) imaging (MRI) 3 , positron emission tomography (PET), and

near-infrared spectroscopy (NIRS).

These non-invasive neural data modalities can be categorized as either passive or

active. The purpose of the passive modalities (EEG and MEG) is to register ambient

environment changes which are caused by neuronal processes inside the brain. Active

modalities (such as MRI, PET and NIRS) create a controllable environment which

changes under influence of underlying neuronal and other physiological processes.

Therefore, active modalities usually do not register neuronal activity directly, but rather

capture changes caused by the neuronal activity, e.g., consumption of contrast agents,

blood oxygenation, or changes of blood flow. Captured brain signals by either passive or

active modalities are usually non-stationary signals distorted by noise and signal

interference. Moreover, they possess characteristics specific to the technique (modality)

2From WordNet (r) 2.0 (August 2003) [wn]: noninvasive adj: relating to a technique that does not
involve puncturing the skin or entering a body cavity [ant: invasive]
3The term MRI generally substituted NMR so that the public could more easily adopt a term for
an imaging modality without the word "nuclear" in it
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which was used to acquire it, so it is crucial to have a clear understanding of modality's

nature when performing advanced signal analysis.

The oldest modality is EEG. It has been widely used in research and clinical

studies since the mid-twentieth century. Although Richard Caton (1842-1926) is

believed to have been the first to record the spontaneous electrical activity of the brain,

the term EEG first appeared in 1929 when Hans Berger, a psychiatrist working in Jena,

Germany, announced to the world that "it was possible to record the feeble electric

currents generated on the brain, without opening the skull, and to depict them graphically

onto a strip of paper." The first SQUID 4 -based MEG experiment with a human subject

was conducted at MIT by Cohen [3] after his successful application of Zimmerman's

SQUID sensors to acquire a magneto-cardiogram in 1969. EEG and MEG are closely

related due to electro-magnetic coupling, and term E/MEG will be used to refer

generically to either EEG, MEG, or both altogether. Although EEG and MEG are

related, there are some subtle differences among them [4]. Both E/MEG provide high

temporal resolution (milliseconds) but have a major limitation: the location of neuronal

activity can be hard to pin-point with confidence. Localization of neural activity from

E/MEG data is usually referred to as electromagnetic source imaging (EMSI) and has

been a challenging area of research for the last couple of decades. That is because

such techniques measure the signal outside of the head, that are created by the

super-imposition of electromagnetic fields produced by activity at the level of neurons

and neural networks. Therefore, in order to obtain even a coarse spatial localization of

the activated neural populations an ill-posed inverse problem has to be solved.

Unlike E/MEG, MRI modality is inherently capable of providing an in vivo view

of brain structure and function at the level of basic neural networks. The Nuclear

Magnetic Resonance (NMR) effect was independently and simultaneously discovered by

Felix Bloch and Edward Purcell in 1946. As a consequence of this important discovery,

4Superconducting Quantum Interference Device
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Figure 1.3 Non-invasive functional brain imaging equipment: from simple EEG to
expensive MR. Top row shows the typical view of the used equipment, and bottom row
visualizes typical data.

they shared a Nobel Prize in Physics in 1952. In 1970, Raymond Damidian came to the

conclusion that the key to MR imaging (MRI) is the structure and abundance of water in

the human body. It was Paul Lauterbur in 1973, however, who implemented the concept

of tri-plane gradients used for exciting selective areas of the body. P. Lauterbur along

with Peter Mansfield were awarded a Nobel Prize in Physiology and Medicine in 2003

for the invention of MRI, which made a huge impact on medical imaging.

Since their first appearance, MRI techniques have been evolving. Today image

intensity observed in MR images can be determined by various tissue contrast

mechanisms such as proton density, T1 and T2 relaxation rates, diffusive processes of

proton spin dephasing, loss of proton phase coherence due to variations of magnetic
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susceptibility in the tissue. Although MRI is capable of detecting transient or subtle

changes in the magnetic field in the cortical tissue caused by neuronal activation [5, 6],

the direct application of MRI for capturing functional activity remains limited due to a

very low signal-to-noise ratio (SNR). For this reason, MRI is often labeled anatomical.

It was toward the end of the 19th century, when Charles Roy and Charles

Sherrington [7] provided the first evidence supporting the connection between neuronal

activity and cerebral blood flow. One hundred years after the MRI technique had

received attention in anatomical studies, Ogawa et al. [8] it was discovered that MRI can

reflect blood deoxygenation using T2*contrast. This finding laid down a framework for

functional brain imaging using MRI [9-11] based on capturing blood oxygenation

level-dependent (BOLD) signal without the use of any reactive agents; and made

functional MRI (fMRI) the first truly non-invasive functional brain imaging modality

able to provide rich spatial information. The typical spatial resolution of BOLD fMRI in

human research is 1-3 mm, which is sufficient to provide information about neural

activity at the level of neural networks. One drawback is that the hemodynamic (blood

related) response lags several seconds behind the firing of neurons making the BOLD

fMRI signal a coarse reflection of the neuronal activity. Despite this limitation, fMRI

studies have increased geometrically over the last ten years, largely because the spatial

resolution of fMRI is so high.

Researchers interested in the function of the human brain often focus on one, or

at most a small subset of modalities. This is due partly because of the kinds of questions

under investigation and partly to the heavy cost of learning to analyze data using other

techniques. However, the selection of a given measurement approach can greatly limit

the kind of research hypothesis that is formulated as well as the questions that can be

addressed.
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1.2 Machine Learning Methods in Neuroimaging

Some analysis techniques have become de facto standards despite their limitations or

inappropriate assumptions for a given data type. For instance, the general linear model

(GLM), as a part of statistical parametric mapping (SPM) analysis pipeline, is the

prevalent approach used in fMRI data analysis. In SPM, aspects of neural signal

processing were segregated into two independent steps: identification and integration.

The original goal of identification was motivated by the intention to "identify

functionally specialized brain responses" [12], i.e., to identify regions of the brain (at the

level of neural networks), where a statistically significant portion of the neural signal

could be well described by known experimental manipulations (see Figure 1.4(a)). Such

formulation of the target goal allowed significant simplification in the analysis of

massive datasets, such as fMRI data, by considering each acquired spatial unit (voxel5 in

MRI terms) as independent of any other. This assumption promoted the use of

mass-univariate analysis techniques. However, this approach is very restrictive in terms

of possible findings [13, 14] because the analysis of each voxel is carried out in isolation

from the rest of the population. Because of this fact, it impossible for a GLM analysis to

account for any interaction within and between neural networks. Therefore the actual

results of identification are limited to the regions with uniform contrast across

experimental conditions, unless the interactions were explicitly modulated by the

experimental design and were provided as input to the GLM. Due to such reliance upon

large gross-effects within the signal, the GLM is not able to resolve the functional

structures at the level of neural networks. By virtue of its design, the GLM is, at best,

able to identify areas participating in the encoding of experimental variables into the

neural code of the acquired neural data.

However, outside the neuroscience community, research in machine learning (ML)

and statistical learning theory in particular, has spawned a set of analysis techniques that

5 Voxel as a volume element, representing a value on a regular grid in three dimensional space.
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Figure 1.4 Two possible approaches toward the analysis of neural data (on the example
of fMRI).
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are typically multivariate, flexible (e.g., classification, regression, clustering), powerful

(e.g., linear and non-linear), and generic, and hence often applicable to various data

modalities with minor modality-specific pre-processing [see 15, for a tutorial and further

reasoning on application of ML methods to the analysis of fMRI data]. Moreover, large

parts of the ML community favor the open-source software development model [16, see

also MLOSS6 project website], which leads to an increase in scientific progress due to the

superior accessibility of information and reproducibility of scientific results.

By virtue of advances in statistical learning techniques, various ML methods, such

as support vector machines (SVM) [17], became capable of providing unprecedented

generalization performance when tested on the data which were not provided during

training. The ability to assess performance on data not seen during training provides

the means of assessing the validity of a constructed decoder. Surprisingly, many methods

retain a high level of generalization performance even when the dimensionality of the

input space greatly exceeds the number of available data samples. Features such as

these make statistical learning methods a perfect choice to tackle the problem of reliable

decoding of neural data with its rich informational content and its multivariate nature.

Advantages of statistical learning methods have recently attracted considerable

interest throughout the neuroscience community. Neuroscientists have reported

compelling results when they applied such methods toward the analysis of fMRI data'.

The major difference of such approaches from the "standard" SPM is the flow of

information. In SPM, the description of the experimental conditions is provided as the

input to GLM for a voxel by voxel testing of the desired hypothesis (Figure 1.4(a)).

When using statistical learning methods, flow of information is usually reversed: entire

(or a selected region of interest, or ROI) neural dataset is provided as the input to the

6http://www.mloss.org
7 1n the literature, authors have referred to the application of machine learning techniques to neural
data as decoding [18, 19], information-based analysis [e.g., 20] or multi-voxel pattern analysis
[e.g., 21-23].
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decoder, which is trained to decode experimental conditions out of the observed neural

data (Figure 1.4(b)). For example, two such classifier-based studies by Haynes and Rees

[24] and Kamitani and Tong [18] were able to decode the orientation of visual stimuli

from fMRI data from human primary visual cortex. Orientation-selective columns are

only about 300-700 pm in width in monkeys, and on a millimeter scale in humans. For

the reasons stated earlier, univariate methods are incapable of providing specificity

information for a given spatial location at the level of neural networks. However,

statistical learning methods can be used successfully with large data sets to reveal subtle

response biases which would not be detected by univariate analysis Kamitani and Tong

[18], Haynes and Rees [24]. These small signal biases representing local distributed

coding of the responses are sufficient to disambiguate stimulus orientations despite the

fact that the fMRI data were recorded at 3 mm spatial resolution, i.e., at much more

coarse resolution than the scale of the neural networks of interest. Thus, multivariate

methods can be used to account not only for the variance in signal due to the interactions

between voxels, but to extract information about functional structures from a signal

acquired at a coarse level of spatial resolution.

Other classifier-based studies have further highlighted the strength of a decoding

approach. For example, classifier-based analysis was first used to investigate neural

representations of faces and objects in ventral temporal cortex and showed that the

representations of different object categories are spatially distributed and overlapping

and that they have a similarity structure that is related to stimulus properties and

semantic relationships [25-27]. This dissertation work (Section 3.4.3, also includes work

[28]) is examining the specificity information encoded in distributed patterns. The

obtained results provide further understanding of the distributed similarity patterns

obtained in the analysis of the data from [25].

Statistical learning methods have applications in the analysis of other neural data

modalities as well. For instance, brain-computer interfaces (BCI) was an early research
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direction that heavily relied on the use of ML methods. In the context of BCI, a trained

classifier provides predictions about an intended action by a human based on the acquired

neural data (usually from E/MEG modalities). Unlike research designed to uncover the

functional structure of the brain, BCI work is concerned primarily with the detection of

components of brain signals that a trained participant could easily control to perform a

desired action (i.e., moving a cursor around the screen). This dissertation research seeks

not only to construct a decoder of neural data, but also to enhance understanding of the

functional structure of the brain. Hence, Section 3.3.2 not only presents the ability

to reliably predict experimental condition, but also shows how a constructed decoder

of E/MEG signals could discover spatio-temporal components of the signal relevant to

the research question, which are not detected by conventional univariate identification

methods.

Besides BCI applications that use statistical learning algorithms in E/MEG, a

variety of unsupervised statistical learning methods have recently received a lot of

attention. Most of unsupervised methods address the problem of extracting "interesting"

components of the signal by the means of the signal decomposition (e.g., principal and

independent component analysis (PCA and ICA)). These methods are used to

decompose an acquired signal into a combination of basic components, where each

component represents a specific neural or physiological process, or simply the

instrumental noise. On the cellular level, such methods are usually used to decompose

neuronal spike trends into a set of independent units that are believed to correspond to

the basic elements of neural networks, i.e., neurons. Since such identification of the

neurons is driven by unsupervised methods, no specificity information is attributed to any

given neuron in the result. Section 3.2 shows how supervised methods in the context of

neural data decoding at the cellular level can provide specificity information for each

extracted unit thereby making it possible to derive various conclusions about the neural

population, signals of which are captured at the given recording site.
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Unsupervised methods have also been used in pre-processing of data. The simplest

application is the removal of the components which can be attributed to noise with some

confidence thereby increasing the efficiency of data filtering. Alternatively such methods

can be used for dimensionality reduction when only a few out of a number of components

are found to be relevant to the experimental design. However, it is often the case that the

components of interest are not the ones that account for most of the variance in the signal

(see [13] or "Classification of SVD-mapped Datasets" in PyMVPA manual [29]).

To summarize, statistical learning methods have been used extensively in various

fields of science and more recently in neuroscience. Nevertheless, only a subset of

statistical learning methods are used in the analysis of neural data to discover the

functional structure of the brain. Chapter 3 presents various strategies for applying ML

methods to the analysis of various neural data modalities at different levels of

investigation. It starts by addressing the problem of specificity at the neural level with the

analysis of extracellular recordings. It then describes the analysis of E/MEG datasets and

the advantages of decoding methods over standard univariate approaches in the

identification of spatio-temporal components of the signal relevant to the experimental

paradigm. The final section address once more the problem of identification and

similarity structure analysis in fMRI data.

1.3 Multimodal Analysis

No single neural data modality has yet become the favored choice for resolving all

neuroscience questions about brain function. High temporal resolution of E/MEG

modalities is crucial in many event-related (ER) experiments but is absent in BOLD

fMRI, a modality that delivers superior spatial resolution but poor temporal resolution.

At this point in time a methodology that consolidates the information obtained from

different brain imaging modalities and maximizes both spatial and temporal resolution



18

does not exist although such information integration would be extremely valuable in a

variety of applications. It might provide a consistent and reliable localization of the

functional neuronal units and processes with higher spatial and temporal precision that

cannot be achieved using any of the existing modalities alone. It can help to understand

the inherent structure of the signal: which parts of the observed signal could be attributed

to the neural and physiological processes, and which to the instrumental noise, that is

specific to a given neural modality in question. That can further lead to the development

of cross-modality filtering methods, which could be used as a preprocessing step in the

unimodal data analysis.

The main obstacle in the development of multimodal methods involving fMRI

nowadays seems to be the absence of a reasonable universal model for hemodynamics,

where the neuronal activation is the primary input factor. The naive models are not general

enough to explain the variability of the BOLD signal, whereas complex parametric models

that rely heavily on a prior knowledge of nuisance parameters (based on biophysical

details), almost never have a reliable and straightforward means of estimation. This fact

makes it unlikely to use such comprehensive models as reliable generative models of the

BOLD signal at the level of basic neural networks.

Due to the difficulties in assessing the ground truth of a combined signal in any

realistic experiment — a difficulty further confounded by lack of accurate biophysical

models of BOLD signal, any cross-modality fusion approach has to be tackled with

caution. Nevertheless, various methodologies can already provide basic test-ground to

check the validity of the developed fusion methods: analysis of simplistic experiments,

which target perception processes, where there is a small number of isolated focal

sources of activity, studies on phantom (artificial) brains with known sources of

activation. At last, the employment of the methods which enforce testing of the

discovered underlying model on yet unseen data (which is a requisite in most of the
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supervised ML methods), intrinsically provides unbiased estimation of the performance

of the suggested method.

To summarize, now it seems to be the right time for the development of fusion

methods which are comprising empirically supported models or are flexible enough

to incorporate future elaborated models of the BOLD response. A convincing

demonstration of obtaining better explanatory power for the signals and increased

accuracy of localization by the means of multimodal integration for a complex protocol

would constitute a major success in the field.

Chapter 4 addresses the development and validation of a multimodal functional

brain imaging technique to gain intrinsic advantages of each used modality. Regression

methods, devised in the field of statistical learning, are employed for the conjoint analysis

of fMRI and EEG data, where fMRI data is explained in terms of neural activity registered

by EEG modality. Such approach provides multiple advantages over existing methods

which are presented in the same chapter. Proposed methodology is supported by the

results obtained on simulated and empirical neural data.

1.4 Statistical Learning Software and Neuroimaging

Despite the aforementioned advantages and promises of statistical learning theory

methods for the analysis of neural data, various factors have delayed their adoption for

the analysis of neural information. First and foremost, existing conventional techniques

are well-tested and often perfectly suitable for the standard analysis of data from the

modality for which they were designed. Most importantly, however, a set of

sophisticated software packages has evolved over time. That allows researchers to apply

conventional and modality-specific methods without requiring in-depth knowledge about

low-level programming languages or underlying numerical methods. In fact, most of

these packages come with convenient graphical and command line interfaces. Presence
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of such interfaces abstracts the peculiarities of the methods and allows researchers to

focus on designing experiments and on addressing actual research questions without

having to develop specialized analyses for each study.

While specialized software packages are useful when dealing with specific

properties of a single data modality, they limit the flexibility to transfer newly developed

analysis techniques to other fields of neuroscience. This issue is compounded by the

closed-source, or restrictive licensing of many software packages. That, in fact, further

limits software flexibility and extensibility.

Moreover, only a few software packages exist that are specifically tailored towards

straightforward and interactive exploration of neuroscientific data using a broad range of

ML techniques: Matlab® 8 MVPA toolbox for fMRI data9 [30] and 3dsvm plugin for AFNI

[31]. At present only independent component analysis (ICA), an unsupervised method,

seems to be supported by numerous software packages (see 32, for fMRI, and 33, for

EEG data analysis). Therefore, the application of statistical learning analyses strategies

to neuroimaging data usually involves the development of significant amount of custom

code. Hence, users are typically required to have in-depth knowledge about both data

modality peculiarities and software implementation details.

Growing number of published results on using statistical learning methods in

neuroimaging, coupled with the absent software implementation of those analysis

pipelines, often makes it difficult, if not impossible, to carry out the same analysis on the

datasets at hands to check the validity of the method, or barely to reproduce the reported

results.

At the same time, Python has become the open-source scripting language of choice

in the research community to prototype and carry out scientific data analyses and to

develop complete software solutions quickly. It has attracted attention due to its openness,

8Closed source commercial product of MathWorks®
91t is possible to use the low-level functions of this toolbox for other modalities.
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flexibility, and the availability of a constantly evolving set of tools for the analysis of many

types of data. Python's automatic memory management, in conjunction with its powerful

libraries for efficient computation (NumPy¹0 and SciPy ¹¹ ) abstracts users from low-level

"software engineering" tasks and allows them to fully concentrate their attention on the

development of computational methods.

As an interpreted, high-level scripting language with a simple and consistent

syntax, a plethora of available modules, easy ways to interface to low-level libraries

written in other languages' and high-level computing environments ¹³ , Python is the

language of choice for solving many scientific computing problems. Despite the fact that

it is possible to perform complex data analyses solely within Python, it once again often

requires in-depth knowledge of numerous Python modules, as well as the development of

a large amount of code to lay the foundation for one's work. Therefore, it would be of

great value to have a framework that helps to abstract from both data modality specifics

and the implementation details of a particular analysis method. Ideally, such a

framework should help to expose any form of data in an optimal format applicable to a

broad range of machine-learning methods, and on the other hand provide a versatile, yet

simple, interface to plug in additional algorithms operating on the data.

Chapter 5 presents PyMVPA — a Python-based framework for multivariate

pattern analysis using supervised and unsupervised ML methods. The chapter provides a

short summary of the principal design concepts, and the basic building blocks of the

PyMVPA. This software was used for most of the the analysis results presented in this

dissertation, and major parts of the source code for the analysis are readily available

under FOSS license as part of PyMVPA distribution, or as supplemental material for

[23].

¹°http://numpy.scipy.org
¹¹ http://www.scipy.org
¹2e.g., ctypes, SWIG, SIP, Cython
¹¹³e.g., mlabwrap and RPy



CHAPTER 2

RESEARCH METHODOLOGY

This works every time, provided you're lucky

— Unknown soul-mate

2.1 Machine Learning

Machine learning methods aim at integrating the available knowledge extracted from

the provided data, so that they could reliably assess the outcome whenever new data is

provided. Significant boost in the applicability of machine learning toward the analysis

of real data came with the development of statistical learning theory. Moreover, all of the

methods utilized in this dissertation were developed in the domain of statistical learning.

Nevertheless, "machine learning" is used throughout the text as a generic term for any

methodology which targets to "train" a reliable predictor of a novel data.

Machine learning (ML) methods employed in this dissertation could be brought

into two groups: supervised and unsupervised. A supervised learning method requires

labeled data, so it could deduce the mapping from the data onto the labels. This step is

called learning. The quality of the learned mapping is afterward assessed by applying

it to new data and comparing mapping results to the true labels. This step is called

generalization testing or simply testing. Unsupervised methods do not require the labeling

of the data provided for learning. Usually these methods are constructed to discover an

inherent structure of the input data (e.g., maximum variance linear subspaces in PCA,

independent components in ICA, etc.).

There exists a multitude of ML methods. They differ in their goals, assumptions

about the underlying data structure, inherent feature weighting and selection, target

22
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optimization criterions, optimization routines, and many other aspects. Reliable

decoding of the neural data, which is the topic of this dissertation, does not aim at

exploring and describing possible learning methods in the search for the best choice.

Rather, it concerns itself with the construction of a generic workflow, methods, and tools

capable of extracting information out of the neural data at different levels of investigation

of human brain.

ML-based analysis typically consists of some basic procedures that are

independent of the classification algorithm or decision process that was actually used,

e.g., error calculation, cross-validation of prediction performance, and feature selection.

Some of the aspects of learning methods presented in this chapter are presented in the

perspective of PyMVPA framework, which is described in greater detail in the Chapter 5.

Meanwhile, Figure 2.1 presents building blocks of PyMVPA to highlight various stages

of data analysis.

2.2 Data Handling

Typically, a dataset for ML analysis consists of three parts: data samples, sample

attributes and dataset attributes. While the data samples contain the actual patterns that

shall be used for training or validation, sample attributes hold additional information on a

per sample basis (see Figure 2.2). First and foremost of these are the discrete labels

(classification) or continuous variables (regression) that index each data sample with a

given experimental condition and thereby provide the basis for the mapping that is

constructed by the learning method.

It is often necessary to define groups of data samples. For example, when

performing cross-validation, the independent training and validation sets must be

identified. In the case of fMRI data, which contains significant forward temporal

contamination across samples, the temporal separation of training and validation datasets
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Figure 2.1 Machine learning framework PyMVPA, its workflow and design. PyMVPA
consists of several components (gray boxes) such as ML algorithms or dataset storage
facilities. Each component contains one or more modules (white boxes) providing a
certain functionality, e.g., classifiers, but also feature-wise measures [e.g., I-RELIEF; 34],
and feature selection methods [recursive feature elimination, RFE; 35, 36]. Typically,
all implementations within a module are accessible through a uniform interface and can
therefore be used interchangeably, i.e., any algorithm using a classifier can be used with
any available classifier implementation, such as support vector machine [SVM; 17], or
sparse multinomial logistic regression [SMLR; 37]. Some ML modules provide generic
meta algorithms that can be combined with the basic implementations of ML algorithms.
For example, a Multi-Class meta classifier provides support for multi-class problems, even
if an underlying classifier is only capable to deal with binary problems. Additionally,
most of the components in PyMVPA make use of some functionality provided by external
software packages (black boxes). SVM, classifiers are interfaced to implementation
in Shogun or LIBSVM. PyMVPA provides a convenient wrapper for access through a
uniform interface. PyMVPA provides a simple yet flexible interface that is specifically
designed to make use of externally developed software. An analysis built from these
basic elements can be cross-validated by running them on multiple dataset splits that are
generated through various data resampling procedures [e.g., bootstrapping, 38]. Detailed
information about the results of any analysis can be queried from any building block and
can be visualized through various plotting functions supported by PyMVPA. Alternatively,
the results can be mapped back into the original data space and format for further
processing by specialized tools. The solid arrows represent a typical connection pattern
between the modules. Dashed arrows refer to additional compatible interfaces which,
although potentially useful, are not necessarily used in a standard processing workflow.
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Figure 2.2 Terminology for ML-based analyses of fMRI data. The upper part shows a
simple block-design experiment with two experimental conditions (red and blue) and two
experimental runs (black and white). Experimental runs are referred to as independent
chunks of data and fMRI volumes recorded in certain experimental conditions are data
samples with the corresponding condition labels attached to them (for the purpose of
visualization the axial slices are taken from the MNI152 template downsampled to 3 mm
isotopic resolution). The lower part shows an example ROI analysis of that paradigm. All
voxels in the defined ROI are considered as features. The three-dimensional data samples
are transformed into a two-dimensional samples xfeature representation, where each row
(sample) of the data matrix is associated with a certain label and data chunk.
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is mandatory. This is typically achieved by splitting an experiment into several runs that

are recorded separately. In PyMVPA this type of information can be specified by a

special chunks sample attribute, where each sample is associated with the numerical

identifier of its data chunk or run (see Figure 2.2). It is possible to create any number of

auxiliary sample attributes in a similar fashion.

Most machine learning software requires data to be represented in a simple two-

dimensional samples x features matrix (see Figure 2.2, bottom), however, fMRI

datasets are typically four-dimensional. Although it is possible to view each volume

as a simple vector of voxels, doing so ignores information about the spatial properties

of the volume samples. This is a particularly serious disadvantage given that spatial

metrics, and especially distance information, are of interest in brain research. In addition,

some analysis algorithms, such as the multivariate searchlight [20], make use of this

information when calculating spheres of voxels.

PyMVPA follows a different approach. Each dataset is accompanied by a

transformation or mapping algorithm that preserves all the required information and

stores it as a dataset attribute. These mappers allow for bidirectional transformations

from the original data space into the generic 2-D matrix representation and vice versa. In

the case of fMRI volumes, the mapper indexes each feature with its original coordinates

in the volume. It can optionally compute customizable distances (e.g., Cartesian)

between features by taking both voxel size and coordinates into account. Using the

mapper in the reverse direction, from generic feature space into original data space

makes it easy to visualize the results of the analysis. For example, feature sensitivity

maps can be easily projected back into a 3-D volume and visualized in a way that is

similar to a statistical parametric map.
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2.3 Generalization Testing

During a typical classifier-based analysis, a particular dataset has to be resampled several

times to obtain an unbiased generalization estimate of a specific classifier. In the simplest

case, resampling is done by splitting the dataset so that some part is used for validation

while the remainder is used for training. This is done multiple times until a stable

estimate is achieved or the particular sampling procedure exhausts all possible ways of

partitioning of the data. While the proper splitting of a dataset is very important, it might

not be obvious how to do it given the forward temporal contamination across trials that is

produced by the hemodynamic response function. Violating the strict separation of

training and validation datasets will produce bias in subsequent analyses to the extent

that the classifier has access to the data against which it will be validated.

To address this problem, PyMVPA provides a number of resampling algorithms.

The most generic one is an N-M splitter where M out of N dataset chunks are

chosen as the validation dataset while all others serve as training data until all

possible combinations of M chunks are drawn. This implementation can be used for

leave-one-out cross-validation, but also provides functionality useful for bootstrapping

procedures [38]. Additional splitters are available that produce first-half-second-half or

odd-even splits. Because any splitter may base its splitting on any given sample attribute,

it is possible to split datasets based on data chunks or by e.g., stimulus conditions.

Most algorithms implemented in PyMVPA can be parameterized with a splitter,

making them easy to apply within different kinds of splitting or cross-validation

procedures. As with other functions available in PyMVPA, the common interface makes

it trivial to add custom splitters.

The dataset resampling functionality in PyMVPA also eases non-parametric

testing of classification and generalization performance via a data randomization

approach, e.g., Monte Carlo permutation testing [39]. By running the same analysis

multiple times with permuted dataset labels (independently within each data chunk) it is
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possible to obtain an estimate of the baseline or chance performance of a classifier or

some other sensitivity measure. This allows an estimation of statistical significance (in

terms of p-values) for results achieved using the original (non-permuted) dataset.

2.4 Feature Sensitivity Analysis

A primary goal for brain-mapping research is to determine where in the brain

information is processed and stored. Univariate analysis procedures typically provide

localization information because each feature is tested independently of all others. In

contrast, classifier-based analyses incorporate information from the entire feature set in

order to determine whether or not the classifier can extract sufficient information to

predict the experimental condition from the recorded brain activity. Although classifiers

can use the joint signal of the whole feature set to make predictions, it is still important to

know which features contribute to those correct predictions. Some classifiers readily

provide information about sensitivities, i.e., feature-wise scores measuring the impact of

each feature on the decision made by the classifier. For example, a simple artificial

neural network or a logistic regression, such as SMLR, bases its decisions on a weighted

sum of the inputs. Similar weights can also be extracted from any linear classifier

including SVMs. It is possible to compare the weights of the features to each other, if

input data was standardized (z-scored) per each input feature to remove possible variance

factor which invalidate such a direct comparison.

However, there are also classifier-independent algorithms to compute featurewise

measures. While neural network and SVM weights are inherently multivariate, a feature-

wise ANOVA, i.e., the fraction of within-class and across class variances, is a univariate

measure, as is simple variance or entropy measures of each voxel over all classes. In

addition to a simple ANOVA measure, PyMVPA provides linear SVM, GPR, and SMLR

weights as basic feature sensitivities. As with the classifiers discussed in the previous
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section, a simple and intuitive interface makes it easy to extend PyMVPA with custom

measures (e.g., information entropy). The SciPy package, for example, provides a large

variety of measures that can be easily used within the PyMVPA framework.

PyMVPA provides some algorithms that can be used on top of the basic

featurewise measures to potentially increase their reliability. Multiple feature measures

can be easily computed for sub-splits of the training data and combined into a single

featurewise measure by averaging, t-scoring or rank-averaging across all splits. This is

useful for stabilizing measure estimates, for example, when a dataset contains spatially

distributed artifacts. While a GLM is rather insensitive to such artifacts because it looks

at each voxel individually [40], classifiers are often able to pick up such a signal if it is

related to the classification decision. Moreover, if artifacts are not equally distributed

across the entire experiment, then computing measures for separate sub-splits of the

dataset can be used to identify and reduce their impact on the final measure.

In addition to comparing raw sensitivity values, PyMVPA enables researchers

to easily conduct noise perturbation analyses, where one measure of interest, such as

cross-validated classifier performance, is computed many times with a certain amount of

noise added to each feature in turn. Feature sensitivity is then expressed in terms of the

difference between computed measures with and without noise added to a feature [see

26, 41, for equivalence analyses between noise perturbation and simple sensitivities for

S VM].

2.5 Feature Selection Procedures

As mentioned above, featurewise measure maps can be easily computed with a variety of

algorithms. However, such maps alone do not provide enough information to determine

the features that are necessary or sufficient for performing some classification. However,

feature selection algorithms can be used to determine the relevant features based on a
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featurewise measure. As such, feature selection can be performed in a data-driven or

classifier-driven fashion. In a data-driven selection, features can be chosen according

to some criterion such as a statistically significant ANOVA score for the feature given a

particular dataset, or a statistically significant t-score of one particular weight across splits.

Classifier-driven approaches usually involve a sequence of training and validation actions

to determine the feature set which is optimal with respect to some classification error (e.g.,

transfer, inherent leave-one-out, theoretical upper-bound) value. It should be noted that to

perform unbiased feature selection using the classifier-driven approach, the selection has

to be carried out without observing the main validation dataset for the classifier.

Among the existing algorithms incremental feature search (IFS) and recursive

feature elimination [RFE, 35, 36] are widely used [e.g., 41] and both available within

PyMVPA. These methods differ in what they use as a starting point and how they perform

feature selection. RFE starts with the full feature set and attempts to remove the least-

important features until a stopping criterion is reached. IFS on the other hand starts with

an empty feature set and sequentially adds important features until a stopping criterion is

reached. The implementations of both algorithms in PyMVPA are very flexible as they can

be parameterized with all available basic and meta featurewise measures and the specifics

of the iteration process and the stopping criteria are both fully customizable.

Results presented in this dissertation relied on RFE to improve generalization

performance of SVM classifiers (Section 3.4.3). In other analyses, SMLR classifier with

its automatic feature selection found to perform better, hence was used as the first

preferable approach whenever dimensionality of the data was relatively large.



CHAPTER 3

UNIMODAL ANALYSIS OF NEUROIMAGING DATA

Truly, there are lies, brazen lies, and statistics, but let's not,
my friends, forget the psychology!

— A. and B. Stroogatskie "The bug in an ant hill", 1979

3.1 Introduction

This chapter explores the application of statistical learning methods to the analysis of

neural data at different levels of investigation. It begins with an analysis of multiple

extracellular recordings (Section 3.2), where supervised learning methods are used to

confirm that a given recording site contains neurons specialized for the given task.

Inspection of the sensitivities of the trained classifiers further enriches analysis results.

Classifier sensitivity analysis for each extracted neuron's temporal signal evolution

allows to characterize specificity of that neuron in respect to a given stimuli condition.

Temporally rich signals, such as E/MEG, which reflect neural activity of the whole brain,

are analyzed next in Sections 3.3.2 and 3.3.3. Here, the suggested decoding approach

makes it possible to unravel spatio-temporal components of the signal. The components

do not show significant task-dependent change if analyzed by conventional univariate

methods. Section 3.4 concludes the chapter with an extensive analysis of an fMRI

dataset which carries spatially rich information about mechanisms of the brain involved

in visual object processing.

31
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Most of the analysis presented in this chapter was carried out within the PyMVPA

framework. The comprehensive review of the PyMVPA framework is presented in the

Chapter 5.

3.2 Extracellular Recordings

Because the extracellular dataset that will be analyzed in this section is unpublished, the

experimental and acquisition parameters are described here for completeness and

comprehensibility. Animal experiments were carried out in accordance with the National

Institute of Health Guide for the Care and Use of Laboratory Animals and approved by

Rutgers University. Sprague-Dawley rats (300-500 g) were anaesthetized with urethane

(1.5 g/kg) and held with a custom naso-orbital restraint. After preparing a 3 mm

square window in the skull over the auditory cortex, the dura was removed, and a

silicon microelectrode consisting of eight four-site recording shanks (NeuroNexus

Technologies, Ann Arbor, MI) was inserted. The recording sites were in the primary

auditory cortex, estimated by stereotaxic coordinates, vascular structure [42] and

tonotopic variation of frequency tuning across recording shanks, and located within layer

V, as determined by electrode depth and firing patterns.

Five pure tones (3, 7, 12, 20, 30 kHz at 60 dB) and five different natural sounds

(extracted from the CD "Voices of the Swamp", Naturesound Studio, Ithaca, NY) were

used as stimuli. Each stimulus had a duration of 500 ms followed by 1500 ms of silence.

All stimuli were tapered at the beginning and end with a 5 ms cosine window. The data

acquisition took place in a single-walled sound isolation chamber (IAC, Bronx, NY) with

sounds presented free field (RP2/ES 1, Tucker-Davis, Alachua, FL).
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Individual units ¹ were isolated by a semiautomatic algorithm (KlustaKwik² )

followed by manual clustering (Klusters ³). Post-stimulus time histograms (PSTH) of

spike counts per each unit for all 1734 stimulus onsets were estimated using a bin size of

3.2 ms. To ensure the accurate estimation of PSTHs, only units with a mean firing rate

higher than 2 Hz were selected for further analysis, leaving a total of 105 units for the

analysis.

Because the segregation of recordings from individual units is performed

independent of the associated stimuli, i.e., in an unsupervised fashion (ML terminology),

the activity of any particular unit can not be easily attributed to a particular stimulus. As

can be seen in the top plots of Figure 3.2, the stimulus-wise descriptive statistics of the

units presented make it difficult to pair the activity of a given unit at a particular time to a

given stimulus. Furthermore, due to the inter-trial variance in the spike counts, it is even

more difficult to reliably determine to what stimulus condition a given trial belongs. To

eliminate the problems associated with unsupervised learning, an anlysis based on a

reliable decoding of neural data, obtained from this limited neural population, was

performed. This new analysis allowed the characterization of all extracted units in terms

of their specificity to a given stimulus at a given point in time.

The analysis involved a standard 8-fold cross-validation procedure run with an

SMLR [SMLR; 37] classifier, which achieved a mean estimated accuracy of 77.57%

across all 10 types of stimuli. This generalization accuracy was well above chance (10%)

for all stimulus categories and provided evidence for a differential signal across the 10

stimuli at the recording site. Misclassifications were found primarily for low-frequency

stimuli. Pure tones with 3 kHz and 7 kHz were more often confused with each other than

were tones with a larger frequency difference (see Figure 3.1), suggesting a high similarity

¹ The term "unit" here refers to a single entity, which was segregated from the recorded data, and
is expected to represent a single neuron.
²http://klustakwik.sourceforge.net

³ http://klusters.sourceforge.net
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in the spiking patterns for these frequencies. Moreover, the greater discriminability for

stimuli at higher frequencies suggests that this neuronal population may be specialized

for processing of higher frequency tones.

In addition to labelling unseen trials with high accuracy, the trained classifier

provided sensitivity estimates for each unit, time bin, and stimulus condition (see bottom

plots of Figure 3.2). Stimulus specific information that is contained in the spike times,

relative to a given stimulus onset, can be determined in the temporal sensitivity profiles

of any particular unit (see unit #42 profiles in lower left plot of Figure 3.2). Alternatively,

stimulus specificity could be represented as a slowly modulated pattern of spike counts

(see 3 kHz stimuli). The aggregate sensitivity (in this case the sum of absolute

sensitivities) across all time-bins provides summary statistics for any unit's sensitivity to

a given stimulus (see lower right plot of Figure 3.2), and unlike a simple variance

measure, the aggregate sensitivity makes it relatively easy to associate any unit to any set

of stimuli. An additional advantage provided by this approach is the ability to identify

units whose signals do not display a substantial amount of variance, but nevertheless

carry a stimulus specific signal (e.g., unit #28 and 30 kHz stimulus).

3.3 EEG and MEG

3.3.1 Introduction

Conventional analysis approaches of E/MEG often rely on averaging over multiple trials

to extract statistically relevant differences between two or more experimental conditions

(e.g., averaged ERP [43]). This practice of averaging remains dominant in the

investigation of neural processes and relies on an assumption that response does not vary

across trials of the same experimental condition. In the last decade, though, statistical

decomposition methods (e.g., ICA) have been used more frequently in the analysis of

E/MEG data. The popularity of these methods is increasing because they provide a way
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Figure 3.1 Confusion matrix of SMLR classifier predictions of stimulus from multiple
single units recorded simultaneously. The classifier was trained to discriminate between
stimuli of five pure tones and five natural sounds. Elements of the matrix (numeric
values and color-mapped visualization) show the number of trials which were correctly
(diagonal) or incorrectly (off-diagonal) classified by a SMLR classifier during an 8-fold
cross-validation procedure. The results suggest a high similarity in the spiking patterns
for stimuli of low-frequency pure tones, which lead the classifier to confuse them more
often, whereas responses to natural sound stimuli and high-frequency tones were rarely
confused with one another.



Figure 3.2 Statistics of multiple single unit extracellular simultaneous recordings and
corresponding classifier sensitivities. All plots sweep through different stimuli along
vertical axis, with stimuli labels presented in the middle of the plots. The upper part shows
basic descriptive statistics of spike counts for each stimulus per each time bin (on the left)
and per each unit (on the right). Such statistics seem to lack stimulus specificity for any
given category at a given time point or unit. The lower part on the left shows the temporal
sensitivity profile of a representative unit for each stimulus. It shows that stimulus specific
information in the response can be coded primarily temporally (few specific offsets with
maximal sensitivity like for song2 stimulus) or in a slowly modulated pattern of spikes
counts (see 3kHz stimulus). Associated aggregate sensitivities of all units for all stimuli
in the lower right figure indicate each unit's specificity to any given stimulus. It provides
better specificity than a simple statistical measure such as variance, e.g., unit 19 active
in all stimulation conditions according to its high variance, but according to the classifier
sensitivity it carries little, if any, stimuli specific information for natural songs 1-3.

36
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to filter out irrelevant variance contributions and to choose only the components which

may be relevant to the experimental design. This feature makes it possible to carry out

analysis of E/MEG data on a per trial basis [44, 45]. Per trial analysis of E/MEG data

offers new insight into the associated underlying processes of the data by addressing the

variability of neural activation across trials [46, 47].

The decoding of E/MEG signals with supervised learning methods has been used

most extensively in the construction of the brain-computer interfaces. Trained classifiers

are often capable of detecting a targeted action type and of predicting a subject's goal for

that action. The bulk of this work, therefore, is focused on practical application rather than

scientific discovery. However, supervised learning methods can be used to unlock some

of the mysteries of the brain. For example, one early study [48] optimized a "spatial"

linear discriminator (using a predefined time window during training) which provided

localization of the corresponding brain area. Even so, such approaches have not been

geared toward automatic detection of both spatial and temporal components of the signal

relevant to the experimental design.

This next section explores the application of statistical learning methods for the

per-trial analysis of E/MEG data. It will be demonstrated that sensitivity analysis of the

classifiers reveals spatio-temporal components which are not detected using conventional

methods such as ERP.

3.3.2 EEG

The dataset used for the EEG example consists of a single participant from a previously

published study on object recognition [49]. In the experiment, participants indicated, for

a sequence of images, whether they considered each particular image a meaningful object

or just "object-like." This task was performed under two different speed constraints for

two sets of stimuli having different statistical properties. EEG was recorded from 31
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electrodes at a sampling rate of 500 Hz using standard recording techniques. Details of

the recording procedure can be found in Fründ et al. [49]. A detailed description of the

stimuli can be found in Busch et al. [50, colored images] and in Herrmann et al. [51,

line-art pictures].

Fründ et al. [49] performed a wavelet-based time-frequency analyses of channels

from a posterior region of interest (i.e., no multivariate methods were employed).

However, here multivariate methods are used to differentiate between trials with colored

stimuli (having a broad spectrum of spatial frequencies and a high level of detail) and

trials with black and white line-art stimuli (Figure 3.3A). This discrimination is

orthogonal to the experimental task that required participants to distinguish between

object and non-object stimuli.

The data for this analysis were 700 ms EEG segments starting 200 ms prior to the

stimulus onset of each trial. Only trials that passed the semi-automatic artifact rejection

procedure performed in the original study were included, yielding 852 trials (422 color

and 430 line-art). Each trial timeseries was downsampled to 200 Hz, leaving 140 sample

points per trial and electrode. Then each trial was defined by including the EEG signal

of all sample points from all channels, as a sample to be classified (4340 features total).

Finally, all features for each sample were normalized to a zero mean and unit variance

(z-scored).

As the main analysis a standard 6-fold cross-validation procedure was applied to

linear support vector machine [linCSVM; 17], sparse multinomial logistic regression

[SMLR; 37] and Gaussian process regression with linear kernel [linGPR; 52] classifiers.

Additionally, the multivariate I-RELIEF [34] feature sensitivity measures, and, for

comparison, a univariate analysis of variance (ANOVA) F-score, were computed on the

same cross-validation dataset splits.

All three classifiers performed with high accuracy on the independent test

datasets, achieving 86.2% (linCSVM), 91.8% (SMLR), and 89.6% (linGPR) correct
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single trial predictions, respectively. However, of greater interest are the features each

classifier used for predictions. Using PyMVPA it is very easy to extract feature

sensitivity information from all used classifiers. Figure 3.3B shows the computed

sensitivities from all classifiers and measures. There is a striking similarity between the

shape of the classifier sensitivities plotted over time and the corresponding event-related

potential (ERP) difference wave between the two experimental conditions (Figure 3.3A;

example shown for electrode Pz, Fründ et al. [49]). Total (mean across all time-points)

head topography plots of the sensitivities (left column of Figure 3.3C) reveals a high

variability with respect to the specificity among the multivariate measures. SVM, GPR

and SMLR weights congruently identify three posterior electrodes as being most

informative (SMLR weights provide the highest contrast of all measures). The I-RELIEF

topography is much less specific and more similar to the ANOVA topography in its

global spatial structure than to the other multivariate measures. It should be noted,

however, that these topographies aggregate information over all timepoints and,

therefore, do not provide information about specific temporal EEG components, which

are presented in the corresponding columns of Figure 3.3C.

Of particular interest is the comparison between the multivariate sensitivities and

the univariate ANOVA F-scores from 300 ms to 400 ms following stimulus onset (right

most column of Figure 3.3C demonstrates the sensitivities topographies at 370 ms). Only

the multivariate methods (especially SMLR, linCSVM and linGPR) detected a relevant

contribution to the classification task of the signal in this time window. This late signal

may be related to intracranial EEG gamma-band responses that Lachaux et al. [53] are

observed at around the same time that participants viewed complex stimuli. Given that

the present data also seem to show a similar evoked gamma-band response [49], it is

possible that multivariate methods are sensitive to gamma-band activity in neural data.
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Figure 3.3 Event-related potentials and classifiers sensitivities for the classification of
color and line-art conditions in EEG data.
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3.3.3 MEG

The example MEG dataset [54] was collected with the goal of determining whether it is

possible to predict the recognition of briefly presented natural scenes from single trial

MEG-recordings of brain activity using statistical learning methods. On each trial

participants saw a briefly presented photograph (37 ms) depicting a natural scene

followed immediately by a pattern mask (1000 ms — 1400 ms). The short interval

between presentation and mask effectively contrains the amount of processing that can

be done [55] and, therefore, limits the number of pictures that participants will later

recognize. After the mask was turned off, participants predicted (using a button press

response) whether or not they would be able to recognize the picture that had just been

presented. Immediately after this prediction, partipants were presented with four natural

scene photographs and asked to indicate which of the four scenes had been presented

(i.e., a four-alternative forced-choice delayed match to sample task).

The MEG was recorded with a 151 channel CTF Omega MEG system from the

whole head (sampling rate 625 Hz and a 120 Hz analogue low pass filter) while

participants performed this task. The 600 ms interval of the MEG time series data that

was used for the analysis started at the onset of the briefly presented scene and ended

before the mask was turned off. As in the original study, only trials in which predictions

matched recognition performance (i.e., RECOG-RECOG, NRECOG-NRECOG) were

analyzed. For details about the rationale of this selection, the stimulus presentation

information, and the recording procedure see Rieger et al. [54]. In this analysis data from

a single participant (labeled P1 in the original publication) was used.

The MEG timeseries were first downsampled to 80 Hz and then all trial segments

were channel-wise normalized by subtracting their mean baseline signal (determined from

a 200 ms window prior to scene onset). Only timepoints within the first 600 ms after

stimulus onset were considered for further analysis. The resulting dataset consisted of
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151 channels with 48 timepoints each (7248 features), and a total of 294 samples (233

RECOG trials and 61 NRECOG trials).

The original study contained analyses based on SVM classifiers, which revealed,

by means of the spatio-temporal distribution of the sensitivities, that the theta band by

itself provides the most discriminative signal. The authors also addressed the issue of

interpreting heavily unbalanced datasets 4 . Given this comprehensive analysis, the goal of

the analysis presented here was to determine if this analysis strategy could be replicated

within PyMVPA.

As with the EEG data, a standard cross-validation procedure was applied (this time

8-fold), using linear SVM and SMLR classifiers. Additionally, again univariate ANOVA

F-scores were computed on the same cross-validation dataset splits. The SVM classifier

was configured to use different per-class C-values 5 , scaled with respect to the number of

samples in each class to address the unbalanced number of samples, which was not done

by the original authors. Similar to Rieger et al. [54], a second cross-validation on balanced

datasets (by performing multiple selections of a random subset of samples from the larger

RECOG category) was run.

Both, classifiers performed almost identically on the full, unbalanced dataset,

achieving 84.69% (SMLR) and 82.31% (linCSVM) correct single trial predictions (83.0%

in the original study). Figure 3.4 shows sample timeseries of the classifier sensitivities and

the ANOVA F-score of two posterior channels. Due to the significant difference in the

number of samples of each category, it is important to note that the mean true positive rate

(TPR)6 , that amounted to 72% (SMLR), and 76% (linCSVM) respectively. The second

4Unbalanced datasets have a dominant category which has considerably more samples than any
other category. That potentially leads to the problem when a classifier prefers to assign the label
of that category to all samples to minimize total prediction error.
5Parameter C in soft-margin SVM controls a trade-off between width of the SVM margin and
number of support vectors [see 56, for an evaluation of this approach]
6Mean TPR is equal to the accuracy in balanced sets, and is at 50% chance performance even with
unbalanced set sizes [see 54, for a discussion of this point].
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Figure 3.4 Event-related magnetic fields and classifier sensitivities. The upper part
shows magnetic fields for two exemplary MEG channels. On the left sensor MRO22
(right occipital), and on the right sensor MZO01 (central occipital). The lower part shows
classifier sensitivities and ANOVA F-scores plotted over time for both sensors. Both
classifiers showed equivalent generalization performance of approximately 82% correct
single trial predictions.

SVM classifier trained on the balanced dataset achieved a comparable accuracy of 76.07%

correct predictions (mean across 100 subsampled datasets), which is a slightly larger drop

in accuracy when compared to the 80.8% achieved in the original study [refer to table 3

in 541.

Importantly, these results show that an analysis using statistical classifiers can

provide stable results that depend not on a particular implementation, but rather on the

methods themselves. Moreover, the example pressented here demonstrates that the

integrated framework of PyMVPA can achieve these results with much less effort than

was needed in the original study.
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3.4 FMRI

In the past decade fMRI became the most popular brain imaging modality among

researchers interested in the neural correlates associated with cognitive processing.

Three reasons why fMRI is favored over other modalities include the fact that fMRI

provides high spatial resolution, it is non-invasive, and data acquisition is relatively easy.

A variety of experimental designs and analysis approaches have been created to answer

specific neuroscientific questions using fMRI. The following section provides a brief

overview of the standard approach to analyzing fMRI data and covers underlying

assumptions, promises, and shortcomings. Also included in this next section is an

analysis aimed at discovering category specific processing of visual data in the brain.

The standard approach is compared with decoding methods proposed in this dissertation.

3.4.1 Introduction

Analysis Methodologies The de facto standard analysis method used to analyze fMRI

data (and to some extent E/MEG) is statistical parametric mapping (SPM) [12]. This

approach defines two aspects of neural signal processing: identification and integration.

The purpose of identification is to "identify functionally specialized brain responses"

[12], i.e., to detect regions of the brain (at the level of neural networks) where a

statistically significant portion of the neural signal can be well described by known

experimental factors. The emphasis on identification segregated from integration

significantly simplifies the analysis of fMRI datasets by considering each spatial location

(voxel in MRI terms) to be independent of any other. This feature makes SPM a type of

mass-univariate analysis.

The goal of SPM is to make statistical inferences about spatially extended regions.

SPM relies on the conjoint use of the general linear model (GLM) and Gaussian random

field (GRF) theory (as well as other methods such as Bonferonni correction). The GLM
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part of the analysis is used to estimate the parameters of the model per each spatial location

in order to explain observed data. The GLM tests the null-hypothesis that there is no effect

of the experiment on that location. It is important to emphasize that the GLM relies on the

definition of the forward model of the signal, and is therefore limited to linear modeling

of a signal. However, the value of using forward modeling of the BOLD fMRI signal is

still an open question (as it will be highlighted in Section 4.2). Despite the requirement

of forward model specification, being a univariate method, the GLM is relatively immune

to misspecification of the forward BOLD model for a wide range of experimental designs.

Some tricks (e.g., addition of first temporal derivative of the model variables) will improve

the identification performance of GLM by accounting for sources of variance that are not

explicitly modeled.

Unfortunately, being a type of mass-univariate analysis, the GLM does not

account for any covariance or causal structure of the signal (besides local region

covariance in some SPM implementations). Therefore, actual identification is limited to

the regions with uniform activation across experimental conditions, and cannot

distinguish the patterns of activity at the neural network level. Such disregard of the

covariance structure is often acceptable with judicious experimental design where

experimental factors are carefully crafted and well controlled. Precise control of the

neural responses, though, can be very difficult in the cognitive tasks, since the effect of

many top-down processes (e.g., attention, memory) are difficult to control. However,

top-down processes being a pervasive influence in most cognitive tasks, can not be

neglected.

A side-effect of the mass-univariate approach is the need to use a statistical

correction method to resolve multiple comparison problems that ensue when making

inferences over a volume of the brain that involves tens or hundreds of thousands of

voxels. Because often the goal of a GLM analysis is to detect relatively extended brain

regions, low-pass spatial filtering is a common preprocessing step to boost SNR and
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hence to decrease the number of false positives in the identification task. Indeed it is a

valid preprocessing step under assumptions that neuronal population within regions of

interest are uniformly engaged within the experimental conditions of interest. But some

brain areas, (e.g., high-level visual object processing regions such as fusiform gyrus) are

known to be responsive to a variety of stimuli under the right conditions. For such cases,

mass-univariate methods lack power to account for or discriminate between spatial

patterns of activity. Furthermore, univariate methods are incapable of exploring any

similarity structure among different stimuli belonging to the same category.

Standard approaches based on the GLM for identification of potentially selective

brain regions are neither cross-validated nor optimized for performance [57-59]. In a

typical block design study, the GLM is used to fit selective time series, often accounting

for less than 50% of the total variance, despite statistically significant excursions from a

predefined baseline (note significance of a statistical test does also imply a high degree

of variance accounted for in the fit of the linear model). This fact allows for considerable

indeterminacy regarding the identification of the condition, selective voxels, or regions. A

common conceptual error that occurs when using this type of method is believing that the

strength of the regression coefficients reflect selectivity when they are merely indicating

the presence of brain tissue activation conditional on the presence of the stimulus exemplar

p(VOXEL 'CONDITION> chance) what many in this field have called selective or even

specific (i.e., uniquely selective). Furthermore, because a bio-physiological model of the

BOLD fMRI signal does not exist, a stronger BOLD response does not necessarily reflect

selective processing at a given location.

Despite these limitations, SPM has been used to support various scientific

hypotheses about various specialized functional modules within the brain with respect to

a given task. However, as noted earlier, reliance on the identification of active brain

regions means that the integrative functioning of brain regions can not easily be explored

or explained. The authors of SPM, suggest that any aspects of integration would need to
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be tackled with "a different set of multivariate approaches that examine the relationship

among changes in activity in one brain area others". Multivariate methods were not

considered for the following reasons: "(i) they do not support inferences about regionally

specific effects, (ii) they require more observations than the dimension of the response

variable (i.e. number of voxels) and (iii), even in the context of dimension reduction,

they are less sensitive to focal effects than mass-univariate approaches"[12]. Instead of

approaching multivariate methods, which would be partially or fully capable of

addressing the aforementioned concerns, so called effective connectivity modeling was

proposed to address integration aspect. Effective connectivity "refers explicitly to the

influence that one neural system exerts over another" [12]. To perform this type of

analysis, some regions of interest (ROIs) are selected and then the interactions among

them are determined. Conventionally, specialized brain regions, which are first detected

with SPM, are taken to be the nodes in a constructed graph, the edges of which are either

provided based on prior assumptions, or discovered via exhaustive or heuristic search.

Usually such graph modeling also requires a preliminary representative time series

extraction procedure to provide a single time series for each node in the graph. Such a

step further sacrifices the information at the level of neural networks. So, by design, the

explicit separation of identification and integration during the processing of neural data

makes it unlikely that interactions at the level of neural networks will be detected, and

the most that can be expected is the discovery of coarse level interactions for

"specialized" systems. Consequently, whatever information about similarity structure

that may exist will not be available.

To summarize, the GLM-enforced separation of identification and integration,

while appropriate for the analysis of data from experiments with large, consistent (across

trials), and uniform gross-effects, is not applicable to all experimental designs. For this

reason, other methods of analysis, particularly multivariate techniques, may provide a
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good alternative. Offered here is a decoding approach which relies on constructing a

reliable mapping between fMRI neural data and experimental variables.

Category Specific Processing There is considerable debate in the neuroscience

community concerning how information about visual objects are processed in the brain.

Some researchers [57, 59, 60] have proposed that the representation of some visual

objects are localized in specific brain tissue (e.g., fusiform face area (FFA) for "faces"

processing [60]). However, other work in this field [61] indicates that FFA may code

more general stimulus properties (e.g., "expertise").

Other perspectives reject the notion of localized function Haxby et al. [25] and

suggest instead that object identity is coded in a distributed way across the brain,

somewhat like a relief or topographic map, so that a particular pattern of response is

associated with a specific object type or token [25]. More recent work along these lines

[26] indicates that the category specific codes may actually be combinatoric, allowing the

efficient reuse of voxel information (e.g., neural populations) across different types or

tokens.

Claims that areas of the brain are specific to a given stimulus category are often

derived by the comparison of levels of activation between two or more conditions. So, in

[60], the difference in detectability between faces in a pre-localized FFA is at its maximum

around 2% above baseline, while for other objects (except whole humans, headless bodies,

or animal heads) the difference is closer to 1%; a factor of 2 in detectability which, indeed,

is quite impressive. Proponents of this view maintain that although other areas of the

brain might detect the presence of a face stimulus, these other areas are not uniquely

face selective as is the FFA. However, supporters of this claim are not distinguishing face

detection from face identification. Identification is the ability to label a given stimulus

as belonging to a specific category. The degree to which errors occur can be captured

in a classic confusion matrix which delineates both the discriminability and similarity of
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various object tokens [62]. Detectability is related to identification to the extent that it is

necessary for identification, but it is not sufficient to make specific category assignment.

Luce [63] has formalized this relation in what is known as the Luce Choice Axiom':

(3.l)

where choice identification P(i v) depends on conditional probabilities w( iIv of the

category i given the voxel or feature v, relative to all other potential category choices.

This type of calculation can be made with strength or detectability measures such as

regression coefficients. When it is done correctly (e.g., Haxby et al. [25]), voxels

involved in face identification were found to be distributed over much of inferior

temporal lobe.

As described earlier in this thesis, work in visual object recognition that relies on

fMRI measures often uses the activity of voxels above some baseline activity to infer

selectivity. Although this may seem like a benign choice, perseverates a view that

selectivity of cortical tissue can be measured unambiguously with normalized BOLD

responses. The problem with these measures are actually two-fold. First, when using the

GLM, a detection is calculated that relies on a contrast between a particular stimulus

condition and one or more others. This means that voxel activity is used basically as a

regressor. As such, the GLM is not diagnostic or able to identify category membership

that is conditionally dependent on that feature. Worse, the intensity of voxel activation,

which covaries with the strength of the coefficient, is confounded with the voxel's

location. Moreover, if blood flow to cortical regions actually signaled the amount of

"work" or "energetics" involved in processing states, then BOLD intensities that were

not at peak levels might indicate more efficient processing than those at peak levels. This

possibility means that selectivity measures that are designed towards diagnostic

7http://en.wikipedia.org/wiki/Luce' s_choice_axiom
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identification, rather then towards strength of association, could downplay the

importance of voxels that had lower intensity but which were actually more reliable

predictors. This poses a problem for cognitive neuroscientists who are interested in

finding the brain mechanisms that underlie correct classification or identification of a

stimulus and not simply in detecting where the greatest neural response occurs.

The behavioral response of a subject who is asked to identify a masked stimulus

[64] will produce a standard psychophysical function that reflects changes in the ability

of the subject to correctly identify the stimulus as the mask is changed. However, for the

associated fMRI data, a GLM analysis of voxel values can identify only those voxels that

are associated or most similar to systematic variations of the independent variable (e.g.,

the mask). Thus, the GLM does not provide the type of voxel identification function

most neuroscientists are seeking. This is where statistical learning theory, and statistical

classifiers in particular, can be of considerable benefit.

Classifier-based Analysis There has been enormous progress over the last few years in

the development of statistical classifiers. Recent work often focuses on problems having

extremely large feature spaces (> 100k to lM) and poor signal/noise ratio, often with

remarkable out-of-sample generalization [65]. That why these methods may be

particularly useful in analyzing fMRI data. The BOLD signal is known to have

notoriously low signal/noise gain and to reflect a mixture of various neural signals and

field potentials. There is also growing evidence that the underlying distribution is

non-Gaussian [66-68], which means that parametric classifiers may underestimate valid

signal excursions and make approaches e.g., Haxby et al. [25] biased toward

conservative generalization estimates. In fact, when Hanson et al. [26] compared

Haxby's nearest neighbor classifier to neural network classifiers, a conservative

cross-validation estimate showed improvements in generalization by as much as 30-40%.

Much of the improvement obtained with statistical classification can be attributed to a
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more appropriate classification function (e.g., specific nonlinearity) as well as feature

weighting and/or selection [69].

In order to discover features (areas of the brain) that are responsive to specific

stimulus types it is necessary to focus on whole brain classification. To date of [28]

researchers in the visual object recognition domain have used SVM (see [70]) in more

generic "brain reading" contexts and, with the exception of [31] who used single scans

to filter support vectors, no one has attempted whole brain, single scan classification,

focusing instead on regions of interest such as the inferior temporal (IT) lobe. On the

other hand, a number of researchers in the object recognition field have found evidence

that "object-selective" or "face-selective" areas of the brain exist outside of IT [71-73].

However, it still remains unclear whether these "selective" areas uniquely identify certain

object types. Do these other brain areas, that are neither FFA or parahippocampal place

area (PPA), carry discriminative information about exemplars like faces or houses? At

level of category structure do discriminative areas function?

As the first step toward answering these questions, Section 3.4.1 describes how

statistical learning methods can be used to identify areas engaged in object processing, and

to associate a level of semantic processing to those areas (e.g., like that used to distinguish

between animate and inanimate categories). Moreover, the existing claim that some brain

areas, such as fusiform face area, are category specific is challenged In Section 3.4.3

statistical learning methods are used to demonstrate that category-specific areas do carry

discriminative information about nonpreferred stimuli.

3.4.2 Identification: Multiple Categories Analysis

Data from a single subject who participated in a study published by Haxby et al. [25],

which has been reanalyzed by a number of researchers since the original publication [13,

26, 28], serves as the example fMRI dataset for the unimodal analysis of fMRI presented
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Figure 3.5 Stimuli exemplars from [25]. 
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in this dissertation. The dataset itself consists of 12 runs. In each run, the participant

passively viewed greyscale images (see Figure 3.5) of eight object categories, grouped

in 24s blocks, and separated by rest periods. Each image was shown for 500 ms and was

followed by a 1500 ms inter-stimulus interval. Whole brain fMRI data were recorded with

a volume repetition time of 2500 ms, so that brain activity associated with a given stimulus

block was captured by roughly 9 volumes. For a complete description of the experimental

design and fMRI acquisition parameters see Haxby et al. [25].

First, raw fMRI data were motion corrected using FLIRT from FSL [74]. All

subsequent data processing was done with PyMVPA (see Section 5). After motion

correction, linear detrending was performed for each run individually. No additional

spatial or temporal filtering was applied. For the sake of simplicity, the dataset was

reduced to a four-class problem (faces, houses, cats and shoes). All volumes recorded

during any of these blocks were extracted and voxel-wise z-scored. This normalization

was performed individually for each run to prevent any information transfer across runs.

After preprocessing the same sensitivity analysis used for all other data modalities

(presented in previous sections of Chapter 3) was applied to this dataset. Here, only a

SMLR classifier was used (6-fold cross-validation, with two of the twelve experimental

runs grouped into one chunk, and trained on single fMRI volumes that covered the whole

brain). For comparison, a univariate ANOVA was computed again for the same cross-

validation dataset splits.

The SMLR classifier performed very well on the independent test datasets,

correctly predicting the category for 94.7% of all single volume samples in the test

datasets. To examine what information was used by the classifier to reach this

performance level, region of interest (ROI) based sensitivity scores were computed for

48 non-overlapping structures defined by the probabilistic Harvard-Oxford cortical atlas

[75], as shipped with FSL [76]. To create the ROIs, the probability maps of all structures

were thresholded at 25% and ambiguous voxels were assigned to the structure with the
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higher probability. The resulting map was projected into the space of the functional

dataset using an affine transformation and nearest neighbor interpolation.

In order to determine the contribution of each ROI, the sensitivity vector was first

normalized (across all ROIs), so that all absolute sensitivities summed up to 1

(L 1 -normed). Afterwards, ROI-wise scores were computed by taking the sum of all

sensitivities in a particular ROI. The upper part of figure 3.6 shows these scores for the

20 highest-scoring and the three lowest-scoring ROIs.

The lower part of the figure shows dendrograms from a hierarchical cluster

analysis on relevant voxels from a block-averaged variant of the dataset (but otherwise

identical to the classifier training data). For SMLR, only voxels with a non-zero

sensitivity were considered in each particular ROI. For ANOVA, only the voxels with the

highest F-scores (limited to the same number as for the SMLR case) were considered.

For visualization purposes the dendrograms show the distances and clusters computed

from the average samples of each condition in each dataset chunk (i.e, two experimental

blocks), yielding 6 samples per condition.

The four chosen ROIs clearly show four different cluster patterns. The 92

selected voxels in temporal occipital fusiform cortex (TOFC) show a clear clustering of

the experimental categories, with relatively large sample distances between categories.

The sensitivity plot (upper part of Figure 3.6) shows that univariate statistics undervalued

the voxels within TOFC and LOC inf, although those are the areas which carry

category-specific information. The pattern of the 36 voxels in angular gyrus reveals an

animate/inanimate clustering, although with much smaller distances. It is an interesting

result given that clustering was done in an unsupervised fashion. However, it is a good

demonstration of how a multivariate technique can reveal the presence of information at

this level of semantic specificity.

The largest group of 148 voxels in the frontal pole ROI seems to have no obvious

structure in their samples. Despite that, both sensitivity measures assign substantial
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Figure 3.6 Sensitivity analysis of the four-category fMRI dataset. The upper part
shows the ROI-wise scores computed from SMLR classifier weights and ANOVA
F-scores (limited to the 20 highest and the three lowest scoring ROIs). The lower part
shows dendrograms with clusters of average category samples (computed using squared
Euclidean distances) for voxels with non-zero SMLR-weights and a matching number of
voxels with the highest F-scores in each ROI.
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importance to this region. This might be due to the large inter-sample distances

visualized in the corresponding dendrogram in figure 3.6. Each leaf node (in this case an

average volume of two stimulation blocks) is approximately as distinct from any other

leaf node, in terms of the employed distance measure, as the semantic clusters identified

in the TOFC ROI. Finally, the ROI covering the anterior division of the superior temporal

gyrus shows no clustering at all, and, consequently, it is among the lowest scoring ROIs

of both measures. On the whole, the cluster patterns from voxels selected by SMLR

weights and F-scores are very similar in terms of inter-cluster distances.

Given that these results rely on data obtained from a single participant, no

far-reaching implications can be drawn. However, the distinct cluster patterns provide an

indication that different levels of information encoding could be addressed in future

studies. Although voxels selected in both angular gyrus and the frontal pole ROIs do not

provide a discriminative signal for all four stimulus categories, they nevertheless provide

some disambiguating information which the classifier was able to detect. In angular

gyrus, this seems to be an animate/inanimate contrast that can also differentiate between

animate stimuli belonging to two categories. Finally, in the frontal pole ROI the pattern

remains unclear, but the relatively large inter-sample distances might indicate a

differential code of some form that is not closely related to the investigated level of

semantic stimulus categorization.

3.4.3 Specificity Assessment: Face vs. House Debate

To address the question of whether or not a face-specific area exists, this section presents

an analysis of a decoder capable of discriminating between only face and house

categories. Although a number of classifiers were tested, the analysis presented here

focuses on Support Vector Machines (SVMs) [77]. As noted earlier, SVMs have many

desirable properties: they can learn even in huge (>1M) feature spaces, they produce a
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unique solution by constraining problem formulation, they generalize well with feature

spaces many orders larger than the data sample size, they can be highly robust over

significant levels of noise, and finally, they can learn subtle distinctions near the

separating hyperplane which can disambiguate each category sample. SVM does this all

without the cost of learning the complete distribution of each category (although this will

turn out to be a disadvantage for visualization).

To address the question of brain area identification, the whole brain was used

as input 40K voxels — white matter was used as a noise background to increase

the reliability of estimates). The data was then incrementally searched for voxels that

uniquely identified either FACE or HOUSE stimuli. This was done exhaustively per

subject per scan and cross-validated on independent sets of data. In order to increase the

generalization of this approach, data from two separate object identification experiments

were used. In both studies, subjects performed judgments on the two key object types

(FACE, HOUSE) in two different cognitive tasks. The first task was the same as in the

previous section (i.e., [25]) with a focus on the stimuli necessary for the identification

of FACE and HOUSE, so that only blocks of collected for those two conditions were

considered in the analysis. In the second task, memory demand is reduced by using a

simple perceptual judgment in which high contrast black and white stimuli were presented

in an oddball task (task 2 is designated as the OB task). In the OB task, trials consisted

of a simultaneous presentation of 3 stimuli (either 3 FACEs in FACE trials or 3 HOUSEs

in HOUSE trials) in different orientations with the subject being asked to identify the

member of the triad that was different. In both tasks subjects achieved behavioral accuracy

rates identifying objects above 80% correct. In both cases, full brain (approximately

40000-50000 voxels) data was collected, with 144 samples (77 of each type) in task 1

and 200 samples (100 of each type) in task 2. Both experiments used a block design and

data provided to the analysis consisted of 7 trials in task 1 and 17 trials in task 2 (3 of

the original 20 trials were eliminated to reduce autocorrelation effects). Leave-two (one
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of each category) blocks-out strategy was used to assess the generalization performance.

Classification was done with single scans or equivalently single TRs — c.f. [26]. In order

to achieve the lowest possible error in generalization, recursive feature elimination (RFE)

was performed (see [65]). This approach has the advantage of detecting the specific object

identification brain areas by harvesting the most sensitive voxels after training and doing

subsequent retraining on this sensitive, but smaller set. This process was continued until

there are no more voxels left to test and therefore, was exhaustive over the single scan

brain voxel set.

To avoid potential cross block contamination of hemodynamic BOLD signal and

therefore accidentally creating a generalization bias, scans at the beginning and the end of

all blocks (category or rest conditions) were discarded. Whole blocks were also routinely

held out, and tested against single TRs from those blocks (holding out all other TRs in

that block until sampled later). This approach reduced any upward bias from possible

correlation within blocks. A 20 second rest block was also used in both experiments to

further prevent any temporal contamination or confusion between category responses. In

order for the SVM classifier to operate on the data, raw voxel data had to be converted

so that values fell within [-1,+1] range. Two possible conversion schemes were tested:

scaled percentage change relative to baseline, and z-scores relative to the baseline (rest

condition blocks). SVMs trained on z-scores provided better generalization on chosen

test cases and so these were chosen for further analysis. Each 3D scan (brain voxels only)

containing roughly up to 40,000 voxels was used as an input sample for the classification,

in addition to a label of the stimulus condition (FACE or HOUSE) presented during that

scan. Subject data was submitted to a soft-margin SVM with an average per step backward

feature elimination of 1000-500 voxels (approximately 12% to 15% exponential removal

rate until 100 voxels was reached and then removal of one voxel at a time until only one

voxel was left) . At each step, a voxel's sensitivity within trained SVM was used as a basis
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Table 3.1 Minimal Error and Associated Voxels Count.

for keeping or eliminating that voxel. Voxels with the smallest weights on each step were

eliminated.

In order to obtain an unbiased estimate of SVM generalization performance each

dataset was split into training and testing datasets. Similar to [26], a N-l block bootstrap

procedure was implemented. Specifically, for each training set a single block from each

category (FACE or HOUSE) was taken out for testing, leaving B-l per category used for

training. All possible combinations of testing blocks from the two categories were taken,

making a total of 144 NB (12x12 blocks) and 100 OB (10xl0 blocks) training/testing

datasets 8 . Each 'training/testing dataset proceeded through RFE independently and

performance was averaged over all classifiers/bootstraps to obtain a generalization

estimate for a given subject/SVM. Shown in Figure 3.7 is the average error of the

generalization as a function of the voxels remaining in the training set. Each line shows a

single subject's performance on out of sample pairs of HOUSE and FACE exemplars.

The color of the line indicates the group of subjects either in NB (red) or OB (green)

tasks, note that near the minimum they significantly overlap, with the oddball task

starting at a lower error on initial learning 9 .

8For two subjects, one in the OB task and the other in NB, a single block in each case was
found to be corrupted, and for those cases the number of bootstrap opportunities were 81 and
121 respectively.
9 One possible reason for the advantage in the OB task could simply be the difference in scanner
strength which was 1.5T for the NB task and 3T for OB task. Another possible explanation is
that the OB task actually required a category judgment, while the NB task required only a simple
stimulus identification. This would change the behavioral contrast between stimuli. In either case,
a parametric experiment that varied the difficulty of the categorization judgment might resolve this
intercept difference.
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In table 3.1 is shown the exact minimum error and associated voxels remaining

at that point. The minimum average error for all subjects in both tasks indicated nearly

98% correct on out of sample cases with 3 subjects in the NB task and 2 from the OB task

showing ZERO generalization error.

Brain Areas Identification Which areas of the brain are uniquely required for the

identification of FACEs and HOUSEs? In a fashion similar to that described in previous

sections, constructed classifiers were examined by doing a sensitivity analysis that

effectively asked what a voxel's contribution to the classification error was. If category

error significantly changes when the voxel is removed, then it can be inferred that this

voxel is contributing in a proportionally diagnostic way to the identification of the FACE

or HOUSE category.

All brain volumes (tasks, subjects) were first registered using the following steps:

(l) a subject's sample bold scan, anatomical, and MNI anatomical were skull stripped

using BET from FSL tools [76], (2) the stripped anatomical was co-registered to the

stripped MNI using FLIRT (from FSL) to obtain an anatomical to MNI transformation,

(3) the stripped anatomical was co-registered to the stripped BOLD using FLIRT to obtain

an anatomical to BOLD transformation, and finally (4) the anatomical was transformed

into BOLD space using anatomical to BOLD transformation for easy visualization of

activation patterns.

In order to localize the FFA and PPA for analysis, the standard method in the field

for localizing category responsive voxels was used. This involved first finding voxels that

significantly responded to FACE > "other non-FACE objects" or HOUSE> "other

non-HOUSE objects". In the case of the NB task, the original FACE and HOUSE masks

in Haxby et al's [25] study were used. Those masks ranged from 20 voxels to about 100

voxels. In the case of the oddball study, independent localizer scans were used in

standard GLM contrasts for FACE>HOUSE and HOUSE>FACE. Although seemingly



Generalization Error with Feature Elimination
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Figure 3.7 Generalization error for all ten subjects on single scans for both kinds of
stimuli held out from a training exemplars. Recursive voxel elimination produced a
minimum for half the subjects at zero error, while over all subjects on single scans, across
both tasks there is nearly a 98% correct generalization on unseen scans.
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tautologous, this is nonetheless the standard procedure within the literature to establish

selective ROIs for subsequent testing. Recently, there has been considerable debate about

this method [78, 79], but nonetheless, this procedure remains the primary way of

determining candidate voxels for more diagnostic approaches. In the followup analysis

FFA and PPA masks were intersected with the calculated sensitivity masks to determine

the amount of voxel overlap. The difficulty in identifying the FFA in particular, is that

there can be considerable variability in the size of masks across subjects. In the original

paper [57] that argued for the existence FFA, only 12 of the 16 subjects actually had FFA

activity. Despite its limitatons, identification of the FFA by GLM contrasts of localizer

scans reflects the state of the art in the neuroimaging field for selecting candidate voxels.

Sensitivity Analysis There are a number of possibilities for identifying diagnostic

brain areas. An obvious choice might be to use all of the support vectors themselves.

However, using vectors that are strictly in the margin may be inappropriate in

characterizing the diagnostic brain areas for HOUSE and FACE inasmuch as they

might represent brain volumes that are near the separating surface, and therefore

unrepresentative of the brain response to either HOUSE or FACE stimuli. The other

possibility is the NON-support vectors (NSV) described by LaConte et al. [31]. These

are vectors that are distributed beyond the support vectors and although some may be

prototypical of the brain response, unfortunately many will not be. In fact, in general

even assuming a Gaussian spread of the NSVs only a small minority will be typical or

"best" members of the category. Because SVM optimizes a margin between the two

categories, the actual distribution of members of the categories is effectively ignored.

Hence, ironically, the same property that makes SVM an excellent candidate for

classification in high dimensions is the one that also makes it tricky to visually interpret.

For this reason, a visualization approach between these two extreme possibilities was

chosen. Effectively it implements a sensitivity/perturbation approach (e.g., [26]), which
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measures the error for a given category (FACE, HOUSE) when the voxel is present

verses when it is removed. Specifically, to estimate SVM-based sensitivity, we used one

of the simplest criterion that have been proposed [41, 65, 80], which is simply the

reciprocal of the separating margin width W = 11/0112, where w 	 Σi
Minimization of this criterion leads to maximization of the margin width. In the case of

Linear SVM, the squared values of the separating plane normal coefficients (i.e. q), as

stated, effectively correspond to the change of the criteria W as if the voxel i is removed.

Therefore, the classifier is less sensitive to the features with low 74. During recursive

feature elimination we sequentially eliminated features with the smallest w,?.

Additionally, in order to increase diagnostic selectivity we derived weights for the FACE

category by using only FACE SVs and for the HOUSE category by using only HOUSE

category SVs. Thus, higher voxel values tended toward typical regions in the

classification space for the SV appropriate category. We will refer to these direction

selective voxel coefficients as diagnosticity of the voxel direction for or against HOUSE

(in blue) and FACE (in red). Shown in Figure 3.8 are diagnosticity measures for two

typical subjects (one from NB and one from OB). A non-parametric method for

thresholding these diagnosticity distributions at p<0.01 was used for each subject, taking

into account the non-Gaussian aspect of the underlying diagnosticity distributions (c.f.

with Type 4 method constructing empirical cumulative distributions; linear interpolation

of the cdf [81]). Slices are shown for each subject with specific voxel clusters. Note that

SVM finds fairly contiguous regions, despite the specific bias not to. In fact, at lower

thresholds (0.05) the diagnosticities begin to fractionate through the whole brain. Unlike

a regression analysis (e.g., GLM) which finds "selective" or detection areas, these voxel

patterns are unique identification areas in that they are contributing to a correct

classification of one category against the other, and moreover, they have been

cross-validated in independent data sets so that the likelihood is high that they will

generalize to other unseen cases of either FACEs or HOUSEs.
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FACE DIAG. 	 HOUSE DIAG. 	 FACE DIAG. 	 HOUSE DIAG.

Figure 3.8 Voxel sensitivities for brain areas that are diagnostic for FACE (red and on
left of each panel) and for HOUSE (blue and right of each panel). In the top left corner
we show FFA (fusiform face area as measured by a localizes task) in the first paired panel
(same subject, same slice, same task) which shows subject NB l. Below that is subject
OB3 also showing FFA in both slices. On the left bottom panel we show PCC which
is diagnostic for HOUSE and FACE which both show sensitivity (NB2). The next three
paired images show distinctive areas between diagnostic areas of FACE and HOUSE. The
next panel above on the right shows pSTS (posterior superior temporal sulcus) which is
diagnostic for FACE against HOUSE (subject OBl), the next panel below shows another
FACE diagnostic areas (MFG BA9, subject OB5), and finally in the last paired panel on
the right we show a HOUSE diagnostic area (LO) for subject NB5.
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The questions posed at the beginning of this section may now be addressed by

assaying the above threshold identification areas, in order to determine whether (l) there

are unique identification areas for FACE and HOUSE, and (2) whether the FFA or PPA

are carrying other discriminative information about other nonpreferred stimuli (in this

case either HOUSE or FACE respectively).

Brain Areas Identifying FACEs and HOUSEs Figure 3.9 shows all areas harvested

that were common (intersection set ¹0) to all subjects in both tasks that were either highly

diagnostic of FACEs (2a) or of HOUSEs (2b) based on the sensitivity/diagnosticity

analysis as described before. The barplot shows the percent of voxels associated with

each area at the 0.01 threshold using the nonparametric methods. The total in each bar

can be computed by multiplying the percentage against the total number of sensitivities

above threshold in each category (FACE=363 and HOUSE=358), so for example about

half the voxels in both HOUSE and FACE, about 150 each fall into the FFA. Note that

these areas are based on the best cross-validated single scan classifiers that were nearly

98% correct on out-of-sample exemplars. Hence the areas identified under these

constraints are not based on the usual "object selective" interpretation and therefore not

subject to the resultant ambiguity with methods that are based on similarity or

association. They are in fact, albeit in a probabilistic sense, necessary and sufficient for

identification of FACEs or HOUSEs. It is important at this point to clarify that the

present classifiers could have found single areas or single voxels as predictive of a single

category. In fact, linear methods tend to be biased towards using single dimensions

(voxels in this case) to minimize classifier error especially if area correlations tend to be

¹ °A very conservative harvesting was used to include only voxels that were in all ten subjects voxels
that were above p<0.01 therefore appeared in both tasks. Also, sensitivities were initially averaged
over all generalization runs in order to increase the sample power of the voxels sets per subject.
In any case, there was significant overlap (64%) of the same voxels across generalization runs
and this tended to covary with the minimum generalization error reached for that classifier. It is
appropriate to average across the runs, since any differences in voxel sets are due to sampling error
in classifier estimation and data noise.
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small between features or voxels. If there are large correlations between voxels these

could be minimized by using a Neural Network which can decorrelate features as it

classifies. Nearest Neighbor classifiers such as used by Haxby et al [25], in fact are more

biased towards sets of features since their similarity increases incrementally with more

common overlap of voxels. Consequently, it is possible to begin answering the question

posed in this section: Are there other areas of the brain that are diagnostic for the

identification of FACEs or HOUSEs? Do other areas of the brain carry discriminative

information other than FFA and PPA? Clearly from the present analysis the answer is

"yes".

Overall, the diagnostic profile of relevant areas for both FACEs and HOUSEs are

somewhat similar, but not identical. Despite the appearance of distinct areas between

categories, these areas also seem to be part of a larger network. In fact, Figure 3.8 shows

a selection of representative examples from different subjects across both tasks (OB and

NB). In the figure each paired set of figures in a row is the same subject showing the

diagnosticities for FACE in red (on the left of each pair) and HOUSE in blue (on the right

of each pair). In the first two paired sets we show FFA sensitivity in two different subjects

across the two different tasks, in both FACE and HOUSE stimulus presentations. For

all subjects fusiform gyrus (and FFA masks overlapped with 90% of the FG voxels for

all subjects and both tasks) appeared for both FACE and HOUSE indicating diagnostic

value for this area that was neither specialized nor unique. Also for all subjects across the

tasks the parahippocampal gyrus (and PPA masks overlapped with more than 70%) and

the posterior cingulate cortex (PCC) were also diagnostic of FACE and HOUSE. The next

three sets show distinctive diagnostic areas, including unique STS sensitivity for FACE but

not HOUSE. Other common diagnostic areas include, middle occipital gyrus (including

area LO), and middle frontal gyrus (BA 9). In general, a network of areas was identified

as diagnostic of these two stimulus types, with FACE having a prefrontal area involved,

while HOUSE appeared to involve an area known for visual shape/texture processing.



Voxel Groups Diagnostic for FACE, N=363

Voxel Groups Diagnostic for HOUSE, N=358

Figure 3.9 Voxel area cluster relative frequencies intersected over all subjects and both
tasks. For FACE diagnosticities (top), six areas were identified at p<0.01: Fusiform Gyrus
(FG), Parahippocampal Gyrus (PHG), Middle Frontal Gyrus (MFG), Superior Temporal
Sulcus (STS), and Precuneus (PCUN), with relative frequencies based total number of
voxels (N=363) over all areas. For HOUSE diagnosticities (bottom) there were five
areas, (at p<0.01, N=358) some the same, some different, including FG, Parahippocampal
Gyrus (PHG), Posterior Cingulate Cortex (PCC), PCUN, and Lateral Occipital (LO). Note
that overlapping FACE and HOUSE areas, include FG, PHG PCUN and PCC. Distinctive
areas for FACE included STS, MFG, while for HOUSE distinctive areas included only
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Note, that the claim is not that FACE stimuli, do not require specialized functions (e.g.,

shape/texture) processing. Rather, it seems likely that the areas that have been identified in

specialized experiments induce us to use labels that have some lexical familiarity with the

presented stimuli and which may be misleading in other contexts where those brain areas

are interacting with many other brain areas. This labeling problem and other implications

from this study are discussed in the following section.

3.4.4 Discussion

This section of the dissertation attempts to answer a simple question that has been

plaguing the object recognition field for the last 10 years: is there a unique area of the

brain that is used only to identify faces? Further, is there a unique area of the brain who's

sole purpose is to identify houses? Based on the present analysis the answer is "no". To

be fair, this statement can be qualified in two ways. First, a claim is not being made

about some general property of "combinatorial" coding throughout the brain, but rather

the results of the analysis presented here are specific to the inferior temporal lobe and for

object recognition processes in particular. Second, a finer resolution of data (see

discussion below) might change the results dramatically as more detail within inferior

temporal lobe and FFA in particular are made availabe. Nonetheless, the analysis did find

a disjoint network of brain areas that are diagnostic for either FACE stimuli or for

HOUSE stimuli. This is consistent with Haxby et al's [82] model of face perception

which finds the same areas to be involved in a common network for processing faces.

The common areas in this analysis include the fusiform face area, specific areas of the

lingual gyrus (which showed up weakly in this analysis), the middle occipital gyrus

(LO), and precuneus. Distinctive areas for FACE stimuli included pSTS, and middle

frontal gyrus (BA9). Distinctive areas for HOUSE stimuli included only area LO.

'However, for FACEs, there seems to be no evidence in the present analysis that the FFA
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is either unique diagnostically nor specialized insofar as it was identified in every subject

responding to the HOUSE stimuli.

So this observation would seem to put a rest to the controversy that there are unique

areas of the brain that only respond to specific tokens or types. But not exactly. The claim

of Kanwisher [60] is complicated by the fact that many areas of the brain seem to be

required for identification of these FACE and HOUSE stimuli and the assumption that

areas that are already selected through an independent localizes (see earlier discussion)

tests are uniquely and solely involved in identifying these object types. So to paraphrase

Kanwisher, does the FFA and PPA provide discriminative information about other object

types other than FACE and HOUSE respectively? The answer based on the present

classifiers is "yes". Since most of the voxels identified for either FACE or HOUSE were

squarely sitting in the FFA of each subject, this would seem to be definitive evidence that

the FFA does involve discriminative information about object types other than FACEs,

that is, in this case, HOUSEs. We also must note that the exact overlap of the areas

between kg FFA-FACE and FFA-HOUSE are not exactly the same, despite voxels that are

squarely in the same place (see crosshairs), nonetheless this is normative in the field as

the FFA will have different locations and shapes across subjects and even within a subject

across sessions or experiments will vary in strength, location and shape. Given HOUSEs

and FACEs do look different, it is not impossible that the FFA does code these stimuli

differently, and a an experiment using fMRI data obtained at a higher resolution might

very well produce different distributions of recruited voxels in the FFA for each stimulus,

which might be more consistent with Kanwisher's claims. Nonetheless within the state of

the art, our localizations of diagnostic cortical areas have no more variability or lack of

precision than that which appears in the standard literature. A potentially more difficult

issue for Kanwisher is that in our results there were also brain areas that were distinctive

for FACE or HOUSE other than FFA or PPA. For example, it would be possible to argue

that pSTS is the superior temporal sulcus FACE area, the pSTSFA! We know that this
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area is sensitive to "biological motion", why could there not be a part of it specifically

dedicated to the unique identification of FACEs? Other category tests would be very

likely to show these areas area not distinctive, but more likely part of a larger network of

some kind of FACE identification system. In terms of uniqueness and given the specificity

of the claim, that the FFA is claimed to be unique and necessary for FACE identification,

then if it were also to be diagnostic for any other category such as HOUSEs, the claim

must be refuted. Again, this would seem to lay the matter to rest, there is no FACE area

per se, at least in the way that Kanwisher has defined it. Clearly, it is obvious to conclude

that there is no area that responds uniquely and solely to FACEs, that could be found in a

whole brain assay of a high performance single TR classifier.



CHAPTER 4

MULTIMODAL ANALYSIS OF FMRI AND EEG DATA

There is an increasing number of reported E/MEG/fMRI conjoint studies, which attempt

to gain the advantages of a multimodal analysis for experiments involving perceptual

and cognitive processes: visual perception [83-87] and motor activation [83], response

anticipation (via contingent negative variation CNV) [88], somatosensory mapping [89,

90], fMRI correlates of EEG rhythms [91-95], arousal and attention interaction [96],

auditory oddball tasks [97-99], passive frequency oddball [100], illusory figures in visual

oddball tasks [101], perceptual closure [102], target detection [103, 104], face perception

[105], sleep [106], language tasks [84, 107, 108], self-regulation for EEG-based BCI

[109], and epilepsy [110-120].

Researchers who approach multimodal data collection and analysis run into a

multitude of problems with regard to the acquisition and analysis of neural data.

Examples of these problems will be provided in the first section of this chapter as well as

a discussion of the advantages that existing multimodal analysis techniques offer over

unimodal analysis approaches. It will be shown how the exploration of new techniques

for analyzing components of E/MEG signals, in addition to the use of those already in

existence, can be used successfully in conjoint analysis. Thus, this dissertation outlines

the problems with existing methodologies and offers a novel multimodal data analysis

approach as a solution.
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4.1 Multimodal Experiment Practices

When you build bridges you can keep crossing them

— Rick Pitino

Although a strong static magnetic field itself seems to have no effect on the brain electric

activity (see [121, chap. 4.2] for review), obtaining non-corrupted simultaneous

recordings of EEG and fMRI is a difficult task due to interference between the strong

MR field and the EEG acquisition system. Because of this limitation, a concurrent

EEG/fMRI experiment requires specialized design and preprocessing techniques to

prepare the data for the analysis. The instrumental approaches described in this section

are specific to collecting concurrent EEG and fMRI data. For obvious reasons MEG and

fMRI data must be acquired separately in two sessions. However, even when MR

and MEG are used sequentially, there is a possibility of contamination from the

magnetization of metallic implants which can potentially disturb MEG acquisition if it is

performed shortly after the MR experiment.

A series of validation studies [122] has been carried out to prove the viability

of collecting EEG concurrently with fMRI. These studies use existing design schemes

and post-processing to isolate the contaminated EEG signal. Thus the study [122]

showed high concordance in signal characteristics between various neuronal activations

(steady state visual evoked potentials (SSVEP), lateralized readiness potentials (LRP),

and frontal theta) captured with EEG in concurrent with fMRI or separate sessions. ROC

analysis [123] of Distributed Equivalent Current Dipole (DECD) maps of VEP obtained

from EEG in the magnet with and without active fMRI acquisition, together with DECD

EEG maps obtained outside of the magnet [124] showed the effectiveness of the removal

of artifacts inherent in fMRI-EEG concurrent acquisition.
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4.1.1 Measuring EEG During MRI: Challenges and Approaches

Developing methods for the integrative analysis of EEG and fMRI data is difficult for

several reasons, not least of which is the concurrent acquisition of EEG and fMRI itself

which itself has proved challenging (see [125] for recent overview). The nature of the

problem is expressed by Faraday's law of induction: a time varying magnetic field in a

wire loop induces an electromotive force (EMF) proportional in strength to the area of

the wire loop and to the rate of change of the magnetic field component orthogonal to the

area. When EEG electrodes are placed in a strong ambient magnetic field resulting in the

EMF effect, several undesirable complications arise:

• Rapidly changing MR gradient fields and RF pulses induce voltages in the EEG

leads placed inside the MR scanner. Introduced potentials greatly obscure the EEG

signal [126]: higher gradients magnetic field strengthen the artifacts introduced

into the EEG signal [127]. This type of artifact is a real concern for concurrent

EEG/MRI acquisition. Due to the deterministic nature of MR interference,

hardware and algorithmic solutions may be able to unmask the EEG signal from

MR disturbances. For example, Allen et al. [128] suggested an average waveform

subtraction method to remove MR artifacts which is effective in case of

deterministic generative process of a signal [129]. This type of method can be

applied even with higher magnetic fields. A study with both phantom and animal

VEP that used a 4.7 T [127], found that up to 90% of the amplitude of EEG signal

acquired outside of the magnet could be restored without introducing a temporal

offset. However, it is important to note that time variations of the MR artifact

waveform can reduce the success of this method [91, 130]. The problem can be

resolved through hardware modification that increases the precision of the

synchronization of MR and EEG systems (e.g., Stepping Stone Sampling [131]),

or during post-processing by using precise timings of the MR pulses during EEG
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waveform averaging [91, 132]. Algorithmic alignment of fMRI and EEG

waveforms with sub-sample precision have been used successfully [133].

Acquisition of an ideal artifact waveform is also possible, via additional wire loops

at the scalp. Other techniques that have been proposed to reduce MR gradient and

ballistocardiographic artifacts range from technical approaches such as bipolar

electrodes in a twisted configuration [134] to the use of post-processing techniques

such as spectral domain filtering, spatial Laplacian filtering, PCA [135-137]

Figure 4.l, ICA [see 135, 138-141], and even a multistage processing pipeline

[142].

• Even a slight motion of the EEG electrodes within the strong static field of the

magnet can induce significant EMF [143, 144]. For instance, native pulsatile

motion related to a heart beat yields a ballistocardiographic artifact in the EEG that

can be roughly the same magnitude as the EEG signals themselves [126, 134].

Usually such artifacts are removed by the same average waveform subtraction,

decomposition (e.g., [136, 145]), multiple source correction (MSC) [146], or

clustering [133] methods. One hardware solution that has been suggested for the

reduction of motion effects is to use dual twist electrodes, where consecutive twists

in opposite directions to the flow cancel out the effects of the motion or gradient

switching [134]. To reduce the ballistocardiographic artifact electrodes are firmly

bandaged to the subject's head [121].

• Induced electric currents can heat up the electrode leads to a painful, or even

potentially dangerous levels [147]. Plastic electrodes with thin layers of silver

chloride or gold alloys are used to provide sufficient impedance for the voltage

reading on the scalp with minimal impact on the quality of the MR signal [148].

Current-limiting electric components (resistors, JFET transistors, etc.) are usually

necessary to prevent the development of nuisance currents which can have direct
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Figure 4.1 EEG MR artifact removal using PCA. EEG taken inside the magnet (top);
EEG after PCA-based artifact removal but with ballistocardiographic artifacts present
(center); EEG with all artifacts removed (bottom). After artifact removal it can be seen
that the subject closed his eyes at time 75.9 s. (Courtesy of M. Negishi and colleagues,
Yale University School of Medicine)
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contact with subject's scalp. Simulations can provide the safe power range that

should be used for particular configurations of coil/power/sensors in order to

comply with FDA guidelines [149].

Another concern is the impact of EEG electrodes on the quality of MR images.

The introduction of EEG equipment into the scanner can potentially disturb the

homogeneity of the magnetic field and distort the resulting MR images [83, 126]. Recent

investigations show that such artifacts can be effectively avoided [148] by using specially

designed EEG equipment [134]: specialized geometries, and new "MR-safe" materials

(carbon fiber, plastic) for the leads. To test the influence of a given EEG system on fMRI

data, a comparison of the data collected both with and without the EEG system being

present should be conducted. Analysis of data usually demonstrates the same activation

patterns in two conditions [83], although a general decrease in fMRI SNR is observed

when EEG is present in the magnet. A correction for the Hall effect ¹ (which are used for

forward E/MEG modeling) finds the following first-order correction to be negligible:

σH = 4.1 x 10 -8o- for B = 1.5 T [150].

4.1.2 Experimental Design Limitations

There are two ways of avoiding the difficulties associated with collecting EEG data in the

magnet: (l) collect EEG and MRI data separately, or (2) use an experimental paradigm

that can work around the potential contamination between the two modalities. The choice

between these two alternatives will depend on the constraints associated with research

goals and methodology. For example, if an experiment can be repeated more than once

with a high degree of reliability of the data, separate E/MEG and fMRI acquisition may be

appropriate [90, 97, 103, 105]. In cases when simultaneous measurements are essential

¹ The Hall effect is the production of a potential difference (the Hall voltage) across an electrical
conductor, transverse to an electric current in the conductor and a magnetic field perpendicular to
the current (http://en.wikipedia.org/wiki/Hall_effect).
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for the experimental objectives (e.g., cognitive experiments where a subject's state might

influence the results as in monitoring of spontaneous activity or sleep state changes), one

of the following protocols can be chosen:

Triggered fMRI: detected EEG activity of interest (epileptic discharge, etc.) triggers

MRI acquisition [110, 111, 114, 151]. Due to the slowness of the HR, relevant

changes in the BOLD signal can be registered 4-8 s after the event. The EEG

signal can settle quickly after the end of the previous MRI block [134], so it can be

acquired without artifacts caused by RF pulses or gradient fields that are present

only during the MRI acquisition block. Note that ballistocardiographic and

motion-caused artifacts still can be present and will require post-processing in

order to be eliminated. Although this is an elegant solution and has been used with

some success in the localization of epileptic seizures, this protocol does have some

drawbacks. Specifically, it imposes a limitation on the amount of subsequent EEG

activity that can be monitored if the EEG high-pass filters do not settle down soon

after the MR sequence is terminated [106]. In this case, EEG hardware that does

not have a long relaxation period must be used. Another drawback with this

approach is that it requires online EEG signal monitoring to trigger the fMRI

acquisition in case of spontaneous activity. Often experiments of this kind are

called EEG-correlated fMRI due to the fact that offline fMRI data time analysis

implicitly uses EEG triggers as the event onsets [129];

Interleaved EEG/fMRI: the experiment protocol consists of time blocks and only a

single modality is acquired during each time-block [95, 150]. This means that

every stimulus has to be presented at least once per modality. To analyze ERP

and fMRI activations, the triggered fMRI protocol can be used with every stimulus

presentation so that EEG and MR are sequentially acquired in order to capture a

clean E/MEG signal followed by the delayed HR [85];
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Simultaneous fMRI/EEG: pre-processing of the EEG signal mentioned in Section 4.l.1

is used to remove the MR-caused artifacts and to obtain an estimate of the true EEG

signal. However, neither of the existing artifact removal methods has proved to

be general enough to work in every type of EEG experiment and analysis. It is

especially difficult to use such an acquisition scheme for cognitive experiments

in which the EEG evoked responses of interest can be of small amplitude and

completely overwhelmed by the MR noise [152].

4.2 Forward Modeling of BOLD Signal

Even in the case of artifact-free EEG and fMRI data acquisition, the successful analysis

of data collected in a multimodal experiment remains problematic. The main problem of

multimodal analysis is the absence of a general unifying account of the BOLD fMRI

signal in terms of the characteristics of neuronal response. Various models have been

suggested, including coarse modeling of BOLD signal in the context of a Linear Time

Invariant System (LTIS) as well as general models of the BOLD signal in terms

of detailed biophysical processes (MR and blood system characteristics [153],

Balloon [154] (its linearized [155] and generalized [156] forms), or Vein and

Capillary [157] models). The simple models are not general enough to explain the

variability of the BOLD signal, whereas complex parametric models that rely heavily on

prior knowledge of nuisance parameters (due to biophysical details), almost never have a

reliable and straightforward means of estimation. This fact makes it unlikely that such

comprehensive models can be used as reliable generative models of the BOLD signal.

Currently, research is ongoing in the attempt to identify stable nuisance parameters [158]

and to derive novel models suitable for data obtained in different modalities. An

interesting heuristic model of neuronal activation and its influence on BOLD and EEG

signals was recently suggested by Kilner et al. [159]. This model relates BOLD signal to
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the changes in spectral characteristics of the EEG signal during activation. The proposed

model formulation is consistent with the results of a number of multimodal experiments

that used other forms of analysis. Thus, this model seems promising in being able to

reveal reliable interdependencies between different brain imaging modalities. The

following section describes modeling issues in greater detail to further underscore the

limited applicability of many multimodal analysis methods covered in Section 4.3.

4.2.1 Convolutional Model of BOLD Signal

A common paradigm in early studies that collected fMRI data used simple contrast

designs (e.g., block design) to exploit the assumed linearity between design parameters

and the HR. The belief underlying the use of block designs is that they can amplify the

SNR because the HR possesses more temporal resolution than indicated by the scan

acquisition time (TR).

In order to account for the present autocorrelation of the HR caused by its temporal

dispersive nature, Friston et al. [160] suggested modeling HR with an LTIS, so that the

HR is modeled by convolving an input (joint intrinsic and evoked neuronal activity) q(t)

with a hemodynamic response function (HRF) h(t).

Because localized neuronal activity itself is not directly available through non-

invasive imaging, verification of LTIS modeling on real data, as a function of parameters

of the presented stimuli (i.e., duration, contrast), is appropriate.

The convolutional model was used on real data to demonstrate linearity between

the BOLD response and the parameters of presented stimuli [161, 162]. In fact, many

experimenters have shown apparent agreement between LTIS modeling and real data, as

well as its superiority over more complex, non-linear models when dealing with noisy data
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[158]. Specifically, it has been possible to model responses to longer stimulus durations,

by constructing them using the responses to shorter duration stimuli, and get results

consistent with LTIS modeling. Because of its predictive success, its relative ease of

use, and its independence from biophysical details, this modeling approach has become

widely accepted. On the down side, LTIS as a modeling constraint is very weak and

consequently, allows the user to make arbitrary choices of parametric HRF based solely

on preference and familiarity.

Over the years multiple models for the HRF have been suggested. The most

popular and widely used, until now, is a single probability density function (PDF) of the

Gamma distribution by [163]a It was extended by Glover [164] to perform deconvolution

of the HR signal. Nuisance parameters (n 1 , t 1 , n2 , t2 , a2 ) of the next HRF were estimated

for motor and auditory areas

as the sum of two unsealed PDFs of the Gamma distribution. The first term captures

the positive BOLD HR and the second term captures the overshoot often observed in the

BOLD signal. Many other models of HRF, both simple and sophisticated, have been

suggested. These include Poisson PDF [160], Gaussians [165], Bayesian derivations

[166-168], and deconvolution [169] among others. The particular choice of a given HRF

model is often motivated by some factors other than those arising from bio-physics; i.e.,

easy Fourier transformation, the presence of a post-response dip, or "best-fit" properties.

Modeling of the HRF through deconvolution of the signal has been shown to improve

detectability of conventional GLM analysis, for example when applied to epileptic data

[119]. This is not surprising given the characteristic variability of the BOLD signal

attributable to various nuisance parameters. More on this topic will be discussed in the

next section (Section 4.2.2).
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Following the development of the convolutional model to describe BOLD

response, the issue of HR linearity became an actively debated question. If HR is linear,

then with what features of the stimulus (e.g., duration, intensity) or neuronal activation

(e.g., firing frequency, field potentials, frequency power) does it vary linearly? As a first

approximation, we can define the range of possible values for those parameters in which

HR was found to behave linearly. For example, early linearity tests [164] showed how

difficult it was to predict long duration stimulus effects based on an estimated HR from

shorter duration stimuli. [170] reviewed existing papers describing different aspects of

non-linearity in BOLD HR and attempted to determine the range of values associated

with linearity in three cortical areas: motor, visual and auditory complex. The results of

these analyses have shown that although there is a strong non-linearity observed for

small stimulus durations, long stimulus durations show a higher degree of linearity.

It appears that a simple convolutional model generally is not capable of describing

the BOLD responses in terms of the experimental design parameters if such are varying

in a wide range during the experiment. Nevertheless LTIS might be more appropriate to

model BOLD response in terms of neuronal activation if most of the non-linearity in the

experimental design can be explained by the non-linearity of the neuronal activation itself.

4.2.2 Neurophysiologic Constraints

In the previous section the subject of linearity between the experimental design parameters

and the observed BOLD signal was explored. For the purpose of this work it is more

relevant to explore the relation between neuronal activity and HR.

It is known that E/MEG signals are produced by large-scale synchronous neuronal

activity, whereas the nature of the BOLD signal is not clearly understood. The BOLD

signal does not correspond to the neural activity that consumes the most energy

[171], as early researchers believed. Furthermore, the transformation between the
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electrophysiological indicators of neuronal activity and the BOLD signal cannot be

linear for the entire dynamic range, under all experimental conditions and across all the

brain areas. Generally, a transformation function cannot be linear since the BOLD signal

is driven by a number of "nuisance" physiologic processes such as cerebral metabolic

oxygen consumption (CMRO2), cerebral blood flow (CBF) and cerebral blood volume

(CBV) as suggested by the Balloon model [154], which are not generally linear.

Due to the indirect nature of the BOLD signal as a tool to measure neuronal

activity, in many multimodal experiments a preliminary comparative study is done first in

order to assess the localization disagreement across different modalities. Spatial

displacement is often found to be very consistent across multiple runs or experiments

(see Section 4.3.3 for an example). Specifically, observed differences can potentially be

caused by the variability in the cell types and neuronal activities producing each

particular signal of interest Nunez and Silberstein [172]. That is why it is important first

to discover the types of neuronal activations that are primary sources of the BOLD

signal. Some progress on this issue has been made. A series of papers generated by a

project to cast light on the relationship between the BOLD signal and neurophysiology,

have argued that local field potentials (LFP) serve a primary role in predicting BOLD

signal [173, and references 27, 29, 54, 55 and 81 therein]. This work countered the

common belief that spiking activity was the source of the BOLD signal [for example

174] by demonstrating a closer relation of the observed visually evoked HR to the local

field potentials (LFP) of neurons than to the spiking activity. This result places most of

the reported non-linearity between experimental design and observed HR into the

non-linearity of the neural response, which would benefit a multimodal analysis.

Simultaneous EEG and fMRI recordings during visual stimulation [175] supported the

idea that non-linearity of BOLD signal primarily reflects non-linearity of neuronal

response itself by demonstrating linearity between principal current density from EEG

and the estimated value of the synaptic efficacy in the modified balloon model [176].
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To validate pioneering research of Logothetis et al. [177] (see Section 4.2.2)

spiking activity was correlated with BOLD response across multiple sites in the cat

visual cortex Kim et al. [178]. The correlation varied from point to point on the cortical

surface and was generally valid only when data were averaged at least over 4-5 mm

spatial scale, once again questioning spatial specificity of BOLD response.

Note that the extracellular recordings of the experiments described above, were

carried out over a small ROIs, therefore they inherit the parameters of underlying

hemodynamic processes for the given limited area. Thus, even if LFP is taken as the

primary electrophysiological indicator of the neuronal activity causing BOLD signal, the

relationship between the neuronal activity and the hemodynamic processes on a larger

scale remains an open question.

Since near-infrared spectroscopy (NIRS) ² is capable of capturing the

individual characteristics of cerebral hemodynamics such as oxy-hemoglobin (HbO),

deoxy-hemoglobin (HbR) and total hemoglobin (HbT) content, some researchers use

NIRS to reveal the nature of the BOLD signal. Results showed great agreement between

NIRS signals and BOLD, and stronger correlation between BOLD and HbR compared to

HbO signals [179]. Flow response measure with ASL also had great correspondence

with HbT signal.

Investigation of connection between neuronal activity and NIRS captured

characteristics [180] revealed the non-linear mapping between the neuronal activity and

evoked hemodynamic processes. This result should be a red flag for those who try to

define the general relation between neuronal activation and BOLD signal as mostly

linear. The conjoint analysis of BOLD and NIRS signals revealed the silent BOLD signal

during present neural activation registered by E/MEG modalities [157]. This mismatch

between E/MEG and fMRI results is known as the sensory motor paradox [181]. To

²NIRS is often used in the context of near-infrared optical imaging (NIOI), whenever multiph
sensors allow to capture spatial distribution of the signal
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explain this effect, the Vein and Capillary model was used to describe the BOLD signal

in terms of hemodynamic parameters [157]. The suggested model permits the existence

of silent and negative BOLD responses during positive neuronal activation.

The investigation of neurovascular coupling under influence of dopaminergic

drugs showed that direct effects of dopamine upon the vasculature cannot be ignored

[182] and can provide further insights in the nature of negative BOLD, which can be due

to interplay between vasoconstrictive and vasodilatory substances. These facts, together

with an increasing number of studies [183] suggesting that sustained negative BOLD HR

is a primary indicator of decreased neuronal activation, provide yet more evidence for the

inherent complexity of BOLD HR. Recently published review [184] summarized more of

known factors which shape the characteristics of BOLD signal at different levels:

neuronal, vascular, and signal acquisition. This paper can be referred to as the summary

on available at the moment knowledge on the nature of the BOLD signal. This section

concludes by noting that the absence of a generative model of the BOLD response

prevents the development of universal methods of multimodal analysis. Nevertheless, as

discussed in this section and is shown by the results presented in the next section, there

are specific ranges of applications where the linearity between BOLD and neuronal

activation can be assumed. Such simplistic model can be voted for by the supported of

Occam's razor principle which is to prefer simple models capable of describing the data

of interest.

4.3 Existing Multimodal Analysis Methods

Whenever applicable, a simple comparative analysis of the results obtained from the

conventional uni-modal analyses together with findings reported elsewhere, can be

considered as the first confirmatory level of a multimodal analysis. This type of analysis

is very flexible, as long as the researcher knows how to interpret the results and to draw
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useful conclusions, especially whenever the results of comparison reveal commonalities

and differences between the two [107]. On the other hand, by default a unimodal analysis

makes limited use of the data from the modalities, and encourages researchers to look for

analysis methods which would incorporate the advantages of each single modality.

Nevertheless, simple inspection is helpful for drawing preliminary conclusions on the

plausibility to perform any conjoint analysis using one of the methods described in this

section, including correlative analysis which might be considered an initial approach to

try.

4.3.1 Correlative Analysis of EEG and MEG with FMRI

In some experiments, the E/MEG signal can serve as the detector of spontaneous neuronal

activity (e.g., epileptic discharges) or changes in the processing states (e.g., vigilance

states). The time onsets derived from E/MEG are alone valuable for further fMRI analysis,

where the BOLD signal often cannot provide such timing information. For instance, such

use of EEG data is characteristic for the experiments performed via a Triggered fMRI

acquisition scheme (Section 4.1.2).

Correlative E/MEG/fMRI analysis becomes more intriguing if there is a stronger

belief in the linear dependency between the BOLD response and features of E/MEG

signal (e.g., amplitudes of ERP peaks, powers of frequency components), than between

the hemodynamics of the brain and the corresponding parameter of the design (e.g.,

frequency of stimulus presentation or level of stimulus degradation). Then E/MEG/fMRI

analysis effectively reduces the inherent bias present in the conventional fMRI analysis

methods by removing the possible non-linearity between the design parameter and the

evoked neuronal response.

The correlative analysis relies on the preprocessing of E/MEG data to extract the

features of interest (ERP components such as Nl70 [105] or P300 [97], amplitude of
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mismatch negativity (MMN) [100], contingent negative variation (CNV) [88], various

characteristics of epileptic spikes [185]) to be compared with the fMRI time course with

simple correlative or GLM approaches. The obtained E/MEG features first get convolved

with a hypothetical HRF (Section 4.2.l) to accommodate for the HR sloppiness and are

then subsampled to fit the temporal resolution of fMRI. The analysis of fMRI signal

correlation with amplitudes of selected peaks of ERPs revealed sets of voxels which

have a close to linear dependency between the BOLD response and amplitude of the

selected ERP peak, thus providing a strong correlation (P < 0.001 [105]). A parametric

experimental design with different noise levels introduced for the stimulus degradation

[100, 105] or different levels of sound frequency deviant [100] helped to extend the range

of detected ERP and fMRI activations, thus effectively increasing the significance of the

results found. To support the suggested connection between the specific ERP peak and

fMRI activated area, the correlation of the same BOLD signal with the other ERP peaks

must be lower if any at all [105]. As a consequence, such analysis cannot prove that any

specific peak of EEG is produced by the neurons located in the fMRI detected areas alone

but it definitely shows that they are connected in the specific paradigm.

The search for the covariates between the BOLD signal and wide-spread neuronal

signals, such as the alpha rhythm, remains a more difficult problem due to the ambiguity

of the underlying process, since there are many possible generators of alpha rhythms

corresponding to various functions [186] and was shown to have high variability in the

rest state not only across subjects but also within a single subject [187]. As an example,

Goldman et al. [92] and Laufs et al. [94] were looking for the dependency between fMRI

signal and EEG alpha rhythm power during interleaved and simultaneous EEG/fMRI

acquisition correspondingly. They report similar (negative correlation in parietal and

frontal cortical activity), as well as contradictory (positive correlation) findings, which can

be explained by the variations in the experimental setup [188] or by the heterogeneous

coupling between the alpha rhythm and the BOLD response [94]. Consecutive study
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[189] attempted to resolve alpha band response function (ARF) of the BOLD response.

The ARF was found to differ significantly between different regions: mainly positive in

the thalamus, similar in amplitude and time between occipital and left and right parietal

areas, positive at the eyeball and negative at the back of the eye. It was suggested that

ARF variation across different regions were due to regional differences in alpha band

activity as well as due to the differences in haemodynamic response function of BOLD

signal. Despite the obvious simplification of the correlative methods, they may still have

a role to play in constraining and revealing the definitive forward model in multimodal

applications.

4.3.2 Decomposition Techniques

The common drawback of the presented correlative analyses techniques is that they are

based on the selection of the specific feature of the F/MEG signal to be correlated with the

fMRI time trends, which are not so perfectly conditioned to be characterized primarily by

the feature of interest. The variance of the background processes, which are present in the

fMRI data and are possibly explained by the discarded information from the E/MEG data,

can reduce the significance of the found correlation. That is why it was suggested [190]

to use the entirety of the E/MEG signal, without focusing on its specific frequency band,

to derive the E/MEG and fMRI signal components which have the strongest correlation

among them. The introduction of decomposition techniques (such as basis pursuit, PCA,

ICA, etc.) into the multimodal analysis makes this work particularly interesting.

To perform the decomposition [190], Partial Least-Squares (PLS) regression was

generalized into the tri-PLS2 model, which represents the F/MEG spectrum as a linear

composition of trilinear components. Each component is the product of spatial (among

E/MEG sensors), spectral and temporal factors, where the temporal factors have to be

maximally correlated with the corresponding temporal component of the similar fMRI
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signal decomposition into bilinear components: products of the spatial and temporal

factors. Analysis using tri-PLS2 modeling on the data from [92] found a decomposition

into 3 components corresponding to alpha, theta and gamma bands of the EEG signal.

The fMRI components found had a strong correlation only in alpha band component

(Pearson correlation 0.83, p = 0.005), although the theta component also showed a linear

correlation of 0.56, p = 0.070. It is interesting to note, that spectral profiles of the trilinear

EEG atoms received with and without fMRI influence were almost identical, which can be

explained either by the non-influential role of fMRI in tri-PLS2 decomposition of EEG,

or just by a good agreement between the two. On the other hand, EEG definitely guided

fMRI decomposition, so that the alpha rhythm spatial fMRI component agreed very well

with the previous findings [92].

4.3.3 Equivalent Current Dipole Models

Equivalent Current Dipole (ECD) is the most elaborated and widely used technique for

source localization in EMSI [see 4, for an overview of localization methods in E/MEG]. It

can easily account for activation areas obtained from the fMRI analysis thus giving the

necessary fine time-space resolution by minimizing the search space of non-linear

optimization to the thresholded fMRI activation map. While being very attractive, such a

method bears most of the problems of the ECD method (described in Chapter B), and

introduces another possible bias due to the belief in the strong coupling between

hemodynamic and electrophysiological activities. For this reason it needs to be

approached with caution in order to carefully select the fMRI regions to be used in the

ECD/fMRI combined analysis.

Although good correspondence between ECD and fMRI results is often found

[191], some studies reported a significant (1-5 cm) displacement between locations

obtained from fMRI analysis and ECD modeling [89, 116, 192-194]. The displacement
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often was found to be very consistent across the experiments of different researchers

• using the same paradigm (for instance motor activations [89, 90, 195]). To assess the

importance of found displacements it is necessary to keep in mind proven lower

bounds on localization errors adherent for the cases of precise head modeling and

mis-localization due to nuisance parameters (e.g., number and models of sources, tissue

conductivities and their anisotropy, head geometry) misspecification which can

drastically degrade localization performance.

As it was already mentioned, in the first step, a simple comparison of detected

activations across the two modalities can be done to increase the reliability of dipole

localization alone. Further, additional weighting by the distance from the ECD to the

corresponding fMRI activation foci can guide ECD optimization [196] and silent in fMRI

activations can be accommodated by introducing free dipoles without the constraint on

dipole location. Auxiliary fMRI results can help to resolve the ambiguity of the inverse

E/MEG problem if ECD lies in the neighborhood of multiple fMRI activations. Placing

multiple ECDs inside the fMRI foci with successive optimization of ECDs orientations

and magnitudes may produce more meaningful results, especially if it better describes the

E/MEG signal by the suggested multiple ECDs model.

Due the large number of consistent published fMRI results [197], it seems viable

to perform a pure E/MEG experiment with consequent ECD analysis using known

relevant fMRI activation areas found by the other researchers performing the same kind

of experiment [198], thus providing the missing temporal explanation to the known fMRI

activations.

4.3.4 Linear Inverse Methods

Dale and Sereno [199] formulated a simple but powerful linear framework for the

integration of different imaging modalities into the inverse solution of DECD, where the
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solution was presented as unregularized (just minimum-norm) (B.7) with W Q  = Cs and

Wx C E .

The simplest way to account for fMRI data is to use thresholded fMRI activation

map as the inverse solution space but this was rejected [200] due to its incapability to

account for fMRI silent sources, which is why the idea to incorporate variance information

from fMRI into Cs was further elaborated [201] by the introduction of relative weighting

for fMRI activated voxels via constructing a diagonal matrix WQ = WfMRI = Vii}

where vii = 1 for fMRI activated voxels and v ii = 7/0 E [0, 1] for voxels which are

not revealed by fMRI analysis. A Monte Carlo simulation showed that v0 = 0.1 (which

corresponds to the 90% relative fMRI weighting) leads to a good compromise with the

ability to find activation in the areas which are not found active by fMRI analysis and to

detect active fMRI spots (even superficial) in the DECD inverse solution. An alternative

formulation of the relative fMRI weighting in the DECD solution can be given using

a subspace regularization (SSR) technique [202], in which an E/MEG source estimate

is chosen from all possible solutions describing the E/MEG signal, and is such that it

minimizes the distance to a subspace defined by the fMRI data (see Figure 4.2). Such

formulation helps to understand the mechanism of fMRI influence on the inverse E/MEG

solution: SSR biases underdetermined the E/MEG source locations toward the fMRI foci.

The relative fMRI weighting was tested [203] in an MEG experiment and found

conjoint fMRI/MEG analysis results similar to the results reported in previous fMRI,

PET, MEG and intracranial EEG studies. Babiloni et al. [204] followed Dale et al. [203]

in a high resolution EEG and fMRI study to incorporate non-thresholded fMRI

activation maps with other factors. First of all, the WfMRI was reformulated to

(WfMRI)ii = v0 + (1 — v0) /Δmax 9 where Δi corresponds to the relative change of the

fMRI signal in the i-th voxel, and Δmax  is the maximal detected change. This way the

relative E/MEG/fMRI scheme is preserved and locations of stronger fMRI activations

have higher prior variance. Finally the three available weighting factors were combined:
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fMRI relative weighting, correlation structure obtained from fMRI described by the

matrix of correlation coefficients Ks, and the gain normalization weighting matrix Wn  :

WQ = W½fMRI Wn½KsWn½W½fMRIRI Although WfMRI alone had improved EMSI

localization, the incorporation of the K s lead to finer localization of neuronal activation

associated with finger movement.

Although most of the previously discussed DECD methods are involved in

finding minimal L2 norm solution, the fMRI conditioned solution with minimal L 1 norm

(regularization term in (B.5) C(Q) = II Q I I1) is shown to provide a sparser activation map

[205] with activity focalized to the seeded hotspot locations [196].

An fMRI-conditioned linear inverse is an appealing method due to its simplicity,

and rich background of DECD linear inverse methods derived for the analysis of E/MEG

signals. Nonetheless, one should approach these methods with extreme caution in a

domain where non-linear coupling between BOLD and neural activity is likely to

overwhelm any linear approximation [193].

4.3.5 Beamforming

Lahaye et al. [206] suggest an iterative algorithm for conjoint analysis of EEG and fMRI

data acquired simultaneously during an event-related experiment. Their method relies on

iterated source localization by the linearly constrained minimum variance (LCMV)

beamformer (B.9), which makes use of both EEG and fMRI data. The covariance Cx

used by the beamformer is calculated anew each time step, using the previously

estimated sources and current event responses from both modalities. This way neuronal

sites with a good agreement between the BOLD response and EEG beamformer

reconstructed source amplitude, benefit most at each iteration. Although the original

formulation is cumbersome, this method appears promising as (a) it makes use of both

spatial and temporal information available from both modalities, and (b) it can account
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	A MEG Source Space	 C Subspace Defined by fMRI

B Minimum-Norm Estimate
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D Subspace Regularized Estimate

p SSR

Figure 4.2 Geometrical interpretation of subspace regularization in the MEG/EEG
source space. (A) The cerebral cortex is divided into source elements q 1  , q2 ,	 , qK,
each representing an ECD with a fixed orientation. All source distributions compose
a vector q in K-dimensional space. (B) The source distribution q is divided into two
components qa e Sa	 range(GT ), determined by the sensitivity of MEG sensors and
q° E null G, which does not produce an MEG signal. (C) The fMRI activations define
another subspace S f'. (D) The subspace-regularized fMRI-guided solution qSSR E

is closest to SR'', minimizing the distance PqSSR 11 where P (a N x N diagonal matrix
with P ii = 1/0 when the i-th fMRI voxel is active/inactive) is the projection matrix into
the orthogonal complement of SiMi'. (Adapted from [202, Figure 1])
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for silent BOLD sources using an electro-metabolic coupling constant which is estimated

for each dipole and defines the influence of the BOLD signal at a given location onto the

estimation of Cs which, in turn, drives the estimate of Cx •

43.6 Bayesian Inference

During the last decade, Bayesian methods became dominant in the probabilistic signal

analysis. The idea behind them is to use Bayes' rule to derive a posterior probability

of a given hypothesis having observed data D, which serves as evidence to support the

hypothesis

where p(7-1) and p(D) are prior probabilities of the hypothesis and evidence

correspondingly, and the conditional probability p(DIH)  is known as a likelihood

function. Thus, (4.3) can be viewed as a method to combine the results of conventional

likelihood analyses for multiple hypotheses into the posterior probability of the

hypotheses p(HlD) or some function of it, after been exposed to the data. The derived

posterior probability can be used to select the most probable hypothesis, i.e., the one

with the highest probability

leading to the maximum a posteriori (MAP) estimate, where the prior data probability

p(D) (often called a partition function) is omitted because the data does not depend on

the choice of the hypothesis and it does not influence the maximization over 7 -1.

For the class of problems related to the signal processing, hypothesis generally

consists of a model M characterized by a set of nuisance parameters 8 = 02...n}.

The primary goal usually is to find a MAP estimate of some quantity of interest A

or, more generally, its posterior probability distribution p(ΔID,M,Θ). 0 can be an
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arbitrary function of the hypothesis or its components A = 1 (N) , or often just a specific

nuisance parameter of the model A .7,- 01 . To obtain posterior probability of the nuisance

parameter, its marginal probability has to be computed by the integration over the rest of

the parameters of the model

(4.5)

Due to the integration operation involved in determination of any marginal probability,

Bayesian analysis becomes very computationally intensive if analytical integral

solution does not exist. Therefore, sampling techniques (e.g., MCMC, Gibbs

sampler) are often used to estimate full posterior probability p(ΔID, .M), MAP

Â = arg maxΔ  p(ΔID, M), or some statistics such as an expected value

E[ΔID, .A4] of the quantity of interest.

The Bayesian approach sounds very appealing for the development of

multimodal methods. It is inherently able to incorporate all available evidence, which is

in our case obtained from the fMRI and E/MEG data (D = {X, F}) to support the

hypothesis on the location of neuronal activations, which is in the case of DECD

model is 7-1 = {Q, A4}. However, the detailed analysis of (4.3) leads to necessary

simplifications and assumptions of the prior probabilities in order to derive a

computationally tractable formulation. Therefore it often loses its generality. Thus to

derive a MAP estimator for ÔIX,B,M Trujillo-Barreto et al. [207] had to condition the

computation by a set of simplifying modeling assumptions such as: noise is normally

distributed, nuisance parameters of forward models have inverse Gamma prior

distributions, and neuronal activation is described by a linear function of hemodynamic

response. The results on simulated and experimental data from a somatosensory

MEG/fMRI experiment confirmed the applicability of Bayesian formalism to the

multimodal imaging even under the set of simplifying assumptions mentioned above.
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Usually, model ,A4 is not explicitly mentioned in Bayesian formulations (such as

(4.5)) because only a single model is considered. For instance, Bayesian formulation of

LORETA E/MEG inverse corresponds to a DECD model, where e = Q is constrained to

be smooth (in space), and to cover whole cortex surface. In the case of the Bayesian Model

Averaging (BMA), the analysis is carried out for different models M i , which might have

different nuisance parameters, e.g., E/MEG and BOLD signals forward models, possible

spatial locations of the activations, constraints to regularize E/MEG inverse solution. In

BMA analysis we combine results obtained using all considered models to compute the

posterior distribution of the quantity of interest

where the posterior probability p(MiI ID) of any given model M i is computed via B ayes'

rule using prior probabilities p(M i ) , p(D) and the likelihood of the data given each model

Initially, BMA was introduced into the E/MEG imaging [208], where Bayesian

interpretation of (B.7) was formulated to obtain p(QIX, F) for the case of Gaussian

uncorrelated noise (Wx = C, = vєI). In order to create a model, the brain volume

gets partitioned into a limited set of spatially distinct functional compartments, which are

arbitrarily combined to define a M i , search space for the E/MEG inverse problem.

At the end, different models are sampled from the posterior probability p(M i lX)

to get the estimate of the expected activity distribution of ECDs over all considered source

models
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where the normalized probability p(M i lX), Bayes' Factor Bic) , and prior odds αi , are

In the original BMA framework for E/MEG [208] α i = 1 Vi, i.e., the models had a flat

prior PDF because no additional functional information was available at that point.

Melie- García et al. [209] suggested to use the significance values of fMRI statistical t-maps

to derive p(M) as the mean of all such significance probabilities across the present in

M i compartments. This strategy causes the models consisting of the compartments with

significantly activated voxels get higher prior probabilities in BMA. The introduction of

fMRI information as the prior to BMA analysis reduced the ambiguity of the inverse

solution, thus leading to better localization performance. Although further analysis is

necessary to define the applicability range of the BMA in E/MEG/fMRI fusion, it already

looks promising because of the use of fMRI information as an additional evidence factor

in E/MEG localization rather than a hard constraint.

Due to the flexibility of Bayesian formalism, various Bayesian methods solving

E/MEG inverse problem already can be easily extended to partially accommodate evidence

obtained from the analysis of fMRI data. For instance, correlation among different areas

obtained from fMRI data analysis can be used as a prior in the Bayesian reconstruction

Of correlated sources [210]. The development of a neurophysiologic generative model of

BOLD signal would allow many Bayesian inference methods (such as [211]) to introduce

complete temporal and spatial fMRI information into the analysis of E/MEG data.
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4.4 Suggested Multimodal Analysis Method

The only reason some people get lost in thought is because
it's unfamiliar territory

— Paul Fix

4.4.1 Motivation

As it was shown in the previous sections, fMRI BOLD signal is an inherently non-linear

function of neuronal activation. Nevertheless there have been multiple reports of linear

dependency between the observed BOLD response and the selected set of E/MEG signal

features. In general, such results are not inconsistent with the non-linearity of BOLD,

since a non-linear function can be approximately linear in the context of a specific

experimental design, regions of interest, or dynamic ranges of the selected features of

E/MEG signals. Besides dominant LFP/BOLD linearity reported by Logothetis and

Wandell [173] and also confirmed in the specific frequency bands of EEG signal during

flashing checkerboard experiment [212], there have been reports of a strong correlation

between the BOLD and the power of different frequency bands of E/MEG signals [213].

Besides conventionally explored frequency bands of E/MEG, very low-frequencies

(f < 0.1 Hz, also known as DC-E/MEG) signal component has not yet been a subject of

attention for multimodal integration despite recent experiments showing the strong

correlation between the changes of the observed DC-EEG signal and the hemodynamic

changes in the human brain [214]. In fact, such DC-E/MEG/BOLD coupling suggests

that the integration of fMRI and DC-E/MEG might be a particularly useful way to study

the nature of the time variations in HR signal. These variations are usually observed

during fMRI experiments but are not explicitly explained by the experimental design or

by the physics of MR acquisition process.
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To summarize, independent researchers have detected various features of the

E/MEG signals which have strong correspondence to the BOLD signal. Since the spectral

power of E/MEG signal at different frequency bands was reported to correlate

significantly with the BOLD response, it is worthwhile to approach the fusion problem

by looking for a way to describe BOLD signal in terms of the time-varying spectral

representation of E/MEG.

4.4.2 Formulation of the Approach

The overall goal of the presented analysis approach is to determine the mapping function

.F, such that

where fMRI signal F at each voxel i is described in terms of the E/MEG data X via a

transformation

Due to aforementioned loose or absent coupling between power of some

frequency bands and the design of the experiment, it is desirable to analyze the data from

both modalities, whenever they are acquired in a single session. Due to impossibility of

acquiring *MEG in the magnet, suggested method should mostly be applicable to the

conjoint analysis of EEG and fMRI. Suggested approach is similar to GLM analysis of

fMRI data where each voxel is represented as a linear combination of a limited number

of explanatory variables. However, it substantially differs from GLM analysis since it

neither imposes a specific shape of HRF, nor, strictly speaking, it requires linear

relationship between X and F i . Furthermore, it does not require the specification of the

experimental design.

Richness of E/MEG signal (e.g., in terms of its spectral properties), absence of a

generative forward model of BOLD signal, and sluggishness of BOLD response are the

main obstacles toward deriving a reliable transformation function Slow evolution of
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BOLD response requires to rely on a vast duration of E/MEG signal preceding any given

volume of a BOLD signal. Therefore, to accommodate for the existing lag between neural

activation and its reflection within fMRI signal, (4.8) can be further elaborated as

where t is a moment in time when an fMRI volume is acquired (fMRI volumes are usually

evenly spaced in time with a fixed TR, typically 2-4 sec), and T is a reasonable duration to

look back in time for neural activations which should be significantly reflected in BOLD

response at the given time point. Such setup is schematically depicted in Figure 4.3. In

most of the scenarios, it is reasonable to take T = 10 + TR sec. The duration of 10 sec

should be sufficient to account for the typical HRF delay. The duration of TR is included

since different slices of a volume are acquired at different offsets within the TR. Hence

for atypically long TRs (as it is in the experimental data of Section 4.6, where TR=10 sec)

it is necessary to consider sufficient amount of E/MEG data to describe any possible voxel

in the acquired volume.

It is possible to account for the offset of any given slice while formulating (4.9), if

slice ordering is known in advance. But such procedure might be inappropriate since fMRI

data are conventionally motion corrected as a part of preprocessing. Motion correction

relies on the interpolation between different slices, hence it can smear the effect of slice

acquisition timing. Furthermore, transformation .F could be described as a composition of

actual regression function g and some (optional) time-frequency transformation T (e.g.,

SFFT, Wavelet standard or packet decomposition)

where T does not depend on the voxel in question and is introduced to convert the

original E/MEG data into the feature space which is known to have correspondence with

BOLD response. Transformation T can also incorporate multiple characteristics of the
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Figure 4.3 Mapping of neural data from EEG into fMRI. During learning, for each
fMRI voxel a single mapper is trained on a corresponding time-window of EEG data to
predict fMRI signal in that voxel. During testing the trained mapper predicts fMRI signal.
Comparison between predicted (in red) and real time course of fMRI (in green) allows to
assess the performance of the mapper.
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same feature of the E/MEG signal, e.g., for a single time-frequency slot it can provide

both amplitude and the power of the E/MEG signal. That can allow to account for some

non-linear effects which were reported for the BOLD response without requiring

transformation g itself to be non-linear. Such approach is substantially different from the

existing multimodal methods. None of the existing methods (such as correlative analysis

Section 4.3.1) presented a reliable and generative (defining the actual transformation .F)

way to describe BOLD signal in terms of multiple components of E/MEG signal.

Furthermore, they often had to rely on some chosen, hence rigid, HRF function. That

heavily restricts the amount of novel conclusions to be drawn from the data analysis.

Having selected features of the signals to be involved in the fusion, many EMSI

methods could naturally be extended to account for fMRI data if a generative forward

model of BOLD signal was available. For instance, direct universal-approximator inverse

methods [215, 216] have been found to be very effective (fast, robust to noise and to

complex forward models) for the E/MEG dipole localization problem, and could be

augmented to accept fMRI data if the generative model for it was provided. Due to the

mentioned forward model of BOLD and abundance of the features of E/MEG signal,

instead of relying on a overly too flexible generic architecture for the description of the

signal (e.g., artificial neural networks as in [215, 216]), it is logical to use some other

supervised machine learning regression approaches (e.g., SVR and GPR) which are

inherently well regularized, and as a result are capable to provide reasonable

generalization performance even if the dimensionality of input space greatly exceeds the

number of available data samples.

4.4.3 Promises

As it was shown in Chapter 3, methods such as GPR and SVM are capable of

near-perfect generalization performance on classification tasks, even when
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dimensionality of input space greatly exceeded number of data samples. Furthermore,

supervised learning methods encourage model testing to provide unbiased estimates of

the generalization performance for a derived transformation At last, many methods

(e.g., linear ones) conveniently provide feature-weighting, which can be used for

determining the components of the signal relevant for a given classification or regression

task.

As it will be shown in the followup sections, derivation of a reliable transformation

J can help to

• identify brain regions, where fMRI signal is relatively well explained by the

information present in E/MEG signal. It provides insights not only about the nature

of the fMRI response, but also about interconnectivity among the areas, since deep

structures themselves are weakly represented in the E/MEG signal, hence goodness

of their description in terms of the E/MEG signal relies on their connections with

more exterior parts of the brain;

• localize the regions which are related to specific components of E/MEG signal (e.g.,

different frequency bands);

• provide sensitivity maps across the regions for the E/MEG per each channel, which

in turn would allow to characterize coherence among distant parts of the brain due

to inherent connectivity;

• filter E/MEG signal based on fMRI data, or even to perform electrode rejection based

on its participation in the description of fMRI data;

• filter, interpolate, or predict (thus increase temporal sampling) of fMRI signal based

on the E/MEG signal;

• assess spatial evolution of HRF of BOLD fMRI response per each voxel;
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4.4.4 Computational Efficiency

Since the suggested method proceeds in a mass-univariate fashion by estimating

transformation function g per each target voxel, it sounds like an idea destined for a

failure since typical fMRI volume has up to 200,000 brain voxels (actual number of

voxels depends on the spatial resolution of the data). However, in the suggested approach

each input sample for the regression is the set of features of E/MEG data, which are

constant across all voxels. The time-course of fMRI voxel is the only varying variable,

different per each voxel. Therefore, most of the kernel based ML methods, for a specific

set of parameters, need to compute the kernel matrices only once. Initial optimization

point for the iterative ML methods (such as constrained quadratic optimization in SVM)

can be pre-seeded with previously found solution for another voxel. Due to guaranteed

uniqueness of the solution, such initialization of optimization would result in faster

convergence, and must result in nearly exact (up to a specified numerical tolerance)

solution as if it was done with full training and arbitrary initial starting point for

optimization. That allows to perform training of the regression per each voxel in a

reasonable amount of time (e.g., from ten to hundreds of milliseconds), therefore making

whole brain analysis feasible. Due to the mass-univariate nature, estimation can also be

parallelized for the computation in the high performance computing environments.

For the analysis presented here, SVR was chosen due to its simple parametrization

(just the trade-off coefficient C with a reasonable default) and computational efficiency.

Comparison of the results obtained with different regression methods is left for future

research.

4.5 Validation on a Simulated Data

As previously emphasized, any novel methodology has to be validated first on data with

the known characteristics of the noise and of the signal of interest. Due to the absence of a



104

realistic study of the phantom, it is necessary to simulate the signal and noise conditions.

This chapter describes the protocol used to simulate the dataset and presents the results of

the analysis using the suggested methodology.

4.5.1 Simulation

Simulated environment consisted of a single active slice within a three shell (brain, skull,

scalp) spherical model of the head (see Figure 4.4). FMRI resolution was taken to be

isotropic 3 mm. At this resolution the modeled "brain" consisted of 2148 voxels.

Temporal resolutions for the simulated signals were taken to be in line with the ones of

real dataset (kindly provided by Dr.Herrmann [217], analysis of which will be presented

in Section 4.6): 50 Hz for EEG, and 0.2 Hz (equivalent to TR=5 sec) for fMRI. Three

regions of interest (ROIs), colored in red, dark red, and blue in Figure 4.4, were defined

to carry event related (ER) activity, whereas all other locations carried only spontaneous

activity, amount of which depended on the type of the matter (gray or white). For EEG

modeling, each voxel contained a single dipole, orientation of which (red arrows in

Figure 4.4) was set along the normal to the artificial folding (depicted in yellow) of the

cortical tissue. Eight out of 16 EEG sensors (labeled as SO... S7) were located in the

plane of fMRI slice. Other 7 (S8... S 14) were located in the slice half-way to the top of

the head, and the last channel S 15 was located on top of the head. Forward model for

EEG signal was estimated using OpenMEEG ³ (see Figure C.3).

Two types of neural activations were modeled — event-related (ER) and spurious

activity. Event-related activity was added only within predefined ROIs. Onsets of ER

activity were taken from the experimental design in the real dataset of Section 4.6.

Relative amplitudes in the ROIl. .. RO13 (see Figure 4.4) of the activations were in the

range from 0.5 to l.3 depending on the power of auditory stimulation (60 dB vs 80 dB)

³http://www-sop.inria.fr/odyssee/software/OpenMEEG
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Figure 4.4 Simulated Environment Space. 2148 voxels in a single plane. 3 ROIs were
defined to carry ER activity. Arrows (in red) visualize the orientation of dipoles within
gray matter voxels. 8 out of 16 EEG sensors are located on the scalp surface.

and the laterality of the area voxel belonged to in respect to the side of auditory

stimulation (left vs right).

Since various parts of the brain are active all the time, there always exists neural

activity which is not related to the activity caused by the external stimulation, or the

experimental design in general. Nevertheless, such spurious activity effects both EEG

and fMRI responses but does not correlate with the design, thus it cannot be accounted for

in GLM analysis of fMRI or in the ERP analysis of EEG. Hence, this activity contributes

variance to the acquired neural data which cannot be explained by the variables of the

experimental design, and it is different from the instrumental noise which should not

have common cause in different data modalities. For the simulation, a range of different

types of spurious activity were assigned randomly to different locations (see Figure C.1

for examples of the shapes of ERP responses). Amplitude and frequency of occurrence of

spurious activity varied depending on the type of the simulated matter of the brain. Within
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(a) Event-related	 (b) Total (ER and spurious)	 (c) Acquired

Figure 4.5 ERP of the simulated EEG data.

gray matter voxels spurious activity occurred with a frequency of 2 events per second and

relative amplitude of 0.6. Within white matter voxels frequency and amplitude were half

a small.

While modeling EEG responses, all simulated neural activity was jitterred

uniformly within 50 msec of stimuli appearance to simulate the variability of the

response per trial. Additionally, all locations in the "brain" were assigned an additional

jitter (once again random within 50 msec) to model the variability of the response due to

variability of the activation depending on the location. Both types of activations

contributed to the total local field potential (LFP) signal assigned to each voxel. LFP

signals of all of the brain voxels were transformed into EEG signals through the

aforementioned forward EEG model. Jitterring and addition of spontaneous activity

resulted in ERP responses, which looked very similar to the ones acquired empirically

(see Figure 4.5(b)). Additional additive source of variance, instrumental noise, was

modeled by random sampling of normal distribution with mean 0 and variance I, with a

consecutive low-pass Butterworth filtering in temporal domain with stop-band frequency

of 4 Hz (see Figure 4.6).

Simple linear convolutional model (see Section 4.2.1) of fMRI signal was chosen.

Squared values of the activations amplitudes were convolved with a conventional HRF

(Figure C.2). Additive instrumental noise was modeled in the fashion similar to EEG
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Figure 4.6 Spectral characteristics of simulated EEG signals. The upper part presents
sample durations of EEG. The lower part shows corresponding spectrograms.

noise, but with a different stop-band frequency of the filter at 0.2 Hz. Samples of the

modeled signals are presented on the Figure 4.7.

4.5.2 Data Preparation

EEG recordings of brain activity are dominated by the periods of rhythmic activity. It was

shown [218] that characteristic bands of EEG signal, as generated by the neural matter, are

centered at frequencies arranged according to the powers of 0 = 1.61803399 (the "golden

ratio "4) (see Figure 4.8).

Thus, prior the analysis, EEG signal of each channel was transformed into its

power spectra, and was summarized by the total power in each temporal/spectral

bin taking T = 10 sec (see (4.10)) seconds prior the onset of each fMRI volume

acquisition. Temporal width of each bin was taken to be 500 ms and frequencies

followed aforementioned 0 distance in a log space to cover the range up

to 25 Hz available within simulated signal sampled at 50 Hz. That resulted in

4http://en.wikipedia.org/wiki/Golden_ratio



Figure 4.7 Samples of the simulated data from all data modalities at the chosen location,
which carries event-related activity. EEG signal is represented by a sensor S 15 which is
located on the top of the "head". Event-related plots (in purple) depict simulated signal
which is caused solely by ER activity. Total signal (in green) shows total signal caused
by all neural activity, which includes both ER and spontaneoús components. Acquired
signal (in black) shows total signal with additive noise, which should mimic the real data
obtained empirically.
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Figure 4.8 Multiple modal peak frequencies of persistent rhythms generated in isolated
neocortex in vitro. (Adapted from [218, Figure 1].)
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20(time-bins) x 9(spectral-bins) x 16(electrodes) = 2880 features in EEG dataset,

which had the same number of samples as the number of simulated fMRI volumes.

Each feature of EEG, and each voxel in fMRI were independently standardized (z-

scored) prior the analysis. A standard 4-fold cross-validation procedure was run per each

simulated voxel using linear SVR (Support Vector є-insensitive regression) on a noisy

data (EEG and fMRI) to obtain estimates of how well this regression could predict unseen

fMRI data.

4.5.3 Signal Reconstruction

Reconstruction performance of time-series was characterized by correlation coefficient

between target (not observed during training) and predicted data. Goodness of prediction

of noisy unseen data across all voxels of the brain is presented on Figure 4.9. Image on

the left shows only voxels which passed thresholding at z=3.0 relative to by-chance

performance. This should result only in 0.1% false positives in the results (i.e., on

average 2 voxels from the population at hands). To assess distribution of by-chance

performances, thresholding relied on the assumption that the histogram of performances

is a mixture of two distributions: normal distribution centered at 0 which corresponds to

by-chance reconstruction performance, and the other, arbitrarily shaped, distribution of

valid reconstruction performances, which does not have any significant number of

negative values. Such assumption readily allows to assess the standard deviation of the

distribution for by-chance performance simply by symmetrizing negative performance

values around 0 and computing the standard deviation of the obtained distribution.

Since this analysis is done on the simulated data, it is more valuable to judge

the performance of the method by inspecting the reconstruction relative to the noiseless

data. Figure 4.10 shows that the reconstruction performance is significantly higher when
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Figure 4.9 Thresholded correlation coefficients between noisy and predicted fMRI data.
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Figure 4.10 Thresholded correlation coefficients between clean and predicted fMRI data.

compared to the noiseless data, and that the distribution of by-chance performances is

nicely segregated from the distribution of the meaningful reconstructions.

To visually inspect the goodness of reconstruction, time series for four chosen

representative voxels are presented on Figure 4.11. These voxels correspond to a single

voxel per each ROI (randomly chosen within ROIs) and a voxel at midbrain. Activity of

the midbrain voxel should not possibly be reflected in EEG signal, thus neither reliably

reconstructed. Figure 4.1 1 shows that time series within ROI1 and RO12 were relatively

well reconstructed, especially in respect to the clean original signal, although the learner

was exposed during training only to the noisy EEG and fMRI data.
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Figure 4.11 Original and predicted fMRI time series for representative voxels. CC stands
for correlation coefficient (or Pearson's correlation) with a corresponding significance
level p. RMSE/RMS_t is the ratio between root-mean squared error (RMSE) and root-
mean square of the target signal (RMS_t). Perfect reconstruction would correspond to
CC= 1.0 and RMSE/RMS _t=0.0.
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Figure 4.12 Sensitivities of SVR trained to predict fMRI signal of a voxel in ROI 1.
Each plot corresponds to a single channel of EEG and represents sensitivities in time
(horizontal) and frequency (vertical) bins.

4.5.4 Sensitivity Analysis

Demonstrated reconstruction of the original time-series within the ROI voxels allows

to state, that the regression has learned information about neural activation which was

embedded in both EEG and fMRI signals. It allows further to inspect the sensitivities of

the learned regression. Figure 4.12 shows regression's sensitivity for the representative

voxel within RO11, which is neighboring SO and S7 electrodes of EEG. Sensitivities show

that results are highly sensitive to the high frequencies components of the SO.
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Figure 4.13 Aggregate sensitivity of SVR to the high-frequencies of SO EEG electrode
while predicting a voxel in ROI 1. Error-bars correspond to the standard error estimate
across 4 splits of data.

Aggregate sensitivity (sum of powers of the sensitivities) in the range of high-

frequencies for that sensor is presented in Figure 4.13. Maximum sensitivity nicely

matches the time-lag of 5 sec where HRF used for fMRI simulation reaches its maximum

value (see Figure C.2). Absence of the sensitivity to the lower frequencies of EEG signal

could be attributed to the fact that simulated instrumental noise added to EEG signal was

low-pass filtered, hence contributing mostly to the lower frequencies, thus making them

less reliable for the estimation of the BOLD response. Obtained results allow to conclude

that the analysis of the regression sensitivities provides means to assess characteristics of

the underlying HRF of the BOLD response.
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4.6 Application to Real EEG/FMRI Data

The analysis of the simulated data presented in the previous section has validated the

viability of the suggested method. This section presents the results of applying exactly

the same analysis workflow to real data. Data from a single subject for this analysis

was kindly provided by Dr.Herrmann. Details about data acquisition setup, preprocessing

stages, and the results of conventional analysis using GLM and ERP methods could be

found in the original publication [217].

4.6.1 Data Preparation

EEG and fMRI data were acquired simultaneously in a single session, while a subject was

performing a simple auditory task at different levels of stimulation. FMRI data consisted

of 147 volumes of 4 slices each (thickness 8 mm), which were acquired at the in-plane

resolution of 3 mm. Due to dis-synchronization of MRI and EEG acquisition equipments,

nominal fMRI TR of 10.696 sec was adjusted to be 10.7316 sec to match the time clock of

EEG acquisition hardware. Such TR was deduced by the analysis EEG data, which carries

heavy artifacts which occur whenever MRI acquisition is in progress (see Section 4.1.1).

FMRI data was preprocessed using FSL tools: spatially smoothed at FWHM of 6 mm and

temporally high-pass filtered at the cutoff corresponding to 140 sec. Only brain voxels

were selected for the analysis.

EEG data was corrected to remove MR-artifacts (see [217] for the details),

temporally low-pass filtered at cut-off frequency of 20 Hz and downsampled at sampling

frequency of 50 Hz to match temporal resolution of the simulated data. All EEG data was

re-referenced to the mean between TP9 and TP10 electrodes (see Figure C.4 for the

electrodes placement in a typical EEG system). 10 out of 29 EEG sensors (Cz, CPl,

CP2, Pz, T7, T8, TP9, TP10, P7, P8) were selected to reduce the input dimensionality of
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the data. These sensors were selected as representative for providing clean ERP response

to the stimuli.

4.6.2 Signal Reconstruction

Analysis workflow was the same as for the simulated data in Section 4.5.3 with a single

difference. In this dataset TR was relatively high (10 sec), which means that actual

acquisition of the slices was spread through that duration. Not to rely on the sequence

of slice acquisition, T = 20 sec was taken to integrate amount of information sufficient for

accounting for fMRI data in all four slices.

Reconstruction performance of the data was statistically significant across a

variety of brain regions (Figure 4.14). Time series of four chosen voxels from different

parts of the brain are shown in Figure 4.16. Results are surprising in the sense that the

reconstruction achieved relatively high performance not only in the exterior areas, which

are located in vicinity of EEG electrodes, but also in medial areas which, presumably,

should be weakly represented in EEG signals registered on the scalp. This effect can be

attributed to the present strong activation in those areas while performing a given task.

Indeed, all the areas detected with GLM analysis (Figure 4.15) are also present on the

thresholded reconstruction map (Figure 4.14). Additionally, left auditory cortex which

was not significantly active according to the GLM results, was reconstructed at a

comparable level with the right auditory cortex. A possible explanation could be a

modulated activation in the left auditory cortex, so that GLM analysis which aims at

detecting consistent activation across the trials, is not able to account for such variance,

hence it is incapable to detect the activation.
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Figure 4.14 Thresholded correlation coefficients between real and predicted fMRI data
in a single subject from [217].

Figure 4.15 GLM analysis: significant (thresholded at IzI < 2.0) activation (in red) and
deactivation (in blue) in response to auditory stimulation. Slices are plotted in radiological
convention, hence left side of the brain is presented to the right from inter-hemispheric
point.
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Figure 4.16 Original and predicted fMRI time series for representative voxels.
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Figure 4.17 Sensitivities of SVR trained to predict fMRI signal of a voxel with right
auditory cortex. Each plot corresponds to a single channel of EEG and represents
sensitivities in time (horizontal) and frequency (vertical) bins.

4.6.3 Sensitivity Analysis

Figure 4.17 shows the sensitivity estimates of the SVR for a single voxel. Clearly there

is higher amount of variance in sensitivities compared the sensitivities obtained on the

simulated data (Figure 4.12). Nevertheless, sensitivities to the signal components at lower

frequencies seems to be consistent with the assumption of the delayed BOLD response.

Aggregate sensitivity for low frequencies of the sensor Cz is presented in Figure 4.18.

Since for this analysis, EEG signal of duration covering acquisition of two fMRI volumes

(20 sec) was used as input to the regression, it seems to be logical that fMRI signal at a

given time point could be sensitive to the activity which is reflected in the previous or in

the next volume (depending on the slice position).

Many studies (see Sections 4.3.l and 4.3.2) aim to discover the brain regions which

are generators of specific rhythms of cortical activity. Analysis of the SVR sensitivities

to different spectral bands could allow to detect the areas of the brain where a particular

frequency band contributes the most variance to the reconstruction of fMRI BOLD signal.
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Figure 4.18 Aggregate sensitivity of SVR to the low-frequencies of Cz EEG electrode
while predicting a voxel in the right auditory cortex.
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Figure 4.19 Aggregate sensitivity to the frequencies in the α-band range of frequencies.

Figure 4.19 shows thresholded (z > 2.0 under assumption of normally distributed values)

aggregate sensitivities to the EEG signal spectral components in the a -band. Highest

sensitivities are found in the occipital areas. Such finding agrees with previous studies

[92, 187]. Unfortunately, limited number of the slices in the available fMRI data does

not cover the full brain, therefore makes it impossible to explore all the brain regions

in regards to the localization of generators of different frequency bands. Thresholded

sensitivities for other frequency bands from this analysis can be found in the Appendix C

(Figures C.5, C.6, and C.7).

Another possible dimension for the sensitivities aggregation is the sensitivity

plots of the voxels per each EEG sensor. Figure 4.20 shows thresholded aggregated

sensitivity of different voxels to the signal of T8 EEG sensor, which was positioned in

the neighborhood of the temporal cortex (therefore index "T" in the name). Results show

that information from T8 sensor primarily targets description of the areas such as
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auditory cortex which are located in sensor's vicinity. Nevertheless, some other distant

areas are also sensitive to the data in T8. For instance, parietal regions, which according

to GLM results (see Figure 4.15) are not experiment-related, nevertheless, carry BOLD

signal which is well described by EEG (see Figure 4.14). Whether those regions are just

weakly reflected in T8 channel or actually activate coherently with auditory cortex

remains an open question. Since it is unlikely for T8 electrode to pick up significant

amount of variance from distant areas of the contra-lateral hemisphere, one could also

speculate that supra-thresholded voxels contra-lateral to the cite of T8 are the entry

points to the cortical structure from the corpus collosum5 which facilitates the

communication between two hemispheres. Hence such simple analysis of the

constructed mapper sensitivities can possibly allow to deduce functional connectivity

between distant areas. Aggregate sensitivities of other electrodes also seems to be in

accordance with their spacial locations. For example, significant sensitivities of Pz, CP1,

and CP2 electrodes cover parietal areas (Figures C.8, C.9, C.10 in Appendix C).

4.7 Conclusion

This chapter presented a novel approach toward the analysis of multiple data modalities.

Suggested approach did not impose any strict forward model of fMRI response, which

makes is more appropriate over existing methods. Results of the analysis of simulated and

read data showed possibility to create a reliable mapping of EEG data into the space of

fMRI signals. Such mapping allowed to identify the regions of the brain which were most

active during the experiment but were not detected by the conventional analysis of fMRI

data. Furthermore, analysis of the constructed mapping allowed to identify the regions

related to the specific rhythms of EEG signal as well as to discover possible functional

connections from the areas in vicinity of EEG sensors to some distant areas.

5http://en.wikipedia.org/wiki/Corpus_collosum
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Figure 4.20 Aggregate sensitivity to the signal of T8 EEG channel (see Figure C.4 for
the typical location of the sensor in respect to the brain).



CHAPTER 5

PYMVPA: MACHINE LEARNING FRAMEWORK FOR NEUROIMAGING

Recently founded Machine learning open source software ¹ project shows an impressive,

nonetheless still incomplete, sample of available software packages which implement

ML methods. At the very least starting with these already available high-quality software

libraries has the potential to accelerate scientific progress in the emerging field of

classifier-based analysis of brain-imaging data. Although these libraries are freely

available, their usage typically assumes a high-level of programming expertise and

statistical or mathematical knowledge.

Therefore, it would be of great value to have a unifying framework that helps

to bridge well-established neuroimaging tools and machine learning software packages

and provides ease of programmability, cross library integration and transparent fMRI data

handling. Such framework should at least have the five following features:

User-centered programmability with an intuitive user interface Since most

neuroimaging researchers are not also computer scientists, it should require only a

minimal amount of programming ability. Workflows for typical analyses should be

supported by a high-level interface that is focused on the experimental design and

language of the neuroimaging scientist. That being said, of course, all interfaces

should allow access to detailed information about the internal processing for

comprehensive extensibility. Finally, reasonable documentation is a primary

requirement.

Extensibility It should be easy to add support for additional external machine learning

toolboxes to prevent duplicating the effort that is necessary when a single algorithm

has to be implemented multiple times.

¹ http://www.mloss.org
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Transparent reading and writing of datasets Because the toolbox is focused on

neuroimaging data, the default access to data, should require little or no

specification for the user. The toolbox framework should also take care of proper

conversions into any target data format required for the external machine learning

algorithms.

Portability It should not impose restrictions about hardware platforms and should be able

to run on all major operating systems.

Open source software It should be open source software, as it allows one to access

and to investigate every detail of an implementation, which improves the

reproducibility of experimental results, leading to more efficient debugging and

gives rise to accelerated scientific progress [16].

PyMVPA, a Python-based toolbox for multivariate pattern analysis of

neuroimaging data, was designed to meet all the above criteria for a classifier-based

analysis framework. Following sections provide only a rough overview about the most

important aspects of the toolbox. However, a comprehensive user manual is available

[29] to provide more details and typical code examples.

5.1 Design

One of the main goals of PyMVPA is to reduce the gap between the neuroscience and ML

communities. To reach this goal, PyMVPA was designed to provide a convenient, easy to

use, community developed (free and open source ² ), and extensible framework to facilitate

use of ML techniques on neural information. PyMVPA combines Python data processing,

visualization, and basic I/O facilities together with I/O code and examples tailored for

²PyMVPA is distributed under an MIT license, which complies with both Eree Software and Open
Source definitions. The software is freely available in source and in binary form from the project
website http://www.pymvpa.org
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neuroscience. Table D.2 lists a number of Python modules which might be of interest in

the neuroscientific context. For an easy start into PyMVPA an fMRI example dataset [a

single subject from the study by 25] is available for download from the PyMVPA website.

As Table D.2 highlighted, PyMVPA is not the only ML framework available for

scripting and interactive data exploration in Python. In contrast to some of the primarily

GUI-based ML toolboxes (e.g., Orange, Elephant), PyMVPA is designed to provide not

just a toolbox, but a framework for concise, yet intuitive, scripting of possibly complex

analysis pipelines. To achieve this goal, PyMVPA provides a number of building blocks

that can be combined in a very flexible way.

Figure 2.l in Section 2.l showed a schematic representation of the framework

design, its building blocks and how they can be combined into complete analysis pipelines.

PyMVPA consists of several components (gray boxes) such as ML algorithms or dataset

storage facilities. Each component contains one or more modules (white boxes) providing

a certain functionality, e.g., classifiers, but also feature-wise measures [e.g., I-RELIEF;

34], and feature selection methods [recursive feature elimination, RFE; 35, 36]. Typically,

all implementations within a module are accessible through a uniform interface and can

therefore be used interchangeably, i.e., any algorithm using a classifier can be used with

any available classifier implementation, such as support vector machine [SVM; 17], or

sparse multinomial logistic regression [SMLR; 37].

Some ML modules provide generic meta algorithms that can be combined with

the basic implementations of ML algorithms. For example, a Multi-Class meta classifier

provides support for multi-class problems, even if an underlying classifier is only capable

to deal with binary problems.

Additionally, PyMVPA makes use of a number of external software packages

(black boxes in Figure 2.l), including other Python modules and low-level libraries and

computing environments (e.g., R³ ). In the case of SVM, classifiers are interfaced to the

³ http://www.r-project.org
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implementations in Shogun or LIBSVM. PyMVPA only provides a convenience wrapper

to expose them through a uniform interface. Using externally developed software instead

of reimplementing algorithms has the advantage of a larger developer and user base and

makes it more likely to find and fix bugs in a software package to ensure a high level of

quality.

However, using external software also carries the risk of breaking functionality

when any of the external dependencies break. To address this problem PyMVPA utilizes

an automatic testing framework performing various types of tests ranging from unittests

(currently covering 84% of all lines of code) to sample code snippet tests in the manual and

the source code documentation itself to more evolved "real-life" examples. This facility

allows one to test the framework within a variety of specific settings, such as the unique

combination of program and library versions found on a particular user machine.

At the same time, the testing framework also significantly eases the inclusion of

code by a novel contributor by catching errors that would potentially break the project's

functionality. Being open-source does not always mean easy to contribute due to various

factors such as a complicated application programming interface (API) coupled with

undocumented source code and unpredictable outcomes from any code modifications

(bug fixes, optimizations, improvements). PyMVPA welcomes contributions, and thus,

addresses all the previously mentioned points:

Accessibility of source code and documentation All the source code (including

website and examples) together with the full development history is publicly

available via a distributed version control system, which makes it very easy to

track the development of the project, as well as to develop independently and to

submit back into the project.
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Inplace code documentation Large parts of the source code are well documented using

reStructuredText4 , a lightweight markup language that is highly readable in source

format as well as being suitable for automatic conversion into HTML or PDF

reference documentation. In fact, Ohloh.net5 source code analysis judges

PyMVPA as having "extremely well-commented source code".

Developer guidelines A brief summary defines a set of coding conventions to facilitate

uniform code and documentation look and feel. Automatic checking of

compliance to a subset of the coding standards is provided through a custom

PyLint6 configuration, allowing early stage minor bug catching.

Moreover, PyMVPA does not raise barriers by being limited to specific platforms.

It could fully or partially be used on any platform supported by Python (depending on the

availability of external dependencies). However, to improve the accessibility, convenient

ways are provided for the installation across a variety of platforms: binary installers for

Windows, and MacOS X, as well as binary packages for Debian GNU/Linux (included

in the official repository), Ubuntu, and a large number of RPM-based. GNU/Linux

distributions, such as OpenSUSE, RedHat, CentOS, Mandriva, and Fedora. Additionally,

the available documentation provides detailed instructions on how to build the packages

from source on many platforms.

By providing simple, yet flexible interfaces, PyMVPA is specifically designed to

connect to and use externally developed software. Any analysis built from those basic

elements can be cross-validated by running them on multiple dataset splits that can be

generated with a variety of data resampling procedures [e.g., bootstrapping, 38]. Detailed

information about analysis results can be queried from any building block and can be

visualized with various plotting functions that are part of PyMVPA, or can be mapped

4http://en.wikipedia.org/wiki/ReStructuredText
5 http://www.ohloh.net/projects/pymvpdfactoids
6http://www.logilab.org/projects/pylint
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back into the original data space and format to be further processed by specialized tools

(i.e., to create an overlay volume analogous to a statistical parametric mapping). The solid

arrows in Figure 2.l represent a typical connection pattern between the modules. Dashed

arrows refer to additional compatible interfaces which, although potentially useful, are

not necessarily used in a standard processing chain.

A final important feature of PyMVPA is that it allows, by design, researchers

to compress complex analyses into a small amount of code. This makes it possible

to complement publications with the source code actually used to perform the analysis

as supplementary material. Making this critical piece of information publicly available

allows for in-depth reviews of the applied methods on a level well beyond what is possible

with verbal descriptions. To demonstrate this feature, this paper is accompanied by the

full source code to perform all analyses shown in the following sections.

5.2 Dataset Handling

Input, output, and conversion of datasets are a key task for PyMVPA. A dataset

representation has to be simple enough to allow for maximum interoperability with other

toolkits, but simultaneously also has to be comprehensive in order to make available as

much information as possible to e.g., domain-specific analysis algorithms.

One of the key features of PyMVPA is its ability to read fMRI datasets and

transform them into a generic format that makes it easy for other data processing

toolboxes to inherit them. PyMVPA comes with a specialized dataset type for handling

import from and export to images in the NIfTI or inferior ANALYZE formats. It

automatically configures an appropriate mapper by reading all necessary information

from the NIfTI file header. Upon export, all header information is preserved (including
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embedded transformation matrices). This makes it very easy to do further processing in

any other NIfTI-aware software package, like AFNI , BrainVoyager 8 , FSL9 or SPM ¹° .

Since many algorithms are applied only to a subset of voxels, PyMVPA provides

convenient methods to select voxels based on ROI masks. Successively applied feature

selections will be taken into account by the mapping algorithm of NIfTI datasets and

reverse mappings from the new subspace of features into the original dataspace, e.g., for

visualization, is automatically performed upon request.

However, the mapper construct in PyMVPA, which is applied to each data sample,

is more flexible than a simple 3-D data volume to l-D feature vector transformation. The

original dataspace is not limited to three dimensions. For example, when analyzing an

experiment using an event-related paradigm it might be difficult to select a single volume

that is representative for some event. A possible solution is to select all volumes covering

an event in time, which results in a four-dimensional dataspace. A mapper can also

be easily used for EEG/MEG data, e.g., mapping spectral decompositions of the time

series from multiple electrodes into a single feature vector. PyMVPA provides convenient

methods for these use-cases and also supports reverse mapping of results into the original

dataspace, which can be of any dimensionality.

5.3 Machine Learning Algorithms

PyMVPA itself does not at present implement all possible classifiers, even if that were

desirable. Currently included are implementations of a k-nearest-neighbor classifier as

well as ridge, penalized logistic, Bayesian linear, Gaussian process (GPR), and sparse

multinomial logistic regressions [SMLR; 37]. However, instead of distributing yet another

implementation of popular classification algorithms the toolbox defines a generic classifier

7http://afni.nimh.nih.gov/afni
8http://www.brainvoyager.com
9http://www.fmrib.ox.ac.uk/fsl

¹°http://www.fil.ion.ucl.ac.uk/spm
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interface that makes it possible to easily create software wrappers for existing machine

learning libraries and enable their classifiers to be used within the PyMVPA framework.

At the time of this writing, wrappers for support vector machine algorithms [SVM; 17]

of the widely used LIBSVM package [219] and Shogun machine learning toolbox [220]

are included. Additional classifiers implemented in the statistical programming language

R are provided within PyMVPA [e.g., least angle regression, LARS, 221]. The software

wrappers expose as much functionality of the underlying implementation as necessary to

allow for a seamless integration of the classification algorithm into PyMVPA. Wrapped

classifiers can be treated and behave exactly as any of the native implementations.

Some classifiers have specific requirements about the datasets they can be trained

on. For example, support vector machines [17] do not provide native support for

multi-class problems, i.e., discrimination of more than two classes. To deal with this fact,

PyMVPA provides a framework to create meta-classifiers (see Figure 2.1). These are

classifiers that utilize several basic classifiers, both those implemented in PyMVPA and

those from external resources, that are each trained separately and their respective

predictions are used to form a joint meta-prediction, sometimes referred to as boosting

[see 222]. Besides generic multi-class support, PyMVPA provides a number of

additional meta-classifiers e.g., a classifier that automatically applies a customizable

feature selection procedure prior to training and prediction. Another example is a

meta-classifier that applies an arbitrary mapping algorithm to the data to implement

dimensionality transformation and/or reduction step, such as, principal component

analysis (PCA), independent component analysis (ICA), both using implementations

from MDP ¹¹ or wavelet decomposition via pywavelets¹²

Despite its high-level interface PyMVPA offers detailed information to the user.

To achieve a useful level of transparency, all classifiers can easily store any amount of

¹¹ http://mdp-toolkit.sourceforge.net
¹²http://www.pybytes.com/pywavelets/
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additional information. For example, a logistic regression might optionally store the

output values of the regression that are used to make a prediction. PyMVPA provides

a framework to store and pass this information to the user if it is requested. The type

and size of such information is in no way limited. However, if the use of additional

computational or storage resources is not required, then it can be switched off at any time,

to allow for an optimal tradeoff between transparency and performance.

This section presents only a brief overview of PyMVPA organization and coding

approaches. Significantly broader and in-depth coverage of PyMVPA is available from

the "PyMVPA User Manual" [29]. The main goal of the section is to demonstrate the

flexibility of PyMVPA for the construction of various analysis pipelines; and also to

highlight the conciseness of the actual code needed to perform a desired statistical learning

analysis. That theoretically should allow shipment of complete analysis code with any

publication as supplemental material (e.g., see [23]).

5.4 Example Analyses

This section will demonstrate the functionality of PyMVPA by running some selected

analyses on fMRI data from a single participant (participant l) from a dataset published

by Haxby et al. [25]. This dataset was chosen for demonstration examples because, since

its first publication, it has been repeatedly reanalyzed [13, 26, 28], was analyzed on the

course of this dissertation work (see Section 3.4.2 for the description of the experiment

and data preprocessing), and is readily available from PyMVPA's website.

For the sake of simplicity, analysis was focused on the binary CATS vs.

SCISSORS classification problem. These two categories were chosen for the

demonstration of PyMVPA facilities since their classification in general poses harder

problem, than of more "specialized" ones, such as FACE and HOUSE (analysis on which

was presented in the Section 3.4.3). All volumes recorded during either CATS or
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SCISSORS blocks were extracted and voxel-wise Z-scored with respect to the mean and

standard deviation of volumes recorded during rest periods. Z-scoring was performed

individually for each run to prevent any kind of information transfer across runs.

Every analysis is accompanied by source code snippets that show their

implementation using the PyMVPA toolbox. For demonstration purposes they are

limited to the most important steps.

5.4.1 Loading a Dataset

Dataset representation in PyMVPA builds on NumPy arrays. Anything that can be

converted into such an array can also be used as a dataset source for PyMVPA. Possible

formats range from various plain text formats to binary files. However, the most

important input format from the functional imaging perspective is NIfTI ¹³ , which

PyMVPA supports with a specialized module.

The following short source code snippet demonstrates how a dataset can be loaded

from a NIfTI image. PyMVPA supports reading the sample attributes from a simple two-

column text file that contains a line with a label and a chunk id for each volume in the

NIfTI image (line 0). To load the data samples from a NIfTI file it is sufficient to create a

Ni ft iDataset object with the filename as an argument (line 1). The previously-loaded

sample attributes are passed to their respective arguments as well (lines 2-3). Optionally, a

mask image can be specified (line 4) to easily select a subset of voxels from each volume

based on the non-zero elements of the mask volume. This would typically be a mask

image indicating brain and non-brain voxels.

¹³ To a certain degree PyMVPA also supports importing ANALYZE files.
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Once the dataset is loaded, successive analysis steps, such as feature selection and

classification, only involve passing the dataset object to different processing objects.

All following examples assume that a dataset was already loaded.

5.4.2 Simple Full-brain Analysis

The first analysis example shows the few steps necessary to run a simple cross-validated

classification analysis. After a dataset is loaded, it is sufficient to decide which classifier

and type of splitting shall be used for the cross-validation procedure. Everything

else is automatically handled by CrossValidatedTransferError. The

following code snippet performs the desired classification analysis via leave-one-out

cross-validation. Error calculation during cross-validation is conveniently performed by

Trans ferError, which is configured to use a linear C-SVM classifier ¹4 on line 6.

The leave-one-out cross-validation type is specified on line 7.

Simply passing the dataset to cv (line 8) yields the mean error. The computed

error defaults to the fraction of incorrect classifications, but an alternative error function

can be passed as an argument to the Trans ferError call. If desired, more detailed

information is available, such as a confusion matrix based on all the classifier predictions

during cross-validation.

¹4LIBSVM C-SVC [219] with trade-off parameter C being a reciprocal of the squared mean of
Frobenius norms of the data samples.
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5.4.3 Multivariate Searchlight

One method to localize functional information in the brain is to perform a classification

analysis in a certain ROI [e.g., 223]. The rationale for size, shape and location of a ROI

can be e.g., anatomical landmarks or functional properties determined by a GLM-contrast.

Alternatively, Kriegeskorte et al. [20] proposed an algorithm that scans the whole

brain by running multiple ROI analyses. The so-called multivariate searchlight runs a

classifier-based analysis on spherical ROIs of a given radius centered around any voxel

covering brain matter. Running a searchlight analysis computing e.g., generalization

performances yields a map showing where in the brain a relevant signal can be identified

while still harnessing the power of multivariate techniques [for application examples see

19, 224].

A searchlight performs well if the target signal is available within a relatively

small area. By increasing size of the searchlight the information localization becomes

less specific because, due to the anatomical structure of the brain, each spherical ROI

will contain a growing mixture of gray-matter, white-matter, and non-brain voxels.

Additionally, a searchlight operating on volumetric data will integrate information across

brain-areas that are not directly connected to each other i.e., located on opposite borders

of a sulcus. This problem can be addressed by running a searchlight on data that has been

transformed into a surface representation. PyMVPA supports analyses with spatial

searchlights (not extending in time), operating on both volumetric and surface data

(given an appropriate mapping algorithm and using circular patches instead of spheres).

The searchlight implementation can compute an arbitrary measure within each sphere.

In the following example, the measure to be computed by the searchlight is

configured first. Similar to the previous example it is a cross-validated transfer or

generalization error, but this time it will be computed on an odd-even split of the dataset

and with a linear C-SVM classifier (lines 9-11). On. line 12 the searchlight is setup to

compute this measure in all possible 5 mm-radius spheres when called with a dataset
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Figure 5.1 Searchlight analysis results for CATS vs. SCISSORS classification for sphere
radii of 1, 5, 10 and 20 mm (corresponding to approximately 1, 15, 80 and 675 voxels per
sphere respectively). The upper part shows generalization error maps for each radius. All
error maps are thresholded arbitrarily at 0.35 (chance level: 0.5) and are not smoothed to
reflect the true functional resolution. The center of the best performing sphere (i.e., lowest
generalization error) in right temporal fusiform cortex or right lateral occipital cortex is
marked by the cross-hair on each coronal slice. The dashed circle around the center shows
the size of the respective sphere (for radius 1 mm the sphere only contains a single voxel).
MNI-space coordinates (x , y, z) in mm for the four sphere centers are: 1 mm (RI): (48,
-61, -6), 5 mm (R5): (48, -69, -4), 10 mm (R 0): (28, -59, -12) and 20 mm (R20): (40,
-54, -8). The lower part shows the generalization errors for spheres centered around these
four coordinates, plus the location of the univariately best performing voxel (L1: -35, -43,
-23; left occipito-temporal fusiform cortex) for all radii. The error bars show the standard
error of the mean across cross-validation folds.

(line 13) The final call on line 14 transforms the computed error map back into the

original data space and stores it as a compressed NIfTI file. Such a file can then be

viewed and further processed with any NIfTI-aware toolkit.

9 CV = CrossValidatedTransferError (
o 	 transfer_e rror=TransferError MinearCSVMC 	 ,

11 	 splitte r =OddEvenSplitter )
12 Si = Searchlight ( cv , radius =5)
13 sl_map = .s1(dataset)
14 dataset. map2Nifti ( si_map ). save( ' searchlight_5mm . nii . gz ')
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Figure 5.1 shows the searchlight error maps for the CATS vs. SCISSORS

classification on single volumes from the example dataset for radii of 1, 5, 10 and 20 mm

respectively. Utilizing only a single voxel in each sphere (l mm radius), yields a

generalization error as low as 17% in the best performing sphere, which is located in the

left occipito-temporal fusiform cortex. With increases in the radius there is a tendency

for further error reduction, indicating that the classifier performance benefits from

integrating signal from multiple voxels. However, better classification accuracy is

achieved at the cost of reduced spatial precision of signal localization. The distance

between the centers of the best-performing spheres for 5 and 20 mm searchlights totals

almost 18 mm. The lowest overall error in the right occipito-temporal cortex with 8% is

achieved by a searchlight with a radius of 10 mm. The best performing sphere with

20 mm radius (12% generalization error) is centered between right inferior temporal and

fusiform gyrus. It comprises approximately 700 voxels and extends from right lingual

gyrus to the right inferior temporal gyrus, also including parts of the cerebellum and left

lateral ventricle. It, therefore, includes a significant proportion of voxels sampling

cerebrospinal fluid or white matter, indicating that a sphere of this size is not optimal

given the structural organization of the brain surface. Kriegeskorte et al. [20] suggest that

a sphere radius of 4 mm yields near-optimal performance. However, while this

assumption might be valid for representations of object properties or low-level visual

features, a searchlight of this size could miss signals related to high-level cognitive

processes that involve several spatially distinct functional subsystems of the brain.

5.4.4 Feature Selection

Feature selection is a common preprocessing step that is also routinely performed as part

of a conventional fMRI data analysis, i.e., the initial removal of non-brain voxels. This

basic functionality is provided by NiftiDataset as it was shown on line 4 to provide
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an initial operable feature set. Likewise, a searchlight analysis also involves multiple

feature selection steps (i.e., ROI analyses), based on the spatial configuration of features.

Nevertheless, PyMVPA provides additional means to perform feature selection, which are

not specific to the fMRI domain, in a transparent and unified way.

Machine learning algorithms often benefit from the removal of noisy and

irrelevant features [see 35, Section V.l. "The features selected matter more than the

classifier used"]. Retaining only features relevant for classification improves learning

and generalization of the classifier by reducing the possibility of overfitting the data.

Therefore, providing a simple interface to feature selection is critical to gain superior

generalization performance and get better insights about the relevance of a subset of

features with respect to a given contrast. Table 5.l shows the prediction error of a variety

of classifiers on the full example dataset with and without any prior feature selection. For

classifiers with feature selection the classifier algorithm is followed by the sensitivity

measure the feature selection was based on (e.g., LinSVM on 50(SVM) reads: linear

SVM classifier using 50 features selected by their magnitude of weight from a trained

linear SVM). Most of the classifiers perform near chance performance without prior

feature selection I5 , and even simple feature selection (e.g., some percentage of the

population with highest scores on some measure) boosts generalization performance

significantly of all classifiers, including the non-linear algorithms radial basis function

SVM and, kNN.

PyMVPA provides an easy way to perform feature selections. The

FeatureSelectionClassifier is a meta-classifier that enhances any classifier

with an arbitrary initial feature selection step. This approach is very flexible as the

resulting classifier can be used as any other classifier, e.g., for unbiased generalization

¹5Chance performance without feature selection was not the norm for all category pairs in the
dataset. Eor example, the SVM classifier generalized well for other pairs of categories (e.g., FACE
vs HOUSE) without prior feature selection. Consequently, SCISSORS vs CATS was chosen to
provide a more difficult analysis case.



140

testing using CrossValidatedTrans ferError. For instance, the following

example shows a classifier that operates only on 5% of the voxels that have the highest

ANOVA score across the data categories in a particular dataset. It is noteworthy that the

source code looks almost identical to the example given on lines 5-8, with just the feature

selection method added to it. No changes are necessary for the actual cross-validation

procedure.

It is important to emphasize that feature selection (lines 17-19) in this case is not

performed first on the full dataset, which could bias generalization estimation. Instead,

feature selection is being performed as a part of classifier training, thus, only the actual

training dataset is visible to the feature selection. Due to the unified interface, it is possible

to create a more sophisticated example, where feature selection is performed via recursive
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On line 25 the main classifier is defined, which is reused in many aspects of the

processing: line 28 specifies that classifier to be used to make the final prediction operating

only on the selected features, line 31 instructs the sensitivity analyzer to use it to provide

sensitivity estimates of the features at each step of recursive feature elimination, and on

line 33 we specify that the error used to select the best feature set is a generalization error

of that same classifier. Utilization of the same classifier for both the sensitivity analysis

and for the transfer error computation prevents us from re-training a classifier twice for

the same dataset.

The fact that the RFE approach is classifier-driven requires us to provide the

classifier with two datasets: one to train a classifier and assess its features sensitivities

and the other one to determine stopping point of feature elimination based on the transfer

error. Therefore, the FeatureSelectionClassifier (line 27) is wrapped within

a SplitClassifier (line 26), which in turn uses NFoldSplitter (line 39) to

generate a set of data splits on which to train and test each independent classifier. Within

each data split, the classifier selects its features independently using RFE by computing a

generalization error estimate (line 33) on the internal validation dataset generated by the

splitter. Finally, the SplitClassifier uses a customizable voting strategy (by default

MaximalVote) to derive the joint classification decision.

As before, the resultant classifier can now simply be used within

CrossValidatedTransferError to obtain an unbiased generalization estimate of

the trained classifier. The step of validation onto independent validation dataset is often

overlooked by the researchers performing RFE [35]. That leads to biased generalization

estimates, since otherwise internal feature selection of the classifier is driven by the full

dataset.

Fortunately, some machine learning algorithms provide internal theoretical

upper bound on the generalization performance, thus they could be used as a

trans fer_error criterion (line 33) with RFE, which eliminates the necessity of
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additional splitting of the dataset. Some other classifiers perform feature selection

internally (e.g., SMLR, also see figure 5.2), which removes the burden of external

explicit feature selection and additional data splitting.

5.5 Conclusion

Numerous studies have illustrated the power of classifier-based analyses, harnessed with

statistical learning theory, to extract information about the functional properties of the

brain previously thought to be below the signal-to-noise ratio [for reviews see 21, 225].

Although the studies cover a broad range of topics from human memory to visual

perception, it is important to note that they were performed by relatively few research

groups. This may be due to the fact that very few software packages that specifically

address classifier-based analyses of fMRI data are available to a broad audience. Such

packages require a significant amount of software development, starting from basic

problems, such as how to import and process fMRI datasets, to more complex problems,

such as the implementation of classifier algorithms. This results in an initial overhead

requiring significant resources before actual neuroimaging datasets can be analyzed.

The PyMVPA toolbox aims to be a solid base for conducting classifier-based

analyses. In contrast to the 3dsvm plugin for AFNI [31], it follows a more general

approach by providing a collection of common algorithms and processing steps that can be

combined with great flexibility. Consequently, the initial overhead to start an analysis once

the fMRI dataset is acquired is significantly reduced because the toolbox also provides all

necessary import, export and preprocessing functionality.

PyMVPA is specifically tuned towards the analysis of neural data, but the generic

design of the framework allows to work in other domains equally well. The flexible

dataset handling allows one to easily extend it to other data formats, while at the same

time extending the mapping algorithms to represent other data spaces and metrics.
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However, the key feature of PyMVPA is that it provides a uniform interface to

bridge from standard neuroimaging tools to machine learning software packages. This

interface makes it easy to extend the toolbox to work with a broad range of existing

software packages, which should significantly reduce the need to recode available

algorithms for the context of brain-imaging research. Moreover, all external and internal

classifiers can be freely combined with the classifier-independent algorithms for e.g.,

feature selection, making this toolbox an ideal environment to compare different

classification algorithms.

The introduction of this chapter has listed portability as one of the goals for an

optimal analysis framework. PyMVPA code is tested to be portable across multiple

platforms, and its limiting set of essential external dependencies in turn has proven to

be portable. In fact, PyMVPA only depends on a moderately recent version of Python and

the NumPy package. Although PyMVPA can make use of other external software, the

functionality provided by them is completely optional.

Although PyMVPA aims to be especially user-friendly it does not provide a

graphical user interface (GUI). The reason not to include such an interface is that the

toolbox explicitly aims to encourage novel combinations of algorithms and the

development of new analysis strategies that are not easily foreseeable by a GUI

designer'. The toolbox is nevertheless user-friendly, enabling researchers to conduct

highly complex analyses with just a few lines of easily readable code. It achieves this by

taking away the burden of dealing with low-level libraries and providing a great variety

of algorithms in a concise framework. The required skills of a potential PyMVPA user

are not much different from neuroscientists using the basic building blocks needed for

one of the established fMRI analysis toolkits (e.g., shell scripting for AFNI and FSL

command line tools, or Matlab-scripting of SPM functions).

¹6Nothing prevents a software developer from adding a GUI to the toolbox using one of the many
GUI toolkits that interface with Python code, such as PyQT (http://www.riverbankcomputing.co .
uk/software/pyqt) or wxPython (http://www.wxpython.org/).
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Recent releases of PyMVPA added support for visualization of analysis results,

such as, classifier confusions, distance matrices, topography plots, and time-locked

signals plots. However, while PyMVPA does not provide extensive plotting support it

nevertheless makes it easy to use existing tools for MRI-specific data visualization.

Similar to the data import PyMVPA's mappers make it also trivial to export data into the

original data space and format, e.g., using a reverse-mapped sensitivity volume as a

statistical overlay, in the same fashion to SPM in conventional analysis. This way

PyMVPA can fully benefit from the functionality provided by the numerous available

MRI toolkits.

The features of PyMVPA outlined here cover only a fraction of the currently

implemented functionality. More information is, however, available on the PyMVPA

project website, which contains user manual [29] with an introduction into the main

concepts and the design of the framework, a wide range of examples, a comprehensive

module reference as a user-oriented summary of the available functionality, and finally a

more technical reference for extending the framework.

The emerging field of classifier-based analysis of fMRI data is beginning to

complement the established analysis techniques and has great potential for novel insights

into the functional architecture of the brain. However, there are a lot of open questions

how the wealth of algorithms developed by those motivated by statistical learning theory

can be optimally applied to brain-imaging data (e.g., fMRI-aware feature selection

algorithms or statistical inference of classifier performances). The lack of a gold standard

for classifier-based analysis demands software that allows one to apply a broad range of

available techniques and test an even broader range of hypotheses. PyMVPA tries to

reach this goal by providing a unifying framework that allows to easily combine a large

number of basic building blocks in a flexible manner to help neuroscientists to do rapid

initial data exploration and, consecutive custom data analysis. PyMVPA even facilitates

the integration of additional algorithms in its framework that are not yet discovered by
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Figure 5.2 Feature selection stability maps for the CATS vs. SCISSORS classification.
The color maps show the fraction of cross-validation folds in which each particular voxel
is selected by various feature selection methods used by the classifiers listed in Table 5.l:
5% highest ANOVA F-scores (A), 5% highest weights from trained SVM (B), RFE using
SVM weights as selection criterion (C), internal feature selection performed by the SMLR
classifier with penalty term 0.1 (D), 1 (E) and 10 (F). All methods reliably identify a
cluster of voxels in the left fusiform cortex, centered around MNI: -34, -43, -20 mm. All
stability maps are thresholded arbitrarily at 0.5 (6 out of 12 cross-validation folds).
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neuro-imaging researchers. Despite being able to perform complex analyses, PyMVPA

provides a straightforward programming interface based on an intuitive scripting

language. The availability of more user-friendly tools, like PyMVPA, will hopefully

attract more researchers to conduct classifier-based analyses and, thus, explore the full

potential of statistical learning theory based techniques for brain-imaging research.



Table 5.1 Performance of Various Classifiers with and without Feature Selection.

Classifier

Training Transfer

Features
utilized

Error Time
(sec)

Error
(+stderr)

Time
(sec)

Without feature selection

LinSVM(C=def) 29125 0.00 22.7 0.40+0.07 2.0
LinSVM(C=10*def) 29125 0.00 22.7 0.36+0.07 2.0
LinSVM(C=1) 29125 0.00 22.6 0.36+0.07 2.0

RbfSVM() 29125 0.00 23.8 0.50+0.07 2.1
INN() 29125 0.02 0.0 0.44+0.03 2.9

With feature selection

SMLR(1m=0.1) 314 0.00 19.0 0.09+0.03 0.1

SMLR(lm=1.0) 92 0.00 5.0 0.11+0.03 0.1

SMLR(lm=10.0) 42 0.00 2.4 0.09+0.03 0.1

RbfSVM on SMLR(1m=10) non-0 42 0.00 2.5 0.11+0.02 0.0

kNN on 5%(ANOVA) 1456 0.00 0.8 0.28+0.05 0.2

kNN on 50(ANOVA) 50 0.01 0.8 0.07+0.02 0.0

kNN on SMLR(1m=10) non-0 42 0.00 2.5 0.12+0.02 0.0

LinSVM on 5%(SVM) 1456 0.00 23.1 0.18+0.04 0.1

LinSVM on 50(SVM) 50 0.00 22.7 0.03±0.02 0.0

LinSVM on 5%(ANOVA) 1456 0.00 1.6 0.13+0.04 0.1

LinSVM on 50(ANOVA) 50 0.00 0.8 0.09+0.03 0.0
LinSVM on SMLR(1m=1) non-0 92 0.00 5.3 0.08+0.02 0.0

LinSVM on SMLR(1m=10) non-0 42 0.00 2.5 0.12+0.03 0.0
LinSVM+RFE(N-Fold) 4587 0.00 2010.0 0.12+0.03 3.4
LinSVM+RFE(OddEven) 42 0.09 260.9 0.24+0.04 0.0
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CHAPTER 6

SUMMARY

There is no such thing as failure, only results, with some
more successful than others

— Jeff Keller Attitude is Everything, Inc.

6.1 Conclusion

This dissertation presented a unified methodology toward the analysis of neural data

from different or even multiple neural data modalities. The demonstrated approach is

generic enough to be used across different levels of investigation of brain function while

enforcing reliable decoding performance. The approach ensures unbiased testing of

results and allows conclusions to be drawn about neural processes of interest.

Furthermore, analysis of constructed decoders provides the basis for addressing

identification, and the assessment of specificity in a way not possible with conventional

approaches. The results obtained with this approach revealed the components of the

signals which would not be detected using conventional approaches. Decoding of

extracellular recordings allowed to validate presence of stimuli-specific information at

recording cite, as well as to assign stimulus specific labels to the principal functional

units (i.e., neurons). Investigation of EEG data decoder sensitivities allowed to detect late

stimulus-sensitive component of the ERP. Analysis of object specific visual processing

allowed to support the hypothesis of distributed neural codes and the absence of the FFA,

uniquely involved in human face recognition.

Furthermore, mapping of the neural data from one imaging modality into another

allowed the segregation of neural data components present within the empirical data, and
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provided the means for performing a variety of additional analysis that ranged from data

filtering to spatial localization of the neural processes.

6.2 Contributions Beyond The Dissertation

The signal decoding framework presented in this dissertation is applicable to a number of

sub-fields in neuroscience, from extracellular recordings to cross-modal data analysis.

The value of this approach has been demonstrated with a number of presentations at

neuroscience conferences and several articles in peer-reviewed journals [22, 23, 28].

This framework has also stimulated a variety of collaborative efforts across

various aspects of human brain function, such as causal inference [226] and large scale

decoding [227]. To facilitate the application of the analysis approach presented here, a

Python-based toolbox, PyMVPA, has been developed in a joint effort with Michael

Hanke (Germany), Per Sederberg (USA), and Emanuele Olivetti (Italy) [22, 23]. As a

software product PyMVPA has significantly matured over the last few years and has

already been used by a number of research groups and individual researchers around the

globe, including those working at MIT, UCLA, and a number of other universities and

research institutes. PyMVPA has been developed as part of ExpPsy (Experimental

Psychology') project within the Debian GNU/Linux² operating system, of which I am³

one of the proud developers. The ExpPsy project aims to provide the best, free, and

open-source research environment for psychologists and neuroscientists. Various

software products (e.g., PyEPL, FSL, PyNIFTI, OpenMEEG, etc.) germane to research

of the brain were either developed or packaged and maintained within ExpPsy. Due to

the terrific packaging system of Debian, ExpPsy made these software products readily

available using a single click or simple command line operation. These packages are

i http://alioth.debian.org/projects/pkg-exppsy/
²http://www.debian.org
³ http://qa.debian.org/developer.php?login=debian@onerussian.com
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available not only to the thousands of Debian users, but to the users of Debian-derived

distributions (e.g., Ubuntu) on a variety of platforms and architectures.

6.3 Future Work

The results that were presented here have demonstrated the power of statistical learning

methods applied toward the analysis of neural data. Nevertheless, there are a number of

ways in which the suggested framework can be improved and extended.

Although the results that have been presented here were based on constructing

a linear relation between input and output data, the proposed framework is in no way

limited to linear mapping. Non-linear mapping is of particular value for cross-modal

data mapping which was presented in the Chapter 4. The main obstacle in adopting non-

linear methods is the necessity to explore the larger parameter space of more flexible non-

linear models. It is computationally demanding and often requires ad-hoc optimization.

Although some ability to do model selection is already present in PyMVPA, the capacity

for transparent model selection within PyMVPA is not yet implemented. Development of

such a feature would rapidly facilitate the exploration of non-linear learners in a variety

of applications.

At the moment, cross-modal mapping presented in the Chapter 4 makes no use of

the EEG forward model. However, although the incorporation of a known forward model

might significantly boost reconstruction performance, it is not yet implemented.

Although multivariate methods, and decoders in particular, make use of the

covariance and causality structure embedded in the data, the results presented here do not

actually reveal any such effective connectivity. Nevertheless, preliminary results (not yet

published) demonstrate the viability of using statistical learning regressions and

associated sensitivity estimates to discover functional connectivity among different brain

regions. Further development of such methods would be another goal for future research.
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Although the proposed framework offers considerable value to researchers

studying the brain, decoders and statistical learning do not offer a panacea for all

research problems in neuroscience. The success of this methodology requires that

researchers consider well both the research question and the experimental design. Any

particular investigation of brain function, which might seem obvious at first sight, needs

to be approached with considerable caution and domain knowledge. Unfortunately,

direct applications of classifiers [228] on psychologically complex problems, such as

deception detection [229], can be overly naive to be practical [230]. Thus, another goal

to be pursued is the development of a guide for researchers that will facilitate the

formulation of research questions and experimental design that maximizes the value of

this framework.



APPENDIX A

FORWARD MODELING OF EEG AND MEG SIGNALS

The analysis of E/MEG signals often relies on the solution of two related problems. The

forward problem concerns the calculation of scalp potentials (EEG) or magnetic fields

near the scalp (MEG) given the neuronal currents in the brain, whereas the inverse problem

involves estimating neuronal currents from the observed E/MEG data. The difficulty of

solving the forward problem is reflected in the diversity of approaches that have been

tried (see [231] for an overview and unified analysis of different methods).

The basic question posed by both the inverse and forward problems is how to

model any neuronal activation so that the source of the electromagnetic field can be

mapped onto the observed E/MEG signal. Assuming that localized and synchronized

primary currents are the generators of the observed E/MEG signals, the most successful

approach is to model the i-th source with a simple Equivalent Current Dipole (ECD)

[232], uniquely defined by three factors: location represented by the vector r i , strength

qi , and orientation coefficients O. The orientation coefficient is defined by projections

of the vector qi into L orthogonal Cartesian axes: θi = qi /qi. However, the orientation

coefficient may be expressed by projections in two axes in the case of a MEG spherical

model where the silent radial to the skull component has been removed, or even, just

in a single axis if normality to the cortical surface is assumed. The ECD model made

it possible to derive a tractable physical model linking neuronal activation and observed

E/MEG signals. In case of K simultaneously active sources at time t the observed E/MEG

signal at the sensor xi positioned at pi can be modeled as
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where G is a lead field function which relates the i-th dipole and the potential (EEG) or

magnetic field (MEG) observed at the j-th sensor; and € is the sensor noise. In the given

formulation, function G(ri(t), pi ) returns a vector, where each element corresponds to

the lead coefficient at the location p i generated by a unit-strength dipole at position r i (t)

with the same orientation as the corresponding projection axis of θi . The inner-product

between the returned vector and dipole strength projections on the same coordinate axes

yields a j-th sensor the measurement generated by the i-th dipole.

The forward model (A.1) can be solved at substantial computational expense using

available numerical methods [233] in combination with realistic structural information

obtained from the MRI data. This high computational cost is acceptable when the forward

model has to be computed once per subject and for a fixed number of dipole locations,

but it can be prohibitive for dipole fitting, which requires a recomputation of the forward

model for each step of non-linear optimization. For this reason, rough approximations of

the head geometry and structure are often used: e.g., best-fit single sphere model which

has a direct analytical solution [234] or the multiple spheres model to accommodate for the

difference in conductivity parameters across different tissues. Recently proposed MEG

forward modeling methods for realistic isotropic volume conductors [235, 236] are more

accurate and faster than Boundary Elements Method (BEM), and hence may be useful

substitutes for both crude analytical methods and computationally intensive finite-element

numeric approximations.



APPENDIX B

EEG AND MEG INVERSE PROBLEM

B.1 Equivalent Current Dipole Models

The E/MEG inverse problem is very challenging (see [237, 238] for an overview of

methods.) First, it relies on the solution of the forward problem, which can be

computationally expensive, especially in the case of realistic head modeling. Second, the

lead-field function g from (A.l) is non-linear in ri , so that the forward model depends

non-linearly on the locations of activations. It is because of this nonlinearity that the

inverse problem is generally treated by non-linear optimization methods, which can lead

to solutions being trapped in local minima. In case of Gaussian sensor noise, the best

estimator for the reconstruction quality of the signal is the squared error between the

obtained and modeled E/MEG data:

where C(r, q) > 0 is often introduced to regularize the solution, i.e., to obtain the desired

features of the estimated signal (e.g., smoothness in time, or in space, lowest energy or

dispersion), and A > 0 is used to vary the trade-off between the goodness of fit and the

regularization term.

This least-squares model can be applied to the individual time-points (t 1 = t2)

("moving dipole" model) or to a block (t 1 < t2) of data points. If the sources are assumed

to stay constant during the block (t 1 ,t2 ), then the solution with time constant q i(t) = qi is

the target.

Other features derived from the data besides pure E/MEG signals as the

argument x of (A.l) and (B.1) are often used: e.g., ERP/ERF waveforms which

represent averaged E/MEG signals across multiple trials, mean map in the case of stable
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potential/field topography during some period of time, or signal frequency components

to localize the sources of the oscillations of interest.

Depending on the treatment of (B.1), the inverse problem can be presented in

a couple of different ways. The brute-force minimization of (B.1) in respect to both

parameters r and q, and the consideration of different K neuronal sources, is generally

called ECD fitting. Because of non-linear optimization, this approach works only for

cases where there is a relatively small number of sources K, and therefore the inverse

problem formulation is over-determined, i.e., (A.1) has no exact solution (ε(r, q) > 0).

If fixed time locations of the target dipoles can be assumed, the search space of non-linear

optimization is reduced and the optimization can be split into two steps: (a) non-linear

optimization to find locations of the dipoles, and then (b) analysis to determine the strength

of the dipoles. This assumption constitutes the so-called spatiotemporal ECD model.

Two other frameworks have been suggested as means of avoiding the pitfalls

associated with non-linear optimization: Distributed ECD (DECD) and beamforming.

These two approaches are presented in detail in the next sections.

B.2 Linear Inverse Methods: Distributed ECD

In case of multiple simultaneously active sources, an alternative to solving the inverse

problem by ECD fitting is a distributed source model. The label Distributed ECD (DECD)

will be used further in the text to refer to this type of model. The DECD is based on a

spatial sampling of the brain volume and distributing the dipoles across all plausible and

spatially small areas, which could be a source of neuronal activation. In such cases, fixed

locations (r i) are available for each source/dipole, removing the necessity of non-linear

optimization as in the case of the ECD fitting. The forward model (A.1) can be presented

for a noiseless case in the matrix form
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where G, M x LN lead field matrix, is assumed to be static in time. The j, i-th entry

of G describes how much a sensor j is influenced by a dipole i, where j varies over all

sensors while i varies over every possible source, or to be more specific, every axis-aligned

component of every possible source: gjī, =G(ri,pi). The vectorIcontains indices ofL

such projections, i.e., I, = [i, i N, i 2N] when L = 3, and a = i when the dipole

has a fixed known orientation. Using this notation, G.,ī corresponds to the lead matrix for

a single dipole qi . The M x T matrix X holds the E/MEG data, while the LNxT matrix

Q (note that Qīt = qi (t)) corresponds to the projections of the ECD's moment onto L

orthogonal axes.

The solution of (B.2) relies on finding an inverse G + of the matrix G to express

the estimate Q in terms of X

and will produce a linear map X Q. Other than being computationally convenient,

there is no much reason to take this approach. The task is to minimize the error function

(B.l), which can be generalized by the weighting of the data to account for the sensor

noise and its covariance structure:

where WX1 is a weighting matrix in sensor space.

A zero-mean Gaussian signal can be characterized by the single covariance matrix

C E . In case of a non-singular C E the most simple weighting scheme Wx C E can be

used to account for non-uniform and possibly correlated sensor noise.

Such a brute-force approach solves some problems of ECD modeling, specifically

the requirement for a non-linear optimization, but, unfortunately, it introduces another

problem: the linear system (B.2) is ill-posed and under-determined because the number

of sampled possible source locations is much higher than the dimensionality of the input
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data space (which cannot exceed the number of sensors), i.e., N >> M. Thus, there is an

infinite number of solutions for the linear system because any combination of terms from

the null space of G will satisfy equation (B.3) and fit the sensor noise perfectly. In other

words, many different arrangements of the sources of neural activation within the brain

can produce any given MEG or EEG map. To overcome such ambiguity, a regularization

term is introduced into the error measure

where A > 0 controls the trade-off between the goodness of fit and the regularization term

C(Q)•

The equation (B.5) can have different interpretations depending on the approach

used to derive it and the meaning given to the regularization term C(Q). All of the

following methods provide the same result under specific conditions [238, 239]:

Bayesian methodology to maximize the posterior p(Q X) assuming Gaussian prior on Q

[240], Wiener estimator with proper C, and C s , Tikhonov regularization to trade-off the

goodness of fit (B.4) and the regularization term C(Q) = tr(Q TWQ-¹Q) which attempts

to find the solution with weighted by W -61 minimal 2nd norm, which is usually called

Weighted minimum norm (WMN). All the frameworks lead to the solution of the next

general form

If and only if WQ and Wx are positive definite [241] (B.6) is equivalent to

In case when viable prior information about the source distribution is available Q p ,

it is easy to account for it by minimizing the deviation of the solution not from 0 (which

constitutes the minimal 2nd norm solution G± ), but from the prior Qp , i.e., C(Q) =



For the noiseless case, with a weighted L 2 -norm regularizer, the Moore-Penrose

pseudo-inverse gives the inverse G + = Gt by avoiding the null space projections of

G in the solution, thus providing a unique solution with a minimal second norm Gt =

WQGT(GWQGT)-¹ .

Taking WQ = I N , Wx = IM and Qp = 0 constitutes the simplest regularized

minimum norm solution (Tikhonov regularization). Classically, A is found using cross-

validation [242] or L-curve [243] techniques, to decide how much of the noise power

should be brought into the solution. Phillips et al. [244] suggested iterative method

ReML where the conditional expectation of the source distribution and the regularization

parameters are estimated jointly. ReML was shown [245] to perform better than a regular

WMN in the case of invalid location priors. Additional constraints can be added to impose

an additional regularization: for instance temporal smoothness [246].

As presented in (B.7), G+ can account for different features of the source or

data space by incorporating them correspondingly into WQ and Wx. Next data-driven

features are commonly used in EMSI

• Wx C, accounts for any possible noise covariance structure or, if C E is diagonal,

will scale the error terms according to the noise level of each sensor;

• WQ 	 WCs = CS accounts for prior knowledge of the sources covariance

structure.

WQ can also account for different spatial features

• WQ = Wn = (diag (G T G)) -23 normalizes the columns of the matrix G to account

for deep sources by penalizing voxels too close to the sensors [247, 248]. Weighting

degree p E [0.6 ... 0.8] was shown to improve mean localization accuracy [249];
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• WQ Wgm, where the i-th diagonal element incorporates the gray matter content

in the area of the i-th dipole [250], i.e., the probability of having a large population

of neurons capable of creating the detected F/MEG signal;

• WQ = (WaTWa ) - 1 , where rows of Wa, represent averaging coefficients for each

source [251]. So far only geometrical [252] or biophysical averaging matrices [241]

were suggested;

• WQ incorporates the first-order spatial derivative of the image [253] or Laplacian

form [254].

Features defined by the diagonal matrices (e.g., W n and Wgm) can be combined

through the simple matrix product. An alternative approach is to present W Q in terms of

a linear basis set of the individual W Q factors, i.e., WQ = AlWn + A2Wg ,n + • • • , with

later optimization of p i via the EM algorithm [250].

To better condition the under-determined linear inverse problem (B.3), Phillips

et al. [250] suggested to perform the inverse operation in the space of the largest

eigenvectors of the WQ. Such preprocessing can also be done in the temporal domain,

when a similar sub-space selection is performed using prior temporal covariance matrix,

thus effectively selecting the frequency power spectrum of the estimated sources.

Careful selection of the described features of data and source spaces helps to

improve the fidelity of the DECD solution. Nevertheless, the inherent ambiguity of the

inverse solution precludes achieving a high degree of localization precision. It is for

this reason that additional spatial information about the source space, readily available

from other functional modalities such as fMRI and PET, can help to condition the DECD

solution (Section 4.3.4).
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B.3 Beamforming

Beamforming (sometimes called a spatial filter or a virtual sensor) is another way to solve

the inverse problem, which actually does not directly minimize (B.1). A beamformer

attempts to find a linear combination of the input data qi = F ix, which represents the

neuronal activity of each dipole q i in the best possible way one at a given time. As in

DECD methods, the search space is sampled, but, in contrast to the DECD approach, the

beamformer does not try to fit all the observed data at once.

The linearly constrained minimum variance (LCMV) beamformer [255] looks for

a spatial filter defined as Fi of size M x L minimizing the output energy F iT CxFi under

the constraint that only qi is active at that time, i.e., that there is no attenuation of the

signal of interest: F k G. 2 = δkiIL, where the Kronecker delta Ski = 1 only if k = i and 0

otherwise. Because the beamforming filter F i for the i-th dipole is defined independently

from the other possible dipoles, index i will be dropped from the derived results for the

clarity of presentation.

The constrained minimization, solved using Lagrange multipliers, yields

This solution is equivalent to (B.6), when applied to a single dipole with the regularization

term omitted. Source localization is performed using (B.9) to compute the variance of

every dipole q, which, in the case of uncorrelated dipole moments, is

The noise-sensitivity of (B.10) can be reduced by using the noise variance of each dipole

as normalizing factor v, = tr ((G.,īTCε-¹G.,ī)-¹). This produces the so-called neural

activity index
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An alternative beamformer, synthetic aperture magnetometry or SAM [256], is

similar to the LCMV if the orientation of the dipole is defined, but it is quite different in the

case of a dipole with an arbitrary orientation. A vector of lead coefficients g, (0) is defined

as a function of the dipole orientation. This returns a single vector for the orientation 0

of the i-th dipole, as opposed to the earlier formulation in which the L columns of G.,ī

played a similar role. With this new formulation, the spatial filter is constructed

which, under standard assumptions, is an optimal linear estimator of the time course of

the i-th dipole. The variance of the dipole, accordingly, is also a function of 0, specifically

vg (0) = 1/ (gi(θ)TC-¹gi(θ)) . To compute the neuronal activity index the original SAM

formulation uses a slightly different normalization factor v,(0) = f (0) T Cεf (0), which

yields a different result if the noise variance in C, is not equal across the sensors.

The unknown value of 0 is found via a non-linear optimization of the neuronal

activity index for the dipole:

Despite the pitfalls of non-linear optimization, SAM filtering provides a higher SNR to

LCMV by bringing less than half of the noise power into the solution. In addition, SAM

filtering results in sharper peaks of the distribution of neuronal activity index over the

volume [257].

Having computed vg and v, using SAM or LCMV for the two experimental

conditions: passive (p) and active (a), it is possible to compute a pseudo-t value t for

each location across the two conditions
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Such an approach provides the possibility of considering experimental design in the

analysis of E/MEG localization.

Unlike ECD, beamforming does not require prior knowledge of the number of

sources, which is a non-trivial problem on its own [258]. Nor beamforming does its search

for a solution in an underdetermined linear system as does DECD. For these reasons,

beamforming remains the favorite method of many researchers in EMSI and has been

suggested for use in the integrative analysis of E/MEG and fMRI which is covered in

Section 4.3.5.



APPENDIX C

DETAILS OF THE MULTIMODAL DATA ANALYSIS

This appendix provides additional information about multimodal analysis of the data,

which is presented in Section 4.4.
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Figure C.1 LFP responses used for simulation. Blue LFP is the one used for modeling
event-related activity, while all the others (including the blue one as well) were arbitrarily
assigned to voxels to generate simulated LFP response.

Figure C.2 HRF response used for fMRI data simulation.



Figure C.3 Gain matrix for EEG signal simulation.
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Figure C.4 The international 10-20 system seen from (A) left and (B) above the head.
A = Ear lobe, C = central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal
polar, 0 = occipital. (C) Location and nomenclature of the intermediate 10% electrodes,
as standardized by the American Electroencephalographic Society. (From [2591)
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Figure C.5 Aggregate sensitivity to the frequencies in the δ 1-band range of frequencies.
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Figure C.6 Aggregate sensitivity to the frequencies in the δ2 -band range of frequencies.
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Figure C.7 Aggregate sensitivity to the frequencies in the θ-band range of frequencies.
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Figure C.8 Aggregate sensitivity to the signal of CP1 EEG channel (see Figure C.4 for
the typical location of the sensor in respect to the brain).
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Figure C.9 Aggregate sensitivity to the signal of CP2 EEG channel (see Figure C.4 for
the typical location of the sensor in respect to the brain).
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Figure C.10 Aggregate sensitivity to the signal of Pz EEG channel (see Figure C.4 for
the typical location of the sensor in respect to the brain).



APPENDIX D

FREE OPEN SOURCE SOFTWARE GERMANE TO THE ANALYSIS OF

NEUROIMAGING DATA

Table D.1 lists a handful of FOSS projects relevant to the analysis of neuroimaging

analysis, whenever Table D.2 lists projects, either written in Python or providing Python

bindings, which are germane to acquiring or processing neural information datasets

using machine learning (ML) methods. The last column in Table D.2 indicates whether

PyMVPA internally uses a particular project or provides public interfaces to it.
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