Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

COLLABORATIVE LEARNING UTILIZING A DOMAIN-BASED SHARED DATA REPOSITORY TO ENHANCE LEARNING OUTCOMES

by David J. Lubliner

A number of learning paradigms have postulated that knowledge formation is a dynamic process where learners actively construct a representation of concepts integrating strategies information from multiple sources. Current teaching utilize а compartmentalized approach where individual courses contain a small subset of the knowledge required for a discipline. The intent of this research is to provide a framework to integrate the components of a discipline into a cohesive whole and accelerate the integration of concepts enhancing the learning process. The components utilized to accomplish these goals include two new knowledge integration models; a Knowledge Weighting Model (KWM) and the Aggregate-Integrate-Master (AIM) model. Semantic Web design principles utilizing a Resource Description Framework (RDF) schema and Web Ontology Language (OWL) will be used to define concepts and relationships for this knowledge domain that can then be extended for other domains. Lastly, a Design Research paradigm will be utilized to analyze the IT artifact, the Constructivist Unifying Baccalaureate Epistemology (CUBE) knowledge repository that was designed to validate this research.

The prototype testing population utilized sixty students spanning five classes, in the fall 2007, following IRB approved protocols. Data was gathered using a Constructivist Multimedia Learning Survey (CMLES), focus groups and semi-structured interviews. This preliminary data supported the hypotheses that students using the Integrated Knowledge Repository will first; have a more positive perception of the learning process than those who use conventional single course teaching paradigms and second; students utilizing the IKR will develop a more complex understanding of the interconnected nature of the materials linking a discipline than those who take conventional single topic courses.

Learning is an active process in which learners construct new ideas or concepts based upon their current/past knowledge. The goal is to develop a knowledge structure that is capable of facilitating the integration of conceptual development in a field of study.

COLLABORATIVE LEARNING UTILIZING A DOMAIN-BASED SHARED DATA REPOSITORY TO ENHANCE LEARNING OUTCOMES

~

by David J. Lubliner

A Dissertation Submitted to the Faculty of New Jersey Institute of Technology In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Information Systems

Department of Information Systems

January 2009

Copyright © 2008 David J. Lubliner

.

ALL RIGHTS RESERVED

APPROVAL PAGE

COLLABORATIVE LEARNING UTILIZING A DOMAIN-BASED SHARED DATA REPOSITORY TO ENHANCE LEARNING OUTCOMES

David J. Lubliner

Dr. George Widmeyer, Dissertation Co-Advisor Associate Professor of Information Systems, NJIT

Dr. Fadi Deek, Dissertation Co-Advisor Dean, College of Science and Liberal Arts Professor of Information Systems, Information Technology and Mathematical Sciences, NJIT

Dr. Julian Scher, Committee Member Associate Professor of Information Systems, NJIT

Dr. Thomas Juliano, Committee Member Associate Professor of Engineering Technology, NJIT

Q-18-08Dr. William Tereshkovich, Committee MemberDateVice President Application, Availability and Stability & Architecture, UBS

9/18/08

Date

Date

9/18/08

18

Date

BIOGRAPHICAL SKETCH

Author: David J. Lubliner

Degree: Doctor of Philosophy

Date: January 2009

Undergraduate and Graduate Education:

- Doctor of Philosophy in Information Systems, New Jersey Institute of Technology, Newark, NJ, 2009
- Master of Science in Electrical Engineering, New Jersey Institute of Technology, Newark, NJ, 1981
- Master of Science in Computer Science, New Jersey Institute of Technology, Newark, NJ, 1977
- Bachelor of Science in Mathematics/Physics, Ramapo University, Mahwah, NJ, 1974

Major: Information Systems

Publications, Presentations and Grants:

David Lubliner and George Widmeyer,

"N² Heads are better than one: collaborative learning, utilizing an integrated knowledge repository, facilitated through a massively multiplayer online gaming (MMOG) paradigm," 41st Annual Hawaii International Conference on System Sciences, Manoa, Hawaii, January 2008.

David Lubliner, Joshua Greenfeld, and Harry Roman,

"Automated meter inspection and reading: computer vision recognition system for obtaining visual indicia from exposed faces of electric meters," \$480,000 Grant PSEG, Newark. NJ.

Patent 5,559,894 issued September 24, 1996.

To my family

Without whose support and encouragement this degree would have not been possible

Cathy, Amy, Lindsay and Zach

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. George Widmeyer, my research advisor, who not only provided valuable and countless resources, insight, and intuition, but also constantly gave me support, encouragement, and reassurance. Special thanks are given to Dr. Fadi Deek, my co-advisor, without whose help this degree would have not have been possible. His guidance and friendship helped me navigate through the philosophical complexities of the PhD process. I would also like to thank Dr. William Tereshkovich whose friendship over the years is more important than any degree. I would also like to thank Dr. Julian Scher one of my first instructors at NJIT who helped me decide, by example, on teaching as a career. Finally I would like to thank Dr. Thomas Juliano who has made my return to NJIT so rewarding. Our long conversations have given me a great deal of insight into family challenges and career goals.

No words can express my appreciation to my wife, Cathy, who has encouraged me to complete this degree. Her insights have provided invaluable feedback on most of my graduate papers. She also has served as my dissertation editor, a debt I can never repay. Her humor has kept me grounded when I took life too seriously.

vi

Ch	apter			Page
1	INTF	RODUCTI	ON	1
	1.1	Backgro	und	1
	1.2	Research	1 Question	4
	1.3	Importar	nce to the Field of Information Systems	6
	1.4	Organiza	ation of the Dissertation	6
2	LITE	RATURE	REVIEW	8
	2.1	Introduc	tion: Constructivism	8
	2.2	Knowled	lge Construction	9
	2.3	Learning	g Theories	9
		2.3.1	Behaviorism	10
		2.3.2	Cognitivism	11
		2.3.3	Constructivism	12
	2.4	Taxonon	nic Analysis Learning Behaviors	16
		2.4.1	Bloom's Taxonomy	16
		2.4.2	Bloom's Revised Taxonomy	16
		2.4.3	Gagne's Taxonomy of Learning	18
	2.5	Social C	onstructivism	19
	2.6	Construc	ctivist Learning Environment	20
		2.6.1	Early Pioneers in the Field of Constructivist Learning	21
		2.6.1	Components of a Constructivist Learning Environment	22
		2.6.3	Bruner's Constructivist Theories	23

TABLE OF CONTENTS

Chapter			Page
	2.6.4	SOI Model	24
2.7	Distribu	ted Learning	25
	2.7.1	Advanced Distributed Learning/ SCORM	26
	2.7.2	Asynchronous Learning Environments	27
	2.7.3	Learning Communities	28
2.8	Review	of ALN Papers and their Relevance to this Research	29
	2.8.1	Learning Styles	30
	2.8.2	Cognitive Styles	31
	2.8.3	Knowledge Elements	32
2.9	Knowlee	dge Maps	34
2.10	Distribu	ted Cognition	37
	2.10.1	Theories of Distributed Cognition	38
	2.10.2	Internet Role in Distributed Cognition	38
2.11	Concept	Mapping Tools	39
2.12	Design S	Science	42
	2.12.1	Introduction to Design Science in Information System Research	42
	2.12.2	History of Design Science	43
	2.12.3	Design Science Guidelines in IS Research	45
2.13	Semanti	c Analysis (Semantic Web)	47
	2.13.1	Semantic Web Terminology	49

Ch	apter			Page
3	HYP	OTHESE	S MODELS AND KNOWLEDGE REPOSITORY	51
	3.1	Hypothe	eses and Assessment Strategies	51
	3.2	Constru	ctivist Learning Principles Referenced by H1 and H2	53
	3.3	Models	Designed to Support this Research	55
		3.3.1	Knowledge Weighting Model	56
		3.3.2	Aggregation-Integration -Master (AIM) Knowledge Model .	59
	3.4	Assessm	nent Methodologies	60
	3.5	Knowle	dge Repository Design	63
		3.5.1	Implementing and Testing the Knowledge Repository	64
		3.5.2	Knowledge Repository Test Environment	65
		3.5.3	Multilevel Information Representation	66
		3.5.4	Data Structure Diagrams (Relationship Between Concepts) .	67
		3.5.5	Data Structure-Pointers	68
		3.5.6	Message Header Structure	69
		3.5.7	CUBE Software	69
4	PILC	OT TESTI	NG	70
	4.1	Researc	h Population	70
	4.2	Data Co	llection	71
	4.3	Method	ologies Employed	71
		4.3.1	Semi-Structured Interviews	71
		4.3.2	Focus Groups	72

Chap	oter			Page
		4.3.3	Questionnaire	73
		4.3.4	Triangulation	73
2	4.4	Methodo	logy	76
		4.4.1	Method 1: Semi-Structured Interviews	76
		4.4.2	Method 2: Focus Groups	76
2	4.5	Pilot Res	ults	75
		4.5.1	Semi-Structured Interviews	75
		4.5.2	Focus Group	82
2	4.6	Triangula	ating Results of the Pilot Study: Qualitative and Quantitative .	85
۷	4.7	Construct	tivist Learning Environment Framework	87
2	4.8	Project T	imeline	88
5 H	RESE	ARCH RI	ESULTS	91
4	5.1	Quantitat	ive Data	91
		5.1.1	Research Population	92
		5.1.2	Summary of Quantitative Results	93
		5.1.3	Data Anlysis (Quantitative Data)	98
5	5.2	Qualitativ	ve Data	100
		5.2.1	Factor Analysis	100
		5.2.2	CMLES Questionnaire	103
		5.2.3	Analysis of CMLES Questionnaire Data	104
		5.2.4	Analysis of CMLES Questions Contrasting current vs. Ideal	118

Chapter			Page
	5.2.5	CMLES Questionnaire Results Per Question	120
5.3	Semantic	e Web Model Analysis	122
	5.3.1	Background	122
	5.3.2	Semantic Data Collection	123
	5.3.3	Ranking/Voting (Semantic Terms, Links and Relationships)	125
6 CON	ICLUSION	1	130
APPEND	IX A CON	NSTRUCTIVIST MULTIMEDIA LEARNING SURVEY	136
APPEND	IX B INST	FITUTIONAL REVIEW BOARD APPROVAL	148
APPEND	IX C IRB	APPROVAL AND PARTICIPANT CONSENT	151
APPEND	IX D SEM	II-STRUCTURED INTERVIEW QUESTIONNAIRE	155
APPEND	IX E SEM	II-STRUCTURED INTERVIEW TESTING GUIDE	158
APPEND	IXF TRA	NSCRIPTS OF SEMI-STRUCTURED INTERVIEWS	163
APPEND	IX G FOC	US GROUP TRANSCRIPTS	169
APPEND	IX H HIC	CS 2008 PAPER: DISSERTATION RESEARCH	177
APPEND	IX I QUA	NTITATIVE EXAM	186
APPEND	ix j sem	ANTIC WEB/ RANKINGS	188
APPEND	IXK SAS	RESULTS UTILIZED IN CHAPTER 5	195
REFERE	NCES		223

LIST OF TABLES

Table		Page
2.1	Origins of Behaviorism, Cognitivism and Constructivism	14
2.2	Revised Taxonomy Table	17
2.3	Philosophical Research Perspectives	45
2.4	Design Science Research Guidelines	46
2.5	Design Evaluation Methods	47
2.6	Semantic Web Terminology	50
3.1	Design Analysis Methods	62
3.2	Case Analysis Rubrics	63
3.3	Knowledge Repository Design	64
4.1	Knowledge Repository Structure	76
4.2	Pretest Questionnaire	76
4.3	Final Version of Questionnaire	78
4.4	Summary of Results from Interviews 1 and 2	80
4.5	Questions and Responses for the Focus Group	83
4.6	CMLES (preliminary) Survey of 23 Computer Technology Students	86
4.7	Summary of CMLES Data	86
4.8	Calendar Timeline for Research Project	88
4.9	Project Timeline for Research Project	89
5.1	Summary of Research Population	93
5.2	Distribution of Results by Course	94
5.3	Distribution of Grades	96

LIST OF TABLES (Continued)

Table		Page
5.4	Questionnaire Data for Baseline Group	97
5.5	Baseline Group Distribution	98
5.6	The t-test Procedure Results	99
5.7	Principle Components Factor Analysis on CMLES Questionnaire CUBE	102
5.8	CMLES Questionnaire	103
5.9	Demographic Data	104
5.10	Question: Have You Ever Used a Discussion Board	105
5.11	Question: Experience Using a Learning Management System	105
5.12	Breakdown of Students by Course	106
5.13	CMLES CUBE Questions 58-67	107
5.14	Social Negotiations: Questions 9-13	108
5.15	Inquiry Learning Questions 14-18	110
5.16	Reflective Thinking Questions 19-23	111
5.17	Authenticity of Learning Questions 22A-27	112
5.18	Complexity of Learning Environment Questions 28-32	113
5.19	Social Negotiation Questions 33-37	114
5.20	Inquiry Learning Questions 38-42	115
5.21	Reflective Thinking Questions 43-47	116
5.22	Authenticity of Learning Questions 48-52	117
5.23	Complexity of the Learning Environment Questions 53-57	118
5.24	Summary of CMLES Results	119

LIST OF TABLES (Continued)

Table		Page
5.25	CMLES Questionnaire Data Broken Down by Question and Category	120
5.26	Semantic Terms Suggested by Students	124
5.27	Links and Rankings for CPT 435 Lecture 7	126

L	IST	OF	FIC	GU	RES
---	-----	----	-----	----	-----

Figure		Page
2.1	SOI model (Mayer, 1996)	25
2.2	Voting scales (Beiber, 1999)	34
2.3	Concept mapping tool CMAP	41
3.1	Flowchart of key concepts integrated with the Constructivist Learning Environment	55
3.2	Knowledge weighting model	56
3.3	Conceptual clustering	58
3.4	AIM knowledge construction model	60
3.5	Assessment methodology (case analysis rubric) embedded in design science evaluation methods	61
3.6	Educational test environment	65
3.7	Global visualization structure	65
3.8	Multilevel information representative	66
3.9	Data structure diagram	67
3.10	Data and pointer structure	68
3.11	Message header structure	69
5.1	Exam performance comparison utilizing CUBE system	94
5.2	Graph of test scores: control group (green) treatment group (blue)	95
5.3	CMLES questionnaire: current vs. ideal class	121
5.4	Concept clustering (incorporating semantic)	126
5.5	CUBE screen: each course has access to the rankings/ top 5 links	127
5.6	Actual output from the rankings and links for CPT 310	127

CHAPTER 1

INTRODUCTION

1.1 Background

A number of learning paradigms have postulated that knowledge formation is a dynamic process where learners actively construct a representation of concepts, integrating information from multiple sources. However, current teaching strategies still utilize a compartmentalized approach, where individual courses contain a small subset of the knowledge required for a discipline. It has been hypothesized (Turoff, 2006) that *"Ultimately the development of content knowledge bases that integrate content across multiple courses within a degree program is an expected evolution."* The task of integrating these distinct pieces of the puzzle is usually the responsibility of the learner. The intent of this research was to provide a structure, several models, and a prototype knowledge repository to realize this goal of creating a dynamic integrated learning environment spanning an entire discipline.

In order to validate this approach a system called Constructivist Unifying Baccalaureate Epistemology (CUBE), has been developed to integrate the materials from multiple college courses. CUBE is a dynamic environment that incorporates student input to ensure the evolution of the knowledge base. A generic structure has been developed to allow other disciplines to utilize this framework. The central hypothesis is that students utilizing the Integrated Knowledge Repository (IKR) will develop a more complex understanding of the interconnected nature of the materials linking a discipline than those who take conventional single topic courses. In order to realize this interconnected knowledge repository, the current constructivist learning environment was extended to incorporate a formal relationship between the building blocks of knowledge formation. The evolutionary components of factual knowledge, conceptual knowledge, procedural knowledge and meta-cognitive knowledge, presented in Bloom's revised taxonomy (Anderson et al. 2000), were integrated into a Knowledge Weighting Model (KWM). The factual elements and course materials form the basic elements that are interconnected with a concept-weighting structure that forms an integrated conceptual knowledge. Procedural knowledge was further constructed using a knowledge map that displays the skills and algorithms as they evolve from basic to more sophisticated applications in a discipline. Finally, the meta-cognitive component that captures the structure of a subject matter as cognitive tasks was correlated using field relevance structure that ties together the philosophical underpinning of a discipline.

The first step was to find an instructional design theory that supports this approach. This research utilizes the Constructivist Learning Environment (CLE) (Dede, 1995) (Jonassen, 1991) which is an instructional design theory that is based on the concept that learners actively construct a knowledge representation in working memory based on six components.

These components are:

- active-manipulative
- constructive
- collaborative
- reflective-critical

- complex, and
- intentional.

These six components create a structural framework to engage students in meaningful learning. In addition, the Revised Bloom's Taxonomy (Anderson et al. 2000) organizes knowledge formation as an evolutionary growth from factual to conceptual to procedural knowledge. Finally, the overall structure of a discipline is woven together into meta-cognitive knowledge where cognitive tasks, and how we structure our own knowledge, are formed. These theories form the basis of the hypotheses that extend constructivist theory to connect all these stages of knowledge formation.

The second step was to develop a Knowledge Weighting Model (KWM) which integrates the individual course topics, common elements between the materials, correlation weights as to the interdependence of the variables and finally the evolving relevance of existing and new material to the overall growth of the discipline.

The third step was to develop an environment to facilitate students' ability to easily and intuitively access large volumes of factual knowledge. This was accomplished by creating a cube structure to display, integrate and facilitate information retrieval across multiple courses. In addition, a knowledge map linked conceptual threads spanning courses into an evolving conceptual framework. These concepts were integrated into the overall design of the user interface and system.

The fourth step was to select a discipline, Computer Technology, to test out the hypotheses that an integrated learning environment, spanning an entire discipline, would enhance learning and comprehension of the interconnected complexities inherent in any discipline. Four well-defined courses, that span introductory to advanced topics, were chosen to create this knowledge repository. The courses are: Computer Architecture, Introduction to Networks, Advanced Network Theory and Medical Informatics. All the course notes have been collected and the cooperation of the instructors has been obtained to test this system. A control group was used to test learning efficacies. Components of the Computer Information Systems Security Professional (CISSP) exam will be used to test the accumulated knowledge, skills and comprehension.

1.2 Research Questions

This dissertation focuses on the development of more effective learning and information processing tools and models to enhance the goals of Constructivist Learning Theory that states, "Learning, as knowledge construction, is based on the concept that learners actively construct a knowledge representation in working memory." (Jonassen, 1991). Enhancing knowledge construction, by developing an Integrated Knowledge Repository (IKR), that spans an entire discipline, will facilitate students' ability to traverse the road of knowledge and will enhance and accelerate knowledge formation. This Integrated Knowledge Repository incorporates the ability to select individual paths and tailor the learning experience to their own individual abilities and learning styles.

It also builds on the Selection-Organization-Integrate (SOI) Knowledge Construction Model (Mayer, 1996), that theorizes that selecting and integrating concepts for a particular course or text, can form the basis for a more dynamic and expansive learning experience model. This research introduces an Aggregate Integrate Master (AIM) model that hypothesizes that, rather than having individual instructors or students extract relationships between concepts, the core knowledge of a discipline, representing N number of courses, can be integrated to facilitate conceptual synthesis of concepts. Integrating concepts from the Semantic Web, the knowledge repository was structured using a *Semantic Web model*. The Semantic Web is a "set of formats and languages that are used to find and analyze data on the web" (Feigenbaum, 2007) (Berners-Lee, 2001). A number of standards, published by the World Wide Web Consortium Semantic Web Activity Initiative, utilize the Resource Description Framework (RDF). Each piece of data and any link that connects pieces of data are identified by a unique name called a Universal Resource Identifier (URI). In the RDF scheme, two pieces of information are connected and grouped together in a triplet to infer relationships between concepts. This will ensure that a standard vocabulary and relationships between concepts will be maintained and provide a platform for future growth.

The last component utilizes a Design Research paradigm. Design Research involves the analysis of the use and performance of designed artifacts to understand, explain and very frequently to improve on the behavior of aspects of Information Systems" (Association for Information Systems (AIS)). Design Evaluation Methods (Hevner et al. 2004) were used to evaluate the Information Technology artifact.

The Constructivist Unifying Baccalaureate Epistemology (CUBE), that provides metrics for data analysis, was used to validate this research. The efficacy of an artifact can be demonstrated by the appropriate selection of design evaluation methods (Basilli, 1996) (Zelkowitz & Wallace, 1998). The categories for the design evaluation methods metric are: functionality, completeness, consistency, accuracy, performance, reliability, usability and fit within an organization/university context. The design phase is iterative and provides feedback during development.

1.3 Importance of This Research to the Field of Information System

This research is important to the research community for several reasons. First, there is currently no existing model, face-to-face or online, to interconnect courses that share philosophical and technical commonalties into a collaborative learning environment, utilizing a shared knowledge repository. The second benefit of this research is to introduce two new models; the Knowledge Weighting Model (KWM) and the Aggregation-Integration-Master (AIM) Knowledge Construction Model are introduced to provide a structure for future knowledge repositories. The third benefit of this research validates the Constructivist Learning Environment (CLE) approach to learning that emphasizes knowledge construction. The fourth benefit provides a generic tool, CUBE, that fosters the learner's process of organizing and integrating information. This can serve as a platform for others to develop future knowledge repositories.

1.4 Organization of the Dissertation

Chapter 2 is comprised of a literature review that builds a theoretical foundation for this research. The chapter is organized into Constructivist Learning, theories of learning, knowledge construction, knowledge mapping techniques and theories of distributed cognition, focusing on their relevance to creating a unified knowledge repository, which is a key component of this research. The extensibility of the knowledge repository, a system design principle where the implementation takes into consideration future growth and compatibility with other systems which utilize the Semantic Web model, is discussed in this section.

Chapter 3 contains a description of the research, the hypotheses that were tested, data collection techniques and the pilot testing that has indicted the efficacy of this approach to enhanced learning and cognition. In addition, the data structures of the CUBE (Constructivist Unifying Baccalaureate Epistemology) prototype, that has been developed to test and validate this research, are described.

Chapter 4 presents the data collection and analysis strategies for this research. Two new models, the Knowledge Weighting Model (KWM) and the Aggregation-Integration-Master (AIM) Knowledge Construction Model, are introduced to provide a theoretical framework for this research. The Constructivist Learning Questionnaire, which has been validated by other researchers, was used to collect data on the new system.

CHAPTER 2

LITERATURE REVIEW

This section describes various learning theories that have evolved over the last hundred years. These theories form a foundation for the Constructivist Learning Environment (CLE) that was utilized in the development of the integrated knowledge repository described in this research.

2.1 Introduction: Constructivism

Constructivism postulates that learners construct knowledge for themselves. Individually and socially they construct meaning as they learn. The goal of this research is to develop a new paradigm, building on the constructivist theory that will allow students to more effectively integrate knowledge spanning a discipline than current instructional models. The current approach is to present students with pieces of a puzzle, independent courses spanning several years, and hoping that at the end of their journey they will integrate these concepts into a cohesive unit. In other words, the student must assemble the puzzle. That synthesis often fails to occur. The goal of this research is to present, from the beginning, all materials in a core knowledge repository, with conceptual connections embedded, to enable students to construct threads tying together a discipline at every step of their intellectual journey. This chapter explores the evolution of constructivist theory and other learning theories that contribute to the development of this new paradigm.

2.2 Knowledge Construction

How learning occurs, and various effective techniques of organizing information into a coherent synthesis, that maximizes knowledge construction and hopefully leads to the attainment of wisdom, have been debated throughout history. Many of the basic terms have multiple definitions and interpretations. The complexity of these concepts and number of interpretations expand exponentially as one traverses from the building blocks or data defined by experimental rigor to the eventual integration of individual facts into a coherent structure that leads to an understanding of more complex interrelationships.

This research focuses on the development of more effective learning and information processing tools and models to enhance the goals of Constructivist Learning Theory which state that, "learning as knowledge construction is based on the concept that learners actively construct a knowledge representation in working memory," (Jonassen, 1991). Enhancing knowledge construction by developing a knowledge repository, that spans an entire discipline, will facilitate students' ability to select their own individual paths and tailor the experience to their own individual abilities and learning styles. A Concept Weighting Model has been developed to quantify relationships between individual concepts that interconnect a discipline.

2.3 Learning Theories

This section discusses various learning theories that describe how people learn and the complex processes that underlie learning. They can be classified as Behaviorism, Cognitivism and Constructivism.

Learning behaviors will also be discussed in this section. In particular, Constructivist Learning will be examined as it pertains to the development of this dissertation. Distributed Cognition, a field of psychology developed by Edwin Hutchins, which emphasizes the social effects on cognition, is particularly relevant, not only because of individual interaction with the knowledge repository, but also because of the effects of social interaction on knowledge construction.

2.3.1 Behaviorism

Behaviorism can be defined as the theory that human or animal psychology can be accurately studied only through the examination and analysis of objectively observable and quantifiable behavioral events (*Webster's College Dictionary*, 1993). It concentrates on the study of overt behaviors that can be observed and measured (Good & Brophy, 1990). In regard to learning theories, it is based on behavioral changes which focus on new behavioral patterns being repeated until they become automatic (Schuman, 1996). The behaviorist learning theory centered on that which was observable, not considering that there was anything occurring inside the mind.

Behaviorism can be found as early as Aristotle in his essay entitled, "Memory," which made associations based on external events, in particular lightning and thunder. Later, Hobbs (1650) and Hume (1740) mentioned similar associations between observable facts and resulting behaviors. Pavlov, the Russian psychologist, studied conditioning, using a dog, food and a bell (famous Pavlov's dog experiment) where the dog was trained to respond to stimuli which mimicked the effects of actual responses, called, "stimulus conditioning."

Edward Thorndike (1898) set out to apply "the methods of exact science" to educational problems by emphasizing "accurate, quantitative treatment of information."

"Anything that exists, exists in a certain quantity and can be measured." His theory, Connectionism, stated that learning was the formation of a connection between stimulus and response. Learning takes place when the bonds are formed into patterns of behavior.

John B. Watson (1913) built on Pavlov's work and believed that humans are born with a few reflexes and the emotional reactions of love and rage. All other behavior is established through stimulus-response associations through conditioning. His work demonstrated the role of conditioning in the development of emotional responses to certain stimuli.

Skinner (1948), like Pavlov, Watson and Thorndike, believed in the stimulusresponse pattern of conditioned behavior. His theory dealt with changes in observable behavior, ignoring the possibility of any processes occurring in the mind, and refers to a utopian society, based on operant conditioning. Skinner's work on operant behavior differed from that of his predecessors by focusing on voluntary behaviors used in operating on the environment. Skinner believed in positive reinforcement or reward; responses that are rewarded are likely to be repeated. For example, good grades reinforce careful study.

2.3.2 Cognitivism

The Cognitive approach to learning states that learning involves the formation of mental associations, established through contiguity and repetition, that are not necessarily reflected in overt behavior changes. Individuals are actively involved in the learning process and learning is a process of relating new information to previously learned information.

In the 1920's, limitations to the behaviorist approach stated that children need reinforcement to learn effectively. Cognitive theorists view learning as involving the "acquisition or reorganization of the cognitive structures through which human's process and store information." (Good & Brophy, 1990). Later, Bandura and Walters (1963) stated that an individual could model behavior by observing the behavior of another person. This led to Bandura's Social Cognitive Theory.

2.3.3 Constructivism

Constructivists believe that learners, "construct their own reality or at least interpret it, based upon their perceptions of experiences, so an individual's knowledge is a function of one's prior experiences, mental structures, and beliefs that are used to interpret objects and events." (Jonasson,1991). "What someone knows is grounded in perception of the physical and social experiences, which are comprehended by the mind." (Jonasson, 1991).

Based on the premise that everyone constructs their own perspective of the world, through individual experiences and schema, Constructivism focuses on preparing the learner to problem solving in ambiguous situations. This theory was first introduced by Bartlett (1932) and later became the Constructivist approach (Good & Brophy, 1990). Merill (1991) believed that:

- 1) Knowledge is constructed from experience,
- 2) Learning is a personal interpretation of the world,
- 3) Learning is an active process, in which meaning is developed on the basis of experience,

- 4) Conceptual growth comes from the negotiation of meaning, the sharing of multiple perspectives and the changing of our internal representations through collaborative learning,
- 5) Learning should be situated in realistic settings, and
- 6) Testing should be integrated with the task and not a separate activity.

¢

Theory	Researcher	Theories/ Conclusions	Dates
Behaviorism			310 B.C.
	Aristotle	Essay, "Memory" Association between events such as lightning and thunder	310 B.C.
	Ivan Pavlov	Pavlov's Experiment: A dog is trained to respond to a bell for food, salivates even when food is not present	1891
	Edward Thorndike	Connectionism	1911
		Learning was the formation of a connection between stimulus and response	
	John Watson	Behavior is established through stimulus-response associations through conditioning.	1913
	B.F. Skinner	passive, just responding to stimuli stimulus-response pattern of conditioned behavior	1938
Cognitivism			
	Jerome Bruner	Discovery Learning Learners process, store, and retrieve information for use.	1947
	Lev Vygotsky	Zone of Proximal Development Interactive problem solving.	
	Edward Tolman	<i>Purposive Behavior in Animals and Men</i> Animals could learn facts about the world that they could subsequently use in a flexible manner, rather than simply learning automatic responses that were triggered off by environmental stimuli	1932

Table 2.1 Origins of Behaviorism, Cognitivism and Constructivism

Table 2.1 Origin	ls of Behaviorism, Cog	Table 2.1 Origins of Behaviorism, Cognitivism and Constructivism (Continued)	
Theory	Researcher	Theories/ Conclusions	Dates
	Good and Brophy	That much learning involves associations established through contiguity and repetition	1990
Constructivism			
	Albert Bandura	Social Cognitive Theory (Dembo, 1994).	1994
	Jean Piaget	He believed that "the learner must be active; he is not a vessel to be filled with facts"	1920
	Fredrick Barlett	Definition of Schema An active organization of past reactions, or past experiences	1932
	Bruner	Learning is an active process in which learners construct new ideas or concepts based upon their current/past knowledge	1960
	Knowles	Knowles' Andragogy - Learners have a mutual interest in their learning and need to involve real experience. Teachers are not the sole possessors of knowledge: but co-learners and guides	1990
	Good and Brophy	Learners, construct their own reality, or at least interpret it based upon their perceptions of experiences.	1990
	Jonasson	What someone knows is grounded in perception of the physical and social experiences which are comprehended by the mind.	1991
	Merrill	Knowledge is constructed from experience. Learning is a personal interpretation of the world	1991
	Schank	All human behavior is goal directed.	1994

2.4 Taxonomic Analysis Learning Behaviors

The following section describes several learning taxonomies, including Bloom's, Revised Bloom's and Gagne's learning taxonomy, that categorize the components of learning and knowledge formation.

2.4.1 Bloom's Taxonomy

Benjamin Bloom (1956) developed a classification of levels of intellectual behavior in learning. This taxonomy contained three overlapping domains: the cognitive, psychomotor, and affective. Within the cognitive domain, he identified six levels: knowledge, comprehension, application, analysis, synthesis, and evaluation. Knowledge is a starting point that includes both the acquisition of information and the ability to recall information, when needed. Comprehension is the basic level of understanding. It involves the ability to know what is being communicated in order to make use of the information. Application is the ability to use a learned skill in a new situation. Analysis is the ability to break content into components in order to identify parts, see relationships among them, and recognize organizational principles. Synthesis is the ability to combine existing elements in order to create something original. Evaluation is the ability to make a judgment about the value of something by using a standard (Bloom, 1956).

2.4.2 Bloom's Revised Taxonomy

In order to update Bloom's work relative to today's theories, Anderson and Krathwohl (2001) revised Bloom's original taxonomy by combining both the cognitive process and knowledge dimensions.

In the revised taxonomy, Bloom's six major categories were changed from noun to verb forms. Additionally, the lowest level of the original, *knowledge*, was renamed and became, *remembering*. Finally, *comprehension* and *synthesis* were renamed to *understanding* and *creating*. The updated version has also added *metacognitive* to the array of knowledge types. *Metacognitive Knowledge* is the awareness of one's own cognition and particular cognitive processes. It is strategic or reflective knowledge about how to go about solving problems and cognitive tasks, to include contextual and conditional knowledge and knowledge of self.

The revised taxonomy incorporates both the kind of knowledge to be learned (knowledge dimension) and the process used to learn (cognitive process), allowing for the instructional designer to efficiently align objectives to assessment techniques. Both dimensions are illustrated in the following table that can be used to help write clear, focused objectives.

Knowledge Dimension	Remember	Understand	Apply	Analyze	Evaluate	Create
Factual Knowledge						
Conceptual Knowledge						
Procedural Knowledge						
Meta-cognitive Knowledge						

Table	2.2	Revised	Taxonomy	7 Table

2.4.3 Gagne's Taxonomy of Learning

Gagné's work, "Conditions of Learning and Events of Instruction" (Gagné, 1965), called Instructional Systems Development (ISD), related the existing learning theories to each other and assigned to each theory its relative position with regard to their diverse learning domains. Gagné based the main part of his approach on Bloom's taxonomy of learning objectives, and integrated the different learning theories that had been developed, from behaviorism to cognitivism. The classification of learning, according to Robert Gagné, includes five kinds of learning capabilities. The first three, which include intellectual skills, cognitive strategies and verbal information, are based on Bloom's theories of cognitive development. The last two, attitudes and motor skills, relate to Bloom's affective and physical motor domain. The Gagné taxonomy is a popular learning taxonomy in the field of instructional design (Reigeluth, 1983). Its popularity can be attributed to its ability to clearly distinguish between abstract and concrete definitions of learning (Seels & Glasgow, 1990).

Gagne's ideas of instruction are what he calls "conditions of learning." He breaks these down into internal and external conditions. The internal conditions deal with previously learned capabilities of the learner. Or, in other words, what the learner knows prior to the instruction. The external conditions deal with the stimuli (a purely behaviorist term) that are presented externally to the learner. His approach is relatively rigid, a cookbook approach, and does not provide the flexibility needed for constructive learning which allows students to construct their own knowledge representation.

2.5 Social Constructivism

Social constructivism, developed in sociology and philosophy, emphasizes the importance of culture and context in understanding what occurs in society and constructing knowledge, based on this understanding (Derry, 1999) (McMahon, 1997). This perspective is closely associated with many contemporary theories of Vygotsky and Bruner, and Bandura's social cognitive theory (Shunk, 2000).

Social constructivism is based on specific assumptions about reality, knowledge, and learning. To understand and apply models of instruction that are rooted in the perspectives of social constructivists, it is important to know the premises that underlie them. *Reality:* Social constructivists believe that reality is constructed through human activity. Members of a society together invent the properties of the world (Kukla, 2000). For the social constructivist, reality cannot be discovered; it does not exist prior to its social invention. *Knowledge:* To social constructivists, knowledge is also a human product, and is socially and culturally constructed (Ernest, 1999) (Gredler, 1997) (Prat & Floden, 1994). Individuals create meaning through their interactions with each other and with the environment in which they live. *Learning:* Social constructivists view learning as a social process. It does not take place only within an individual, nor is it a passive development of behaviors that are shaped by external forces (McMahon, 1997). Meaningful learning occurs when individuals are engaged in social activities.

2.6 Constructivist Learning Environment

There are three major approaches to learning that have evolved during the last century:

- Behavioral: Learning as response strengthening,
- Cognitivist: learning as knowledge acquisition, and
- Constructivist: learning as knowledge construction (Mayer, 1992).

Behaviorism focuses on observable changes in behavior, where a new behavioral pattern is repeated until it becomes automatic. Behaviorism did not account for many types of learning, such as social behaviors and levels of cognitive reasoning (Tolman, 1932) where rats showed higher cognitive reasoning by storing mental maps of mazes. Cognitivism "recognize that much learning involves associations established through continuity and repetition" (Good & Brophy, 1990). Constructivists believe that our construction of reality is more complex than simple association described in Cognitivism. Constructivists believe that "learners construct their own reality, or at least interpret it, based upon their perceptions of experiences," (Jonasson, 1991).

The first approach has the learner passively receiving reward and punishments, such as drill and practice, simple response and feedback. The second has students placing new information in long term memory; the learner still passively acquires information from the teacher who presents information in textbooks and lectures. Knowledge is a commodity transmitted from the teacher to the learner. The third approach, learning as knowledge construction, is based on the concept that learners actively construct a knowledge representation in working memory. This emerged in the 1990's based on human learning in realistic settings. The learner is the sense-maker and the teacher is the cognitive guide who provides guidance and modeling on authentic

academic tasks. The instructional designer's role is to create environments in which the learner interacts meaningfully and fosters the learner's process of organizing and integrating information.

The goal of Constructivist Learning Environments (Jonassen, 1991) "is to foster problem solving and conceptual development." Objectivist conceptions of learning assume knowledge is individually constructed and socially co-constructed by learners based on interpretations and experiences in the world. The goal is to "engage learners in meaning making (knowledge construction)," (Davidson, 1994) (Wilson, 1998) (Scavery & Duffy, 1996).

2.6.1 Early Pioneers in the Field of Constructivist Learning

In the early 1900's, Piaget's theory of cognitive development in children (Piaget, 1928) postulated a sequence of four qualitatively distinct stages of intellectual development: Sensor-motor, Preoperational, Concrete Operations and Formal Operations. He believed that "the learner must be active; he is not a vessel to be filled with facts...Learning involves the participation of the learner." Creating an environment designed to allow students to explore and independently navigate tendrils of interconnecting concepts will empower and enhance their construction of more cohesive understanding of interconnected facets of a discipline. Later in the 1900's, Vygotsky's (1968) *Zone of Proximal Development (ZPD)* stated that the potential for cognitive development depends on social development. Skills that can be developed in collaboration with peers exceed those which can be attained alone. This supports the hypothesis that gaming can be used to increase social interaction in learning environments and can potentially increase knowledge acquisition. Later in the 1990's, theories based on human learning in realistic

settings (Jonassen, 1991) emerged where the learner is the sense-maker and the teacher is the cognitive guide who provides guidance and modeling on authentic academic tasks. The instructional designer's role is to create environments in which the learner interacts meaningfully and fosters the learner's process of organizing and integrating information. The Constructivist Learning Environment provides a framework for designing and building the third approach.

2.6.2 Components of a Constructivist Learning Environment

The Constructivist Learning Environment (CLE) is an education framework that combines eight components to engage students in meaningful learning (Jonassen, 1991) (Dede, 1995). This will be used as a structural framework to model the MMOG learning environment.

The components are:

٦.

- 1) Active/Manipulative: Learners are engaged by the learning process in mindful processing of information where they are responsible for the result.
- 2) Constructive: Learners integrate new ideas with prior knowledge in order to make sense or meaning or reconcile a discrepancy, curiosity, or puzzlement.
- 3) Collaborative: Learners naturally work in learning and knowledge building communities, exploiting each other's skills, while providing social support and modeling and observing the contributions of each member.
- 4) **Reflective/Critical:** Learners should be required by technology-based learning to articulate what they are doing, the decisions they make, the strategies they use and the answers they found.
- 5) **Complex:** The greatest intellectual error that teachers commit is to oversimplify ideas in order to make them more easily transmittable to learners.

2.6.3 Bruner's Constructivist Theories

A major theme in the theoretical framework of Bruner (1960) is that learning is an active process in which learners construct new ideas or concepts based upon their current/past knowledge. The learner selects and transforms information, constructs hypotheses, and makes decisions, relying on a cognitive structure. Cognitive structure (i.e., schema, mental models) provides meaning and organization to experiences and allows the individual to "go beyond the information given."

As far as instruction is concerned, the instructor should try to encourage students to discover principles by themselves. The instructor and student should engage in an active dialogue (i.e., Socratic learning). The task of the instructor is to translate information to be learned into a format appropriate to the learner's current state of understanding. Curriculum should be organized in a spiral manner so that the student continually builds upon what they have already learned.

Bruner's Theory of Instruction addresses four major aspects:

- (1) Predisposition towards learning,
- (2) The ways in which a body of knowledge can be structured, so that it can be most readily grasped by the learner,
- (3) The most effective sequences in which to present material, and
- (4) The nature and pacing of rewards and punishments. Good methods for structuring knowledge should result in simplifying, generating new propositions, and increasing the manipulation of information.

2.6.4 SOI Model

The SOI model (Mayer, 1999) is an individual constructivism approach that is used for designing text-based instructional messages to enable the learners to construct their own meaningful learning outcomes.

S = selecting relevant information

O = organizing information in a meaningful way to the learner

I = integrating the new information with the learner's prior knowledge

The Knowledge and Concept maps have several features in common. First, they organize information in a meaningful way by showing the linkages between concepts. Second, as the knowledge map evolves it integrates and extends the learner's prior knowledge by adding new information.

The SOI model prime suggests that cognitive processes in learners are needed for sense making and to support constructivist learning. It identifies the cognitive processes that foster meaningful learning. Meaningful learning occurs when the learner actively constructs a knowledge representation of information in working memory. Mayer defines constructivist learning as an active learning process in which the learner possesses and uses a variety of cognitive processes.

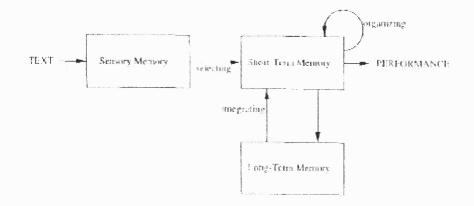


Figure 2.1 SOI model. Mayer, 1996

2.7 Distributed Learning

"Distributed learning is an instructional model that allows instructor, students, and content to be located in different, non-centralized locations so that instruction and learning occurs independent of time and place," (Saltsburg & Polyson, 1995). The distributed learning model can be used in combination with traditional classroom-based courses, with traditional distance learning courses, or it can be used to create wholly virtual classrooms.

"A distributed learning environment is a learner-centered approach to education, which integrates a number of technologies to enable opportunities for activities and interaction in both asynchronous and real-time modes" (Bates, 2000).

In a distributed learning environment students gain a greater degree of control of how, when, and where their learning occurs. They also increase their level of responsibility for their own learning and are no longer passive receptacles of information and knowledge.

2.7.1 Advanced Distributed Learning / SCORM

The Advanced Distributed Learning (ADL) initiative was developed for the Department of Defense to harness the power of information technologies to standardize and modernize structured learning. Sharable Content Object Reference Model (SCORM) is a specification of the Advanced Distributed Learning (ADL) Initiative.

SCORM is a collection of standards and specifications for web-based e-learning. It defines communications between client side content and a host system called the run-time environment. The goal of SCORM is to have a set of technical standards that will allow learning content to interoperate across multiple products, environments and tools, and to make it easier to discover and use such content. In SCORM there is a set of services that launches learning content, keeps track of learner progress, determines in what order (sequence) learning objects are to be delivered, and reports student mastery through a learning experience.

Most web content consists of simple hyperlinks from one page to another. In the SCORM world, the LMS is "smart" and knows what is to be delivered to the learner, when he/she has mastered a skill or competency, and can branch to the right content when needed (e.g., for remediation). Regular web content and servers do not have this capability.

SCORM is divided into four components: reusability, durability, accessibility and interoperability. Reusable refers to content that is independent of learning context. Interoperable is content that will function in multiple applications and environments. Durable refers to content that does not need modification to operate as platforms change. Finally, accessible content can be identified and located when needed. These goals are achieved using shareable content objects (SCO's).

A shared content object is a collection of assets that becomes an independent piece of instructional material. These SCO's should be the smallest unit that can be tracked in a learning system. SCO's cannot directly access other SCO's, therefore, each SCO should stand alone. An SCO can be a lesson, a module or some segment of a course. An SCO must be independent of other SCO's or any other content that gives meaning to it. It is a stand alone object that can integrate into many different courses or forms of instruction.

2.7.2 Asynchronous Learning Environments

2.7.2.1 Introduction. Most traditional synchronous learning environments, primarily face-to-face, rely on the role of the instructor in imparting information. The Constructivist Learning Environment's (CLE) philosophy suggests that learning is a collaborative exercise where the instructor and students work together to form ideas and collectively explore the concepts covered by the course. The asynchronous feature differentiates ALN's that follow many of these CLE attributes where students and teachers can contribute ideas and thoughts at a pace and time of their choosing. "Some of the members take two or three times longer than others to read and respond to materials ... they can work at a time and pace that suits them" (Hiltz, 1994).

Learning, knowledge leading to wisdom, is a process where we stand on the shoulders of our predecessors. There is too much to be learned, even by the most intelligent individuals, to believe we can function and grow on our own. Reading books is one type of asynchronous learning network where ideas are explored with little ability to network with peers. The emergence of online asynchronous learning networks (ALN's) provides the ability to expand peer networks, research larger pools of data and accelerate the rate of group interactions. So, for many, an ALN provides the ability to learn faster and benefit from the collective consciousness.

In addition to the asynchronous advantages of anytime/anywhere learning, additional digital media can provide the ability to combine a vast array of audio, video and interactive tools to enhance the ALN experience.

2.7.2.2 Definition. There are two aspects to the definition of ALN:

- 1. Asynchronous Learning Networks (ALN's) are defined here as distributed learning environments that are "virtual classrooms" involving asynchronous interaction and the exchange of information exclusively on-line with no face-to-face interaction or conventional physical classroom arrangements. (Hiltz, 1994).
- 2. "Asynchronous Learning Networks (ALN's) are people networks for anytime and anywhere learning. ALN combines self-study with substantial, rapid, asynchronous interactivity with others. In ALN learners use computer and communications technologies to work with remote learning resources, including coaches and other learners, but without the requirement to be online at the same time," (Hiltz & Goldman, 2005).

2.7.3 Learning Communities

A Learning Community is "a cohesive community where a culture of learning exists in which everyone is involved in a collective effort of understanding," (Bielaczyc & Collins, 1999). A defining characteristic of a Virtual Learning Community (VLC) is that a person or institution must be a contributor of the evolving knowledge base of that group. There is a mutual knowledge building process taking place," (Hunter, 2002).

The asynchronous feature differentiates ALN's from many of the CLE's where students and teachers can contribute ideas and thoughts at a pace and time of their choosing. "Some of the members take two or three times longer than others to read and respond to materials ... they can work at a time and pace that suits them" (Hiltz, 1994). In addition to the asynchronous advantages of anytime/anywhere learning, additional digital media can provide the ability to combine a vast array of audio, video and interactive tools to enhance the ALN experience.

Emergence of a learning community takes time. Not only do participants need to have confidence / trust in their fellow intellectual travelers, but they need to be assured that their thoughts and ideas, no matter how outlandish, are not incorrect by mere attempts at thought experiments trying to test the envelope.

Most important, it is necessary to develop a core database that incorporates the knowledge of a particular discipline. All teachers, for example in Information Systems, would contribute their online materials and an integrated knowledge base would evolve. Student access and frequency of this database should be followed. A true learning community would provide a mechanism for students to explore and share knowledge, and possibly contribute to the core knowledge base, in much the same way that Wikipedia is structured for some subset of the data.

2.8 Review of ALN Papers and Their Relevance to This Research

One of the opportunities and challenges of ALN's is the ability to tailor the learning environment for particular student learning styles so that the user could restructure the presentation environment to facilitate their own particular learning style (see learning styles section below). One approach utilizes Technology Mediated Learning (TML) (Alavi & Leidner, 2001) in which the factors that technology plays in facilitating learning can be discussed. "Technology can influence learning through direct support of the underlying psychological processes, for example facilitating cognitive information processing activities such as search, scanning, transformation, or comparison of information," (Alavi & Leidner, 2001). These features of transforming and comparing information support the Constructivist Learning Environment's philosophy that learning is a collaborative exercise wherein the instructor and students work together to form ideas and collectively explore the concepts covered by the course. The development of an integrated knowledge base, spanning multiple courses, allows students to navigate topics and explore related discipline concepts. This seems to reinforce Alavi and Leidner's assertions as to the potential positive effects on learning that technology can have by facilitating an individual's own learning style.

2.8.1 Learning Styles

Most people prefer some particular method of interacting with, taking in, and processing or information. A learning style is the method of learning particular to an individual that allows that individual to learn best. It has been proposed that teachers should assess the learning styles of their students and adapt their classroom methods to best fit each student's learning style.

One theory (Kolb & Fry, 1975) in this Learning-Style Inventory (LSI) model, is built upon the idea that learning preferences can be described using two continuums: active experimentation-reflective observation and abstract conceptualization-concrete experience. This results in four types of learners: converge (active experimentationabstract conceptualization), accommodator (active experimentation-concrete experience), assimilator (reflective observation-abstract conceptualization), and diverger (reflective observation-concrete experience). The LSI is designed to determine an individual's learning preference.

One of the most widely known theories of learning style models is that of Dunn and Dunn (1984), a VAK model. This model is widely used in schools in the United States, and numerous articles have been published in peer-reviewed journals referring to this model that "matches students' learning style preferences with complementary instruction to improve academic achievement and student attitudes toward learning," (Dunn, Dunn & Price, 1984). This would seem to indicate that providing the ability for students to customize the method of presentation and content of the knowledge repository would also increase effective learning.

2.8.2Cognitive Styles

Cognitive style is a term used to describe the way individuals think, perceive and remember information. There are a number of cognitive styles that have been hypothesized to affect or enhance learning. One approach, (Hudson, 1996) identified two cognitive styles: convergent thinkers who are good at accumulating material from a variety of sources relevant to a problem's solution, and divergent thinkers who proceed more creatively and subjectively in their approach to problem-solving. This knowledge repository approach has relevance for convergent thinkers, where enhanced modes of learning would be facilitated by aggregating the course materials.

An alternate approach, cognitive complexity theories (Beiri, 1961) identified individuals who are more complex in their approach to problem-solving as opposed to those who are less creative. His approach also involves the organization of constructs and their similarity. If the elements are construed in less related ways for all constructs then there is a more complex organization leading to different results. This approach has also been interpreted by Crockett (1965) and others as one of 'differentiation' and 'integration'. Cognitive complexity is calculated from Crockett's *Role Category Questionnaire* (Crockett, 1965), where the number of independent constructs produced is taken as a measure of cognitive complexity.

Additional tools that can facilitate ALN's are *cooperative work tools* that are defined in terms of their coordination between activities, which implies some domain specific knowledge (Malone & Crowston, 1990). They refer to "goal-relevant relationships" between activities as "interdependencies." These interdependencies may be the key to a possible structure to define interdependent relationships that will be explored in the Knowledge Integration Model. Factors such as identifying goals, mapping goals to activities, selecting actors and selecting activities for actors, would be important for managing interdependencies. This is particularly relevant to defining a core database for a discipline. These interdependencies between concepts need to be mapped and displayed in a user-friendly interface to allow easy navigation of concepts that facilitate knowledge exploration.

2.8.3 Knowledge Elements

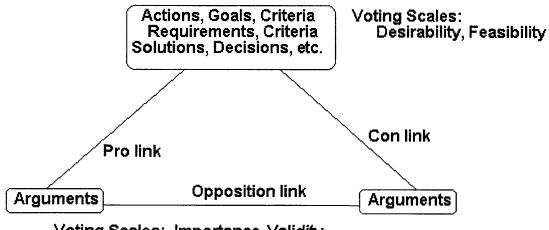
"By implementing a singular and global identity of all knowledge elements and other information entities, to allow logical extensibility, the framework for physical extensibility, replication and peer-to-peer interaction, has been established." (Gardner & Sheridan, 2003). In many respects, these knowledge elements seem similar to the shared content objects (SCO's) in SCORM. This article continues by discussing the structure of a knowledge engine; "To create the foundations for a knowledge engine, which embodies at its core the way we group and classify our knowledge of the world through generalization and specialization. These characteristics provide the foundation to deliver a wide variety of solutions in many domains apart from the initial design target of teaching and learning," (Gardner & Sheridan, 2003).

Knowledge sharing tools, not only in educational settings, but in virtual communities in general, could foster faster learning and greater knowledge retention. Most information is presented with relatively little context. Developing the complex interconnections that instill meaning is currently not available or relatively limited. In a paper on knowledge sharing in virtual communities, Bieber et al. (2002) stated that "Properly supported virtual communities could benefit society through collaboration and *knowledge-sharing* in ways not yet articulated. It is believed that the best way to carry out this investigation is through action research, in which an environment of *integrated tools* is introduced and evaluated in an actual virtual community."

"Yet, no existing approaches address the full range of knowledge repositories, and knowledge sharing and learning processes discussed earlier," (Bieber et al. 2002). A series of new tools has been proposed:

(1) Computer-mediated communication (Turoff et al. 2001),

(2) Conceptual knowledge structures (Bieber et al. 2002) (Turoff et al. 1999),


(3) Advanced hypermedia features (Bieber et al. 1997),

(4) Community process support (Bieber et al. 2002),

(5) Digital video for collaboration, learning, and financial transaction support.The integration of these components will represent a major advance (Gaines et al. 1997)(Preece, 1999).

2.9 Knowledge Maps

The concept of integrating knowledge maps to organize information was proposed by Bieber (1999). "Using application-oriented conceptual maps to categorize group discussions would be an advancement in the design of computer-mediated communications (CMC) systems to allow much larger groups to collaborate productively. The group meta-communication process should allow the group to modify and evolve these conceptual discourse templates." The voting scales suggested by Bieber suggest the possibility of using voting to weight concept relationships.

Voting Scales: Importance, Validity

Figure 2.2 Voting scales. (Bieber, 1999)

In support of this paper's concept, Turoff and Hiltz (1998) proposed "group support tools" for relatively small collaborative groups. They believe that the ability to utilize complex discourse and visualization structures that are tailored to the problem domain can ultimately support problem solving and learning communities of scores to thousands of participants. One of the key goals is to provide a mapping between ideas and concepts that span an entire discipline. Students and faculty will continually input their ideas, regarding these relationships, which will be represented in the Knowledge Integration Model. These interrelationships will be represented as correlation weights linking concepts. There will be multiple threads that allow possible relationships to be explored by students. These are equivalent to a neural network that allows multiple, possible paths to information retrieval to be explored and new connections to be established. (Mortar, Mohan & Ranka, 1996). Categorizing these relationships between concepts, it is theorized, will enhance knowledge acquisition, "formulating arguments or reorganizing material to introduce new (previously unrecognized) relationships, thereby advancing the knowledge of the participants," (Harasim, 1990).

One of the key features of ALN's is the concept that self learning "can be seen as freeing the individual learner from time and space barriers to two-way communications, which, in supportive situations, can foster *self learning*," (Keegan, 1986). To enhance this ability of knowledge exploration, tools that facilitate these explorations should result in more knowledgeable students, it is hypothesized. An attempt will be made to confirm these hypotheses by testing students with recognized exams like the Certified Information System Security Professional exams. A number of papers have studied the enhanced learning of ALN'S. "When groups are working asynchronously, members can reflect longer and in more depth about their contributions than when they are in a face-to-face discussion," (Hiltz, 1994). "ALN supported participants, individuals and groups produced better reports than did their manual counterparts," (Ocker, et al. 1995).

If students in collaborative ALN's have better learning outcomes, "The results support the premise that when students are actively involved in collaborative (group) learning on-line, the outcomes can be as good as or better than those for traditional classes." (Hiltz, Coppola, Rotter & Turoff, 2000). It is then reasonable to hypothesize that tools that facilitate collaborative learning, like the new proposed synthesis forum, will further enhance learning outcomes. This is supported by the *Collaborative* CLE principle that states *"learners naturally work in learning and knowledge building communities, exploiting each others skills while providing social support and modeling and observing the contributions of each member."*

Teaching online courses often involves a heavier burden on a professor's time than conventional face-to-face (ftf) courses. This was found to be a factor in faculty's dissatisfaction in teaching online courses (Harman & Davis, 2001). Any mechanism that can relieve this enhanced burden and possibly the isolation of preparing and teaching solitary online courses may enhance faculty satisfaction rates on ALN's. The paper, "Becoming a Virtual Professor" (Coppola, Hiltz & Rotter, 2002) discusses the issues that arise when transitioning to an online ALN mode of teaching. If a centralized knowledge repository was built that was used by multiple courses, it relieves the isolation and heavy load placed on one instructor. A group of instructors working together sharing ideas, skills and responding to students might better distribute the workloads. The discipline databases would be structured initially with one senior ALN professor to mentor the others.

2.10 Distributed Cognition

One of the eventual goals of the knowledge repository is to connect multiple repositories spanning several universities and incorporate/link all knowledge maps into a distributed cognition model. This is supported by the Collaborative CLE principle that "learners naturally work in learning and knowledge building communities, and exploiting each other's skills would provide social support and modeling the contributions of each member."

Distributed cognition is a field of psychology developed by Edwin Hutchins which emphasizes the social effects on cognition. "Traditionally, human cognition has been seen as solely inside a person's head and studies have by and large disregarded the social, physical and artificial surroundings in which cognition takes place." (Salamon, 1993). It suggests that societies and organizations have different ways of learning and organizating information. This implies that learning is a group activity and true learning and knowledge building takes place in a collaborative environment where we share and process information.

Knowledge is distributed among a group's members, each of whom uses his/her knowledge to contribute to the group. "Not only are groups able to accomplish more, but it has been argued that this type of learning leads to deeper understanding of content and processes for the group members." (Di Sessa & Minstrell, 1998).

Why utilize distributed cognition? Because "people think in conjunction and partnership with others and with the help of culturally provided tools and implements." (Salomone, 1993). Cognitive systems that consist of more than one individual have properties that differ from the individuals who participate in them (Hutchins, 1995). For

example, individuals, working together on a collaborative task, possess different kinds of knowledge and so will engage in interactions that will allow them to pool the various resources to accomplish their tasks. In addition, individuals in a cognitive system have overlapping and shared access to knowledge that enables them to be aware of what others are doing. This enables the coordination of expectations to emerge, which, in turn, form the basis of coordinated action.

2.10.1 Theories of Distributed Cognition

What distinguishes distributed cognition from other approaches is the commitment to two related theoretical principles. The first concerns the unit of analysis for cognition. The second concerns the mechanisms that participate in cognitive processes. While mainstream cognitive science looks for cognitive events in the manipulation of symbols (Newell, et al. 1989), or more recently, patterns of activation across arrays of processing units (Rumelhart, et al. 1986) (McClelland, et al. 1986) inside individual actors, distributed cognition looks for a broader class of cognitive events and does not expect all such events to be encompassed by the skin or skull of an individual.

2.10.2 Internet Role in Distributed Cognition

The internet could be considered an example of distributed cognition, where meaning is derived and achieved through social interaction among individuals, for example, distributed cognition in which multiple minds are intertwined across time. The distributed cognition approach is concerned with cognitive phenomena that cover a wide spectrum, from analyzing the properties and processes of a system of actors interacting with each other and an array of technological artifacts to perform some activity. The distributed cognition approach emphasizes the distributed nature of cognitive phenomena across individuals, artifacts and internal and external representations in terms of a common language of 'representational states' and 'media.' In doing this, it dissolves the traditional divisions between the inside/outside boundary of the individual and the culture/cognition distinction that anthropologists and cognitive psychologists have historically created. Instead, it focuses on the interactions between the distributed structures of the phenomenon that is under scrutiny.

The distributed cognition approach involves:

- 1) The distributed problem-solving that takes place (including the way people work together to solve a problem),
- 2) The role of verbal and non-verbal behavior (including what is said, what is implied by glances, winks, etc. and what is not said),
- 3) The various coordinating mechanisms that are used (e.g., rules, procedures),
- 4) The various ways communication takes place as the collaborative activity progresses, and
- 5) How knowledge is shared and accessed.

2.11 Concept Mapping Tools

Concept mapping is a technique for visualizing the relationships between different concepts. A concept map is a diagram showing the relationships between concepts. Concepts are connected with labeled arrows, in a downward-branching hierarchical structure. The relationship between concepts is articulated in linking phrases, such as "gives rise to", "results in", "is required by," or "contributes to."

Concept maps are a technique used to visually represent the structure of information. They are a result of Novak's and Gowin's research (1984) of human learning and knowledge representation. "Meaningful learning involves the assimilation of new concepts and propositions into existing cognitive structures." The use of concept maps has been shown to facilitate learning (Coffey, Carnot et al. 2003). Concept maps have also been shown to be of value as a knowledge acquisition tool during the construction of expert systems (Ford et al. 1996) and performance support systems (Coffey, Cañas et al. 2003), and as a means of capturing and sharing experts' knowledge (Coffey et al. 2002).

Cognitive Load Theory {CLT) developed out of several empirical studies of learners as they interacted with instructional materials (Sweller, 1988). He stated that" the optimum learning occurs in humans when the load on working memory is kept to a minimum to best facilitate the changes in long term memory." He found that the format of instructional materials has a direct effect on the performance of the learners using those materials. The concept maps facilitate this retention by showing all the complex links between concepts.

New knowledge gains meaning when it can be related to existing knowledge, rather than being "processed and filed" in isolation according to more or less arbitrary criteria. Concept mapping supports the visualization of such conceptual frameworks and "stimulates prior knowledge by making and requiring the learner to correlate the relationship between concepts," (Jonassen, 1996).

A CLT tool called CMAP, CmapTools is a software environment developed at the Institute for Human and Machine Cognition (IHMC) that empowers users, individually or collaboratively, to represent their knowledge using concept maps, to share them with peers and colleagues, and to publish them. These tools will be explored to see if they can assist in building a shared data repository for this project.

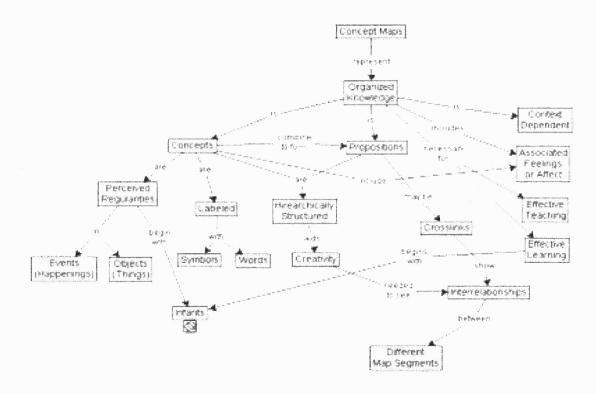


Figure 2.3 Concept mapping tool CMAP.

Knowledge visualization's goal is to facilitate the creation and communication of knowledge through the use of graphic representation techniques. Information visualization concentrates on the use of computer-supported tools to represent large amount of abstract data. knowledge visualization focuses on the transfer or creation of knowledge among people. Concept maps are one way to construct knowledge visualizations.

2.12 Design Science

The following section describes the techniques to define ideas, practices, technical capabilities and products through which the analysis, design, implementation, management and use of information systems can be effectively accomplished. This is referred to as design science.

2.12.1 Design Science in Information System Research

Two distinct and corresponding paradigms, behavioral science and design science, are used in Information System research. The behavioral science model analyzes the efficacy of information systems from the aspect of human perceptions and attitudes. Design science "seeks to extend the boundaries of human and organizational capabilities by creating new and innovative artifacts," (Hevner et al 2004).

"Design research involves the analysis of the use and performance of designed artifacts to understand, explain and very frequently to improve on the behavior of aspects of Information Systems." (Association for Information Systems (AIS) <u>www.aisnet.org</u>, 2008).

Design science has its roots in engineering and the sciences. It is basically a problem solving model whose goal is to "define ideas, practices, technical capabilities and products through which the analysis, design, implementation and management and use of information systems can be effectively accomplished." (Denning, 1997) (Tsichritzis, 1998). Design science's relevance to IS research is well documented in the literature (Glass, 1999), (Winograd 1996, 1998), (Benbasat & Zmund 1999). "IS

research is directly related to its applicability in design, stating that the implications of empirical IS research should be implementable... synthesizing an existing body of research ... or stimulate critical thinking among IS researchers. Technology and behavior are not dichotomous in an information system, they are inseparable," (Lee, 2000).

2.12.2 History of Design Science

Design science research "is an activity that contributes to the understanding of a phenomena," (Kuhn, 1962 and 1996). Design refers to developing and creating something new that is not naturally occurring. Research is an activity that contributes to an understanding of an observable fact. In 1969, Simon established the foundations for 'a science of design,' which would be 'a body of intellectually tough, analytical, empirical, teachable doctrine about the design process.' Simon further decomposes the design process into an inner and outer environment that satisfies certain goals. The outer environment is the set of external forces that act on the object. The inner environment is the components that make up the artifact/object and the relationships with that object to the organization. The interaction of the functionality between the inner and outer environments makes up the design activity.

It has been postulated that there are four general design outputs: constructs, models, methods and instantiations (March & Smith, 1995). Constructs are the language of a problem domain. They arise during the problem conceptualization phase. The model is a set of statements articulating relationships among constructs. A method is an algorithm defining how to accomplish a task. "Implicit in a design research method is the problem and solution statement that is expressed in the construct vocabulary" (March & Smith, 1995). An instantiation is the solution or realization of the artifact in an environment.

Occasionally, the instantiation precedes the complete vocabulary definition as indicated in the iterative evolutionary development of a design.

A complimentary approach to design science (Takeda et al. 1990) is the design of the interface between the inner and outer environment. This is defined as mapping from a functional requirement, constituting a point in multidimensional space, where an artifact, satisfying the mapping, constitutes a point in that space. Design is the knowledge to perform that mapping.

A fifth output of design (Rossi & Stein, 2003), (the first four can be mapped to March and Smith's design methods), is referred to as Better Theories. Design research can contribute to theory building with the first component being methodological construction of an artifact, or experimental proof of a theory. The second, the design of the artifact, can expose relationships between its elements. These relationships can support or refute previously theories. "Human Computer Interfaces (HCI) artifact construction is perhaps the most effective medium for theory development," (Carrol & Kellog, 1989).

The philosophical perspective of the design researcher creates reality through constructive intervention, and then becomes a positivist observer, recording behavior of the system, that is, the testing and experimental process as listed in the design and evaluation phases (Hever et al. 2004).

	Positivist	Interpretive	Design
Ontology	A single reality,	Multiple realities,	Multiple, contextually
	knowable,	socially constructed	situated alternative
	probabilistic		world states. Socio-
			technologically enabled
Epistemology	Objective	Subjective values and	Knowing through
	dispassionate,	knowledge emerge	making, objectively
	detached observer	from the researcher	constrained construction
	of the truth	participant interaction	within a context.
			Iterative circumspection reveals knowledge
Methodology	Observation,	Participation,	Developmental measure,
	quantitative,	qualitative,	artifact impacts on the
	statistical	hermeneutical,	composite system
· · · · · · · · · · · · · · · · · · ·		dialectical	
Axiology	Truth universal	Understanding situated	Control creation
(The study of		and descriptive	progress, improvement,
Values)			understanding

Table 2.3 Philosophical Research Perspectives

Design research introduces unique artifacts, which implies that they deal with alternative world states. This contrasts with positivist ontology with a single typical unit of analysis. In design research, even the problem statement is subject to revision as design research proceeds. Epistemologically, a design researcher can determine if a piece of information is factual through means of construction/circumspection. As an artifact is constructed, its behavior and interactions are determined; its meaning is its functionality. The design researcher is thus a pragmatist (Pierce, 1931).

2.12.3 Design Science Guidelines in IS Research

Seven Design Science Research Guidelines have been identified, in the creation of a

purposeful artifact (Hevner et al. 2004). An artifact is defined as a vocabulary and symbols. The goal was to develop a framework for effective design science research.

Table 2.4 Design Science Research Guidelines

Design Science Research Guidelines (Hevner et al. 2004)		
Guideline 1: Design as an	Design science must produce a viable artifact in the	
artifact	form of a construct, a model, a method or an	
	instantiation.	
Guideline 2: Problem	The objective of design science research is to develop	
Relevance	technology-based solutions to important (business)	
	problems.	
Guideline 3: Design	The utility, quality and efficacy of a design artifact	
Evaluation	must be rigorously demonstrated by well executed	
	evaluation methods	
Guideline 4: Research	Effective design science research must provide clear	
Contributions	and verifiable solutions in the areas of the design	
	artifact, design foundations and /or design	
	methodologies.	
Guideline 5: Research Rigor	Design science research relies upon the application of	
	rigorous methods in both the construction and	
	evaluation of the design artifact	
Guideline 6: Design as a	The search for an effective artifact involves utilizing	
Search Process	available means to reach desired ends while satisfying	
	laws in the problem environment	
Guideline 7: Communication	Design science research must be presented effectively	
of Research	both to technology oriented as well as management	
l	oriented audiences	

Guideline 3, the Design Evaluation, is further broken down into well-defined evaluation methods. The evaluation of an IT artifact requires metrics and data analysis. It can be evaluated in terms of functionality, completeness, consistency, accuracy, performance, reliability, usability and fit within the organization/context. The design phase is iterative and provides feedback during development. The selection of specific evaluation methods must match the design artifact. Table 2.5 lists available design evaluation methods. The efficacy of the artifact can be demonstrated by the appropriate selection of design evaluation methods (Basilli, 1996) (Zelkowitz and Wallace, 1998).

Design Evaluation Methods (Hevner et al. 2004)			
1. Observational	Case Study		
	• Field Study		
2. Analytical	Static Analysis		
	Architectural Analysis		
	Optimization		
	Dynamic Analysis		
3. Experimental	Controlled Experiment		
	• Simulation		
4. Testing	Functional Black Box Testing		
	Structural White Box Testing		
5. Descriptive	Informed Argument		
	Scenarios		

Table 2.5	Design	Evaluation	Methods
-----------	--------	------------	---------

2.13 Semantic Analysis (Semantic Web)

The framework for CUBE will be structured using the *Semantic Web model*. The Semantic Web is a "set of formats and languages that are used to find and analyze data on the web," (Feigenbaum, 2007) (Berners-Lee, 2001). A number of standards, published by the World Wide Web Consortium Semantic Web Activity Initiative, utilize the Resource Description Framework (RDF). Each piece of data, and any link that connects pieces of data, are identified by a unique name called a Universal Resource Identifier (URI). In the RDF scheme, two pieces of information are connected and grouped together

in a triplet to infer relationships between concepts.

In 2001 there were approximately a billion web page documents. In 2005, the estimates range from 11.5-19 billion (<u>http://en.wikipedia.org/wiki/Surface_Web</u>). As of

2008, the latest estimate was 30-45 billion publicly available web page documents, (<u>www.Worldwidewebsize.com</u>) a dramatic growth. This excludes private web documents, mostly held by corporations called the invisible web or "deep web" (<u>http://en.wikipedia.org/wiki/Deep_Web</u>), that multiplies this number by 100. With this explosive growth of online content, the need to utilize a semantic web approach to categorizing search information, with an agreed upon ontology that more accurately reflects user intent, especially in technical fields, is more urgent than ever.

An article by Tim Bernards-Lee (2001) stated that the Semantic Web "is a Web of actionable information derived from data through a semantic theory for interpreting the symbols. The semantic theory provides an account of meaning in which the logical connection of terms establishes interoperability between systems and heterogeneous data sets, that originate from distinct communities of scientists in separate subfields. Scientists, researchers, and regulatory authorities in genomics, proteomics, clinical drug trials, and epidemiology all need a way to integrate these components." The meaning described in the article refers to triplets or associations between terms.

The ability to generate complex associations between objects provides the potential to link and grow concepts beyond simple document retrieval. Evolving "concept spaces visually indicates the relationships and important subsets of concepts, particularly subsets that constitute ontological commitments for representing given phenomena. These provide students with large-scale (and even global) views of the structure of concept spaces." (Smith & Lee, 2004). These complex interrelationships can potentially evolve through input from students and faculty for a potentially richer learning environment.

The "semantic web", based on the Resource Description Framework (RDF), provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. It is a collaborative effort led by the World Wide Web Consortium (W3C), with participation from a large number of researchers and industrial partners.

The semantic web is composed of a set of design principles, including XML, XML Schema, RDF, OWL and SPARQL utilized by a group of experts in a particular field (i.e. World Wide Web Consortium), to create a concept space to facilitate the standardization of terms, relevant to a knowledge domain. These efforts at semantic clarity assist search engines and disciplines to better define and aggregate relationships within a discipline.

2.13.1 Semantic Web Terminology

Knowledge representation is concerned with how people store and process information. In artificial intelligence (AI) the primary aim is to store knowledge so that programs can process it and achieve the approximation of human intelligence. The fundamental goal of knowledge representation (KR) is to represent knowledge in a manner so as to facilitate inferencing (i.e. drawing conclusions) from knowledge. The semantic web is a fusion of notations such as XML, RDF and their interrelationships, to make the output of these KR languages easy for machines to parse and formalize relationships between concepts (Helbig, 2006).

Terms	Acronym	Definitions
FOAF	Friend of a Friend	A popular application of the semantic web is <u>Friend of a Friend</u> (or FOAF), which describes relationships among people and other agents in terms of RDF
OWL	Web Ontology Language	A family of knowledge-representation languages for authoring ontologies. This family of languages is based on two semantics: OWL- DL and OWL-Lite semantics are based on Description Logics, which are a family of knowledge representation languages which can be used to represent the terminological knowledge of an application domain in a structured and formally well-understood way.
RDF	Resource Description Framework :	-A family of World Wide Web Consortium (W3C) specifications originally designed as a metadata model but which has come to be used as a general method of modeling information, through a variety of syntax formatsThe RDF metadata model is based upon the idea of making statements about resources in the form of subject- predicate-object expressions, called "triplets" in RDF terminology. The subject denotes the resource, and the predicate denotes traits or aspects of the resource and expresses a relationship between the subject and the object.
SIMILE	Semantic Interoperability of Metadata and Information in (un)Like Environments	SIMILE is a joint project, conducted by the MIT Libraries and MIT CSAIL, which seeks to enhance interoperability among digital assets, schemata/vocabularies/ontologies, meta data and services.
SIOC	Semantically- Interlinked Online Communities (Breslin, Bojars 2004)	A Semantic Web technology, SIOC provides methods for interconnecting discussion methods such as blogs, forums and mailing lists to each other. It consists of the SIOC ontology, an open-standard machine readable format forexpressing the information contained both explicitly and implicitly in Internet discussion methods, of SIOC metadata producers for a number of popular blogging platforms and content management systems, and of storage and browsing/searching systems for leveraging this SIOC data.
SPARQL	SPARQL Protocol and RDF Query Language	SPARQL allows for a query to consist of triple patterns, conjunctions, disjunctions, and optional patterns.
XML	Extensible Markup Language	A general-purpose markup language, it is classified as an extensible language, any high-level language that allows its user to modify or enrich its syntax, because it allows its users to define their own elements. Its primary purpose is to facilitate the sharing of structured data across different information systems,

CHAPTER 3

HYPOTHESES, MODELS AND KNOWLEDGE REPOSITORY ARCHITECTURE

This chapter describes the research framework used to validate/refute the knowledge repository modeling hypotheses. The first component is a description of the underlying research hypotheses and assessment strategies. The second component introduces two models; The Knowledge Weighting Model (KWM) and the Aggregate Integrate Master model (AIM) that have been postulated to explain the relationships between constructivist constructs and the Integrated Knowledge Repository (IKR). The final component is a detailed description of the (IKR) which has been instantiated in the form of the Constructivist Unifying Baccalaureate Epistemology (CUBE) learning system that forms the construct platform for testing the hypotheses.

3.1 Hypotheses and Assessment Strategies

H1: Students using the Integrated Knowledge Repository (IKR) will have a more positive perception of the learning process than those who use conventional single course teaching paradigms.

H0: There is no relationship between the use of IKR and students' perceptions of the learning process.

Assessment of student perceptions: A questionnaire, "Constructivist Multimedia Learning Environment Survey (CMLES)", will be used to determine students' perceptions of the new system vs. the current paradigm, where courses are presented as single topics/units. **H2:** Students utilizing the IKR will develop a more complex understanding of the interconnected nature of the materials linking a discipline than those who take conventional single topic courses.

H0: There is no relationship between the IKR and developing a more complex understanding of the interconnected nature of the materials linking a discipline.

Assessment of unifying knowledge of a discipline: Students were given a case study on a topic that unifies concepts which span multiple courses. They were then asked to solve another problem/case that tests their ability to demonstrate their cross-subject knowledge. A rubric, integrating Jonassen's case analysis rubric, "Learning to Solve Problems" and Hevner's design evaluation methods, "Design Science in IS Research", was used to assess their evolution of skill development using CUBE. A control group of students, who had previous experience with the conventional method of instruction, were given the new case study and rubric to evaluate their comprehension of the course materials.

The categories of the rubric are:

- Quality of information sources cited,
- Constraint analysis,
- Feasibility, and
- Relevance of implications.

Future Research: Hypotheses H3 and H4 will be used to guide future research to refine the implementation of CUBE to maximize its effectiveness

H3: Students will spend more time exploring a concept, using the IKR, which allows them to navigate and construct their own representation, than those using conventional texts.

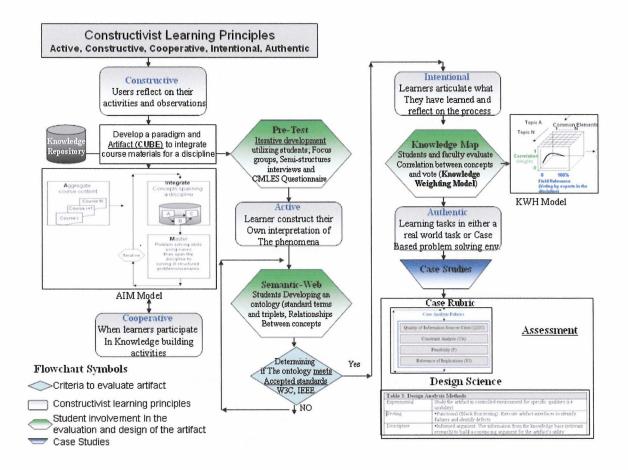
H0: There is no relationship between use of the CUBE paradigm and increased time spent exploring relationships between concepts.

Assessment of time spent: Students will be given several course topics and record the

actual time spent and level of knowledge integration.

H4: Students will be more actively involved in constructing knowledge representations than students in conventional courses.

H0: There is no relationship between use of CUBE and increased knowledge formation.


3.2 Constructivist Learning Principles Referenced By Hypotheses H1 And H2

The Constructivist Learning Principles that relate to Hypotheses H1 and H2 are the

following:

- Active/Manipulative: Learners are engaged by the learning process in mindful processing of information, where they are responsible for the result.
- **Constructive:** Learners integrate new ideas with prior knowledge in order to make sense or reconcile a discrepancy, curiosity, or puzzlement.
 - Presenting students with information spanning multiple courses, i.e. prior knowledge, they have a greater probability of creating meaning from connections between concepts
- **Collaborative:** Learners naturally work in learning and knowledge building communities, exploiting each others' skills while providing social support and modeling and observing the contributions of each member.
 - The students contribute to the knowledge map, building communities of practice, exploiting the skills of others and building on the skills of others.
- **Conversational:** Learning is inherently a social, dialogical process (Duffy & Cunningham, 1996). That is, given a problem or task, people naturally seek out opinions and ideas from others.
 - Contributions and links in the knowledge map, provided by students, will be evaluated and voted on. This will determine relevance and ranking of concepts; i.e., seeking out the opinions and ideas of others.

- **Reflective/Critical:** Learners should be required by technology-based learning to articulate what they are doing, the decisions they make, the strategies they use, and the answers that they find.
 - The voting will be an iterative process that will evolve over time to refine and critically evaluate decisions they have made.
- **Contextualized:** A great deal of recent research has shown that learning tasks that are situated in some meaningful real world task or simulated in some case-based or problem based learning environment are not only better understood, but also are more consistently transferred to new situations.
 - Case examples will be integrated in the CUBE implementation that reflects the integration of concepts spanning courses.
- **Complex:** The greatest intellectual error that teachers commit is to oversimplify ideas in order to make them more easily transmittable to learners. In addition to stripping ideas out of their normal contexts, ideas are distilled to their simplest form so that students will more readily learn them.
 - The focus of the CUBE system will be to create a learning environment that integrates concepts spanning multiple courses in a discipline, fostering the development of complex skills.

Figure 3.1 Flowchart of key concepts, integrated with the constructivist learning environment.

3.3 Models That Support This Research

Two new models have been introduced to provide a framework for this research. The Knowledge Weighting Model (KWM) provides a quantitative measure of concept relevance.

Building on the Selection-Organization-Integrate (SOI) knowledge construction model, (Mayer, 1996) this research introduces an Aggregate Integrate Master (AIM) model. It provides a framework for representing N number of courses that can be integrated to facilitate conceptual synthesis of concepts.

3.3.1 Knowledge Weighting Model (KWM)

In order to integrate knowledge than spans an entire discipline, there has to be a well defined model to weight the individual course topics/concepts, common elements that exist between the materials, correlation weights as to the interdependence of the variables and finally the evolving relevance of existing and new material to the overall growth of the discipline. (See Figure 3.2) This will evolve over time as new theories appear and the increasing volume of quantitative evidence supporting these claims is presented in refereed journals. One Measure of field relevance could possibly be the number of citations of a particular concept or approach.

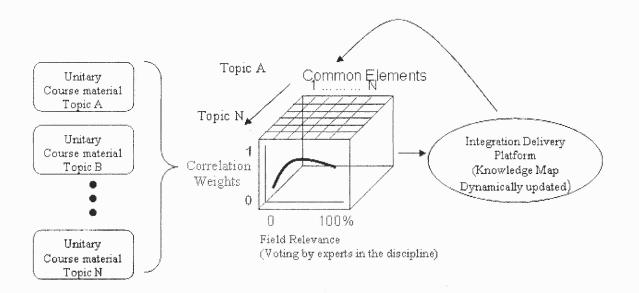


Figure 3.2 Knowledge weighting model.

3.3.1.1 Conceptual Clustering. In order to validate this model, conceptual clustering, a machine learning paradigm for classification, will be utilized. Conceptual clustering uses the inherent structure of the data that drives cluster formation and a description language; it determines classes with common characteristics extracted from large amounts of data. This description language is based on a semantic vocabulary provided by the students. The relationships between semantic terms will be defined by triplets defined in Resource Description Framework (RDF) (World Wide Web Consortium, W3C.org). Each piece of data and any link that connects pieces of data are identified by a unique name called a Universal Resource Identifier (URI). In the RDF scheme, two pieces of information are connected and grouped together with an operator, predicate, in a triplet to infer relationships between concepts (refer to Appendix).

COBWEB (Fisher 1987, 1995), a hierarchical conceptual clustering algorithm, will be utilized to validate the KWM model. Clustering algorithms normally have difficulty accurately determining clusters that share common attributes. Conceptual clustering, like COBWEB, incorporates attribute definitions that mesh smoothly with a well defined semantic vocabulary.

The correlation weights in the KWM model refer to the voting by students/faculty to determine the importance and relevance of links between terms. These relationships are then clustered together, by similar semantic terms and highest link weights, to form a graphical map that can then be traversed to help students quickly explore related concepts. Each student generates 3-7 links per topic/week per course.

Example: Concepts Weights: Data collected/ Per Course

Links: (10-20 students/course) x (15 weeks/semester) x (3-7 links/topic) ~ 1100

Voting/weights: Students vote on their top choices:

 $(5 \text{ choices/topic})^*(15 \text{ weeks}) \times (10-20 \text{ students}) = ~1000$

Total: Approximately 2100 data points colleted per course

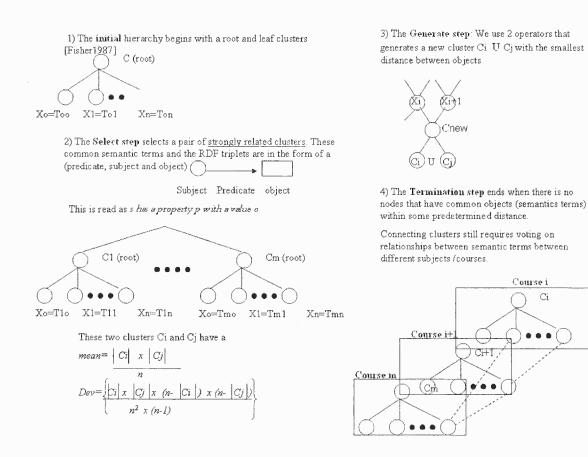


Figure 3.3 Conceptual clustering.

3.3.2 Aggregation-Integration-Master (AIM) Knowledge Construction Model

The Aggregation-Integration-Master (AIM) model builds upon the Selection-Organization-Integrate (SOI) knowledge construction model (Mayer, 1996). The SOI model theorizes that selecting and integrating concepts for a particular course or text, can form the basis for a more dynamic and expansive learning experience model. The Aggregate Integrate Master model, developed as part of this thesis, extends the SOI to a larger domain. It is postulated that effective knowledge integration/comprehension is only truly effective if it correlates all components of a discipline into a cohesive whole.

This is an iterative process where relationships and links between concepts are collectively incorporated by all participants. These weights between concepts, knowledge weighting model, (Figure 3.2), are voted upon and create an evolving concept space. This ensures two essential components. First, the model satisfies the constructivist approach to knowledge formation, where students are the knowledge makers and more effective integration and visualization of meta-cognitive data linking is continually evolving. Second, the knowledge repository continues to evolve integrating new links that ensure the information is timely and relevant.

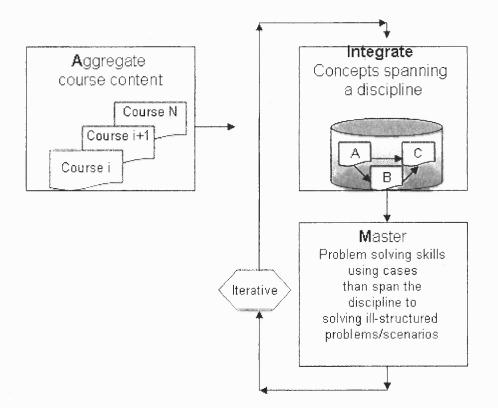
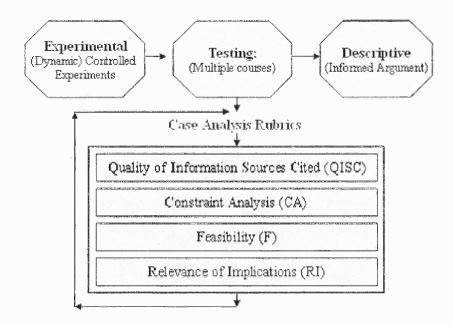


Figure 3.4 AIM knowledge construction model.


3.4 Assessment Methodologies

Students were provided with a tool to add to the knowledge map. These new knowledge relationships/links were available to other students as an alternate/additional path to learn and explore interrelated concepts. Students were measured by a rubric that relates their interest, number of entries, and quality of entries and other students' assessment of the benefit of those other perspectives.

Design science evaluation methods (Hevner et al. 2004) of Observation, Analysis, Experimentation, Testing and Descriptive framework will be used to evaluate the case analysis rubric for H2. The assessment criteria categories (Jonassen, 2003) include:

61

and Relevance of Implications (RI), as summarized in Figure 3.4 and Table 3.1.

Figure 3.5 Assessment methodology (case analysis rubric) embedded in design science evaluation methods.

"In the Design Science Model, knowledge and understanding of a problem domain and its solution are achieved in the building and the application of the design artifact," (Hevner et al. 2004). Table 3.1 illustrates the utility, quality and efficacy of the design artifact.

Table 3.1 Design Analysis Methods

	Design Analysis Methods
Experimental:	Study the artifact in controlled environment for specific qualities (i.e. usability)
Testing:	•Functional (Black Box testing): Execute artifact interfaces to identify failures and identify defects
Descriptive	•Informed argument: Use information from the knowledge base (relevant research) to build a convincing argument for the artifact's utility.

Case Analysis/System problems are often complex, interdisciplinary problems that originally emerged at Harvard Law School over a hundred years ago (Williams, 1992). These problems engage the learners in understanding and resolving issues, rather than remembering them. It requires learners to critically analyze situations, identify issues and assumptions and engage in reflective ethical thinking (Lundberg, 1999). The levels of learning and thinking engaged by this process are at a much deeper level (Jonassen, 2003).

The system will provide students with a series of cases in the field of Computer Technology. The students' responses will be analyzed using rubrics (Jonassen, 2003) to determine if the Integrated Knowledge Repository approach, to facilitate a more complex understanding of the interrelated nature of the discipline spanning multiple courses, is effective.

Table 3.2 Case Analysis Rubrics

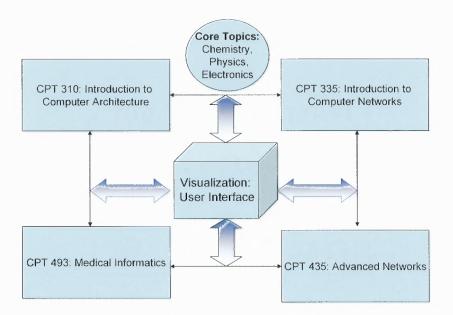
Case Analysis Rub	OISC CA F RI
	Sources were internationally recognized; questionable or unknown
Constraint Analysis (CA):	Constraints are all identified; mostly identified or few constraints known
Feasibility (F):	Feasible to implement; unclear if feasible or impossible to implement
Relevance of	Implications clear and feasible; implications unclear or few implications
Implications (RI):	identified

3.5 Knowledge Repository Design

CUBE: A schema for enhancing learning and knowledge formation.

Acronym: CUBE = (Constructivist Unifying Baccalaureate Epistemology)

Definition: An Integrated Knowledge Repository aggregates course materials of N number of courses with associated concept maps that incorporate constructivist features providing students with the ability to add/construct concept maps.


The first two hypotheses, H1 and H2, will be evaluated to explore the efficacy of the CUBE paradigm. The second two hypotheses, H3 and H4, will be used to guide future research to refine the implementation of CUBE to maximize its effectiveness.

3.5.1 Implementing and Testing the Knowledge Repository

	Knowledge Repository Design
Step 1:	Develop the Knowledge Repository Data Structures
Step 2:	Create the generic design methodology and software that allows professors/Instructors to construct an integrated knowledge repository
Step 3:	Select a discipline to test the design and software
Step 4:	Design the CUBE user interface to facilitate entering course materials; i.e. CUBE surface segmented into 16 fields, representing weekly course topics
Step 5:	Develop concepts maps / visual user interface for navigating information
Step 6:	Test the prototype with a few students and make any needed modifications
Step 7:	Test the knowledge repository with at least 4 classes.
Step 8:	Analyze the data using factor analysis, SPSS and SAS.

Table 3.3 Knowledge Repository Design

3.5.2 Knowledge Repository Test Environment

Discipline: Computer Technology used to test and implement the proposed knowledge repository

Figure 3.6 Educational test environments.

One of two visualization options

- •A macro view of all the concepts/disciplines
- •A micro view of the topic and links

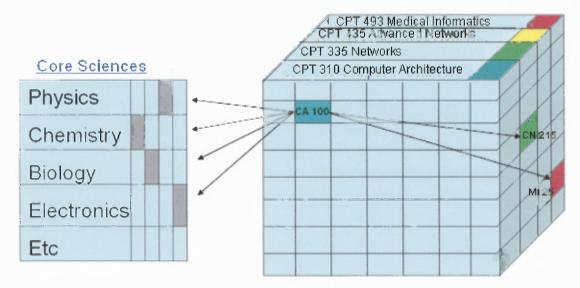


Figure 3.7 Global visualization structure.

Multilevel information representation

(Macro vs. Micro level single discipline)

•Each plane represents a course/ logical topic

Embedded in each plane are links to:

- Contextual course relationships
- •Global (other course)
- Core knowledge underpinnings

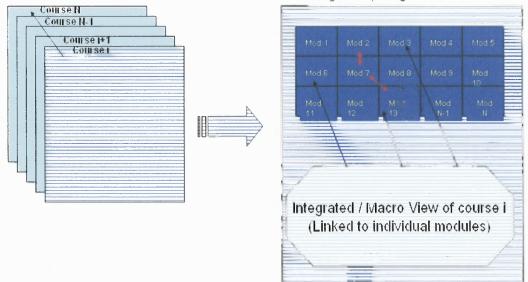
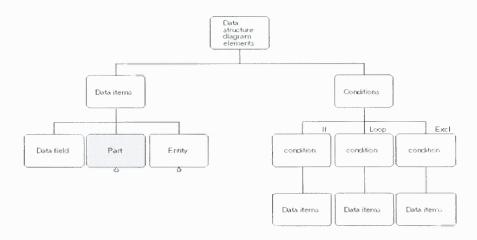


Figure 3.8 Multilevel information representation.

3.5.4 Data Structure Diagrams (Relationships Between Concepts)


Data Structure Diagram (DSD)

•A Data Structure Diagram uses graphical notations for entities, relationships and constraints

•Entities have a unique representation, and display communication and potential processing of the entity.

•A relation is a table structure definition (a set of column definitions) along with the data appearing in that structure.

•A constraint refers to the degree of statistical dependence between or among variables. •DSDs focus on the relationships of the elements within an entity and enable users to fully see the links and relationships between each entity.

Data Structure Diagram (DSD) (cont.)

Data Structure Diagrams

•A data structure diagram (DSD) is the result of a process of hierarchical decomposition of a complex data area, which is subdivided as far as possible (and reasonable). DSDs are hierarchical tree diagrams depicting "may consist of" relationships between data items if read from top to bottom and following the connecting lines. The boxes in the diagram may represent intermediate complex data items which are further subdivided in the diagram. Fully atomized data items, represented by an attribute which can be directly used as a field definition in a database table.

•References to complex data items detailed elsewhere: Instead of listing attributes, a reference to an entire entity may be made (entities may be depicted by a data structure diagram with only one row of data items attributes - below the header item). Another possibility to make a reference to several data items is to include a part, i.e. a reference to a separate data structure diagram.

Conditions: The "consists of" relationship may be modified by conditions written in boxes which are marked by an abbreviation on the right hand top of the box defining one of the following conditions:

"IF": Data items below this box are to be read only if the condition is satisfied

•"EXCL" (= exclusive alternative): Same as "IF", but several such conditions exist which are mutually exclusive

"LOOP": Data item is repeated as many times as indicated in the condition.

Reference April 29, 1996, <u>wgb@zedat.fu-Berlin.de</u>: W. Berendsohn, University of Berlin) http://www.bgbm.org/CDEFD/CollectionModel/dsd.htm

Figure 3.9 Data structure diagram.

3.5.5 Data Structure-Pointers

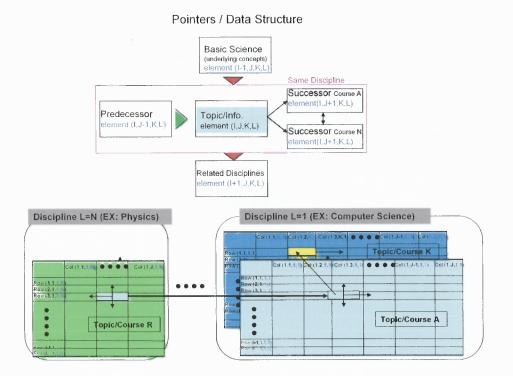


Figure 3.10 Data and pointer structure.

The pointer structure is designed to accommodate course level navigation of topics, the 2D plane element (i,j), discipline level navigation, the 3D table element (i,j,k) and interdisciplinary relationships represented by the 4D element (i,j,k,l). Pointers have multiple successor and predecessor elements. This fourth dimension is essential to accommodate the future growth of the knowledge base. Not only does it connect basic core topics such as math, physics and chemistry that provide the underpinnings of a discipline but it provides possible commonalities between disciplines that are often overlooked.

3.5.6 **Message Header Structure**

	Related Discipline
Disciplines Links	Concept ID # Successor ID # Predecessor ID # Course ID #
Multi-Disciplinary Links	Multi ID # Multi successor (1-n) Multi successor (1-n) ID # ID # ID #
Basic Knowledge Links	CORE topic ID # Core successor (1-n) Core successor (1-n) Core successor (1-n) ID # ID # ID #
Additional Links / Comment fields	ADDLNK ID # ADDLNK ID # ADDLNK ID # i i+1 n
Example:	Ex: Computer Ex: Computer Architecture 126 Architecture 126 CA 125 SUC-CA 126
	Ex: A core eference Chemistry CORE-CHEM 25 Ex: A core successor Physics CORE-PHYS 20 Ex: Similar concepts Biomedical Engineering ADDLINK BIOMED 204

Message Header Structure

Sample Message [CA 125: SUC-CA 126: PRED-CA 124: RD-NTW1 72:] (CORE-CHEM 25; CORE-PHYS 20): ADDLINK-BIOMED 204

Glossary

Colons (:) used to separate the fields/links Semicolon (:) used to link core successors Hyphens (-) separate key words Brackets [] encompass core discipline links Core Delimiters () encompass core topic links ADDLINK links outside predefined categories

SUC Successor link PRED Predecessor link **RD** Related discipline CORE Core-topics

Figure 3.11 Message header structure.

3.5.7 CUBE Software

The CUBE knowledge repository was written using PHP and JavaScript with an Oracle database backend. PHP is a general purpose scripting language used for developing dynamic web content that has embedded support for object oriented programming and PHP data objects. Scripts run directly on the web server, i.e. server-side scripting, which generates dynamic HTML pages. It was chosen since PHP can be deployed on most web servers. Many operating systems and platforms can be used with most relational database management systems and it contains open source libraries to encourage organic growth.

CHAPTER 4

PILOT TESTING

Three methodologies were used to pilot test the CUBE knowledge repository; Semistructured interviews, focus groups and a questionnaire. The questionnaire has three subcomponents; the Constructivist Multimedia Learning Environment Survey (CMLES), a demographics survey and a set of targeted questions, relating to presentation and content integration of CUBE knowledge repository. Finally, triangulation, the practice of cross-checking findings with multiple data sources, was used to validate the credibility of the instruments.

4.1 Research Population

The population for the study was students in the Bachelors Program in Computer Technology at NJIT. The courses are Computer Architecture, Computer Networks I, Computer Networks II and Medical Informatics. Students received a standard set of instructions that were read from a pre-prepared set of notes to ensure that all students had the same treatment. The students span junior to senior year courses. Since students in the computer technology program start in their junior year, transferring in from other colleges, there was also a unique opportunity to ask additional questions about teaching perspectives, relative to other colleges. Approximately 90 students were available. All Internal Review Board (IRB) requirements were complied with, including offering students alternate assignments for those who chose not to participate.

4.2 Data Collection

An online questionnaire, using the Constructivist Multimedia Learning Environment Survey (CMLES), attached in appendix D, was developed using the Survey Monkey toolkit. Survey Monkey provides a number of rudimentary statistics, such as averages and total response counts. In order to conduct more complex analyses, t-tests, factor analysis etc., export tools embedded in survey monkey were used to export data to SAS 9.1.

4.3 Methodologies Employed

4.3.1 Semi- Structured Interviews

A semi-structured interview is a flexible method of interviewing, allowing new questions to be brought up during the interview, as a result of what the interviewee says. The interviewer, in a semi-structured interview, generally has a framework of themes to be explored, as opposed to a structured interview which has a formalized, limited set of questions.

Unlike the questionnaires, where detailed questions are formulated ahead of time, semi-structured interviewing starts with more general questions or topics. Relevant topics are initially identified and the possible relationship between these topics and the issues form the basis for more specific questions, which do not need to be prepared in advance. The majority of questions are created during the interview, allowing both the interviewer and the person being interviewed the flexibility to probe for details or discuss issues.

4.3.2 Focus Groups

A focus group is a form of qualitative research in which a group of people are asked about their attitude towards a product, service, concept, advertisement, idea, or packaging. Questions are asked in an interactive group setting, where participants are free to talk with other group members.

"Focus groups have a high apparent validity - since the idea is easy to understand, the results are believable. Also, they are low in cost, one can get results relatively quickly, and they can increase the sample size of a report by talking with several people at once," (Marshal, Rossman, 1999).

Types of focus groups:

- **Two-way focus group** one focus group watches another focus group and discusses the observed interactions and conclusions
- ٠
- **Dual moderator focus group** one moderator ensures the session progresses smoothly, while another ensures that all the topics are covered
- **Dueling moderator focus group** two moderators deliberately take opposite sides on the issue under discussion.
- **Respondent moderator focus group** one or more of the respondents are asked to act as the moderator temporarily.
- Client participant focus groups one or more client representatives participate in the discussion, either covertly or overtly.
- Mini focus groups groups are comprised of 4 or 5 members rather than 8 to 12
- Teleconference focus groups telephone network is used
- Online focus groups computers and internet network is used

4.3.3 Questionnaires

A questionnaire, Constructivist Multimedia Learning Environment Survey (CMLES), was used to determine students' perceptions of the new system vs. the current paradigm where courses are presented as single topics/units. This survey was selected since the CMLES scales demonstrated a high degree of internal consistency reliability (with alpha reliability coefficients ranging from .73 to .82), as well as satisfactory factorial validity and discriminate validity (Maor, 1999).

An additional series of questions were added that explored the basic components of the user interface and the content integration of the knowledge repository. This last section went through a number of iterations and pretest, before the final questionnaire concept was evaluated to validate the instrument.

4.3.4 Triangulation

Once the data was gathered, triangulation, the practice of cross-checking findings with multiple data sources, was used to validate the results. By combining multiple observers, theories, and methods researchers can overcome the weakness or potential biases and the problems that come from single-observer and single-theory studies (Cohen & Manion, 1986).

There are four types of triangulation (Denzin, 1970):

- 1. *Data triangulation*, which entails gathering data through several sampling strategies, so that slices of data at different times and social situations, as well as on a variety of people, are gathered.
- 2. *Investigator triangulation*, which refers to the use of more than one researcher in the field to gather and interpret data.

- 3. *Theoretical triangulation*, which refers to the use of more than one theoretical position in interpreting data.
- 4. *Methodological triangulation*, which refers to the use of more than one method for gathering data.

4.4 Methodology

4.4.1 Method 1: Semi-Structured Interviews

- Semi structured interviews were conducted with students who were currently taking CPT 310 Computer Architecture, that is taught in the conventional single threaded presentation.
- Students were offered alternate assignment options.
- A consent form was signed by the students and they were informed of their rights to withdraw from the research at any time.
- They were then presented with the new tool that integrates the knowledge of their course into a holistic presentation that integrates the course material into the larger view of the discipline as a whole. The tool allows students to navigate conceptual threads linking 4 computer courses.
- The interview was coded and themes and patterns, preferences, dislikes, and design changes were explored.
- A screen shot of the Knowledge Repository tool is in the appendix.

4.4.2 Method 2: Focus Group

- A group of eight students in Computer Technology were engaged in a focus group.
- A round-robin discussion group was utilized to engage all participants in the discussion.
- Two hours were allocated
- Six questions formed the structure of the discussions
- All eight students had laptops and recoded their responses in real time via email. Four of those transcripts are included in Appendix E.

4.5 Pilot Results

4.5.1 Semi-Structured Interviews

In order to evaluate the usefulness and functionality of the Knowledge Repository approach, a group of students was asked a series of questions, listed in Appendix B, which spanned into two classes/sessions. A pretest was administered to evaluate the instrument and subsequently a modified final version of the instrument, incorporating the lessons learned, was developed.

The students were also given a user testing guide, Appendix C, which evolved from its original pretest configuration, to the final test version. The user guide stepped the students through all the basic components of the Knowledge Repository. The tester was available to observe students reactions and provide any assistance if the students had difficulty.

Then, Knowledge Repository topics, as summarized in Table 4.1, were explored. They focused on the user interface, the organization of information, the knowledge map approach to correlating concepts, utilizing the multi-tiered approach described in Bloom's Revised Taxonomy, and finally, the perceived educational benefit of this new paradigm.
 Table 4.1 Knowledge Repository Structure

Knowledge Reposito	ry Structure
Characteristics	Features of the Knowledge Repository
Interface	Cube presentation: A visual method of organizing and accessing the course content as opposed to the customary one course approach in general use
Organization	Multiple course content format: The philosophical approach of integrating multiple courses into a new teaching paradigm
Knowledge Map	Utilizing Blooms Revised Taxonomy to generate a multi-tiered knowledge structure that is used to correlate concepts over multiple domains
Educational Benefits	Exploring the educational benefits of allowing students to explore conceptual threads linking concepts that span multiple courses: Concept part of the Constructivist learning framework

Pretest Questionnaire:

The pretest questionnaire explored the basic components of the user interface and functionality of the knowledge repository concept. The system functionality was further broken down into the aggregation of multiple course content and knowledge map concept correlation capabilities.

	Pretest Questionnaire
Category	Questions
Content (Perceived Usefulness)	 How would you describe the presentation of multiple courses/content (notes) in one central location? 1a: Do you believe the new system will help you learn the material any better?
	2. How would you judge the benefits of the preview page that shows you a graphical overview of the course content?
User Interface (Perceived Ease of Use)	3. How would you evaluate the screen layout using a cube to represent multiple courses?
	4. How would you describe the user interface: Is it easy to understand how to use the system?
Knowledge Repository	 5. What do you think of the "knowledge map" that links ideas across multiple courses (finding how concepts evolve from one course to another)? 5a: What do you think of the 2D version vs. the 3D version? Better or worse? Should you have both?
	6. How would you evaluate the knowledge repository approach of aggregating (combining all the courses notes and links between ideas in one central location (web page)?

1. Perceived Usefulness

a. Presentation of Multiple Course Notes

- i. Easy
- ii. Undecided
- iii. Difficult

b. Preview page (Graphical)

- i. Easy
- ii. Undecided
- iii. Difficult

c. Enhanced Learning

- i. Beneficial
- ii. Undecided
- iii. Not Beneficial

d. Enhanced Understanding

- i. Beneficial
- ii. Undecided
- iii. Not Beneficial

2. Perceived Ease of Use

a. Cube interface

- i. Easy
- ii. Undecided
- iii. Difficult

b. General Use Interface

- i. Easy
- ii. Undecided
- iii. Difficult

3. Knowledge Repository

a. Knowledge Map linking conceptual threads

- i. Beneficial
- ii. Undecided
- iii. Not Beneficial

b. Knowledge Map helps understand concepts

- i. Beneficial
- ii. Undecided
- iii. Not Beneficial

Final Questionnaire:

By incorporating the feedback from the initial set of semi-structured interviews, additional questions were added, as high lighted in italics in Table 4.3. These were more

in-depth probes. During the initial pretest questions, it was evident that the surface had just been scratched and students felt that more in-depth queries were necessary to explore the full richness of the new system/paradigm. The process involved asking the students "how would you change or improve the instrument?"

Table 4.3 Final	Version of Questionr	naire
-----------------	----------------------	-------

	Final Questionnaire (Italics indicate additions to the pretest questionnaire.)
× Category	Questions
Content	 How would you describe the presentation of multiple courses/content (notes) in one central location? 1a: Do you believe the new system will help you learn the material any better?
	 2. How would you judge the benefits of the preview page that shows a graphical overview of the course content? 2a: Do you think it helps a student understand what is going on in the course better or worse than the standard text-only course outline?
User Interface	 3. How would you evaluate the screen layout using a cube to represent multiple courses? 3a: Can you think of a better way of representing multiple courses?
	 4. How would you describe the user interface: Is it easy to understand how to use the system? 4a: Is there anything specific you did not like about how the screen is set-up?
Knowledge Repository	 5. What do you think of the "knowledge map" that links ideas across multiple courses (finding how concepts evolve from one course to another)? 5a: What do you think of the 2D version vs. the 3D version? Better or worse? Should you have both? 5b: Do you prefer the 3D version, and maybe larger hiding 2D version? 5c: What do you think if this knowledge map? Will it help you learn and understand what is going on in the courses? Will it be better or worse?
	 6. How would you evaluate the knowledge repository approach of aggregating (combining all the course notes and links between ideas in one central location (web page)? 6a: Do you think the idea of teaching courses differently, where you have all of the information of multiple courses available to you is a better or worse way of presenting the information?

Response Summaries:

The following table is a transcript summary of the important points of the semi-structured interviews. Complete transcripts are in the Appendix. A User Guide, also in the Appendix, was followed so that all respondents were asked similar questions.

and 2
,
Interviews
g
from
Sesults 1
fF
~
Summary
4
4
ble

			Summary of results (detailed) interviews 1 and 2
Research Areas	Subtopics	Theme	Quotes that Support/ conflict
Perceived Usefulness			Interview 1 = 11 Interview 2 = 12 (Italics indicates a direct quote)
	Presentation of Multiple Course Notes		11: Beneficial: I think it's very useful to see everything in one central location, because it's very useful to see everything in one place 12: Beneficial: The idea is good. Put all of the information into one central database. We can access it any time we want anywhere you are in the world. It's a good way to refresh your memory if you want to go back to a class you have taken year or two years ago. The idea is really good.
		Enhanced Learning	12: Undecided: It all depends on the student
	Preview page (Graphical)		II: Beneficial: I think preview page is just a great way of looking up what the each course is all about for that semester, from the first week of the semester till the fifteenth week of the semester. I2: Beneficial: Preview page to me it's a good idea. It shows me a minimal idea of what we cover in each module/week so I can have a better understanding of what we learn.
		Understand Concepts Better	 Beneficial: Yes, it is very easy to understand how to use the system, knowledge maps really help you as well as 2D and 3D representation of threads help you how to navigate the page as well as the outlines and preview, and looks really good. Beneficial: Preview page to me it's a good idea. It shows me a minimal idea of what we cover in each module/week so I can have a better. understanding of what we learn. I think the way it's done now it shows multiple layers its goes form layer 1 to layer 2. So it gives more in depth information.
Perceived Ease of Use			
	Cube interface		11: Easy: cubes are a really good way of showing all of the course information listed under each different course name for students to have an easy access to any information they want in a very quick and unique way. 12: Easy: The layout I like
	General Use Interface		II: Easy:

Table 4.4 Summar	Table 4.4 Summary of Results from Interviews 1 and 2 (Continued)	views 1 and 2 (Continued)
Research Areas	Subtopics	Theme	Quotes that Support/ Conflict
Knowledge Repository			
	Knowledge Map linking		11: Beneficial: I think it's a good way of showing with the arrows what is important and what is not. And the color coding helps you to decide and then you can easily go back and forth to find out information from any
	conceptual threads		particular course. 12: Beneficial: It's a good idea. You have the information in one spot. You don't need to go from site to site herrowse vou howe all of the information in one central station where everything is there for vou
		2D vs. 3D	II: Undecided: I think both versions are a good idea, but 3D has an advantage over 2D, because it shows you a lot clearer, also color coded better then 2D representation.
			12: 3D: What I would do is to hide the 2D. 3D to me looks much better then 2D.
	Knowledge Map helps understand		11: Beneficial: it is a lot easier, convenient, faster and helpful compared to other computer technology websites that I have seen before. This is an excellent technology website and I hope it'll be very useful to all
	concepts		of computer technology major students. 12: Beneficial: It shows what is the most important, how much, what you need to know more then the other classes, so you can get a better understanding of the class.

.

4.5.2 Focus Group

A senior project class, CPT 401, held several focus groups that lasted two hours each. This was an iterative process that spanned several months. It comprised seven students, who discussed their impressions of the Knowledge Repository. They were asked to suggest potential improvements of the system and user interfaces. To ensure the group members all focused on the same issues, the web site was projected on a screen. Specific features were highlighted and a script was followed where students responded to each category. A round robin format was utilized to ensure all participants responded to each scripted issue. Notes were taken and the students, who all had laptops, recorded their responses and emailed those real time notes, which are included in Appendix E. Four of the transcripts, which were well structured and followed the focus group outline used during the discussion, are included.

The general perceptions of organizing information spanning multiple courses in a single location and the Knowledge Map were positive. A number of students provided useful feedback on the screen layout that was incorporated into designs used in the final tested system.

Table 4.5 Questions and Responses for the Focus Group

Table 4.5 Questions and Responses for the Focus Group (Continued)	Focus Group (Continued)
Questions	Responses: Participants are Labeled P1, P2, etc.
3: What do you think about the general	P1: Pros: You can go into more depth of any course provided within the website. On the select a course column you can
concept of integrating course materials for multiple courses in a single website?	click the Keview button, and open up the power point slide to see all of the modules are listed for that particular course in a semester. It is easy to preview what you will be doing for that course from week one to end within only one page, very convenient and straight forward process
	P2: Pros: The availability of all the info on this site will greatly benefit a student who is looking for links to all his/her
	related course work that they have taken (or looking to take) during their time here at NJIT. P3: Pros: I personally like the idea of having a review, because I would be able to see what material I will need to know, and
	what I will learn when I take that class.
	P4: Pros: All the course information being accessible from one place using a very easy to use user interface containing connections from previous and future courses. It would make it easier to study for exams using the knowledge map then
	being able to use the pop-up widows to open multiple power points.
1. The general screen lay out is good, excent some little wording problems I	P1: Pros: Over all the visual set up 1 like, except the parts 1 have mentioned 1 didn't and thought it could be better design. For the course outline display section, you could have a colorful background, maybe a picture and put the writing on top of it
have mentioned before as Review needs	with a reasonable coloring.
to be changed to Preview	P2: Cons: While the UI is structured, some may not find it very user-triendly. I think that just simply zooming in on the
	page to it the entre browser window, havigation can be greatly improved. With the larger size the mouths on the have their own area to distinguish itself. This change will greatly enhance the site with minor changes to the modules.
2. What do you think of the Knowledge	P1: Connecting things from course to course is important and useful. One information could always relate refer to or could
Map linking concepts across multiple	be about information in another course. Information should have links to each other in order for a quick reference.
courses?	P3: Pros: Organizing information into one useful system is great. Since I am paying money for my education I want to have access to everything to help me pass and get my degree If I don't get something when the teacher explains it I can always
	go and see the information on the web-site.
	P4: Pros: The course connection features could be one of the best features. As long it functional and easy to understand
	well thought out and implemented. This feature still not useable but I would like to see this function to give better input.
6: What do you think about linking other multimedia content into the website,	P1: Pros: Yes, video clips are very useful to have, where it's necessary on power point slides. I think this is a really good idea since not everyone understands the material verbally, watching the video clips could really be useful and helpful for
such as video clips?	students to understand the material.
	P2: Pros: The use of video clips is actually a great idea. As far as teaching, it can really help a number of students who
	aren't able to grasp certain concepts by the use or lecture notes alone. P3: Pros: Video clips are really useful in any website. They give another perspective on a particular subject.

4.6 Triangulating Results of the Pilot Study: Qualitative and Quantitative

Treatments

Once the qualitative data has been gathered *triangulation*, the practice of cross-checking findings with multiple data sources, is used to validate the credibility of qualitative analyses. The optimum triangulation can be achieved by cross referencing Qualitative and Quantitative data. The Majchrzak, et al. (2000) paper that analyzed computer supported inter-organizational virtual teams was highly regarded due to its depth of data collection and their approach that triangulated qualitative and quantitative results from multiple data points such as: interviews, documentary materials, private interviews etc.

This research has gathered not only qualitative data from multiple sources, semistructured interviews and a focus group, but has preliminary quantitative data, from a CMLES validated survey, (Table 4.5), that supports most of its original hypotheses, that aggregating courses materials from multiple courses is a preferred method of enhancing students' understanding of the cohesion of information in a discipline.

23. Content Integration								
	Excellent	very good	good	no opinion	poor	very poor	no positive benefit	Response Count
62. How would you evaluate the knowledge repository approach of aggregating (combining) all the course notes and links between ideas in one central location (web page)?	50.0% (12)	29.2% (7)	16.7% (4)	4.2% (1)	0.0% (0)	0.0% (0)	0.0% (0)	24
63. How would you evaluate the concept of locating all course information/notes for all four years of your college study in one location/web page?	58.3% (14)	29.2% (7)	12.5% (3)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	24
64. Do you think this option, aggregating all course notes on one location, will add to the learning process?	37.5% (9)	50.0% (12)	12.5% (3)	0.0% (0)	0.0% (0)	0.0% (0)	0.0% (0)	24
65. What do you think of the "knowledge map" that links ideas accross multiple courses (finding how concepts evolve from one course to another)?	25.0% (6)	54.2% (13)	8.3% (2)	8.3% (2)	0.0% (0)	0.0% (0)	4.2% (1)	24
66. Do you think tht using the knowledge map will help you to learn better?	20.8% (5)	33.3% (8)	37.5% (9)	4.2% (1)	0.0% (0)	4.2% (1)	0.0% (0)	24

Table 4.6 CMLES (preliminary) Survey of 24 Computer Technology Students

A brief summary, (Table 4.7), of CMLES data indicates overwhelmingly that students believe this approach will have positive benefits. Further testing and analysis of learning outcomes will be tested next semester.

Table 4.7 Summary of CMLES Data

Summary of CMLES Data				
Question	Data combining good, very good and excellent			
Knowledge Repository approach of aggregating course notes	88.2%			
Comprehension of interconnected nature of concepts : Using a knowledge Map	91.6%			

In summary, students believed in the positive aspects of the approach of providing tools to explore concepts on their own "You can go into more depth of any course provided within the website [student quote.]" In addition, the quantitative data from the questionnaire indicated an approximate 90% belief that this approach will be beneficial to their overall learning experiences.

4.7 Constructivist Learning Environment Framework

The design of the integrated knowledge repository began with the selection of the learning paradigm, the Constructivist Learning Environment (CLE), where learners actively construct the interrelationships between concepts.

In order to achieve this aggregation of information, a CUBE prototype was designed and tested with students utilizing four computer technology courses. A semantic web framework, utilizing a common vocabulary, was developed with students' input, to ensure that the concept mapping was consistent and extensible to future expansion. This correlates to the *Active* tenet of the CLE.

The preliminary results of the pilot test supported the CLE tenet that students felt that a learner's active participation in constructing the interrelationships between concepts added to their comprehension of the subject matter by over a ninety percent margin. The second pilot result was that the CUBE system prototype supported their efforts to actively construct this cohesive model of the course content by 88.2% of participants.

4.8 Project Timeline

Table 4.7 indicates the calendar timeline for the project and Table 4.8 indicates the research and testing timeline followed during the course of this research.

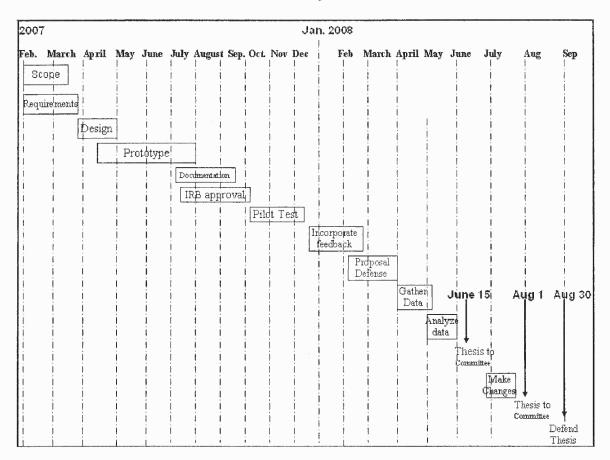


 Table 4.8
 Calendar Timeline for Research Project

Table 4.9 Project Timeline

ID	Task Name	Work	Duration	Resources	Start	Finish	% Work Complete	
1	Scope	360 hrs	7 weeks		2/1/2007	3/24/2007	100	
2	Determine project scope	200 hrs	4 weeks	D. Lubliner, Advisors, Students	2/1/2007	3/1/2007	100	
3	Determine Resources	40 hrs	1 week	D. Lubliner	3/2/2007	3/9/2007	100	Parallel
4	Secure Resources	20 hrs	2 weeks	D. Lubliner, NJIT Admin Staff	3/10/2007	3/24/2007	100	
5	Analysis/ Software Requirements	255 hrs	6.5 weeks	D. Lubliner	2/1/2007	3/26/2007	100	
6	Conduct needs analysis	150 hrs	5 weeks	D. Lubliner, Students, Faculty, Advisors	2/1/2007	3/7/2007	100	
7	Draft preliminary specifications	40 hrs	1 week	D. Lubliner	3/8/2007	3/15/2007	100	
8	Review specifications	15 hrs	2 days	D. Lubliner	3/16/2007	4/30/2007	100	
9	Design	210 hrs	3.5 weeks		3/27/2007	4/20/2007	100	
8	Develop Specifications	40 hrs	1 week	D. Lubliner, Advisors	3/27/2007	4/3/2007	100	_
9	Develop initial Prototype	100 hrs	2 weeks	D. Lubliner	4/4/2007	4/18/2007	100	
10	Incorporate feedback/ testing	70 hrs	1.5 weeks	D. Lubliner, Students, Faculty	4/19/2007	4/30/2007	100	
11	Develop Prototype	350	9.5 weeks		5/1/2007	8/10/2007	100%	
12	Identify Modular Code	50 hrs	1.5 weeks	D. Lubliner	5/1/2007	5/15/2007	100 %]
13	Develop prototype Code	300 hrs	8 weeks	D. Lubliner	5/15/2007	8/10/2007	100%	
14	Testing						1000/	-
15	Develop Test Plans	40 hrs	1 week	D. Lubliner, Advisors	8/11/2007	8/18/2007	100%	
15	Unit Testing	80 hrs	2 weeks	D. Lubliner	8/19/2007	9/1/2007	100%	-
16	Integration Testing	40 hrs	1 week	D. Lubliner	9/2/2007	9/9/2007	100%	
17	Documentation	40 hrs	1 week	D. Lubliner	9/10/2007	9/17/2007	80% _f	
18	IRB Approval	50 hrs	4 weeks	D. Lubliner, Advisors, IRB	9/10/2007	10/10/2007	100%	

Tal	ble 4.8 Project	Timeline	e (Continued	1)			
ID	Task Name	Work	Duration	Resources	Start	Finish	% Work Completed
19	Pilot						
20	Identify test groups	80 hrs	2weeks	D. Lubliner, Advisors	9/18/2007	10/3/2007	100%
21	Develop testing Manual	25	1 week	D. Lubliner, Advisors	10/4/2007	10/11/2007	100%
22	Pilot test	100 hrs	2 weeks	D. Lubliner, Students, Faculty	10/20/2007	11/05/2007	100%
23	Obtain user feedback/ preliminary surveys	20 hrs	1 week	D. Lubliner, Students	11/06/2007	11/13/2007	100%
24	Analyze surveys preliminary statistics	20 hrs	1 week	D. Lubliner	11/14/2007	11/21/2007	100%
25	Incorporate feedback into system/model	40 hrs	1 week	D. Lubliner, Advisors	11/22/2007	11/29/2007	100%
26	Deployment/ Testing of system						
24	Determine test groups	40 hrs	1 weeks	D. Lubliner, Advisors	1/22/2008	1/29/2008	90%
25	Proposal Defense	20 Hrs	1 week	D. Lubliner, Committee	3/25/2008	4/1/2008	
26	Testing	75 hrs	3 weeks	D. Lubliner, Students	4/2/2008	4/30/2008	
27	Preliminary analysis data	100 hrs	2 weeks	D. Lubliner, Advisors	4/30/2008	5/14/2008	
28	Send thesis committee	40 hrs	4 weeks	D. Lubliner, Committee	5/15/2008	6/15 2008	
29	Incorporate committees feedback	80 hrs	2 weeks	D. Lubliner	6/15/2007	7/1/2008	
30	Resubmit Thesis to Committee	40 hrs	4 weeks	D. Lubliner, Committee	7/2/2008	8/1/2008	
31	Incorporate any changes	20 hrs	1 weeks	D. Lubliner	8/2/2008	8/9/2009	
32	Defend Dissertation	20 hrs			8/25/2008		

CHAPTER 5

RESEARCH RESULTS

The objective of this chapter is to describe the research that has been completed and to validate/refute the knowledge repository modeling hypotheses.

5.1 QUANTITATIVE DATA

Quantitative research is the systematic scientific investigation of properties and phenomena and their relationships. Quantitative research is often an iterative process whereby evidence is evaluated, theories and hypotheses are refined.

The goal of this phase of the research was to validate hypothesis H2: Students utilizing the IKR will develop a more complex understanding of the interconnected nature of the materials linking a discipline than those who take conventional single topic courses.

In order to test this hypothesis it was necessary to collect quantifiable data; i.e. an exam (appendix) that covered material spanning multiple courses and then determines if students attained higher scores using the knowledge repository instantiated by the CUBE artifact. To mitigate the possibility of confirmation bias, researcher bias, "a tendency to search for or interpret new information in a way that confirms one's preconceptions and avoids information and interpretations which contradict prior beliefs" [Peter Cathcart Wason 1960], five different faculty from two departments, Electrical Engineering Technology and Computer Technology, administered these exams. In addition to ensure the validly of the results students from multiple majors, at similar points in their

education taking conventionally taught courses, were given the exam to establish baseline values from which the efficacy of utilizing the knowledge repository could reliably be determined.

5.1.1 Research Population

Three types of data were colleted. All three groups were given the same questionnaire, in

the same order, using the same written instructions to reduce tester bias.

- <u>Baseline data</u>: students majoring in the Electrical and Computer Engineering, ECET, were given the questionnaire as a baseline to determine the skill level of students in courses ranging from their sophomore to senior years. It was determined that students in this related discipline would have similar skills, determined by a similar curriculum, and knowledge in the areas covered by the questionnaire.
 - 37 Electrical and Computer Engineering, ECET, students
- <u>Control group</u>: A control group, Computer Technology students, consists of subjects who have equivalent or similar characteristics as the experimental group at the start of the study. The latter group will receive the treatment or independent variable being investigated while the control group receives a placebo or another treatment. The control group where students, in the same class, who didn't use the CUBE system. The students in the same class were randomly chosen. Half of them used the CUBE system half did not.
 - 19 Computer Technology, CPT, Students
- <u>Treatment Group</u>: Students using the CUBE system were evaluated to test whether the hypotheses could be substantiated.
 - 34 Computer Technology, CPT, Students (treatment group)

Total N (37+19+34) = 90

The quantitative exam, listed in the Appendix, contained ten multiple choice

questions. The information tested covered material that spanned the last two years of the

Computer Technology curriculum. The questions were specifically designed to evaluate

procedural knowledge that required an understanding of the topics tested rather that than

rote memory. The results seem to support the contention that the test was sufficiently rigorous since only one student attainted a perfect grade.

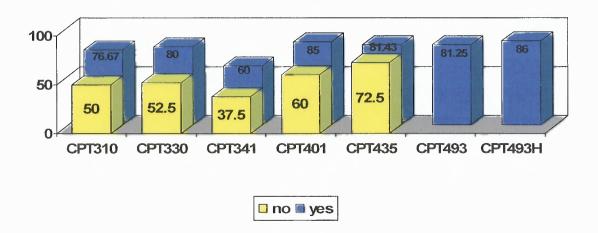

CUBE System	N #Students	Std Dev	Grade (Mean)	Min	Max	Std Error
No (Baseline group) ECET	37	20.68	50.0	0	90	3.40
No (Control Group) CPT	19	17.39	53.68	20	80	3.99
Yes (Treatment Group) CPT	21	11.27	77.14	40	100	1.93
Yes (Treatment group) Face-to-Face	8	8.345	81.25	70	90	2.95
Yes (Treatment group) Hybrid-E-Learning	5	5.477	86.0	80	90	2.45

 Table 5.1 Summary of research population

5.1.2 Summary of Quantitative Results

- The means of the baseline group was 50.0 and the control group was 53.68. This indicates that there is a similar level of common knowledge that can serve as a baseline comparison of the knowledge repository. The data spans several disciplines; Computer Technology (CPT), Electrical Technology (ECET), Mechanical Engineering Technology (MET), Telecommunications Technology (TMT) and Math (Table 5.1).
- The means of the treatment test scores were (77.14-53.68) or on average 23.46 **points higher** for the treatment group, which indicates a clear improvement in test scores utilizing the knowledge repository. The quantitative exam contained ten multiple choice questions so this difference was, on average, two and a half questions difference between groups)
- The Std. Error for the control mean is 3.99 and the STD Error for the treatment mean is 1.93. Since the means are 23.46 units apart, even if each mean is several standard errors away from its true population mean, they would be significantly different from each other.
- These courses were taught by four separate faulty to reduce researcher bias.
- CPT 493 and CPT 493H, Medial Informatics, were both taught using the knowledge repository, with the same instructor spanning two semesters. The 493H class was a hybrid course, 50% face-to-face instruction and 50% was taught using MOODLE in an online format, to evaluate the possible effects of an online environment. The results showed a 4.75 point increase for those students using the hybrid course. This most likely falls within the margin of error of normal exams,

but suggests possible future avenues of research. For students who are already comfortable using a web based learning environment the knowledge repository may further amplify the positive learning benefits.

Figure 5.1 Exam performance comparison utilizing CUBE system (Yes/Blue indicates students' exam grades using the CUBE learning system)

			Ana	alysis Va	riable : Gi	rade		
CUBETut	Course	N Obs	N	Mean	Std Dev	Minimum	Maximum	Std Error
no	CPT310	ā	5	50.00	12.25	30.00	60.00	5.48
	CPT330	4	4	52.50	15.00	40.00	70.00	7.50
	CPT341	4	4	37.50	15.00	20.00	50.00	7.50
	CPT401	2	2	60.00	28.28	40.00	80.00	20.00
	CPT435	4	4	72.50	5.00	70.00	80.00	2.50
ves	CPT310	8	6	76.67	10.33	60.00	90.00	4.22
	CPT330	3	3	80.00	10.00	70.00	90.00	5.77
	CPT341	3	3	60.00	17.32	40.00	70.00	10.00
	CPT401	2	2	85.00	7.07	80.00	90.00	5.00
	CPT435	7	7	81.43	10.69	70.00	100.00	4.04
	CPT493	ē	8	81.25	8.35	70.00	90.00	2.95
	CPT493H	5	5	86.00	5.48	80.00	90.00	2.45

Table 5.2 Distribution of results by course

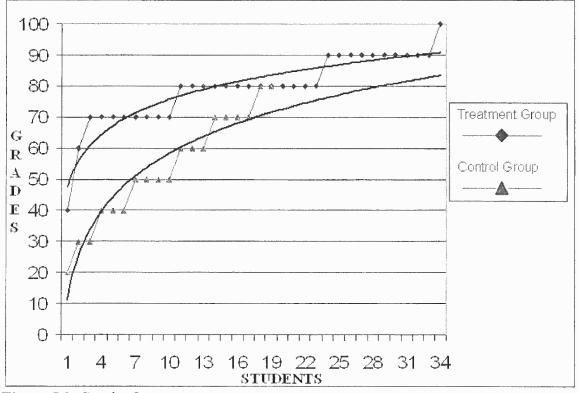


Figure 5.2 Graph of test scores.

The distribution of grades for both the control and treatment groups is evenly distributed, and not biased by outlying data/grades. This supports the concept that the treatment group's results are shifted upward uniformly and are a result of the introduction of the learning environment.

The results are consistent with increased knowledge by students as they progressed through the curriculum. The three hundred level junior courses showed lower initial knowledge comprehension than those of the four hundred level senior courses.

Table 5.3 Distribution of Grades

1	CUBETut	Major	Course	Quest_1 QUEST_2	Quest_3	Quest_4	Quest_5	Quest_6 Quest_7	Quest_8	Quest_9	Quest_10	Grade
0	no	met	CPT330	100 internal	dual	speed	load	75 memory	intel	built	million	40
2	Ino	tmt	CPT330	1000 internal	dual	speed	load	25 have	same	built	billion	60
3	no	is	CPT330	100 internal	pentium	speed	load	25 memory	intel	buiit	million	40
4	no	ecet	CPT 330	1000 internal	dual	speed	load	75 have	intel	lithog	thousand	70
5	ves	cpt	CPT 401	1000 external	quad	speed	load	90 data	intel	lithog	billion	80
6	yes	met	CPT341	1000 internal	pentium	speed	load	90 data	intei	lithog	thousand	70
7	no	cpt	CPT341	1000000 external	dual	speed	save	10 data	same	photo	million	20
8	no	cpt	CPT341	1000000 external	pentium	speed	save	50 have	amd	lithog	million	30
9	yes	cpt	CPT341	100 external	pentium	speed	save	90 load	amd	built	billion	40
10	-{-	cpt	CPT341	1000000 internal	pentium	speed	save	25 have	intel	built	billion	50
11	no	cpt	CPT341	1000000 external	pentium	speed	load	75 have	intel	lithog	million	50
12	no	ecet	CPT 435	1000 external	guad	speed	load	90 data	intel	lithog	billion	80
	no		CPT435	1000 external	quad	speed	save	90 have	intel	lithog	billion	80
13	yes	cpt	CPT435	1000 external	quad	speed	save	90 memory	intel	lithog	billion	70
14	no	cpt	CPT435 CPT435	1000 external	quad	speed	load	90 have	intel	lithog	billion	100
15	yes	cpł			· .	speed	load	90 data	intel	lithog	billion	80
16	yes	opt	CPT435 CPT435	1000 external 1000 external	quad	speed	load	30 data 30 data	intel	lithog	billion	80
17	yes	cpt	CPT435 CPT435		quad dual	•	lead	75 have	intel	lithog	billion	70
18	no	cpt	CPT435	100 internal	dual	speed		90 data	intel	lithog	billion	70
19	yes	cpt	CPT435	1000 external	quad	speed	save	90 data	intel	lithog	billion	70
20	yes	cpt	CPT 435 CPT 425	1000 external 1000 external	quad quad	speed speed	save load	90 have	intel	lithog	billion	90
21	yes	CS	CPT435			· .	load	90 have	intel	lithog	million	70
22	no	cbj	CPT435	1000 external	pentium	speed		100 have	same	lithog	million	60
23	no	cpt	CPT310	1000 external	quad	speed	load	90 have	intel	lithog	billion	80
24	yes	cpt	CPT310	1000 external	quad	speed	save		intel	lithog	billion	80
25	yes	cpt	CPT310	1000 external	quad	speed	load	90 memory 90 data	intel	lithog	billion	80
26	yes	tmt	CPT310	1000 external	quad	speed	load		intel	lithog	million	70
27	yes	cpt	CPT310	1000 external	quad	speed	save	90 memory 50 hours			billion	50
28	- no	cpt	CPT310	100 internal	dual	speed	save	50 have	same	iithog robot	billion	30
29	no	math	CPT310	1000000 internal	dual	speed	save	50 memory 75 data	amd	robot shata	billion	50
30	no	cpt	CPT310	1000 internal	quad	speed	save	75 data	and	photo		30 80
- 31	no	cpł	CPT401	1000 external	quad	speed	save	90 have	intel	lithog Diseas	billion	90
32	hes	cpt	CPT310	1000 internal	dnad	speed	load	90 data	intel	lithog	billion	50 60
33	yes	civil	CPT 310	1000 external	quad	speed	łoad	90 data	and	lithog	million	90
34	ves	col	CPT 493	1000 internal	ouad	speed	save	90 have	intel intel	lithoa lithoa	billion million	
35	yes	cpt	CPT 493	1000 external	quad	speed	save	90 memory 75 keyrs	intel intel	lithog lithog		80
36	yes	cpt	CPT 493	1000 external	quad	speed	load	75 have	intel intel	lithog lithog	billion	
37	yes	cpt	CPT 493	1000 internal	quad	speed	load	90 data	intel	lithog	million	80
38	yes	cpt	CPT 493	1000 external	duad	speed	save	90 have	intel	lithog	billion	80
39	yes	cpt	CPT 493	1000 external	quad	speed	load	90 have	intel	lithog	billion	90 70
40	yes	cpt	CPT 493	1000 external	quad	speed	save	90 memory	intel	lithog	billion	70
41	yes	cpt	CPT 493	1000 external	quad	speed	load	90 have	intel	lithog	billion	90
42	yes	cpt	CPT 401	1000 internal	quad	speed	load	90 data	inte	lithog	billion	90
43	no	cpt	CPT401	100 internal	pentium	speed	save	25 memory	intel	lithog	million	40
44	yes	opt	CPT 330	1000 external	quad	speed	load	90 data	intel	lithog	billion	80
45	yes	cpt	CP1330	1000 external	quad	speed	load	90 have	intel	lithog	billion	90
46	yes	tmt	CPT 330	1000 external	quad	speed	load	90 memory	same	lithog	billion	70
47	no	tmt	CPT310	100 internal	pentium	speed	load	25 have	intel	lithog	billion	60
48	yes	cpt	CPT341	1000 external	pentium	speed	save	90 have	intel	- lithog	billion	70
49	yes	cpt	CPT 493H	1000 external	quad	speed	load	90 have	intel	lithog	billion	90
43 50			CPT493H	1000 external	quad	speed	save	90 have	intel	lithog	billion	80
	yes	cpt		1000 external		speed	load	90 have	amd	lithog	million	80
51	yes	cpt	CPT493H		quad		load	90 have	intel	lithog	billion	90
52	hes	cpt	CPT493H	1000 external	quad	speed		90 have	intel	lithog	billion	
53	yes	cpt	CPT 493H	1000 external	quad	speed	load	SU NAVE	IRCI	millig	DARIOT	50

	CUBETut	Major	Course	Quest_1	Quest_2	Quest_3	Quest_4	Quest_5	Quest_6 Quest_7	Quest_8	Quest_9	Quest_10	Grade
1	no	ecet	ECET215		external	quad	speed	save	25 memory	intel	lithog	thousnad	50
2	no	ecet	ECET215	1000	internal	quad	speed	load	25 memory	amd	lithog	billion	70
3	no	ecet	ECET215	1000	internal	quad	speed	save	50 have	amd	built	billion	60
4	no	ecet	ECET215	100	internal	dual	speed	save	50 memory	amd	lithog	thousand	30
5	no	ecet	ECET215	1000	internal	quad	speed	save	75 have	amd	lithog	million	60
6	no	ecet	ECET215	1000	internal	quad	speed	save	75 have	intel	lithog	billion	80
7	no	ecët	ECET215	1000	internal	dual	speed	load	25 have	same	lithog	bižion	70
8	no	ecet	ECET215	1000	external	quad	speed	save	50 data	and	built	billion	40
9	no	ecet	ECET215	1000	neither	pentium	speed	save	75 data	intel	lithog	million	40
10	no	ecet	ECET215	1000000	neither	dual	neither	save	90 data	same	built	million	10
11	no	ecet	ECET215	1000	neither	dual	speed	save	75 memory	amd	lithog	million	30
12	no	ecel	ECET215	1000000	internal	quad	speed	load	75 data	intel	tithog	million	60
13	no	ecet	ECET410	1000	internal	dual	exira	load	100 data	same	robots	million	30
14	no	ecet	ECET410	1000	internal	dual	extra	load	180 memory	amd	built	billion	40
15	no	ecel	ECET410	1000	internal	dual	neither	89VB	75 memory	intel	lithog	million	40
16	no	ecel	ECET410	1000000	internal	pentium	speed	save	90 have	intel	built	billion	60
17	no	ecel	ECET410	1000	internal	quad	neither	save	50 have	amd	built	thousand	40
18	no	ecet	ECET410	1000	internal	pentium	speed	save	50 data	amd	lithog	thousand	40
19	no	ecet	ECET410	1000	internal	quad	speed	\$9A6	50 have	same	lithog	million	60
20	no	ecet	ECET410		internal	dual	speed	save	25 data	amd	built	million	30
21	no	ecet	ECET410	1000	internal	dual	speed	load	50 have	intel	lithog	million	70
22	no	ecet	ECET410	1000	internal	quad	speed	load	90 have	intel	lithog	million	90
23	no	ecet	ECET410	1000	internal	quad	speed	load	90 have	amd	lithog	milion	80
24	no	ecet	ECET410	100	neither	dual	speed	load	25 have	same	built	million	30
25	no	ecet	ECET410	1000	internal	dual	speed	load	75 have	load	intel	million	70
26	no	ecet	ECET410	1000	internal	dual	speed	load	75 have	same	lithog	million	60
27	no	ecet	ECET410	1000	internal	quad	speed	save	75 have	same	lithog	million	60
28	no	ecet	ECET 401	100	external	quad	speed	save	75 have	same	lithog	million	40
29	no	ecet	ECET401	1000	internal	quad	speed	load	50 memory	same	built	million	60
30	no	ecet	ECET401		internal	quad	speed	load	75 memory	same	lithog	million	60
31	no	ecet	ECET401		internal	dual	speed	load	75 have	intel	built	million	60
32	no	ecet	ECET401	1000000		pentium	neither	save	75 have	amd	lithog	million	20
33	no	ecet	ECET401	1000000		pentium	neither	save	75 memory	same	built	milion	0
34	no	ecet	ECET401	1000	internal	quad	speed	SEVE	90 memory	amd	lithog	billion	70
35	no	ecet	ECET401	1000	internal	pentium	memory	save	50 have	intel	lithog	thousand	50
36	no	ecet	ECET401	1000	internal	pentium	neither	save	25 memory	same	built	million	20_
37	no	ecet	ECET401	1000	internal	quad	speed	load	100 data	intel	lithog	billion	70

 Table 5.4 Questionnaire Data for Baseline Group

	Analysis Variable : Grade											
CUBETut	Course	N Obs	N	Mean	Std Dev	Minimum	Maximum	Std Error				
no	ECET215	12	12	50.00	20.45	10.00	80.00	5,90				
	ECET401	10	10	45.00	24.15	0.00	70.00	7.64				
	ECET410	15	15	53.33	19.15	30.00	90.00	4.94				

Table 5.5A Baseline Group Distribution

 Table 5.5 B
 Baseline Group Distribution

			Analy	sis Variabl	e : Grade		
CUBETut	N Obs	N	Mean	Std Dev	Minimum	Maximum	Std Error
no	37	37	50.00	20.68	0.00	90.00	3.40

5.1.3: Data Analysis: (Quantitative Data)

T-tests:

- Students were assigned randomly to the treatment or control group and then the variable grades were measured, that were hypothesized to be affected by the treatment.
- To determine whether the means of the treatment and control group are significantly different, the null hypothesis (Ho) states that the treatment and control groups would have the same mean, if we repeated the experiment a large number of times, and that the differences are attributable to the luck of the draw.
- The alternative hypothesis (H2) to the null hypothesis is that one mean will be greater than the other, a one tailed test, or will be different.
- The t-test is used to determine that the probability that the difference in means that is observed is due to chance. The lower the likelihood that the difference is due to chance, the greater the likelihood that the difference is due to there being a real difference in treatment and control.

	1000					Statistics					
Variable	CUBETut	N	Lower CL Mean	Mean	Upper CL Mean	Lower CL Std Dev	Std Dev	Upper CL Std Dev	Std Err	Minimum	Maximum
Grade	no	19	45.304	53 684	62.065	13.139	17.388	25.714	3.9891	20	60
Grade	yes	21	71.359	77.143	82.926	9.7204	12.705	18.348	2.7726	40	100
Grade	Diff (1-2)		-33.14	-23.46	-13.78	12.345	15.105	19.468	4.7828		

The TTEST Procedure

		T-Tests			
Variable	Method	Variances	DF	t Value	Pr > t
Grade	Pooled	Equal	38	-4.90	< 0001
Grade	Satterthwaite	Unequal	32.7	-4.83	<.0001
	Equal	ity of Varian	ces		
Variable	Method No	um DF Den	DF	F Value	Pr>F

18

20

1.87

0.1762

Folded F

Grade

- The Equality of Variances gives us the probability that the variances are unequal due to chance.
 - \circ The T-Test values are <.0001 so we reject the null hypothesis (H0) that the variances are equal.
 - The F ratio (F value larger variance/smaller variance) is 1.87. i.e. the probability of by chance alone a ratio this large or larger is 0.1762.
 - That is, if the two samples came from populations with equal variance, there is a small probability (0.1762) of obtaining a ratio of variances of 1.87 or larger by chance. So we can decide to use the t-value appropriate for groups with unequal variance.

5.2 Qualitative Data

Qualitative research involves an in-depth understanding of human behavior and the reasons that govern human behavior. It investigates the why and how of decision making, as compared to what, where, and when of quantitative research

The qualitative data, gathered from the CMLES survey with additional demographic questions and CUBE related questions, were used to test hypothesis H1.

H1: Students using the Integrated Knowledge Repository (IKR) will have a more positive perception of the learning process than those who use conventional single course teaching paradigms.

H0: There is no relationship between the use of IKR and student interest

Assessment of student perceptions: A questionnaire, Constructivist Multimedia Learning Environment Survey (CMLES), will be used to determine students' perceptions of the new system vs. the current paradigm, where courses are presented as single topics/units.

This survey was selected since the CMLES scales demonstrated a high degree of internal consistency reliability (with alpha reliability coefficients ranging from .73 to .82), as well as satisfactory factorial validity and discriminate validity (Maor, D. 1999). The Maor paper supports the reliability and validity of the CMLES for assessing students' and teachers' perceptions as one important aspect in evaluating learning environments which promote the use of multimedia programs and constructivist learning approaches.

5.2.1 Factor Analysis

To validate Maor's findings, the following principal components factor analysis, followed by varimax rotation was computed on the CMLES Questionnaire data gathered

in this research study. (See Table 5.7) The results are consistent with Maor's 1999 and 2005 papers' findings, that the CMLES questionnaire demonstrated a high degree of internal consistency reliability with alpha reliability coefficients that ranged from .82 to .93.

Alpha coefficient ranges from 0 to 1 may be used to describe the reliability of factors extracted from dichotomous (questions with two possible answers) and multipoint questionnaires (i.e., rating scales: 1 -5). The higher the score, the more reliable the generated scale. A value of 0.7 or higher is an acceptable reliability coefficient (Cronbach, 1951), (Nunnaly, 1978). In our findings, the alpha coefficients were in the range of .82 to .93 indicating a high reliability of the factors (See Table 5.7 and data analysis in the Appendix).

				Learning	Reflect	ive ininxing	Aumen	uthenticity Learning Compt		xoty Environment	
	Actual	Preferred	Actual	Preferred	Actual	Preferred	Actual	Preferred	Actual	Preferred	
Question											
1	.65	.85							;		
2	.59	.87									
3	.65	.83									
4	.74	.82									
5	.61	.78									
6			.62	.80							
7			.77	.86							
8			.03	.83							
9			.79	.84							
10			.65	.64							
11					.58	.82					
12					.74	.73					
13					.69	.79					
14					.68	.81					
15					.70	.80					
16							.87	74			
17							.87	76			
18							.71	72			
19							.82	80			
20 21									.87 .87		
22									.73	.59	
- 23									.88		
24									.79	.82	
Variance	4.84	4.8	3.68	4.24	3.40	4.16	3.29	3.71	2.40		

Table 5.7 Principle Components Factor Analysis on CMLES Questionnaire: CUBE

5.2.2 CMLES Questionnaire

The Questionnaire is decomposed into the following sections, as shown in Table 5.8.

Table 5.8 CMLES Questionnaire

(CMLES Questionnaire:	
Questions 1-8: Demographics		
Description	Current (Actual) courses	Ideal (Preferred) course
Extent to which students have opportunities to discuss their	Social Negotiation	Social Negotiation
questions and their solutions to questions.	(Q9-13)	(Q32-Q37)
Extent to which students are encouraged to engage in	Inquiry Learning	Inquiry Learning
inquiry learning.	(Q14-18)	(Q38-42)
Extent to which students have opportunities to reflect on	Reflective Thinking	Reflective Thinking
their own learning and thinking.	(Q19-23)	(Q43-Q47)
Extent to which the information in the program is	Authenticity of Learning	Authenticity of Learning
authentic and representative of real life situations.	(Q(24-28)	(Q(48-52)
Extent to which the program	Complexity of the	Complexity of the
is complex and represents data	Learning Environment	Learning Environment
in a variety of ways.	(Q29-32)	(Q53-57)
(CUBE Analysis Questions	
These questions relate to students experiences using the	Presentation	Content Integration
CUBE knowledge repository.	(Q58-61)	(Q62-67)

5.2.3 Analysis of CMLES Questionnaire Data

The following sections analyze the results from the Constructivist Multimedia Learning Survey (CMLES), gathered during the course of this research. For additional information refer to the Appendix for results and graphs obtained from SAS 9.1.

Demographic Data: There were 85 respondents to the survey broken down into the following demographics:

Table 5.9.A B and C Demographic Data

	malefem											
malefem	Frequency	Percent		Cumulative Percent								
Female	12	14.12	12	14.12								
Male	73	85.88	85	100.00								

status									
status	Frequency	Percent	Cumulative Frequency	Cumulative Percent					
Faculty	4	4.71	4	4.71					
Graduats Student (Full Time)	1	1.18	5	5.88					
Undergraduate Student (Fuli Time)	58	68.24	63	74.12					
Undergraduate Student (Part Time)	22	25.88	85	100.00					

		age		
age	Frequency	Percent	Cumulative Frequency	Cumulative Percent
23-30	44	51.76	44	51.76
31-35	6	7.06	50	58.82
over 35	11	12.94	61	71.76
under 23	24	28.24	85	100.00

a Vale	Markin also	age		
age	Frequency	Percent	Cumulative Frequency	
23-30	44	51.76	44	51.76
31-35	6	7.06	50	58.82
over 35	11	12.94	61	71.76
under 23	24	28.24	85	100.00

 Table 5.10
 Question: "Have you ever used a discussion board (Dboard)?

Dboard										
Dboard	Frequency	Percent	CONTRACTOR AND A PARTY OF AND ADDRESS OF	Cumulative Percent						
More than ten courses	10	11.76	10	11.76						
Never	17	20.00	27	31.76						
Once or Twice	24	28.24	51	60.00						
Three to ten prior courses	34	40.00	85	100.00						

Table 5.11 Question: Experience using a learning management system in previous courses.

platform									
platform	Frequency	Percent	Cumulative Frequency	Cumulative Percent					
Moodle	7	8.24	7	8.24					
Other	9	10.59	16	18.82					
WebCT	66	77.65	82	96.47					
Webboard	3	3.53	85	100.00					

Table 5.12 Breakdown of	f Students	by Course
-------------------------	------------	-----------

course										
course	Frequency	Percent	Cumulative Frequency	Cumulative Percent						
CPT310	23	27.06	23	27.06						
CPT330	4	4.71	27	31.76						
CPT341	9	10.59	36	42.35						
CPT401	6	7.06	42	49.41						
CPT435	11	12.94	53	62.35						
CPT493	3	3.53	56	65.88						
ECET365	10	11.76	66	77.65						
1\$350	19	22.35	85	100.00						

CMLES CUBE Questions (58-67):

These questions relate to students' experiences using the CUBE knowledge repository. They are broken down into two categories. The first is the students' perceptions of the system and user interface. The second group addresses content integration; i.e. the efficacy of utilizing this approach as it pertains to knowledge acquisition and cohesion of concepts spanning a discipline (Refer to Appendix for SAS source data).

Knowledge Repository Learning System (CUBE Qu	estions	58-67)	
Answer these questions based on your experier	nce utilizin	g the kn	owledge	
repository learning system			. 3	
Question	Excellent/ Very good/ good	No opinion	Poor/very poor/no positive benefit	total
Presentation:				
58. How would you describe the presentation of multiple courses/content(notes) in one central location	72	7 8.67%	2	81
59. How would you judge the benefit of the preview page that shows you a graphical	75	5	1	81
overview of the course content?	92.59%	6.18%	1.23%	
60. How would you evaluate the screen layout using the rubies cube to represent multiple	70	7	4	81
courses?	86.14%	8.64%	4.93%	
61. How would you describe the user interface: Is it easy to understand how to use the system?	75	3	3	81
	92.59%	3.7%	3.7%	01
Mean	73 90.12%	5.5 6.79%	2.5 3.08%	81
Content Integration				
62. How would you evaluate the knowledge repository approach of aggregating (combining) all the course notes and links between ideas in	76 93.82%	3	2	81
one central location (web page)?	55.0270	5.770	2.4770	
63. How would you evaluate the concept of locating all course information/notes for all four	78	3	0	81
years of your college study in one location/web page?	96.29%	3.7%		
64. Do you think this option, aggregating all course notes on one location, will add to the	78	3	0	81
learning process?	96.29%	3.7%		
65. What do you think of the "knowledge map" that links ideas across multiple courses (finding	74	6	1	81
how concepts evolve from one course to another)?	91.35%	7.41%	1.23%	
66. Do you think that using the knowledge map will help you to learn better?	73	7	1	81
67 What do you think of the presentation	90.12%	8.64%	1.23%	01
67. What do you think of the presentation method, (i.e. the rubies cube) of viewing courses?	87.65%	8.64%		81
Mean	75.8	4.83	3.7%	81
r ivan	93.58%	5.96%	1.44%	01

Hypothesis **H1**, "Students using the Integrated Knowledge Repository (IKR) will have a more positive perception of the learning process than those who use conventional single course teaching paradigms," is supported by the above data (Table 5.13) that indicates students believe, by over 90%, that the CUBE system will enhance their comprehension of subject matter over conventional single course presentation systems.

		Contenas.		
Questions: Social Negotiation	Almost always/ often/ sometimes	Don't Know	Almost never/ Seldom	Total
9. Students get the chance to communicate with each other.	77 90.58%	2 2.35%	6 7.05%	85
10. Students communicate with each other about how to conduct investigations.	67 78.82%	5 5.88%	13 15.29%	85
11. Students ask other students to explain their ideas	69 81.17%	1 1.18%	15 17.64%	85
12. Students ask me to explain my ideas.	67 78.82%	4 4.71%	14 16.47%	85
13. Other students respond carefully to my ideas.	66 77.64%	5 5.88%	14 16.47%	85
Mean	69.2 81.41%	3.4 4%	12.4 14.58%	85

Analysis of Social Negotiation data:

Approximately seventy percent of students are engaged in some forms of social negotiation during their classes, either to share ideas or to collectively engage in making sense of the course materials and concepts presented. This data supports the concepts of

constructivism where students are actively engaged in sense making of the ideas and concepts. In addition, since conceptual development appears to be a social construct, the CUBE system, which provides tools for students to share ideas, add new links and concepts and vote on preferred investigative pathways for learning, the social negotiation data appears to be consistent with student's positive attitudes of the CUBE system as indicated by the data in questions 58-67.

Analysis of Inquiry Learning Data:

The Mean of the category, "almost always/ often/ sometimes" was 72.8% (Table 5.15), indicating that students, in their current classes are actively engaged in inquiring learning: asking question, researching sources and analyzing problems from multiple perspectives. Tools that can augment and accelerate this exploration would appear to enhance learning outcomes

Answer these questions						in the second
Questions:	Alm		Don't		ost never/	Total
		ys/often/	Know	Seld	om	
Inquiry Learning	some	etimes				
14. Students find out	79	92.94%	1	5		85
answers to questions by investigation.			1.18%	5.88	%	
15. Students carry out	72	84.7%	2	11	12.94%	85
investigations to test their own ideas.			2.35%			
16. Students conduct	69	81.17%	2	14	16.47%	85
follow-up investigations to answer emerging questions.			2.35%			
17. Students design their own ways of investigating problems.	69	81.17%	3 3.52%	13	15.29%	85
18. Students approach a problem from more than one perspective.	75	88.23%	1 1.18%	9	10.58%	85
Mean	72.8	85.64%	1.8 2.11%	10.4	12.23%	85

Table 5.15Inquiry Learning Questions 14-18

Analysis of Reflective Thinking

Students indicated by 74.2% that they reflect on their ideas and learning experiences (Table 5.16). That trait is essential to integrate concepts across an entire discipline, since true learning takes place when the connections are made and the true complexities that bind ideas together create a greater whole/understanding.

Please answer this section bas	Please answer this section based on your experiences in your current courses							
Questions: Reflective Thinking	Almost always/ often/ sometimes	Don't Know	Almost never/ Seldom	Total				
19. Students think carefully about how they learn.	70 83.33%	3 3.57%	11 13.09%	84				
20. Students think critically about their own ideas.	76 90.47%	2 2.35%	6 7.14%	84				
21. Students learn to be skeptical.	77 91.67%	2 2.35%	5 5.95%	84				
22. Students learn to become better learners.	74 88.09%	2 2.38%	8 9.52%	84				
23. Students think critically about their own understandings.	74 88.09%	2 2.38%	8 9.52%	84				
Mean	74.2 88.33%	2.2 2.58%	7.6 9.04%	84				

Table 5.16 Reflective Thinking Questions 19-23

Analysis of Authenticity of learning:

One of the components seemed especially relevant. 77% of the students felt that question 27, "Students need to use a wide range of information to support their problem solving," was important to their integrating all the information presented (Table 5.17). These results mesh with the quantitative results which indicate that, given a wide range of interrelated information that provides meaning and understanding of the discipline as a whole, the better their comprehension of the current course materials.

Please answer this section bas	ed on your e	xperience	s in your cu	rrent courses
Questions:	Almost always/	Don't Know	Almost never/	Total
Authenticity of Learning	often/ sometimes		Seldom	
24. Students find that the concepts are presented in meaningful contexts.	79 94.04%	1 1.19%	4 4.76%	84
25. Students find that it presents information relevant to them.	75 89.28%	2 2.35%	7 8.33%	84
26. Students find that they are presented with realistic tasks.	77 91.66%	1 1.19%	6 7.14%	84
27. Students need to use a wide range of information to support their problem solving.	77 91.66%	3 3.57%	4 4.76%	84
Mean	77 91.66%	1.75 2.08%	5.25 6.25%	84

Table 5.17 Authenticity of Learning Questions 24A-27

Analysis of the Knowledge Repository Learning Environment: Complexity of Learning: The response mean (89.76% ~90%) believed that it was easy to use and learn but more important was the high positive response to question 30, "Students find that it makes them think." The first step in knowledge acquisition is to engage the students and have them think, not just regurgitate the information back, but encourage them to start considering all the possibilities and hopefully surpass the knowledge of the teacher. Providing an evolutionary system that adds to the thinking process, creates a tri-partite

learning environment, augmented by the almost infinite capabilities of the global knowledge community.

 Table 5.18 Complexity of the Learning Environment: Questions 28-32

Please answer this section bas	ed on your e	xperience	s in your cu	rrent courses
Questions:	Almost	Don't	Almost	Total
Complexity of the Learning	always/	Know	never/	
Environment	often/ sometimes		Seldom	
28. Students find it to be	76 90.47%	4 4.76%	4 4.76%	84
user friendly. 29. Students find it easy to navigate.	77 91.66%	4.76%	3 3.57%	84
30. Students find that it makes them think.	73 86.9%	5 5.95%	6 7.14%	84
makes them think.	80.370	3.9370	7.1470	
31. Students find it easy to use.	75 89.28%	4 4.76%	5 5.95%	84
32. Students take only a	76	4	4	
short time to learn how to use the system.	90.47%	4.76%	4.76%	
Mean	75.4 89.76%	4.2 5.0%	4.4 5.23%	84

Please answer this section bas Environment	sed on your e	xpectation	is of an Ide	al Learning
Questions: Social Negotiation	Almost always/ofte n/ sometimes	Don't Know	Almost never/ Seldom	Total
33. Students would get the chance to communicate with each other.	78 92.85%	1 1.19%	5 5.95%	84
34. Students would communicate with each other about how to conduct investigations.	79 94.04%	1 1.19%	4 4.76%	84
35. Students would ask other students to explain their ideas.	78 92.85%	1 1.19%	5 5.95%	84
36. Students would ask me to explain my ideas.	77 91.66%	1 1.19 %	6 7.14%	84
37. Other students would respond carefully to my ideas.	78 92.85%	1 1.19%	5 5.95%	84
Mean	78 92.85%	1 1.19%	5 5.95%	84

 Table 5.19 Social Negotiation: Questions 33-37: My ideal Learning Environment

Please answer this section bas Environment.	ed on your e	xpectatio	ns of an Ide	al Learning
Questions. Inquiry Learning	Almost always/ofte n/ sometimes	Don't Know	Almost never/ Seldom	Total
38. Students would find out answers to questions by investigation.	79 94.04%	0	5 5.95%	84
39. Students would carry out investigations to test their own ideas.	80 95.23%	0	4 4.76%	84
40. Students would conduct follow-up investigations to answer emerging questions.	80 95.23%	0	4 4.76%	84
41. Students would design their own ways of investigating problems.	79 94.04%	0	5 5.95%	84
42. Students would approach a problem from more than one perspective.	80 95.23%	1 1.19%	3 3.57%	84
Mean	79.6 94.76%	0.2 0.23%	4.2 5.0%	84

 Table 5.20 Inquiry Learning: Questions 38-42: My ideal Learning Environment

Questions. Reflective Thinking	Almost always/ofte n/ sometimes	Don't Know	Almost never/ Seldom	Total
43. Students would think carefully about how they learn.	78 92.85%	0	6 7.14%	84
44. Students would think critically about their own ideas.	79 94.04%	0	5 5.95%	84
45. Students would learn to be skeptical.	75 89.28%	1 1.19%	8 9.52%	84
46. Students would learn to become better learners.	80 92.23%	0	4 4.76%	84
47. Students would think critically about their own understandings	78 92.85%	1 1.19%	5 5.95%	
Mean	78 92.85%	0.4 0.47%	5.6 6.7 %	84

 Table 5.21 Reflective Thinking: Questions 43-47: My ideal Learning Environment

Please answer this section ba Environment.	sed on your e	xpectatio	ns of an Ide	al Learning
Questions. Authenticity of Learning	Almost always/ofte n/ sometimes	Don't Know	Almost never/ Seldom	Total
48. Students would find that it reflects the complexity of a real life environment.	78 92.85%	1 1.19%	5 5.95%	84
49. Students would find that the concepts are presented in meaningful contexts.	80 95.23%	2 2.38%	2 2.38%	84
50. Students would find that it presents information relevant to them.	80 95.23%	0	4 4.76%	84
51. Students would find that they are presented with realistic tasks.	82 97.61%	0	2 2.38%	84
52. Students would need to use a wide range of information to support their problem solving.	79 94.04%	0	5 5.95%	
Mean	79.8 95%	0.6 0.71%	3.6 4.28%	84

 Table 5.22
 Authenticity of learning: Questions 48-52: My ideal Learning Environment

Please answer this section bas Environment	ed on your ex	cpectation	ns of an Idea	l Learning
Question Complexity of the Learning Environment	Almost always/ofte n/ sometimes	Don't Know	Almost never/ Seldom	Total
53. Students would find it to be user friendly.	81 96.42%	1 1.19%	2 2.38%	84
54. Students would find it easy to navigate.	79 94.04%	1 1.19%	4 4.76%	84
55. Students would find that it makes them think.	76 90.47%	1 1.19%	7 8.33%	84
56. Students would find it easy to use.	80 95.23%	1 1.19%	3 3.57%	84
57. Students would take only a short time to learn how to use the system.	80 95.23%	1 1.19%	3 3.57%	84
Mean	79.2 94.28%	1 1.19%	3.8 4.52%	84

Table 5.23 Complexity of the Learning Environment: Questions 53-57: My ideal

 Learning Environment

5.2.4 Analysis of CMLES Questions Contrasting Current (Actual) vs. Ideal (Preferred) Courses

The CMLES survey summary table indicates that students prefer an environment where they are active participants in the learning process. They believe that, through social negotiation with fellow students, where they collectively conduct experiments and negotiate meaning derived from those investigations, this interaction would facilitate learning. The additional flexibility derived from inquiry learning where they design their own methods of investigation, seems to indicate the desire to be active participants in designing the learning environment, expressed by collectivist learning theorists.

	Summary of CMLES results						
Category	Current/Ideal	Almost always/often/ sometimes	Don't Know	Almost never/ Seldom	Ideal vs. Current (Almost always /Often/ Sometimes)		
Social Negotiation	Current courses	81.41%	4%	14.58%			
	Ideal Learning Environment	92.85%	1.19%	5.95%	+8.8%		
Inquiry Learning	Current courses	85.64%	2.11%	12.23%			
	Ideal Learning Environment	94.76%	0.23%	5.0%	+6.8		
Reflective Thinking	Current courses	88.33%	2.58%	9.04%			
	Ideal Learning Environment	92.85%	0.47%	6.7 %	+3.8%		
Authenticity of learning	Current courses	91.66%	2.08%	6.25%			
	Ideal Learning Environment	95%	0.71%	4.28%	+2.8%		
Complexity of the Learning Environment	Current courses	89.76%	5.0%	5.23%			
	Ideal Learning Environment	94.28%	1.19%	4.52%	+3.8%		

5.2.5 CMLES Questionnaire Results per Question

	Don't Kn	Mean of Category				
Current Courses						
Social Negotiation	Q9 3.9176471	Q10 3.2	Q11 3.376471	Q12 3.247059	Q13 3.164706	3.381176
Inquiry	Q14	Q15	Q16	Q17	Q18	3.555294
Learning	3.8	3.517647	3.329412	3.352941	3.776471	
Reflective	Q19	Q20	Q21	Q22	Q23	3.649412
Thinking	3.482353	3.694118	3.6	3.8	3.670588	
Authenticity	Q24A	Q24.	Q25	Q26	Q27	3.782194
of Learning	3.675676	3.823529	3.764706	3.917647	3.729412	
Complexity of learning Environment	Q28 3.882353	Q29 3.882353	Q30 3.682353	Q31 3.776471	Q32 3.870588	3.818824
Ideal Environment						
Social	Q33	Q34	Q35	Q36	Q37	3.898824
Negotiation	4.070588	3.952941	3.823529	3.776471	3.870588	
Inquiry	Q38	Q39	Q40	Q41	Q42	3.974118
Learning	3.941176	4	3.905882	3.894118	4.129412	
Reflective	Q43	Q44	Q45	Q46	Q47	4.061176
Thinking	4.035294	4.141176	3.729412	4.270588	4.129412	
Authenticity	Q48	Q49	Q50	Q51	Q52	4.16
of Learning	4.082353	4.164706	4.235294	4.270588	4.047059	
Complexity of learning Environment	Q53 4.423529	Q54 4.364706	Q55 4.070588	Q56 4.4	Q57 4.329412	4.317647

 Table 5.25 CMLES Questionnaire data broken down by question and category

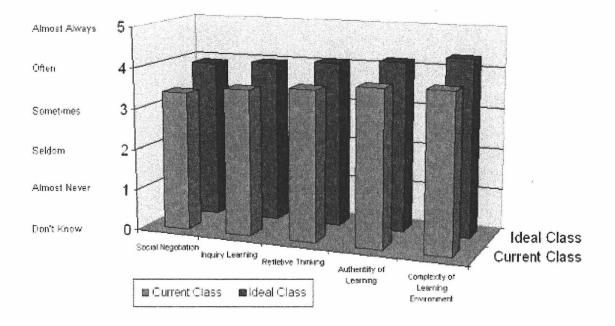


Figure 5.3 CMLES student perceptions of ideal versus current class.

The results from student's evaluation of current course learning environments versus their ideal, preferred, learning environments indicates a desire to enhance their participation and collaboration in all five areas; social negotiation, inquiry learning, reflective thinking, authenticity of learning and the complexity of the learning environment. This is consistent with findings by Maor (1999) (Maor & Fraser, 2000) who originally designed and validated the CMLES instrument (see section 4.3.3). Maor was studying "to what degree students and teachers perceive that their classroom environment involves students in negotiations, inquiry learning and reflective thinking."

Questions 58-67, "analyzing the CUBE learning environment," that refers to the efficacy of integrating concepts spanning an entire discipline, indicates their belief that an integrated knowledge environment linking all their courses into a unified knowledge structure would enhance their comprehension of content areas. This validates hypothesis H1 that "Students using an Integrated Knowledge Repository will have a more positive perception of the learning process than those who use conventional single course teaching paradigms."

5.3 Semantic Web Model Analysis

5.3.1 Background

The Semantic Web provides a common framework that allows data to be shared and reused across application, enterprise, and community boundaries. It is a collaborative effort led by W3C with participation from a large number of researchers and industrial partners. It is based on the Resource Description Framework (RDF). (www.W3C.org)

The semantic theory provides an account of meaning in which the logical connection of terms establishes interoperability between systems and heterogeneous data sets. Each piece of data, and any link that connects pieces of data, are identified by a unique name called a Universal Resource Identifier (URI). In the RDF scheme, two pieces of information are connected and grouped together in a triplet to infer relationships between concepts.

The ability to generate complex associations between objects provides the potential to link and grow concepts beyond simple document retrieval. Evolving "concept spaces visually indicate the relationships and important subsets of concepts, particularly subsets that constitute ontological commitments for representing given phenomena. These provide students with large-scale and even global views of the structure of concept spaces." (Smith & Lee, 2004). These complex interrelationships can evolve through input from students and faculty for a potentially richer learner environment.

5.3.2 Semantic Data Collected

The CUBE knowledge repository is structured around a semantic web framework. Students suggest semantic terms that are representative of concepts discussed in both individual courses and terms that span the discipline (refer to Table 5.26).

Concepts Weights: Data collected/ Per Course

Links: (10-20 students/course) x (15 weeks/semester) x (3-7 links/topic) ~ 1,100

Voting/weights: Students vote on their top choices

(5 choices/topic) x (15weeks) x (10-20 students) ~ 1000

Total: Approximately 2100 data points collected per course

Semantic Web: sample data (refer to appendix)					
Course /Lecture	Topic	Links	Semantic Terms		
CPT 310 Lecture 7	Programmab le Logic arrays & devices/Dec odes/Multipl exers	http://www.cs.northwestern. edu/~agupta/_projects/netw ork_switch/Lectures/Combi natorialCircuitDesign/index. http://en.wikipedia.org/wiki/ Moore's_law; http://computer.howstuffwo rks.com/cache.htm; http://reviews.zdnet.co.uk/h ardware/components/0,1000 001694,39233885,00.htm; http://en.wikipedia.org/wiki/ Multi-core	Trace cache, Instruction Cache Moore law Hyper, threading Multiprocessing Symmetric multiprocessing Instruction fetching Vector VIQ Static prediction Dynamic prediction Speculative execution(s) Branch Target Buffer		
CPT 435 Ch 18	IP addressing Scheme	www.ralphb.net/IPSubnet/ www.searchwindevelopmen t.techtarget.com/sDefinition/ 0,.sid8_gci212381.00.htm www.lawrencegoetz.com/pr ograms/ipinfo/ http://en.wikipedia.org/wiki/ Internet_Protocol	Addresses, Virtual, Internet IP Addressing Scheme IP Address Hierarchy Original Classes IP Addresses Computing Class Address Dotted Decimal Notation Classes Dotted Decimal Notation Division Address Space Authority Addresses Glassful Addressing Example Subnet Classless Addressing Address Masks CIDR Notation CIDR Address Block Example Special IP Addresses NW Address Directed Broadcast Address Limited Broadcast Address Loopback Address Berkeley Broadcast Address Form Routers IP Addressing Principle Multi-Homed Hosts		
CPT 493 Chapter 2	Biomedical Data: Acquisition and storage	http://en.wikipedia.org/wiki/ Medical_imaging http://www1.wfubmc.edu/C BI/Imaging+Informatics/ http://www.isi.uu.nl/CAD/ http://en.wikipedia.org/wiki/ Biomedical_informatics http://www.4nsi.com/produc ts/specific-test- products/radiography	Magnetic Response Imaging (MRI) Medical Imaging Imaging Informatics Ultrasound Computer Aided Diagnosis (CAD) Image Storage X-Ray CT scan (Computer Tomography)		

5.3.3 Ranking / Voting (semantic terms, links and Relationships)

Once the links have been colleted, students evaluate links and vote/ rank their top five choices. Following Bloom's Revised Taxonomy (Anderson, et al. 2001) students rank the quality of the links/content in terms of three categories: Factual Knowledge, Conceptual Knowledge and Procedural knowledge.

- Factual Knowledge: The basic elements students must know to be acquainted with a discipline or solve problems in it.
 - Knowledge of terminology technical vocabulary
- Conceptual Knowledge: The interrelationships among the basic elements within a larger structure that enable them to function together.
 - Knowledge of classifications and categories:
 - Knowledge of principles and generalizations
 - Knowledge of theories, models and structures
- Procedural Knowledge: How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods.
 - Knowledge of subject-specific skills and algorithms:
 - Knowledge of criteria for determining when to use appropriate

procedures

		Rankin	g / Voting	g Links (ex	ample)		
Course		Links	Ranking 1-5	Factual Knowledge	Conceptual Knowledge	Procedural Knowledge	Mean
CPT 435	e	http://en.wikipedia.or g/wiki/Cyclic_redund ancy_check	1	67	74	73	71.33
Lecture 7	٠	http://en.wikipedia.or g/wiki/Packet (infor mation technology	2	63	65	65	64.33
	•	http://en.wikipedia. org/wiki/Parity_bit http://computer.how	3	69	53	64	62.0
		stuffworks.com/que stion525.htm http://en.wikipedia.	4	48	49	41	46.0
	Ũ	org/wiki/Bit_stuffing	5	22	14	21	19.0

Table 5.27 Links and Rankings for CPT 435-Lecture 7: Composite Score of Factual,

 Conceptual & Procedural Knowledge Components

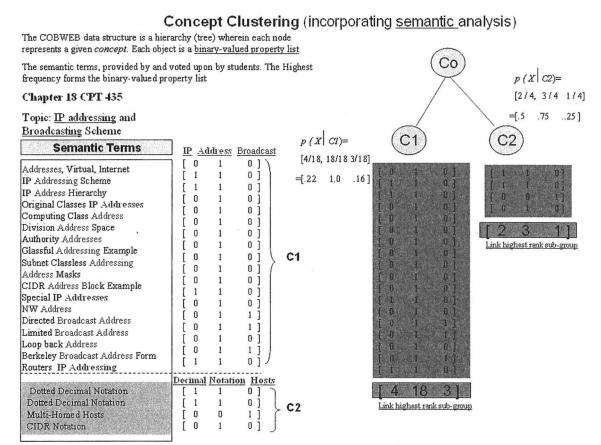


Figure 5.4 Concept clustering (incorporating semantic analysis).

Knowledge M	ap 2D (representation of Threads)	3D (representation of Threads)	Sele
Concept Weighting (relavance) Knowledge actual Conceptual Procedural 50% 51-75% 76-100%	In Level 0 Level 1 Level 2 Level 3 Level 4	CPT00	Cour CPT 3 Ontin Letter CPT 3 Outin
Module Module Module Module Module Module Module 1 2 3 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CEPI 335 Network Architecture II Vodule Vodule Vodule Vodule 1 2 3 4 Vodule Vodule Vodule Vodule 5 6 7 8 Vodule Vodule Vodule Vodule 12 Vodule Vodule Vodule Semanta 10 11 12 Vodule Vodule Vodule Semanta 11 12 Vodule Vodule Vodule Semanta 12 15 Tama 6 Tama 7 Tama 7	Course Outlines/ Instructional Materials Course Outline CPT 335 Mod # (1) Introduction (2) Network prog. and apps. (3) Transmission media (4) Local Asynch. comm. (5) Long-Dist. Carriers, modulation Link to Additional Modules Questionnaire Link	S CPT 4 Omlin Press CPT 4 Omlin Press CPT 4 Omlin Press CPT 4

The following is an example of the ranking output from the CUBE learning Environment.

Figure 5.5 CUBE screen: each course has access to the rankings/ top 5 links.

Week 1 course syllabus link

Week 2

	top 5 sites	Excellent	Very Good	No Opinion	Bad	very Bac
1	http://computer.howstuffworks.com/computer-memory.htm	X				
2	http://www.patentstorm.us/patents/6332191-claims.html		Х			
3	http://arstechnica.com/articles/paedia/cpu/core.ars/7			Х		
4	http://www.eng.umd.edu/~nsw/ench250/number.htm.			X		
5	http://en.wikipedia.org/wiki/Gray_codec			X		

Week 3

	top 5 sites	Excellent	Very Good	No Opinion	Bad	very Bad
1	http://www.iit.edu/~noahlan/index_over.html	Х				
2	http://arantxa.ii.uam.es/~ilara/investigacion/ecomm/electronica/comb.html		X			
3	http://academic.evergreen.edu/projects/biophysics/technotes/program/2s_comp.htm	Х				
4	http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elevol.html			Х		
5	http://publib.boulder.ibm.com/infocenter/systems/index.jsp? topic=/com.ibm.aix.commadmn/doc/commadmndita/asynch_params_parity.htm			х		

Week 4

	top 5 sites			Good	No Opinion	Bad	very Bad
1	http://courseware.ee.calpoly.edu/~rsandige/KarnaughExplorer.html	X					
2	http://www.cs.unb.ca/courses/cs2813/slides/LCDF3 Chap 03 P1.pdf	X					
3	http://nobelprize.org/educational_games/physics/integrated_circuit/history/index.htm		X	(
4	http://searchnetworking.techtarget.com/sDefinition/0sid7_gci939061.00.html		X	(
5	http://www.kpsec.freeuk.com/components/ic.htm				X		

Figure 5.6 Actual output from the rankings and links for CPT 310.

The feedback from the students' impressions of the rankings was very positive. The ability to explore additional material, which helps clarify the concepts covered, appeared to empower them as active participants in the learning process. In addition, for instructors who may have limited time to explore and add new course content, the quality of the course would be richer with greater depth with the additional content provided by the students. Regarding assisting students with homework, students added links that provided graphical tools that allowed students to explore and understand the problem solving process in greater depth than would normally occur.

The eventual goal of a true knowledge repository, for a particular discipline, is for it to organically evolve and grow to the point where students, faulty and researchers add to the content. Faculty devotes a great deal of time duplicating work and tools that are already available at other universities. The challenge to keep materials timely is an enormous task that often is not realized. The additional materials, links that the students provided have substantially enhanced the quality of the course content by incorporating tools found at other open source web sites. Maintaining state of the art course material is essential to insure students are prepared for the rapidly evolving technological environment.

The term "Concept Spaces" (Smith, Lee 2004) was defined as "the ability to generate complex associations between objects provides the potential to link and grow concepts beyond simple document retrieval. These evolving Concept Spaces visually indicate the relationships and important subsets of concepts, particularly subsets that constitute ontological commitments for representing given phenomena." These complex interrelationships can potentially evolve through input from students and faculty for a richer learning environment.

CHAPTER 6

CONCLUSION

A number of Constructivist theorists, (Piaget, 1920) (Vygotsky, 1934) (Bruner, 1960) (Jonassen, 1991), have postulated that knowledge formation is a dynamic process where learners actively construct a representation of concepts, integrating information from multiple sources. Realizing this elusive goal of developing a true constructivist learning environment, has eluded researchers for the past century. During the past decade, a number of theories and technologies have surfaced to facilitate these aspirations. The ubiquitous World Wide Web that connects us in almost real time has facilitated information exchange. Theories and data structures such as the Semantic-Web (Berners-Lea, 2001) and the Resource Description framework (World Wide Web Consortium) have provided the framework on which to build a truly interactive knowledge repository.

Most educational paradigms have followed a serial/sequential approach where the connectivity of concepts, procedures, algorithms and accumulated knowledge that tie a discipline together rely on students to make the philosophical leap; the "aha" moment, where the clarity of interconnected nature of ideas eventually becomes apparent. In the optimum scenario all students would eventually achieve this goal. However, from many years of teaching experience, the majority of students absorb facts but not the tapestry that interconnects them. This contribution is intended to provide the means, models and tools which will allow students, from their earliest studies, to develop and explore these conceptual threads that tie a discipline together. This was accomplished by taking constructivist theories to the next level and developing a structure, several models, and a prototype knowledge repository to facilitate knowledge formation spanning an entire

discipline. Students in an introductory course were encouraged to explore more complex concepts by traversing the concept maps. They may not initially fully comprehend the complexities of the advanced concepts but are introduced to the underlying rationale of the current information and where it would lead. This also provides a natural link between instructors and courses where students know before entering a more advanced topic why the next sequence is offered. This is quite possibly the underlying explanation for the excellent results of this study. Students were initially shown the path in their introductory courses and, when they eventually encountered more complex terrain in more advanced courses, the rationale and purpose were immediately apparent.

The results of this research indicate the potential that integrated learning environments have for improving both performance and knowledge comprehension. By integrating course materials spanning a discipline, utilizing a web-based tool that allows students to be active participants in constructing meaning. Constructivist Learning has the potential for creating more engaging and effective learning environments. Students utilizing the CUBE knowledge repository showed an average increase of 23.46 points in test scores on a standardized exam over students taking the conventional single course method. The exam consisted of a ten question multiple choice exam that covered materials than evaluated procedural knowledge than spanned the last two years of the curriculum. The improvement represented two and a half questions on that exam. The combination of improved perceptions by the students of this approach and some reasonable quantitative improvement in test scores seem to indicate the potential of this approach. Cognitive Load Theory (Sweller, 1988) states that, "optimum learning occurs in humans when the load on working memory is kept to a minimum to best facilitate the changes in long term memory." He found that the format of instructional materials has a direct effect on the performance of the learners using those materials. The visual presentation medium of the knowledge repository has shown that, using Cognitive Load Theory, the students believe that the aggregation of all course materials for a discipline in a central location facilitates knowledge building, since they can easily navigate the continuum of simple-to-complex factual and procedural knowledge relationships. In addition, the knowledge maps facilitate this retention by showing all the complex links between concepts.

Current teaching paradigms have not fully utilized the powerful computational capabilities of the current technology. They have essentially automated the presentation of the course materials but not radically changed the organization of the information presented. The goal of this research was to incorporate the concepts laid out by the Constructivist Learning Environment theories to engage students in truly collaborative learning environments where they can explore and construct a unified vision of a content area. The shared data repository appears to facilitate students' knowledge integration by having them navigate through collaborative scenarios that integrate the knowledge of an entire discipline. This research seems to provide promising indications that the nature of on-line instruction can evolve to a higher level of interactive and collaborative learning. In addition, by aggregating the knowledge of an entire discipline into a reusable core database that weights and organizes a discipline's data according to its importance, we

can provide students with a better understanding of the cohesion of thought and processes that ties a discipline together.

What wasn't apparent before this study was that there could be a quantifiable increase in understanding of a discipline by students if they had access to more advanced concepts and topics at the earliest level of instruction. The ability to visualize and explore the entire discipline, even without full comprehension of all details of the more complex concepts, facilitated better understanding of their current level of study. By knowing the purpose and direction of their current studies, rather than at the end of their studies in a terminal course, but reinforced all along the way, students didn't need the "aha" moment; They could visualize the roadmap at the outset and could traverse familiar well-defined pathways, reinforcing the cohesion of ideas and ensuring an integrated view of the discipline.

The limitations of this research, which was conducted during the course of two years, covering four courses in Computer Technology, were that the research focused on one discipline and included only a subset of all the course content of that discipline. An expanded study would compare and contrast outcomes in several disciplines such as Liberal Arts, Basic Sciences, and Engineering. In addition, every significant course in that field of study, including basic core courses could be integrated into the knowledge base for a more complete understanding of benefits and limitations that underlie this research.

This research has shown promising indications that integrating concepts across a discipline will yield individuals with a better understanding of the cohesion of concepts that interconnect a field of study. There are several areas of future research that could be

explored to create a knowledge repository that truly spans a discipline. By integrating this knowledge repository across multiple disciplines in a university, students could develop a better understanding of the linkages between all the complementary fields of study. In addition, by expanding the scope of these knowledge repositories to several universities and then to the discipline as a whole, the scope of the integrated knowledge repository would truly represent the depth and complexity of the entire field. Eventually, a global interconnected knowledge repository could encompass all fields. There is currently a compartmentalized view of information. Lessons learned from one field often slowly propagate to others. Knowledge in one field doesn't always quickly migrate to others. The hope is that by creating integrated knowledge repositories, not only will educational paradigms evolve but boundaries between disciplines will diminish.

APPENDIX A

CONSTRUCTIVIST MULTIMEDIA LEARNING SURVEY (CMLES)

The Constructivist Multimedia Learning Environment Survey (CMLES) is designed to assess students and teachers perceptions on their constructivist learning environment while they interacted with multimedia programs. In particular, the CMLES examined to what degree students and teachers perceive that their classroom environment involves students in negotiations, inquiry learning and reflective thinking.

Knowledge Repository Research Questionnaire Ver 2

Consent Form Knowledge Repository Pilot Study

NEW JERSEY INSTITUTE OF TECHNOLOGY 323 MARTIN LUTHER KING BLVD. NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STUDY

TITLE OF STUDY: Collaborative Learning Utilizing a Shared Data Repeatory Spanning Multiple Courses: A Pilot Study RESEARCH STUDY:

* I (Enter your full name):

have been asked to participate in a research study under the direction of Drs. Scorge Widmeyer and David Lubiner. Other professional persons who work with them as study stall may assist to act for them.

PURPOSE:

The purpose of the study is to test a new teaching and learning paradigm. A web based interactive learning environment has been constructed to present and integrate the instructional inaterials of four interrelated Computer Technology courses. The courses are: CPT 310 Computer Architecture, CPT 335 Thits to Computer Networks, CPT 455 Advanced Computer Networks and CPT 493 Medical Informatics. The learning environment displays conceptual threads that connect concepts that span the knowledge of an entire discipline. Students correctly taking these courses will be given the opportunity to compare and contrast learning experiences using both approaches. In addition students who have already completed these courses will use the new tool to evaluate it as a potential alternative for future instruction.

DURATION:

My participation in this study will last for (one hour completing an assignment utilizing the Knowledge Repository; about 30 minutes to answering a questionnaire)

PROCEDURES:

I have been told that, during the course of this study, the following will occur:

1. You will be given a brief introduction to the system and asked to test out the system. 2. You will be asked to complete a circulation alter to provide feedback on your experiences.

PARTICIPANTS:

I will be are of about 190 participants in this study.

EXCLUSIONS:

I will inform the researcher H any of the following apply to met You must be 18 years of age or older.

Knowledge Repository Research Questionnaire Ver 2

Consent Form

RISKS/DISCOMFORTS:

I have been told that the study described above may involve the following risks and/or discomforts: We are not aware of any risks associated with completing the questionnaire.

There also may be tisks and discomforts that are not yet known.

I fully recognize that there are risks that I may be exposed to by volunteering in this study which are inherent in participating in any study; I understand that I am not covered by NHT's insurance policy for any injury or loss I might sustain in the course of participating in the study.

CONFIDENTIALITY

I understand confidential is not the same as anonymous. Confidential means that my name will not be disclosed if there exists a occumented finkage between my identity and my responses as recorded in the research records. Every effort will be made to maintain the confidentiality of my study records. If the findings from the study are published. I will not be identified by name. My identity will remain confidential unless disclosure is required by law. In particular: Your name is required on the consent form and to give you credit for completing the questionnaire. However, an ID will be assigned, and the questionnaire that is entered into a database will not have your name on it.

PAYMENT FOR PARTICIPATION:

I have been told that I will receive No monetary compensation for my participation in this study. However, all participants will be enterred into a ratile for an IPhone. It is anticipated the ratile will be held at the end of the semisster.

RIGHT TO REFUSE OR WITHDRAW:

I understand that my participation is voluntary and I may reluse to participate, or may discontinue my participation at any time with na adverse consequence. (Note: If you withdraw from the study, you will have a reasonable amount of time to complete the alternate assignment instead.) I also understand that the investigator has the right to withdraw me from the study at any time.

INDIVIDUAL TO CONTACT:

If I have any questions about my treatment or research procedures, I understand that I should contact the principal investigator at.

George Widmeyer: Email: Widmeyer@ajlt.edb Paone: 973-596-5897

Elavid Lubliner: Email: Lubliner# sjit.edu Phone: 973-596-2878

(Dr. Widmeyer is a professor in the Information Systems Department, GITC, NHT, David Labiner is a University Lecturer in the Computer Technology Department)

If I have any additional questions about my rights as a research subject, I may contact:

Dawn Hall Apgar, PhD, IRB Chair New Sersey Institute of Technology 523 Martin Luther King Boulevard Newark, NJ 07102 (973) 642-7616 dawn.apgar@wijit.edu

* I have read this entire form, or it has been read to me, and I understand it completely. All of my questions regarding this form or this study have been answered to my complete satisfaction. I am indicating my agreement to participate in this research study by selecting the "ACCEPT" option below.

ACCEPT

DO NOT ACCEPT

Knowledge Repository Research Qu	estionnaire Ver 2
Dennegraphic Information	
Knowledge Repository Survey	
Directions	
There are four sets of questions. The first set asks for dem opinion about your experiences with courses that you have expectations for the most desirable learning environment, system (Knowledge Repository) that you have just tested, not affect your class grade. Your opinion is what is wanted	Eaken. The third set is to be answered based on your Finally, the fourth set of questions relates to the new There are no right or wrong answers. Your answers will
* Preliminary Information	
1. Your name:	
* 2. Your status:	
Esculty Faculty	Ondergraduate Student (Full Time)
O Undergraduate Stildent (Part Time)	🔘 Gradaate Student (Full 71me)
Staduate Student (Part Time)	
* 3. Course number and name:	
* 4. I am a:	
Famale	O Pale
* 5. My age is:	
🗍 under 23	0 11-35
○ 23-30	🔘 n viet 35
* 6. English is my native or first language.	
⊖ Yes	⊖ no
st 7. I have used a discussion board in a cou	irse before.
C Rever	C) Three to ten prior courses
Once or Twice	Pare than ten courses
* 8. Experience using a learning manageme that apply.	nt system in previous courses: Check all
⊖ WebCT	O Webboard
Hoedle	Other

Knowledge Repos	itory R	esearch	Questi	onnaire	Ver 2		
Paculty Page							MAR.
To be enswered only by facu	lty						
Evalution of the Kn	owiedge	Repositor	y aggreg	ation appr	oach to te	eaching co	urses
F1. Do you believe that you would use the knowledge repository for your courses that ellows you to present information/course notes for multiple courses in the	absolutoly	Per A bropapià	probably	na aptaion	ushi: ko: y	very undereig	Sever
same location/web site? F2. Do you see any educational benefit to presenting course materials for multiple interrelated courses in a single focution?							
F3, Da you believe the knowledge map that shows the liokage between concepts that span multiple courses would be useful to students in better understanding relationships between concepts?							
F4. If the tools were available and easy to use, would you prefer placing your course materials on							
the web yourself? F5. Would you be willing to be part of a trial to test out a system like this in your							
courses? F6. If you are be willing to test this new system, would you prefer a user interface that allowed you to enter							
the information yourself? F7. If you are willing to test this new system, would you prefer to have someone else enter the data in to							
the system? Få. In summary, do you believe this avenue of research, will lead to a paradion shift in teaching?							

Knowledge Repo Current Courses	sitory Re	search (Questionna	aire Ver	•2	1448
Please enswer this section I	based on your	expenences u	n your current co	11.252		
* Social Negotiation						
 Students get the chance to communicate with each other. 	Amest Never	Seldom	Sometimes	Often	Aimost Always	Dan't Know
and call call to the control of the communicate with each other about how to conduct investigations.	0	Ο	0	0	С	0
 Students ask other students to explain their 	0	\odot	0	\odot	0	0
ideas. 12. Students ask me to explain my ideas. 13. Other students respond carefully to my ideas.	0 0	0 0	0	0	0	0
* Inquiry Learning						
In this class	Aintost Never	Seldons	Sometimes	Orten	Almost Always	Dan't Know
 Students lind out answers to questions by investigation. 			O	O	O	O
 Students carry cut investigations to test their own ideas. 	0	0	0	0	0	0
foliav-up investigations to answer emerging questions.	0	\bigcirc	0	0	0	0
i 7. Stadents design them own ways of investigating problems.	0	0	0	0	0	0
problems, 15. Students approach a problem from more than one perspective.	0	0	0	0	0	0

Knowledge Repository Research Questionnaire Ver 2

Current Gourses

Please answer this section based on your expenences in your current courses.

* Reflective Thinking

19. Students think carefully about how they	Almest Never	Seldom	Sometimes		Almost Always	Dan't Kisow
learn. 20. Students think critically about their own	0	0	0	\odot	0	0
ideas. 21. Students learn to be skeptical. 22. Students learn to become better learners. 23. Students think critically about their own understandings.	0000	0 0 0	0000	0 0 0	0000	0000

* Authenticity of Learning

When working with the content of this class								
24A. Students find that it reflects the complexity of	Almost Never	Seldom	Sometimes	Often	Aimost Always	Dan't Krow		
a real life environment.	0	0	0	0	0	\sim		

24A. Students find that it reflects the complexity of	0	\bigcirc	0	0	0	0	
a real life environment. 24. Students find that the concepts are presented in	0	0	0	0	0	0	
meaningful contexts. 25. Students find that it presents information	0	О	, O	0	0	0	
relevant to them. 26. Students find that they are presented with realistic tasks.	0	Ó	0	0	0	0	
27. Students need to use a wide range of information to support their problem solving.	0	0	0	0	0	0	

			aire Ver	2				
edge Repository	Learning Eav	ronment	m that you f	have just tested.				
* Complexity of the Learning Environment								
Almost Revel				Almost Always				
	Itory learn Idge Repository It describes you Learning El Almost Nevel	tory learning envir dge Repository Learning Envir t describes your impression Learning Environmen Almost Nevel Seldem 0 0 0 0 0 0 0 0 0 0 0 0 0	Itory learning environment Edge Repository Learning Environment St describes your impression of the new system Learning Environment Aimost Never Seldom O O	Itory learning environment edge Repository Learning Environment at describes your impression of the new system that you is Learning Environment Almost Never Seldem O O	edge Repository Learning Environment st describes your impression of the new system that you have just tested. Learning Environment Almost Nevel Seldem O O O <td< td=""></td<>			

nswer mese quesciens ba	ised on your idea	al learning env	wronment			
* Reflective Thinki	ng					
In my ideal class.						
 Students would think carefully about how they learn. 	Almost Never	Seldom	Sometimes	Often	Almost Always	Dan'i Kose ()
44. Students would think critically about their own	0	\bigcirc	0	\bigcirc	0	\odot
ideas. 145. Students would learn 16 be skeptical.	0	O	0	\odot	0	\odot
 Students would learn to become better learners. 	0	0	0	0	0	0
 Students would think critically about their own understandings 	0	\bigcirc	0	\bigcirc	0	0
^k Authenticity of Le	earnina					
48. Students would find that it reflects the	Almost Hever	Seldom	somesimes O	Orten	Aimost Alwäys	Dan's Krov
	0	0	0	0	0	0
environment. 49. Students would find that the concepts are	0	0	0	0	0	0
presented in meaningful contexts.	~	~	~		~~	
	0	\bigcirc	0	\bigcirc	0	0
50. Students would find that it presents information relevant to them						~ ~
that it presents information relevant to them. 51. Students would find that they are presented	0	O	0	О	0	0
that it presents information relevant to them. 51. Studeets would find	0 0	0	0 0	0	0	0
that it presents information relevant to them. 51. Students would find that they are presented with realistic tasks. 52. Students would need to use a wide range of information to support					0	

wer these questions base Complexity of the			-			
	_					
Working with a sys	stem for my Almost Never	ideal onlin Seldom	Sometimes	Offen	Almost Always	Den't Know
 Students would find it to be user friendly. Students would find it easy to illavigate. Students would find that it makes them think. 	0000	0 0 0	0 0 0	0000	000	000
 56. Studeats would find it easy to use. 57. Students would take only a short time to learn now to use the system. 	00	0 0	0	0 0	00	000

Knowledge Repos	ltory R	esearch	Quest	ionnaire	Ver 2		
Knowledge Reposit	tory Lea	arning Sys	ntem				
Answer these questions base just tested	id on your (experience wit	h the know	dedge Reposito	iry Leaming	g System that	: you have
* Presentation:							
	Excellent	very pood	beag	the againton	poor	very poor	na pasitive benchi
55. Row would you describe the presentation of multiple courses/content(notes) in one central location	0	0	0	0	0	0	0
59. How would you judge the benefit of the proview page, that shows you a graphical overview of the course content.	0	0	0	0	0	0	0
60. How would you evaluate the screen layout using the suble cube to represent maltiple courses.	0	0	0	0	0	0	0
61. How would you describe the user interface: Is it easy to understand how to use the system ³	0	0	0	0	0	0	0
* Content Integratio	n						
	Excellent	very paod	bcaq	nu apision	pace	VC/V BCOL	na pasitive benefit
62. How would you evaluate the knowledge repository approach of aggregating (combining) all the course notes and links between ideas in one central	0	0	0	0	0	0	0
incation (web page)? 63. How would you evaluate the concept of locating all course information/notes for all four years of your callege study in one location/web page?	0	0	0	0	0	0	0
64. Do you think this option, aggregating all course notes on one location, will add to the	0	0	0	0	0	0	0
learning process? 65. What do you think of the "knowledge map" that links ideas accross multiple courses (finding how concepts evolve from one course to another??	0		0	0	0	0	0
66. Do you think the using the knowledge map will	0	Ο	0	О	\odot	\bigcirc	0
help you to learn better? 67. What do you think of the presentation method, N.c. the rultix cube! of	0	0	0	0	0	0	0

Knowledge Repository Research Questionnaire Ver 2 Thank You Thank your for your participation. George R. Widmeyer and David Lubliner New Jersey Institute of Technology

APPENDIX B

INSTITUTIONAL REVIEW BOARD (IRB) APPROVAL

This is the application for approval of a research project that was submitted to c the Institutional Review Board of New Jersey Institute of Technology. Approval was granted on October 26, 2007.

Institutional Review Board: HHS FWA 00003246 Notice of Approval IRB Protocol Number: E105-07

* ***		vid Lubliner and George Widmeyer ormation Systems				
Title:	5	Collaborative Learning: Utilizing a Shared Data Repository Spanning Multiple Courses to Enhance Learning Ontcomes : Asynchronous Learning Environments				
Performance Site(s):	NJIT	Sponsor Pratocol Number (if applicable):				
Type of Review:	FULL {	EXPEDITED [X]				
Type of Approval:	NEW [N	RENEWAL REVISION				
Approval Date: Octa	iber 26, 20	Expiration Date: October 25, 2008				

- ADVERSE EVENTS: Any adverse event(s) or unexpected event(s) that occur in conjunction with this study must be reported to the IRB Office immediately (973) 642-7616
- RENEWAL: Approval is valid until the expiration date on the protocol. Yau are required to apply to the IRB for a renewal prior to your expiration date for as long as the study is active. It is your responsibility to ensure that you submit the renewal in a timely manner.
- CONSENT: All subjects must receive a copy of the consent form as submitted. Copies of the signed consent forms must be kept on file with the principal investigator.
- 4. SUBJECTS: Number of subjects approved: 200.
- The investigator(s) did not participate in the review, discussion, or vote of this protocol.
- 6. APPROVAL IS GRANTED ON THE CONDITION THAT ANY DEVIATION FROM THE PROTOCOL WILL BE SUBMITTED, IN WRITING, TO THE IRB FOR SEPARATE REVIEW AND APPROVAL.

Driver Hall Apgar Dawn Hall Apgar, PhD. LSW. ACSW. Chair IRB

Octoher 26, 2007

Institutional Review Board: HHS FWA 00003246 Notice of Approval

NEW JERSEY INSTITUTE OF TECHNOLOGY

Institutional Review Board: HHS FWA 00003246 Notice of Approval IRB Protocol Number: E105-07

		David Lubhner and George Widmeyer Information Systems				
Tule:	Spa	Collaborative Learning: Utilizing a Shared Data Repository Spanning Multiple Courses to Enhance Learning Outcomes in Asynchronous Learning Environments				
Performance Site(s):	NJIT	Sponsor Protocol Number (if applicable).				
Type of Review:	FULL()	EXPEDITED	[X]			
Type of Approval:	NEW [X]	RENEWAL	REVISION []			
Approval Date: Octa	iber 26, 2007	Expiration Date: October 25, 2008				

- ADVERSE EVENTS: Any adverse event(s) or unexpected event(s) that occur in conjunction with this study must be reported to the IRB Office immediately (973) 642-7616.
- RENEWAL: Approval is valid until the expiration date on the protocol. You are required to apply to the IRB for a renewal prior to your expiration date for as long as the study is active. It is your responsibility to ensure that you submit the renewal in a timely manner.
- CONSENT: All subjects must receive a copy of the consent form as submitted. Copies of the signed consent forms must be kept on file with the principal investigator.
- SUBJECTS: Number of subjects approved: 200.
- The investigator(s) did not participate in the review, discussion, or vote of this protocol.

6. APPROVAL IS GRANTED ON THE CONDITION THAT ANY DEVIATION FROM THE PROTOCOL WILL BE SUBMITTED, IN WRITING, TO THE IRB FOR SEPARATE REVIEW AND APPROVAL.

Dawn Hall Apgar Dawn Hall Apgar, PhD, LSW. ACSW. Chair IRB

October 26, 2007

APPENDIX C

IRB APPROVAL AND PARTICIPANT CONSENT

This is a copy of the consent that students signed prior to their participation in this research project.

NEW JERSEY INSTITUTE OF TECHNOLOGY 323 MARTIN LUTHER KING BLVD. NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STHDY

TITLE OF STUDY: Second Life as a Learning Environment. A Pilot Study

RESEARCH STUDY.

PURPOSE:

Massively Multi-Member Online Worlds (MMOWs) are graphically-rich, three-dimensional (3D), electronic environments where members assume an enbodied persona (i.e., avatars) and engage in socializing, competitive quests, learning, and/or economic transactions with globallydistributed others. Frequently categorized as technologies of play, MMOWs range from massively multi-player online games (MMOGs) such as World of Wateraft to virtual reality environments such as Second Life.

The aim of the larger project is to test the claim that use of a specific online world (e.g., Moodle plus Second Life) can make a statistically significant difference in engaging and meaningful learning for students. We intend to make some experimental enhancements of Second Life and test their effectiveness for students and faculty.

The arm of this pilot project is to assess the first draft of the research instrument and to explore what, if any, problems will have to be solved for students to use Second Life at NJFT.

DURATION.

My participation in this study will last for (several hours completing an assignment in Second-Life; about 30 minutes for answering a questionnaire)

PROCEDURES.

I have been told that, during the course of this study, the following will occur:

- Your instructor will give you an assignment that can be completed by interacting with your class mates in Second Life, or by doing a literature search and writing a short paper
- You will be asked to complete a post-assignment questionmare to provide feedback on your experiences.

PARTICIPANTS:

I will be one of about 300 participants in this study.

EXCLUSIONS:

You must be 18 years of age or older.

RISKS/DISCOMFORTS.

I have been told that the study described above may involve the following risks and/or discomforts. We are not aware of any risks associated with completing the questionnaire.

There also may be risks and disconiforts that are not yet known.

I fully recognize that there are risks that I may be exposed to by volunteering in this study which are inherent in participating in any study. I understand that I am not covered by NJIT's insurance policy for any injury or loss I might sustain in the course of participating in the study.

CONFIDENTIALITY.

I understand confidential is not the same as anonymous. Confidential means that my name will not be disclosed if there exists a documented linkage between my identity and my responses as recorded in the research records. Every effort will be made to maintain the confidentiality of my study records. If the findings from the study are published, I will not be identified by name. My identity will remain confidential unless disclosure is required by law. In particular: Your name is required on the consent form and to give you credit for completing the questionnaire However, an ID will be assigned, and the questionnaire that is entered into a database will not have your name on al.

PAYMENT FOR PARTICIPATION:

I have been told that I will receive no monetary compensation for my participation in this study.

However, your instructor may have announced the availability of extra credit for participating in this project. If so, the exact number of extra credit points, and an alternative for earning the same number of points, will be described by your course instructor.

RIGHT TO REFUSE OR WITHDRAW:

I understand that my participation is voluntary and I may refuse to participate, or may discontinue my participation at any time with no adverse consequence. (Note: If you withdraw from the study, you will have a reasonable amount of time to complete the alternate assignment instead.) I also understand that the investigator has the right to withdraw me from the study at any time.

INDIVIDUAL TO CONTACT:

If I have any questions about my treatment or research procedures, I understand that I should contact the principal investigator at:

NILI

Approved by the NJIT IRB on 6/26/07. Approved by the NJIT IRB on 6/26/07. Modifications may not be made to this consent form without NJIT IRB approval. 5.3

George Widmeyer. Eimail, Widmeyer@mit.edu Phone, 973-596-5897

Roxanne Hiltz. Email: Hiltz@njat.edu Phone: 973-596-3388

(Both are professors in the Information Systems Department, GITC, NJIT)

If I have any addition questions about my rights as a research subject. I may contact

Dawn Holf Apgar, PhD, IRB Chair New Jersey Institute of Technology 323 Martin Luther King Boulevard Newark, NJ 07102 (973) 642-7616 dawn.abgar@nit.edu

SIGNATURE OF PARTICIPANT

I have read this entire form, or it has been read to me, and I understand it completely. All of my questions regarding this form or this study have been answered to my complete satisfaction. I agree to participate in this research study.

Subject Name

Signature.

Date

SIGNATURE OF INVESTIGATOR OR RESPONSIBLE INDIVIDUAL (Only required for consent forms of projects requiring full IRB approval)

To the best of my knowledge, the participant, ______, has understood the entire content of the above consent form, and comprehends the study. The participants and those of his-her parent-legal guardian have been accurately answered to his-her/their complete satisfaction.

Investigator's Name.

Signature

Date:

NIT

Approved by the NJIT IRB on 6/26/07. Modifications may not be made to this consent form without NJIT IRB approval.

APPENDIX D

SEMI-STRUCTURED INTERVIEW QUESTIONNAIRE (PILOT TESTING)

These were the questions that were asked as part of the semi-structured interview.

.

Semi-Structured Interview Questions Pilot Study

- 1. How would you describe the presentation of multiple courses/content (notes) in one central location?
- 2. How would you judge the benefits of the preview page that shows you a graphical overview of the course content?
- 3. How would you evaluate the screen layout using a cube to represent multiple courses?
- 4. How would you describe the user interface: Is it easy to understand how to use the system?
- 5. What do you think of the "knowledge map" that links ideas across multiple courses (finding how concepts evolve from one course to another)?
- 6. How would you evaluate the knowledge repository approach of aggregating (combining all the courses notes and links between ideas in one central location (web page)?

Semi-Structured Interview Questions Final Questionnaire

1. How would you describe the presentation of multiple courses/content (notes) in one central location?

1a.Follow up question

Do you believe the new system will help you learn the material any better.

2. How would you judge the benefits of the preview page that shows you a graphical overview of the course content?

2a.Follow up question

Do you think it helps a student understand or see what is going? on in the course better or worst than the standard text only course outline.

3. How would you evaluate the screen layout using the cube to represent multiple courses?

3a. Follow up question

Can you think of a better way of representing multiple courses?

4. How would you describe the user interface: Is it easy to understand how to use the system?

4a.Follow up question

Is there anything specific you did not like about how the screen is set-up?

5. What do you think of the "knowledge map" that links ideas across multiple courses (finding how concepts evolve from one course to another)?

5a.Follow up question

What do you think of the 2D version vs. the 3D version? Better or worse: should you have both?

5b.Follow up question

Do you prefer the 3D version, and maybe larger hiding 2D version?

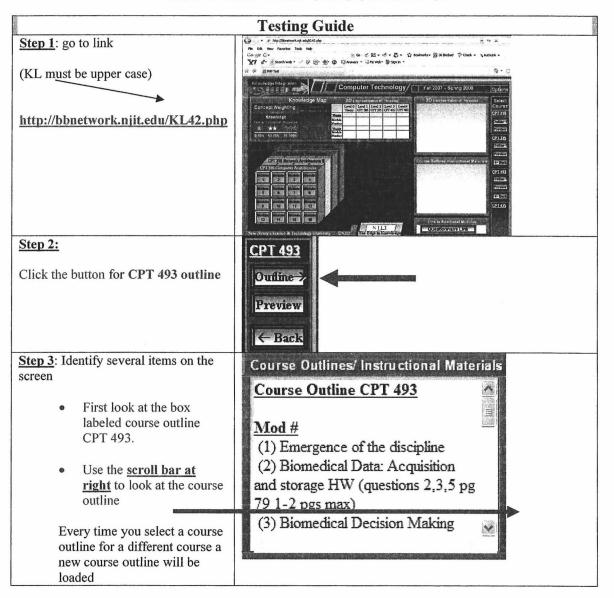
5c.Follow up question

What do you think of this knowledge map? Will it help you learn and understand what is going on in the courses? Will it be better or worse?

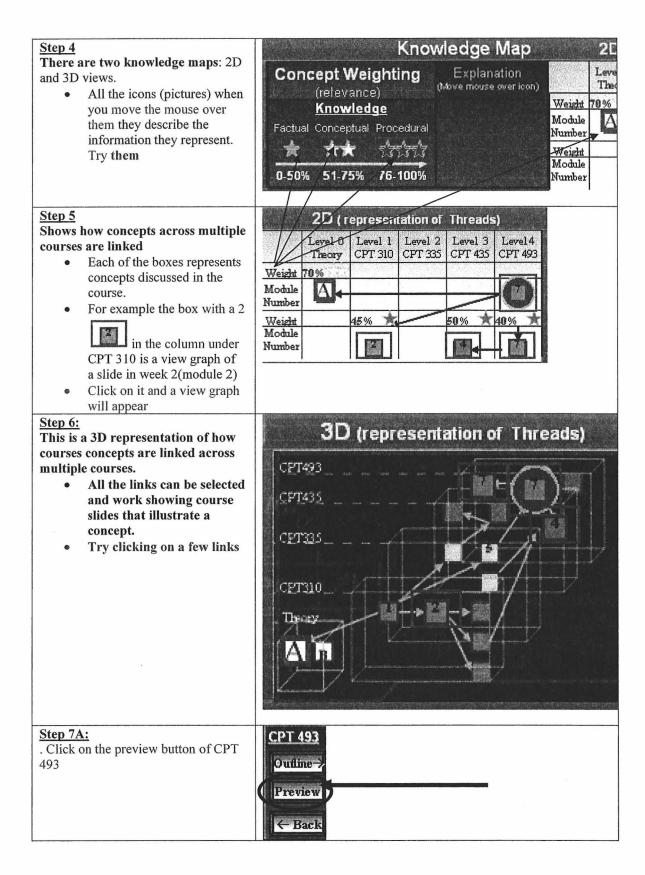
6. How would you evaluate the knowledge repository approach of aggregating

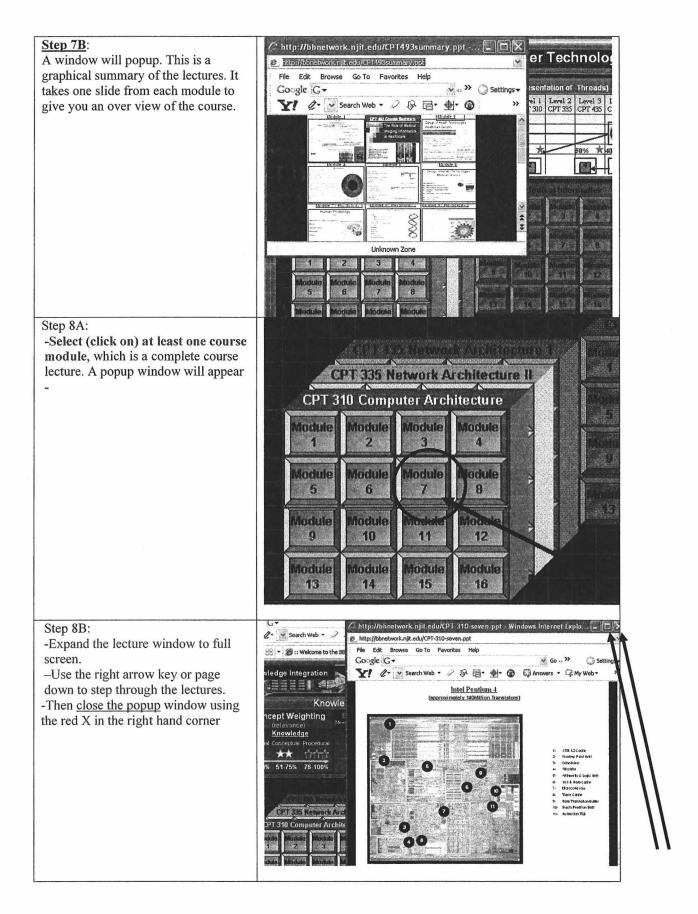
(combining all the courses notes and links between ideas in one central location (web page)?

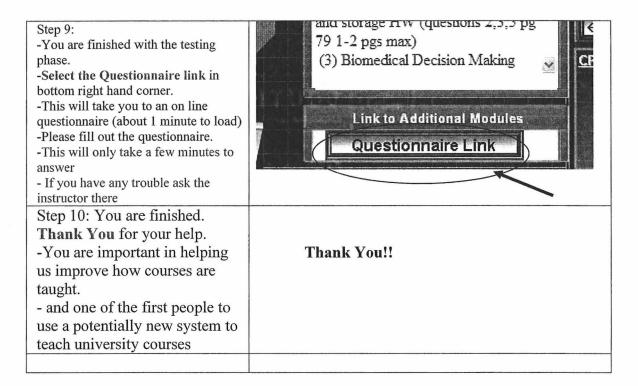
6a.Follow up question


Do you think the idea of teaching courses differently, where you have all of the information of multiple courses available to you, is a better or worse way of presenting the information?

÷¢


APPENDIX E


SEMI-STRUCTURED INTERVIEW TESTING GUIDE


The following testing guide was provided to all students participating in the semistructured interviews to ensure replicability of the results. (The items in red are changes that were made between the pretest and final versions)

<u>Knowledge Repository Learning System</u> (The blue colors are usually things you need to try)

APPENDIX F

TRANSCRIPTS OF SEMI-STRUCTURED INTERVIEWS

This is a transcript of the questions and answers during the semi-structured interviews.

Transcript Notation:

L = Learner

- O = Observer
- [] = Learner behavior
- () = Observer interpretation

Color coding:

- I used blue for learner's responses. It was easier to quickly scan and get a feeling for his perceptions.
- I used red to indicate skipped questions. Usually items we had already covered in previous questions.

Probing:

I indented all follow up, probing questions, so I could identify areas I needed more clarification.

Italics:

All questions that were asked are *italicized* and **numbered in bold** for easy identification.

D1: Pretest Questionnaire: E. K.

Perceived Usefulness (main features section, questions 1,2)

O = (Question 1): How would you describe the presentation of multiple courses/content (notes) in one central location?

L1: I think it's very useful to see everything in one central location, because it's very useful to see everything in one place, you wouldn't get confused looking for any particular course name. It is all here for you on the same page to look up anything you would want to look for.

O = (probing a point he made by asking a follow up question): (Question 1a:) Did it help you learn the material any better?

L1: I think so, it'll be faster, better, and helpful in many ways. Actually this website is something I have never seen before; everything is here for you, all of the course names, modules, etc.

O= (Question 2): How would you judge the benefits of the preview page that shows you a graphical overview of the course content?

L1: I think preview page is just a great way of looking up what the each course is all about for that semester, from the first week of the semester till the fifteenth week of the semester. If a student has any questions for any type of course, he/she can go to preview page to see what it'll be expected in each lecture from module one till module fifteenth. Again, I think it is a great way of showing what the each course is all about.

Perceived Ease of Use (main features section, questions 3,4)

O = (Question 3): *How would you evaluate the screen layout using the cube to represent multiple courses?*

L1: Cubes are a really good way of showing all of the course information listed under each different course name for students to have an easy access to any information they want in a very quick and unique way.

O = (Question 4): *How would you describe the user interface: Is it easy to understand how to use the system?*

L1: Yes, it is very easy to understand how to use the system, knowledge maps really help you as well as 2D and 3D representation of threads help you how to navigate the page as well as the outlines and preview, and looks really good.

Usefulness of the Knowledge Repository (main features section, questions 5,6)

O = (Question 5): What do you think of the "knowledge map" that links ideas across multiple courses (finding how concepts evolve from one course to another)?

L1: I think it's a good way of showing with the arrows what is important and what is not. And the color coding helps you to decide and then you can easily go back and forth to find out information from any particular course.

O = (probing a point he made by asking a follow up question): (Question 5a): What do you think of the 2D version vs the 3D version. Better or worst should you have both?

L1: I think both versions are a good idea, but 3D has an advantage over 2D,

because it shows you a lot more clear, also color coded better then 2D representation.

O = (Question 6): How would you evaluate the knowledge repository approach of aggregating (combining all the courses notes and links between ideas in one central location (web page)?

L1: As technology moves on, this is a great way of teaching the computer technology programs, it is a lot more easier, convenient, faster and helpful compared to other computer technology websites that I have seen before. This is an excellent technology website and I hope it'll be very useful to all of computer technology major students.

D2: Final Questionnaire: M. M.

Perceived Usefulness (main features section, questions 1,2)

O = (Question 1): *How would you describe the presentation of multiple courses/content (notes) in one central location?*

L2 = The idea is good. Put all of the information into one central database. We can access it any time we want anywhere you are in the world. It's a good way to refresh your memory if you want to go back to a class you have taken year or two years ago. The idea is really good.

O = (probing a point he made by asking a follow up question): (Question 1a:) Did it help you learn the material any better?

L2 = It all depends on the student. The information is there but if he/she doesn't want to learn it that his/hers problem. So basically it's the student's responsibility to learn it. If he/she doesn't want to learn nobody can force them to it.

O= (Question 2): How would you judge the benefits of the preview page that shows you a graphical overview of the course content?

L2 = Preview page to me it's a good idea. It shows me a minimal idea of what we gone cover in each module/week so I can have a better understanding of what we gone learn.

O = (probing a point he made by asking a follow up question): (Question 2a):Do you think it helps a student understand or see what is going on in the course better or worse than the standard text course outline.

L2 = It probably will help because you will be able to see basically ahead what you gone learn so you can researched ahead before the class starts. That's an advantage for the student.

Perceived Ease of Use (main features section, questions 3,4)

O = (Question 3): *How would you evaluate the screen layout using the cube to represent multiple courses?*

L2 = The layout I like. What I would suggest maybe not now but later the webpage, when it looks to automatically fit the screen size resolutions. I would do this for both Pc and portable devices. That would probably be the only thing I would change. Other then that to me it looks good.

O = (probing a point he made by asking a follow up question): = (Question 3a) Can you think of a better way of representing multiple courses?

L2 = I think the way it's done now its shows multiple layers its goes form layer 1 to layer 2. So it gives more in depth information.

O = (Question 4): *How would you describe the user interface: Is it easy to understand how to use the system?*

L2 = At first it may be hard for the student to use, but one you use it's not hard. It pretty easy to understand but it will time a couple of tries to get used to it.

O = (probing a point he made by asking a follow up question):

(Question 4a): Is there anything is specific you did not like about how the screen is set-up?

L2 = If the screen was bigger it would be much better. If the resolutions are low you really not see the whole thing. Other then that the layout is laid out perfectly.

Usefulness of the Knowledge Repository (main features section, questions 5,6)

O = (Question 5): *What do you think of the "knowledge map" that links ideas across multiple courses* (finding how concepts evolve from one course to another)?

L2 = To me that's a helpful hint. Let's say you don't know something it shows you exactly where to go to get information on it. It shows you where you are now and where you have to go later. That a good idea.

O = (probing a point he made by asking a follow up question):

(Question 5a): What do you think of the 2D version vs the 3D version. Better or worst should you have both?

L2 = What I would do is to hind the 2D. I would probably have a button to show the 2D. To me it doesn't not matter 2D or 3D. 3D to me looks much better then 2D. 3D is more graphical then 2D. 2D has more text. For me 2D and 3D would work fine.

O = (probing a point he made by asking a follow up question): (Question 5b): Do you prefer the 3D version, and maybe hiding the 2D version?

L2 = I prefer 3D version better. We should have settings section for each user. For example when each user logs-in they can select from a list of items what they want to see on their screen. This is one possibility.

O = (probing a point he made by asking a follow up question): (Question 5c)What do you think if this knowledge map. Will it help you learn and understand what is going on in the courses? Will it be better or worst?

L2 = It shows what is the most important, how much, what you need to know more then the other classes, so you can get a better understanding of the class. Everything is there but if the student doesn't want to learn it nobody can help them.

O = (Question 6): How would you evaluate the knowledge repository approach of aggregating (combining all the courses notes and links between ideas in one central location (web page)?

L2 = Have small groups in which they try the web-site. Also ask them questions based on the web-site to see what they think of it. From here see what they have answered, and maybe down the line where the web-site needs to get expanded then try to improve it based on the answers from the questions.

O = (probing a point he made by asking a follow up question): (Question 6a): Do you think the idea of teaching courses differently where you have all of the information of multiple courses available to you is better or worse way of presenting the information.

L2 = It's a good idea. You have the information in one spot. You don't need to go from site to site because you have all of the information in one central station where everything is there for you.

APPENDIX G

FOCUS GROUP TRANSCRIPTS

These are the transcripts of the Focus Group sessions.

Participant 1:

Y.E. November 9, 2007 Senior Group Project

Thoughts & ideas about designing a <u>Computer Technology</u> web site for NJIT.

1. First of all, before looking at anything in particular on the website, I would like to mention that the user interface looks very unique compared to other universities computer technology websites. As soon as I look at the website, the way it's designed as in coloring, organization, color coding, instructions, course names, over all the website gives me a good idea on what to look for when I want to find or look for something.

- What I like on user interface is it is very clear what you're looking at, no confusion. Clicking the index buttons to bring the information out for each different course for a better view is a great future.
- **Knowledge map (local)** is good, helpful information provided on the website to tell students what really is important as well as what is least important. Arrows and Stars really help you to visualize and makes it easy to see important and non-important features of this website, as well as the given percentages of course.
- **Knowledge map (global)** is also very helpful for students to follow course information, because it is designed by matching colors and showing of arrows to follow the right path in order to get to the course information any student would like to see.

2. If I were to build this webpage for my BS degree, I would still do something unique like Professor Lubliner is doing. It would really have to be attractive, I would use knowledge maps in order to clear any confusion on the website.

• I would not like the course outline display screen, I would either get rid of that or make it look better in design.

3. You can go into more depth of any course provided within the website. On the select a course column you can click the **Review** button, and open up the power point slide to see all of the modules are listed for that particular course in a semester. It is easy to preview what you will be doing for that course from week one to end within only one page, very convenient and straight forward process.

Note: On the user interface, if it was me, I would replace the **Review** button with a **Preview** button, since it makes more sense about what it is doing.

4. Yes, video clips are very useful to have, where it's necessary on power point slides, I think this is a really good idea since not everyone understands the material verbally, watching the video clips could really be useful and helpful for students to understand the material. Some of students could be good in verbal some could be better in visual so again this is such a good idea to have.

- Video clips on portable devices could be a problem, because you would need an internet connection to play the video clips, since most portable computers are connected to the internet via wireless LAN, depending on your connection to a wireless network you might have some difficulty running the video clips.
- Another thing that caught my attention while looking at the video links on power point slides that they are not noticeable and could be presented in a better way to attract more attention.

5. My feelings about organizing information is easier then teaching a particular course, because in organizing, information is already there for you to put it in its organized way, like in categories, shape, subject, etc.

• Both the organization and teaching of information that are posted on the Computer Technology website are so far very educational and needed information, including the way the web page designed, power point information as well as video clips.

6. The general screen lay out is good, except some little wording problems I have mentioned before as **Review** needs to be changed to **Preview**.

- Also the CPT 310 course information is missing the arrows, and back button. The course outline display section could be designed in color and in more fashionable way to attract attention and be able to see well.
- Over all the visual set up I like, except the parts I have mentioned I didn't and thought it could be better design.
- For the course outline display section, you could have a colorful background, maybe a picture and put the writing on top of it with a reasonable coloring.

7. I think **video tutorials** are better way of showing vs. **text tutorial** because, showing a video about a particular subject and visualizing it is always better then seeing it in text. In video tutorials seeing and hearing the information helps you better in understanding the material.

8. Connecting things from course to course is important and useful. One information could always relate refer to or could be about information in another course. Information should have links to each other in order for a quick reference.

Participant 2:

S.E.

1) What would I change if I were to agitate the website?

As far as the layout is concered first I would change the grid background to maybe a more simplifed one for it maybe a plain page with the NJIT logo or something related to Computer Technology like a light contrasted circuit board. By expanding the size of the layout, the modules of the webpage could be efficiently utilized and there would be room for expansion.

2) Likes and dislikes about the site so far.

One dislike about the site so far is a few of the navigation features such as the 'cube access'. When a second cube is 'outlined', it should automatically retract to its 'home' but instead the user would have to manually press 'back' to retract it. One thing I do like about the website so far is the fact that all the access that one would need is located on one page. There is no need to roam through various pages to make use of the webpage

3) Is the use of video clips a bad idea or not?

The use of video clips is actually a great idea. As far as teaching, it can really help a number of students who aren't able to grasp certain concepts by the use of lecture notes alone. Some students prefer to visually note ideas much easier than others. So the use of video clips definately is of great use to a good number of audiences. I personallyfind it more intriguing.

4) Organizing info.

The availability of all the info on this site will greatly benefit a student who is looking for links to all his/her related course work that they have taken (or looking to take) during their time here at NJIT. Rather than going to a few classes early in the semester only to realize that that certain class is not for them, the availability of the course notes will help them decide whether to register or not. It also assists students if they need access to notes for studying.

5) Comments about the UI.

While the UI is structured, some may not find it very user-friendly. I think that just simply zooming the page to fit the entire browser window, navigation can be greatly improved. With the larger size the modules on the page can have their own area to distinguish itself. This change will greatly enhance the site with minor changes to the modules.

6) Opinions about the video tutorial showing users on how to make use of the system.

The video tutorial on the website is a great idea as there may be some students who will have difficulty with the navigation part. One suggestion that I would say is that maybe categorize the tutorial into

2) Participant 3:

3) M.M.

1. If you were to design a website to organize all courses information for B.S degree, what would you put in there that would be useful?

If I were to design a web-site I would include the following items

- A. Navigation Map
- B. Lecture notes
- C. Pre-view
- D. Video clips
- E. Place to exchange information between classmates
- F. Add links to external information
- G. Links to other classes when additional notes are needed
- H. A search engine to find the information quicker and more precise to the point we want it.

These are just a couple of things I would use if I was to design a system for students.

2. Is there anything on the user Interface that does not make sense and what you like and dislike and what might me changed?

I really would not change a lot on the interface. Maybe what I would change would be to change the course outline, to a more and useful interface. Other then that to me the interface looks fine. Maybe when the system goes fully into action then the interface can be changed, because there will be more options on the web-site to choose from.

3. How do you like the idea of having a review of all lectures into a review slide?

I personally like the idea of having a review, because I would be able to see what material I will need to know, and what I will learn when I take that class. The review can

also serve as a reference review when we forget something and want to go back and review that material. Instead of going through the entire lecture material notes the material can be found in the review section. The idea of the review section is a really good and it will be useful in the system.

4. Are video clips are good idea or is it not?


Video clips are really useful in any website. They give another perspective on a particular subject. Some students learn the material faster through video clips rather the from lectures/notes. Video clips give more visual and sound effects compared to notes.

5. Is a video clip a good idea to be used on portable devices?

Since technology is so advanced video clips can be viewed on portable devices. People are on the go all the time and having the ability to see the data on portable devices is a great way to view it. Maybe the quality is not the best as on a regular PC. The fact has to do with the connection. A lan connection is faster than a wi-fi connections. Portable devices now can view different format of video.

6. What should be a logo to show that it's a video clip?

I am enclosing a couple of sample video clip logos

7. You're feeling about organizing/teaching, so you can get more out of it?

Organizing information into one useful system is great. Since I am paying money for my education I want to have access to everything to help me pass and get my degree. If I don't get something when the teacher explains it I can always go and see the information on the web-site. Either read the notes material again or watch some video clips, which will sink into my head. Information that is organized will help the student more that information that is thrown on the web-site.

8. Do you think a video tutorial is a good way to explain the system?

To me a Video tutorial is a good way to explain the system to a user. A video tutorial will show step by step explanation, because not every user grasps the information as quick as another user might. A video Tutorial will also show the user where to find information from the classes that were taken back in the years. It will also show the user where to go to get information on classes that the user will want to take in the future.

9. Do you like the idea of having links which connect to other useful piece of information?

The idea of having links to other information is really useful and sometimes crucial during the 4 years of college. Everyone cannot remembers everything and having links to information that was covered in the earlier years will give the students a way to refresh their mind and also give the student a better idea on how to maybe finished their homework or study for a test.

Participant 4:

B.V.

1.) If I were going to design and use a website to aggregate all course information for your BS degree what would I do?

I would include all the information pertaining to the courses making it accessible to the user. How I would layout the user interface I'm not sure of.

2.) General screen layout the pro's and con's for user interface based on what is seen.

Con's I've had a few problems with the site itself the frame sometimes don't seem to be aligned they will shift over and cover other parts of the site. It was fixed simply refreshing the website. It just may be the resolution on my system.

Pros's Very easy to use interface well thought out easy to navigate. The pop-up widows for accessing the power point slides works well because of the ability to resize them. You can access multiple power points and have those all displayed at once.

3.) Do I think a video tutorial to show you how to use everything would work vs. text tutorial?

I think that a video tutorial would be better than just a simple text tutorial. It isn't something that is done often and will make understanding the site a lot easier for everyone. I would personal use a voice over on it with the text he scrolls the screen.

4.) My feeling about organizing information and teaching so I can learn more.

All the course information being accessible from one place using a very easy to use user interface containing connections from previous and future courses. It would make it easier to study for exams using the knowledge map then being able to use the pop-up widows to open multiple power points.

5.) Layout information for course what do you need? Quick look at course information snapshot about course (Review) change to preview.

I like the idea of the review function it gives a good overview of what contained. It shows more than a course outline as long as the professor places important information from the course in the function it should be very helpful to students looking over courses.

6.) What do I think about having things connected from course to course?

The course connection features could be one of the best features. As long it functional and easy to understand well thought out and implemented. This feature still not useable but I would like to see this function to give better input.

APPENDIX H

HICCS 2008 PAPER: DISSERTATION RESEARCH

The following paper, relating to this research, was presented at the 41st Hawaii International Conference on System Sciences.

N² Heads are Better than One: Collaborative Learning, Utilizing an Integrated Knowledge Repository, Facilitated Through a Massively Multiplayer Online Gaming (MMOG) Paradigm

David J. Lubliner, Ph.D. Candidate New Jersey Institute of Technology Inshiner & NJIT, edu George Widmeyer, Ph.D. New Jersey Institute of Technology Widoneyer it,NJIT.edu

Abstract

A Massively Unhtiplayer Online Game (ADJOR's framework will be utilized to enhance learning in a distributed cullaborative learning environment @ LE). The goal is to create a singleinterconnected learning environment that spans multiple courses. These online courses will share a remable knowledge reportary that contains information relevant to a field of study. If e have solected four intervelated network security courses; computer orbisarks, computer security, computer forenoics and emergence management to create a self-motabiling interconnected learning environment. This nexted can then be utilized in other disciplines. A five-level MMOG game will by developed that requires the collaborative skills of students in ambijule contrast to engage in problem solving scenarios. As the students' knowledge progresses they will be assigned to increasingly higher levels of problem-solving complexity, incorporated into an engaging 3D gaming francework. It is our hypothesis that students will learn faster and develop more complex interdisciplinary skills atilizing an MMOG than the current method of teaching individual severate courses.

1. Introduction

Current online teaching methodologies utilize a single course oriented, stand-alone teaching paradigat und iz neg conneuler moliated communication techniques to facilitate group learning [2][8][22]. The current teaching outadigms for Asynchronous Learning Networks (ALN's) are currently just an extension of the methodologies used in face-to-face (FTF) courses. The next level of evolution in distributed learning is to combine the knowledge of an entire discipline into an integrated collaborative reasable knowledge base that creates a synthesis of the information into a unified whole. It has been

hypothesized that "Ottimately the development of content humsdedge bases that integrate content across multiple courses within a degree program is an expected evolution." [23] In order to fully utilize the power of new technologies, the internet and enhanced computational and visualization enoubilities, new models are necessary to weave together information into a true knowledge repositery. It is our hypothesis that presenting exurse materials with embedded meaning derived from the context of the overall discipline will enhance and accelerate knowledge formation. A second hypothesis is that students' level of understanding and comprehension will be enhanced by using real world examples [16] will be facilitated by the gamine environment. A third hypothesis is that delivering the information in an engaging presentation and collaboration madium will increase time speat using the system [7]. Our fourth hypothesis is that utilizing the framework of a Massively Multiplayer Online Gaming (MMCG) structure to engage the students in successively higher levels of complexity will support the dynamic and evolutionary nature of the overall system design, [1].

This research is important to the research community for several reasons. First, there is entrently no existing model to interconnect online. examples that share philosophical and technical commonalties, into a collaborative learning environment utilizing a shared knowledge repositery. This knowledge repeatory will allow students from multiple courses to explore information rathways that transcend the score of individual course topics. The knowledge repository will provide mechanism for them to traverse and explore interconnected conceptual threads. The Constructivist Learning Environment (CLE) emphasizes knowledge construction is based on providing an environment that fosters the learner's process of organizing and integrating information. We expect to provide the framework to facilitate that exploration – Second, the MMOG framework will provide a mechanism to enable enhanced collaboration between students and instructors who occupy analtiple levels of conceptual knowledge. A structure of mentors, guides, apprentices etc. embedded in a gaming environment will be focused on solving real world scenarios, utilizing an engaging gaming environment. The goal of this research is to spurexploration into new paradigms for linking asynchronious learning environments and gaming into a dynamic platferm to foster learning and individual exploration of knowledge.

The first step in this research was to select a theoretical framework that would support the hypotheses. The Constructivist Learning Environment [4] [11] is an educational framework that hypothesizes that knowledge construction is based on the concept that learners actively construct a knowledge representation in working memory based on eight components. These eight evalponents are active-manipulative, constructive, collaborative, conversational, reflective-critical, contextualized, complex and intentional. These eight components create a structural framework to engage students in meaningful learning.

The second step was to utilize an engaging environment to motivate students to utilize the system. We researched online environments that had the highest level of user engagement and hours spent online [7] [24] which led us to the MMOGi gaming environment. The military has also successfully utilized military games in distributed environments [4]. The other important feature of MMOO's was the multilevel collaborative gaming environments that fostered ecoperation. These were evident in popular games like RimeScape. GuildWars, Ragnarok, Everquest and Lineage that had player bases up to several million [10]

Third, we selected a discipline, computer and network security, to test out our hypotheses. We chose four well-defined courses that span introductory to advanced topics to ereate this knowledge repository. The courses are: Networks. Computer Security, Computer Forensies and Emergency Management. We have collected all the course notes and have the cooperation of the instructors to test our system. A control group will be used to test learning efficacies. Components of the Computer Information Systems Security Professional (CISSP) exam will be used to test the accumulated knowledge, skifts and comprehension.

The next part of this paper describes constructivist learning theory, which forms the basis of a learning environment design. The third section of the paper presents 12 design principles for the development of a learning environment that were derived from a review of the literature of on online game design and constructivist learning theory principles. That section also includes five specific research hypotheses about the effectiveness of such a learning environment. This is followed by a description of the general architecture for a proposed online gaming. The final section is some conclusions and future plans for this research in progress.

2. Theoretical Framework

There are three approaches to learning that have evolved during the last century. Learning as response strengthening, learning as knowledge accuisition and learning as knowledge construction. [15] The first approach has the learner passively receiving reward and panishments, such as drill and practice, simple response and feedback. The second has students placing new information in long term memory. The learner still passively acquires information from the teacher who presents information in textbooks and lectures. Knowledge is a commodity transmitted from the teacher to the learner. The third approach, leatning as knowledge construction, is based on the concept that learners actively construct a knowledge representation in working memory.

In the early 1900's Piaget's theory of cognitive development in children [18] postalated a sequence of four qualitatively distinct stages of intellectual development. Seasor-motor. Preoperational. Concrete operations and Formal operations He believed that "the learner must be active, he is not a vessel to be filled with facts. Learning involves the participation of the learner". Creating an environment designed to allow students to explore and independently navigate tendrils of interconnecting concepts will empower and enhance their construction of more cohesive understanding of interconnected facets of a discipline. Later in the 1900's Vygotsky's [25] Zone of Proximal Development (ZPD) stated that the potential for cognitive development depends

en social development. Skills that can be developed in collaboration with their peers exceed these which can be attained alone. This supports the hypothesis that gaming can be used to increase social interaction in learning environments and can potentially increase knowledge acquisition. Later in the 1990's theories based on human learning in realistic settings [11] emerged that the learner is the sense-maker and the teacher is the counitive gaide who provides gaidance and modeling on authentic academic tasks. The instructional designer's role is to create cavironments in which the learner interacts meaningfully and fosters the learner's process of organizing and integrating information. The CLE provides a framework for designing and building the third approach.

The goal of CLE's [11] "is to finite problem solving and conceptual development." Objectivist conceptions of learning assume that knowledge is individually constructed and socially coconstructed by learners based on interpretations and experiences in the world. The goal is to "engage learners to meaning making chrowledge construction." [3][26]

The CLE is an education framework that combines eight components to engage students in meaningful learning [4] [11]. This will be used as a structural framework to model the MM000 learning environment. The eight components are:

Active/Manipulative: i.eamers are engaged by the learning process in mindfal processing of information where they are responsible for the result.

Constructive: Learners integrate new ideas with prior knowledge in order to make sense or make meaning or reconcile a discrepancy, cariosity, or parzlement

Collaborative: Learners naturally work in learning and knowledge building communities, exploiting each other's skills while providing social support and modeling and observing the contributions of each member.

Conversational: Learning is inherently a social, dialogical process [6]. That is, given a problem or task, people naturally seek out opinions and ideas from others.

Reflective/Critical: Learners should be required by technology-based learning to articulate what they are doing, the decisions they make, the strategies they use, and the answers that they found. **Contextualized:** A great deal of recent research has shown that learning tasks that are situated in some meaningful real world task or simulated in some case-based or problem-based learning environment are not only better understead, but also are more consistently transferred to new situations.

Complex: Teachers may often oversimplify ideas in order to make them more easily transmittable to learners. In addition to stripping ideas out of their normal contexts, we distill ideas to their simplest form so that students will more readily learn them. **Intentional:** All human behavior is goal directed [20]. That is, everything that we do is intended to fulfill some goal.

3. Design Principles

The intent of this research is to integrate facers of gaming paradigms with constructivist learning theory to facilitate knowledge construction. A recent study [28] of 30,000 online gamers in an MMOG environment analyzed five factors notivating users. Achievement, Relationships, humersion, Escapism and Manipulation. The data indicates that users derived real-life leadership skills from these virtual environments. These complex environments may currently be classified as games but their complexity and the evolving skills derived from navigating these virtual worlds can lead to richer learning environments.

The literature on gaming [1] [7] [13] suggests that more than 60% of the U.S. population ages 12-22 is engaged in some form of gaming. The percentage is higher for males with 75% of males. in this age group being engaged in some form of gaining at least once a week. Approximately 37% of individuals in this age group were found to play ap to eight hours a week. This seems to indicate that if we can harness the unique features that engage individuals and apply it to learning environments we can increase interest and possibly knowledge acquisition in conventional MMOG's research [10] university curricula. indicates that features that make these games attractive are players achieving milestones. accessing new weapons and tactics, taking on increasingly challenging opponents and obstacles and assuming different roles and identities. This is in contrast to single player games that revolve around shooting and killing.

A book by Gee [7] argues that good videogames produce better learning conditions than many of today's schools. The book presents 36 learning principles that should be considered in

asing games when designing a learning environment. Ten of these principles were adopted by Bonk and Dennen [1] as being particularly pertinent to MM0.06's. A review of both sets resulted in a revision to some of the Bonk and Dennen [1] principles, and the addition of three new ones (numbers 1, 2 and 3 below). The resulting 12 design principles for a CLE are.

- Engaging Principle: The game must have a compelling theme that is attractive to potential users.
- User Interface Ease of Use Principle: The text and environment should be of the appropriate size and have intuitive controls.
- 3) On-Demand and Just-In-Time Tutorial Principle: Instead of reading desens of pages on how to use the game, interial should be part of the game.
- Achievement Principle: Learners should be constantly rewarded, at each level of the game play and skill mastery.
- Amplification of input Principle. Learners should get out of the experience more than they put in
- 6) Divtributed Principle: Learners should find growth and knowledge in their interactions with other learners, technology, context, objects and tools.
- Multiple routes Principle. There should be more than one way for asers to progress, encouraging them to make decisions and solve problems.
- Practice Principle: Learners should be able to spend a lot of time practicing in an interesting environment.
- Psychosocial Moratorium Principle: Learners should be able to take risks in artificial environments where there is a lower chance of real world consequences.
- 10) Regime of Competence Principle: Learners should be challenged to push beyond their comfort / ability zone, but not to an extent that is unsafe or unattainable.
- Self Knowledge Principle. Players learn about themselves and their current and potential capabilities.
- 12) Collective knowledge Principle: Players learn from other players' experiences, building a repository of useful knowledge shared by all.

4. Validating the Design Principles

There are two questions that need to be explored. The first is whether the 12 design principles are consistent with a learning environment based on constructivist learning principles. The second is determining the most appropriate architecture of an online game that is specifically designed as learning environments. We discuss the first question in this section and the second question is addressed in the following section. The first validation is done by comparing the 12 design principles to the constructs in a survey that has been used to test student's preferences for a learning environment based on constructivist principles.

The original version of the Constructivist Learning. Environment Survey (CLES) was introduced in 1991, but it was later significantly revised and retested. Each scale of the new version of the CLES is designed to obtain measures of students' perceptions of the frequency of occurrence of five key dimensions of a critical constructivist learning. environment [21]. The Constructivist Multimedia Learning Environment Survey (CMLES) starts with the CLES, but was modified to better reflect the characteristics of a learning environment that uses interactive multimedia technology. Each scale of the CMLES is designed to obtain measures of students' perceptions of the frequency of occurrence of five key dimensions of a critical constructivist learning environment. The CMLES contains 25 items altogether, with five items in each of five seales. The response alternatives for each item are Almost Always. Often, Sometimes, Seldom, and Almost Never. The five seales are: Student Negotiation, Inquiry Learning, Reflective Thinking, Authenticity, and Ease of Use [14]. We have modified the instrument slightly to produce the CGLES.

The Constructivist Multimedia Learning linvironment Survey [14] [21] has been validated in several research studies of high school science and mathematics classrooms and has been used in various studies in different countries. The Maor Survey has been used in the classroom and in a teacher development program. Table 3 shows descriptive information for each of the five scales for a survey we call the Constructivist Gaming Learning Environment Survey (CGLES). We are planning to use this survey to gather information

Table 3. Descriptive Information for each Scale of the CMILES (adapted from Maor [14])

Seale Name	Description	Sample Item
Social Negotiation	Extent to which students have the opportunities to discuss their questions and solutions to questions.	In the game-based learning environment, I prefer that I can ask other students to explain their ideas.
Inquiry Learning	Extent to which students are encouraged to engage in impiry learning	In the game-based learning environment, I prefer that I can early out investigations to test my own ideas.
Reflective Thinking	Extent to which students have opportunities to reflect on their own learning and thinking	
Anthenticity of the Learning	Extent to which the information in the game is authentic and representative of real life situations	In the game-based learning environment, I prefer that I work with situations that are relevant to me.
Complexity of the Learning Liavironment	Extent to which the game playing environment is user friendly and easy to navigate	In the game-based learning environment. I prefer that the game space is easy to navigate.

about student's preferences for a gamebased learning environment.

5. Hypothèses

The overall hypothesis of our research is that students will learn faster and develop more complex interdisciplinary skills utilizing an MM(X) with an integrated knowledge repository then the current method of teaching individual, separate courses. The main question of our current research is how to design online games that satisfy the 12 design principles. We are exploring just five of the principles at this stage of the research.

The linguping Principle states that the game must have a compelling theme that is attractive to potential users. It's our hypothesis that students will learn more effectively in an interactive 3D environment that provides asers with interactive scenarios that allow them to select navigation paths and game scenarios to reinforce the information presented.

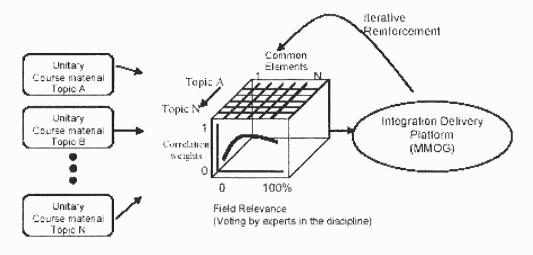
H1: Students using a MMOXi learning environment will prefer a game over a class and be more engaged in learning than students in conventional mi-line teaching courses.

The Collective Knowledge Principle states that players learn from other players' experiences, building a repository of useful knowledge shared by all. In conventional courses students are finited to the information presented from a single perspective of the discipline. By establishing the integrated knowledge of the entire discipline with the ability of students to collaborate from multiple perspectives, i.e. computer security or computer forensies, the students will gain a richer experience.

H2: Integrating multiples courses into a collective learning environment will increase students' knowledge of the interconnected nature of the discipline as opposed to single topic courses.

The Distributed Principle states that learners should find growth and knowledge in their interactions with other learners, technology, exatext, objects and tools. Learning is enhanced when students share knowledge and solve problems collectively rather than sit passively and absorb information from lectures. The MMOX1 environment will provide interactive gaming scenarios to allow students to research and solve problems collectively in an engaging learning environment.

H3: Students engaged in a MMOG gaming environment will develop better collaboration skills than those students in conventional contract.


The Amplification of Input Principle states that learners should get more out of the experience than they put in By allowing students to independently mavigate the integrated knowledge base, they can control the pace and nature of information gathered. Each of us learns differently and at a different pace. Providing students with an environment that allows them to tailor their own learning experience should enhance knowledge absorption.

H4: Students will learn faster in an MMOG than students in a conventional coarse.

The Regime of Competence Principle states that learners should be challenged to push beyond their comfort / ability zone, but not to an extent that is insafe or infattainable. Students will explore and navigate the environment if they are challenged. Online games have proven that if they are properly engaged, individuals will spend significant hours exploring interesting visual interactive environments. H5: Courses tright in a collaborative environment will be more up-to-date than conventional stand alone courses due to the feedback of other instructors and stadents.

6. Learning Reinforcement Model

In order to integrate knowledge that spans an entire discipline, there has to be a well defined model to integrate the individual course topics. Common elements that exist between the materials, correlation weights, interdependence of variables and the relevance of existing and new material will provide the correlation matrix used to evaluate concept interdependencies. This will evolve over time as new theories appear and the increasing volume of quantitative evidence supporting those claims is presented in referred journals. One measure of field relevance could be the number of eitations of a particular concept or approach.

7. Experimental Design

The design and testing of the Knowledge Repository (KR) and the MM000 gaming levels will be completed in three stages. The first stage, the Knowledge Repository, Level I & II of figure 1, with 3D user interface has been constructed. and is carrently undergoing prototype testing. An authoring tool has been developed to facilitate entering course materials into the system. Using this web based tool six classes, approximately 150 students, will utilize this tool. Learning experiences will be evaluated using the Constructivist. Multimedia Learning Environment Survey (CMLES) [14] in

October/November 2007. The constructs evaluated in the CWILES survey are summarized in table 3. They include reflective thinking, complexity of the learning environment. authenticity of the learning environment and social negotiation. These design principles will be evaluated to determine the most/least effective aspects of this design. Data will be available to present to the HICSS conference. Croabach's Alpha will be performed to confirm the internal reliability for questions relating to each of the above CMILES constructs. Factor analysis will be run to confirm any relationships. The second stage, integrating the MM(X) gaming level III, will utilize the Active-Worlds Educational Universe (AWEDU) [27] MM(X) design software. This component is currently under development and it is anticipated that this level will be integrated with the Knowledge Recessiony in fall 2007.

This system integrates the centent material of four computer/network courses with an intuitive 3D interface which will allow students to navigate material transcending any one particular course of study.

Stage three will entail testing the system, spanning multiple aniversities, in a truly MMR/0environment

8. Designing the MMOG

Massively Multiplayer Online Games are built around the idea of connecting individuals together in a virtual space. These teams create shared situational awareness through the sharing of information and through goal-directed collaboration [1]. They also cut across hierarchical lines by allowing individuals and groups to achieve a degree of selfsynchronization. MMOO's provide users with the ability to interact with other individuals anywhere on the planet.

The success of a number of MMOOG's has engaged thousands of users worldwide and provides a tantalizing hint at the potential application of these gaming environments. Some of the popular MMOO's are Anarchy Online, Lineage, Asherton's Call 2. Ever Quest, Ultima Online, and Dark Age of Carnelot, Lineage has 2.5 million subscribers [24]. Ever Quest, has 350,000 players with 100,000 simultaneous players and Ultimate II has had up to 14,000 simultaneous users [12]. It has been estimated that 60% of the U.S. population has played somelevel of compater game [13].

The current effort in this research in progress is to work with four professors to integrate four security courses – networks, computer security, forensies, and emergency management – to ereate the core database and learning materials to ereate an integrated knowledge base for a single online game that can be used across all four courses. The MM0/G learning cavironment will be structured around five levels of increasing complexity. The first three levels are illustrated in Figure 1.

The CLES states that knowledge is individually constructed and socially coconstructed by learners based on interpretations and experiences in the world [11]. The MMCXi will integrate CLES goals of socially constructing knowledge by providing a gaming framework that fosters information sharing between students at various skill levels. This is facilitated by constructing gaming groups consisting of students from multiple skill levels. i.e. beginner through advanced. This skill level is determined by the system providing quizzes that rate knowledge acquisition by their proficiency on these exams. Their ranking will be sealed from 1-400. All gaming securitos will randomly select students from different course and skill levels to ensure a heterogeneous game population, i.e. a learning environment that provides memors and novices interacting in problem solving scenarios. At the start and end of each game scenario, i.e. resolving a particular security threat, they will take a brief proficiency test to measure the efficacy of this approach.

Figure 1 illustrates the integration of the CLES knowledge recository, level 1, with the gaming level HI. Level 2 utilizes a WebCt environment that provides discussion forums, mediated by instructors that enable cross course discussions. Students will begin with conventional course materials, limbedded in them will be links to the knowledge repository. They will have the option to explore related concepts displayed as a vector diagram first displays concepts in the form A \rightarrow $B \rightarrow C \rightarrow D$. Concept A would normally be esvered in course I. B in a more advanced course, etc. Students will have the ability to explore the topic in any depth. A new Learning Reinforcement Model (LRM), figure 2, will link together concepts based on correlation weights.

10. References

[1] Bonk, C.J., and Dennen, V.P. (2005). "Massavely Multiplayer Online Gammy: A Research Francowork for Military Training and Education", Technical Report 2005-1. Advanced Distributed Learning Initiative, Office of the Under Secretary of Defense for Personnel and Readiness, 2005.

[2] Browe, J.S., Colhus, A., & Dugard, P., "Situated Cognition and the Culture of Learning", Educational Researcher, 18, 1089, pp. 32-42.

[3] Davidson, M., Jonasson, D., "Learning With Media: Restructuring the Delxate", Educational Research and Technology, Springer, Boston, Vol. 42, Number 2, 1994.

[4] Dede, C. "The evolution of Constructivist Learning Environments. Immersion in Distributed Virtual Workls", Education Technology, 1995.

[5] DeSanctis, G. and Gallupe, B. "A Foundation for the study of Group Decision Support Systems", Management Science, 1985.

[6] Duffy, T. M., & Commingham, D. J., "Constructivism: Implications for the Design and Delivery of Instruction". In Educational Communications and Technology, New York: Simon-& Schuster Macmillan, 1996, pp. 170-199.

[7] Gee, J.P., "What video games have to teach us about (carrying", Palgrave, NY: MseMillian, 2003.

[8] Hiltz, S. R. "Teaching in a Virtual Classroom", International Condetence on Educational Teleconomications, Department of Computer and Information Science NJIF, 2005.

[9] Hiltz, S.R., Fjermestad J., Ocker, R., Turoff, M., "Asynchronous Virtual teams: Can Software tools of Social Processes linkance Performance", Advances in Management Information Systems, 2006.

[10] Herz, J. C., Macedonia, M. R., "Computer Gamesand Views", Defense Horizons, April 2002.

[11] Jonassen, D.H., & Rohrer-Murphy, L., "Activity Theory as a Framework for Designing Constructivist Learning Environment", Educational Technology Research and Development, 47(1), 1994, 61-79.

[12] Kim, A. J., "Killers have more fun", Wired News, 1998.

[13] Kirrienniir, J., "Video Gamming, Education and Dignal Learning Technologies", D. Lib Magazine, Vol. 8, Number 2, 2002. [14] Maor, D., "A Teacher Professional Development Program on Using a Constructivist Multimedia Learning Environment", Learning Environments Research (2.3), 2000, pp. 307-330.

[15] Mayer, R., "Cognition and Instruction: The Historie Meeting with Educational Psychology", Educational Psychology, v84 n4, 1992, p405.

[16] Orrogan, K., French, F., Haynes, R., "Using dre-Enhanced Problem Based Learning Grid", Proceedings Arckland Education conference02, 2002.

[17] Peiraglia, J., "The Real World on a Short Leash: The (MIS) Application of Constructivism to the Design of Educational Technology", Educational Technology Research and Development, 46(3), 1998, 53-63.

[18] Praget, J., "The Child's Conception of the World", London: Renifedge and Kegan Park, 1928.

[16] Reigelach, C., "Instructional-Design Theories and Models", Volume II, Lawrence Erlbaum Associates Santoro, G., Overview and perspectives, Cresskill, NJ: Hampton Press, 1969.

[20] Schank, R., C., "Coal Based Scenarios: A Radical Look at Education", The Journal of Learning Sciences, Vol. 3, No. 4, 1994.

[21] Taylor, P.C., Fraser, B. J., & Fisher, D. L., "Mendering Constructivist Classroom Learning Environments", International Journal of Educational Research (27(4), 2004, pp. 293-302.

[22] Thomburg, D. D., "Education: Technology and Paradigms of Change for the 21st Century", Starsong Publications, 1991.

[23] Turroff, M., "The Changing Role of Faculty and Online Education", Journal of Asynchronous Learning Networks, Volume 10, Issue 4, 2006.

[24] Vaknar, S., "Trendsetters: Game people play", 2002.

[25] Vygotskyi L.S., "Thought and Language", Cambridge, MA, MII Press, 1962.

[26] Wilson, B., Lowry, M., "New Directions for Adult and Continuing Education", John Wiley & Sons-Inc., Issue 88, 1980, Pages 79-88.

[27] http://www.activew.oelds.com

[28] Yee, N., "The Demographics: Motivations and Derived Experiences of Users of Massively Multi-user Online Oraphical Environments", PRESENCE: Telessperators and Virtual Environments, 15, 2006, pp. 309-329

APPENDIX I

QUANTITIVE EXAM

The following questions encompassed the quantitative exam designed to test participants level of knowledge about the content as it was presented using either conventional teaching methods or the CUBE System.

Questions (CASE Study): Circle the correct answer Check the courses you have completed	
CPT 310 CPT 335 CPT 435 CPT 493	
Check box if you used the CUBE online tutorial	
Check the box if you are not a CPT Major IF checked type in Major	-
1) How much faster/slower are disk drives than solid state memory?	
10 100 1000 1,000,000	
2) Where is L2 cache located?	
External to the CPU Internal to the CPU Neither	
3) What type of CPU uses L3 Cache?	
Pentium Dual core CPU Quad core CPU	
4) Why are L2 and L3 cache used?	
Extra Memory Speed up CPU operations neither	
5) Why is the Brach prediction unit used?	
Save time Save memory Load future branches into L2 cache	
6) How much time does the BPU save over CPU's without this feature?	
10% 25 % 50 % 75 % 90% 100%	
7) What is the purpose of pipelines?	
Data storage Memory management have all steps for the process available	
8) Whose pipeline is longer?	
Intel AMD Same size	
9) What is the process of making CPU's on a Chip?	
Photography Photolithography Built by robots	
10) What are the current sizes of templates used for making microprocessors?	
A thousandth of a meter A millionth of a meter A billionths of a meter	

APPENDIX J

SEMANTIC WEB / RANKINGS

•Definition: "The Semantic Web provides a <u>common framework</u> that allows <u>data to be</u> <u>shared and reused across application</u>, enterprise, and community boundaries. It is a collaborative effort led by W3C with participation from a large number of researchers and industrial partners. It is based on the Resource Description Framework (RDF).

•The semantic web is composed of a set of <u>design principles</u> XML Schema, RDF(Resource Description Language), OWL(Web Ontology Language) and working groups, a group of experts in a particular field. (An <u>ontology</u> is a representation of a set of concepts within a domain and the relationships between those concepts: they include classes, attributes, and relationships)

• The goal is to generate a concept space to facilitate the standardization of terms relevant to a knowledge domain.

•**Resource Description Framework (RDF)** is a family of World Wide Web Consortium (W3C) specifications.

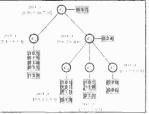
•The RDF metadata model is based on the concept of making statements about Web resources in the form of subject-predicate-object expressions, called *triples*

•Utilizing the W3C RDF Vocabulary Description Language RDF Schema this research will utilize a subset to develop a vocabulary and triples for the Computer Technology courses utilized in this research that can then be extended to create a concept space utilized by other programs.

	RDF Properties (utilized	I) W3C RDF Scher	na
Property Name	Comment	Domain	Range
rdfs:label	human-readable name for the subject.	rdfs:Resource	rdfs:Literal
rdfs:domain	A domain of the subject property	rdf:Property	rdfs:Class
rdf:subject	The subject of the subject RDF statement	rdf:Statement	rdfs:Resource
rdf:predicate	The predicate of the subject RDF statement.	rdf:Statement	rdfs:Resource
rdf:object	The object of the subject RDF statement	rdf:Statement	rdfs:Resource

Semantic Web (Weighting/voting)

•Students generate links associated with semantic term associated to the lectures.


•Students vote on their perception of the content of each link based on several categories(based on Blooms Revised Taxonomy)

Composite (•Quality of Factual Knowledge (elements students must know)

Score

•Conceptual Knowledge (relationships among elements)

•Procedural knowledge (Algorithms and skills)

•They are clustered using concept clustering for each generated class using a COBWEB data structure where each node represents the top five highest ranked composite score.

	top 5 sites	Excellent	Very Good	No Opinion	Bad	very Ba
1	http://computer.howstuffworks.com/computer-memory.htm	X				
2	http://www.patentstorm.us/patents/6332191-claims.html		Х			1
3	http://arstechnica.com/articles/paedia/cpu/core.ars/7			X		
4	http://v/ww.eng.umd.edu/~nsv/ench250/number.htm			X		
6	http://en.wikipedia.org/wiki/Gray_codec			Х		

Week 3

	top 5 sites	Excellent	Very Good	No Opinion	Bad	very Bad
1	http://www.iit.edu/~noahlan/index_over.html	X				
2	http://arantxa.ii.uam.es/~ilara/investigacion/ecomm/electronica/comb.html		X			
3	http://academic.evergreen.edu/projects/biophysics/technotes/program/2s_comp.htm	X				
4	http://hyperphysics.phy-astr.gsu.edu/hbase/electric/elevol.html			X		
	http://publib.boulder.ibm.com/infocenter/systems/index.jsp?topic=/com.ibm.aix.com					
5	madmin/doc/commadmindita/asynch_params_parity_htm	1		X		

DEPARTMENT OF INFORMATION SYSTEMS ©NJIT 2008

Rankings / Voting for CPT 435

Semantic Terms	Top Five Links	–	Ranking	1	
1. key words	link		Rating one		
NW use complex SW		Factual (basic elements)	Conceptual (relationship between elements)	Procedural (overall)	Average
3 network communication exchanging messages 4 sub-pieces, protocol suites 5 protocol design 6 seven layer 7 stacks layered SW 8 layered saw, 9 nested headers 10 (layering 11 techniques protocols 12 out-of-order delivery 13 sequencing, eliminate duplicate packets 14 retransmitting lost packets 15 avoiding replay coursed by excessive delay 16 flow control to prevent data overrun 17 metchangen 18 protocol design	http://en.wikipedia.org/wiki/Computer_networks <u>www.protocols.com/</u> <u>www.protocolonline.org/</u> <u>www.woj.org/Protocols/</u> <u>www.woj.org/Protocols/</u>	90 85 84 83 77	87 83 80 79 75	92 84 79 80 73	90 84 81 75 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
13 20 13 20 14 20 15 21 16 22 17 23 17 24 17 25 18 26 27 17 28 18 29 10 29 10 29 10 29 10 10 10 11 10 11 10 11 10 11 10 11 10 11 10 11 11 11 11 11 11 12 13 13 14 15	en.wikipedia.org/wiki/Internetworking www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm www.careerkey.com/ www.internetworker.net/ www.internetto.org/newsletter/newsletter.html	99 96 90 85 75	98 97 90 85 75	99 98 90 85 75	99 98 90 86 75 0 0 0 0 0 0

105 Best-Effort Semantics Error Detection www.ielf.org/t/c/rC0792.txt 92 95 98 95 106 Internet Control Message Protocol www.networksorcery.com/enp/protocol/icmp.htm 93 94 97 95 107 ICMP Message Transport support interosoft.com/db/f70292 86 88 87 87	-						
Bit IP Address Hierarchy your, gallin, addll School // addler, addl, gold // addler, addl, gold // addler, add							98
B) Organizal Classes IP Addresses searchenderborgment Letzeget conv0.0 dention 0, sell_g.021 60 90 80 95 B) Construct Addresses xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx							97
40 Diskin Addres Space 47 Addres Addres Space 47 Standard Addressing Example 47 Standard Addressing Example 47 Constant Address 48 Standard P Address 49 Constant Address 41 Address Resolution Techniques 42 Standard P Address 43 Address Resolution Techniques 44 Address Resolution Techniques 45 Address Resolution Techniques 46 Address Resolution Techniques 46 Address Resolution Techniques 47 Address Resolution Techniques 47 Address Resolution Techniques 48 Address Resolution Techniques 49 Address Resolution Techniques 40 Address Resolution Techniques 41 Address							97
40 Diskin Addres Space 47 Addres Addres Space 47 Standard Addressing Example 47 Standard Addressing Example 47 Constant Address 48 Standard P Address 49 Constant Address 41 Address Resolution Techniques 42 Standard P Address 43 Address Resolution Techniques 44 Address Resolution Techniques 45 Address Resolution Techniques 46 Address Resolution Techniques 46 Address Resolution Techniques 47 Address Resolution Techniques 47 Address Resolution Techniques 48 Address Resolution Techniques 49 Address Resolution Techniques 40 Address Resolution Techniques 41 Address							90
40 Diskin Addres Space 47 Addres Addres Space 47 Standard Addressing Example 47 Standard Addressing Example 47 Constant Address 48 Standard P Address 49 Constant Address 41 Address Resolution Techniques 42 Standard P Address 43 Address Resolution Techniques 44 Address Resolution Techniques 45 Address Resolution Techniques 46 Address Resolution Techniques 46 Address Resolution Techniques 47 Address Resolution Techniques 47 Address Resolution Techniques 48 Address Resolution Techniques 49 Address Resolution Techniques 40 Address Resolution Techniques 41 Address			www.iawtencegoetz.com/programs/ipinito/	85	55	85	85
40 Diskin Addres Space 47 Addres Addres Space 47 Standard Addressing Example 47 Standard Addressing Example 47 Constant Address 48 Standard P Address 49 Constant Address 41 Address Resolution Techniques 42 Standard P Address 43 Address Resolution Techniques 44 Address Resolution Techniques 45 Address Resolution Techniques 46 Address Resolution Techniques 46 Address Resolution Techniques 47 Address Resolution Techniques 47 Address Resolution Techniques 48 Address Resolution Techniques 49 Address Resolution Techniques 40 Address Resolution Techniques 41 Address							
III. Authory Addresses 0 Glossell Addresses 0							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							· 6
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							Ì
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							1 0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75	46	CIDR Address Block Example					0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75	47	CIDR Host Addresses					0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							1 0
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
58 matcal Addresse Packet Delivery www.ait.unl.sdu/sjau/mgnt457/chapter17.ppt 99 97 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75							
150 Protocol Addresses Packet Delivery www.ait.nut.edu/diau/ingruf47/thatpet/7.ppt 99 93 83				h			
B0 Address Resolution msdn.microsoft.com/bits/spc.gen/thm//mc.pocket_m 65 65 66 65 65 66 65 6		Protocol Addresses Packet Delivery	www.ait.unl.edu/siau/mgmt457/chanter17.pnt	99	90	99	00
[37] Address Resolution With Tables Lookup cs. baylor adu/-donahod/rpaticla/USok/tets/Practica/SocketC, p 63 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 85</td>							1 85
62 Address Resolution With Table Lookup back case achies date, edu/cp-bin/fdc/rfc1208.html 61 6							83
62 Address Resolution With Closed-Form Computantic, net/fic1206.html 75							81
67 APP Message Format 0 68 Sending ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 73 To concing ARP message 0 74 Concentionless Service 0 75 Vitual Packets 99 98 97 76 Protegram www.incipiguide.com/tesh.IPDatagram.SeneralFormat.htm. 95 95 95 76 Vitual Packets www.incipiguide.com/tesh.IPDatagram.shtm 90 91							75
67 APP Message Format 0 68 Sending ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 73 To concing ARP message 0 74 Concentionless Service 0 75 Vitual Packets 99 98 97 76 Protegram www.incipiguide.com/tesh.IPDatagram.SeneralFormat.htm. 95 95 95 76 Vitual Packets www.incipiguide.com/tesh.IPDatagram.shtm 90 91					-		1 0
67 APP Message Format 0 68 Sending ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 73 To concing ARP message 0 74 Concentionless Service 0 75 Vitual Packets 99 98 97 76 Protegram www.incipiguide.com/tesh.IPDatagram.SeneralFormat.htm. 95 95 95 76 Vitual Packets www.incipiguide.com/tesh.IPDatagram.shtm 90 91	65	Address Resolution Protocol					1 0
67 APP Message Format 0 68 Sending ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 73 To concing ARP message 0 74 Concentionless Service 0 75 Vitual Packets 99 98 97 76 Protegram www.incipiguide.com/tesh.IPDatagram.SeneralFormat.htm. 95 95 95 76 Vitual Packets www.incipiguide.com/tesh.IPDatagram.shtm 90 91							1 0
70 Caching ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 72 Layering, Address Resolution, Protocol Addresses 0 73 Layering, Address Resolution, Protocol Addresses 0 74 Connectionless Service http://www.inet/daemon.com/lutorials/internet/fu/datagrams.shtm 99 98 97 98 76 IV futual Packats www.inet/daemon.com/lutorials/internet/fu/datagrams.shtm 90 91 92 92 93 93 93 93 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 0</td>							1 0
70 Caching ARP Responses 0 71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 72 Layering, Address Resolution, Protocol Addresses 0 73 Layering, Address Resolution, Protocol Addresses 0 74 Connectionless Service http://www.inet/daemon.com/lutorials/internet/fu/datagrams.shtm 99 98 97 98 76 IV futual Packats www.inet/daemon.com/lutorials/internet/fu/datagrams.shtm 90 91 92 92 93 93 93 93 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1 0</td>							1 0
71 Processing Incoming ARP Message 0 72 Layering, Address Resolution, Protocol Addresses 0 73 Connectionless Service http://www.inetdaemon.com/tutorials/internet/ip/datagrams.shtm 99 98 97 98 74 Connectionless Service http://www.inetdaemon.com/tutorials/internet/ip/datagrams.shtm 99 95 95 95 75 Virtual Packets www.inetdaemon.com/tutorials/internet/ip/datagrams.shtm 90 91							0
Image: Constraint of the second state second state second state of the second state of the second state							
72 Layering, Address Resolution, Protocol Addresses 0 73 Connectionless Service http://www.inet/aemon.com/tutorials/internet/ip/datagrams.shtm 99 98 97 98 75 Virtual Packets www.inet/aemon.com/tutorials/internet/ip/datagrams.shtm 90 91 91 76 IP Datagram en.wikipedia.org/wiki/IP/4 85 85 85 76 IP Datagram en.wikipedia.org/wiki/IP/4 86 85 85 77 Forwarding IP Datagram en.wikipedia.org/wiki/IP/4 80 80 80 78 IP Addresses 00 80 80 80 79 IP Addresses 00 80 80 80 70 IP Addresses 0 80 80 80 71 Packets rest 0 80 80 70 IP Addresses 0 80 80 80 80 IP atagram Header Format 0 90 90 99 99 99 81 Datagram Transmission Frames http://www.cisco.com/en/US/tech/tk827/tk3E9/technologies_wh 99 99 99 96 Frcapsulation ref. net/sto5.txt 90 90 90			1				
73 Connectionless Service http://www.inetdaemon.com/lutorials/internet/ip/datagrams.shtm 99 98 97 98 74 Connectionless Service http://www.inetdaemon.com/lutorials/internet/ip/datagrams.shtm 90 91			,	L			
74 Connectionless Source http://www.ineidaemon.com/tutorials/internct/ip/datagrams.shtm 99 98 97 98 75 Virtual Packets www.ineidaemon.com/tutorials/internct/ip/datagrams.shtm 90 91 91 93 95 <		Layering, Address Resolution, Protocol Addres	ses				
75 Virtual Packets www.tpipioude.com/firea/_IPDatagram@eneralFormat.htm. 96 95 95 95 76 IP Datagram www.insidaemon.com/tutorials/internet/(juddagarams.shtm) 90 91 92 92 92 92 92 92 92 92 92 93 99 99 99 99 99 93 99 93 99 93 99 93 99 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 <	73				_		0
76 IP Datagram www.initidaemon.com/luticials/internet/ip/datagrams.shtml 90 91							98
77 Forwarding IP Datagram en.wikipedia.org/wiki/IPv4 95 95 95 95 78 IP Addresses tools.ietf.org/html/rfc1149 80 80 80 80 81 PAddresses 80 <t< td=""><td></td><td></td><td>www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm</td><td></td><td></td><td></td><td>95</td></t<>			www.tcpipguide.com/free/t_IPDatagramGeneralFormat.htm				95
Total Participation Bools. ietf. org/html/rfc1149 Bools Bools Bools							
79 Mask Field, Datagram Forwarding 0 80 Next-Hop Addresses 0 81 Best-Effort Delivery 0 82 IP Datagram Transmission Frames http://www.cisco.com/en/US/tech/tk827/tk389/technologies_whi 99 90							85
10 Next-Hop Addresses 0 11 Best-Effort Delivery 0 12 IP Datagram Header Format 0 13 Best-Effort Delivery 0 14 Datagram Transmission Frames 0 15 Encapsulation fc. net/std5.txt 95 95 95 16 Transmission Across Internet ftp://ftp.ffc-editor.org/in-notes/ffc4824.txt 90 <td< td=""><td></td><td></td><td>toois.ieu.org/ittii//itC1742</td><td>80</td><td>머니</td><td>80</td><td>1 80</td></td<>			toois.ieu.org/ittii//itC1742	80	머니	80	1 80
B2 IP Datagram Header Format 0 B3 http://www.cisco.com/en/US/tech/tk827/tk369/technologies_whi 99 90 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
B2 IP Datagram Header Format 0 B3 http://www.cisco.com/en/US/tech/tk827/tk369/technologies_whi 99 90 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
63 0 0 99 90 91 91 91 91 1101 1101 1101 11011 <th1111< th=""> <th11111< th=""></th11111<></th1111<>							
B4 Datagram Transmission Frames http://www.cisco.com/en/US/tech/tk3E9/technologies_whi 99 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 93 91 91 93 93 93 93 93 93 93 93 93 93 93 93 93 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
165 Encapsulation rfc.net/std5.txt 95 95 95 95 167 Transmission Across Internet fp://ftp.rfc-editor.org/n-notes/rfc4824.txt 90 93 91 Fragment Loss 0 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10		Datagram Transmission Frames	http://www.cisco.com/en/US/tech/tk827/tk369/technologies_whi	99	99	<u>9</u> 9	99
B6 Transmission Across Internet ftp://ftp.tfc-editor.org/in-notes/tfc4824.txt 90 91							95
87 MTU, Datagram Size, Encapsulation www.netbook.cs.purg/tie_edu/othrpags/ch20.htm 85 95							90
88 Reassembly www.fags.org/rfcs/rfc1149.html 80 60 60 80 89 Identifying Datagram 91 Fragment Loss 0 0 0 0 91 Fragment Loss 99 90 99 99	87	MTU, Datagram Size, Encapsulation	www.netbook.cs.purdue.edu/othrpags/ch20.htm		85	85	85
83 Identifying Datagram 0 90 Fragment Loss 0 91 Fragment Loss 0 92 99 99 99 99 93 The Success IP 95 95 95 95 94 The Motivation For Change en.wrkitelia.org/wrkit/8v-6 90 92 90 91 96 Name, Version Number www.cisco.com/univercd/cc/td/doc/cisintwk/flo_doc/ipv6.htm 85 85 85 96 IPAG Features www.cisco.com/univercd/cc/td/doc/cisintwk/flo_doc/ipv6.htm 80 80 80 80 96 IPAG Features www.cisco.com/univercd/cc/td/doc/cisintwk/flo_doc/ipv6.htm 85 85 85 97 IPAG Datagram Format 0 0 0 0 0 98 IPAG Base Header Format 0 0 0 0 0 0 99 IPAG Chales Multiple Headers 0 0 0 0 0 0 100 Fragment Ion, Reasembly, And Path MTU 0 0 0 0 0 0 0	88	Reassembly	www.faqs.org/rfcs/rfc1149.html	80	80	80	80
90 Fragment Loss 0 91 Fragmenting A Fragment 0 92 99 99 99 99 92 93 The Success IP 95 95 95 95 94 The Motivation For Change en.whiteells.org/wiki/Pv6 90 92 90 93 99 90 93 90 93 90 90 90 90 90 90 90 90 90 90 90 90							0
92 www.ipx6.org 93 99							0
93 The Success IP us.ntt.net 95 95 95 94 The Motivation For Change en.witkipedia.org/wiki/Pv6 90 92 90 95 IName, Version Number www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/jpv6.htm 85 85 85 96 IPv6 Features www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/jpv6.htm 80 80 80 97 IPv6 Datagram Format 99 99 90 92 97 IPv6 Datagram Format 0 98 IPv6 Handles Multiple Headers 0 99 How IPv6 Handles Multiple Headers 0 100 Fragmentation, Reassembly, And Path MTU 0 101 IPv6 Colon Hexadecimal Notation 0 103 IPv6 Colon Hexadecimal Notation 99 99		Fragmenting A Fragment					
94 The Motivation For Change en.wikipedia.org/wikit/Pv6 90 92 90 91 95 IAmare, Version Number www.cisco.com/lunivercd/cc/td/doc/cisintwk/ito_doc/lpv6.htm 85 85 85 96 IPv6 Features www.ipv6.com/ 80 80 80 80 97 IPv6 Datagram Format 99 90 92 90 91 98 IPv6 Base Header Format 90 92 90 90 99 IPv6 Base Header Format 90 90 90 90 90 99 IPv6 Handles Multiple Headers 00 00 00 00 100 Fragmentation, Reasembly, And Path MTU 00 00 00 101 IPv6 Addressing 00 00 00 103 IPv6 Colon Hexadecimal Notation 00 00 00 104 en.wikipedia.org/wiki/internet_Control_Message_Protocot 99 99 99							
95 Name, Version Number www.cisco.com/univercd/cc/td/doc/cisintwk/fto_doc/ipv6.htm 85 80							
96 IPA6 Features www.ipx6.com/ 80 80 80 80 80 97 IPA6 Datagram Format 0 98 IPA6 Base Header Format 0 99 IPA6 Handles Multiple Headers 0 100 Fragmentation, Reassembly, And Path MTU 0 101 IPA6 Addressing 0 103 IPA6 Colon Hexadecimal Notation 0 104 en.wikipedia.orgAv/Mil/Internet_Control_Message_Protocol 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							85
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99			www.ipvo.com/	80	80	80	80
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
104 en.wikipedia.org/wiki/internel_Control_Message_Protocol 99 99 99 99 99							
	104		en.wikipedia.org/wiki/internet_Control_Message_Protocol	99	99	99	
IDE/Internet Control Message Protocol www.networksorcery.com/enp/protocol/icmp.htm 93 94 97 95 IOE/Internet Control Message Transport support.nicrosoft.com/enp/protocol/icmp.htm 93 94 97 95 IOE/INCMP Message Transport support.nicrosoft.com/enp/protocol/icmp.htm 96 98 97 97		Best-Effort Semantics Error Detection					95
107 ICMP Message Transport support interosoft.com/db/170292 B6 88 87 87							95
	107	ICMP Message Transport					87
108 Using ICMP Messages To Test Reach ability http://ftp.isi.edu/in-notes/ifc2463.txt 80 86 84 83			ftp://ftp.isi.edu/in-notes/rfc2463.txt	80	86		83
109 Using ICMP To Trace A Route							0
110. The Last Address Printed By Trace route 0							0
111 Using ICMP For Path MTU Discovery 0		Uning ICMD For Dath MTH Discovery					(

112	en wikipedia orgAvikilUser_Dategram_Protocol	99	96	94	96
113 The Need For End-To-End Transport Protocols	www.ietf.org/rfc/rfc768.txt	90	96	98	95
114 The User Datagram Protocol	www.networksorcery.com/enp/protocol/udp.htm	88	89	87	88
115 The Connectionless Paradigm	compriets/orking.about.com/odinetsvorkprotocols//aa071200a.htm	84	85	88	86
116 Message-Oriented Interface	www.webopedia.com/TERM/U/User_Datagram_Protocol.html	81	83	84	83
117 UDP Communication Semantics		(0
118 Arbitrary Interaction					0
119 Support For Uncast, Multicast, And Broadcast					0
120 Endpoint Identification With Protocol Port Numb	ers				0
121 UDP Datagram Format					0
122 The UDP Checksum And The Pseudo Header					0
123 UDP Encapsulation					0
124	en.wikipedia.org/wiki/Transmission_Control_Protocol	98	94	99	97
125 The Need For Reliable Transport	www.fags.org/ifcs/rfc793.html	97	95	92	95
126 The Transmission Control Protocol	www.networksprcery.com/enp/protocol/tcp.htm	86	89	90	88
127 The Service TCP Provides To Applications	comprietworking.about.com/od/top/p/TCPIP_Transmission_Control_Protocol_In	87	74	77	79
128 End To-End Service And Datagram's	tools lett.org/html/ric793	72	75	75	88 79 74
129 Achieving Reliability					0
130 Packet Loss And Retransmission					0
131 Adaptive Retransmission					0
132 Comparison Of Retransmission Times		1			0
133 Buffers, Flow Control, And Windows		1			0
134 Three-Way Handshake					0
135 Congestion Control					0
136 TCP Segment Format					0
137					0
138 The Requirement For Unique Addresses	en.wikipedia.org/wiki/Hetwork_address_translation	99	98	99	99
139 Network Address Translation Technology	computer howstuffworks.com/hat.htm	97	. 95	96	96
140 NAT Topology	www.vicomsoft.com/knowledge/reference/nat.html	91	92	94	92
141 Possible Implementations Of NAT	www.openbsd.org/fag/pf/nat.html	90	92	91	91
142 Basic Address Translation	www.openbsd.oro/fag/pf/nat.html	68	82	84	85
143 Translation Table					0
144 NAPT And TCP Splicing					o
145 Other Variants: Twice NAT And CAT					Ō
146 NAT Software And Systems For Use At Home					0
1		.			

177 The Functionality Application Software Provides (marked application software) 93 91 92 92 92 178 Functionality Anternet Provides Wark May Social/Social/Line 93 91 92 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 91 92 93 93 91 92 93 93 91 92 93 93 91 92 93 93 91 92 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93 93						
172 The Transform Of Park and Provides www.tabu.carufdigs.com/LEGM/C/client_sterest.du/ 99 80 97 80 172 The Client-Soner Paradgem www.tabupadia.com/LEGM/C/client_sterest.atual 77 75 76 172 The Client-Soner Paradgem www.tabupadia.com/LEGM/C/client_sterest.atual 77 75 76 173 The Computer 100 100 100 100 174 The Computer 100 100 100 175 The Computer Client Competencies 100 100 100 175 The Computer Client Competencies 100 100 100 175 The Computer Client Competencies 100 100 100 174 The Computer Client Competencies 100 100 100 175 The Computer Client Competencies 100 100 100 176 The Computer Client Computer	170	http://penguin.dcs.bbk.ac.uk/academic/networks/application-lay	99	95	94	96
Proc. The functionality An Internet Provides Hext. Eacl. cop/Eacl. Control Server Canadian P3 P3 <t< td=""><td>171 The Functionality Application Software Provides</td><td>en.wikipedia.org/wiki/Client-server</td><td>93</td><td></td><td></td><td>92</td></t<>	171 The Functionality Application Software Provides	en.wikipedia.org/wiki/Client-server	93			92
Type Marking Constant 79 81 80 85 Type The Cited.Server Frances 77 75 76 76 77 Type		www.fags.org/fags/client-server-fag/	88	87		86
The The Clames Source Prangem executed page and a contribution Mind 77 75 75 75 Tit Bener Class Collisate And Steves Class Computer mining of the Class Source Class Computer 0 Tit Bener Programs And Steves Class Computer 0 0 0 Tit Bener Class Computer 0 0 0 0 Tit Bener Class Computer 0 0 0 0 Tit Bener Class Computer 0 0 0 0 0 Total Status Class Computer 0 0 0 0 0 Total Concellon Concellon Class Concellon 0 0 0 0 0 Total Concellon Concellon Class Concellon 0			79	81	80	80
198 Procedures Implement Socket API affic source/fromesture 95 97 99 97 199 Cohes Procedure 190 Cohes Procedure 92 94 91 94 93 94 95 97 99 90 95 97 99 90 95 97 93 91 90 93 91 90 91 92 94 97 92 94 97 <td></td> <td></td> <td>77</td> <td>75</td> <td>76</td> <td>76</td>			77	75	76	76
198 Procedures Implement Socket API affic source/fromesture 95 97 99 97 199 Cohes Procedure 190 Cohes Procedure 92 94 91 94 93 94 95 97 99 90 95 97 99 90 95 97 93 91 90 93 91 90 91 92 94 97 92 94 97 <td></td> <td></td> <td></td> <td></td> <td></td> <td>i a</td>						i a
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						n n
198 Procedures Implement Socket API affic source/fromesture 95 97 99 97 199 Cohes Procedure 190 Cohes Procedure 92 94 91 94 93 94 95 97 99 90 95 97 99 90 95 97 93 91 90 93 91 90 91 92 94 97 92 94 97 <td></td> <td></td> <td></td> <td></td> <td></td> <td>0</td>						0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						U
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95	180 Identifying A Particular Service					U U
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95	181 Multiple Copies Of A Server For A Single Servic	8				0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95	182 Dynamic Server Creation]				0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						0
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						n n
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95						ň
198 Procedures Implement Socket API affit source/forga.met/affit-doc/324 it/ml 95 97 98 97 199 Cohes Procedure 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 91 92 94 95 56 54 55 95 95 97 98 97 98 98 95 94 94 94 94 94 94 94 94 94 94 94 95 95 95 95 95	TBb Complex Client-Server Interactions					0
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						97
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom	189 Socket Procedure					92
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom	190 Close Procedure	java.sun.com/j2se/1.4.2/docs/api/java/net/Socket.html	71	72	75	73
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom			65	68	64	66
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						55
2000 en. wikipedia.org/wiki/Cliant-server 99 96 97 2011 Connection-Oriented Communication searchnetworking techtaget.com/sDefinition/0.,sid7_gci211795 93 91 90 91 2021 Connection-Oriented Communication searchnetworking techtaget.com/sDefinition/0.,sid7_gci211795 93 91 90 97 2031 Conde Example Service www.fags.org/fags/cliant-server.fag/ 77 75 70 74 2032 Code Example Client www.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2035 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2045 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2045 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2041 Userspace And Blocking uww.techsoup.org/learningcenter/net/works/page47/3.cfm 97 96 99 97 215 Userspace Error uww.techsoup.org/learningcenter/net/works/page47/3.cfm 97 96 97 213 Every Interror uww.techsoup.org/learni		no sum of a set of the original set of a cost doby	, ~~ I	0.1		1 1
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						U U
2000 en. wikipedia.org/wiki/Cliant-server 99 96 97 2011 Connection-Oriented Communication searchnetworking techtaget.com/sDefinition/0.,sid7_gci211795 93 91 90 91 2021 Connection-Oriented Communication searchnetworking techtaget.com/sDefinition/0.,sid7_gci211795 93 91 90 97 2031 Conde Example Service www.fags.org/fags/cliant-server.fag/ 77 75 70 74 2032 Code Example Client www.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2035 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2045 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2045 Start Ex Code And Error Reporting uww.techsoup.org/learningcenter/net/works/page47/3.cfm 70 69 72 70 2041 Userspace And Blocking uww.techsoup.org/learningcenter/net/works/page47/3.cfm 97 96 99 97 215 Userspace Error uww.techsoup.org/learningcenter/net/works/page47/3.cfm 97 96 97 213 Every Interror uww.techsoup.org/learni	196 Revco, Recvfrom, Recvmsg Procedures					0
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom	197 Read Write Sockets					0
Control Second Processing Second en. wikipedia.org/wiki/Cleint-server 99 98 95 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 96 97 201 Connection-Oriented Communication searchnetworking techtaget.com/Solefinition/0.,sid7_gci211795 93 91 90 97 97 97 97 70 74 202 Code Example Client 202 Code Example Client Anther Service 0 0 0 0 203 Size The Code And Error Reporting 203 Size The Code And Error Reporting 0 0 0 204 Georgaphic Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 212 tww.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 97 96 99 97 213 Structure Of Computer Names www.tachsoup.org/leamingcente/networking.techtaget.com/soles.timl. 98 80 90 88 216 Dom						0
200 en. wikipedia.org/wiki/Clent-server 99 98 96 97 201 Connection-Oriented Communication searchnetworking technarget.com/sDefinition0, sid7_gci211796, 93 91 90 98 96 97 201 Connection-Oriented Communication searchnetworking technarget.com/sDefinition0, sid7_gci211796, 93 91 90 98 96 97 203 Connection-Oriented Communication searchnetworking technarget.com/sDefinition0, sid7_gci211796, 93 91 90 98 96 97 203 Connection-Oriented Communication searchnetworking technarget.com/sDefinition.0, sid7_gci211796, 93 91 90 98 96 97 203 Connection-Oriented Communication searchnetworking technarget.com/sDefinition.0, sid7_gci211796, 93 91 90 97 70 69 72 70 205 Structure Of Computer Names en. wikipedia.org/wiki/Otomain_Name_System 97 95 99 97 95 99 97 212 Structure Of Computer Names en. wikipedia.org/wiki/Otomain_statine_gcinm/sqc/digatseduthoritative-diss.html						0
222 An Example Service www.sei.cmu.edu/sti/descriptions/clientserver_body.html 65 68 67 67 233 Command-Line Arguments Example Programs www.fstg.sorg/fasc/line1.soncef.au/ 424 Sequence Of Socket Procedure Calls 77 76 70 69 72 70 205 Code Example Client 0 65 69 72 70 206 Socket Procedures And Biocking www.tschsoup.org/learningcentar/nat/works/page4773.cfm 70 69 72 70 207 Stream Sarvice And Multiple Revoc Calls 00 00 00 00 00 208 Socket Procedures And Error Reporting 0 0 0 0 0 210 Example Client Another Service en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 212 for Computer Names www.internic.net/fass/sauthoritative-dns.html. 89 66 90 89 213 Structure Of Computer Names www.internic.net/fass/sauthoritative-dns.html. 89 67 81 82 216 Domain Names That Begin With www www.internic.net/fass/sauthoritative-dns.html. 83 83 86		1		00	0E	07
222 An Example Service www.sei.cmu.edu/sti/descriptions/clientserver_body.html 65 68 67 67 233 Command-Line Arguments Example Programs www.fstg.sorg/fasc/line1.soncef.au/ 424 Sequence Of Socket Procedure Calls 77 76 70 69 72 70 205 Code Example Client 0 65 69 72 70 206 Socket Procedures And Biocking www.tschsoup.org/learningcentar/nat/works/page4773.cfm 70 69 72 70 207 Stream Sarvice And Multiple Revoc Calls 00 00 00 00 00 208 Socket Procedures And Error Reporting 0 0 0 0 0 210 Example Client Another Service en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 212 for Computer Names www.internic.net/fass/sauthoritative-dns.html. 89 66 90 89 213 Structure Of Computer Names www.internic.net/fass/sauthoritative-dns.html. 89 67 81 82 216 Domain Names That Begin With www www.internic.net/fass/sauthoritative-dns.html. 83 83 86						97
202 Command-Line Arguments Example Programs Waw fags.org/fags/clignt-sener/fag/ 204 77 75 70 74 204 Sequence Of Socket Procedure Calls www.techsoup.org/learningcenter/hetworks/page4773.cfm 70 69 72 70 205 Code Example Stever 00 206 Sarvice And Multiple Revoc Calls 0 207 Stream Service And Multiple Revoc Calls 0 208 Socket Procedures And Blocking 0 209 Size The Code And Error Reparing 0 2010 Cent Another Service 0 211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.internic.net/faus/authoritative.dns.html. 89 66 90 89 216 Domain Names That Begin With www www.internic.net/faus/authoritative.dns.html. 89 66 90 89 216 Domain Names Within Organization exerchnetworking techtarget.com//soE/Definiton/0,.sid7_gci213908 75 79 80 75 216 Domain Names That Begin With www www.intenc.org/ 91 92 90 91 221 Incellty Reference Multiple Servers						91
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model	282 An Example Service	www.sei.cmu.edu/str/descriptions/clientserver_body.html				87
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model	203 Command-Line Arguments Example Programs	www.fags.org/fags/client-server-fag/	77	75	70	74
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model	204 Sequence Of Socket Procedure Calls		70	69	72	70
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						ก่
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						ň
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						U U
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						U U
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model						0
211 Using Another Client Test Server 0 212 en.wikipedia.org/wiki/Domain_Name_System 97 95 99 97 213 Structure Of Computer Names www.dng.net/dnsrd/ 92 94 93 93 214 Geographic Structure yww.internic.net/fags/authoritative-dns.html. 89 66 90 89 216 Domain Names That Begin With www searchnetworking.techtarget.com/sDefinition/0,,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 80 78 217 The DNS Client-Server Model	210 Example Client Another Service					0
212 en.wikipedia.org/wiki//Domain_Name_System 97 96 99 97 213 Structure Of Computer Names www.dos.net/dnsrd/ 92 94 93 93 214 Geographic Structure www.internic.net/fag/authoritative-dns.htmt. 89 86 90 89 216 Domain Names Within Organization searchnetworking.techtarget.com/sDefinition/0.,sid7_gci213908, 87 81 82 83 216 Domain Names That Begin With www www.internic.net/fag/authoritative-dns.htmt. 89 86 90 89 217 The DNS Client-Server Model Www.idomainnamesystems.com/ 75 79 80 76 218 Berver Architectures 0 0 0 0 0 220 Locatity Reference Multiple Servers 0 0 0 0 221 The Electronic Mail Paradigm www.iese.org/ 91 92 90 91 223 Electronic Mail Message Format standards.ieee.org/ 85 84 86 224 Electronic Mail Message Format en.wikipedia.org/wiki/IEEE 75 79 77 226 Carbon Copies 75 79 76 77 226 Multipurpose Internet Mail Ext						0
213 Structure Of Computer Names Ymmu, dns.net/dns/sdu/formalization 92 94 93 93 214 Geographic Structure Wmu, internic.net/fags/authoritative-dns.html. 89 66 90 89 215 Domain Names Within Organization searchnet/working.techtarget.com/sDefinition/0,.sid7_gci213908, 87 81 62 83 216 Domain Names Within Organization www.domainnamesystems.com/ 75 79 60 76 217 The DNS Server Hierarchy Www.domainnamesystems.com/ 75 79 60 76 210 Locality Reference Multiple Servers 0 0 0 0 220 Locality Reference Multiple Servers 0 0 221 ieeexplore.ieee.org/ 91 92 90 91 222 The Electronic Mail Paradigm www.computer.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 83 80 81 225 Carbon Copies en. wikipedia.org/wiki/IEEE 75 79 77 79 77 226 Multipurpose Internet Mail Extensions 227 1 81 83 80 81		en wikingdig om/wiki/Domain Name System	97	95	99	97
215 Domain Names Within Organization searchnetworking.techtarget.com/sDefinition0.,sid7_gci213908, 67 61 62 63 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 60 76 217 The DNS Client-Sever Model www.domainnamesystems.com/ 75 79 60 0 219 Sawer Architectures 0 0 0 0 0 220 Locality Reference Multiple Severs 0 0 0 0 0 221 ieeexplore.iteee.org/iet5/498/3989/00152689.pdf 99 95 96 97 222 The Electronic Mail Paradigm www.computer.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 83 80 81 83 80 81 82 83 86 80 81 82 86 80 81 82 86 83 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86						03
215 Domain Names Within Organization searchnetworking.techtarget.com/sDefinition0.,sid7_gci213908, 67 61 62 63 216 Domain Names That Begin With www www.domainnamesystems.com/ 75 79 60 76 217 The DNS Client-Sever Model www.domainnamesystems.com/ 75 79 60 0 219 Sawer Architectures 0 0 0 0 0 220 Locality Reference Multiple Severs 0 0 0 0 0 221 ieeexplore.iteee.org/iet5/498/3989/00152689.pdf 99 95 96 97 222 The Electronic Mail Paradigm www.computer.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 83 80 81 83 80 81 82 83 86 80 81 82 86 80 81 82 86 83 86 86 86 86 86 86 86 86 86 86 86 86 86 86 86						
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0						
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0	215 Domain Names Within Organization		87			83
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0	216 Domain Names That Begin With www	www.domainnamesystems.com/	75	79	80	76
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0	217 The DNS Client-Server Model					0
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0			1			
220 Locality Reference Multiple Savers 0 221 ieeexplore.ieee.org/ie/5/498/3989/00152689.pdf 99 95 96 97 221 the Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail Basage Format standards.ieee.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 63 60 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 The Simple Mail Transfer Protocol 20 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Cateways 0 0 0 0 232 Mail Gateways 0 0 0 0 233 Mail Relays And E-mail Addresses 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0]	1			
221 ieeexplore.ieee.org/ieE/498/3989/00152689.pdf 99 96 96 97 222 The Electronic Mail Paradigm Www.ieee.org/ 91 92 90 91 223 Electronic Mail Doxes And Addresses Www.computer.org/ 85 84 88 86 224 Electronic Mail Message Format standards:eee.org/ 81 83 80 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 78 77 226 Multipurpose Internet Mail Extensions 227 F-mail Application Programs 0 0 228 The Simple Mail Transfer Protocol 20 0 0 0 230 Mail Exploders, Lists, Forwarders 0 0 231 Mail Exploders, Lists, Forwarders 0 0 232 Automated Mailing Lists 0 0 233 Mail Relays And E-mail Addresses 0 0 234 Mail Rox Access 0 0			1			{
222 The Electronic Mail Paradigm www.ieee.org/ 91 92 90 91 223 Electronic Mail boxes And Addresses www.computer.org/ 85 84 88 86 224 Electronic Mail Message Format standards.ieee.org/ 81 83 80 81 226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 78 77 226 Multipurpose Internet Mail Extensions 227 F-mail Application Programs 0 0 226 Multipurpose Internet Mail Transfer 0 0 0 226 Multipurpose Internet Mail Transfer Protocol 0 0 230 Optimizing Multiple Recipients Computer 0 0 231 Mail Exploders, Lists, Forwarders 0 0 232 Automated Mailing Lists 0 0 233 Mail Relays And E-mail Addresses 0 0 234 Mail Relays And E-mail Addresses 0 0		incomplete incomm//p/E//00/2000/00//E0000	00		20	07
223 Electronic Mailboxes And Äddresses Www.computer.org/ 65 64 68 86 224 Electronic Mail Message Format standards.ieee.org/ 61 63 60 81 225 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 76 77 226 Multipurpose Internet Mail Extensions en.wikipedia.org/wiki/IEEE 75 79 78 0 227 Ensite Protocol 0 0 0 0 0 228 Multipurpose Internet Mail Transfer 0 0 0 229 The Simple Mail Transfer Protocol 0 0 0 230 Optimizing Multiple Recipients Computer 0 0 0 231 Mail Extensions 0 0 0 232 Mail Gateways 0 0 0 233 Automated Mailing Lists 0 0 0 234 Mail Relays And E-mail Addresses 0 0 0 235 Mail Rok Access 0 0 0						91
226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 78 77 226 Multipurpose Internet Mail Extensions 0 227 E-mail Application Programs 0 228 Mail Transfer 0 229 The Simple Mail Transfer Protocol 0 230 Optimizing Multiple Recipients Computer 0 231 Mail Exploders, Lists, Forwarders 0 232 Auail Relays And E-mail Addresses 0 233 Mail Reaves 0 234 Mail Reaves 0						91
226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 78 77 226 Multipurpose Internet Mail Extensions 0 227 E-mail Application Programs 0 228 Mail Transfer 0 229 The Simple Mail Transfer Protocol 0 230 Optimizing Multiple Recipients Computer 0 231 Mail Exploders, Lists, Forwarders 0 232 Auail Relays And E-mail Addresses 0 233 Mail Reaves 0 234 Mail Reaves 0						86
226 Carbon Copies en.wikipedia.org/wiki/IEEE 75 79 78 77 226 Multipurpose Internet Mail Extensions 0 227 E-mail Application Programs 0 228 Mail Transfer 0 229 The Simple Mail Transfer Protocol 0 230 Optimizing Multiple Recipients Computer 0 231 Mail Exploders, Lists, Forwarders 0 232 Auail Relays And E-mail Addresses 0 233 Mail Reaves 0 234 Mail Reaves 0	224 Electronic Mail Message Format	standards.ieee.org/				81
			75	79	78	77
						0
			1			i n
			1			1 0
			4			0
			1			
						0
	231 Mail Exploders, Lists, Forwarders					0
	232 Mail Gateways]				0
	233 Automated Mailing Lists					0
	234 Mail Relays And F-mail Addresses					n
	236 Mailbay Accase		1			1 0
			1			1 5
	236 Dialup Connections POP		L			_ U

APPENDIX K

SAS RESULTS UTILIZED IN CHAPTER 5

The following tables and graphs were generated by SAS software, version 9.1, and represent the complete data analysis that were summarized in Chapter 5.

		Q58					Q59		
Q58	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q59	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Excellent	22	27.16	22	27.16	Excellent	26	32.10	26	32.10
good	18	22.22	40	49.38	good	19	23.46	45	55.56
no opinion	7	8.64	47	58.02	no opinion	5	6.17	50	61.73
poor	2	2.47	49	60.49	no positive benefit	1	1.23	51	62.96
very good	32	39.51	81	100.00	very good	30	37.04	81	100.00

SAS 9.1 analysis of: CMLES Presentation Questions 58-61

		Q60			Q61					
Q60	Frequency	Percent		Cumulative Percent	Q61	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Excellent	23	28.40	23	28.40	Excellent	21	25.93	21	25.93	
good	22	27.16	45	55.56	good	27	33.33	48	59.26	
no opinion	7	8.64	52	64.20	no opinion	3	3.70	51	62.96	
no positive benefit	1	1.23	53	65.43	poor	1	1.23	52	64.20	
poor	3	3.70	56	69.14	very good	27	33.33	79	97.53	
very good	25	30.86	81	100.00	very poor	2	2.47	81	100.00	

SAS 9.1 analysis of: CMLES Content Integration Questions 62-67:

		Q63		
Q63	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Excellent	39	48.15	39	48.15
good	16	19.75	55	67.90
no opinion	3	3.70	58	71.60
very good	23	28.40	81	100.00

Q64					Q65				
Q64	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q65	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Excellent	32	39.51	32	39.51	Excellent	26	32.10	26	32.10
Excenent	52	39.01	32	39.01	good	13	16.05	39	48.15
good	14	17.28	46	56.79	no opinion	6	7.41	45	55.56
no opinion	3	3.70	49	60.49	no positive benefit	1	1.23	46	56.79
very good	32	39.51	81	100.00	very good	35	43.21	81	100.00

Q66					Q67				
Q66	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q67	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Excellent	31	38.27	31	38.27	Excellent	27	33.33	27	33.33
good	15	18.52	46	56.79	good	12	14.81	39	48.15
.≂ Astropologia site Sastropologia site				50 (51 (51 (52 (56	no opinion	7	8.64	46	56.79
no opinion	7	8.64	53	65.43	no positive benefit	1	1.23	47	58.02
very good	27	33.33	80	98.77	poor	2	2.47	49	60.49
very poor	1	1.23	81	100.00	very good	32	39.51	81	100.00

• SAS 9.1 analysis of: CMLES Social Negotiation: Questions (9-13)

Q9					Q10					
Q9	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q10	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	33	38.82	33	38.82	Almost Always	12	14.12	12	14.12	
Almost Never	4	4.71	37	43.53	Almost Never	6	7.06	18	21.18	
Don't Know	2	2.35	39	45.88	Don't Know	5	5.88	23	27.06	
Often	24	28.24	63	74.12	Often	27	31.76	50	58.82	
Seldom	2	2.35	65	76.47	Seldom	. 7	8.24	57	67.06	
a state of the second					WE ARE DRIVEN TO A REAL PROPERTY OF THE REAL PROPER	1				
Sometimes	20	23.53	85	100.00	Sometimes	28	32.94	85	100.00	
Sometimes	20	23.53 Q11	85	100.00	Sometimes	28	32.94 Q12	85	100.00	
Sometimes Q11	20 Frequency		85 Cumulative Frequency	100.00 Cumulative Percent	Sometimes Q12	28 Frequency		Cumulative	100.00 Cumulative Percent	
		Q11	Cumulative	Cumulative			Q12	Cumulative	Cumulative	
Q11	Frequency	Q11 Percent	Cumulative Frequency	Cumulative Percent	Q12	Frequency	Q12 Percent	Cumulative Frequency	Cumulative Percent	
Q11 Almost Always	Frequency 15	Q11 Percent 17.65	Cumulative Frequency 15	Cumulative Percent 17.65	Q12 Almost Always	Frequency 16	Q12 Percent 18.82	Cumulative Frequency 16	Cumulative Percent 18.82	
Q11 Almost Always Almost Never	Frequency 15 4	Q11 Percent 17.65 4.71	Cumulative Frequency 15 19	Cumulative Percent 17.65 22.35	Q12 Almost Always Almost Never	Frequency 16 3	Q12 Percent 18.82 3.53	Cumulative Frequency 16 19	Cumulative Percent 18.82 22.35	
Q11 Almost Always Almost Never Don't Know	Frequency 15 4 1	Q11 Percent 17.65 4.71 1.18	Cumulative Frequency 15 19 20	Cumulative Percent 17.65 22.35 23.53	Q12 Almost Always Almost Never Den't Know	Frequency 16 3 4	Q12 Percent 18.82 3.53 4.71	Cumulative Frequency 16 19 23	Cumulative Percent 18.82 22.35 27.06	

		Q13		
Q13	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	11	12.94	11	12.94
Almost Never	3	3.53	14	16.47
Don't Know	5	5.88	19	22.35
Often	24	28.24	43	50.59
Seldom	11	12.94	54	63.53
Sometimes	31	36.47	85	100.00

• SAS 9.1 analysis of: CMLES Inquiry Learning Questions (14-18)

		Q14				Q15						
Q14	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q15	Frequency	Percent	Cumulative Frequency	Cumulative Percent			
Almost Always	22	25.88	22	25.88	Almost Always	20	23.53	20	23.53			
Almost Never	2	2.35	24	28.24	Almost Never	4	4.71	24	28.24			
Don't Know	1	1.18	25	29.41	Don't Know	2	2.35	26	30.59			
Often	34	40.00	59	69.41	Often	25	29.41	51	60.00			
Seldom	3	3.53	62	72.94	Seldom	7	8.24	58	68.24			
Sometimes	23	27.06	85	100.00	Sometimes	27	31.76	85	100.00			

		Q16							
Q16	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q17	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	12	14.12	12	14.12	Almost Always	15	17.65	15	17.65
Almost Never	4	4.71	16	18.82	Almost Never	5	5.88	20	23.53
Don't Know	2	2.35	18	21.18	Don't Know	3	3.53	23	27.06
Often	28	32.94	46	54.12	Often	28	32.94	51	60.00
Seldom	10	11.76	56	65.88	Seldom	8	9.41	59	69.41
Sometimes	29	34.12	85	100.00	Sometimes	26	30.59	85	100.00

		Q18		
Q18	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	27	31.76	27	31.76
Almost Never	5	5.88	32	37.65
Don't Know	· 1	1.18	33	38.82
Often	29	34.12	62	72.94
Seldom	4	4.71	66	77.65
Sometimes	19	22.35	85	100.00

• SAS 9.1 analysis of: CMLES Reflective Thinking Questions (19-23)

		Q19			Q20					
Q19	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q20	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	22	26.19	22	26.19	Almost Always	19	22.62	19	22.62	
Almost Never	6	7.14	28	33.33	Almost Never	2	2.38	21	25.00	
Don't Know	3	3.57	31	36.90	Don't Know	2	2.38	23	27.38	
Often	26	30.95	57	67.86	Often	38	45.24	61	72.62	
Seldom	5	5.95	62	73.81	Seldom	4	4.76	65	77.38	
Sometimes	22	26.19	84	100.00	Sometimes	19	22.62	84	100.00	

		Q21			022					
Q21	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q22	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	18	21.43	18	21.43	Almost Always	28	33.33	28	33.33	
Almost Never	2	2.38	20	23.81	Almost Never	2	2.38	30	35.71	
Don't Know	2	2.38	22	26.19	Don't Know	2	2.38	32	38.10	
Often	31	36.90	53	63.10	Often	31	36.90	63	75.00	
Seldom	3	3.57	56	66.67	Seldom	6	7.14	69	82.14	
Sometimes	28	33.33	84	100.00	Sometimes	15	17.86	84	100.00	

		Q23		
Q23	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	20	23.81	20	23.81
Almost Never	2	2.38	22	26.19
Don't Know	2	2.38	24	28.57
Often	36	42.86	60	71.43
Seldom	6	7.14	66	78.57
Sometimes	18	21.43	84	100.00

SAS 9.1 analysis of: CMLES Authenticity of Learning Questions (24A-27):

		Q24			Q25					
Q24	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q25	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	24	28.57	24	28.57	Almost Always	24	28.57	24	28.57	
Almost Never	1	1.19	25	29.76	Almost Never	2	2.38	26	30.95	
Don't Know	1	1.19	26	30.95	Don't Know	2	2.38	28	33.33	
Often	33	39.29	59	70.24	Often	35	41.67	63	75.00	
Seldom	3	3.57	62	73.81	Seldom	5	5.95	68	80.95	
Sometimes	22	26.19	84	100.00	Sometimes	16	19.05	84	100.00	

		Q26			Q27					
Q26	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q27	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	31	36.90	31	36.90	Almost Always	24	28.57	24	28.57	
Almost Never	1	1.19	32	38.10	Almost Never	1	1.19	25	29.76	
Don't Know	1	1.19	33	39.29	Don't Know	3	3.57	28	33.33	
Often	29	34.52	62	73.81	Often	31	36.90	59	70.24	
Seldom	5	5.95	67	79.76	Seldom	3	3.57	62	73.81	
Sometimes	17	20.24	84	100.00	Sometimes	22	26.19	84	100.00	

SAS 9.1 analysis: CMLES Complexity of the Learning Environment: Questions (28-32)

		Q28			Q29						
Q28	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q29	Frequency	Percent	Cumulative Frequency	Cumulative Percent		
Almost Always	28	33.33	28	33.33	Almost Always	29	34.52	29	34.52		
Almost Never	2	2.38	30	35.71	Almost Never	2	2.38	31	36.90		
Don't Know	4	4.76	34	40.48	Don't Know	4	4.76	35	41.67		
Often	36	42.86	70	83.33	Often	33	39.29	68	80.95		
Seldom	2	2.38	72	85.71	Seldom	1	1.19	69	82.14		
Sometimes	12	14.29	84	100.00	Sometimes	15	17.86	84	100.00		

		Q30			Q31					
Q30	Frequency	Percent	Cumulative Frequency	Cumulative Percent		Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	26	30.95	26	30.95	Almost Always	28	33.33	28	33.33	
Almost Never	1	1.19	27	32.14	Almost Never	1	1.19	29	34.52	
Don't Know	5	5.95	32	38.10	Don't Know	4	4.76	33	39.29	
Often	31	36.90	63	75.00	Often	31	36.90	64	76.19	
Seldom	5	5.95	68	80.95	Seldom	4	4.76	68	80.95	
Sometimes	16	19.05	84	100.00	Sometimes	16	19.05	84	100.00	

		Q32		
Q32	Frequency	Percent	ALAST AND AND AN AN AN AN AN AN AN	Cumulative Percent
Almost Always	34	40.48	34	40.48
Almost Never	1	1.19	35	41.67
Don't Know	4	4.76	39	46.43
Often	26	30.95	65	77.38
Seldom	3	3.57	68	80.95
Sometimes	16	19.05	84	100.00

Ideal Learning Environment Questions:

			Laistaine in	Q34						
Q33	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q34	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	38	45.24	38	45.24	Almost Always	32	38.10	32	38.10	
Almost Never	2	2.38	40	47.62	Almost Never	2	2.38	34	40.48	
Don't Know	1	1.19	41	48.81	Don't Know	1	1.19	35	41.67	
Often	28	33.33	69	82.14	Often	29	34.52	64	76.19	
Seldom	3	3.57	72	85.71	Seldom	2	2.38	66	78.57	
Sometimes	12	14.29	84	100.00	Sometimes	18	21.43	84	100.00	

SAS 9.1 analysis: CMLES Social Negotiation: Questions (33-37):

		Q35			Q36					
Q35	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q36	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	26	30.95	26	30.95	Almost Always	25	29.76	25	29.76	
Almost Never	4	4.76	30	35.71	Almost Never	4	4.76	29	34.52	
Don't Know	1	1.19	31	36.90	Don't Know	1	1.19	30	35.71	
Often	33	39.29	64	76.19	Often	32	38.10	62	73.81	
Seldom	1	1.19	65	77.38	Seldom	2	2.38	64	76.19	
Sometimes	19	22.62	84	100.00	Sometimes	20	23.81	84	100.00	

		Q37		
Q37	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	30	35.71	30	35.71
Almost Never	3	3.57	33	39.29
Don't Know	1	1.19	34	40.48
Often	28	33.33	62	73.81
Seldom	2	2.38	64	76.19
Sometimes	20	23.81	84	100.00

SAS 9.1 analysis: CMLES Inquiry Learning: Questions (38-42):

				Q39					
Q38	Frequency	Percent	Cumulative Frequency	THE REPORT OF COMPANY AND AND AND AND	Q39	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	32	38.10	32	38.10	Almost Always	28	33.33	28	33.33
Almost Never	3	3.57	35	41.67	Almost Never	2	2.38	30	35.71
Often	27	32.14	62	73.81	Often	38	45.24	68	80.95
Seldom	2	2.38	64	76.19	Seldom	2	2.38	70	83.33
Sometimes	20	23.81	84	100.00	Sometimes	14	16.67	84	100.00

		Q40			Q41					
Q40	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q41	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	30	35.71	30	35.71	Almost Always	24	28.57	24	28.57	
Almost Never	2	2.38	32	38.10	Almost Never	2	2.38	26	30.95	
Often	26	30.95	58	69.05	Often	38	45.24	64	76.19	
Seldom	2	2.38	60	71.43	Seldom	3	3.57	67	79.76	
Sometimes	24	28.57	84	100.00	Sometimes	17	20.24	84	100.00	

		Q42		
Q42	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	39	46.43	39	46.43
Almost Never	2	2.38	41	48.81
Don't Know	1	1.19	42	50.00
Often	29	34.52	71	84.52
Seldom	1	1.19	72	85.71
Sometimes	12	14.29	84	100.00

SAS 9.1 analysis: CMLES Reflective Thinking: Questions (43-47):

				Q44					
Q43	Frequency	Percent	Cumulative Frequency	Cumulative Percent		Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	34	40.48	34	40.48	Almost Always	40	47.62	40	47.62
Almost Never	5	5.95	39	46.43	Almost Never	4	4.76	44	52.38
Often	34	40.48	73	86.90	Often	29	34.52	73	86.90
Seldom	1	1.19	74	88.10	Seldom	1	1.19	74	88.10
Sometimes	10	11.90	84	100.00	Sometimes	10	11.90	84	100.00

		Q45			Q46					
Q45	Frequency	Percent	Cumulative Frequency	Cumulative Percent	「「「「「「「」」」」、「「「「」」」、「「」」、「」、「」、「」、「」、「」、	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	26	30.95	26	30.95	Almost Always	48	57.14	48	57.14	
Almost Never	5	5.95	31	36.90						
Don't Know	1	1.19	32	38.10	Almost Never	2	2.38	50	59.52	
Often	29	34.52	61	72.62	Often	21	25.00	71	84.52	
Seldom	3	3.57	64	76.19	Seldom	2	2.38	73	86.90	
Sometimes	20	23.81	84	100.00	Sometimes	11	13.10	84	100.00	

		Q47		
Q47	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	41	48.81	41	48.81
Almost Never	3	3.57	44	52.38
Don't Know	1	1.19	45	53.57
Often	28	33.33	73	86.90
Seldom	2	2.38	75	89.29
Sometimes	9	10.71	84	100.00

				Q49					
Q48	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q49	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	39	46.43	39	46.43	Almost Always	42	50.00	42	50.00
Almost Never	2	2.38	41	48.81	Almost Never	2	2.38	44	52.38
Don't Know	1	1.19	42	50.00		_			
Often	27	32.14	69	82.14	Don't Know	2	2.38	46	54.76
Seldom	3	3.57	72	85.71	Often	28	33.33	74	88.10
Sometimes	12	14.29	84	100.00	Sometimes	10	11.90	84	100.00

SAS 9.1 analysis: CMLES Authenticity of learning: Questions (48-52):

		Q50			Q51					
Q50	Frequency	Percent	Cumulative Frequency	Cumulative Percent	ARE DO FOR A CAR A POST PAR	Frequency	Percent	Cumulative Frequency	Cumulative Percent	
Almost Always	43	51.19	43	51.19		40	50.00	10.11.11.11.12.12	50.00	
Almost Never	2	2.38	45	53.57	Almost Always	42	50.00	42	50.00	
Often	28	33.33	73	86.90	Almost Never	2	2.38	44	52.38	
Seldom	2	2.38	75	89.29	Often	27	32.14	71	84.52	
Sometimes	9	10.71	84	100.00	Sometimes	13	15.48	84	100.00	

		Q52		
Q52	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	32	38.10	32	38.10
Almost Never	2	2.38	34	40.48
Often	35	41.67	69	82.14
Seldom	3	3.57	72	85.71
Sometimes	12	14.29	84	100.00

		Q53			Q54				
Q53	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q54	Frequency	Percent	Cumulative Frequency	Cumulative Percent
		05.40	Ref. Science Statistics	PE 40	Almost Always	54	64.29	54	64.29
Almost Always	55	65.48	55	65.48	Almost Never	2	2.38	56	66.67
Almost Never	2	2.38	57	67.86	Don't Know	1	1.19	57	67.86
Don't Know	1	1.19	58	69.05	Often	20	23.81	77	91.67
Often	21	25.00	79	94.05	Seldom	2	2.38	79	94.05
Sometimes	5	5.95	84	100.00	Sometimes	5	5.95	84	100.00

SAS 9.1 analysis: CMLES Complexity of the Learning Environment: Questions (53-57):

		Q55			Q56				
Q55	Frequency	Percent	Cumulative Frequency	Cumulative Percent	Q56	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	42	50.00	42	50.00	Almost Always	54	64.29	54	64.29
Almost Never	3	3.57	45	53.57	Almost Never	• 2	2.38	56	66.67
Don't Know	1	1.19	46	54.76	Don't Know	1	1.19	57	67.86
Often	19	22.62	65	77.38	Often	20	23.81	77	91.67
Seldom	4	4.76	69	82.14	Seldom	1	1.19	78	92.86
Sometimes	15	17.86	84	100.00	Sometimes	6	7.14	84	100.00

		Q57		
Q57	Frequency	Percent	Cumulative Frequency	Cumulative Percent
Almost Always	51	60.71	51	60.71
Almost Never	2	2.38	53	63.10
Don't Know	. 1	1.19	54	64.29
Often	22	26.19	76	90.48
Seldom	1	1.19	77	91.67
Sometimes	7	8.33	84	100.00

	Eigenvalue	s of the Corr = 24 Avera	elation Matrix ge = 1	c: Total
	Eigenvalue	Difference	Proportion	Cumulative
1	10.2178007	7.1207869	0.4257	0.4257
2	3.0970138	1.4739909	0.1290	0.5548
3	1.6230230	0.0744693	0.0676	0.6224
4	1.5485537	0.4057710	0.0645	0.6869
5	1.1427827	0.3290841	0.0476	0.7345
6	0.8136985	0.1144313	0.0339	0.7685
7	0.6992672	0.0699802	0.0291	0.7976
8	0.6292870	0.0123330	0.0262	0.8238
9	0.6169540	0.0757812	0.0257	0.8495
10	0.5411727	0.0794129	0.0225	0.8721
11	0.4617598	0.0747147	0.0192	0.8913
12	0.3870451	0.0162638	0.0161	0.9074
13	0.3707813	0.0585933	0.0154	0.9229
14	0.3121880	0.0248938	0.0130	0.9359
15	0.2872942	0.0609277	0.0120	0.9479
16	0.2263666	0.0284847	0.0094	0.9573
17	0.1978819	0.0155780	0.0082	0.9655
18	0.1823039	0.0113806	0.0076	0.9731

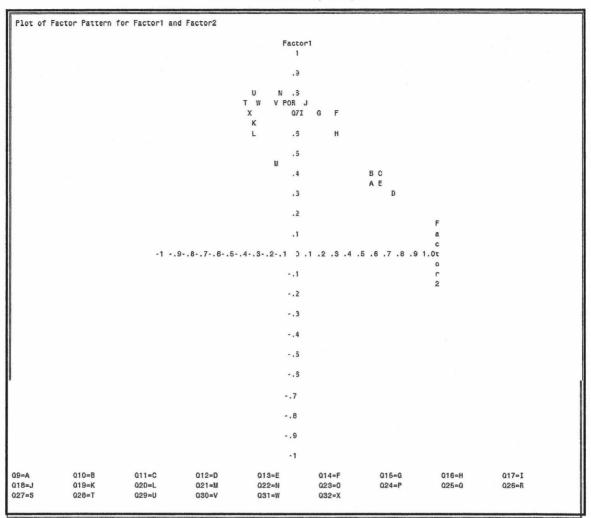
0.0242744

0.0071

0.9803

19 0.1709233

SAS Principal Component Factor Analysis with varimax rotation:


	Eigenvalues of the Correlation Matrix: Total = 24 Average = 1									
	Eigenvalue	Difference	Proportion	Cumulative						
20	0.1466489	0.0444939	0.0061	0.9864						
21	0.1021550	0.0161361	0.0043	0.9906						
22	0.0860189	0.0069303	0.0036	0.9942						
23	0.0790886	0.0190974	0.0033	0.9975						
24	0.0599912		0.0025	1.0000						

	Eigenvalue	s of the Corre = 24 Avera	elation Matrix ge = 1	r: Total
	Eigenvalue	Difference	Proportion	Cumulative
1	10.2178007	7.1207869	0.4257	0.4257
2	3.0970138	1.4739909	0.1290	0.5548
3	1.6230230	0.0744693	0.0676	0.6224
4	1.5485537	0.4057710	0.0645	0.6869
5	1.1427827	0.3290841	0.0476	0.7345
6	0.8136985	0.1144313	0.0339	0.7685
7	0.6992672	0.0699802	0.0291	0.7976
8	0.6292870	0.0123330	0.0262	0.8238
9	0.6169540	0.0757812	0.0257	0.8495
10	0.5411727	0.0794129	0.0225	0.8721
11	0.4617598	0.0747147	0.0192	0.8913
12	0.3870451	0.0162638	0.0161	0.9074
13	0.3707813	0.0585933	0.0154	0.9229
14	0.3121880	0.0248938	0.0130	0.9359
15	0.2872942	0.0609277	0.0120	0.9479
16	0.2263666	0.0284847	0.0094	0.9573
17	0.1978819	0.0155780	0.0082	0.9655
18	0.1823039	0.0113806	0.0076	0.9731
19	0.1709233	0.0242744	0.0071	0.9803
20	0.1466489	0.0444939	0.0061	0.9864
21	0.1021550	0.0161361	0.0043	0.9906
22	0.0860189	0.0069303	0.0036	0.9942
23	0.0790886	0.0190974	0.0033	0.9975
24	0.0599912		0.0025	1.0000

~

	Factor Patte	ern				
		Factor1	Factor2	Factor3	Factor4	Factor5
Q9	Communiate with eachother	0.33220	0.59332	0.28350	0.09591	0.04056
Q10	Communiate with eachother about conduting investigations	0.41062	0.58654	0.25168	-0.10513	0.05979
Q11	Ask other students to explain their ideas	0.38728	0.65159	0.27239	0.00974	0.09094
Q12	Ask me to explain ideas	0.28954	0.76533	0.25673	0.07547	0.00775
Q13	Other students respond carefully to my ideas	0.35205	0.65409	0.17809	0.16732	-0.08460
Q14	Q14	0.67924	0.31357	-0.12843	-0.15942	0.15132
Q15	Q15	0.69943	0.19330	-0.43368	-0.24410	0.01782
Q16	Q16	0.62330	0.31973	-0.43997	-0.38107	0.05642
Q17	Q17	0.69473	0.04658	-0.31267	-0.46246	-0.04111
Q18	Q18	0.73754	0.07423	-0.19233	-0.16644	0.19612
Q19	Q19	0.62659	-0.30699	0.08240	-0.19180	0.23591
Q20	Q20	0.59371	-0.31008	-0.02286	0.14968	0.52654
Q21	Q21	0.44650	-0.14438	0.02034	0.52836	0.44086
Q22	Q22	0.79058	-0.12776	-0.05886	0.11362	0.16764
Q23	023	0.75847	-0.05125	-0.06883	0.22799	0.26189
Q24	Q24	0.75148	-0.07107	-0.16969	0.39900	-0.26501
Q25	Q25	0.67816	-0.01985	-0.30110	0.43243	-0.29824
Q26	Q26	0.73198	-0.00309	-0.04073	0.32870	-0.26626
Q27	Q27	0.78965	0.00926	-0.27372	0.20271	-0.28809
Q28	Q28	0.76867	-0.36979	0.37051	-0.09537	-0.04338
Q29	Q29	0.79681	-0.33178	0.34119	-0.12313	-0.02036
Q30	Q30	0.76169	-0.14323	0.12456	-0.22427	-0.25964
Q31	Q31	0.77467	-0.29877	0.37567	-0.16696	-0.16949
Q32	Q32	0.69325	-0.35339	0.39024	-0.14741	-0.14170

The FACTOR Procedure Initial Factor Method: Principal Components

Factor Analysis

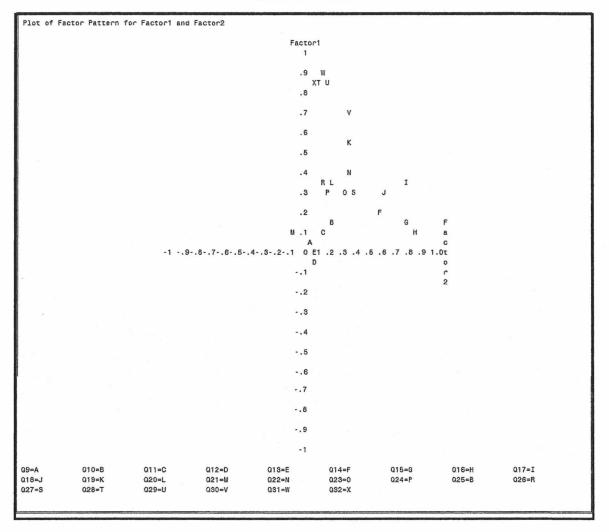
The FACTOR Procedure Rotation Method: Varimax

	Orthogonal Transformation Matrix										
	1	2	3	4	5						
1	0.58699	0.48682	0.28734	0.46292	0.34871						
2	-0.43995	0.19222	0.85418	-0.02525	-0.19809						
3	0.57968	-0.61115	0.42077	-0.33598	-0.02327						
4	-0.30675	-0.57800	0.09232	0.60720	0.44113						
5	-0.17823	0.13591	0.04744	-0.55090	0.80251						

	Rotated Factor I	Pattern				
		Factor1	Factor2	Factor3	Factor4	Factor5
Q9	Communiate with eachother	0.06165	0.05258	0.73232	0.07944	0.06658
Q10	Communiate with eachother about conduting investigations	0.15046	0.22772	0.71803	-0.00606	0.02275
Q11	Ask other students to explain their ideas	0.07936	0.15404	0.78768	0.02712	0.07692
Q12	Ask me to explain ideas	-0.04246	0.08860	0.85228	0.07001	-0.01710
Q13	Other students respond carefully to my ideas	-0.01413	0.08006	0.74624	0.23482	-0.00503
Q14	Q14	0.20823	0.58214	0.40144	0.16950	0.22885
Q15	Q15	0.14582	0.78621	0.16191	0.30657	0.12232
Q16	Q16	0.07700	0.86171	0.23457	0.16582	0.04143
Q17	Q17	0.35524	0.79996	0.06320	0.16732	0.00332
Q18	Q18	0.30488	0.61372	0.18833	0.19506	0.33093
Q19	Q19	0.56742	0.33859	-0.05402	0.02370	0.38210
Q20	Q20	0.33191	0.22844	-0.06509	0.09116	0.75757
Q21	Q21	0.09675	-0.06829	0.08323	0.28145	0.77070
Q22	Q22	0.42142	0.35340	0.11171	0.36561	0.48702
Q23	Q23	0.31124	0.30527	0.17867	0.36969	0.58699
Q24	Q24	0.29885	0.18924	0.10809	0.79495	0.24342
Q25	Q25	0.15277	0.21986	0.07699	0.84247	0.19884
Q26	Q26	0.35404	0.15446	0.20826	0.69887	0.18814
Q27	Q27	0.28994	0.39716	0.12468	0.73906	0.13813
Q28	Q28	0.86565	0.12592	0.05003	0.20668	0.25579
Q29	Q29	0.85287	0.18401	0.07678	0.19905	0.26498
Q30	Q30	0.69739	0.36149	0.11590	0.32122	-0.01621
Q31	Q31	0.88535	0.16357	0.10200	0.23193	0.11091
Q32	Q32	0.85909	0.09701	0.04121	0.18728	0.12392

Variance Explained by Each Factor							
Factor1	Factor2	Factor3	Factor4	Factor5			
4.8474271	3.6806252	3.4063558	3.2925432	2.4022226			

Factor Loading (Questions 1-24 [Survey Monkey Q9-Q32])


 Q9
 Q10
 Q11
 Q12
 Q13
 Q14
 Q15
 Q16
 Q17
 Q18
 Q19
 Q20
 Q21
 Q22

 0.55360266
 0.59061107
 0.65712300
 0.74123115
 0.61865010
 0.62449884
 0.77454695
 0.83271045
 0.79813498
 0.65263660
 0.58608591
 0.74880968
 0.69413794
 0.68582184

Q23	Q24	Q25	Q26	Q27	Q28	Q29	Q30	Q31	Q32
0.70320661	0.82800572	0.82690441	0.71639594	0.82264212	0.87585924	0.87697478	0.73390771	0.88709923	0.79957698

Factor Analysis

The FACTOR Procedure Rotation Method: Varimax

Current Class

	Factor Analysis The CORR Procedure										
	Simple Statistics										
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label				
Q9	85	3.91765	1.19734	333.00000	0	5.00000	Communiate with eachother				
Q10	85	3.20000	1.32557	272.00000	0	5.00000	Communiate with eachother about conduting investigations				
Q11	85	3.37647	1.13365	287.00000	0	5.00000	Ask other students to explain their ideas				
Q12	85	3.24706	1.27154	276.00000	0	5.00000	Ask me to explain ideas				
Q13	85	3.16471	1.26158	269.00000	0	5.00000	Other students respond carefully to my ideas				
Q14	85	3 80000	1 02120	323.00000	0	5.00000	014				
Q15	85	3.51765	1.21118	299.00000	0	5.00000	Q15				
Q16	85	3.32941	1.14838	283.00000	0	5.00000	Q16				
Q17	85	3.35294	1 25077	285.00000	0	5.00000	017				
Q18	85	3.77647	1.18900	321.00000	0	5.00000	Q18				
Q19	85	3.48235	1.37678	296.00000	0	5.00000	Q19				
Q20	85	3 694 12	1.15494	314.00000	Û	5.00000	020				
Q21	85	3 60000	1.14642	305.00000	0	5.00000	021				
Q22	85	3.80000	1.24212	323.00000	0	5.00000	022				
Q23	85	3.67059	1.18912	312.00000	0	5.00000	023				
Q24	85	3 82353	1.07101	325.00000	Q	5.00000	024				
Q25	85	3.76471	1.20166	320.00000	0	5.00000	Q25				
Q26	85	3.91765	1.13611	333.00000	0	5.00000	Q26				
Q27	85	3.72941	1.21878	317.00000	0	5.00000	Q27				
Q28	85	3.88235	1.27626	330.00000	0	5.00000	Q28				
Q29	85	3.88235	1.27626	330.00000	0	5.00000	Q29				
Q30	85	3.68235	1.37332	313.00000	0	5.00000	Q30				
Q31	85	3.77647	1.31273	321.00000	0	5.00000	Q31				
Q32	85	3.87059	1.33442	329.00000	0	5.00000	Q32				

	Cronbach Coefficient Alpha with Deleted Variable												
	Raw Var	iables	Standardized	Variables									
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Label								
Q9	0.600578	0.826393	0.601346	0.828181	Communiate with eachother								
Q10	0.618272	0.823331	0.617743	0.823862	Communiate with eachother about conduting investigations								
Q11	0.674818	0.808342	0.675460	0.808388	Ask other students to explain their ideas								
Q12	0.733041	0.790165	0.732475	0.792682	Ask me to explain ideas								
Q13	0.639368	0.816495	0.640290	0.817867	Other students respond carefully to my ideas								

Cronbach Coefficient Alpha with Deleted Variable											
	Raw Var	iables	Standardized	Variables							
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Label						
Q9	0.600578	0.826393	0.601346	0.828181	Communiate with eachother						
Q14	0.688899	0.852099	0.692033	0.853063	Q14						
Q24	0.689637	0.917662	0.692391	0.918743	Q24						
Q19	0.314926	0.870643	0.317987	0.873075	Q19						
Q28	0.704790	0.931315	0.697123	0.932104	Q28						

Pearson's Correlation Coefficients

												orrelation b > [r] und			5										
	Q9	Q10	Q11	Q1.	2 9	13 (Q14	Q15	015	Q17	Q18	Q19	020	021	922	023	Q24	925	Q26	Q27	Q28	Q29	Q30	031	Q32
09 Communiate with eachother	1.00000	0.48304 <0001	0.51426 <.0001							.11503 0.2945	0.30468 0.0046	0.06049 0.5823	0.05905 0.5914	0.09714 0.3765	0.17290 0.1136	0.17303 0.1133	0.16492 0.1315	0.25115 0.0204	0.16999 0.1199	0.23744 0.0287	0.14939 0.1724	0.15718 0.1508	0.15766 0.1496	0.16993 0.1200	0.07521 0.4939
010 Communiate with eachother about conduting investigations	0.48304 <.0001	1.60000	0.48800 <0001				047 0.33 002 0.0		39415 0 (6002)	27285 0.0115	0.27041 0.0123	0.11511 0.2900	0.12597 0.2506	0.10811 0.3247	0.15919 0.1216	0.25587 0.0128	0.19448 0.0910	0.15695 0.1514		0.26233 0.0153	0.15481 0.1572	0.18296 0.0937	0.27074 0.0122	0.23808 0.0282	0.24363 0.0246
011 Ask other students to explain their ideas	0.51426 <.0001	0.48900 <.0001	1.00000	0.6119 <000						25780 0.0172	0.27514 0.0108	0.05770 0.5999	0.07991 0.4572	0.14473 0.1853	0.16401 0.1336	0.25205 0.0200	0.23186 0.0327	0.13571 0.2156	0.29241 0.0055	0.16077 0.1416	0.18731 0.0861	0.20377 0.0614	0.22301 0.0402	0.16922 0.1216	0.09555 0.3844
Q12 Ask me to explain ideas	0.49533 <.0001	0.57775 <0001			0 0.512 <00					11658 0,2876	0.17870 0.1018	-0.02128 0.8457	-0.04521 0.6812	0.05227 0.6347	0.22763 0.0362	0.17257 0.1143	0.13730 0.2102	0.10862 0.3224	0.23675 0.0291	0.19729 0.0703	0.00345 0.9750	0.05480 0.6184	0.16137 0.1401	0.06914 0.5295	0.01205 0.9128
013 Other students respond carefully to my ideas	0.45831 <0001	0.44990 <.0001	0.53680 <.0001	0.6125 <000			233 0.3 036 0.0			.14379 0.1892	0.20737 0.0559	0.11821 0.2813	-0.03037 0.7826	0.05433 0.6214	0.20350 0.0615	0.33021 0.0020	0.25085 0.0206	0.22219 0.0410	0.30028 0.0052	0.28483 0.0082	0.05654 0.6073	0.12308 0.2618	0.14050 0.1997	0.14470 0.1864	0.06231 0.5710
Q14 Q14	0.35635	0.39047					000 0.53 <(.55922 <.0001	0.62945 <.0001	0.28111 0.0092	0.34116 0.0014	0.27659 0.0104	0.48428 <.0001	0.40587	0.43539 <0001	0.36865 0.0005	0.47815 <0001	0.44381 <.0001	0.41104 <.0001	0.41104	0.42953 <.0001		0.32149 0.0027
Q15 Q15	0.20214	0.32033 0.0028	0.32458			51 0.53 31 <.0	708 1.00 1001		73186 0 0001	69524 < 0001	0.65171 <.0001	0.34822 0.0011	0.29326	0.19377 0.0756	0.44156 <.0001	0.59096 <.0001	0.46589 <.0001	0.50184 <0001	0.35145	0.62022 <.0001	0.33252	0.41724	0.45789	0.40309	0.32184
Q16 Q16	0.21910	0.39415 0.6062	0.30595 0.0044	0.33494 0.0017	0.24970 0.0212	0.63548 <0001	0.73185 <,0001	1.00006	0.68889 <,0001		2 0.372		4 0.07415			0.37692	0.36741 0.0005	0.33128	0.51525 <0001	0.2298			48231	0.24685	0.24567
017 017	0.11503		0.25780 0.0172	0.11558	0.14375	0.55922	0.69524 <.0001	0.55889	1.00000	0.6220						0.38475 0.0003	0.35690	0.45633 <.0001	0.53196 <.0001	0.034	7 0.48		<.0001 .57891 <.0001	0.0228	0.0234
Q18 Q18	0.30468		0.27514	0.17870	0.20737	0.62945	0.65171	0.54282			0.3790			0.55780		0.45478	0.45258 <,0001	0.44448	0.49174	0.5002	4 0.51		46635	0.52439	0.40923
Q19 Q19	0.06049		0.05770	-0.02128	0.11821	0.28111	0.34822	0.37267				0.5955			0.51269	0.34099	0.29249	0.35297	0.42635	0.5611	4 0.62	211 0	45348	0.55439	0.53981
Q20 Q20	0.05905		0 07991	-004521	-0.03037	0.34115		0.27434	0.30637				0 0.47293	0.55434		0.47555	0.35068	038885	0.32954	0.4921			.36584	0.41764	0.36796
021	0.09714	0.10811	0 14473	0.05227	0.05433	0.27659	0.19377	0.07415	0.09963					0.45312	0.48729	0.40722	0.35295	0.35829	0 32206	0.3580			.19811 0.0691	0.23257 0.0322	0.31594
022 022		0.16919	0.16401	0.22763	0.20360	0.48428	0.44156	0.45569	0.52106				4 0.45312		0.70444	0.58167	0.45462	0.58714	0.65584	0.5932 <.000		077 0 001	.59042 <.0001	0.57094 <.0001	0.48696
023	0.17303	0.26887				0.40587			0.38326	5 0.5361	0 0.512	9 0.5585	5 0.48729	0.70444	1.00000		0.56163			0.5369		602 0 001	.43088 <.0001	0.50900 <.0001	0.45297 <.0001
023 024	0.16492	0.18448	0.23186	0.13730	0.25085	0.43539	0.46589	0.37692	0.38475	5 0.4541	18 0.340	9 0.4755	5 0.40722	0.58167	0.52402		0.79986	0.73148	0.71995	0.4897	7 0.52	001	.56038 <.0001	0.52199 <.0001	0.45030 <.0001
024 025	0.1315	0.0910	0.0327 0.13571	0.2102	0.0205	<.0001 0.36865	<.0001		0.35690	0.4626	8 0.292	19 0.3506	8 0.36295	0.45462	0.56163		<.0001	<.0001 0.64836		0.3853	8 0.41 3 <.0	643 0 1001	.42307 <.0001	0.41907 <.0001	0.35199
025 026	0.0204		0.2155	0.3224	0.6410	0.0005	<0001	0.0005							<.0001 0.48195	<.0001	0.64836	<0001	<.0001	0.5515 ×.000	1 <.0	001	.48662 <.0001	0.50636 <.0001	0.47189 <.0001
026	0.1199	0.0257	0.0065	0.0291	0.0052	<0001	0.0010	0.0020	<.0001		0.00					<,0001	<0001	0.69974	<.0001	0.4920 <.000	1 <.0	001	.60950 <.0001	0.49748 <.0001	0.42472 <.0001
027	0.0287	0.0153	0.1416	0.0703	0.0082	<.0001	<.0001	<.0001	<.0001	<000	1 <00	0.002	1 0.0026	<.0001	<,0001	<.0001	<0001	<.0001		1.0000	<.0	001	.69160 <.0001	0.85101 <.0001	0.76686 <.0001
028 028	0.1724	0.1572	0.0861	0.9750	0.6073	0.41104 <.0001	0.33252	0.22982	<.0001	1 <.000)1 <,00)1 <.000	1 0.0006	<,0001	<.0001	<.0001	0.0003	0.55154 <0001	<,0001	0.8976 <.000	B 1.00	0000 0	.69840 <.0001	0.85101 <.0001	0.76686 <.0001
029 029	0.15718 0,1508	0.0937	0.0514	0.5184	0.2618	0.41104 <.0001	<.0001	0.0123	<.000	1 <.00	01 <.00	01 <00	0.003	1 <.000	1 <,000	<.0001	<.0001	<.0001	0.51503 <.0001	0.8976 <.000		0000 0	.69840 <.0001	0.85101 <.0001	0.76686 <.0001
000 000	0.15766 0.1496		0.0402	0.16137 0.1401	0.14050 0.1997	0.42953 <.0001		0.48231 <.0001											0.60950 <,0001	0.6916 <.000		840 1 0001	.00000	0.69974 <.0001	0.65940 <.0001
031 Q31	0.16993 0.1200		0.15922 0.1215	0.06914 0.5295	0.14470 0.1864															0.8510 <.000		5101 0 0001	.69974 <.0001	1.00000	0.83959 <.0001
012 032	0.07521 0.4939	0.24363 0.0245	0.09555 0.3844	0.01205 0.9128	0.06231 0.5710	0.32149 0.0027		0.2456								0.45030				0.7668 <.000			.65940 <.0001	0.83959 <.0001	1.00000

Ideal Class

Variance Explained by Each Factor											
Factor1	Factor2	Factor3	Factor4	Factor5							
4.8043819	4.2477777	4.1641438	3.7135347	3.3019461							

										Final Communality Estimates: Total = 20.231784					
Q33	Q34	Q35	Q36	Q37	Q38	Q39	Q40	041	Q42	Q43	Q44	Q45	Q46	Q47	
0.85754153	0.87786925	D.83176740	0.82671528	0.78900201	0.80641776	0.86184794	0.83841927	0.84392474	0.64794439	0.81801613	0.82171537	0.73795842	0.79381035	0.81819542	
							1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1								
Res Startes				an an taon an Galain Geologiach										n angereit. Angereitet	
Ç	248	Q49	C C	150	Q51	1	252	Q53	() 	254	Q55	142 (1	256	Q57	
0.808637	760 07	4199018	0.767053	051 07	2844342	0.80617	153 0.0	3295253	0.91694	810 0.5	9481743	0.93677	047 0.9	2684503	

Factor Analysis

The FACTOR Procedure Initial Factor Method: Principal Components

Prior Communality Estimates: ONE

	Eigenvalue	s of the Corro = 25 Avera	elation Matrix ge = 1	:: Total
	Eigenvalue	Difference	Proportion	Cumulative
1	14.9709264	12.9844490	0.5988	0.5988
2	1.9864774	0.5435588	0.0795	0.6783
3	1.4429186	0.4588879	0.0577	0.7360
4	0.9840307	0.1365998	0.0394	0.7754
5	0.8474309	0.1347022	0.0339	0.8093
6	0.7127288	0.1818661	0.0285	0.8378
7	0.5308627	0.0843840	0.0212	0.8590
8	0.4464787	0.0740076	0.0179	0.8769
9	0.3724710	0.0357203	0.0149	0.8918
10	0.3367508	0.0192633	0.0135	0.9052
11	0.3174875	0.0512729	0.0127	0.9179
12	0.2662146	0.0230132	0.0106	0.9286
13	0.2432014	0.0165985	0.0097	0.9383
14	0.2266028	0.0249614	0.0091	0.9474
15	0.2016415	0.0020837	0.0081	0.9554

16	0.1995578	0.0304851	0.0080	0.9634
17	0.1690727	0.0064096	0.0068	0.9702
18	0.1626631	0.0272468	0.0065	0.9767
19	0.1354163	0.0144400	0.0054	0.9821
20	0.1209763	0.0392317	0.0048	0.9870
21	0.0817445	0.0043851	0.0033	0.9902
22	0.0773595	0.0045560	0.0031	0.9933
23	0.0728034	0.0215112	0.0029	0.9962
24	0.0512922	0.0084019	0.0021	0.9983
25	0.0428903		0.0017	1.0000

.

				Simple	Statistics		
Variable	N	Mean	Std Dev	Sum	Minimum	Maximum	Label
Q33	85	4.07059	1.15252	346.00000	0	5.00000	2
Q34	85	3.95294	1.13290	336.00000	0	5.00000	
Q35	85	3.82353	1.16677	325.00000	0	5.00000	*
Q36	85	3.77647	1.17895	321.00000	0	5.00000	•
Q37	85	3.87059	1.17299	329.00000	0	5.00000	*
Q38	85	3.94118	1.10575	335.00000	0	5.00000	
Q39	85	4.00000	1.00000	340.00000	0	5.00000	
Q40	85	3.90588	1.06484	332.00000	0	5.00000	
Q41	85	3.89412	1.01211	331.00000	0	5.00000	
Q42	85	4.12941	1.11043	351.00000	0	5.00000	,
Q43	85	4.03529	1.13858	343.00000	0	5.00000	
Q44	85	4.14118	1.11433	352.00000	0	5.00000	•
Q45	85	3.72941	1.23817	317.00000	0	5.00000	
Q46	85	4.27059	1.06221	363.00000	0	5.00000	
Q47	85	4.12941	1.17299	351.00000	0	5.00000	
Q48	85	4.08235	1.15688	347.00000	0	5.00000	
Q49	85	4.16471	1.17359	354.00000	0	5.00000	
Q50	85	4.23529	1.03103	360.00000	0	5.00000	
Q51	85	4.27059	0.94350	363.00000	0	5.00000	•
Q52	85	4.04706	1.03402	344.00000	0	5.00000	
Q53	85	4.42353	1.06208	376.00000	0	5.00000	*
Q54	85	4.36471	1.12172	371.00000	0	5.00000	
Q55	85	4.07059	1.21291	346.00000	0	5.00000	
Q56	85	4.40000	1.07127	374.00000	0	5.00000	•
Q57	85	4.32941	1.10613	368.00000	0	5.00000	' Format Q33-Q57 LIKER

C	Cronbach Coefficient Alpha with Deleted Variable												
	Raw Var	iables	Standardized										
Deleted Variable	Correlation with Total	Alpha	Correlation with Total	Alpha	Label								
Q33	0.869817	0.928462	0.870613	0.928678	8								
Q34	0.859144	0.883694	0.858008	0.882719	2								
Q39	0.849311	0.869901	0.852392	0.872579									
Q44	0.832704	0.850978	0.830889	0.855546	3								
Q53	0.910556	0.886928	0.915511	0.891807									

REFERENCES

- Alavi, M & Leidner, D.E. (March, 2001). Research commentary: Technology-mediated learning-- a call for greater depth and breadth of research. <u>ISR, 12</u>, 1, 1-10.
- Anderson, L.W., Krathwohl, D.R., Airasian P.W., Cruikshank, K.A., Mayer, R.E., Pintrich, P.R., Raths, J. & Wittrock, M.C. (2001). <u>A Taxonomy for Learning,</u> <u>Teaching, and Assessing - A Revision of Bloom's Taxonomy of Educational</u> <u>Objectives.</u> New York: Addison Wesley Longman, Inc.
- 3. Beiri, J. (1961). <u>Complexity-Simplicity as a Personality Variable in Cognitive and</u> <u>Preferential Behavior</u>. Homewood, IL: Dorsey Press.
- 4. Benbasat, I. & Zmund, R. W. (1999). Empirical research in information systems: the practice of relevance. <u>MIS Quarterly.</u> 3-16.
- 5. Berners-Lee, T., Hendler, J. & Lassila, O. (2001). The semantic web. <u>Scientific</u> <u>American.</u>, 34-43.
- 6. Bieber, M., Rice, R., Hiltz, S.R. & Turoff, M. (2002) Towards knowledge-sharing and learning in virtual professional computer mediated group communications communities. <u>HICSS.</u>
- Bieber, M. (1999). Collaborative discourse structures in Computer Mediated Group Communications. HICSS-32. Proceedings of the 32nd Annual Hawaii International Conference.
- Bielaczyc, K. & Collins, A. (1999). Learning Communities in Classrooms: A Reconceptualization of Educational Practices., C. M. Reigeluth (Ed.). Mahwah, N.J.: Lawrence Erlbaum.
- 9. Bloom, B.S. & Fauer, S. (1956). <u>Taxonomy of Educational Objectives: The</u> <u>Classification of Educational Goals</u>. New York: Longmans, Green.
- 10. Bandura, A. & Walters, R. H. (1963). <u>Social Learning and Personality Development</u>. New York: Holt, Rinehart, & Winston.
- 11. Bandura, A. (1986) <u>Social Foundations of Thought and Action</u>: A Social Cognitive Theory. Englewood Cliffs, N.J.: Prentice-Hall.
- 12. Bates, A.W. (2000). Managing Technological Change. San Francisco: Jossey-Bass.
- Brown, J.S., Collins, A. & Duguid, P. (1989). <u>Situated cognition and the culture of learning. Educational Researcher.</u> 18, 32-42.

- 14. Bruner, J. (1960). <u>The Process of Education</u>. Cambridge, MA: Harvard University Press.
- Cañas, A., Hill, G., Carff, R., Niranjan, S.,Lott,J., Gómez, T. Eskridge, M. & Arroyo, R.C. (2004). <u>CMAPTools: a Knowledge Modeling and Sharing</u> <u>Environment. In: Concept Maps: Theory, Methodology, Technology,</u> <u>Proceedings of the First International Conference on Concept Mapping, A.J.</u> <u>Canas, J.D. Novak, and F.M. Gonzalez (EDs).</u> Pamplona, Spain: Universidad Publica de Navarra, 125-133.
- 16. Carroll, J. & Kellogg, W. (1989). Artifact as theory nexus: hermeneutics meets theory-based design. In <u>Proceedings of CHI '89</u>, ACM Press.
- Coffey, J. W., Carnot, M. J., Feltovich, P. J., Feltovich, J., Hoffman, R. R., Cañas, A. J., & Novak, J. D. (2003). <u>Technical Report for the US Navy Chief of</u> <u>Naval Education and Training.</u> Pensacola, FL: Institute for Human and Machine Cognition.
- Coffey, J. W., Hoffman, R. R., Cañas, A. J., & Ford, K. M. (2002). A Concept-Map Based Approach to Expert Knowledge Sharing. <u>Proceedings of IKS</u>, <u>International Conference on Information and Knowledge Sharing</u>, Virgin Islands.
- 19. Cole, M. & Engestrom, Y. (1993). A cultural-historical approach to distributed cognition. In Salomon, G. (Ed.), <u>Distributed cognitions. Psychological and Educational Considerations</u>. NY: Cambridge University Press, 1-46.
- Coppola, N.W., Hiltz, S.R. & Rotter, N. (2002). Becoming a virtual professor: pedagogical roles and asynchronous learning networks. <u>Journal of Medical</u> <u>Information Systems, 18</u> (4) 169-190.
- De Corte, L. (1996). Powerful learning environments: unraveling basic components and dimensions. (Advances in Learning and Instruction Series). Oxford, UK: Elsevier Science.
- 22. Dede, C. (1995). The evolution of constructivist learning environments: immersion in distributed virtual worlds. <u>Education Technology</u>. 35(5), 46-52.
- 23. Davidson, M., Jonassen, D., Campbell, J. (1994). Learning with media: restructuring the debate. Educational Research and Technology, 42, (2), 31-39.
- Deek, F. P., Hiltz, S. R., Kimmel, H. & Rotter, N. (1999). Cognitive Assessment of Students' Problem Solving and Program Development Skills. Journal of <u>Engineering Education, 88</u> (3) 317-326.

- Deek, F. P. & Espinosa, T. (2005). An evolving approach to learning problem solving and program development: the distributed learning model. <u>International Journal on E-Learning</u>, 4(4), 409-426.
- 26. Deek, F. P., Friedman, R. & Deek, M. (2000). Bridging Technology and Pedagogy: Interdisciplinary Computing and Composition, <u>WebNet Journal: Internet</u> <u>Technologies, Applications and Issues</u>, 2(1), 60-67.
- 27. Denning, P.J. (1997). A new social contract for research. <u>Communications of the</u> <u>ACM</u>, 132-134.
- Derry, S. J. (1999). A Fish called peer learning: Searching for common themes. In <u>A. M. O'Donnell & A. King (Eds.)</u>.
- 29. Dewey, J. & Bentley, A. (1949). Knowing and the Known. Boston: Beacon Press.
- DiSessa, A. & Minstrell, J. (1998). Cultivating conceptual change with benchmark lessons. In Thinking Practices in Mathematics and Science Learning, J. Greeno & S. Goldman (Eds.), New Jersey: Lawrence Erlbaum, 155-188.
- Dufner, D. Hiltz, R. & Turoff, M. (1994). Distributed group support: a preliminary analysis of the effects of the use of voting tools and sequential procedures. <u>Proceedings of the 27th Annual Conference on Systems Sciences, 3</u>, Los Alamitos, CA IEEE Computer Society Press, 14- 123.
- 32. Dunn, R., Dunn, K. & Price, G. E. (1984). <u>Learning Style Inventory</u>. Lawrence, KS: Price Systems.
- 33. Ernest, P. (1999). Social Constructivism as a Philosophy of Mathematics: Radical Constructivism
- 34. Feigenbaum, L., Herman, I., Hongsermeier, T., Neumann, E. & Stephens, S. (2007). The semantic web in action. <u>Scientific American</u>, 297(6), 90-97.
- Fisher, D. (1987). Knowledge acquisition via incremental conceptual clustering. In <u>Machine Learning 2</u>, 139--172. Reprinted in <u>Readings in Machine Learning</u>, (1990). J. Shavlik & T. Dietterich (Eds.), Morgan Kaufman.
- Fisher, D. (1995). Optimization and simplification of hierarchical clusterings. <u>First</u> <u>International Conference on Knowledge Discovery in Databases</u>, Montreal, Canada: AAAI Press, 118-123.
- 37. Gagné, R.M. and Briggs, L.J. (1979). <u>Principles of Instructional Design</u> (2nd ed.). New York: Holt Rinehart and Winston.
- 39. Glass, R. (1999). On design. IEEE Software, 16(2), 103-104.

- 40. Good, T. L., Brophy, J. E. (1990). <u>Educational Psychology: A Realistic Approach</u> (4th Ed.). White Plains, NY: Longman.
- 41. Gredler, M. E. (1997). Learning and Instruction: Theory into practice (3rd Ed). Upper Saddle River, NJ: Prentice-Hall.
- 42. Harasim, L. M. (1990). <u>Online Education: An Environment for Collaboration and</u> <u>Intellectual Amplification. Online Education: Perspectives on a New</u> <u>Environment</u>. New York: Praeger Publishing.
- 43. Harshorne, C. & Weiss, P. (Eds.) (1931-1935)). <u>Pierce, C. S: Collected Papers</u>, Cambridge, MA: Harvard University Press.
- 44. Hartman, J.L., Truman-Davis, B. (2001). Factors relating to the satisfaction of faculty teaching online courses at the University of Florida. In <u>Online</u> <u>Education, Vol. 2: Learning Effectivess, Faculty Satisfaction, and Cost</u> <u>Effectiveness</u>, Needham, MA: SCOLE.
- 45. Helbig, H. (2006). <u>Knowledge Representation and the Semantics of Natural</u> <u>Language</u>, New York: Springer.
- Hiltz, S. R. (1990). Evaluating the virtual classroom. <u>Online Education:Perspectives</u> on a New Environment, Linda M. Harasim (Ed.), New York: Praeger Publishing.
- 47. Hiltz, S. R. (1994). <u>The Virtual Classroom: Learning Without Limits Via Computer</u> <u>Networks</u>, Norwood, NJ: Ablex Publishing.
- 48. Hiltz, S. R. & Goldman, R. (2005) <u>Learning Together Online: Research on</u> <u>Asynchronous Learning Networks</u>, Mahwah, NJ: Lawrence Erlbaum Associates.
- 49. Hiltz S. R., Coppola, N., Rotter, N. & Turoff, M. (2000) Measuring the importance of collaborative learning for the effectiveness of the ALN: A multi-measure, multi-method approach. Journal of Asynchronous Learning Networks, 4 (2).
- 50. Hudson, L. (1966). Contrary Imaginations, Harmondsworth: Penguin.
- 51. Hutchins, E. (1995). How a cockpit remembers its speeds. <u>Cognitive Science, 19</u>, 265-288.
- Jonassen, D.H., & Rohrer-Murphy, L. (1991). Activity theory as a framework for designing constructivist learning environment. <u>Educational Technology</u> <u>Research and Development, 47</u>(1), 61-79.

- Jonasson, D.H., (1990). Thinking technology: Toward a constructivist design model. Available: <u>http://ouray.cudenver.edu/slsanfor/cnstdm.txt</u>. Viewed April 10, 2008.
- Jonassen, D. H. (1991). Objectivism versus constructivism: do we need a new philosophical paradigm?. <u>Educational Technology Research and</u> <u>Development, 39 (3)</u>, 5-14.
- 55. Keegan, D. (1996). Foundations of Distance Education. New York: Routledge.
- 56. Kolb. D. A. & Fry, R. (1975). Toward an applied theory of experiential learning. In <u>Theories of Group Process, C.Cooper (Ed.)</u>, London: John Wiley.
- 57. Kukla, A. (2000). <u>Social Constructivism and the Philosophy of Science</u>, New York: Routledge.
- 58. Kuhn, T. (1996), <u>The Structure of Scientific Revolutions</u>, Chicago: University of Chicago Press.
- 59. Lakatos, I. (1978). <u>The Methodology of Scientific Research Programmes, John</u> <u>Worral and Gregory Currie, (Eds.)</u>, Cambridge:Cambridge University Press.
- 60. Lee, A. (May, 2000). Systems thinking, design science and paradigms: heeding three lessons from the past to resolve three dilemmas in the present to direct a trajectory for the future research in the information systems research field. <u>Keynote Address, Eleventh International Conference on Information</u> <u>Management</u>, Taiwan.
- 61. Malone, & Crowston, (1990). What is coordination theory and how can it help design "cooperative work systems?". <u>CSCW '90</u>, 371-380.
- 62. Maor, D. (1999). A professional development program to enhance teachers' understanding of the use of a constructivist multimedia learning environment. Learning Environments Research: An International Journal, 2, 307-330.
- 63. Maor, D. & Fraser, B. (April, 2000). A learning environment instrument for evaluating students' and teachers' perceptions of constructivist multimedia learning environments. Paper presented at the annual meeting of the <u>National</u> <u>Association for Research in Science Teaching (NARST)</u>, New Orleans, LA.
- 64. March, S. & Smith, G. (1995). Design and natural science research on information technology. <u>Decision Support Systems</u>, 15, 251 266.
- 65. McMahon, M. (December, 1997). Social constructivism and the www –a paradigm for learning. Paper presented at the <u>ASCILITE Conference</u>. Perth, Australia..

- 66. Mehrotra, K., Mohan, C. & Ranka, S. (1996). <u>Elements of Artificial Neural</u> <u>Networks</u>, MA: MIT press.
- 67. Merrill, M. D. (1991). Constructivism and instructional design. <u>Educational</u> <u>Technology</u>, 31(5), 45-53.
- 68. Novak, J. D. & Gowin, D. B. (1984). <u>Learning How to Learn</u>. New York: Cambridge University Press.
- 69. Piaget, J. (1928). <u>The Child's Conception of the World</u>. London: Routledge and Kegan Paul.
- 70. Prawat, R. S. & Floden, R. E. (1994). Philosophical perspectives on constructivist views of learning. <u>Educational Psychologist</u>, 29(1), 37-48.
- 71. Rice, R. (1984). <u>The New Media: Communication, Research & Technology</u>. Beverly Hills, CA: Sage.
- 72. Rossi, M. & Sein, M. (August 9-12, 2003). Design research workshop: a proactive research approach. In <u>Proceedings of the IRIS 2003</u>, Helsinki.
- 73. Saettler, P. (1990). <u>The Evolution of American Educational Technology</u>, Englewood, CO: Libraries Unlimited, Inc.
- Salomon, G., (Ed.). (1993). Distributed Cognitions. Learning in Doing: Social, Cognitive, and Computational Perspectives, Cambridge: Cambridge University Press, 229-270.
- 75. Saltzberg, S. & Polyson, S. (1995). Distributed learning on the world wide web. <u>Syllabus</u>, *9*(1), 10.
- Schuman, L. (1996). Perspectives on Instruction. SCORM Best Practices Guide for Content Developers, 1st Edition (2/28/2003) (Updated 4/5/2004) from http://edweb.sdu.edu/courses/edtec540/Perspectives.html.
- 77. SCORM Primer from Philip Dodds:SCORM tools.http: // adlcommunity.net/ mod/resource/ view.php?id=458, viewed April 10, 2008.
- 78. Seels, B. & Glasgow, Z. (1990). Exercises in Instructional Design. Columbus OH: Merrill Publishing Company.
- 79. Shadbolt, N., Berners-Lee, T., Hall, W. (2006). The semantic web revisited. <u>IEEE</u> <u>Intelligent Systems, 21(3)</u>, 96-101.
- 80. Simon, H. A. (1969). The Sciences of the Artificial, Cambridge, MA: MIT Press.

- 81. Skinner, B. F. (1938) The Behavior of Organisms. New York: Appleton-Century.
- Skinner, B. F. (1950). Are theories of learning necessary? <u>Psychological Review</u>, <u>57</u>, 193-216.
- Smith, R., & Zeng, M. (2004). Building semantic tools for concept –based learning spaces: knowledge bases of strongly-structured models for scientific concepts in advanced digital libraries. Journal of Digital Information, 14 (4).
- 84. Sweller, J. (1988). Cognitive load during problem solving: effects on learning. Cognitive Science, 12 (1), 257-285.
- Taylor, P.C., Fraser, B. J. & Fisher, D. L. (1997). Monitoring constructivist classroom learning environments. <u>International Journal of Educational</u> <u>Research, 27(4)</u>, 293-302.
- Thorndike, E. L. (1898). Animal intelligence: an experimental study of the associative processes in animals. <u>Psychological Review, Monograph</u> <u>Supplements, No. 8</u>, New York: Macmillan.
- 88. Tolman, E. C. (1932). <u>Purposive Behavior in Animals and Men</u>. New York: Century.
- Tsichritzis, D. (1998). The dynamics of innovation. In <u>Beyond Calculation: The</u> <u>Next Fifty years of Computing, P.J. Denning and R. M. Metcalfe (Eds.)</u>. New York: Copernicus Books, 259-265.
- 90. Turoff, M. (2006). The changing role of faculty and online education. Journal of Asynchronous Learning Networks, 10(4).
- Venkatesh,V. & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: four longitudinal field studies. <u>Management Science</u>, 46, (2), 186-204.
- Venkatesh, V., Morris, M. G., Davis, G. B. & Davis, F. D. (2003). User acceptance of information technology: toward a unified view. <u>MIS Quarterly, 27,(3)</u>, 425-478.
- 93. Vygotsky, L.S. (1962). Thought and Language. Cambridge, MA: MIT Press.
- 94. Wason, P.C. (1960). On the failure to eliminate hypotheses in a conceptual task. Quarterly Journal of Experimental Psychology, 12, 129-140.
- 95. Watson, J.B. (1913). Psychology as the behaviorist views it. <u>Psychological Review</u>, 20, pp. 158-177.

- 96. White, D., Gardner, L.A. & Sheridan, D. (2003). Evolution of a knowledge focused computer supported learning system by ensuring extensibility through generalization and replication. <u>Proceedings of the 36th Annual Hawaii</u> <u>International Conference on System Sciences</u>, 32.
- 97. Widmeyer, G. R. (2003). The trichotomy of processes: a philosophical basis for information systems," AMCIS, Association for Information Systems, Tampa, Florida.
- 98. Widmeyer, G. R. & McCosh, A. (2001). Decision and knowledge as research issues in e- business. Presented to the IFIP TC8, Information Systems Meeting to create a new working group on e-Business, Salzburg, Austria. Invited Presentation.
- Walls, J. G., Widmeyer, G.R. & El Sawy O.A. (1992). Building an information system design theory for vigilant EIS. Information Systems Research, 3(1), 36-59.
- 100. Wilson, B. & Lowry, M., (1998). <u>New Directions for Adult and Continuing</u> Education, Issue 88, New York: John Wiley & Sons, 79-88
- 101. Winograd, T. (1996). Bringing Design to Software, Reading, MA: Addison-Wesley Inc.