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ABSTRACT

RNA SECONDARY STRUCTURE DETECTION PROGRAMS WITH AN
EMPHASIS ON COVARIANCE MODELS

by
Justin Slotman

RNA secondary structure prediction requires a different approach from traditional

alignment methods. Functional RNAs often have their secondary structure better

conserved than their primary structure. Covariance models, probabilistic models that

utilize stochastic-context-free grammars, are one approach. CMs allow for homology to

be detected where purely sequence-based methods would fail. A background on CMs is

given, as well as a background of the major classes of non-coding RNAs (ncRNAs).

Comparisons are made between some CM-using tools (the Infernal suite and CMfinder)

and some other RNA secondary structure tools (CARNAC, miRNAminer, Pfold,

Mfold) as well as between Infernal and the primary alignment tool BLAT. CMfinder

and Infernal are also compared against each other. RNA secondary structure databases,

mainly Rfam and miRBase, are used to provide sequence and alignment data.
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CHAPTER 1

INTRODUCTION

1.1 Objective

The objective of this thesis is to provide a review of the problem of RNA secondary

structure prediction, and then contrast differing methods of RNA secondary structure

prediction, with an emphasis on comparing methods that use stochastic context-free

grammars (SCFGs) with methods that do not. The first part of the objective will be

accomplished by delving into basic RNA science and computer science, followed by a

survey of the selected databases and software tools selected for this thesis. The second

part of the objective will be accomplished by running a similar data set on a number of

software tools, some web-based and some requiring local installation.

1.2 Introduction

The problem of RNA secondary structure prediction involves a few factors. Primary

structure does not imply secondary structure, so prediction methods that align nucleotide

sequences are not necessarily useful for secondary structure prediction [1]. Secondary

structure is also better conserved in an evolutionary sense than primary structure. That is,

nucleotide substitutions or deletions will more often than not leave an RNA's secondary

structure unaffected.	 Typical alignment methods such as BLAST can prove

unsatisfactory, as in some cases related RNAs can have below 60% to 70% primary

sequence identity in common, despite only having tens of millions of years to separate

them [2]. Common secondary structures can thus be used to show that two RNAs are
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related, when an alignment of their sequences would not have made that clear. Different

methods from the usual primary sequence alignment methods are therefore called for

when attempting secondary structure prediction [3].

One method involves the use of covariance models [1, 4 (pp. 279-299)]. These are

probabilistic, mathematical models that describe an RNA's primary and secondary

sequence simultaneously. They can be used for secondary structure prediction, multiple

sequence alignment (so they can assist with primary and secondary sequence-related

problems), and finding similar matches to a target RNA within databases. They are

intended to find RNA homology where sequence alignments alone would not work as

well.

This thesis will investigate the application of covariance models to RNA

homology detection in comparison with more traditional alignment tools and some

specialized detection tools. Background information on the biology of RNA and some

computer science theory will be discussed first. Then there will be a survey of selected

software tools that are being utilized in this thesis—some that use covariance models

(CMs), some that do not. Following that will be a brief discussion of the RNA databases

that were used in this thesis. Finally there will be some comparisons between the

software tools using a similar data set from one of the databases.



CHAPTER 2

BACKGROUND

2.1 RNA Background

2.1.1 History of RNA

RNA is an extremely important biological molecule. Once thought to be a mere

messenger molecule for the information contained in DNA, it is now known to be both an

information carrier and an enzymatically active molecule. Some theorists believe it is the

original biological molecule—this is the so-called "RNA world" theory, which attempts

to explain why RNA has informational and enzymatic functions [5]. According to the

theory the dual functions of RNA were later taken over by DNA (for information storage)

and protein (for catalysis and enzymatic activity.) But, crucially, RNA retains both

functions in modern organisms [6].

3
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Figure 2.1 The Central Dogma.
http://www.ncbi.nlm.nih.gov/Class/MLACourse/Modules/MolBioReview/central_dognia.html

RNA is a major part of the central dogma of molecular biology, which says

information cannot flow from protein to nucleic acid (or to protein.) Information must go

from nucleic acid to nucleic acid or protein [7, 8]. The flow of information in the cell is

generally described as a three step process. First, there is replication which is the process

of DNA copying itself. Next is transcription, which is the process of a portion of DNA

being copied onto a string of RNA (specifically messenger RNA, which will be addressed

later.) Finally there is translation, which is the process where the information in RNA is

used to create protein. Translation is assisted by transfer RNA and ribosomal RNA

(ribosomes being the organelles where individual proteins are constructed [9, ch. II.6].)

In terms of the central dogma RNA's roles are limited to those mentioned above:
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information transfer agent and translation assistant. The true picture, though, is more

complicated than that.

RNA has a much more active role in all facets of cell life than was previously

realized, including regulation and gene expression. The emerging science of epigenetics

has made this plain [10]. Epigenetics is the study of heritable traits that do not involve a

change in DNA sequence, and in that sense represents a challenge to the central dogma.

To be fair, the central dogma (as defined by Crick) specifies that information cannot flow

from protein to nucleic acid, not that information cannot flow from one nucleic acid

(RNA) to another (DNA.) But epigenetics does at least question the primacy of DNA in

the central dogma. On the RNA side of things, epigenetics has shown RNA to influence

heredity in a few ways: via RNA interference, which selectively hinders gene expression

at the transcription and/or translation stages [11]; via the methylation (adding or

substituting a methyl group) of certain DNA sites [12, 13]; and by activating and/or

degrading some RNAs [14]. The epigenetic abilities of RNA have challenged prevailing

notions of RNA's role in the cell.

There is also the case of reverse transcription [15]. This is how RNA viruses

copy themselves onto cellular DNA. Using the enzyme reverse transcriptase these

viruses created double-stranded DNA from single-stranded RNA, and use other enzymes

to insert their genetic material into the host's genome.



6

2.1.2 RNA Background: Structure

At this point it would be useful to elucidate the classification of RNA structure. Primary

structure refers to the sequence of nucleic acid residues that make up the RNA molecule.

RNA is composed of four residues: guanine (G), adenine (A), cytosine (C), and uracil

(U). Uracil is the residue that distinguishes RNA from DNA; DNA has thymine (T)

instead of uracil. It is thought that the major reason DNA took over the bulk of the

information-carrying properties across all organisms is thymine, as it is strong protector

of sequence information from damage [16, pp. 544]. Primary structure is synonymous

with primary sequence.

Secondary structure refers to RNA's tendency to fold into a number of small

subunits [9, ch. 11.6]. These subunits usually contain regions of helical structure and of

loop structure. Helical structure involves Watson-Crick base-pairing—that is, U binding

with A and C with G. Loops are, as the name implies, areas of curving into circular or

semi-circular shapes. They can perhaps be thought of as the areas of RNA secondary

structure that are not base-paired.
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Secondary
The miRNA mir-1. 	 Structure
http://rfam.sangerac.uk/family?acc=RF001 03

Figure 2.2 Primary versus secondary structure.

Typically loops are of four types: hairpin, or stem-loops, which have a single

loop on the end of a helical region; internal loops, where base-pairing is interrupted on

two strands so a loop is formed between two helical regions; bulge loops, where base-

pairing is interrupted on one strand and forms a hairpin-like shape attached to the rest of

the RNA via that single strand; and multibranch loops, which can have more than two

regions of helical structure attached to them [17, pp. 144-145]. There are also

pseudoknots, a type of tertiary structure that will be discussed later (it is problematic for

most secondary structure prediction methods.) Variations on the themes of loops and

helices are the main way of distinguishing different families of RNAs.
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Figure 2.3 Types of RNA secondary structure. From page 145 of Baxevanis'
Bioinformatics, 3' d edition.

2.1.3 RNA Background: Types of RNA

There are quite a few types of RNA. This section attempts to represent the major

recognized types of RNA.

Messenger RNA (mRNA): These are the RNAs that function in translation by

providing sequence-based blueprints for protein synthesis [9, ch. 11.6]. They are formed

within the nucleus during transcription. The initial RNA transcript is called the primary

transcript [16, pp. 644], or precursor mRNA (pre-mRNA) [9, ch. 11.6]. This undergoes

processing and cleavage within the nucleus. Pre-mRNA is composed of sections called

exons, which are expressed (i.e., used to construct proteins), and introns, which are not
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expressed. Introns are excised enzymatically. The exons are processed by the addition of

a 5' methylguanosine cap and a poly-A tail, molecular markers that will protect the

mRNA from degradation outside of the nucleus. The mature mRNA then leaves the

nucleus and heads over to the ribosomes to be translated. It is quickly degraded post-

translation [18], in part by other RNAs (miRNAs and siRNAs, discussed later.) The

secondary structure of the information-carrying portion of mRNA does not have a

predictable secondary structure that lends itself to the problem-solving methods discussed

in this thesis, and is mentioned in passing. The functional portions of mRNA, the cis-

regulatory elements, are generally analyzed separately from the mRNA strands they are

attached to, and are discussed in the remainder of this section.

Transfer RNA (tRNA): These are the RNAs which are responsible for the

movement of single amino acids (the building blocks of proteins) to the ribosomes. They

are small molecules, about 70 to 90 nucleotides long. There are 61 tRNAs for each of the

61 codons. (Codons are the three-nucleotide sequences that specify which of the twenty

amino acids are to be used at a given position during protein synthesis. The sequential

order of the codons specifies the order in which amino acids should be added to a

growing protein.) The genetic code is known to be degenerate—that is, some amino

acids are represented by more than one codon. Alanine, for example, is represented by

four codons, while typtophan only has one [19, ch. 5.5.1]. Likewise any particular cell

can function without 61 distinct tRNAs; in fact a cell can function with only 31 types of

tRNA [9, ch. 11.6]. This phenomenon, called wobble base-pairing, is thought to explain

why many of the alternate codons for an amino acid only differ in their third nucleotide—

many tRNAs are constructed such that they only require to provide an accurate match on
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their first two codon positions. Transfer RNAs are formed in a similar way to mRNAs,

with precursor sequences being subject to intron removal via splicing and post-processing

alterations. This latter processing is why tRNA often has nucleic acids residues besides

the usual A, C, G, and U, such as ribothymidine [19, ch.29.1] and inosine [20, ch. 3.10.3].

10-15% of tRNA nucleic acid residues are transformed into the nontraditional bases

during post-processing [16, pp.646].

Figure 2.4 Transfer RNA. From Rfam.
http://rfam.sanger.ac.uk/family?acc=RF00005
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Ribosomal RNA (rRNA): Ribosomal RNA is that portion of a ribosome that is

RNA; the rest of the ribosome is protein. As ribosomes are the site of protein synthesis

and thus are generally found in vast quantities in the cell (in the millions in the typical

eukaryotic cell [9, ch. I1.6]) vast quantities of rRNA is also required. This is

accomplished by having multiple copies of RNA genes on the transcription sites. rRNA

also has an entire subcompartment of the nucleus devoted to its production, the nucleolus.

The DNA strands that code for rRNA protrudes from the nucleolus, where multiple

rRNAs are generated and then processed into ribosomal subunits which are already part

RNA and part protein. There is a large subunit and a small subunit which fit together to

form the mature ribosome. The active site of the mature ribosome is entirely RNA [9, ch.

11.6], another example of RNA's enzymatic abilities.

Figure 2.5 5s rRNA. From Rfam.
http ://rfam. sang er. ac.uk/family?acc=RF00001
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Non-coding RNAs (ncRNAs): Non-coding RNAs is a broad term for any class

of RNA that isn't an information carrier. Essentially, any RNA that is not mRNA is an

ncRNA. The term is of more recent origin, though, and came into prominence with the

discovery of new classes of RNA outside of the traditional functional RNAs, tRNA and

rRNA. The bulk of non-coding RNAs were once considered to be "junk," simple waste

byproducts of cell metabolism [21]. But they are part of the ongoing reevaluation of the

role of RNA in the cell, and are introduced below.

Ribozymes: Ribozymes are simply RNAs that function like enzymes. Some

sources classify the ribosome itself as a ribozyme [9, ch. 11.6], as RNA is responsible for

both the enzymatic activity and the secondary structure of the ribosomes. Another

example would be ribonuclease P, which is involved in tRNA cleavage. Ribonuclease p

does have a protein component, but, like with ribosomes, the protein does not appear to

play a role in catalysis or seconday structure [22]. There are also examples of precursor

RNAs self-cleaving themselves [23] (their introns remove themselves and leave

processed RNA strands behind.) Related to ribozymes are the riboswitches, small

untranslated segments attached to mRNA. An mRNA with a riboswitch has the ability to

regulate its own activity (a translation effect) and the gene that coded for it (a

transcription effect.) Riboswitches are common in bacteria, though at least one

eukaryotic ribtch has been identified (the TPP-binding THI element [24].)
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Cis-regulatory (or cis-acting) elements: In general cis regulation is regulation

that has a local effect. Trans regulation is regulation that has a distant effect. In

biological terms, a cis-regulatory element is a strand of RNA (or protein, but RNA is the

subject of interest here) produced by DNA that is intended to regulate a gene on the same

strand as the cis-regulatory producing DNA [25, ch. 5]. These RNAs attach to binding

sites on the DNA and influence transcription. Others play a role in RNA replication.
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Figure 2.7 Antizyme RNA frame shift element. From Rfam.
http://rfain.sangenac.uk/family?acc=RF003 8 1

Micro RNAs (miRNAs): Micro RNAs are (as the name implies) tiny RNAs,

usually 21 to 23 nucleotides in length. They are formed from precursors about 50 to 80

nucleotides in length. They have a few established roles. One is to regulate gene

expression by binding to mRNAs and preventing translation [26]. They also can specify

mRNA cleavage sites, setting up degradation pathways for mRNA [27]. They may also

have the ability to methylate complementary genomic sites [28].
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Figure 2.8 Let-7 microRNA precursor. From Rfam.
http://rfam.sangenac.uk/family ?acc=RF00027

Small interfering RNAs (siRNAs): These are about 20 to 25 nucleotides in

length, and function in the RNA interference of gene expression as part of the RNAi

pathway [52]. Like miRNAs, they are formed from precursors that are cut down to form

mature siRNAs [29]. The siRNAs precursors are shRNAs, or small hairpin RNAs, due

to their distinctive shape (they are a stem with a loop on the end, a pure hairpin form.)

Curiously they do not appear do have much of a presence in the RNA databases, perhaps

due to the sameness of their structure. There appears to be significant interest in these as

a medical application, as they can silence gene expression, which is perhaps another

reason why there is not much in the RNA databases that concerns them. There are

shRNA/siRNA-specific databases, such as The MIT/ICBP siRNA Database [51].
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Small nuclear RNAs (snRNAs): The small nuclear RNAs are a bit bigger than

the miRNAs, about 100 to 300 nucleotides long. They are active as regulators [30] and

splicing agents [19, ch. 28.3.3]. A major class of the snRNAs are the small nucleolar

RNAs (snoRNAs). These aid the nucleolus in ribosomal creation. They form RNA-

protein complexes called small nucleolar ribonucleoproteins (snoRNPs) and act via

methylation and pseudouridylation [31] (which is the isomeration of uracil residues; it

converts uridine to pseudouridine.)

Figure 2.10 The snoRNA U3. From Rfam.
http://rfam.sanger.ac.uk/family?acc=RF00012

Telomerase RNAs: This is another type of RNA that binds with proteins to form

an enzymatic complex, in this case telomerase. Telomeres are stretches of repetitive

DNA at the end of chromosomes that protect the chromosomes from sequence loss.
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Telomerase is a reverse transcriptase that restores the telomeres to the ends of

chromosomes [9. ch. 11.5]. The telomerase RNA is a complementary copy of the

telomere, and it is an example of RNA being used as a blueprint for DNA. The RNA

subunit of telomerase is considered to be a snoRNA [32].

Pseudoknots: Pseudoknots are not functional RNAs themselves, nor are they a

type of RNA; they are included here because they are an important consideration in

secondary structure prediction. They are a type of RNA tertiary structure. (Tertiary

structures in general are units of secondary structure that are formed by hydrogen

bonding and can be grouped into classes or domains [19, ch. 3.4].) The base pairing

within pseudoknots does not follow typical grammatical rules. Consequently

pseudoknots are quite difficult for most secondary structure methods to detect [33].

Figure 2.11 Vertebrate telomerase. Also an example of a
pseudoknot. From Rfam.

http://rfam.sanger.ac.uk/family?acc=RF00024
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2.2 Computer Science Background

2.2.1 Basic Computer Science

There are a few basic computer science concepts that should be introduced at this point.

An algorithm is a sequence of instructions that must be performed to solve a well-

formulated problem [34, p. 7]. This is how computer programs accomplish their work,

and the "well-formulated problem" stipulation is especially important within

bioinformatics. A common algorithm within bioinformatics in general and RNA

secondary structure prediction in particular is dynamic programming. Simply put, a

dynamic programming algorithm is one that breaks a problem into smaller problems, and

those problems into smaller problems until a small enough problem is reached that a

series of them can be solved much more quickly than approaching the original problem

directly. This can lead to huge complexity if the algorithm is not designed elegantly [34,

pp. 43-44].

2.2.2 Grammars

Another useful computer science concept is the grammar. In CS terms, a grammar is a

set that describes all the possible words or statements in a language. Grammars are

traditionally organized into the Chomsky hierarchy, which includes (going from the

lowest to the highest level) unrestricted (phase structure) grammars, context-sensitive

grammars, context-free grammars, and regular grammars [4, p. 237]. Each grammar has

a particular automaton that recognizes it. Automata in CS are abstract computational

devices that describe individual grammars.
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Figure 2.12 The Chomsky hierarchy.

Some of these grammars have specific bioinformatic applications. Regular

grammars, for example, generate sequence from left to right, and thus are useful for

modeling primary sequence [4, pp. 238-243]. The context-free grammars were originally

designed to describe natural languages [35, p. 77]; they have rules that allow the grammar

to make correlations between the ends of sentences. This turns out to have value in

predicting RNA secondary structure, where sequence differences may not imply

secondary structure differences.
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All of the Chomsky hierarchical grammars have a stochastic form as well [4, p.

250]. A stochastic grammar is a probabilistic grammar where characters are given scores

based on a consensus understanding of how the language is supposed to work. These

stochastic grammars are very useful for biological analysis, since there are numerous

grammatical exceptions in the "language" of DNA and RNA. A probabilistic model can

account for these exceptions and still find related "words," or homologues in biological

terms. (A homologue is a characteristic common to different organisms due to shared

ancestry. Homology refers to the study and detection of homologues.) For example,

many alignment methods use sequence profiles that contain enough specificity to find

distantly related family members, despite perhaps large evolutionary distances between

them. Hidden Markov models (HMMs) are a widely-used type of stochastic grammar [4,

p. 252].

Covariance models are another type of stochastic grammar-based profile; in

particular they are profiles of stochastic context-free grammars (SCFGs). Their main

advantage over HMMs is that they can be used to predict secondary structure. According

to a book co-authored by one of their main proponents, Sean Eddy, they are the "SCFG

analogue of profile HMMs" [4, p. 287]. They specify a repetitive tree-like SCFG

architecture, and are detailed, complex probabilistic models.



CHAPTER 3

SOFTWARE REVIEW

3.1 Introduction

This is a review of the software used in this thesis. Software tools were selected based on

if they were RNA secondary structure related, and to give multiple points of comparison

between CM-based programs and other methodologies. This is not intended to be a broad

survey of all available secondary structure-related tools.

3.2 Software Based on Covariance Models (CMs)

3.2.1 The Infernal Suite

Infernal is a suite of programs written in C for Unix/Linux; after some time as a "beta"

program its had a 1.0 release in June 2008. As of November 2008 it is up to Version

1.0rc4; the version used in this project is Version 1.0rc3 [36, 54]. It contains seven

individual programs: cmalign, cmbuild, cmcalibrate, cmemit, cmscore, cmsearch, and

cmstat. In total the suite allows a user to start with an RNA multiple alignment, create a

CM-based profile for it and use the new profile to discover homologues in existing data.

Not all the programs will be discussed equally, as the path from alignment to homologues

does not involve all of them.

Infernal's cmbuild program takes in an annotated alignment and returns a profile

CM. Alignments must be in Stockholm format to be accepted. Stockholm format

requirements include a well-defined header and sequence gaps represented with dashes or

22
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dots. It also can include some secondary structure information. The CM it returns is a

mathematical model, and is not intended to be human-interpretable.

Figure 3.1 A Stockholm format alignment.
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Figure 3.2 A portion of a covariance model. This is the let-7 seed CM used in this thesis.

Infernal's cmbuild output contains information on alignment size and some

statistical information on how the model was constructed. Using the CM new RNA

sequences can be aligned to the model using cmalign. RNA families can be categorized

in this fashion. Single or multiple sequences (in FASTA format) can be used. The

cmcalibrate program can then be used to tweak the model so the activities of cmsearch

work faster. Using cmcalibrate is recommended to improve search time and sensitivity

[36, p. 11].
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Infernal's cmsearch, then, uses CMs to find RNA family homologues. It reads in

a "database" which is any FASTA-formatted RNA sequence under investigation. It

returns a score, an alignment, a predicted secondary structure in dot-parenthesis format,

information on how highly or weakly residues are conserved, and information on how the

score was obtained.

To summarize, the homologue discovery process with Infernal is as follows: using

a Stockholm formatted alignment to produce a CM; using the CM and cmsearch to find

homologues; using cmalign to align new RNA sequences to the consensus structure.

Infernal is used by the RFAM database (discussed below) in this way to maintain its

RNA family distinctions and to add more as they are discovered.

Figure 3.3 Partial cmsearch output. The query sequence is preceded by the 1 and the 61;
the found sequence is preceded by 10026 and 10079. Note the E value after the score
near the top (under the line that starts with Query.) See Appendix B for a full example of
cmsearch output.
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Special mention should be made of cmemit, which is not part of the Infernal

discovery process but has the useful function of reading a CM and returning unaligned

sequence data in FASTA format. It outputs 10 by default, though that number can be

changed. Note that the outputted sequences will be simulated biological data; while

FASTA-formatted data is used to create a CM, a CM cannot be unpacked to return the

original data. The remaining Infernal modules are experimental or of limited practical

value. Cmscore outputs statistics that could be useful in the further honing of Infernal's

algorithms. Cmstat returns statistics on covariance models, with more information being

returned on calibrated versus non-calibrated models.

3.2.2 CMfinder

CMfinder is a web-based tool [60] that returns results via e-mail. Its input is a FASTA

sequence; its output is CM-based profiles and motifs in Stockholm format. It is described

by its authors as an adaptation of the DNA motif-finding tool MEME for use with CMs

and RNA secondary structure [37]. It uses an "expectation matrix" to score possible

secondary structure matches after a covariance model has aligned and identified them.

Customizable features include adjustments for motif length and the number of candidates

to search for. There is also an option for number of stem loops expected in the RNAs

entered. CMfinder allows two sets of parameters to be applied to the same dataset at the

same time.

Like Infernal, CMfinder returns covariance models from sequence data. Unlike

Infernal, it breaks the sequence data down into a set of CMs, and a corresponding set of
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Stockholm-fonnatted files. Unfortunately, the CMs it generates are in Infernal 0.55 

format [38], which are not accepted by 1.0 Infernal releases . 
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Figure 3.4 The Cmfinder main page. 
http://wingless.cs.washington.edulhtbin-postiunrestl.ictedlCMfinderWeb/CMfinderInput.pl 

3.2.3 Pfold 

Pfold is not a CM-based method, but it does use SCFGs in concert with probabilistic 

models to predict secondary structure, so this may be the appropriate section to mention 

it. It is a web-based tool that takes in sequence(s) (a maximum of 40 with a maximum 

length of 500; this is a limitation of its current server, rather than the underlying 

algorithm) and returns both a common structure for all the sequences and a structure for 

each individual sequence in dot-parenthesis fonnat. Pfold uses a method that applies an 

evolutionary model in addition to using SCFGs, unlike CMs, which do not take 

phylogeny into account [39, 40]. 
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Figure 3.5 The Pfold web server.
http://www.daimi.au.dk/-compbio/rnafold/

3.3 Other Software Methods

3.3.1 MiRNAminer

MiRNAminer is another web-based tool, written in Java [41]. It is intended for searching

for miRNA homologues in animals. The input is plain RNA sequence, but it also has to

include the mature miRNA sequence that's being targeted. The output returns a score,

matching sequence(s) and secondary structure in dot-parenthesis format. At present

miRNAminer is limited to 10 metazoan genomes. It begins with a BLAST search, then

uses e-values to sort out potential miRNAs. (BLAST is a common primary sequence

alignment tool, discussed briefly in Section 3.3.2.)
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Figure 3.6 The miRNAminer main page. Partial screenshot. 

3.3.2 BLAST and BLAT 
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BLAST is a widely-used primary sequence tool, based on an algorithm of the same name 

[42]. It uses a local alignment method and uses matrices to score. It sacrifices sensitivity 

for speed. As noted above, it is often used a step in other software programs. 

A recent and functionally similar tool is BLAT, the BLAST-like alignment tool 

[43]. It is a major size and speed improvement over BLAST, and the featured search at 

the UCSC Genome Browser [64]. BLAT was used in this project since it was of more 

recent origin than the well-understood BLAST, and may serve as a more interesting point 

of comparison with a CM-based method. 
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3.3.3 CARNAC

CARNAC has both a web version and a Linux version; it is written in C. The input is

FASTA sequence, which does not have to be aligned. Its output is a text "CT file" which

contains secondary structure information that can be visualized by Naview or

RNAfamily, in addition to a .jpg of an RNA's secondary structure and a dot-bracket file

with the same information. It uses a heuristic algorithm that finds all possible secondary

structure stems, then sorts through these to find the more probable stems. At least on

the web server, sequences must be less than 80 nucleotides, and at least two must be

submitted together, as CARNAC attempts to find a consensus secondary structure [44].



31

Figure 3.7 The CARNAC web server.
http://bioinfo.lifl.fr/RNA/carnac/index.php

3.3.4 Mfold

Mfold [45, 46] is another web tool, useful for folding single RNAs, also available in

downloadable cross-platform versions. It uses a minimum energy algorithm. Sequences

do not have to be in any format to be folded. There are a variety of customizable options

for Mfold: number of foldings returned, loop angles, maximum distance between paired

bases. Output file options are also plentiful, with visualizations returned in PostScript,

pdf, png, and a variety of RNA visualization programs' native formats.
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Figure 3.8 Partial screenshot of Mfold output. 
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CHAPTER 4

DATABASE REVIEW

4.1 Introduction

This chapter is an overview of the repositories of RNA secondary structure information

used in this thesis. Some were used extensively (miRBase and particularly Rfam) and

others in a more functional way (RmotifDB and the various genome browsers.) One is

simply an interesting case (RNA STRAND.)

4.2 Rfam

Rfam [47] is an RNA secondary structure database. Broadly, it contains two types of

data: hand-curated families of ncRNAs taken from published sequence alignments,

which are called "seed" alignments; and those same familes with additional

representatives aligned by Infernal's cmalign program, the "full" alignments [36, p.13].

The covariance model used to generate the alignments is also available, as well as a

secondary structure diagram and a direct link to the family's Wikipedia page (to be

specific, each family's Wikipedia entry is also displayed within each family's Rfam

page.) Rfam does not specialize in one type of family, and is meant to be a broad

collection of ncRNAs. It contains ncRNAs and their genes, cis-regulatory elements, and

self-splicing RNA families.
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Family: C0465 (RF00116) 
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External links 
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Figure 4.1 An Rfam page. This is the ncRNA C0465. 
http://rfam.sanger.ac.uklfamily?acc=RFOOI16 

4.3 MiRBase 
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MiRBase IS a specialty database [48, 49, 50, 68] with crosslinks between it and Rfam. 

Rfam miRNA families lead to family pages in miRBase. Unlike ' Rfam, miRBase 

contains both mature miRNA sequences and their precursors. It also acts as a 

clearinghouse for miRNA information, as it assigns its own set of accession numbers to 

each miRNA, and includes information on the genes each miRNA targets. It has a wide 

variety of search options, including accession numbers, keywords, orgamsm, genomIc 

location, and supports sequence searches (which made verifying Infernal and 

miRNAminer results a simple process.) 
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Figure 4.2 A miRBase page. This is bantam miRNA from D. melanogaster. 
http://microma.sanger.ac .uk/cgi-binisequences/mima_ently.pl?acc=MI00003 87 

4.4 RmotiIDB 

RmotifDB is a database of RNA structural motifs [65, 66]. It is intended to mIrror 

Rfam's releases, and as of this writing contains all 603 Rfam seed alignments [67]. 

RmotifDB was chosen for this project as allows for searches in Stockholm format (that is 

in fact the only input format it accepts) and it was thought this would provide a simple 

way to verify the output of CMfinder's CMs. Stockholm input is either inputted or 

uploaded via the search page. There are no customization options for the searches other 

than controlling the number of hits displayed (minimum of 5, maximum of20.) 
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Figure 4.3 The RmotifDB search screen. 
http://datalab.njit.edu/bioinfo/index.html 

4.5 RNA STRAND 

36 

RNA STRAND-the RNA secondary STRucture and statistical Analysis Database-is a 

recent attempt (the paper that introduced it was published in August, 2008 [53]) at a 

curated database of RNA secondary structures. It is interesting because it is actually a 

database of databases; all its entries are drawn from outside sources which are 

standardized and entered into RNA STRAND. Its constituent databases include Rfam, 

the RCSB Protein Data Bank, the Comparative RNA Web Site, the tmRNA database, the 

Sprinzl tRNA Database, the RNase P database, the SRP Database, and the Nucleic Acid 

Database. The criteria for inclusion in the database is stringent; only 19 families found at 

Rfam are included, out of 607 in the 8.1 Rfam release, as many of those families have 

computationally predicted secondary structures (as opposed to laboratory verified 

secondary structures.) Searching can be done via type of RNA, source, sequence, length, 
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even whether a secondary structure was verified by NMR or x-ray. However, it does lack

a keyword search function, which limited its use in this thesis. But it does seem to be off

to a promising start.

Figure 4.4 The RNA STRAND search page.
http://www.rnasoft.ca/strand/search.php

4.6 UCSC Genome Browser, ENSEMBL, and NCBI Genome

These are three of the main repositories of genetic data [54, 55, 56]. All three allow full

genome sequence searching and genomic data downloads. The latter function was their

primary use in this project, as they allow fine control over sequence data downloads

(NCBI, for example, allows you to identify a target sequence, and then download user-

specified flanking areas with it of any base pair length.) The UCSC and ENSEMBL

browsers also house the BLAT software.



CHAPTER 5

METHODS

5.1 Introduction

This chapter outlines the methods used in this thesis. The logic as to why certain tools

and methods were grouped together is explained here. There are also descriptions of how

each of the tools is used.

5.2 Infernal and miRNAminer

In general comparisons were made between programs that received and returned similar

inputs and outputs. Infernal and miRNAminer both accept sequence data as inputs and

return possible homologues, so they seemed to form a natural and simple point of

comparison. MiRNAminer searches are limited to the eleven genomes on its server, so

comparisons between the two would have to involve only those organisms.

The miRNAminer searches were made first. A representative miRNA was chosen,

the let-7 family, simply because it was one of the first miRNAs discovered and (not

coincidentally) it has the lowest accession number among miRNAs in Rfam. The

precursor and mature let-7 sequences were found at miRBase. The let-7 of C. elegans

was chosen; let-7 was originally identified in C. elegans, and the C. elegans genome is

part of miRNAminer's genome set (so there would be at least one homologue found for

certain.)

As mentioned above, miRNAminer is a web-based tool. Searches are made by

entering matched miRNA precursor and mature miRNA sequences. Sequences must be
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plain sequences without any kind of header or additional characters; the latter will cause

the input to be rejected. There are a number of parameters that can be changed, including

maximum RNA folding energy, precursor sequence length, BLAST options, and various

minimal matching percentages. The defaults are described as stringent on the webpage.

Default parameters were used for the let-7 searches, with one exception: number of

results to report (per genome) was changed from 1 to 100. This was done because

Infernal's cmsearch tends to produce a lot of results with default parameters (and

throughout this project default parameters were used when possible, just for the sake of

simplicity) and there would thus be a larger set of points of comparison between the two

programs. MiRNAminer is supposed to optionally return results via e-mail, but this did

not appear to be working when the searches were run. It is simple enough to save the

web results as an HTML file, though.

Figure 5.1 Partial screenshot of the miRNAminer
search screen.

http://groups.csail.mit.edu/pag/mirnaminer/

The miRNA searches using the Infernal suite illustrate the process of working

with Infernal fairly well. The first step is creating a covariance model. Rfam has the
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covariance models that were used to assemble the full set of family members for each

RNA family ready for download, but as of this writing they were all created with the .57

release of Infernal which are incompatible with Infernal 1.0 releases. (It is unclear what

has changed as of the 1.0 releases that rendered pre-1.0 covariance model files unusable.)

This project is using Infernal 1.0rcl, so a new let-7 CM needed to be created. Now

cmbuild requires an alignment to be in Stockholm format to build a CM, which does

appear to be something of a drawback, as databases that give results in Stockholm format

do not appear to be common. For obvious reasons Rfam does have Stockholm

alignments but it should be mentioned this is a potential limitation to the Infernal system.

The Infernal suite is entirely command-line based so CM building and all searches were

done from a Linux terminal in the Cygwin environment (which had been installed on a

Windows Vista computer.) Cmbuild commands take the following form:

cmbuild [-options] <cmfile output> <alignment file>

Where <cmfile output> is a user-specified file and <alignment file> is the CM.

Generally the output file should be of the form *.cm, but the Infernal programs don't

need a correct filename to use a CM. Two CMs for the let-7 family were created with

cmbuild: one using the seed alignment from Rfam, the other using the full alignment.

Using two CMs was meant to test if there were any significant differences between using

the curated seed alignment from Rfam and the full alignment which contains additional

computationally predicted let-7 family members.

A recommended step in CM creation is calibration using cmcalibrate. This will

allow a CM to generate E-values in addition to the bit scores cmsearch produces. The

Infernal manual says that E-values are the preferred way to score a potential homologues
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[36, p.40], and calibration is thus necessary if a CM is going to be used for searches.

Calibration, though, is a lengthy process, taking a few hours on the dual-processor PC

used in this project. There is an option to check a CM before it is calibrated to see how

long the process will last. Calibration is lengthy but in addition to improving scoring it

will reduce the time cmsearch takes to operate.

Figure 5.2 A cmcalibrate prediction screen.

As only two covariance models were calibrated the results of cmcalibrate's

predicted times versus actual times may not be of the greatest value. They are noted for

the record in Table 5.1.

Table 5.1 Predicted Versus Actual Times For Cmcalibrate

The next step is searching for homologues with the calibrated CM. Cmsearch

produces quite a few hits on default settings, so searching lengthy stretches of genomic

data would produce too many hits to sift through. There was also the time factor to
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consider, as CM searches tend to take significant time to run. A straight comparison with

miRNAminer by searching for homologues on whole genomes, or even one genome,

seemed untenable. Therefore, CM searching was done on the genomic regions that

contained let-7 homologues, as identified in the miRNAminer results. MiRNAminer

helped in this regard, as its results page includes links to the location of potential

homologues at ENSEMBL and the UCSC Genome Browser. This made downloading the

homologue-containing region a simple process. A 1000 by flanking region was added on

each side of the homologue identified by miRNAminer, and the subsequent block of

sequence was copied into a text file for cmsearch to search. The attempt here was to

create a balance between giving cmsearch a bit of a challenge for finding the homologues

miRNAminer had identified, while at the same time minimizing the amount of data

generated by cmsearch.

Now the default settings for cmsearch use a local alignment—that is, the

algorithm allows only a part of the CM to match some subsequence of the data being

searched [36, p.14]. This is considered to be a more sensitive search setting, since it does

not take a match on the entire CM to produce a match. But "glocal" alignment, the other

setting, may be the more accurate setting, as it attempts to match the entire CM with a

subsequence. (The word glocal is used to differentiate from true global alignment, which

would align the CM with the entire sequence, not just a subsequence. This would not be

desirable when the sequence under investigation is thousands of bps long.) Thus, for the

purposes of comparison cmsearch was ran twice, once with the glocal option turned on,

and once under default settings (local alignment.) Four sets of results were thus produced
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using cmsearch, two for each of the calibrated CMs. (For full examples of miRNAminer

and cmsearch output, please see Appendices A and B.)

In an attempt to confirm to some degree how well both Infernal and miRNAminer

had done with their searches, miRBase was searched for their output. MiRBase has a

sequence-based search option that uses BLASTN to find matches. This search option

was used to test both programs' results, to determine that they were finding let-7 family

members, and to identify potential differences between the two programs as well. The

miRBase BLASTN search has a limit of 1000 bps, which was not an issue for the data

produced by miRNAminer and cmsearch. It also gave the option of searching against

either mature miRNAs or the stem-loop precursors. As the data produced was of the

precursors the stem-loop option was chosen.

Figure 5.3 The miRBase search screen.
http://microrna.sanger.ac.uk/sequences/search.shtml

5.3 CMfinder and CARNAC

CMfinder and CARNAC are both secondary structure-predicting tools available both as a

web version and as downloadable software. More importantly for the purpose of drawing

comparisons between CM-using software and other methods, they both take multiple

unaligned sequences as an input and attempt to return a common structure as the output.
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The problem would be finding a dataset that would be accepted by both programs' web

versions. CMfinder needs a minimum of four sequences and a maximum of about 60,

each with a maximum length less that 500 bp. CARNAC needs two sequences at

minimum, with no minimum by restrictions (though each line of input sequence has a

maximum of 80 characters, longer sequences would have to be entered as multiple lines.)

Thanks to Rfam the problem of finding a dataset was minimized, as it contains

information about average family length from the "Browse by family name" section of

the database. (Curiously this information was removed from the corresponding section in

Rfam 9.0 [63], but remains on the 8.1 release [62] of the website.)

In terms of this project there were additional concerns with the assembly of the

dataset. As the background section explored the major types of RNA, the dataset should

reflect those types (leaving out miRNA, which was explored in the previous section.) To

that end examples from the following types of RNAs were located on Rfam: cis-

regulatory elements, riboswitches, ribozymes, and snRNA/snoRNAs. Also located at

Rfam were tRNA (there is only one entry for tRNA at Rfam, as the secondary structure

does not vary among the tRNAs that correspond to codons) and the three types of rRNA.

Not considered were mRNA, whose secondary structure is outside the scope of this

project, and the siRNAs/shRNAs, where there does not appear to be a lot of information

about, or perhaps interest in, their secondary structures (they have no Rfam entry, nor

does mRNA.) The dataset was assembled on simple ground: Rfam searches for the

desired type of RNA, and then the first family (ranked by accession number) that met the

shared needs of CARNAC and CMfinder was chosen. This led to the final dataset of the

antizyme RNA frameshifting stimulation element (Antizyme FSE, a cis-regulatory



45

element), the PreQl -I riboswitch (PreQ1), the hairpin ribozyme (Hairpin), and

Pyrococcus C/D box snoRNA (Pyrococcus C/D). This was in addition to the three types

of rRNA and tRNA. Finally—with the caveat that pseudoknots tend to pose a problem

for secondary structure prediction programs—telomerase was added into the mix, with

ciliate telomerase as the representative. Seed alignments were used. For those families

with more than 60 members in the seed alignment (the upper bound for CMfinder) the

first 60 members were used.

The web versions of CMfinder [60] and CARNAC [61] both have simple-to-use

user interfaces. Lines of FASTA-formatted sequences can be directly pasted into a

search box. Both programs also allow for the upload of sequence data from an external

file. CMfinder, however, allows for greater customization of searches than CARNAC.

CARNAC has three options: eliminate redundant sequences, take GC content into

account, and allow isolated stems (with an accompanying warning that this may slow the

processing of the sequences.) CMfinder allows the use to control numbers of stem-loops,

motifs, and candidates, as well as the minimum and maximum length of the motifs and

the expected fraction of sequences containing the motifs. It also runs two sets of

configurations simultaneously on the dataset, so it produces two sets of results as well.

Additional options are merging motifs and removing redundant motifs. Both tools were

run with default parameters. For CARNAC this meant eliminating redundant sequences

and taking GC content into account. For CMfinder this meant two configurations, each

with three motifs, a minimum motif length of 30 and a maximum of 100, 40 candidates,

and 0.8 for the expected fraction of sequences containing the motif. The only difference

between the two configurations under the default parameters is that the first configuration
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uses one stem-loop, the second uses two. The option to merge motifs is also left checked

in the default situation. It should also be noted that both CARNAC and CMfinder retain

results on their servers for some time afterwards; CARNAC allows them to be retrieved

with an identification number, while CMfinder automatically sends an e-mail with a link

to results. The CARNAC results retrieval proved useful, as there appeared to be a

problem with forwarding from the "results processing" screen to the results screen.

Luckily entering the identification number proved that CARNAC had completed its task.

5.4 Pfold and Mfold

For the sake of convenience the dataset used with CMfinder and CARNAC was also used

on Pfold and Mfold. The Pfold server [57] allows for no customization of searches, and

FASTA sequences should be aligned before they are used with Pfold. The Mfold server

[58] also has a very simple interface, but, as noted above, has a number of customization

options. The difference between Mfold and Pfold (and also CARNAC) is that Mfold is a

single-sequence RNA folder; it does not attempt to find a consensus sequence between

sequences, nor does it allow more than one sequence on a single run. (There is a multiple

sequence version of Mfold [59], but it also does not predict a consensus structure.)

Data collection was the same as with CMfinder and CARNAC: FASTA

sequences found at Rfam. The only difference was in the number of sequences used.

Pfold has an upper bound of 40 sequences with a maximum length of 500 bp, so for those

Rfam families with more than 40 members the first 40 members were used. For Mfold

the first member in each family was used.
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5.5 Infernal and CMfinder

There was some interest in comparing the CM-based methods of Infernal and CMfinder

against each other. (Pfold was not used here as it is more of a visualization tool and does

not generate CMs.) There were already a set of results involving Infernal from the

miRNAminer comparisons. The simplest option seemed to be to run the CMs CMfinder

generated on those same datasets. This necessitated an installation of an earlier version

of Infernal, as CMfinder produced CMs in a pre-Infernal 1.0 release format, and on a

different machine (a dual-processor laptop running Ubuntu Hardy Heron) as running two

Infernal installations on the same machine could prove problematic. Infernal had to be

used since CMfinder has no ability to use a CM on its own (which became problem with

the intended comparison between it and CARNAC, as detailed in the Results section.) So

the comparisons will basically illustrate the differences between the CMs cmbuild creates

and those CMfinder creates.

5.6 Infernal (Via Rfam) and BLAT

A few tests were run comparing Infernal and BLAT. The interest here was to compare

the Infernal suite's alignment abilities with a more traditional alignment tool. Now Rfam

contains a number of alignments that start with a seed alignment, which is then used with

cmalign to produce a full alignment [36, p.13]. So there are a number of Infernal-

generated alignments already available for use. A decent point of comparison, then, was

thought to be comparing these results with similar data and results found with BLAT.

Now BLAT searches on a number of genomes, but only one genome at a time (or

at least that is a limitation of the version housed at the UCSC Genome Browser [52],
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which was used in this section.) In the interests of keeping the searches manageable it 

was decided to use C. elegans as the search example as it is a well-understood, simple 

organism that generated a manageable number of hits with a keyword search on Rfam 

(8.1 release.) It is also a genome available to BLAT. These turned out to be mostly a set 

of microRNA precursors, including the let-7 miRNA precursor used earlier (see Figure 

5.4.) 

Results for query 'elegans' 

Matches to documentation in the selected databases with links back to Rfam 

mir-lO mir-l0 precursor family 

mir-9 mir-9/mir-79 precursor 

mir-l24 mir-124 micro RNA precursor family 

~ microRNA precurS0r family 

Figure 5.4 Rfam keyword search used to find 
BLAT dataset. 

BLAT searches are simple from a user's standpoint. There are drop-down boxes 

to select the desired genome, the version of the genome, the query type (whether the 

input is DNA, RNA, or protein, or if BLAT is supposed to guess), sort order of the results 

and output type (hyperlink or pcl, which appears to be a type of printer format.) The 

default options for C. elegans were used: the May 2008 version of the genome, and query 

type guessed by BLAT. Searches were then redone with one difference: the query type 

was changed to translated RNA. This was done due to the fact that the number of results 
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returned in the guessed queries turned out to be larger than the numbers found by the

translated RNA queries, which was not expected. Results were given by hyperlinked

accession numbers that led to links within the UCSC Genome Browser.

C. elegans BLAT Search

BLAT Search Genome

Figure 5.5 BLAT search screen at the UCSC Genome Browser.
http://genome.ucsc.edu/cgi-bin/hgBlat



CHAPTER 6

RESULTS AND CONCLUSIONS

6.1 Introduction

This chapter contains the results of the various comparisons and tests run in the previous

chapter. Additional analysis is provided to the extent possible. A summary is provided

as well, though perhaps no grand conclusion can be drawn from these results.

6.2 Infernal and MiRNAminer

As noted above, miRNAminer and Infernal's cmsearch were used on a similar set of

sequence data. Cmsearch is too slow for full-scale genomic searches so it was restricted

to search on the areas in which miRNAminer had found potential miRNAs. The results

are noted in Table 6.1, and are expressed in numbers of miRNAs found. Potential

miRNAs for miRNAminer are simply those found with the default settings (altered

slightly as noted in the Methods chapter.) For cmsearch the standard is the one

recommended in the Infernal user's guide: anything with an E-value of ten or lower is

significant enough to merit further investigation [36, p.40]. As noted above, four sets of

cmsearch results were produced: a local set and a glocal set for each of the two

covariance models (each representing the full and seed alignments of let-7.)
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Table 6.1 MiRNAminer and Cmsearch Hits
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Cmsearch did find a greater number of potential miRNAs than miRNAminer, at

least four times as many versus the lowest cmsearch value (using the glocal setting on the

full let-7 CM.) The glocal searches produced slightly fewer hits than the local searches,

which ; the glocal search requires more subsequence to match to produce a hit than the

local. Interestingly, the searches done using the CM generated by the full alignment of

let-7 produced slightly fewer hits than the seed alignment let-7 CM. Perhaps the larger

number of sequences produces a slightly more specialized CM. It should be noted that

miRNAminer passed a very basic test of its competency immediately: it found let-7 in C.

elegans, which of course was the specific let-7 used to search across the 11 genomes to

which it has access.

There was some attempt to verify the results via miRBase sequence search

(detailed in the Methods chapter.) Organisms selected were C. elegans, chicken, human,

rat, and platypus. Results are below in Table 6.2. Note that a maximum hit means there

were a large number of hits, more than could be efficiently counted. (The miRBase

sequence search by default returns a hundred maximum hits, and this was unchanged.
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Counting to a hundred did not seem to be useful, so when a large number of hits than

could not be quickly eyeballed was produced, that search was recorded as a maximum

hit.) For miRNAminer all the results given were used; for cmsearch just the results

generated by the seed let-7 CM on local search settings were used. (This was done

partially out of convenience, and also because the seed let-7 CM searches done on the

local setting were the most sensitive, producing the greatest number of hits.)

Table 6.2 Summary of Cmsearch and MiRNAminer Results Verified on MiRBase

Table 6.2 records the number of incidences of a type of hit. Maximum hits were

explained above. The "less than maximum" column indicates times where there was a

let-7 hit that was less than maximum—a rare occurrence. The "hits on different miRNA

families" indicates miRBase returned matches, just not ones from the let-7 family. The

final column indicates a search that provided no hits in miRBase for a potential miRNA

identified by cmsearch.
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Cmsearch does appear to be more sensitive than miRNAminer, though the results

are somewhat deceptive. Cmsearch searches the plus and minus strands of sequence data

automatically (that is to say, it searches forwards and backwards) and the minus strand

and plus strand results produced identical maximum hits. So the numbers in the

maximum hits column for cmsearch are roughly double what they should be, considered

fairly. But it still did manage to outperform miRNAminer with confirmed let-7 hits,

though one wonders if miRNAminer could be slightly tweaked to produce similar results

by changing scoring thresholds. More interesting, perhaps, was cmsearch's ability to

find faint homologues of other families in the sequence data. This could be evidence of

the strength of covariance models, their ability to detect distantly related sequences.

One curious note was in the cow data, where miRNAminer outperformed

cmsearch. Indeed, cmsearch could not find any of the miRBase-confirmed let-7 families

that miRNAminer identified. Perhaps there are odd flanking regions that somehow

confuse cmsearch in the cow sequence data.

6.3 CMfinder, CARNAC, Pfold, and Mfold

CMfinder and CARNAC initially seemed like a good point of comparison, as their input

parameters were similar and they seemed to work towards similar ends (as evidenced by

the authors of CMfinder using CARNAC as one of their points of comparison [37].)

However, comparing the outputs of the web versions of these two tools proved difficult.

Simply, it is difficult to find a common ground between a tool that produces a human-

interpretable output (an RNA molecule folded and represented by a jpg image) and a non-
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human-interpretable output (covariance models and—to a lesser degree—Stockholm

formatted alignments.) A simple comparison is shown in Figure 6.1.

Figure 6.1 CMfinder and CARNAC output on an identical input (the
seed sequences for the Hairpin ribozyme from Rfam.) CMfinder
returned a CM and a Stockholm alignment. CARNAC returned a jpg
image.
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The CARNAC output is obvious. CMfinder returns results organized by number

of stem loops. In Figure 6.1 the "1.1" in the two lines near the top indicates the number

of stem loops in the input configuration and the number of stem loops in the CM: one in

the input configuration and one in the output. The corresponding Stockholm alignment is

numbered the same way. The Stockholm alignment contains the word motif in the

output; the CM contains the letters "cm."

CMfinder's output was difficult to analyze due to the lack of human-interpretable

results. There is a lack of tools capable of visually representing a Stockholm alignment.

Scoring is not obvious either, as it is contained as extra lines within the Stockholm file,

and there is little documentation on how to interpret the scores. A brief sample of the

scoring lines is shown in Figure 6.2.

Figure 6.2 Sample CMfinder scoring.

The WT lines are the weight, and the DE lines are the start and end of the

sequence, followed by the score. The meaning of the scores is not immediately obvious.

CARNAC for its own part also had issues, with some seed alignments producing

no results at all. CMfinder always produced results but their meaning was unclear. It
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was thought that runnmg the Stockholm alignments it generated through RmotifDB 

would at least allow some kind of verification of results. 

This page ,,~ be automatically updated in lO seconds. 

It will take several minutes to complete the search. 

f'Cancel I 

Figure 6.3 RmotifDB processing a Stockholm alignment. 

As it turned out, the CMfinder output was not able to be tested in any way via 

RmotifDB, as RmotifDB did not return any results for CMfinder output. The results are 

summarized in Table 6.3 along with the CARNAC results. 



Table 6.3 Summary of CMfinder and CARNAC Results
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Note: A Yes indicates output returned that was verified by RmotifDB in CMfinder. A no
indicates no output, verified or otherwise.
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Obviously both programs had problems with the Rfam seed sequences. When no

results are returned for CARNAC the error message shown in Figure 6.4 is generated.

Why did I get the "No structure found" message ? This message indicates that
the Input sequences do not share a global functional structure. But there are at
least three cases where the sequences may actually have a common structure and
Carnac is not able to detect it:

- The sequences are short (less than 100nt), and the structure contains one
themodynamically stable pseudoknot: Carnac is restrained to secondary structure
prediction and cannot handle pseudoknots. For longer sequences, pseudoknots are
usually not a problem.

- The sequences are too similar (more than 95% identity): compensatory mutations
are required for inferring the consensus structure. You should try to enrich your
data set with newer sequences.

- The evolutionary distance is too high (less than 50% identity) : in this latter case,
Carnac is not guaranteed to recover a consensus structure because the search
space is too wide. The solution here is to select few sequences with a higher
conservation rate, if possible.

Figure 6.4 CARNAC "No structure found" message.

It is unclear which case from Figure 6.4 applies to the Rfam seed sequences used.

The rRNAs, for example, have average shared identities of 78%, 61%, and 43%

respectively [69], and are not pseudoknotted structures (though they are fairly

complicated.) Antizyme FSE has an 87% identity, and is relatively short (57.6 by for the

average member) but, again, is not pseudoknotted. The lack of hits from RmotifDB from

the CMfinder output is also puzzling, and those results will have to be considered solely

in reference to Infernal in the section that follows this one. It should be noted that the

CMfinder authors mention that the tool works best on unaligned input with "unrelated

sequences, long flanking regions and/or low sequence similarity" [37, p.445] so perhaps

the Rfam seed sequences were a bit too closely related to produce Stockholm alignments
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that RmotifDB could locate. It is also possible that the lack of flanking regions was an

issue.

In any case, at this point it was decided to compare the CARNAC output with the

output produced by Pfold and Mfold. Unfortunately, Pfold also does not allow for the

easy visualization of results, as it returns structure in dot-bracket format that is split over

multiple lines. There was insufficient time to locate a visualization program that would

process both the dot-bracket structure and remove the gap characters (dashes) that Pfold

inserts during the processing of results. A sample of Pfold output is shown in Figure 6.5.
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Figure 6.5 Partial Pfold output. This was obtained by an input of the seed sequences of
5s ribosomal RNA. Secondary structure is given in dot-parentheses format. A drawback
is that the output is spread over several lines; the lines above are picked up again later in
the output.



61

Mfold was also used, though at this point there was no reasonable point of

comparison with a CM-using program, which was the general intent of this thesis. It did

prove itself to be quite easy to use, as noted in the Methods chapter. It did a decent job

folding RNA sequences relative to their known secondary structure. Compare the output

shown in Figure 6.6 with the diagram of 5s rRNA in Figure 2.5.



Figure 6.6 Mfold output. This is of 5s rRNA. Mfold managed to predict
three of the loops in the actual structure, though not the correct locations.
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6.4 Infernal and CMfinder

As noted above, these results were done on a different machine from the rest of the thesis.

The sequence data from the miRNAminer and cmsearch section was edited into a single

file. (As the only thing being compared here was number of hits returned by Infernal and

CMfinder CMs, this was thought to be a fair measuring stick. It would also not require

overly long search time, as the resulting file was about 60,000 by long.) Infernal 0.72

was installed, due to the aforementioned compatibility problems with 1.0 Infernal

releases and pre-1.0 CMs. For the Infernal side of things CMs were downloaded from

Rfam. The 8.1 release has the seed CMs available for download, and as Rfam was

assembled before Infernal 1.0 the CMs are all in a pre-1.0 format (as it happens, they

were created by Infernal 0.72.) CMs downloaded represented the same dataset

introduced in Section 5.3.

However, CMfinder produces multiple CMs, and, as detailed in previous section,

gives little guidance on which CM, if any, is a good result. The only information to

distinguish one CM from another is the suffix. So CMs were chosen that seemed to be

the closest to the known structure of the RNA family that generated them. For instance,

5s rRNA has a number of stem loops, so the CM whose suffix seemed to indicate the

largest number of stem loops was chosen. Hairpin only has one stem loop, so the CM

that ended in a one was chosen. This is obviously not the most rigorous method to

determine the best choice of CM, but in the absence of explanatory information it seemed

better than simply picking the first CM CMfinder had produced. Results are summarized

in Table 6.4.



Table 6.4 Comparison of Infernal and Cmfinder Covariance Models
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These results are offered more in the spirit of completeness than anything else, as

it is difficult to be sure if they represent a fair judgment of CMfinder or not. Certainly

the CMfinder CMs located many fewer hits than the Infernal CMs. And at least they

generated some results, unlike the CMfinder Stockholm alignments that were used with

RmotifDB. Perhaps CMfinder produces CMs of a more stringent type than Infernal.

An attempt was made to compare the two sets of CMs on a full bacterial genome,

C. psychrerythraea. However there did not appear to be any way to write results to a file

in Infernal 0.72. Thus hits were dumped into standard output, which froze the machine

where Infernal 0.72 was installed. A full genome search would have been interesting but

was not possible with the limited resources afforded this project (though perhaps this is

good evidence of the computing requirements needed to search with CMs efficiently.)
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Both the Infernal and CMfinder CMs did appear to be producing a good number of hits

before the machine froze, though.

6.5 Infernal (Via Rfam) and BLAT

The intention of this section was to produce a clear comparison between a traditional

primary alignment tool (like BLAT) with CM-generated data (like that found in Rfam.)

But in retrospect it is unclear whether anything was accomplished here. The dataset

mentioned in Section 5.6 was assembled. On the Rfam side of things this meant finding

the number of times the families in question appeared in C. elegans data. Rfam has

species trees with this information already recorded, as shown in Figure 6.7.

Figure 6.7 An Rfam species tree. This one is for SL2
RNA.
http://rfam.sanger.ac.uk/family ?acc=RF00199
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The species trees were used to find the number of Rfam family members that came from

C. elegans. The seed sequences for the dataset were also found at this time and ran

through BLAT, using the "Blat's guess" setting and the translated RNA setting. The

results, given in number of hits, are in Table 6.5.

Table 6.5 Blat Searches Versus Number of Members Per Family in Rfam

It is unclear what, if anything, was accomplished here. The degree of BLAT hits

tends to be somewhat proportional to the number of Rfam family members. But this was

probably not a valid way to check an Infernal alignment versus a primary alignment tool.

The most interesting element here is the difference between BLAT's guesses and the

translated RNA settings. One would think BLAT would always guess RNA, due to the

presence of uridine in the sequence data, but that was not the case.

6.6 Summary and Epilogue

There was no single question answered in these results. It was more of a demonstration

of the use of the software involved, with some possible points of comparison between

tools. Probably the most successful comparison was that done between miRNAminer
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and cmsearch, which produced good results that were easy to compare and contrast.

CMfinder and Infernal were also compared, though this was not done without issues.

Comparing CMfinder with a non-CM-based tool proved very difficult, and a true test of

Infernal versus a primary alignment tool was not found. If this thesis had to be rewritten,

it would have focused more on miRNAminer and cmsearch, and found more room to

explore the strengths and weaknesses of CMfinder and the Infernal suite. The authors of

CMfinder have certainly had some success with it [70]; perhaps it performs better in their

more structured pipeline setting.

More broadly, it is hoped that this thesis gave a relatively comprehensive

introduction to the problem of RNA secondary structure detection and analysis, from

both a theoretical and a practical standpoint.



APPENDIX A

SAMPLE MIRNAMINER OUTPUT

This appendix contains sample miRNAminer output. This particular example is the

result of searching for the miRNA let-7 on the C. elegans genome.
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Thank you for using miRNAminer. 
Go back to submit another query. 

Contact mimaminer@gmail.com with questions about miRNAminer. 
Below is the detailed output of your query. 

Search started on Mon Dec 01 01:50:59 EST 20 08 

Validating search sequences 
Validating Query 

69 

Mon Dec 01 01 : 51:00 EST 2008 > Staring mirna search in C .+elegans (Caen 
orhabditis elegans) 
Genome version: 48 
Searching for 1 match of Query 
1 match found 

Information about the quality of your homolog miRNA: 
Perfect Match found on chromosome X from 14744091 to 14744189 Strand( - ) 

E-value :8.836 62E- 51 
Sequence :UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGA 
ACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 
RNA fold : .... ( ( ( ( .. . ( ( ( ( ( ( ( ( ( ( ( ( ( . ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( .......... ) ) ... ) ) 
)))))))) )) ) ) .))) ) )))) )) )) ) .)))) ......... . 
Fold energy :-42.9 kcal/mol 
Pairing :66.67 % 
Length :99 nt 

Alignment with precursor [identity=1 J and mature( A) [ide ntity=1J: 
query mature AAAAAAAAAAAAAAAAAAAAAA 

query precursor 1 UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUA 
CCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 99 

I I I II 1111 I II I I I I I I I I I I I I I I I I I I I I I III I I I III I II I I I 
I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I II III II I I I I I I I I I I I I I I 
result precursor 1 UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUA 
CCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 99 
result mature 

View the miRNA homolog on Ensembl ContigView, link below: 

ENSEMBL: 
http://www.ensembl.orgiCaenorhabditis elegans/ contigview?panel zoom=on;l= X%3A 1 
4744091-14744189;h= 



Figure A.1 Sample miRNAminer output.
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APPENDIX B

SAMPLE CMSEARCH OUTPUT

This appendix contains sample cmsearch output. This was produced by the covariance

model generated from the seed alignment of let-7, and ran on a stretch of C. elegans

genome on default settings.
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Figure B.1 Sample cmsearch output.
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APPENDIX C

SAMPLE STOCKHOLM ALIGNMENT

This appendix contains a sample Stockholm alignment. This is one of seven produced by

CMfinder after an input of the seed sequences of ciliate telomerase.
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Figure C.1 A Stockholm formatted alignment.
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