





ABSTRACT

RNA SECONDARY STRUCTURE DETECTION PROGRAMS WITH AN
EMPHASIS ON COVARIANCE MODELS

by
Justin Slotman
RNA secondary structure prediction requires a different approach from traditional
alignment methods. Functional RNAs often have their secondary structure better
conserved than their primary structure. Covariance models, probabilistic models that
utilize stochastic-context-free grammars, are one approach. CMs allow for homology to
be detected where purely sequence-based methods would fail. A background on CMs is
given, as well as a background of the major classes of non-coding RNAs (ncRNAs).
Comparisons are made between some CM-using tools (the Infernal suite and CMfinder)
and some other RNA secondary structure tools (CARNAC, miRNAminer, Pfold,
Mfold) as well as between Infernal and the primary alignment tool BLAT. CMfinder
and Infernal are also compared against each other. RNA secondary structure databases,

mainly Rfam and miRBase, are used to provide sequence and alignment data.
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CHAPTER 1

INTRODUCTION

1.1 Objective
The objective of this thesis is to provide a review of the problem of RNA secondary
structure prediction, and then contrast differing methods of RNA secondary structure
prediction, with an emphasis on comparing methods that use stochastic context-free
grammars (SCFGs) with methods that do not. The first part of the objective will be
accomplished by delving into basic RNA science and computer science, followed by a
survey of the selected databases and software tools selected for this thesis. The second
part of the objective will be accomplished by running a similar data set on a number of

software tools, some web-based and some requiring local installation.

1.2 Introduction
The problem of RNA secondary structure prediction involves a few factors. Primary
structure does not imply secondary structure, so prediction methods that align nucleotide
sequences are not necessarily useful for secondary structure prediction [1]. Secondary
structure is also better conserved in an evolutionary sense than primary structure. That is,
nucleotide substitutions or deletions will more often than not leave an RNA’s secondary
structure unaffected. = Typical alignment methods such as BLAST can prove
unsatisfactory, as in some cases related RNAs can have below 60% to 70% primary
sequence identity in common, despite only having tens of millions of years to separate

them [2]. Common secondary structures can thus be used to show that two RNAs are



related, when an alignment of their sequences would not have made that clear. Different
methods from the usual primary sequence alignment methods are therefore called for
when attempting secondary structure prediction [3].

One method involves the use of covariance models [1, 4 (pp. 279-299)]. These are
probabilistic, mathematical models that describe an RNA’s primary and secondary
sequence simultaneously. They can be used for secondary structure prediction, multiple
sequence alignment (so they can assist with primary and secondary sequence-related
problems), and finding similar matches to a target RNA within databases. They are
intended to find RNA homology where sequence alignments alone would not work as
well.

This thesis will investigate the application of covariance models to RNA
homology detection in comparison with more traditional alignment tools and some
specialized detection tools. Background information on the biology of RNA and some
computer science theory will be discussed first. Then there will be a survey of selected
software tools that are being utilized in this thesis—some that use covariance models
(CMs), some that do not. Following that will be a brief discussion of the RNA databases
that were used in this thesis. Finally there will be some comparisons between the

software tools using a similar data set from one of the databases.



CHAPTER 2

BACKGROUND

2.1 RNA Background

2.1.1 History of RNA

RNA is an extremely important biological molecule. Once thought to be a mere
messenger molecule for the information contained in DNA, it is now known to be both an
information carrier and an enzymatically active molecule. Some theorists believe it is the
original biological molecule—this is the so-called “RNA world” theory, which attempts
to explain why RNA has informational and enzymatic functions [5]. According to the
theory the dual functions of RNA were later taken over by DNA (for information storage)
and protein (for catalysis and enzymatic activity.) But, crucially, RNA retains both

functions in modern organisms [6].






information transfer agent and translation assistant. The true picture, though, is more
complicated than that.

RNA has a much more active role in all facets of cell life than was previously
realized, including regulation and gene expression. The emerging science of epigenetics
has made this plain [10]. Epigenetics is the study of heritable traits that do not involve a
change in DNA sequence, and in that sense represents a challenge to the central dogma.
To be fair, the central dogma (as defined by Crick) specifies that information cannot flow
from protein to nucleic acid, not that information cannot flow from one nucleic acid
(RNA) to another (DNA.) But epigenetics does at least question the primacy of DNA in
the central dogma. On the RNA side of things, epigenetics has shown RNA to influence
heredity in a few ways: via RNA interference, which selectively hinders gene expression
at the transcription and/or translation stages [11]; via the methylation (adding or
substituting a methyl group) of certain DNA sites [12, 13]; and by activating and/or
degrading some RNAs [14]. The epigenetic abilities of RNA have challenged prevailing
notions of RNA’s role in the cell.

There is also the case of reverse transcription [15]. This is how RNA viruses
copy themselves onto cellular DNA. Using the enzyme reverse transcriptase these
viruses created double-stranded DNA from single-stranded RNA, and use other enzymes

to insert their genetic material into the host’s genome.



2.1.2 RNA Background: Structure

At this point it would be useful to elucidate the classification of RNA structure. Primary
structure refers to the sequence of nucleic acid residues that make up the RNA molecule.
RNA is composed of four residues: guanine (G), adenine (A), cytosine (C), and uracil
(U). Uracil is the residue that distinguishes RNA from DNA; DNA has thymine (T)
instead of uracil. It is thought that the major reason DNA took over the bulk of the
information-carrying properties across all organisms is thymine, as it is strong protector
of sequence information from damage [16, pp. 544]. Primary structure is synonymous
with primary sequence.

Secondary structure refers to RNA’s tendency to fold into a number of small
subunits [9, ch. I1.6]. These subunits usually contain regions of helical structure and of
loop structure. Helical structure involves Watson-Crick base-pairing—that is, U binding
with A and C with G. Loops are, as the name implies, areas of curving into circular or
semi-circular shapes. They can perhaps be thought of as the areas of RNA secondary

structure that are not base-paired.









expressed. Introns are excised enzymatically. The exons are processed by the addition of
a 5’ methylguanosine cap and a poly-A tail, molecular markers that will protect the
mRNA from degradation outside of the nucleus. The mature mRNA then leaves the
nucleus and heads over to the ribosomes to be translated. It is quickly degraded post-
translation [18], in part by other RNAs (miRNAs and siRNAs, discussed later.) The
secondary structure of the information-carrying portion of mRNA does not have a
predictable secondary structure that lends itself to the problem-solving methods discussed
in this thesis, and is mentioned in passing. The functional portions of mRNA, the cis-
regulatory elements, are generally analyzed separately from the mRNA strands they are
attached to, and are discussed in the remainder of this section.

Transfer RNA (tRNA): These are the RNAs which are responsible for the
movement of single amino acids (the building blocks of proteins) to the ribosomes. They
are small molecules, about 70 to 90 nucleotides long. There are 61 tRNAs for each of the
61 codons. (Codons are the three-nucleotide sequences that specify which of the twenty
amino acids are to be used at a given position during protein synthesis. The sequential
order of the codons specifies the order in which amino acids should be added to a
growing protein.) The genetic code is known to be degenerate—that is, some amino
acids are represented by more than one codon. Alanine, for example, is represented by
four codons, while typtophan only has one [19, ch. 5.5.1]. Likewise any particular cell
can function without 61 distinct tRNAs; in fact a cell can function with only 31 types of
tRNA [9, ch. II.6]. This phenomenon, called wobble base-pairing, is thought to explain
why many of the alternate codons for an amino acid only differ in their third nucleotide—

many tRNAs are constructed such that they only require to provide an accurate match on









12

Non-coding RNAs (ncRNAs): Non-coding RNAs is a broad term for any class
of RNA that isn’t an information carrier. Essentially, any RNA that is not mRNA is an
ncRNA. The term is of more recent origin, though, and came into prominence with the
discovery of new classes of RNA outside of the traditional functional RNAs, tRNA and
rRNA. The bulk of non-coding RNAs were once considered to be “junk,” simple waste
byproducts of cell metabolism [21]. But they are part of the ongoing reevaluation of the
role of RNA in the cell, and are introduced below.

Ribozymes: Ribozymes are simply RNAs that function like enzymes. Some
sources classify the ribosome itself as a ribozyme [9, ch. I1.6], as RNA is responsible for
both the enzymatic activity and the secondary structure of the ribosomes. Another
example would be ribonuclease P, which is involved in tRNA cleavage. Ribonuclease p
does have a protein component, but, like with ribosomes, the protein does not appear to
play a role in catalysis or seconday structure [22]. There are also examples of precursor
RNAs self-cleaving themselves [23] (their introns remove themselves and leave
processed RNA strands behind.) Related to ribozymes are the riboswitches, small
untranslated segments attached to mRNA. An mRNA with a riboswitch has the ability to
regulate its own activity (a translation effect) and the gene that coded for it (a
transcription effect.) Riboswitches are common in bacteria, though at least one

eukaryotic ribtch has been identified (the TPP-binding THI element [24].)
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2.2 Computer Science Background

2.2.1 Basic Computer Science

There are a few basic computer science concepts that should be introduced at this point.
An algorithm is a sequence of instructions that must be performed to solve a well-
formulated problem [34, p. 7]. This is how computer programs accomplish their work,
and the “well-formulated problem” stipulation is especially important within
bioinformatics. A common algorithm within bioinformatics in general and RNA
secondary structure prediction in particular is dynamic programming. Simply put, a
dynamic programming algorithm is one that breaks a problem into smaller problems, and
those problems into smaller problems until a small enough problem is reached that a
series of them can be solved much more quickly than approaching the original problem
directly. This can lead to huge complexity if the algorithm is not designed elegantly [34,

pp. 43-44].

2.2.2 Grammars

Another useful computer science concept is the grammar. In CS terms, a grammar is a
set that describes all the possible words or statements in a language. Grammars are
traditionally organized into the Chomsky hierarchy, which includes (going from the
lowest to the highest level) unrestricted (phase structure) grammars, context-sensitive
grammars, context-free grammars, and regular grammars [4, p. 237]. Each grammar has
a particular automaton that recognizes it. Automata in CS are abstract computational

devices that describe individual grammars.
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All of the Chomsky hierarchical grammars have a stochastic form as well [4, p.
250]. A stochastic grammar is a probabilistic grammar where characters are given scores
based on a consensus understanding of how the language is supposed to work. These
stochastic grammars are very useful for biological analysis, since there are numerous
grammatical exceptions in the “language” of DNA and RNA. A probabilistic model can
account for these exceptions and still find related “words,” or homologues in biological
terms. (A homologue is a characteristic common to different organisms due to shared
ancestry. Homology refers to the study and detection of homologues.) For example,
many alignment methods use sequence profiles that contain enough specificity to find
distantly related family members, despite perhaps large evolutionary distances between
them. Hidden Markov models (HMMs) are a widely-used type of stochastic grammar [4,
p. 252].

Covariance models are another type of stochastic grammar-based profile; in
particular they are profiles of stochastic context-free grammars (SCFGs). Their main
advantage over HMMs is that they can be used to predict secondary structure. According
to a book co-authored by one of their main proponents, Sean Eddy, they are the “SCFG
analogue of profile HMMs” [4, p. 287]. They specify a repetitive tree-like SCFG

architecture, and are detailed, complex probabilistic models.



CHAPTER 3

SOFTWARE REVIEW

3.1 Introduction
This is a review of the software used in this thesis. Software tools were selected based on
if they were RNA secondary structure related, and to give multiple points of comparison
between CM-based programs and other methodologies. This is not intended to be a broad

survey of all available secondary structure-related tools.

3.2 Software Based on Covariance Models (CMs)

3.2.1 The Infernal Suite
Infernal is a suite of programs written in C for Unix/Linux; after some time as a “beta”
program its had a 1.0 release in June 2008. As of November 2008 it is up to Version
1.0rc4; the version used in this project is Version 1.0rc3 [36, 54]. It contains seven
individual programs: cmalign, cmbuild, cmcalibrate, cmemit, cmscore, cmsearch, and
cmstat. In total the suite allows a user to start with an RNA multiple alignment, create a
CM-based profile for it and use the new profile to discover homologues in existing data.
Not all the programs will be discussed equally, as the path from alignment to homologues
does not involve all of them.

Infernal’s cmbuild program takes in an annotated alignment and returns a profile
CM. Alignments must be in Stockholm format to be accepted. Stockholm format

requirements include a well-defined header and sequence gaps represented with dashes or

22
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dots. It also can include some secondary structure information. The CM it returns is a

mathematical model, and is not intended to be human-interpretable.

# STOCKHOLM 1.0

ABAQ02000001/1286001-1285924
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAUAAAAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

AAJZ01000001/4863026-4863103
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAUAAAAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

AEQ005174/2649880-2649955
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAU. . AAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

CP000247/1882367-1882444
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGCAAUUGAAAUAAAAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

BA000007/2574669-2574744
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAU. . AAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

AAJX01000031/11199-11122
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAUAAAAANACCCGAUGCGCAGAUCAUCGGGGU
CAUUUCA

AAJU01000021/17257-17180
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGCAAUUGAAAUARAAAACCCGAUGCGCAGAUCAUCGGGUU
CAUUUCA

AAJV01000029/42474-42551
GGGAAACUUUAUUGCUGAUGCCACCCGCCGCGAAAUUGAAAUAAAAMACCCGAUGCGCAGAUCAUCGGGGU
CAUUUCA

#=GC SS_cons

KL, o022, , .  <<<<K,,,.<<..... >> 355>, , <K<K, , L L. <<LKLK<LL<L<LK<K<K L b v e e e S5>>>5>>>
OO >

#=GC RF
gGgAAACuuuAucGcugAuGecAcccecgCegCgaAAuuGaaauAAAraacccGauGegcAgAuCauCggguu
cauuuCa

//

Figure 3.1 A Stockholm format alignment.



24

INFERNAL-1 [1.0xc3]

NAME let 7 seed.sto-1
STATES 253

NODES 54

ALPHABET 1

ELSELF -0.08926734
WBETA le-07

NSEQ 14

EFFNSEQ 1.472

CLEN 83

BCOM cmbuild let 7 seed.cm let 7 seed.sto.txt

BDATE Sat Oct 11 16:54:22 2008

CCOM cmcalibrate -s 1225657789 let 7 seed.cm

CDATE Sun Nov 2 15:29:49 2008

NULL 0.000 0.000 0.000 0.000

PART 1 0 100

E-LC 0 0.68283 -5.60319 2.48993 1500000 282592
0.003981

E-GC 0 0.46639 ~14.30641 -2.33744 1500000 99616
0.003764

E-LI 0 0.66449 -4.31426 3.73357 1500000 236387
0.004759

E-GI 0 0.53707 -8.17005 1.68969 1500000 74781
0.005015

E-LV 0 0.63456 -1.81019 5.34813 17010000 119815
0.010648

E-GV 0 0.58663 -2.98714 6.62317 17010000 119412
0.003561

E-LF 0 0.68117 1.71673 8.38697 17010000 119956
0.010635

E-GF 0 0.6l1161 0.10646 9.32712 17010000 119630
0.003555

FT-1LC 35 0.99500 10000 1500000 O

Figure 3.2 A portion of a covariance model. This is the let-7 seed CM used in this thesis.

Infernal’s cmbuild output contains information on alignment size and some
statistical information on how the model was constructed. Using the CM new RNA
sequences can be aligned to the model using cmalign. RNA families can be categorized
in this fashion. Single or multiple sequences (in FASTA format) can be used. The
cmcalibrate program can then be used to tweak the model so the activities of cmsearch
work faster. Using cmecalibrate is recommended to improve search time and sensitivity

[36, p. 11].
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Infernal’s cmsearch, then, uses CMs to find RNA family homologues. It reads in
a “database” which is any FASTA-formatted RNA sequence under investigation. It
returns a score, an alignment, a predicted secondary structure in dot-parenthesis format,
information on how highly or weakly residues are conserved, and information on how the
score was obtained.

To summarize, the homologue discovery process with Infernal is as follows: using
a Stockholm formatted alignment to produce a CM; using the CM and cmsearch to find
homologues; using cmalign to align new RNA sequences to the consensus structure.
Infernal is used by the RFAM database (discussed below) in this way to maintain its

RNA family distinctions and to add more as they are discovered.

CM: let 7 seed.sto-1
>ref|NW 047799.2|Rn8 WGA2323 4:14134978-14155107

Plus strand results:

Query = 1 - 83, Target = 10026 - 10101
Score = 60.60, E = 7.074e~16, P = 1.117e-19, GC = 45

<LLLLL =LKL LLLLLLLLLLLLLLLLL L == = <L SO>>——m - >>>>
1 ccaGGaUgAGGuAGUAGguuGuauaGUuuuagGGcuaaaauagCCcauuaGGAGAUaACu
60
C AGG UGAG UAG AGG:UGUA:AGUUU+ G:: + ::C + GGAGAUAACU
10026 CCAGGCUGAGGUAGUAGGUUGUAUAGUUUAGAGUU----- ACAACA--AGGGAGAUAACU
10078

SESSOOOOEOSOOOOOOOOOO>>
61 auaCaacCUaCUaCCUuuCCugg 83
:UACA:CCU CUA CUU CCU G
10079 GUACAGCCUCCUAGCUUUCCUUG 10101

Figure 3.3 Partial cmsearch output. The query sequence is preceded by the 1 and the 61;
the found sequence is preceded by 10026 and 10079. Note the E value after the score
near the top (under the line that starts with Query.) See Appendix B for a full example of
cmsearch output.
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Special mention should be made of cmemit, which is not part of the Infernal
discovery process but has the useful function of reading a CM and returning unaligned
sequence data in FASTA format. It outputs 10 by default, though that number can be
changed. Note that the outputted sequences will be simulated biological data; while
FASTA-formatted data is used to create a CM, a CM cannot be unpacked to return the
original data. The remaining Infernal modules are experimental or of limited practical
value. Cmscore outputs statistics that could be useful in the further honing of Infernal’s
algorithms. Cmstat returns statistics on covariance models, with more information being

returned on calibrated versus non-calibrated models.

3.2.2 CMfinder
CMfinder is a web-based tool [60] that returns results via e-mail. Its input is a FASTA
sequence; its output is CM-based profiles and motifs in Stockholm format. It is described
by its authors as an adaptation of the DNA motif-finding tool MEME for use with CMs
and RNA secondary structure [37]. It uses an “expectation matrix” to score possible
secondary structure matches after a covariance model has aligned and identified them.
Customizable features include adjustments for motif length and the number of candidates
to search for. There is also an option for number of stem loops expected in the RNAs
entered. CMfinder allows two sets of parameters to be applied to the same dataset at the
same time.

Like Infernal, CMfinder returns covariance models from sequence data. Unlike

Infernal, it breaks the sequence data down into a set of CMs, and a corresponding set of
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Stockholm-formatted files. Unfortunately, the CMs it generates are in Infernal 0.55

format [38], which are not accepted by 1.0 Infernal releases.
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Figure 3.4 The Cmfinder main page.
http://wingless.cs.washington.edu/htbin-post/unrestricted/CMfinderWeb/CMfinderInput.pl

3.2.3 Pfold

Pfold is not a CM-based method, but it does use SCFGs in concert with probabilistic
models to predict secondary structure, so this may be the appropriate section to mention
it. It is a web-based tool that takes in sequence(s) (a maximum of 40 with a maximum
length of 500; this is a limitation of its current server, rather than the underlying
algorithm) and returns both a common structure for all the sequences and a structure for
each individual sequence in dot-parenthesis format. Pfold uses a method that applies an
evolutionary model in addition to using SCFGs, unlike CMs, which do not take

phylogeny into account [39, 40].
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Figure 3.6 The miRNAminer main page. Partial screenshot.

3.3.2 BLAST and BLAT
BLAST is a widely-used primary sequence tool, based on an algorithm of the same name
[42]. It uses a local alignment method and uses matrices to score. It sacrifices sensitivity
for speed. As noted above, it is often used a step in other software programs.

A recent and functionally similar tool is BLAT, the BLAST-like alignment tool
[43]. It is a major size and speed improvement over BLAST, and the featured search at
the UCSC Genome Browser [64]. BLAT was used in this project since it was of more
recent origin than the well-understood BLAST, and may serve as a more interesting point

of comparison with a CM-based method.
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3.3.3 CARNAC

CARNAC has both a web version and a Linux version; it is written in C. The input is
FASTA sequence, which does not have to be aligned. Its output is a text “CT file” which
contains secondary structure information that can be visualized by Naview or
RNAfamily, in addition to a .jpg of an RNA’s secondary structure and a dot-bracket file
with the same information. It uses a heuristic algorithm that finds all possible secondary
structure stems, then sorts through these to find the more probable stems. At least on
the web server, sequences must be less than 80 nucleotides, and at least two must be

submitted together, as CARNAC attempts to find a consensus secondary structure [44].
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Figure 3.8 Partial screenshot of Mfold output.
http://www.bioinfo.rpi.edu/applications/mfold/cgi-bin/ma-form1.cgi
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CHAPTER 4

DATABASE REVIEW

4.1 Introduction
This chapter is an overview of the repositories of RNA secondary structure information
used in this thesis. Some were used extensively (miRBase and particularly Rfam) and
others in a more functional way (RmotifDB and the various genome browsers.) One is

simply an interesting case (RNA STRAND.)

4.2 Rfam
Rfam [47] is an RNA secondary structure database. Broadly, it contains two types of
data: hand-curated families of ncRNAs taken from published sequence alignments,
which are called “seed” alignments; and those same familes with additional
representatives aligned by Infernal’s cmalign program, the “full” alignments [36, p.13].
The covariance model used to generate the alignments is also available, as well as a
secondary structure diagram and a direct link to the family’s Wikipedia page (to be
specific, each family’s Wikipedia entry is also displayed within each family’s Rfam
page.) Rfam does not specialize in one type of family, and is meant to be a broad
collection of ncRNAs. It contains ncRNAs and their genes, cis-regulatory elements, and

self-splicing RNA families.
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Figure 4.1 An Rfam page. This is the ncRNA C0465.

http://rfam.sanger.ac.uk/family?acc=RF00116

4.3 MiRBase
MiRBase is a specialty database [48, 49, 50, 68] with crosslinks between it and Rfam.
Rfam miRNA families lead to family pages in miRBase. Unlike Rfam, miRBase
contains both mature miRNA sequences and their precursors. It also acts as a
clearinghouse for miRNA information, as it assigns its own set of accession numbers to
each miRNA, and includes information on the genes each miRNA targets. It has a wide
variety of search options, including accession numbers, keywords, organism, genomic
location, and supports sequence searches (which made verifying Infernal and

miRNAminer results a simple process.)
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Figure 4.2 A miRBase page. This is bantam miRNA from D. melanogaster.

http://microrna.sanger.ac.uk/cgi-bin/sequences/mirna_entry.pl?acc=MI0000387

44 RmotifDB
RmotifDB is a database of RNA structural motifs [65, 66]. It is intended to mirror
Rfam’s releases, and as of this writing contains all 603 Rfam seed alignments [67].
RmotifDB was chosen for this project as allows for searches in Stockholm format (that is
in fact the only input format it accepts) and it was thought this would provide a simple
way to verify the output of CMfinder’s CMs. Stockholm input is either inputted or
uploaded via the search page. There are no customization options for the searches other

than controlling the number of hits displayed (minimum of 5, maximum of 20.)
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Figure 4.3 The RmotifDB search screen.

http://datalab.njit.edu/bioinfo/index.html

4.5 RNA STRAND
RNA STRAND—the RNA secondary STRucture and statistical Analysis Database—is a
recent attempt (the paper that introduced it was published in August, 2008 [53]) at a
curated database of RNA secondary structures. It is interesting because it is actually a
database of databases; all its entries are drawn from outside sources which are
standardized and entered into RNA STRAND. Its constituent databases include Rfam,
the RCSB Protein Data Bank, the Comparative RNA Web Site, the tmRNA database, the
Sprinzl tRNA Database, the RNase P database, the SRP Database, and the Nucleic Acid
Database. The criteria for inclusion in the database is stringent; only 19 families found at
Rfam are included, out of 607 in the 8.1 Rfam release, as many of those families have
computationally predicted secondary structures (as opposed to laboratory verified

secondary structures.) Searching can be done via type of RNA, source, sequence, length,






CHAPTER 5

METHODS

5.1 Introduction
This chapter outlines the methods used in this thesis. The logic as to why certain tools
and methods were grouped together is explained here. There are also descriptions of how

each of the tools is used.

5.2 Infernal and miRNAminer
In general comparisons were made between programs that received and returned similar
inputs and outputs. Infernal and miRNAminer both accept sequence data as inputs and
return possible homologues, so they seemed to form a natural and simple point of
comparison. MiRNAminer searches are limited to the eleven genomes on its server, so
comparisons between the two would have to involve only those organisms.

The miRNAminer searches were made first. A representative miRNA was chosen,
the let-7 family, simply because it was one of the first miRNAs discovered and (not
coincidentally) it has the lowest accession number among miRNAs in Rfam. The
precursor and mature let-7 sequences were found at miRBase. The let-7 of C. elegans
was chosen; let-7 was originally identified in C. elegans, and the C. elegans genome is
part of miRNAminer’s genome set (so there would be at least one homologue found for
certain.)

As mentioned above, miRNAminer is a web-based tool. Searches are made by

entering matched miRNA precursor and mature miRNA sequences. Sequences must be
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covariance models that were used to assemble the full set of family members for each
RNA family ready for download, but as of this writing they were all created with the .57
irelease of Infernal which are incompatible with Infernal 1.0 releases. (It is unclear what
has changed as of the 1.0 releases that rendered pre-1.0 covariance model files unusable.)
This project is using Infernal 1.0rcl, so a new let-7 CM needed to be created. Now
cmbuild requires an alignment to be in Stockholm format to build a CM, which does
appear to be something of a drawback, as databases that give results in Stockholm format
do not appear to be common. For obvious reasons Rfam does have Stockholm
alignments but it should be mentioned this is a potential limitation to the Infernal system.
The Infernal suite is entirely command-line based so CM building and all searches were
done from a Linux terminal in the Cygwin environment (which had been installed on a
Windows Vista computer.) Cmbuild commands take the following form:
cmbuild [-options] <cmfile output> <alignment file>

Where <cmfile output> is a user-specified file and <alignment file> is the CM.
Generally the output file should be of the form *.cm, but the Infernal programs don’t
need a correct filename to use a CM. Two CMs for the let-7 family were created with
cmbuild: one using the seed alignment from Rfam, the other using the full alignment.
Using two CMs was meant to test if there were any significant differences between using
the curated seed alignment from Rfam and the full alignment which contains additional
computationally predicted let-7 family members.

A recommended step in CM creation is calibration using cmcalibrate. This will
allow a CM to generate E-values in addition to the bit scores cmsearch produces. The

Infernal manual says that E-values are the preferred way to score a potential homologues
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consider, as CM searches tend to take significant time to run. A straight comparison with
miRNAminer by searching for homologues on whole genomes, or even one genome,
seemed untenable. Therefore, CM searching was done on the genomic regions that
contained let-7 homologues, as identified in the miRNAminer results. MiRNAminer
helped in this regard, as its results page includes links to the location of potential
homologues at ENSEMBL and the UCSC Genome Browser. This made downloading the
homologue-containing region a simple process. A 1000 bp flanking region was added on
each side of the homologue identified by miRNAminer, and fhe subsequent block of
sequence was copied into a text file for cmsearch to search. The attempt here was to
create a balance between giving cmsearch a bit of a challenge for finding the homologues
miRNAminer had identified, while at the same time minimizing the amount of data
generated by cmsearch.

Now the default settings for cmsearch use a local alignment—that is, the
algorithm allows only a part of the CM to match some subsequence of the data being
searched [36, p.14]. This is considered to be a more sensitive search setting, since it does
not take a match on the entire CM to produce a match. But “glocal” alignment, the other
setting, may be the more accurate setting, as it attempts to match the entire CM with a
subsequence. (The word glocal is used to differentiate from true global alignment, which
would align the CM with the entire sequence, not just a subsequence. This would not be
desirable when the sequence under investigation is thousands of bps long.) Thus, for the
purposes of comparison cmsearch was ran twice, once with the glocal option turned on,

and once under default settings (local alignment.) Four sets of results were thus produced
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The problem would be finding a dataset that would be accepted by both programs’ web
versions. CMfinder needs a minimum of four sequences and a maximum of about 60,
each with a maximum length less that 500 bp. CARNAC needs two sequences at
minimum, with no minimum bp restrictions (though each line of input sequence has a
maximum of 80 characters, longer sequences would have to be entered as multiple lines.)
Thanks to Rfam the problem of finding a dataset was minimized, as it contains
information about average family length from the “Browse by family name” section of
the database. (Curiously this information was removed from the corresponding section in
Rfam 9.0 [63], but remains on the 8.1 release [62] of the website.)

In terms of this project there were additional concerns with the assembly of the
dataset. As the background section explored the major types of RNA, the dataset should
reflect those types (leaving out miRNA, which was explored in the previous section.) To
that end examples from the following types of RNAs were located on Rfam: cis-
regulatory elements, riboswitches, ribozymes, and snRNA/snoRNAs. Also located at
Rfam were tRNA (there is only one entry for tRNA at Rfam, as the secondary structure
does not vary among the tRNAs that correspond to codons) and the three types of tRNA.
Not considered were mRNA, whose secondary structure is outside the scope of this
project, and the siRNAs/shRNAs, where there does not appear to be a lot of information
about, or perhaps interest in, their secondary structures (they have no Rfam entry, nor
does mRNA.) The dataset was assembled on simple ground: Rfam searches for the
desired type of RNA, and then the first family (ranked by accession number) that met the
shared needs of CARNAC and CMfinder was chosen. This led to the final dataset of the

antizyme RNA frameshifting stimulation element (Antizyme FSE, a cis-regulatory
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element), the PreQl-I riboswitch (PreQ1), the hairpin ribozyme (Hairpin), and
Pyrococcus C/D box snoRNA (Pyrococcus C/D). This was in addition to the three types
of rRNA and tRNA. Finally—with the caveat that pseudoknots tend to pose a problem
for secondary structure prediction programs—telomerase was added into the mix, with
ciliate telomerase as the representative. Seed alignments were used. For those families
with more than 60 members in the seed alignment (the upper bound for CMfinder) the
first 60 members were used.

The web versions of CMfinder [60] and CARNAC [61] both have simple-to-use
user interfaces. Lines of FASTA-formatted sequences can be directly pasted into a
search box. Both programs also allow for the upload of sequence data from an external
file. CMfinder, however, allows for greater customization of searches than CARNAC.
CARNAC has three options: eliminate redundant sequences, take GC content into
account, and allow isolated stems (with an accompanying warning that this may slow the
processing of the sequences.) CMfinder allows the use to control numbers of stem-loops,
motifs, and candidates, as well as the minimum and maximum length of the motifs and
the expected fraction of sequences containing the motifs. It also runs two sets of
configurations simultaneously on the dataset, so it produces two sets of results as well.
Additional options are merging motifs and removing redundant motifs. Both tools were
run with default parameters. For CARNAC this meant eliminating redundant sequences
and taking GC content into account. For CMfinder this meant two configurations, each
with three motifs, a minimum motif length of 30 and a maximum of 100, 40 candidates,
and 0.8 for the expected fraction of sequences containing the motif. The only difference

between the two configurations under the default parameters is that the first configuration
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uses one stem-loop, the second uses two. The option to merge motifs is also left checked
in the default situation. It should also be noted that both CARNAC and CMfinder retain
results on their servers for some time afterwards; CARNAC allows them to be retrieved
with an identification number, while CMfinder automatically sends an e-mail with a link
to results. The CARNAC results retrieval proved useful, as there appeared to be a
problem with forwarding from the “results processing” screen to the results screen.

Luckily entering the identification number proved that CARNAC had completed its task.

5.4 Pfold and Mfold

For the sake of convenience the dataset used with CMfinder and CARNAC was also used
on Pfold and Mfold. The Pfold server [57] allows for no customization of searches, and
FASTA sequences should be aligned before they are used with Pfold. The Mfold server
[58] also has a very simple interface, but, as noted above, has a number of customization
options. The difference between Mfold and Pfold (and also CARNAC) is that Mfold is a
single-sequence RNA folder; it does not attempt to find a consensus sequence between
sequences, nor does it allow more than one sequence on a single run. (There is a multiple
sequence version of Mfold [59], but it also does not predict a consensus structure.)

Data collection was the same as with CMfinder and CARNAC: FASTA
sequences found at Rfam. The only difference was in the number of sequences used.
Pfold has an upper bound of 40 sequences with a maximum length of 500 bp, so for those
Rfam families with more than 40 members the first 40 members were used. For Mfold

the first member in each family was used.
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5.5 Infernal and CMfinder
There was some interest in comparing the CM-based methods of Infernal and CMfinder
against each other. (Pfold was not used here as it is more of a visualization tool and does
not generate CMs.) There were already a set of results involving Infernal from the
miRNAminer comparisons. The simplest option seemed to be to run the CMs CMfinder
generated on those same datasets. This necessitated an installation of an earlier version
of Infernal, as CMfinder produced CMs in a pre-Infernal 1.0 release format, and on a
different machine (a dual-processor laptop running Ubuntu Hardy Heron) as running two
Infernal installations on the same machine could prove problematic. Infernal had to be
used since CMfinder has no ability to use a CM on its own (which became problem with
the intended comparison between it and CARNAC, as detailed in the Results section.) So
the comparisons will basically illustrate the differences between the CMs cmbuild creates

and those CMfinder creates.

5.6 Infernal (Via Rfam) and BLAT

A few tests were run comparing Infernal and BLAT. The interest here was to compare
the Infernal suite’s alignment abilities with a more traditional alignment tool. Now Rfam
contains a number of alignments that start with a seed alignment, which is then used with
cmalign to produce a full alignment [36, p.13]. So there are a number of Infernal-
generated alignments already available for use. A decent point of comparison, then, was
thought to be comparing these results with similar data and results found with BLAT.

Now BLAT searches on a number of genomes, but only one genome at a time (or

at least that is a limitation of the version housed at the UCSC Genome Browser [52],
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which was used in this section.) In the interests of keeping the searches manageable it
was decided to use C. elegans as the search example as it is a well-understood, simple
organism that generated a manageable number of hits with a keyword search on Rfam
(8.1 release.) It is also a genome available to BLAT. These turned out to be mostly a set
of microRNA precursors, including the let-7 miRNA precursor used earlier (see Figure

5.4.)

Results for query "cicoans

Matches to documentation in the selected databases with links back to Rfam

Family ! Description

SL2 RNA

fet-7 let-7. mi_cfoRNA precursor
find | lin-4 microRNA precursor

mir-10 | mir-10 microRNA precursor family

mir-9 mir-8/mir-79 microRNA precursor family

mir-124 | mir-124 microRNA precursor family

mir46 | mir-46/mir-47/mir-281 microRNA precurser family

Figure 5.4 Rfam keyword search used to find
BLAT dataset.

BLAT searches are simple from a user’s standpoint. There are drop-down boxes
to select the desired genome, the version of the genome, the query type (whether the
input is DNA, RNA, or protein, or if BLAT is supposed to guess), sort order of the results
and output type (hyperlink or pcl, which appears to be a type of printer format.) The
default options for C. elegans were used: the May 2008 version of the genome, and query
type guessed by BLAT. Searches were then redone with one difference: the query type

was changed to translated RNA. This was done due to the fact that the number of results






CHAPTER 6

RESULTS AND CONCLUSIONS

6.1 Introduction
This chapter contains the results of the various comparisons and tests run in the previous
chapter. Additional analysis is provided to the extent possible. A summary is provided

as well, though perhaps no grand conclusion can be drawn from these results.

6.2 Infernal and MiRNAminer
As noted above, miRNAminer and Infernal’s cmsearch were used on a similar set of
sequence data. Cmsearch is too slow for full-scale genomic searches so it was restricted
to search on the areas in which miRNAminer had found potential miRNAs. The results
are noted in Table 6.1, and are expressed in numbers of miRNAs found. Potential
miRNAs for miRNAminer are simply those found with the default settings (altered
slightly as noted in the Methods chapter.) For cmsearch the standard is the one
recommended in the Infernal user’s guide: anything with an E-value of ten or lower is
significant enough to merit further investigation [36, p.40]. As noted above, four sets of
cmsearch results were produced: a local set and a glocal set for each of the two

covariance models (each representing the full and seed alignments of let-7.)
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Table 6.1 MiRNAminer and Cmsearch Hits

Species miRNAminer | Cmsearch Cmsearch Cmsearch | Cmsearch
seed seed (glocal) full full (glocal)
C. elegans 1 3 3 3 3
Chicken 4 23 25 25 26
Chimp 3 15 10 15 10
Cow 3 5 6 3 5
Dog 3 15 12 14 8
Human 3 15 10 14 11
Mouse 3 16 15 14 14
Platypus 1 4 6 4 7
Possum 2 9 7 8 7
Rat 3 12 16 13 14
Rhesus 2 10 9 11 8
Total 28 127 119 124 113

Cmsearch did find a greater number of potential miRNAs than miRNAminer, at
least four times as many versus the lowest cmsearch value (using the glocal setting on the
full let-7 CM.) The glocal searches produced slightly fewer hits than the local searches,
which ; the glocal search requires more subsequence to match to produce a hit than the
local. Interestingly, the searches done using the CM generated by the full alignment of
let-7 produced slightly fewer hits than the seed alignment let-7 CM. Perhaps the larger
number of sequences produces a slightly more specialized CM. It should be noted that
miRNAminer passed a very basic test of its competency immediately: it found let-7 in C.
elegans, which of course was the specific let-7 used to search across the 11 genomes to
which it has access.

There was some attempt to verify the results via miRBase sequence search
(detailed in the Methods chapter.) Organisms selected were C. elegans, chicken, human,
rat, and platypus. Results are below in Table 6.2. Note that a maximum hit means there
were a large number of hits, more than could be efficiently counted. (The miRBase

sequence search by default returns a hundred maximum hits, and this was unchanged.
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Counting to a hundred did not seem to be useful, so when a large number of hits than
could not be quickly eyeballed was produced, that search was recorded as a maximum
hit.) For miRNAminer all the results given were used; for cmsearch just the results
generated by the seed let-7 CM on local search settings were used. (This was done
partially out of convenience, and also because the seed let-7 CM searches done on the

local setting were the most sensitive, producing the greatest number of hits.)

Table 6.2 Summary of Cmsearch and MiRNAminer Results Verified on MiRBase

Species MiRNAminer Cmsearch Cmsearch hits | Cmsearch hits Cmsearch zero
maximum hits maximum on let-7, less on different hits
hits on let-7 than miRNA families
maximum
C. elegans 1 2 0 0 0
Chicken 4 14 0 5 4
Cow 3 0 0 3 0
Dog 3 8 1 2 4
Human 3 8 0 2 3
Mouse 3 8 0 4 4
Platypus 1 2 1 1 1
Possum 2 4 0 1 4
Rat 3 8 0 3 1

Table 6.2 records the number of incidences of a type of hit. Maximum hits were
explained above. The “less than maximum” column indicates times where there was a
let-7 hit that was less than maximum—a rare occurrence. The “hits on different miRNA
families” indicates miRBase returned matches, just not ones from the let-7 family. The
final column indicates a search that provided no hits in miRBase for a potential miRNA

identified by cmsearch.




53

Cmsearch does appear to be more sensitive than miRNAminer, though the results
are somewhat deceptive. Cmsearch searches the plus and minus strands of sequence data
automatically (that is to say, it searches forwards and backwards) and the minus strand
and plus strand results produced identical maximum hits. So the numbers in the
maximum hits column for cmsearch are roughly double what they should be, considered
fairly. But it still did manage to outperform miRNAminer with confirmed let-7 hits,
though one wonders if miRNAminer could be slightly tweaked to produce similar results
by changing scoring thresholds. More interesting, perhaps, was cmsearch’s ability to
find faint homologues of other families in the sequence data. This could be evidence of
the strength of covariance models, their ability to detect distantly related sequences.

One curious note was in the cow data, where miRNAminer outperformed
cmsearch. Indeed, cmsearch could not find any of the miRBase-confirmed let-7 families
that miRNAminer identified. Perhaps there are odd flanking regions that somehow

confuse cmsearch in the cow sequence data.

6.3 CMfinder, CARNAC, Pfold, and Mfold
CMfinder and CARNAC initially seemed like a good point of comparison, as their input
parameters were similar and they seemed to work towards similar ends (as evidenced by
the authors of CMfinder using CARNAC as one of their points of comparison [37].)
However, comparing the outputs of the web versions of these two tools proved difficult.
Simply, it is difficult to find a common ground between a tool that produces a human-

interpretable output (an RNA molecule folded and represented by a jpg image) and a non-
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The CARNAC output is obvious. CMfinder returns results organized by number
of stem loops. In Figure 6.1 the “1.1” in the two lines near the top indicates the number
of stem loops in the input configuration and the number of stem loops in the CM: one in
the input configuration and one in the output. The corresponding Stockholm alignment is
numbered the same way. The Stockholm alignment contains the word motif in the
output; the CM contains the letters “cm.”

CMfinder’s output was difficult to analyze due to the lack of human-interpretable
results. There is a lack of tools capable of visually representing a Stockholm alignment.
Scoring is not obvious either, as it is contained as extra lines within the Stockholm file,
and there is little documentation on how to interpret the scores. A brief sample of the

scoring lines is shown in Figure 6.2.

#=GS AF022216/477-519 WT 1.00
#=GS AF022216/537-579 WT 1.00
#=GS AP006627/2249570-2249527 WT 1.00
#=GS 299111/27640-27684 WT 1.00
#=GS AROX01000006/21305-21347 WT 1.00
#=GS AF022216/477~519 DE 2.. 37 35.168510
#=GS AF022216/537~579 DE 3.. 37 33.020340
#=GS AP006627/2249570-2249527 DE 2.. 38 38.994225
#=GS 299111/27640-27684 DE 1.. 39 43.559181
#=GS AAOX01000006/21305-21347 DE 1.. 37 38.745190

Figure 6.2 Sample CMfinder scoring.

The WT lines are the weight, and the DE lines are the start and end of the
sequence, followed by the score. The meaning of the scores is not immediately obvious.
CARNAC for its own part also had issues, with some seed alignments producing

no results at all. CMfinder alwayé produced results but their meaning was unclear. It
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was thought that running the Stockholm alignments it generated through RmotifDB

would at least allow some kind of verification of results.

Ouery ID

Query Length 82
Query Size 60

This page will be automatically updated in 10 seconds.
Tt will take several minutes to complete the search.

Cancel i

Figure 6.3 RmotifDB processing a Stockholm alignment.

As it turned out, the CMfinder output was not able to be tested in any way via
RmotifDB, as RmotifDB did not return any results for CMfinder output. The results are

summarized in Table 6.3 along with the CARNAC results.



Table 6.3 Summary of CMfinder and CARNAC Results
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Rfam family CMfinder output (verified CARNAC
on RmotifDB)
S5s TRNA No Yes
5.8s tRNA No No
Small subunit rRNA 5 No No
domain
Antizyme FSE No Yes
PreQl No Yes
Hairpin No Yes
Pyrococcus C/D No No
tRNA No No
Ciliate telomerase No Yes

Note: A Yes indicates output returned that was verified by RmotifDB in CMfinder. A no
indicates no output, verified or otherwise.
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Obviously both programs had problems with the Rfam seed sequences. When no

results are returned for CARNAC the error message shown in Figure 6.4 is generated.

Why did I get the "No structure found"” message ? This message indicates that
the input sequences do not share a global functional structure. But there are at
least three cases where the sequences may actually have a common structure and
Carnac Is not able to detect it:

- The sequences are short {less than 100nt), and the structure contains one
themodynamically stable pseudoknot: Carnac is restrained to secondary structure
prediction and cannot handle pseudoknots. For longer sequences, pseudoknots are
usually not a problem.

- The sequences are too similar (more than 95% identity): compensatory mutations
are required for inferring the consensus structure. You should try to ensich your
data set with newer sequences.

- The evolutionary distance is too high (kess than 50% identity) : in this latter case,
Carnac is not guaranteed to recover a consensus structure because the search

space is too wide. The solution here is to select few seguences with a higher
conservation rate, if possibie.

Figure 6.4 CARNAC “No structure found” message.

It is unclear which case from Figure 6.4 applies to the Rfam seed sequences used.
The rRNAs, for example, have average shared identities of 78%, 61%, and 43%
respectively [69], and are not pseudoknotted structures (though they are fairly
complicated.) Antizyme FSE has an 87% identity, and is relatively short (57.6 bp for the
average member) but, again, is not pseudoknotted. The lack of hits from RmotifDB from
the CMfinder output is also puzzling, and those results will have to be considered solely
in reference to Infernal in the section that follows this one. It should be noted that the
CMfinder authors mention that the tool works best on unaligned input with “unrelated
sequences, long flanking regions and/or low sequence similarity” [37, p.445] so perhaps

the Rfam seed sequences were a bit too closely related to produce Stockholm alignments
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that RmotifDB could locate. It is also possible that the lack of flanking regions was an
issue.

In any case, at this point it was decided to compare the CARNAC output with the
output produced by Pfold and Mfold. Unfortunately, Pfold also does not allow for the
easy visualization of results, as it returns structure in dot-bracket format that is split over
multiple lines. There was insufficient time to locate a visualization program that would
process both the dot-bracket structure and remove the gap characters (dashes) that Pfold

inserts during the processing of results. A sample of Pfold output is shown in Figure 6.5.
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Mfold was also used, though at this point there was no reasonable point of
comparison with a CM-using program, which was the general intent of this thesis. It did
prove itself to be quite easy to use, as noted in the Methods chapter. It did a decent job
folding RNA sequences relative to their known secondary structure. Compare the output

shown in Figure 6.6 with the diagram of 5s rRNA in Figure 2.5.
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6.4 Infernal and CMfinder

As noted above, these results were done on a different machine from the rest of the thesis.
The sequence data from the miRNAminer and cmsearch section was edited into a single
file. (As the only thing being compared here was number of hits returned by Infernal and
CMfinder CMs, this was thought to be a fair measuring stick. It would also not require
overly long search time, as the resulting file was about 60,000 bp long.) Infernal 0.72
was installed, due to the aforementioned compatibility problems with 1.0 Infernal
releases and pre-1.0 CMs. For the Infernal side of things CMs were downloaded from |
Rfam. The 8.1 release has the seed CMs available for download, and as Rfam was
assembled before Infernal 1.0 the CMs are all in a pre-1.0 format (as it happens, they
were created by Infernal 0.72.)) CMs downloaded represented the same dataset
introduced in Section 5.3.

However, CMfinder produces multiple CMs, and, as detailed in previous section,
gives little guidance on which CM, if any, is a good result. The only information to
distinguish one CM from another is the suffix. So CMs were chosen that seemed to be
the closest to the known structure of the RNA family that generated them. For instance,
5s rRNA has a number of stem loops, so the CM whose suffix seemed to indicate the
largest number of stem loops was chosen. Hairpin only has one stem loop, so the CM
that ended in a one was chosen. This is obviously not the most rigorous method to
determine the best choice of CM, but in the absence of explanatory information it seemed
better than simply picking the first CM CMfinder had produced. Results are summarized

in Table 6.4.
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Table 6.4 Comparison of Infernal and Cmfinder Covariance Models

Rfam family Hits using Infernal CMs Hits using CMfinder CMs
5s IRNA 12 0
5.8s tRNA 4 : 0
Small subunit rRNA 5 0 0
domain

Antizyme FSE 71 0
PreQ1 221 1
Hairpin 148 9
Pyrococcus C/D 149 28
tRNA 100 23
Ciliate telomerase 10 0

These results are offered more in the spirit of completeness than anything else, as
it is difficult to be sure if they represent a fair judgment of CMfinder or not. Certainly
the CMfinder CMs located many fewer hits than the Infernal CMs. And at least they
generated some results, unlike the CMfinder Stockholm alignments that were used with
RmotifDB. Perhaps CMfinder produces CMs of a more stringent type than Infernal.

An attempt was made to compare the two sets of CMs on a full bacterial genome,
C. psychrerythraea. However there did not appear to be any way to write results to a file
in Infernal 0.72. Thus hits were dumped into standard output, which froze the machine
where Infernal 0.72 was installed. A full genome search would have been interesting but
was not possible with the limited resources afforded this project (though perhaps this is

good evidence of the computing requirements needed to search with CMs efficiently.)
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The species trees were used to find the number of Rfam family members that came from
C. elegans. The seed sequences for the dataset were also found at this time and ran
through BLAT, using the “Blat’s guess” setting and the translated RNA setting, The

results, given in number of hits, are in Table 6.5.

Table 6.5 Blat Searches Versus Number of Members Per Family in Rfam

Rfam Family Number of C. Blat hits (using Blat hits (using
elegans members Blat’s guess) translated RNA)
SL2 RNA 40 >100 71
let-7 2 5 1
lin-4 2 1 3
mir-10 1 2 2
mir-9 1 1 1
mir-124 1 16 2
mir-146 2 9 2

It is unclear what, if anything, was accomplished here. The degree of BLAT hits
tends to be somewhat proportional to the number of Rfam family members. But this was
probably not a valid way to check an Infernal alignment versus a primary alignment tool.
The mosé interesting element here is the difference between BLAT’s guesses and the
translated RNA settings. One would think BLAT would always guess RNA, due to the

presence of uridine in the sequence data, but that was not the case.

6.6 Summary and Epilogue
There was no single question answered in these results. It was more of a demonstration
of the use of the software involved, with some possible points of comparison between

tools. Probably the most successful comparison was that done between miRNAminer
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and cmsearch, which produced good results that were easy to compare and contrast.
CMfinder and Infernal were also compared, though this was not done without issues.
Comparing CMfinder with a non-CM-based tool proved very difficult, and a true test of
Infernal versus a primary alignment tool was not found. If this thesis had to be rewritten,
it would have focused more on miRNAminer and cmsearch, and found more room to
explore the strengths and weaknesses of CMfinder and the Infernal suite. The authors of
CMfinder have certainly had some success with it [70]; perhaps it performs better in their
more structured pipeline setting.

More broadly, it is hoped that this thesis gave a relatively comprehensive
introduction to the problem of RNA secondary structure detection and analysis, from

both a theoretical and a practical standpoint.



APPENDIX A
SAMPLE MIRNAMINER OUTPUT

This appendix contains sample miRNAminer output. This particular example is the

result of searching for the miRNA let-7 on the C. elegans genome.
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Thank you for using miRNAminer.
Go back to submit another query.

Contact mirnaminer@gmail.com with questions about miRNAminer.
Below is the detailed output of your query.

Search started on Mon Dec 01 01:50:59 EST 2008

Validating search sequences

Validating Query

Mon Dec 01 01:51:00 EST 2008 > Staring mirna search in C.+elegans (Caen
orhabditis elegans)

Genome version: 48

Searching for 1 match of Query

1 match found

Information about the quality of your homolog miRNA:
Perfect Match found on chromosome X from 14744091 to 14744189 Strand(-)

E-value :8.83662E-51

Sequence : UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUACCACCGGUGA
ACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA
RNA fold Sosmm Lo CUCCCLLECCOCT FLECTOCLLLLER AL b v omnnensne ))...))

FREPRRF IV Y INLTIRTENT NI Y wowwevw s 0
Fold energy :-42.9 kcal/mol

Pairing :166.67 %

Length ¢899 nt

Alignment with precursor [identity=1] and mature(”) [identity=1]:

query mature ANANANNANNNANNNNANANNANANNANANAAN

query precursor 1 UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUA
CCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 99

; T 0 10 1 1 O O O 0 O
PEEErrrrrerrrrrrrrre et re e e et el

result precursor 1 UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUA
CCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA 99

result mature ANANANANNANNNNANNNANANNANANANANANNNAN

View the miRNA homolog on Ensembl ContigView, link below:

ENSEMBL:

http://www.ensembl.org/Caenorhabditis_elegans/contigview?panel _zoom=on;1=X%3A 1
4744091-14744189:h=
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View the miRNA homolog on UCSC browser, link below:
UCSC: http://genome.ucsc.edu/cgi-
bin/heTracks?org=C.+elegans&position=chrX:14744091-14744189&miRNA=pack

Search finished at Mon Dec 01 01:51:02 EST 2008
Your search input:

Minimum Precursor Base Pairing=55

Flanking Length=50

Minimum Precursor Length=70

Minimum Alignment Identity With Mature=0.8

Maximum Precursor Length=180

Species searched in=cel,

Maximum Mismatches With Mature=3

MinPrecursorIden=56

CheckSeedConservation=true

debug=false

Your miRNA query=Query, UACACUGUGGAUCCGGUGAGGUAGUAGGUUGUAUAGUUUGGAAUAUUA
CCACCGGUGAACUAUGCAAUUUUCUACCUUACCGGAGACAGAACUCUUCGA, UGAGGUAGUAGGUUGUAUA
GUU,

MaxAllowJointMatureAndLoop=4

Email sent to =

MaxPrecursorGaps=10

Maximum Blast E-value=0.05

Minimum Blast Alignment Length=18

Maximum Precursor Energy=-21.0

numOfResults=1

Figure A.1 Sample miRNAminer output.



APPENDIX B

SAMPLE CMSEARCH OUTPUT

This appendix contains sample cmsearch output. This was produced by the covariance

model generated from the seed alignment of let-7, and ran on a stretch of C. elegans

genome on default settings.

71






APPENDIX C

SAMPLE STOCKHOLM ALIGNMENT

This appendix contains a sample Stockholm alignment. This is one of seven produced by

CMfinder after an input of the seed sequences of ciliate telomerase.
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# STOCKHOLM 1.0

#=GF AU Infernal 0.1

#=GS AF417612/228-392 WT 1.00
#=GS U22353/53-206 WT 1.00
#=GS AF399707/2181-2345 WT 1.00
#=GS U22354/216-379 WT 1.00
#=GS U22351/80-240 WT 1.00
#=GS U22352/508-657 WT 1.00
#=GS U22350/52-211 WT 1.00
#=GS U22349/199-360 WT 1.00
#=GS AF417610/218-380 WT 1.00
#=GS AF417611/281-444 WT 1.00
#=GS AF417609/192-355 WT 1.00

#=GS AF417612/228-392 DE 115..159 54.588234
#=GS U22353/53-206 DE 108..148 64.246918
#=GS AF399707/2181-2345 DE 114..156 69.430634
#=GS U22354/216-379 DE 113..155 67.333237
#=GS U22351/80-240 DE 110..152 55.426781
#=GS U22352/508-657 DE 100..144 53.997509
#=GS U22350/52-211 DE 112..154 67.994370
#=GS U22349/199-360 DE 114..156 60.003937
#=GS AF417610/218-380 DE 109..154 55.617577
#=GS AF417611/281-444 DE 111..155 57.132687
#=GS AF417609/192-355 DE 111..155 57.132687
AF417612/228-392
CAGACAUUC.GACA.UAAGAUACA . CUAUUUAUCUUAUG.GAaG.GUCUA
#=GR AF417612/228-392 SS

LKLLL L KLL, L LKL KK, KKK u e SOO>,O55>,. 5>, >, >>>>,
U22353/53-206 AAGAC--
UC.GACA.UUUGAUACA.CUAUUUAUC.AAUG.GA.U.GUCUU

#=GR U22353/53-206 SS

LSS IR L RS PR C 0 S SO>> 555> .>>, . >>>>,
AF399707/2181-2345

AAGACUAUC.GACA .UUUGAUACA.CUAUUUAUC.AAUG.GA.U.GUCUU
#=GR AF399707/2181-2345 SS

R SR SR L RS PR S-S, SOO>, 555>, 5>, > . >>>>,
U22354/216-379
AAGACUAUC.GACA . UUUGAUACA . UUAUUUAUC.AAUG.GA.U.GUCUU
#=GR U22354/216-379 SS

LIRS PR L R IR S, SO, 555>, >>.> ., >>>>,
U22351/80-240 AAGGC-
AUC.GACA.UUUGAUACAaAUAUUGAUC.AAUG.GA.U.AUCUU

#=GR U22351/80-240 SS L<<LL= L KLLLL L KK L <LL KL=

S>>, 555>, >>, >, ->>>,
U22352/508-657

UAGAAUUUC.GACA . UGUGGUACA.CUAUUUAUCuCAUG.GA.GaUUCUA

#=GR U22352/508-657 SSs

AL KL, L KKK KL KL SO>>.55>>,>>.>.

U22350/52-211

AAGACUAUC.GACA. UUUGGUACA .CUAUUUAUC.AAUG.GA.U.

>>>>,

GUCUU
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#=GR U22350/52-211 SS

BRI LSRR TR S S, SO5> 535>, D>, > >>>>,
U22349/199-360 AAGGC-

AUC,GACA .UUUGAUACAaAUAUUGAUC.AAUG.GA.U.GUCUU

#=GR U22349/199-360 Ss LKL KL, LKL KL KL= s -

SO>.O55>.,>>.,>.,>>>>.
AF417610/218-380
CAGAUACUCCGACU . UGUGAUACA . CUAUUUAUCaCAUGgGA.G.AUCUA

#=GR AF417610/218-380 sSS LKL KL, K KL KL e >>>> .,

>.5>.> . 555>,

AF417611/281-444 AAGAUACUCCcGACGaUU-
GAUACA.AUAUUUAUC.AACGgGA.G.GUCUU

#=GR AF417611/281-444 SS

RS CCIRL S TR S TR SR E € & QR SS>> . >>>> . 5>, > . >>>>,
AF417609/192-355 ARAGAUACUCCGACGaUU-
GAUACA .AUAUUUAUC.AACGQGA.G.GUCUU

#=GR AF417609/192-355 S8

LKLLL L KKK, L KK KK KKK S>> . O5>> . 5>, > . >>>>,
#=GC SS cons 1KLL —KLL = =<K, KL=
<<<<__._ S>>, >35> 3>, >, >>>>

#=GC RF

AAGaCaCUC.GACa.UuUGaUaCA.CUAUUUAUC.aAuG.GA.G.GuCUU
//

Figure C.1 A Stockholm formatted alignment.
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