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ABSTRACT

DUAL PARAMETRIC SENSORS FOR HIGHLY SENSITIVE
NUCLEIC ACID DETECTION

by
Manu Sebastian Mannoor

The primary focus of this research work was on the design and development of a

molecular scale (nano-scale) capacitive sensing mechanism for the highly sensitive and

label-free detection of Nucleic Acid hybridization. These novel capacitive sensors with

nano-scale electrode spacing offer solutions to many problems suffered by the

conventional signal transduction mechanisms, thereby immensely improving the

sensitivity of the biomolecular detection processes. Reducing the separation between the

capacitive electrodes to the same scale as the Debye length of the sample solution, results

in the overlapping of the electrical double layers of the two electrodes, thereby confining

them to occupy a major fraction of the dielectric volume. This decreases the potential

drop across the electrodes and thus dielectric measurements at low frequencies are made

possible. The dielectric properties during hybridization reaction were measured using 10-

mer nucleotide sequences. A 30-40% change in relative permittivity (capacitance) was

observed due to DNA hybridization at 10Hz, which is much more sensitive than the

previously reposted detection measurements (2-8% signal change).

In parallel to the above work, a second label-free sensing mechanism based on

field effect capacitive sensors with Metal-Oxide-Semiconductor (MOS) structure has

been developed and its ability to provide real-time monitoring of oligonucleotide

immobilization and hybridization events are studied. The immobilization of probe



oligomers on the sensor surface and their hybridization with the target oligomers of

complimentary sequences has produced significant shifts (140mV and 73mV

respectively) in the Capacitance-Voltage characteristics measured across the device. In an

attempt to utilize the individual merits of the nano-scale electrochemical capacitive

sensor and the field effect MOS capacitive structure, a novel dual parametric sensing

architecture comprising of both these transducing elements on a single sensor is designed.

The detection scheme based on the combined analysis of the two parameters- Dielectric

property and intrinsic molecular charge- of Nucleic acid molecules has found to reveal

complimentary information of significance about the analyte-probe interactions.

As a separate experiment the applications and promises of a novel technique of

enhancing the speed and selectivity of the molecular detection processes by the

application of an external electric field of precisely controlled intensity was studied.

Experiments were conducted with 10-mer sequences and proved the feasibility of this

technique in inducing in providing a faster and selective immobilization and

hybridization reactions. The research work in this direction has been in collaboration with

the Rational Affinity Devices, LLC, a New Jersey based corporation. The above

mentioned biosensing mechanisms and detection techniques have the advantage of

simplifying the readout and increasing the speed and ease of nucleic acid assays, which is

especially desirable for characterizing infectious agents, scoring sequence polymorphism

and genotypes, and measuring mRNA or miRNA levels during expression profiling.

Once fully optimized and well assembled they have great potential to be developed in to

a commercial full-scale biosensor capable of providing high-value diagnostic testing at

the point of patient care places.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Overview

The completion of the human genome project and the advances in the genetic sequencing

of pathogenic species have widely encouraged scientists in the development of sensors

for Nucleic Acid (DNA or RNA) based diagnostics, pharmaceutical applications, forensic

medicine and biowarfare. For instance, an increasingly large number of infectious

diseases are diagnosable by the molecular analysis of nucleic acids [1]. Although a

number of detection mechanisms utilizing several physiochemical signal transducing

principles have been demonstrated over the years, the development of reliable methods

for the fast, inexpensive and sensitive detection of nucleic acid sequences is still in its

infancy [2-5].

In order to better understand the operating principle of such sensing devices a

primary knowledge about the properties of a Nucleic Acid molecules is required. For

example a DNA molecule consists of a number of nucleotides which are stacked atop

each other in two strands forming a twisted ladder. Each of these nucleotides contain a

sugar and phosphate back bone plus one of four molecules called bases-adenine, guanine,

cytosine, or thymine (A, T, G, C). These bases form the rugs of the ladder with adenine

always across from thymine and guanine always across from cytosine. DNA in its ds

state is stable under physiochemical conditions; however strand separation (denaturation)

can be achieved by heating above melting temperature, by raising the pH or by lowering

the salt concentration [6]. Conversely under appropriate conditions single strands of NA

will, provided they are exactly or nearly complimentary in sequence, come together and

1
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"hybridize" to form a duplex molecule via base pairing (adenine pairs with thymine and

cytosine with guanine; in the case of DNA-RNA or RNA-RNA duplexes adenine pairs

with uracil, U)

Most of the nucleic acid detection techniques are based on a the NA-hybridization

reaction where a specific single stranded NA sequence (target) is identified and detected

using complimentary sequences called probes [7]. The hybridization reaction is known to

be highly efficient and extremely specific in the presence of a mixture of non

complimentary sequences and hence can be use as analytical tool to search for and detect

the presence of specific sequences in a sample of unknown sequences. For example, for

applications such as infectious disease diagnosis hybridization reaction can be used to

detect the presence of particular pathogenic sequences in a clinical specimen (eg: throat

swab). The key issue in any such applications is to transduce the hybridization events in

to a measurable signal with sensitivity, selectivity and speed. The detection techniques

most routinely used for the detection of oligonucleotide hybridization, due to physical

nature of the readout require the attachment of reporter molecules called "labels" to the

target sequences [8].

1.1.1 Label-based Detection Mechanisms

Most of the conventionally used oligonucleotide detection mechanisms require 'labels'

attached to the target sequences; during read out the amount of labels is detected and

assumed to correspond to the number of hybridized target sequences. Labels can be

fluorophores, magnetic beads or any such easily detectable materials. A most commonly

used detection method is the optical detection technique using fluorescently labeled target
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Figure 1.1 Schematic representation of a fluorescence based optical nucleic acid
sensor.

sequences. Figure 1.1 shows schematic of an optical detection mechanism utilizing

fluorescently labeled target sequences. Optical detection mechanisms are usually

performed in array formats, where, the substrate usually of the size of a microscopic slide

or smaller. Onto this substrate are fixed thousands of patches of single stranded nucleic

acid probes using the appropriate linkage chemistries. The location and sequence of each

patch of oligonucleotide probes are known ahead of time. The target molecules in the

sample to be analyzed are labeled with fluorescent tags to aid in the detection. When the

tagged single stranded analyte sample is washed over the substrate with the immobilized

probes (array), it sticks (hybridizes) fast only to any single-stranded probe sequences that

has a complimentary gene sequence to its own. A scan of the substrate or array with a

laser or other such excitation source causes any patch of probe sequences that has found a

tagged match to fluoresce, and this glow is picked up by a detector which usually consists

of charge coupled devices (CCD) [7].
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Although this method is well developed and is very sensitive, labeling procedure

is complex, time consuming and the detection requires extra sample handling and uses

expensive and bulky equipment set-up like confocal microscopes and laser scanner [9,

10]. Labels can also undesirably influence the affinity of the target-probe binding

reactions [11]. Also, the need to use conventional organic fluorescent dyes, which suffer

from weak signal intensity, photo-bleaching and self quenching limits the span of

applications of fluorescence based biosensors [12]. For applications such as point of care

diagnostics and other such portable hand-held diagnostic tools which demand fast,

inexpensive and relatively simpler monitoring of hybridization, label-free electronic

methods are thus highly desirable.

1.1.2 Label-free Detection Mechanisms

When the target oligomer sequences hybridize to the probe sequences immobilized on a

sensor surface, changes in the electrical (permittivity, resistance), mechanical (mass) and

other physiochemical properties occur solely from the presence of the target sequences.

Label-free techniques rely on these changes produced as a result of the probe-target

interactions and directly transduce them into a measurable signal. These techniques are

particularly advantageous due to the fast and inexpensive detection and requirement of no

prior sample handling for labeling purposes. Besides the time and expense benefits of

omitting the labeling step, label-free techniques can also offer monitoring of

hybridization reactions in real-time [13], where as only end-point measurements are

performed in the case of label-based methods. Several signal transduction mechanisms

such as electrical (capacitive, resistive, field effect), mechanical (micro cantilever based,

piezoelectric) and optical (surface Plasmon resonance) have been developed, for the
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label-free detection of oligonucleotide hybridization. Mechanical sensors based on micro

cantilevers and Quartz crystal microbalance (QCM) related techniques which rely on the

mass changes are more suited for protein detection applications due to the higher mass of

the protein molecules compared to the nucleic acid sequences. Also, the presence of

mechanical motion in the case micro cantilever based sensors offers certain limitations

especially for applications requiring massively parallel detection.

Electrical detection techniques based on capacitive sensing mechanisms offer

several advantages as a label-free technique due to absence of any mechanical motion

and the use of no light. Also due to their low cost, low power consumption and ease of

miniaturization capacitive sensors hold great promise for applications where minimizing

size and cost is crucial, such as point-of-care diagnostics and biowarfare agent detection.

In this thesis, a novel capacitive sensing mechanism using Gold electrodes with

nano-scale electrode separation is presented. The use of nano-scale sensing area offers

solutions to several problems suffered by the conventional capacitive detection

mechanisms thereby improving the detection sensitivity immensely. In the second part of

the thesis the applications and advantages of Field Effect Capacitive sensor with Metal-

Oxide-Semiconductor (MOS) architectures, in providing label-free and real-time

monitoring of nucleic acid hybridization is demonstrated. Also, a novel Dual parametric

capacitive sensor, which encompasses the individual advantages of the above mentioned

two sensing architectures on a single sensor, is proposed.

In the final part of the thesis the improvement in the detection speed and

selectivity by the use of external electric field is also demonstrated. These detection

mechanisms and techniques have the advantage of simplifying the readout and increasing
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the speed and ease of nucleic acid assays, which is especially desirable for characterizing

infectious agents, scoring sequence polymorphism and genotypes, and measuring mRNA

or miRNA levels during expression profiling.



CHAPTER 2

CAPACITIVE BIOSENSORS

2.1 Conventional Capacitive Biosensors: Limitations

Among the various label-free signal transductions mechanisms that have been

investigated for monitoring biomolecular interactions, capacitive sensors receives special

attention, due to several advantages such as simple instrumentation, absensence of any

moving parts as well as its easiness for multiplexing in view of high throughput

applications [14]. Non-Faradaic impedance spectroscopic measurements conducted on

capacitive structures has been regarded as a versatile analytical tool for studying and

detecting binding/hybridization events due to its ability to investigate the relaxation

processes occurring in an extremely wide range of characteristic times (wide range of

frequencies).The detection is based on the changes in the sensor capacitance or

permittivity as a result of the probe-target binding.

Although, several configurations of capacitive biosensors for such applications

have been reported in the literature, many physical and electrochemical properties of

these structures and the measurement methods used have significantly limited its ability

to provide enough sensitivity and other attributes required to be developed as a reliable

biosensing mechanism: Firstly, there is a strong polarization in the vicinity of the

electrodes which results in huge impedance due the electrical double layer and can in turn

dwarf the dielectric property changes due to biomolecular interactions. Secondly, the

aqueous (electrolytic solution) sample usually displays a very high ionic electrical

conductivity and causes a giant frequency-dependent dielectric dispersion. This parasitic

effect associated with the conductivity of the buffer solution in fact masks the dielectric

7
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relaxations of interest associated with the biomolecules in the sample. These effects are

more pronounced in the low frequency tail of the impedance (dielectric) spectrum. Due to

this reason, traditional capacitive sensing mechanisms were analyzed using impedance

spectroscopic measurements at higher frequencies which offered reduced sensitivity

towards biomolecular interactions as the applied excitation signals were too fast for the

charged bio-macromolecules to respond.

41. Negative ion . Positive ion

Figure 2.1 Schematic representation of conventional capacitive biosensor showing the
electrical double layers formed due to the accumulation of ions near the electrode
surface. The impedance due to this polarization effect is more pronounced at low
frequencies and hence masks the dielectric permittivity changes due to biomolecular
interactions. This is a major cause for the limited sensitivity of such devices.
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Figure 2.1 shows a Schematic representation of the conventional capacitive biosensor

showing the electrical double layers formed due to the accumulation of ions near the

electrode surface. At low frequencies the series parasitic impedance due to the electrical

double layers will be more pronounced and masks any capacitance (dielectric property)

changes resulting from biomolecular interactions.

Impedance Spectroscopy of Nucleic Acid Molecules in General

Impedance or dielectric spectroscopy is one of the most commonly used analytical tools

for studying the structure and dynamics of polyelectrolyte solutions. Its ability to

investigate the relaxation processes occurring in an extremely wide range of

characteristic times (roughly from 10 -12s to 103s) make it versatile tool for revealing

information about electron transfer, atomic bonds, and large-scale molecular structure of

the polymer solutions [15-18]. The characteristic time scale ranges from 10 -12s for

electrons, 10-9s for atomic bonds, to 10 3s for molecular structures. Therefore, when an

oscillatory field excites molecules in a sample they respond differently depending on the

frequency. The large- scale molecular structural changes such as the changes occurring

during hybridization (single stranded to double stranded structure) are revealed during the

low frequency responses. The dielectric response of DNA solutions has been widely

studied [19-26]. The dielectric relaxation of Nucleic Acid solution occurs mainly at 3

different frequency regions: a (near DC to a few kHz frequency range) f3 (around 1 MHz

to 1 GHz) and y (above 1GHz). Among these a relaxation is found to be the most useful

for information regarding the structure and the length of the molecules. In other words

low frequency (near DC to a few kHz frequencies) dielectric measurements are more

sensitive towards Nucleic Acid hybridizations or any such biomolecular interactions. The
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relaxation reflects the migration of counter ions over the charged oligonucleotide

sequences and hence it closely related to the electrochemical double layer at the vicinity

of the electrodes. The impedance due to the double layer dominates the measured

capacitance at low frequencies (<1 kHz) and hence masks the dielectric property changes

resulting from the hybridization of the probe and target sequences.

2.2 Electrode Polarization or the Electrical Double Layer Effect

Electrode polarization effect due to the spatial charge that accumulates near the electrode

surface represents a major cause of reduction in the sensitivities of the traditional

dielectric spectroscopic measurements for biomolecular analysis and detection. The

presence of this "double layer" of charge modifies the field distribution with the anlyte

solution. This debilitating effect can be approximately modeled as surface impedance

comprising mainly of capacitance in series with the sample impedance [27-30]. As the

thickness of the electrical double layers are usually very low (nanometer range) the

impedance provided by this electrical double layer capacitance is huge and its presence

makes it difficult if not impossible, to resolve the dielectric dispersion at lower

frequencies. More over, the presence of this undesired impedance will mask the dielectric

property changes or increment occurring as a result of the biomolecular interactions

leading to the reduced sensitivity of the traditional capacitive sensing architectures.

Several approaches and strategies have been proposed over the years to cope with this

problem.

The various approaches that have been proposed to correct the limitations caused

by the electrode polarization effects [16] can be roughly categorized by their nature in to



11

two. The first category includes the method that have been proposed and been tried to

eliminate or reduce the impact of the effect. The second category comprises of methods

that have been proposed and devised to correct the measured dielectric spectra by

modeling the effect as the presence of surface impedance.

The methods proposed to eliminate or reduce the impact of the electrode

polarization includes approaches such as the four electrode method [18, 31, 32], and the

electromagnetic induction method [33, 34]. The four electrode method utilizes the

observation that the electrochemical double layer builds up at the surface of the two

current electrodes, but not on the two inner high-impedance voltage sensing electrodes, as

in the case of these electrodes the input current is virtually zero. In the case of the

electromagnetic induction method, the voltage and the current electrodes are replaced by

two toroidal coils and the complex permittivity is deduced from the measured coupling of

the two coils. Increasing the surface area of the capacitive electrodes is another effective

method which has been using to reduce the effect of the electrode polarization. The use of

electrode with large surface area reduces the capacitive impedance produced due to the

double layer capacitance. The use of micro porous electrodes has been demonstrated to

increase the effective surface area of the electrodes by a factor of 100- 1000 times with

respect to the geometrical surface area of the electrodes. For example, by depositing a

layer of 'platinum black' (electro-deposited colloidal platinum), the effective surface area

of the electrodes can be substantially increased [35, 36].

A commonly used method for correcting the measured dielectric spectrum from

the effects of the electrode polarization is the taking of the dielectric measurements at

different electrode spacings [16, 37-40]. This approach is based on the assumption that
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the polarization impedance does not depend on the electrode spacing. Since the sample

impedance on the other hand depends on the electrode spacing, it is proposed that the

contribution from the electrode polarization can be eliminated from a set of

measurements at two different electrode spacing. In practice, the capacitance at each

frequency is linear in reciprocal electrode spacing and extrapolated to lid =0 to obtain the

sample capacitance [40]. Mandel and co-workers used similar method to determine the

low-frequency spectroscopic data.

Another major method referred to as the substitution method [24, 35, 41, 42], the

electrode polarization impedance is eliminated by means of calibration with sample

electrolytes of known conductivity. This method is based on the assumption that the

polarization effects are same in the case of the electrolyte used for calibration and in the

case of the sample solution. Although many such methods have been proposed, an

entirely satisfactory solution for the problem of reducing the electrode polarization effect

is not known. Also, none of the above proposed techniques for eliminating and also for

correcting the errors due to the electrode polarization effect, was compatible with the

biosensing applications.



CHAPTER 3

GOLD NANO-CAVITY CAPACITIVE SENSORS

3.1 Elimination of Electrode Polarization Effect Through Double Layer

Overlapping in Nano-cavity Capacitive Sensors

In an attempt to minimize or even eliminated, the errors due to the electrode polarization

effect a novel capacitive sensor with nano-scale electrode spacing is proposed. The huge

impedance of the electrical double layer is formed due to the accumulation of counter

ions on the electrode surface which is in contact with the electrolyte [43]. When the

electrode separation is reduced below the characteristic length of this diffuse double layer

of charges (Debye length), the electrical double layers interact and overlap each other due

to the space confinement. Such interactions are expected to minimize or even eliminate

the contribution of double layer impedance (electrode polarization effect) in the measured

capacitance. The impedance spectra of DI water and electrolyte solutions of various ionic

strengths obtained using these nano-scale dielectric sensors confirms this effect. This

concept is theoretically verified by solving the PB equation for the electrical potential and

ion distribution with in the nano-scale cavity.

3.2 Calculation of the Electrical Double Layer Width: Debye Length

The thickness of the electrical double layer is the reciprocal of the Debye-Hückel

parameter, lc [43]. In an electrolyte or a colloidal dispersion the Debye length is usually

denoted by the symbol κ-¹

13
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(3.1)

Where

I is the ionic strength of the electrolyte (SSC buffer solution).

co is the permittivity of the free space = 8.85 x 10 -¹² C²N-¹m-².

Er is the relative permittivity of the electrolyte solution = 60 —80 (assumed to be

less than sr of water).

k is the Boltzmann's constant = 1.38 x 10 -²3 JK-¹ .

T is the absolute temperature in Kelvin = 298 K.

NA is Avogadro's number = 6.023 x 10 ²3 .

e is the elementary charge = 1.602 x 10 -¹9 C.

Ionic strength of solution is a measure of the concentration of all ions present in that

solution

Ionic strength,

(3.2)

For calculating the ionic strength of 0.05xSSC buffer (0.0075M Sodium Chloride and
0.00075M Sodium Citrate)

Substituting the following values in the equation (3.1)

Double layer width (Debye length) κ-¹ = 2.8 nm
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3.3 Theoretical Model for the Overlapped Electrical Double Layer Fields

When the separation between the capacitive electrodes is reduced to scale of the

calculated width of the electrical double layers (Debye length), their double layers will

overlap and interact with one another. The ionic distribution in the electrolyte at the

vicinity of the electrode is first predicted by Gouy (1910) and Chapman (1913) utilizing

Poisson-Boltzmann (PB) equation. Such an interaction is expected to reduce the potential

drop across the double layers. For studying the overlapped EDL fields, the classical

treatment involves application of the Poisson-Boltzmann equation, which is a

combination of the Poisson equation and the Boltzmann equation. The assumptions and

approximations involved in the derivation of the Boltzmann equation involves the

treatment of the aqueous phase to be infinitely large, so that the electrical potential in the

liquid far away from the charged electrode surface is zero and that the ionic

concentrations in the liquid far away from the capacitive electrode is equal to the

concentration of the original bulk solution [44].

A theoretical model to evaluate the electrical potential distribution in an

overlapped electrical double layer region was first developed by Verwey and Overbeek

[45-47], based on the Gouy-Chapman EDL theory. For the simplicity of analysis Verwey

and Overbeek's model was developed for an overlapped double layer field between two

infinitely large flat electrodes that have the same surface potential. When the two double

layers overlap, the electrical interaction will change the distributions of the electrical

potential and the ions across the capacitive regions. The redistribution of the electrical

potential in the interacted double layer regions in shown in the Figure 3.1.



Figure 3.1. Schematic description of the electrical potential distribution in the
overlapped EDL field between two electrodes with nano-scale separation. ψ0 is the
electrical potential at the surface, !P is the potential at the middle plane, 2b the
separation distance between the electrodes, and 1/ κ the width of the single electrical
double layer.

For the simplicity of the electrical calculation, the electrodes are assumed to be

infinitely large and hence the electrical double layer fields between them are one

dimensional. The coordinate system used for the calculation is as shown in the figure.

The electrolyte solution is assumed to be symmetric (1:1) salt solution such as KC1 or

NaCl. The fundamental electrostatic equation for such a system which describes the

relationship between the electrical potential and the net charge density per unit volume

Pe at any point in the sample.

Where c is the dielectric constant of the sample.
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Considering that the system is in equilibrium, the electrochemical potential of the ions

should be constant everywhere; that is,

(3.4)

Where i denotes the type i ions and the electrochemical potential p, is defined as

(3.5)

Where μi and zi are the chemical potential and the valence of the type-i ions, respectively;

e is the charge of a proton. The chemical potential of the ions can be further expressed as

(3.6)

where ft? is a constant for the type-i ions, kb is the Boltzmann constant, T is the absolute

temperature of the sample, and n1 is the number concentration of the type-i ions.

Substituting Equations (3) and (4) into equation (2) yields

(3.7)

Integrating equation (5) from a point in the bulk solution where

(3.8)

to a point in the EDL region. ni0 in equation (6) is the bulk concentration of the type-i

ions. This leads to the Boltzmann equation,

(3.9)

The net charge density per unit volume ρe  is proportional to the local concentration

difference between cations and anions. For a 1:1 symmetric electrolyte solution, we have
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(3.10)

Where, z_, = z_ = 1, n+ = n - = n°. Substituting equation (7) and (8) into equation (1) leads

to the well known Poisson-Boltzmann equation

(3.11)

In Verwey and Overbeek' s model of the overlapped EDL fields [48] the Poisson-

Boltzmann equation was applied to the system as shown in the figure 4. with the

following boundary conditions.

(3.12)

(3.13)

Where ψ0 indicates the electrical potential at the surface. If ψ is small, and eψ/kbT < 1,

the right hand side of the equation (3.11) can be simplified by using the approximation,

sinh x = x when x is small.

Therefore, equation (3.11) can be written as

(3.14)

The above simplification is referred to as the Debye-Hückel approximation. If a

parameter κ is defined as

(3.15)

Equation (3.14) can be further simplified as
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(3.16)

K is referred to as the Debye-Hückel parameter. 1/ K is normally referred to as the

characteristic thickness of the electrical double layer. Equation (3.16) together with the

boundary conditions, equation (3.12) and (3.13) can be solved and the solution predicts

the potential distribution in the overlapped double layer region as follows:

(3.17)

Once the potential distribution id determined, the ion concentration distribution can be

obtained from the Boltzmann equation, Eq. (3.9). Under the Debye-Hückel

approximation, the Boltzmann equation can be further simplified as

(3.18)

(3.19)

3.4 Electrical Potential Distribution with in Various Electrode Separations

The electrical potential distribution in between the capacitive electrodes for three

different electrode separations are simulated using MATLAB and is illustrated in figures

5, 6 and 7. The graph shows calculated potential distributions for capacitive architectures
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with 2bK = 1, 4, and 20, where 2b is the separation between the electrodes and 1/ K is the

width of the double layer (Debye length). Utilizing the symmetry of the distribution with

respect to the electrodes only the distribution from one electrode surface to the middle of

the sample is shown. Figure 5 shows the distribution of electrical potential from one of

the capacitive electrodes to the center of the sample when the electrode separation is

equal to the double layer width.

KX

Figure 3.2 Electrical potential distribution in between capacitive electrodes with
electrode separation equal to the double layer width, 2bK = 1.

Considering a case of electrical double layer width being say 10 nm, figure 5 shows the

potential distribution between the capacitive electrodes with 10 nm electrode separations.



Figure 3.3 Electrical potential distribution in between capacitive electrodes with
electrode separation equal to four times the double layer width, 2bκ = 4.

The distribution of electrical potential between the capacitive electrodes with a

separation four times the double layer thickness is shown in figure 6. In this case for the

assumed double layer width of 1 0nm the electrode separation is 40 nm. Figure 7 shows

the electrical potential distribution between the capacitive electrodes when the separation

is 20 times the double layer thickness. This is a case of having an electrode separation of

200 nm with a electrolyte sample of double layer width 10 nm. The graphs show that

when the separation between the capacitive electrodes is comparable to or smaller than

the electrical double width, the potential difference between the electrode surface and the
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Electrode separation = 20 x Double layer width
( 200 mu) for a double layer width of 10mn

Figure 3.4 Electrical potential distribution in between capacitive electrodes with
electrode separation equal to twenty times the double layer width, 2bκ = 20.

middle plane of the sample solution is reduced. This clearly indicates that as the electrode

separation is reduced the effect of the electrical double layer impedance on the applied

excitation signal is minimized.

3.5 Device Fabrication

The most critical parameter for enhancing sensitivity by eliminating the electrode

polarization effect is the nanometer separation between the capacitive electrodes. The

desired separation of less than 50nm is difficult to achieve with the conventional

lithographic techniques [49]. To overcome the resolution limit, we have used a sacrificial
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layer process, where the thickness of the SiO2 spacer film determines the electrode

separation. The process steps are schematically indicated in Figure 3.5.

In the first process step 500nm thick Silicon Nitride is deposited on the single side

polished <100> Si wafer followed by the patterning of 1µm thick photo resist spacers to

act as the sacrificial layer for the formation of the first set of Au electrodes (a). Gold

electrodes are deposited using E-beam evaporation under ultra high vacuum conditions.

The selective removal of the photo resist sacrificial layer defines the first set of Au

electrodes (b).

Figure 3.5 Schematics of the fabrication process flow (a) photo resist spacers are
patterned (b) gold electrodes formed by sacrificial method (c, d) deposition and
patterning of SiO2 for nanometer spacing (e) deposition of gold (f) SiO2 spacer
removal (g) a nano-cavity capacitive sensing structure.

In the next step a very thin and uniform layer of SiO2 is deposited using Plasma

Enhanced Chemical Vapor Deposition (PECVD), to form the nanometer spacers between
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the electrodes (c). Followed by the patterning of SiO2 sacrificial layer, a second layer of

gold metallization of 1µm is done using E-beam evaporation (d). Finally the SiO2 spacer

film between the gold electrodes is selectively etched off using HF (e). The deposited

Silicon Nitride layer will act as etch stop of this etching process and also serves as an

isolator between the gold electrodes and the Si wafer. Here the use of deposited oxide

thin film to define the separation between gold electrodes allows the fabrication of

capacitive structures with electrode separations lower than the resolution limit of optical

or e-beam lithography.

Figure 3.6 Microscopic images of Au electrodes with nano-scale separation.

3.6 Measurement Setup and Calculation of Complex Permittivity from the

Transfer Function

The dielectric property changes due to hybridization are probed using a Fast-Fourier

Transform (FFT) spectrum analyzer. The dielectric properties were investigated over a

frequency range of 10Hz to 100 kHz, with 0V DC bias and 20mV AC signals using an

SR 785, 2 channel dynamic signal analyzer. A Lab View program was used to collect and
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record data through a GPIB interface. An external Op-Amp amplifier circuit is used to

further minimize the noise. Figure 3.7 shows actual measurement system used for the

impedance spectroscopic measurements.

Figure 3.7 Actual measurement system used for the dielectric spectroscopic
measurements on the nano-cavity capacitive sensors.
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Figure 3.8 shows the schematics of the measurement set up used. The ac voltage

applied to the electrodes produces both conduction current and a displacement current

through the sample. The real and imaginary parts of the transfer function V2 ((WV/ (co)

are proportional to the conductivity and the dielectric constant, respectively. The output

of the signal analyzer is applied to one of the capacitive electrodes through R 1 . The other

electrode of the capacitive sensor is connected to the negative input of the amplifier A2,

which holds the electrode at ground potential. As a result the current I that flows through

the nano-cavity sensor produces a voltage V2 which is equivalent to the product of I and

the sample impedance Z. The value

Figure 3.8 Experimental setup for performing the dielectric spectroscopic
measurements on nano-cavity capacitive sensors. An external amplifier circuit is
designed and implemented to reduce noise.

of voltage drop V 1 is equal to the product of I and R². Thus the transfer function of the

system is given by,



27

where Z is the overall impedance of the sample. The transfer function is denoted by T (co)

or T for the rest of the calculations. The purpose of R1 is to provide an upper limit for the

current I as the impedance Z becomes smaller at higher frequencies. The unity gain

amplifier A I provides buffering so that the input impedance of Channel 2 does not affect

the voltage drop across the sample.

For deducing the dielectric permittivity of the sample in between the nano-

cavities, the sensor is represented by an equivalent circuit as shown in the Figure 3.9.

Sample capacitance

Figure 3.9 Equivalent circuit representation of the nano-cavity capacitive sensor. R
represents the resistance of the bulk sample and C the capacitance between the places.

From equation (3.20) the total impedance Z of the sample is given by

(3.21)

(3.22)

From the equivalent circuit of the sample

Substituting in equation (3.21)
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(3.23)

(3.24)

The capacitance C can also be expressed as

(3.25)

Where, co is the absolute permittivity,

Er is the relative permittivity of the sample,

A is the area of the capacitive electrode surface and

d is the nano-scale distance between the electrodes.

Combining equation (3.24) and (3.25) and solving for εr,

(3.26)

Complex permittivity 	 e = ε'—iε" 	 (3.27)

where E'. Er is the relative permittivity of the sample, and E" is the dielectric loss of the

sample.

To calculate ε" from the measured transfer function, considering the real part of Eq. (3.23)

(3.28)

Resistance of the sample can also be expressed as

(3.29)
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where d is the distance between the electrodes, o is the conductivity of the sample and A

is the area of the capacitive electrodes. The conductivity of the sample can be expressed

in terms of dielectric loss and the frequency of the excitation signal as

(3.30)

Combining equation (3.29) and (3.30) together and substituting in equation (3.28) for R

gives,

(3.31)

(3.32)

Hence from the transfer function T(co) obtained from the signal analyzer the relative

permittivity and the dielectric loss of the sample can be calculated as

(3.33)

(3.34)

A MATLAB program is used to implement the above equations and obtain the relative

permittivity and the dielectric loss from the signal analyzer output.

3.7 Dielectric Spectrum of Various Concentrations of Buffer Solutions

The electrical contacts and the functioning of the entire system including the capacitive

element were verified by measuring the dielectric spectrum with air and De Ionized water
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in between the electrodes. The relative permittivity of the samples were calculated from

the transfer functions as described above and verified with the known values. Before

conducting the biomolecualar detection experiments, the response of the sensor to various

concentrations of the buffer solutions was tested to study the properties to the double

layer. The order of introducing the solutions were from DI water to monotonically

increasing concentrations of buffer, in order to avoid any errors due to fluid left over

from previously tested higher concentration. A volume of 0.2 !xi of each of the fluid were

pipette on to the sensor and the remaining fluid and the fluid from the cavities after taking

the spectrum was removed using a small strip of lint-free absorbent paper.

3.8 Immobilization and Hybridization Procedures

DNA oligonucleotides including the thiol labeled probe sequences used for the

experiments were purchased from IDT (Integrated DNA Technologies). 20xSSC buffer

solution (3.0M Sodium Chloride + 0.3M Sodium Citrate) used for the hybridization assay

was purchased from Sigma-Aldrich. The chemicals and other materials used for

microfabrication of the device were obtained from Microfabrication Center at New Jersey

Institute of Technology. Single stranded DNA sequences pre-modified by the thio linker

(5'-CACGTAGCAG/3Thio MC3-D/-3') were immobilized on the gold metal gate using a

concentration of 10uM in 0.05xSSC buffer. By taking advantage the high affinity of

sulphur atoms to gold substrate the DNA molecules with thiol end groups are chemically

assembled onto the gold surface from the solution [50, 51]. The oligomer chains are thus

tethered to the gold substrate at one end and the rest of the chain stays fully extended at

an angle of approximately 30 degree from the surface.
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The Van der Waals forces between adjacent chains helps to order the oligomers

parallel to each other [52]. The <111> crystal orientation of gold which is obtained by

thin film deposition of gold on SiO2 is found to give excellent result for the formation of

self assembled monolayers (SAM) [53]. Mercapto hexanol (HS- (CH2)6 OH ) SAM

layers were immobilized in between the DNA strands in order to passivate the vacant

spaces. Mercaptohexanol layer would also help in providing an upright position for the

oligomers due to electrostatic repulsion. Prior to immobilization procedure the structure

was cleansed using acetone, isopropanol and deionized water. The substrates with

immobilized oligomers were then allowed to interact with complementary oligomers (5'-

CTG CTA CGT G-3') of concentrations from 0.111,M to 1011,M over a short period of

time. After incubation, the substrates were rinsed with deionized water to remove the

nonspecifically bound target molecules.
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3.9 Results and Discussion

The results of the dielectric spectroscopic measurements with air and De-Ionized water

between the capacitive electrodes are shown in the Figure.3.10. The observed relative

permittivity of DI water less than 80 can be explained by the presence of unfilled air gaps

between the nano-space cavities. The dielectric spectrum of various concentrations of the

SSC buffer used is shown in Figure 3.11. The measured capacitance (relative

permittivity) is found to be not significantly influenced by the ionic strength of the

solution. This is extremely beneficial in using the sensors for studying and detecting the

dielectric property changes due to the presence of biomolecules.

Figure 3.10 Dilelectric spectrum of Air and DI water between the capacitive
electrodes.



Dielectric spectra of various concentrations of SSC buffer
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Figure 3.11 Relative permittivity as a function of frequency for various concentrations
of buffer solutions. The measured permittivity is found to be not significantly
influenced by the ionic strength of the solution.

This observation can be accounted by two competing effects happening in the

sensor as a result of the increase in the salt concentration. When the ionic strength is

increased the double layer width will decrease and hence the overall capacitance

(permittivity) also tends to increase. But, at the same time opposing to this effect there is

a decrease in the overall sensor permittivity up on increasing ionic strength due to the

replacement of water molecules with salt molecules of lower dielectric constants.

In order to monitor the formation of the bio-recognition layer, measurements

were taken before and after probe immobilization. After immobilization, a solution of

complementary oligomers (5'-CTG CTA CGT G-3') of concentration varying from
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0.1 [IM to 1µM was added on the sensor surface and left to interact over a short period of

time. After a short incubation time, the variation of the dielectric spectrum was recorded.

Figure 3.12 The dielectric spectrum after probe immobilization and target oligomer
hybridization. The replacement of water molecules (c= 80) by oligonucleotide
sequences of lower dielectric permittivity is reflected as a decrease in the overall
sensor permittivity.

To monitor the exact response of the sensor towards the hybridized targets, the

measurement was taken after the removal of nonspecifically bound targets by washing.

The relative permittivity changes after single stranded probe oligomer immobilization

and target hybridization is shown in Figure 3.12.

The immobilization of oligomer probes decreases the sensor permittivity which

can be explained by the replacement of water molecules of high relative permittivity
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biomolecules of low relative permittivity. The hybridization of complimentary target

sequences to the immobilized probe sequences further enhances this effect. Figure 3.13

shows the dielectric spectrum after the interaction of the immobilized probe sequences to

the sample of non-complimentary target sequences.

Figure 3.13 Dielectric Spectra after the interaction of non-complementary target with
the immobilized probe sequence. The slight variation in relative permittivity value
indicates the non-specifically bound oligomers.

Only negligible change in dielectric property is observed upon the exposure to the non

complementary sequence. This supports the relationship between capacitance change and

specific nucleotide interaction.



CHAPTER 4

FIELD EFFECT CAPACITIVE SENSORS FOR REAL-TIME MONITORING
OF NUCLEIC ACID INTERACTIONS

Field effect based devices which utilizes the intrinsic negative charge of the Nucleic Acid

molecules for the generation of a sensing signal represent a second set of biosensing

architectures of great potential interest. The compatibility of these devices with the

standard micro and nano fabrication techniques makes them cost-effective. This class of

sensors operates by the field effect modulation of charge carries in a semi conductive

region, due to the presence of charged analyte biomolcules. The adsorption or binding of

charged macromolecules such as DNA and protein on to the gate electrode of these

device structures will effectively alter the surface potential at the gate/electrolyte

interface, which in turn produces a redistribution of charge carriers in the semi

conducting (Si) region of the sensor. Therefore In the recent years several experimental

attempts have been made for the label free detection of biomolecular interactions using

by their intrinsic molecular charge using various configurations of Field effect based

sensing devices. Ion sensitive Field effect transistor (ISFETs) and its relatives (Enzyme

FETs BioFETs) and Capacitive Electrolyte-Insulator Semiconductor structures (EIS)

represent two major examples of the Field effect device architectures [8, 54-64].

4.1 Field Effect Transistor (FET) based Sensors

Most of the successful research works in this direction have made use of a Field Effect

Transistor (FET) structure [62]. The physical structure of a FET type biosensor for

detecting DNA and protein molecules is very similar to the MOSFET structure and hence

36
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the operating principle can be explained based on the MOSFET operation theory. The

presence of charged macromolecules as a result of immobilization will modify the

distribution of charge carriers in the channel region of the semiconductor and these

changes will be visible in the I-V characteristics of the device. The addition of charged

macromolecules as a result of hybridization or other biomolecular interaction will

enhance this effect. Ion Sensitive Field Effect Transistor (ISFET) sensors consists of a

MOSFET structure with the gate electrode replaced by an ion sensitive membrane,

analyte solution and a reference electrode.

Blomolecules in Electrolyte

Figure 4.1 Schematics of a Field Effect Transistor (FET) based biosensor.

The selectivity and chemical sensitivity of the ISFET structure depends on the

electrochemical properties of the insulator/electrolyte interface. FET structures with

different gate insulator materials such as Si02, Si02-Si3N4, silanized Si02, Si02 —poly

lysine, Al203, Ta205 etc. with varying thickness between a couple of nanometers to

microns have been reported in the literature for biomolecular detection and pH sensing.
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Many affinity based biosensor have been developed by the immobilization of the specific

probe molecules on the gate material using the appropriate linking chemistries.

In this work the potential of a simple and easy to fabricate Metal Oxide

Semiconductor (MOS) capacitive structure in providing real-time monitoring and

sensitive detection of oligonucleotide hybridization is demonstrated. The experiments

performed show that there is almost no advantage in using a MOSFET (Metal Oxide

Semiconductor Field Effect Transistor) structure to obtain the information equally

accessible with a MOS capacitor, which is much easier to fabricate and analyze. In

particular, the simultaneous shift in the C-V characteristics of a MOS capacitive sensor

along both the capacitance and voltage axis makes the C-V method more informative

than a static DC measurement on the transistor structure.

4.2 MOS Capacitor Operation

MOS capacitive structures have been used as a powerful diagnostic tool in both

monitoring integrated circuit fabrication and studying the electrical properties of the

MOS field effect system, because of its simplicity in fabrication and analysis [65].The

Field Effect Principle owes its origin to Liandrat G, who proposed in 1935 that the

conductivity of a semiconductor material can be modified by the application of an

external electric field [66].

Considering an nMOS system (p-Si) the application of a negative potential on the

gate metal (Au), will accumulate the majority carriers (holes) underneath the gate

dielectric (Si02) thus forming an accumulation region. Upon increasing the voltage to the

positive side, the majority carriers will be repelled away from the area beneath the gate
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dielectric leaving behind negative ions resulting in the depletion region. The number of

these ions equals the number of positive charges on the gate to preserve electrical

neutrality. Further increment of voltage results in a higher number of charges on the gate

electrode than the number of ions in Silicon. This leads to the appearance of negative

mobile carriers- electrons, near the interface region of greatest voltage forming the

inversion layer.

Figure 4.2 (a) Schematic representation of a Metal-Oxide-Semiconductor Capacitive
Sensor operation. (b) Capacitance-Voltage Characteristics (C-V) of an nMOS system
(p-type Si) showing accumulation, depletion and inversion regions of operation.

These changes can be monitored by measuring the capacitance across the MOS

structure as a function of gate bias VG. For measuring this C-V characteristic a DC

polarization voltage is applied on the gate metal (Au) to set the working point of the

sensor and a small superimposed (100mV) AC signal is applied to measure the

capacitance of the device. The depletion region of the C-V curve is found to be more

useful for biosensing applications.
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4.3 Bio-molecular Sensing Principle

During the immobilization of DNA molecules, the intrinsic negative charge due to the

phosphate backbone will effectively alter the surface potential at the gate metal (Au)

which induces a change in charge distribution in the silicon underneath as described

above. The presence of an additional charged molecular layer due to hybridization

enhances the effect. These charge redistribution in silicon layer due to the presence of

biomolecules modifies the depletion capacitance (Cdepletion) and is reflected as a shift

along the capacitance axis of the C-V characteristics. The C-V characteristics will also be

shifted along the voltage axis of due to the interfacial potential difference at the

Au/sample interface resulting from biomolecular interactions, which is in series with the

applied gate voltage VG. The immobilization and hybridization event can be electrically

modeled as the transfer of a certain quantity of charge from the solution to the gate metal

(Au).

Equivalent circuit of a MOS capacitor can be simplified as a series connection of

voltage independent oxide capacitance Cox, and voltage dependent space charge

capacitance of the Si, CSi which gets modified with the electrolyte/metal (Au) interface

potential 4).

In literature, Field effect devices with different sensor configurations have been

described; Transistor structures without having an immobilized probe layer had the

disadvantage of reduced charge effects due to molecular interactions happening outside
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(b) Target hybridization 	 (c) non-complimentarytarget (control)=--

Figure 4.3. Schematic showing the biosensing principle of the Field Effect Sensing
devices. The immobilization of the negatively charged single stranded probe
oligomers on to the gate surface (Au) extends the depletion region in the Silicon (a).
Hybridization of the complimentary target sequences to the immobilized probe
sequences further increases the depth of the depletion region in Si (b). Exposure of the
bio-functionalized sensor to non-complimentary target sequences produces negligible
change in the depth of the depletion region (c).

the Debye Layer. The screening of molecular charges due to counter ions reduces the

sensitivity towards the biomolecular interactions. Similar is the case with capacitive

structures based on an Electrolyte-Insulator-Silicon structure with probe sequences

immobilized on biomimetic surfaces like polylysine [8] or agarose [67]which has a

fraction of DNA charge above the detectable region due to increased thickness of the
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biomimetic layers. Although, the above problem has been solved by tethering the

molecules directly on to the gate insulator [68] (SiO2,Si3N4) surfaces

contamination/uncontrolled modifications of these materials in contact with the

electrolyte solution possesses a significant problem to the reproducibility of the

measurements. The use of a thin film of gold as the gate material in our sensing structure

offers several advantages. The chemical inertness of gold protects it from getting

oxidized by the electrolytic environment. Moreover, the chemistry of covalent

immobilization of probe sequences using alkyl thiol linkage has been well studied and the

immobilization is easily achievable.

4.4 Sensor Fabrication and Measurement setup

The MOS capacitive sensors used in this work were fabricated on n-type Silicon wafer

with resistivity 10 ohm-cm. A thermal oxide layer of <10 nm is grown as the gate

insulator. The sensitivity towards gate surface potential changes is enhanced by the use of

this extremely thin layer of gate insulator [69]. Circular regions of 150nm thick, 2mm

diameter gold regions are deposited as the gate electrode. A lOnm Titanium layer is used

to promote the adhesion of gold to SiO2. Back side Ohmic contact is provided by a

150nm layer of Al on silicon. The performance of the MOS capacitive sensors in

monitoring biomolecular interactions were studied by analyzing Capacitance-Voltage (C-

V) characteristics across the device.

The C-V characteristics were analyzed in a probe station using HP4145B

Semiconductor Parameter Analyzer. Capacitance-Voltage (C-V) curves were obtained by

varying the gate voltage from 1.5V (accumulation) to -1.5V (inversion) through the
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depletion region (0.5 to -0.7 V).The effect of electric field in enhancing the

immobilization density, rate of hybridization and selectivity towards target sequences

were investigated by applying sufficient potential to the gate metal.

Materials

DNA oligonucleotides including the thiol labeled probe sequences used for the

experiments were purchased from IDT (Integrated DNA Technologies). 20xSSC buffer

solution (3.0M Sodium Chloride + 0.3M Sodium Citrate) used for the hybridization assay

was purchased from Sigma-Aldrich. The chemicals and other materials used for

microfabrication of the device were obtained from Microfabrication Center at New Jersey

Institute of Technology.

4.5 Probe Immobilization and Target Hybridization Procedure

Single stranded DNA sequences pre-modified by the thio linker (5'-

CACGTAGCAG/3Thio MC3-D/-3') were immobilized on the gold metal gate using a

concentration of 10uM in 0.05xSSC buffer. By taking advantage the high affinity of

sulphur atoms to gold substrate the DNA molecules with thiol end groups are chemically

assembled onto the gold surface from the solution [50, 51]. The oligomer chains are thus

tethered to the gold substrate at one end and the rest of the chain stays fully extended at

an angle of approximately 30 degree from the surface. The Van der Waals forces between

adjacent chains helps to order the oligomers parallel to each other [52]. The <111>

crystal orientation of gold which is obtained by thin film deposition of gold on SiO2 is

found to give excellent result for the formation of self assembled monolayers (SAM)[53].

Mercapto hexanol (HS- (CH2)6 OH ) SAM layers were immobilized in between the
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DNA strands in order to passivate the vacant spaces. Mercaptohexanol layer would also

help in providing an upright position for the oligomers due to electrostatic repulsion.

Prior to immobilization procedure the structure was cleansed using acetone, isopropanol

and deionized water.

4.6 Results and Discussion

The Capacitance-Voltage characteristics for the bio-fuctionalization procedure were

monitored in real-time. Figure 4.4 shows the C-V characteristics at various time intervals

of the MOS capacitive sensor before and after the oligomer probe introduction. The

constant shift of the characteristics to the side of positive gate voltage confirms the

presence of more negative charge on the gate surface. A shift of 140 mV is observed due

to immobilization after the exposure of the gold electrode to the thiol labeled probe

sequences for 25 minutes. The substrates with immobilized oligomers were then allowed

to interact with 1µM concentration of complementary oligomers (5' -CTG CTA CGT G-

3') over a short period of time. Figure 4.4 shows the C-V characteristics of the MOS

structure during hybridization event at various time intervals. Due to the hybridization of

the complimentary sequences a further shift of 73 mV towards the positive side is

observed after 20 minutes. This agrees with the presence of an additional layer negatively

charged DNA molecules.
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Figure 4.4. Capacitance-Voltage characteristics measured at various time intervals
during the immobilization of single stranded probe DNA sequences. A positive shift in
the characteristics can be observed as a result of the immobilization of negatively
charged oligonucleotide molecules.

As a control experiment, non-complementary target sequences (5'-ATG GCC CTG T-3')

of same concentration as the complementary target solution is allowed to interact with the

immobilized probe layer. Figure 4.6 shows negligible change in dielectric property upon

exposure to the non complementary sequence for a time period of 25 mins. This supports

the relationship between capacitance change and specific nucleotide interaction.
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Figure 4.5. Capacitance-Voltage characteristics measured in real-time during the
hybridization of immobilized probe sequences with complimentary target sequences.
The binding of DNA molecules results in a further positive shift in the C-V
characteristics due to their intrinsic negative charge.
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Figure 4.6 C-V characteristics as a result of the interaction of immobilized probe
sequences with non-complimentary targets.

4.7 Conclusions of the Study

In this study, the use of Metal-Oxide-Semiconductor (MOS) Field Effect Capacitive

sensors in providing label-free, real-time monitoring of oligonucleotide hybridization is

demonstrated. The immobilization of probe oligomers on the sensor surface and their

hybridization with the target oligomers of complimentary sequences has produced a

significant shift (140mV and 73mV respectively) in the Capacitance-Voltage

characteristics measured across the device. The active area of the sensor can be further
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miniaturized using standard photolithographic techniques promoting massively parallel

screening of nucleic acid samples in array formats.

4.8 Dual Parametric Capacitive Sensors

In an attempt to utilize the individual merits of nanoscale electrochemical capacitive

sensor and field effect MOS capacitive structure, a novel dual parametric sensing

architecture encompassing both these transducing elements on a single sensor is

proposed. The nano-scale Debye capacitive element consisting of gold electrodes

measures and detects the Dielectric permittivity (u) changes up on analyte-probe

interactions, while the Field effect capacitive element monitors and detects the Surface

potential (y) changes up on the binding of the charged biomolecules. The detection

scheme based on the combined analysis of the two parameters- Dielectric property and

intrinsic molecular charge- of biomolecules has found to reveal complimentary

information of significance about the analyte-probe interactions.

Figure 4.7 Schematics of a Dual Parametric Capacitive sensor comprising of both the
nano-scale capacitive sensor and the Field effect capacitive sensor on a single device
architecture.
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Figure 4.8 Operating principle of the dual parametric capacitive sensor.



CHAPTER 5

ELECTRIC FIELD ASSISTED IMMOBILIZATION, HYBRIDIZATION AND
IMPROVEMENT IN SELECTIVITY- ACTIVE SENSING MECHANISMS

5.1 Introduction

The last two chapters have presented two promising biosensig device architectures and

demonstrated their advantages over the already developed techniques. These sensing

mechanisms with their improved sensitivity and the use of reduced sample volume gives

promises for serving as building blocks of point of care diagnostics or other such portable

hand-held diagnostic tools. Generally the DNA hybridization experiments utilizing any

such sensing mechanisms are carried out under conditions where the reaction rates and

selectivity (stringency) conditions are controlled by varying target NA concentration,

temperature, or ionic strength of the buffer solution used. Although such classical,

passive hybridization assay procedures utilizing optical detection mechanisms are already

developed, such approaches limit the degree to which the detection speed and specificity

or selectivity can be improved. By the development active sensing mechanisms utilizing

precisely controlled electric fields, the rate and the selectivity of the detection process is

demonstrated to be immensely improved.

5.2 Active Sensing Principle

Since oligomers in solution carry a net negative charge, they can be transported towards

the probe molecules immobilized on the sensor surface (Au) by applying a positive bias

on the surface. Such electrophoretic transport of the thiol labeled oligomer probe

molecules enables the functionalization of the sensor surfaces selectively at a much faster

50
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rate than the passive immobilization techniques. The application of electric field of

appropriate polarity and controlled intensity can also help in improving the hybridization

rate and efficiency. The electric field will help offset the electrostatic repulsion between

the negative charges on the immobilized probe and target molecules in solution [70]. The

orientation of the Probe oligomers immobilized on the sensor surface can also be

controlled by the applied electric field [71].

Figure 5.1 Schematic representation of an active sensing mechanism based on MOS
capacitive sensors.
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This electric field assisted transport of oligomers towards the immobilized probes will not

only compensate for the reduced ionic strength but also enhance the rate of hybridization.

The movement of the target nucleotide molecules toward the immobilized probe

sequences, facilitated by electric field can result in a concentrating effect of the target

molecules near the surface. This can result in the binding of probe and target sequences in

a much higher rate.

The electric field induced (electrophoretic) transport of nucleotide molecules can

be also used for enhancing the selectivity of the sensing process. The selectivity of the

sensing process depends on the specificity of the binding between the target and probe

sequences. The unhybridized target molecules which stay non-specifically bound on the

sensor surface will also contribute to the sensing signal. By applying a negative bias on

the Gold (Au) surface these non-specifically bound target nucleotide molecules can be

released and repelled away from the sensing area, thereby eliminating their effect on the

sensing signal.

By adjusting the electric field to the appropriate level, selective dehybridization

(melting) of the target-probe pair depending up on their degree of complimentarity is also

made possible. Analyzing the melting curves of various target-probe pairs as a function

of the bias voltage (V) will provide much more information to differentiate between

closely related targets sequences. Such techniques are promising for applications such are

single nucleotide polymorphism (SNP) analysis.

Nanogen has initially developed the concept of electric field assisted DNA

immobilization [70, 72-75] with the intension of increasing the hybridization rates on the

chip and providing improved immobilization selectivity. The DNA chip (NanoChip™)
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developed by Nanogen utilizes the controlled electrophoretic transport of the DNA

molecules to achieve pixel to pixel selectivity in the probe immobilization procedures.

5.3 Experimental Methods

A systematic study of the effect of external electric field on the immobilization of single

stranded probe sequences and their hybridization with the target sequences utilizing a

Field effect capacitive sensing mechanism has been conducted. The use of precisely

controlled electric field of appropriate polarity to improve the selectivity of the detection

process through the attainment of selective melting of the partially hybridized target-

probe pairs has also been demonstrated. In our experiments, the Metal Oxide

Semiconductor, (MOS) field effect capacitive sensor described in Chapter 3 is used as the

detection device due to the easiness of sample handling and measurement setup compared

to the nano-cavity capacitive sensors. As a first step the electric field is applied during the

NA immobilization process. Initially, a voltage varying from 0 to 5V was applied

between the Aluminum back contact and a Pt wire immersed in the sample solution with

the Si back contact positively biased. A problem associated with applying the voltage

through the Si back contact (Al) most of the applied potential is dropped across the

Silicon dioxide layer. Since the capacitance of the dioxide layer is much smaller (60nF

cm-²) than the double layer capacitance value observed for Au (3 µF cm -²) only a small

fraction of the applied potential will fall in the double layer of bare gold surface. Hence

only approximately 1/500 of the applied voltage will have an effect in promoting the

immobilization or hybridization events. In order avoid this situation in the later set of

experiments the voltage was applied directly to the gold gate surface of the MOS
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capacitor with respect to the Pt electrode in contact with the solution. The Aluminum

back contact of the Silicon substrate was kept grounded during the field assisted

immobilization and hybridization procedures.

Figure 5.2 C-V characteristics of the Field Effect Capacitive sensor after 60s of
electric Field assisted immobilization and hybridization procedures.

The immobilization experiments has been done with probe oligomer sequences pre-

modified by the thio linker (5'-CACGTAGCAG/3Thio MC3-D/-3') with a concentration

of 10µM in 0.05xSSC buffer under the effect of 0.3 to 0.7 V applied between the Gold

gate electrode and the Pt electrode immersed in the sample solution. Figure 5.2 shows the

results for the field assisted immobilization and hybridization procedure. The electric

field assisted transport of thiol-labeled probe oligomers towards the Au surface resulted

in the attainment of immobilization at a much faster rate. A positive shift of 126 mV is
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observed after the exposure of sensor surface to the probe molecules for 1 min, under the

presence of electric field. Increasing of the voltage range above 1 V caused the gold thin

film to peel off from the sensor surface.

Figure 5.3 Capacitance-Voltage characteristics measured at various time intervals
during the immobilization of single stranded probe DNA sequences. A positive shift in
the characteristics can be observed as a result of the immobilization of negatively
charged oligonucleotide molecules.

Under normal conditions, immobilization of probe molecules on to Gold electrodes

utilizing thiol linkages takes 20-25 minutes to attain a the similar variation in the

measured C-V characteristics. For the ease of comparison the results obtained during the

immobilization procedures without the effect of electric field is also shown below in

Figure 5.3. The effect of an electric field on the hybridization procedures using

complimentary target sequences was also studied. The substrates with the immobilized
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oligomers were then allowed to interact with 1µM concentration of complementary

oligomers (5'-CTG CTA CGT G-3') for a time period of 1 minute under the influence of

0.3 V- 0.7 V applied to the gate electrode with reference to the Pt electrode.

-1 	 -0.8 	 -0.6 	 -0.4 	 -0.2 	 0 	 0.2 	 0.4
gate voltage (V)

Figure 5.4 Capacitance-Voltage characteristics measured in real-time during the
hybridization of immobilized probe sequences with complimentary target sequences.
The binding of DNA molecules results in a further positive shift in the C-V
characteristics due to their intrinsic negative charge.

The localized concentrating effect of the target molecules near the immobilized

probe surface resulted from the field assisted transport enabled the binding of probe and

target sequences at a much higher rate. From Figure 5.2 a positive shift of about 66 mV is

observed after interaction of probe molecules with the complimentary target sequences

for 1 minute. The C-V characteristics obtained during normal hybridization procedures

without the effect of electric field is also shown below in Figure 5.4 for comparison.

Under normal conditions 20 minutes of interactions between the immobilized probe

sequences and the probe molecules resulted in a shift of 73 mV in the C-V characteristics.
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These results confirm that under the influence of electric field both the immobilization

and hybridization processes are strongly promoted and the efficiency is much higher. The

application of electric field could be also used to enhance the selectivity of the molecular

detection process.

5.4 Active Sensing, Advantages and Applications

The active electronic sensing mechanism proved to be feasible on field effect capacitive

devices can be extended to sensing array formats. The electrophoretic fields produced

due to the application of appropriate current and voltage levels to such sensor arrays can

be used to transport and concentrate nucleic acid molecules on to the specific (positively

biased) test sites. By designing the microelectrode array can be designed in such a way

that the test sites or the microsensing locations on its surface can be negatively or

positively biased in any desired configuration. There fore any desired pattern of nucleic

acid transport to one or more than one test location on the array can be attained. Single

stranded nucleic acid probes such as oligonucleotides, DNA, RNA, PCR amplicons etc.

which are functionalized with thiol labels can be selectively and rapidly transported and

bound on to the desired sensing locations.

Similarly, the target nucleic acid sequences in the sample can then be

electrophoretically transported, locally concentrated and hybridized on to any specific

test sites functionalized with the probe sequences. Heller et al. has demonstrated similar

techniques associated with fluorescence based detection mechanism. As clearly observed

in the experimental results such rapid transport and associated localized concentrating

effect of the target nucleic acid sequences near the sensing areas will lead to a significant
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reduction in the hybridization time and hence an immense improvement in the efficiency

of such detection mechanism when compared to the passive hybridization assays. This

has profound advantages in the development of diagnostic tools without performing prior

analyte amplifications such as point of care diagnostic devices. In such real life situations

where the concentration of the target DNA is low active electronic technique can be

developed to attain hybridization in minutes or even seconds with higher efficiency

where as the conventional passive techniques could take hours.

By reversing the electric field bias applied to the sensing area (negative bias),

rapid removal of the unhybridized nucleic acid molecules can be achieved. Also, by

adjusting the electric field to the appropriate intensity selective dehybridization (melting)

of the target anlayte molecules from the immobilized probe sequences depending on their

degree of complimentarity can be attained. This novel technique of "electronic stringency

control" can serve as a reliable and rapid technique for discriminating single base

mismatches in point mutations and Single Nucleotide Polymorphisms (SNPs) [76, 77].

5.5 Summary of the Study

The improvement in the detection speed and selectivity by the use of external electric

field has also been demonstrated. The immobilization of the single stranded probe

sequences was clearly found to be promoted by the external electric field. The application

of a positive bias of 0.3 V to 0.5 V during the immobilization procedure created a

positive shift of 126 mV with in 1 minute compared to the shift of 140 mV produced by

25 minutes under normal conditions. More importantly, the hybridization of the target

sequences was strongly promoted by the external electric field of favorable polarity and
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required hybridization efficiency was attained with in 1 minute of exposure to the

immobilized probe sequences. Future work will be concentrated on optimizing this

technique to be able to discriminate single base pair mismatches and also in developing

sensing architectures with higher degree of parallelism. From reports in the literature by

Fixe et al. (2003) suggest that the application of fast electric pulses has been used to

reduce the hybridization time to the seconds range. The electric field assisted

immobilization procedures are promising for applications where different probe

sequences are required to be immobilized at specific sites of an array of sensors.



CHAPTER 6

SUMMARY & FUTURE DIRECTIONS

6.1 Summary of the Study

In this work, two separate sensing mechanisms have been demonstrated for the label-free

electrical detection of nucleic acid hybridization. In the first section, capacitive

biosensors with electrode separation in the order of electrical double layer width were

designed and fabricated using Si02 sacrificial layer techniques. The nano scale electrode

space confinement is shown to eliminate noises from electrode polarization effect and

solution conductivity, permitting the dielectric spectroscopic measurements at low

frequencies. DNA hybridization experiments with complementary and non

complementary target sequences were performed and a 30-40% change in sensor

permittivity (capacitance) was observed after the hybridization of the immobilized probe

with the complementary oligomer sequences. Work is presently being carried out in order

to optimize the detection mechanism and improve the sensitivity and selectivity of the

sensor. Ideally, Single Nucleotide Polymorphism (SNP) could be detected with the

current geometries of the device. The improved sensitivity demonstrated by the Debye

Capacitive sensor combined with its use of reduced sample volume and low fabrication

cost makes it promising for applications such as point of care diagnostics and biowarfare

agent detection.

In parallel to the above work, the applications and advantages of a Metal-Oxide-

Semiconductor (MOS) Field Effect Capacitive sensor in providing label-free, real-time

monitoring of oligonucleotide hybridization was demonstrated. The immobilization of

probe oligomers on the sensor surface and their hybridization with the target oligomers of

60
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complimentary sequences has produced a significant shift (140mV and 73mV

respectively) in the Capacitance-Voltage characteristics measured across the device. The

active area of the sensor can be further miniaturized using standard photolithographic

techniques promoting massively parallel screening of nucleic acid samples in array

formats.

In the final section of the thesis the proof of principle of a novel technique of

enhancing the speed and selectivity of the molecular detection processes by the

application of an external electric field of appropriate intensity was demonstrated. Future

work will be concentrated on optimizing this technique to be able to discriminate single

base pair mismatches and to improve the concentration sensitivity of the sensor.
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