## Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If $a$, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

> Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

# ABSTRACT <br> ASSESSING TRAINER HAND FORCES FOR MANUAL BODY WEIGHT SUPPORTED WALKING 

by<br>Manish Raval

Spinal cord injuries occur in approximately 12,000 to 15,000 people per year in the U.S. About 10,000 of these people are permanently paralyzed. Most spinal cord traumas occur in young, healthy individuals. Males between 15 and 35 years old are most commonly affected.

Recently new approaches to facilitate walking recovery for individuals after a spinal cord injury, have been directed towards a therapy known as Locomotor Training (LT) that implements repetitive stepping on a treadmill using body weight support. A major intent of LT research is to investigate the effect of an extended period of LT on bilateral muscle activation (EMG pattern, amplitude, and burst duration).

Currently, training is subjective and there is no way to evaluate if trainers are applying the appropriate force or not. Researchers have requested a method to measure the amount of force applied by the trainers. Researchers would use this information to assess the subject's progress over the course of training, to evaluate the consistency of training and to ensure trainers are properly trained.

A glove-like device was built to measure how much force the human trainers apply while performing LT for individuals with spinal cord injury (SCI) for the goal of quantifying force and assessing effectiveness. The development of the above mention device would be directly used by therapists to improve rehabilitation treatments. Measuring levels of assistance, rehab programs can identify how much improvement a
particular patient has achieved and at what rate. Rehabilitation programs would also be able to evaluate the performance of the trainers and observe just how effective they are.

# ASSESSING TRAINER HAND FORCES FOR MANUAL BODY WEIGHT SUPPORTED WALKING 

by
Manish Raval

# A Thesis <br> Submitted to the Faculty of New Jersey Institute of Technology <br> in Partial Fulfillment of the Requirements for the Degree of Master of Science in Biomedical Engineering 

Department of Biomedical Engineering

January 2009
 SUPPORTED WALKING

## Manish Raval

|  | $12 /$ १/08 |
| :--- | :---: |
| Dr. Lisa Simone, Co-Thesis Advisor | Date |
| Research Professor of Biomedical Engineering, NJIT (2006-2008) |  |

Dr. Sergei Adamovich, Co-Thesis Advisor
Assistant Professor of Biomedical Engineering, NJIT

|  | $12 / 09108$ |
| :--- | :---: |
| Dr. Richard A. Foulds, Committee Member | Date |
| Associate Professor of Biomedical Engineering, NJIT |  |

Dr. Gail Forrest, Committee Member
Interim Director of the Human Performance and Movement Analysis Lab, KMRREC

## BIOGRAPHICAL SKETCH

Author: Manish Raval
Degree: Master of Science
Date: ..... January 2009
Undergraduate and Graduate Education:

- Master of Science in Biomedical Engineering,New Jersey Institute of Technology, Newark, NJ, 2009
- Bachelor of Science in Biomedical Engineering, Mumbai University, Mumbai, India, 2006
Major: Biomedical Engineering

To my beloved sis, Heena


My life

## ACKNOWLEDGMENT

I am very grateful for the advice and support of my earlier advisor, Dr. Lisa Simone, for her feedback and for keeping me focused on my research and for helpful comments on the text. I also thank her for providing me an opportunity to grow as a student and engineer in the unique research environment she creates. I would like to thank Dr. Sergei Adamovich to allow me finish my thesis under him and taking over my responsibilities. I would also like to thank Dr. Gail Forrest for the paper that inspired this thesis, as well as for the many discussions carried on long-distance via e-mail. Special thanks are given to Dr. Richard A. Foulds for actively participating in my committee.

Conducting research on this fairly new topic was made enjoyable by the help and support that I received from many of my fellow graduate students in the Functional Measures Lab. I also wish to thank my sister, Heena Raval for her assistance over the years. And everyone else, who kept asking me all these years: "Have you finished your thesis yet?"

## TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION ..... 1
1.1 Objective ..... 1
1.2 Background Information ..... 1
2 SENSOR ..... 8
2.1 Requirements ..... 8
2.2 Type of Sensor ..... 8
2.3 Positioning of Sensor ..... 13
2.3 Sensor Testing ..... 17
3 DESIGN AND TESTING ..... 18
3.1 Block Diagram ..... 18
3.2 Circuit Diagram ..... 19
3.3 Sparkfun Datalogger ..... 20
4 RESULTS AND CONCLUSION ..... 31
4.1 Results ..... 31
4.2 Conclusion ..... 34
5 FUTURE WORK ..... 35
APPENDIX SPARKFUN DATALOGGER ..... 36
REFERENCES ..... 41

## LIST OF TABLES

Table Page
2.1 Testing for linearity ..... 17
4.1 Force vs. Voltage ..... 31

## LIST OF FIGURES

Figure Page
1.1 Anatomy of Spinal Cord ..... 1
1.2 Positioning of Vertebrae ..... 3
1.3 Locomotor Training using BWS ..... 5
1.4 Leg muscles ..... 7
2.1 B-201-L Sensor ..... 8
2.2 Touch glove ..... 9
2.3 Touch glove with I-Cube X Digitizer ..... 10
2.4 XFL205R ..... 10
2.5 XFL225D ..... 11
2.6 XFL212R ..... 12
2.7 XFL212R ..... 13
2.8 Glove with force sensor ..... 14
2.9 Positioning of sensor on right hand ..... 15
2.10 Positioning of sensor on left hand ..... 16
2.11 Force Transfer Function ..... 17
3.1 Block Diagram ..... 18
3.2 Circuit Diagram ..... 19
3.3 Sparkfun Datalogger ..... 20
3.4 Basic layout ..... 22
3.5 Bread Board Testing ..... 29
3.6 PCB mounting ..... 30
3.7 Device prototype ..... 30
4.1 Voltage vs. Samples ..... 32
4.2 Force vs. Samples ..... 33
5.1 Mannequin testing ..... 35

## CHAPTER 1

## INTRODUCTION

### 1.1 Objective

The objective of this study is to design and develop a device which can be strapped on therapist's arm to measure the force applied. This will help to quantify the amount of force given at the legs of individuals with Spinal Cord Injury by therapist and to train and evaluate performance of novice therapist.

### 1.2 Background Information

Spinal Cord Injury (SCI) is injury to the spinal cord that results in a loss of function such as mobility or feeling. Most of the times this is caused due to trauma (car accident, gunshot, falls, etc.) or disease (polio, spina bifida, Friedreich's Ataxia, etc.). The spinal cord does not actually have to be cut in order for a loss of functioning to occur. In fact, even if it is slightly injured, there is loss of function. [10]


Figure 1.1 Anatomy of Spinal Cord. http://www.spinalinjury.net/html/_spinal_cord_101.html

The spinal cord is about 18 inches long and extends from the base of the brain, down the middle of the back, to about the waist. The upper motor neurons (UMNs) are the nerves that lie within the spinal cord and their function is to carry the messages back and forth from the brain to the spinal nerves along the spinal tract. The lower motor neurons (LMNs) are the nerves that branch out from the spinal cord to other parts of the body. These nerves exit and enter at each vertebral level and communicate with specific areas of the body. There are two types of LMNs: sensory and motor. The sensory portions of the LMN carry messages about sensation from body parts and organs to the brain. The motor portions of the LMN send messages from the brain to the various body parts to initiate actions.

The spinal cord is surrounded by rings of bone called vertebra as seen in Figure 1.1 which constitute the spinal column (back bones). The vertebra are named according to their location and in general the higher the injury in the spinal cord, the more discomfort and dysfunction the patient has. As seen below in Figure 1.2, the eight vertebra in the neck are called the cervical vertebra. Cervical SCI's usually cause loss of function in the arms and legs, resulting in tetraplegia. Then have the twelve vertebra in the chest which are called the thoracic vertebra. Injuries in this region usually affect the chest and the legs and result in paraplegia. The vertebra in the lower back between the thoracic vertebra, where the ribs attach, and the pelvis (hip bone), are the Lumbar Vertebra. The sacral vertebra are from the pelvis to the end of the spinal column. Injuries to the five lumbar vertebra and similarly to the five sacral vertebra generally result in some loss of functioning in the hips and legs. [10]


Figure 1.2 Positioning of Vertebrae.
http://www.spinalinjury.nct/html/_spinal_cord_101.html

There are two types of SCI - complete and incomplete.

- A complete injury - no function below the level of the injury; no sensation and no voluntary movement. In this kind of injury, both sides of the body are equally affected.
- An incomplete injury - some functioning below the primary level of the injury. One may be able to move one limb more than another, may be able to feel parts of the body that cannot be moved, or may have more functioning on one side of the body than the other.

Besides a loss of sensation or motor functioning, SCI may cause other changes in individuals. It can cause dysfunctioning of the bowel and bladder and sexual dysfunctioning too. Very high injuries (C-1, C-2) can result in a loss of many involuntary functions including the ability to breathe. Some other effects of SCI may include low blood pressure, inability to regulate blood pressure effectively, reduced control of body temperature, inability to sweat below the level of injury, and chronic pain.

Approximately 450,000 people live with SCI in the US. There are about 10,000 new SCl's every year; the majority of them ( $82 \%$ ) involve males between the ages of 16 30. These injuries result from motor vehicle accidents ( $36 \%$ ), violence ( $28.9 \%$ ), or falls ( $21.2 \%$ ). Tetraplegia is slightly more common than paraplegia. [10]

There is no cure currently for SCI. There are several researchers attacking this problem, and there have been some advances in the labs like Human Performance Movement Analysis Lab at Kessler Research Center and Human Locomotion Research Center at University of California, Los Angeles. Many of the most exciting advances have resulted in a decrease in damage at the time of the injury, but have not cured it completely. Steroid drugs reduce swelling, which is a common cause of secondary damage at the time of injury. The experimental drug Sygen $Æ$ appears to reduce loss of function, although it's mechanism and working is not completely understood. [10]

When a SCI occurs, there is usually swelling of the spinal cord. After days or weeks, the swelling begins to go down and people may regain some functioning. With many injuries, the individual may recover some functioning as late as 18 months after the injury. In very rare cases, people with SCI will regain some functioning years after the
injury. However, only a very small fraction of individuals sustaining SCIs recover all functioning.

There are many ways to help SCI patients recover. Locomotor Training (LT) using Body Weight Support (BWS) walking is one of the treatment procedure which is discussed next. BWS is where a spinal cord injured patient is supported using the harness and the therapist helps patient move his legs.


Figure 1.3 Locomotor Training using BWS. http://www.harkema.ucla.edu/bws.html

Recently a therapy known as LT that implements repetitive stepping on a treadmill using body weight support is being used to help patients recover walking. The training optimizes afferent sensory information and facilitates activity-dependent changes in the spinal cord to control movement. The studies on LT using body weight support treadmill training in humans after SCI are based on extensive research related to animal studies.

A major intent of LT research is to investigate the effect of an extended period of locomotor training on bilateral muscle activation (EMG pattern, amplitude, and burst duration). It is hypothesized that with repetitive step training using body weight support (BWS) for an extended period of time, there would be an increase in EMG amplitudes and alteration in burst duration which were appropriate to the swing and stance phase of locomotion.

Locomotor Training: As seen in Figure 1.3, three trainers are involved in the step training component of LT: one trainer at the hip/pelvis, and one trainer at each of the legs. During stance, assistance is given to aid in knee extension (not hyperextension) at the patella tendon (no 1 in Figure 1.4). During swing, assistance is given to promote knee flexion at the medial hamstring tendon (no 3 in Figure 1.4) at the distal tibial region to aid in toe clearance and unloading. The amount of assistance/force given would affect the muscle EMG activation pattern. It is important that we quantify the force given by the two leg trainers. This data is a valuable tool for assessing the subject's progress as a result of training.


Figure 1.4 Leg muscles.
http://www.foottrainer.com/fool/

## CHAPTER 2

## SENSOR

### 2.1 Requirements

Requirements for the project were discussed with Dr. Gail Forrest and are listed below:

1. Device should measure force at hamstring tendon, patella tendon, tibialis anterior tendon and heel.
2. Force measurements should be accurate, reliable and reproducible.
3. Force should be measured at all point simultaneously.
4. Data should be collected continuously for each trial ( $\sim 30$ minutes).
5. Device should be compact, battery powered.
6. Device should not interfere the training procedure.
7. Data should be measured and stored continuously, with a sampling rate of $60 \mathrm{~Hz}-$ 100 Hz .

### 2.2 Type of Sensor

First thing was to select the sensor type. Many sensors and their specifications were cross checked in order to select the final sensor. Few of them are listed below.

### 2.2.1 B201-L Sensor (Figure 2.1)



Figure 2.1 B201-L Sensor.
http://www.tekscan.com/flexiforce/flexiforce.html

This sensor manufactured by Tekscan Inc., Boston, MA has a force rating of 0251 b and an adjustable gain feature. At low gain, the recommended maximum force of the B201-L sensor is $0-25 \mathrm{lb}$. At high gain, the recommended range is $0-1 \mathrm{lb}$ and standard sensors are generally 9 inches long. This sensor is priced at $\$ 59.00$ but it's not reliable and repeatable and hence had to be checked out as it was not meeting our important requirement. [11]
2.2.2 Touch glove (Figure 2.2)


Figure 2.2 Touch glove.
http://infusionsystems.com/catalog/product_info.php/products_id/45
This sensor manufactured by I-CubeX can be used to sense how much pressure is required to pick up a cup of coffee. The touch glove has a force range of 0-22lb. and the palm and finger sensors are also included. This sensor is priced at $\$ 321.70$.

The touch glove is temperature sensitive; its sensors become less flexible in extreme cold and it is also not appropriate to use it in extreme heat. Applying more pressure on the sensors can damage the sensors. Also the touch glove is not waterproof and needs the I-CubeX Digitizer as shown in Figure 2.3 below which adds some extra cost. [12]


Figure 2.3 Touch glove with I-Cube X Digitizer. http://infusionsystems.com/catalog/product_info.php/products_id/45
2.2.3 XFL205R - Subminiature - Diameter 0.2" [5 mm] (Figure 2.4)
e-m ail:


Figure 2.4 XFL205R.
http://www.fgpsensors.com

This sensor manufactured by FGP Sensors Inc., Epharata, PA has a force range of $0-20 \mathrm{lb}$ and a thickness and diameter of 2.5 mm and 5 mm , respectively. Also, this sensor can measure strain in static as well as dynamic conditions. It has a temperature compensated wheatstone bridge and is calibrated. The sensor is made of aluminum and has overload without damage which is equivalent to twice of its capacity range. But the sensor is expensive as it costs $\$ 495$ each. [13]
2.2.4 XFL225D - Low Profile - Diameter 0.98" [25 mm] (Figure 2.5)


Figure 2.5 XFL225D.
http://www.fgpsensors.com
This sensor manufactured by FGP Sensors Inc., Epharata, PA has a force range of $0-20 \mathrm{lb}$ and $0-100 \mathrm{lb}$. It has a diameter of 25 mm and is very flat. All other features are similar to its subminiature counterpart. A more recent version called the XFL225D-Vi is also available which is more stable, accurate and has a high level analog output. This sensor is priced at \$ 495. [13]

### 2.2.5 XFL212R - Low Profile - Diameter 0.5" [12.5 mm] (Figure 2.6)



Figure 2.6 XFL212R.
http://www.fgpsensors.com
This sensor manufactured by FGP Sensors Inc., Epharata, PA has a force range of $0-100 \mathrm{lb}$ and all other features like its subminiature counterpart. But this sensor is a high performance sensor and is more stable and accurate. Also, it costs $\$ 415$ for each piece. Hence XFL212R shown in Figure 2.7 below was selected and ordered. [13]


Figure 2.7 XFL212R.

### 2.3 Positioning of Sensor

As seen in Figure 1.4, the four locations i.e. patella tendon, tibialis anterior tendon, hamstring and heel are the ones where maximum force would be applied by the therapist. So it was important to make sure force sensors are placed such that we are able to cover these locations. Hence a glove-like device as shown in Figure 2.8 was developed that translated the voltage output of our sensors into force readings.


Figure 2.8 Glove with force sensor.

In all we would require two sensors on one hand. Sensor positions were selected by keeping in mind where maximum force would be applied while performing LT. The positions for right hand and left hand are shown in Figure 2.9 and Figure 2.10 respectively.
RICHT HATD - PPOXIMAL VANO


Figure 2.9 Positioning of sensor on right hand.
LEFT HAMD - PROXIMAL EMD


Figure 2.10 Positioning of sensor on left hand.

### 2.4 Sensor Testing

Sensor was tested first for linearity and data is shown below in Table 2.1
Table 2.1 Test for linearity

| X | $\begin{aligned} & \text { y(obs) } \\ & (\mathrm{mv}) \end{aligned}$ | $\begin{aligned} & y(\mathrm{pre}) \\ & (\mathrm{mv}) \end{aligned}$ | Error = $y$ (pre)$y$ (obs) | Sq of error | sqrit=error |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | -7.6 | -7.3667 | 0.2333 | 0.054429 | 0.2333 |
| 2 | -8.5 | -8.4477 | 0.0523 | 0.002735 | 0.0523 |
| 4 | -9.6 | -9.5287 | 0.0713 | 0.005084 | 0.0713 |
| 6 | -10.5 | 10.6097 | -0.1097 | 0.012034 | 0.1097 |
| 8 | -11.2 | 11.6907 | -0.4907 | 0.240786 | 0.4907 |
| 10 | -12.4 | 12.7717 | -0.3717 | 0.138161 | 0.3717 |
| 12 | -14.2 | 13.8527 | 0.3473 | 0.120617 | 0.3473 |
| 14 | -15.2 | 14.9337 | 0.2663 | 0.070916 | 0.2663 |
| (Note: Tolerance - $3 \%$ of FSR) |  |  |  |  |  |

Force transfer function of the above data was plotted and is shown below in
Figure 2.11. The readings of the sensor were linear and maximum error is 0.4907


Figure 2.11 Force Transfer Function.

## CHAPTER 3

DESIGN AND TESTING


Figure 3.1 Block Diagram.
Explanation: Block diagram consists of Glove with force sensor which is connected to buffer and amplifier circuit. Buffer circuit is used to isolate sensor from rest of the circuit. The output voltage of the sensor is in millivolts. After the buffer circuit, the signal is amplified by a gain of 100 . The differential output is connected to diode protection circuit which is in turn connected to data logger circuit where the data gets stored in the SD card.

### 3.2 Circuit Diagram



Figure 3.2 Circuit Diagram.
Explanation: IC LM324N is a quad op-amp which is used for buffer and amplification. A difference amplifier with a gain of 100 was designed as the output voltage of the sensor was in millivolts. Gain of 100 was selected in order to use the maximum resolution. With gain of 100 we can get 2.74 V for 14 lb of known force. While performing LT, therapist doesn't apply more than 10 lb of force normally so 14 lb would be within the required limits. Initially gain of 150 was selected but the obtained input voltage was going above our required $\mathrm{ADC} \mathrm{i} / \mathrm{p}$ voltage limit of 3.3 V hence a gain of 100 was chosen.

Diode protection circuit is used to protect Sparkfun data logger. The output voltage from amplifier circuit is connected to data logger ADC input. The maximum voltage requirement for $\mathrm{ADC} \mathrm{i} / \mathrm{p}$ is 3.3 V . So to make sure that output of the amplifier
doesn't go beyond the threshold level, a diode protection circuit is connected in between the differential o/p and ADC input.

How diode protection circuit works: As seen in Figure 3.2, we have a potential divider of 2.89 V on the cathode side of the diode because of R 10 and R11 resistors. So whenever, the differential output voltage is from zero to 2.97 V , the diode would get reverse biased and hence open. Thus the same voltage would be seen on the ADC input of sparkfun but when the differential voltage would go beyond 2.97 V , the diode would get forward bias and hence short. Thus we would see 2.89 V on the ADC input of sparkfun thus protecting the sparkfun board.

Supply voltage for sparkfun is achieved by having voltage divider which reduces 9 V battery voltage to 5.35 V which is within the specified supply voltage range for sparkfun datalogger. The ADC input is connected to diode protection $\mathrm{o} / \mathrm{p}$ circuitry.

### 3.3 Sparkfun Datalogger



Figure 3.3 Logomatic V1.0.
hitp://www.sparkfun.com

The Logomatic's list of features is lengthy:

- 3 modes of operation: Auto UART, Character-triggered UART, ADC
- Configurable baud rates in UART modes of 1200, 2400, 4800, 9600, $19200,38400,57600$ and 115200 baud
- Triggered UART mode has a configurable frame length of up to 510 characters (including trigger character)
- Triggered UART frames are delimited with carriage return and line feed characters for easy reading
- 10 ADC channels, all selectable as on or off
- ADC logging in ASCII or binary format
- ASCII logging delimited by tabs between measurements, delimited between frames by carriage return and line feed characters
- Variable frequency for ADC mode
- Frequency "safeties" to ensure that the file doesn't try to overwrite itself, maximum of 1500 Hz for one channel and 150 Hz for all ten channels (ASCII logging mode)
- For the brave of heart, you can turn the safety off! [14]

The basic layout of the Logomatic V1.0 looks like this:


Figure 3.4 Basic layout.
http://www.sparkfun.com

1. Power switch
2. Right-angle + Vin jack
3. Reset button
4. Status LEDs
5. UART0 / programming port
6. Stop logging button
7. Push-push SD card socket
8. ADC ports

The Logomatic has an LDO 3.3 V regulator and a reverse current protection Schottky diode. The maximum power dissipation of the voltage regulator is about 450 mW , and the maximum current draw of the Logomatic is about 80 mA (worst case). Neglecting the voltage drop on the Schottky diode, the maximum voltage the Logomatic could run with is $(450 \mathrm{~mW}) /(80 \mathrm{~mA})+3.3 \mathrm{~V}=8.925 \mathrm{~V}$, but this will be very close to
putting the voltage regulator into thermal shutdown. For best operation, the supply voltage should be kept between 3.6 V and about 7.5 V . [14]

Theory of Operation - The Logomatic saves data to an SD card in a two-stage process. Data is first saved to one of two 512-byte data buffers. As each buffer is filled, it is logged to the SD card and logging continues on the other buffer.

The limiting factor on the speed of the Logomatic is the write process to the SD card. The longest write cycle is approximately 42.5 mS , which means that the shortest time allowed to log data to one of the buffers is also 42.5 mS . If logging occurs faster than this, the buffers that's currently being written to the SD card will be overwritten by new input during the write process to the SD.

In ADC mode, safety margins are imposed to alleviate buffer overwriting. Sample rates are capped depending on how many channels you have active, though this is only imposed when logging in ASCII format. The frequency caps are:

1 channel active, 1500 Hz maximum
2 channels active, 750 Hz maximum
3 channels active, 500 Hz maximum
4 channels active, 375 Hz maximum
5 channels active, 300 Hz maximum
6 channels active, 250 Hz maximum
7 channels active, 214 Hz maximum
8 channels active, 187 Hz maximum
9 channels active, 166 Hz maximum
10 channels active, 150 Hz maximum

The frequency caps are not imposed in binary ADC logging mode. Faster sample rates can be realized in binary mode, from a $43 \%$ increase for 10 channels to $57 \%$ increase for one channel, but you will be required to write your own application that can interpret the resulting file. To get the faster data rates, just change the "Safety On" option from " Y " to " N " and set the "Frequency" number to whatever you want. The parser that reads the configuration file reads up to 4 digits, so you can set it as high as 9999 Hz (though it will likely stop running at that speed). [14]

First Power-up and the Configuration File - Before you power up your Logomatic for the first time, put your SD card into your card reader and format it in FAT16. Then install the card into your Logomatic and turn it on. The LEDs will blank reassuringly and then go quiet. Turn off your Logomatic, pull out the SD card and put it back in your reader. You will now find 2 files on your card, LOGCON.TXT and LOG0.TXT. The first is the configuration file, the second is the first logged file (empty).

Open up the configuration file and you will see this:
MODE $=0$
$\mathrm{ASCII}=\mathrm{N}$
Baud $=4$
Frequency $=100$
Trigger Character $=\$$
Text Frame $=100$
AD1. $5=\mathrm{N}$
AD1.4 $=\mathrm{N}$
AD1.3 $=\mathrm{N}$
$\mathrm{AD} 0.3=\mathrm{N}$
$\mathrm{AD} 0.2=\mathrm{N}$
$\mathrm{AD} 0.1=\mathrm{N}$
$\mathrm{AD} 1.2=\mathrm{N}$
$\mathrm{AD} 0.4=\mathrm{N}$

AD1.7 $=\mathrm{N}$

AD1.6 $=\mathrm{N}$

Safety On = Y
Mode - There are 3 mode settings. " 0 " for automatic UART logging, " 1 " for triggered UART logging and " 2 " for ADC logging. Mode 0 logs everything that comes in on UART0, provided that it's the right UART format (8 data bits, one stop bit, no parity, data rate of your choosing). Mode 1 logs a specified number of characters ("Text Frame $=$ $100^{\prime \prime}$ in this case will result in 99 characters logged after the trigger) after a specified character ("Trigger $=\$$ " in this case). Mode 2 logs ADC measurements according to which are selected as active at whatever frequency is specified ("Frequency $=100$ " in this case). [14]

ASCII - The "ASCII" field only applies to ADC mode (mode 2). It specifies whether the unit will $\log$ in ASCII format ("ASCII = Y") or binary format ("ASCII = N'').

Baud - The "Baud" field sets the baud rate for the UART logging modes. The available rates are as follows:

$$
\begin{aligned}
& " 1 "=1200 \\
& " 2 "=2400
\end{aligned}
$$

$$
\begin{aligned}
& " 3 "=4800 \\
& " 4 "=9600 \\
& " 5 "=19200 \\
& " 6 "=38400 \\
& " 7 "=57600 \\
& " 8 "=15200
\end{aligned}
$$

Frequency - The "Frequency" field only applies to ADC logging mode and is responsible for setting the sampling rate of the Logomatic. The number shown (100 in this case) is in hertz and can be set from 1 to 9999 . However, if the frequency safeties are active, the maximum values will be imposed as indicated in an earlier section. [14]

Trigger Character - The "Trigger Character" field only applies to the triggered UART mode (mode 1). This is the character that the device waits for to begin logging a specified number of characters.

Text Frame - The "Text Frame" field specifies the number of characters to be logged with the trigger character when the Logomatic is running in mode 1 . The reader should be aware that the first character in the logged text frame will be the trigger character, so if you wish to $\log 100$ characters after the trigger you should set the text frame to 101.

Operational ADC Lines - The next ten lines in the configuration file indicate which ADC lines are to be read by the Logomatic. They can each be turned on by changing the " N " to a " Y ". These values have no affect when in one of the two UART modes. For ease of use, they are listed in the configuration file in the same sequence that they're seen on the Logomatic PCB.

Safety On - The last field in the configuration file is the "Safety On" field. This sets the frequency caps for ADC mode on with a " Y " or off with an " N ". The values for those caps are mentioned in an earlier section.

Output Formats - The formats of the text files produced by the Logomatic will be a little different in each mode. For mode 0 (automatic UART), any ascii characters that come in on the UART will be sent to the SD card. Nothing is omitted and nothing is added. For mode 1 (triggered UART), anything after and including the trigger character will be logged, including white space characters, up to the end of the specified data frame. Each data frame is delimited with a carriage return and a line feed character to make it easier to distinguish between the frames.

In ASCII ADC mode (mode $2, \mathrm{ASCII}=\mathrm{Y}$ ), each single measurement is between 1 and 4 characters in length depending on how many digits are required, followed by a tab (ASCII 9) for delimiting. At the end of each measurement frame, that is, one time through the list of selected active ADC lines, carriage return and a line feed characters are placed for further delimiting. The sequence of measurements displayed in the file from left to right are exactly the sequence of channels selected in the configuration file from top to bottom.

In binary ADC mode (mode $2, \mathrm{ASCII}=\mathrm{N}$ ), each measurement is two bytes in length (MSB, LSB), and they will occur in the same sequence as the ASCII logs with respect to the configuration file. There are no delimiters between measurements, but measurement frames are delimited by the characters "\$\$". [14]

Operation - Turn on your Logomatic without the SD card in place. You'll see the status LED's blink rather quickly during initialization, then they will go into a slow and steady sort of blinking. Familiarize yourself with that particular blinking. It's what the Logomatic will do whenever it is stopped. In this case it's stopped because it doesn't see the SD card. It will also do this if the card had been formatted in FAT32 instead of FAT16, or if the STOP button has been pushed.

Now that you know how the Logomatic works and what all of the settings do, it's time to power it up. Set your configuration however you like, plug your SD card into the Logomatic and turn it on. The two status LED's will blink at you rather quickly during the initialization, then the unit will go to work with the settings you chose. The only further indication of operation that you will see is when one of the two data buffers logs to the SD card, STAT0 for buffer \#1 and STAT1 for buffer \#2. These will be very quick "blips" because the LED's are only on during the write process, between 20 and 40 mS .

When you are done logging, press the STOP button before shutting off the unit. Why a stop button? The Logomatic is interrupt driven. Pressing the STOP button disables the interrupts, logs the remainder of whichever buffer hasn't been written yet and updates the FAT. This ensures that you get ALL of your data and prevents leaving the file in an unfinished and corrupt state. Not pressing he STOP button prior to shutting down can leave you with a corrupted text file.

The Logomatic will create up to $256 \log$ files in text format, numbering from LOG0.txt to LOG255.txt. The most recent $\log$ file will be the one with the highest number. [14]

Initially everything was tested on bread board as shown in Figure 3.5 before hand soldering it on blank PCB as shown in Figure 3.6.


Figure 3.5 Bread board testing.

The problem while testing on bread board was that the voltage divider for sparkfun was not getting enough power and hence resistors were short circuiting. Thus the voltage divider had to be re-designed with keeping power requirements in mind. Initially all resistors were $1 / 4 \mathrm{~W}$ but afterwards some resistors had to be selected from $1 / 2 \mathrm{~W}$ and some from IW to meet the power requirements as seen in Figure 3.2.


Figure 3.6 PCB Mounting.

Finally device prototype as shown in Figure 3.7 was built and tested. A 9V battery was used to power up the Op-amp. The force sensor was excited with same 9 V battery.


Figure 3.7 Device prototype.

## CHAPTER 4

## RESULTS AND CONCLUSION

### 4.1 Results

Known force was given from $01 b$ to 14 lb and corresponding output voltages were measured. Table 4.1 shows relation between applied known force and output voltage. Observed voltage is the one measured using multimeter, differential voltage is the one measured directly from sensor and calculated voltage is differential voltage multiplied by a factor of 100 . As seen below, voltage value increases with increase in force value.

Table 4.1 Force vs. Voltage

| Force <br> (lb) | Differential <br> Voltage $(\mathrm{mV})$ | Calculated <br> Voltage $(\mathrm{mV})$ | Observed <br> Voltage $(\mathrm{mV})$ |
| :---: | :---: | :---: | :---: |
| 0 | 6.5 | 650 | 140 |
| 2 | 14.6 | 1460 | 864 |
| 4 | 16.8 | 1680 | 1543 |
| 6 | 17.6 | 1760 | 1680 |
| 8 | 21 | 2100 | 1970 |
| 10 | 22 | 2200 | 2160 |
| 12 | 24.1 | 2410 | 2420 |
| 14 | 27.4 | 2740 | 2550 |
|  |  |  |  |
| Note - Gain of 100 |  |  |  |

An experiment was conducted where in a known force was varied from zero lb to 15 lb and the corresponding voltage values were recorded (Figure 4.1).

Voltage vs. Samples


Figure 4.1 Voltage vs. Samples.
As seen above in Figure 4.1, voltage value increases with increase in frequency and vice versa. Readings were accurate when compared with multimeter readings and was able to get same peak voltage of 2.5 V for seven times, four times in trial 1 and three times in trial 2. Hence force measurements were reliable.

One more experiment was conducted wherein known force was varied from 0$131 b$ for five different trials and there force values were measured to check the reproducibility.


Figure 4.2 Force vs. Samples.

As seen above in Figure 4.2, for each trial force value increased from 0lb to 13lb and back and hence force measurements were reproducible.

Data was measured and stored continuously at 375 Hz which is within the requirement of $60-100 \mathrm{~Hz}$. Battery life of 9 V alkaline battery was $\sim 8.5 \mathrm{hrs}$ ( 565 mAhr rating) so data can be easily recorded for each trial which usually lasts 30 minutes. Memory card can record hours of data. Expandable upto 10 sensors (we would require four per therapist). Sensors are embedded in glove in such a way that all four areas of interest would be covered. Device is compact, battery powered and would not interfere the training procedure. From Figure 4.1 and Figure 4.2, force measurements are accurate, reliable and reproducible.

### 4.2 CONCLUSION

Thus we have a device which can accurately and reliably quantify the force applied by the therapist during Locomotor training of SCI patients.

## CHAPTER 5

## FUTURE WORK

Testing was done using one sensor, so next step would be to built and test for four sensors as normally we require four sensors for one therapist. Secondly, mannequin testing has to be done. Now as we know the force measurements are accurate. We can apply unknown force on mannequin and find out the force that would be required to move mannequin, say for different angles from 0-80 degrees in step of 20 degrees.


Figure 5.1 Mannequin testing.

## APPENDIX

## SPARKFUN DATALOGGER

## Data Set

| 187 | 160 | 223 | 366 | 479 | 668 | 824 | 859 | 966 | 962 | 992 | 736 | 269 | 185 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 187 | 161 | 223 | 366 | 479 | 670 | 825 | 859 | 967 | 963 | 991 | 736 | 271 | 183 |
| 186 | 161 | 222 | 367 | 481 | 670 | 825 | 860 | 966 | 964 | 994 | 735 | 267 | 184 |
| 191 | 160 | 224 | 367 | 480 | 670 | 825 | 861 | 967 | 964 | 992 | 735 | 267 | 186 |
| 192 | 162 | 224 | 366 | 480 | 669 | 826 | 861 | 967 | 964 | 992 | 735 | 265 | 186 |
| 193 | 161 | 224 | 366 | 482 | 671 | 826 | 862 | 968 | 966 | 994 | 734 | 264 | 185 |
| 194 | 161 | 224 | 367 | 483 | 671 | 826 | 862 | 967 | 966 | 991 | 734 | 262 | 184 |
| 193 | 162 | 223 | 368 | 483 | 672 | 826 | 862 | 968 | 966 | 991 | 734 | 266 | 186 |
| 195 | 162 | 224 | 369 | 482 | 672 | 826 | 866 | 970 | 964 | 990 | 731 | 259 | 186 |
| 195 | 162 | 225 | 368 | 482 | 673 | 825 | 865 | 970 | 964 | 990 | 731 | 260 | 186 |
| 199 | 163 | 223 | 370 | 483 | 673 | 825 | 865 | 970 | 964 | 990 | 730 | 258 | 186 |
| 198 | 163 | 223 | 369 | 483 | 673 | 826 | 867 | 970 | 963 | 991 | 728 | 256 | 186 |
| 199 | 163 | 224 | 370 | 483 | 674 | 827 | 866 | 970 | 962 | 990 | 729 | 256 | 187 |
| 200 | 164 | 221 | 368 | 484 | 674 | 826 | 866 | 968 | 962 | 991 | 728 | 255 | 187 |
| 202 | 162 | 219 | 371 | 483 | 675 | 827 | 864 | 970 | 962 | 990 | 725 | 254 | 187 |
| 202 | 164 | 220 | 372 | 483 | 675 | 827 | 865 | 970 | 960 | 992 | 726 | 251 | 188 |
| 204 | 163 | 218 | 373 | 485 | 678 | 828 | 865 | 969 | 960 | 991 | 723 | 251 | 187 |
| 205 | 163 | 219 | 373 | 486 | 678 | 829 | 865 | 967 | 958 | 991 | 720 | 249 | 186 |
| 208 | 163 | 218 | 37 | 488 | 679 | 82 | 864 | 966 | 958 | 994 | 723 | 250 | 186 |
| 208 | 164 | 216 | 374 | 487 | 679 | 827 | 863 | 966 | 954 | 994 | 721 | 248 | 185 |
| 210 | 163 | 216 | 375 | 486 | 681 | 828 | 863 | 966 | 954 | 994 | 720 | 246 | 186 |
| 210 | 162 | 217 | 376 | 489 | 682 | 827 | 863 | 967 | 951 | 994 | 719 | 247 | 186 |
| 210 | 162 | 215 | 376 | 489 | 685 | 829 | 864 | 968 | 951 | 995 | 718 | 247 | 187 |
| 212 | 163 | 214 | 377 | 490 | 686 | 829 | 865 | 970 | 951 | 995 | 715 | 246 | 187 |
| 214 | 162 | 214 | 379 | 489 | 686 | 827 | 866 | 968 | 949 | 995 | 715 | 244 | 186 |
| 214 | 161 | 215 | 379 | 489 | 686 | 827 | 866 | 967 | 950 | 995 | 715 | 244 | 86 |
| 216 | 162 | 213 | 379 | 490 | 688 | 827 | 867 | 967 | 950 | 997 | 713 | 243 | 186 |
| 218 | 161 | 214 | 378 | 490 | 689 | 826 | 867 | 967 | 950 | 996 | 712 | 243 | 87 |
| 218 | 160 | 214 | 379 | 492 | 691 | 826 | 870 | 966 | 950 | 995 | 709 | 243 | 187 |
| 219 | 162 | 214 | 380 | 492 | 693 | 826 | 871 | 966 | 954 | 996 | 706 | 242 | 190 |
| 221 | 162 | 214 | 381 | 494 | 694 | 826 | 871 | 967 | 950 | 996 | 706 | 243 |  |
| 222 | 159 | 212 | 379 | 491 | 692 | 827 | 872 | 966 | 950 | 996 | 703 | 243 |  |
| 222 | 160 | 214 | 379 | 493 | 695 | 827 | 874 | 966 | 951 | 997 | 703 | 244 |  |
| 223 | 159 | 214 | 379 | 494 | 696 | 826 | 875 | 964 | 951 | 997 | 700 | 243 |  |
| 223 | 158 | 216 | 379 | 494 | 698 | 826 | 875 | 964 | 951 | 995 | 699 | 244 |  |
| 222 | 159 | 214 | 379 | 494 | 696 | 827 | 877 | 963 | 951 | 995 | 698 | 243 |  |
| 225 | 158 | 216 | 381 | 494 | 698 | 828 | 878 | 963 | 955 | 995 | 696 | 242 |  |
| 226 | 158 | 216 | 380 | 495 | 697 | 827 | 879 | 963 | 952 | 995 | 695 | 242 |  |
| 226 | 162 | 216 | 378 | 497 | 697 | 828 | 882 | 963 | 954 | 995 | 693 | 242 |  |
| 226 | 158 | 217 | 379 | 495 | 696 | 830 | 882 | 963 | 952 | 995 | 692 | 242 |  |
| 227 | 158 | 218 | 381 | 496 | 696 | 832 | 884 | 962 | 952 | 995 | 691 | 240 |  |
| 226 | 158 | 216 | 381 | 497 | 698 | 832 | 883 | 962 | 954 | 996 | 693 | 238 |  |


|  | 57 | 219 | 382 | 495 | 98 | 83 | 886 |  | 956 | 996 | 690 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 227 | 160 | 219 | 381 | 496 | 697 | 83 | 887 | 96 | 956 | 998 | 691 | 238 |
| 223 | 159 | 219 | 382 | 497 | 701 | 83 | 88 | 962 | 958 | 998 | 68 | 238 |
| 225 | 158 | 223 | 382 | 498 | 02 | 83 | 88 | 96 | 55 | 998 | 88 | 237 |
| 224 | 159 | 222 | 383 | 498 | 702 | 837 | 888 | 961 | 95 | 999 | 68 | 236 |
| 226 | 160 | 223 | 382 | 499 | 03 | 838 | 889 | 62 | 960 | 999 | 687 | 335 |
| 226 | 161 | 223 | 383 | 498 | 704 | 840 | 891 | 962 | 95 | 1000 | 683 | 34 |
| 227 | 162 | 23 | 383 | 499 | 704 | 840 | 889 | 960 | 959 | 1000 | 68 | 33 |
| 227 | 160 | 226 | 383 | 99 | 707 | 84 | 889 | 60 | 960 | 100 | 79 | 233 |
| 7 | 160 | 26 | 383 | 498 | 707 | 84 | 89 | 960 | 960 | 100 | 680 | 32 |
| 226 | 161 | 226 | 385 | 499 | 709 | 842 | 89 | 66 | 960 | 100 | 678 | 330 |
| 228 | 161 | 27 | 383 | 499 | 710 | 842 | 889 | 960 | 96 | 1003 | 677 | 3 |
| 229 | 158 | 230 | 385 | 501 | 711 | 34 | 89 | 960 | 96 | 10 | 67 | 29 |
| 228 | 161 | 230 | 384 | 02 | 712 | 842 | 891 | 95 | 959 | 1000 | 673 | 330 |
| 230 | 163 | 30 | 384 | 01 | 715 | 42 | 892 | 960 | 959 | 100 | 670 | 229 |
| 230 | 162 | 232 | 386 | 502 | 715 | 43 | 89 | 960 | 95 | 99 | 670 | 26 |
| 230 | 163 | 23 | 385 | 02 | 717 | 843 | 894 | 960 | 95 | 100 | 66 | 227 |
| 230 | 163 | 23 | 385 | 502 | 719 | 84 | 89 | 96 | 958 | 999 | 666 | 228 |
| 231 | 163 | 236 | 386 | 03 | 719 | 84 | 894 | 55 | 95 | 996 | 66 | 228 |
| 230 | 163 | 239 | 385 | 502 | 719 | 842 | 89 | 958 | 955 | 995 | 66 | 8 |
| 230 | 163 | 240 | 386 | 04 | 721 | 43 | 89 | 58 | 95 | 995 | 66 | 227 |
| 231 | 163 | 241 | 38 | 06 | 72 | 842 | 89 | 95 | 956 |  | 65 | 27 |
| 230 | 162 | 24 | 386 | 05 | 72 | 843 | 902 | 95 | 95 | 995 | 65 | 27 |
| 230 | 163 | 245 | 387 | 06 | 72 | 43 | 903 | 958 | 95 | 99 | 65 | 227 |
| 231 | 163 | 46 | 385 | 507 | 72 | 84 | 004 | 958 | 955 | 994 | 65 | 227 |
| 229 | 16 | 248 | 385 | 506 | 723 | 84 | 907 | 956 | 95 | 994 | 65 | 27 |
| 227 | 163 | 250 | 386 | 506 | 72 | 84 | 908 | 955 | 95 | 992 | 65 | 22 |
| 226 | 167 | 250 | 386 | 507 | 723 | 845 | 91 | 955 | 956 | 991 | 65 | 226 |
| 7 | 165 | 25 | 38 | 508 | 72 | 845 |  | 956 | 958 | 991 | 65 | 226 |
| 26 | 166 | 25 | 38 | 507 | 72 | 848 | 1 | 956 | 957 | 992 | 64 | 226 |
| 225 | 166 | 255 | 386 | 509 | 727 | 847 | 915 | 956 | 958 | 993 | 64 | 26 |
| 223 | 166 | 255 |  |  | 72 | 848 | 915 | 95 | 958 | 994 | 64 | 226 |
| 225 | 166 | 258 | 38 | 510 | 72 | 850 | 117 | 95 | 5 | 994 | 64 | 226 |
| 223 | 167 | 258 | 385 | 512 | 727 | 849 | 921 | 955 | 96 |  | 64 | 223 |
| 221 | 166 | 259 | 386 | 510 | 727 | 849 | 2 | 95 | 958 | 99 | 64 |  |
| 222 | 169 | 258 | 38 | 51 | 727 | 850 | 921 | 956 | 96 | 99 | 639 | 225 |
| 9 | 170 | 260 | 38 | 512 | 28 | 850 |  |  |  |  | 63 |  |
| 1 | 169 | 259 | 38 | 513 | 729 | 851 | 923 | 957 | 6 | 995 | 63 | 223 |
| 219 | 167 | 260 | 38 | 513 | 728 | 850 | 925 | 958 | 96 | 99 | 63 | 223 |
| 218 | 170 | 26 |  | 515 | 29 | 852 | 26 | 95 | 62 | 995 | 63 | 22 |
| 218 | 170 | 26 | 386 | 515 | 729 | 855 | 26 | 95 | 963 | 99 | 630 | 224 |
| 217 | 170 | 26 | 38 | 515 | 728 | 854 | 22 | 95 | 963 | 995 | 62 | 21 |
| 216 | 171 | 26 | 885 | 517 | 731 | 852 | 2 | 95 | 964 | 995 | 626 | 22 |
| 215 | 171 | 262 | 386 | 518 | 731. | 85 | 928 | 95 | 96 | 995 | 62 | 21 |
| 217 | 172 | 261 | 388 | 517 | 731 | 85 | 930 | 955 | 96 | 99 | 622 | 219 |
| 215 | 173 | 261 | 385 | 515 | 731 | 85 | 92 | 954 | 966 | 995 | 619 | 220 |
| 214 | 174 | 260 | 38 | 518 | 732 | 854 | 931 | 95 | 966 | 99 | 616 | 21 |
| 214 | 173 | 259 | 383 | 518 | 733 | 857 | 930 | 95 | 967 | 994 | 614 | 1 |
| 215 | 173 | 262 | 386 | 519 | 734 | 855 | 930 | 954 | 966 | 993 | 611 | 21 |
| 215 | 173 | 259 | 384 | 522 | 735 | 857 | 930 | 955 | 966 | 992 | 610 | 220 |


|  | 175 | 259 | 386 | 522 | 735 | 85 | 93 | 95 | 967 | 990 | 60 | 220 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 213 | 176 | 258 | 385 | 521 | 734 | 855 | 932 | 956 | 967 | 990 | 604 | 8 |
| 212 | 176 | 259 | 385 | 522 | 735 | 855 | 933 | 95 | 96 | 87 | 603 | 219 |
| 211 | 176 | 258 | 886 | 523 | 735 | 855 | 933 | 95 | 96 | 987 | 601 | 218 |
| 211 | 179 | 258 | 386 | 23 | 736 | 855 | 93 | 955 | 966 | 986 | 59 | 19 |
| 10 | 179 | 257 | 386 | 25 | 737 | 58 | 333 | 955 | 96 | 88 | 595 | 218 |
| 208 | 179 | 258 | 386 | 526 | 736 | 57 | 935 | 955 | 966 | 985 | 594 | 16 |
| 10 | 182 | 257 | 87 | 526 | 737 | 856 | 36 | 95 | 966 | 985 | 59 | 218 |
| 210 | 18 | 256 | 386 | 526 | 73 | 555 | 936 | 55 | 667 | 985 | 589 | 217 |
| 207 | 182 | 258 | 387 | 28 | 736 | 85 | 938 | 958 | 965 | 98 | 588 | 218 |
| 208 | 182 | 257 | 38 | 528 | 736 | 855 | 939 | 958 | 966 | 983 | 86 | 216 |
| 207 | 183 | 255 | 38 | 28 | 737 | 856 | 940 | 959 | 96 | 98 | 58 | 217 |
| 207 | 183 | 255 | 390 | 229 | 737 | 855 | 94 | 960 | 965 | 98 | 582 | 17 |
| 05 | 186 | 256 | 39 | 530 | 737 | 556 | 946 | 960 | 964 | 983 | 58 | 21 |
| 5 | 185 | 257 | 388 | 30 | 738 | 85 | 946 | 962 | 963 | 98 | 579 | 218 |
| 205 | 186 | 256 | 38 | 531 | 738 | 56 | 94 | 96 | 96 | 98 | 578 | 217 |
| 5 | 186 | 57 | 389 | 53 | 739 | 855 | 9 | 963 | 964 | 98 | 576 | 116 |
| 04 | 189 | 258 | 388 | 533 | 739 | 856 | 946 | 96 | 96 | 98 | 57 | 215 |
| 203 | 189 | 258 | 3 | 534 | 740 | 857 | 94 | 962 | 96 | 98 | 573 | 21 |
| 203 | 190 | 59 | 390 | 534 | 741 | 858 | 94 | 96 | 965 | 98 | 57 | 216 |
| 202 | 190 | 259 | 391 | 53 | 740 | 858 | 947 | 962 | 965 | 98 | 570 | 215 |
| 02 | 189 | 261 | 39 | 536 | 74 | 58 | 94 | 963 | 966 | 98 | 569 | 116 |
| 202 | 192 | 262 | 391 | 536 | 74 | 859 | 945 | 96 | 966 | 98 | 569 | 21 |
| 202 | 194 | 264 | 390 | 538 | 74 | 859 | 94 | 63 | 96 | 980 | 567 | 215 |
| 202 | 192 | 265 | 39 | 539 | 74 | 86 | 94 | 963 | 966 | 98 | 565 |  |
| 200 | 192 | 266 | 391 | 539 | 74 | 861 | 94 | 96 | 96 | 97 | 563 | 21 |
| 200 | 192 | 267 | 39 | 539 | 746 | 66 | 94 | 96 | 968 | 978 | 563 | 21 |
| 200 | 192 | 267 | 390 | 542 | 745 | 85 | 94 | 96 | 967 | 978 | 563 |  |
| 0 | 191 | 270 | 391 | 540 | 746 | 86 | 94 | 962 | 970 | 977 | 56 | 213 |
| 199 | 190 | 271 | 391 | 54 | 746 | 859 | 94 | 96 | 970 | 97 | 56 |  |
| 8 | 191 | 274 | 391 | 543 | 48 | 86 | 94 | 958 | 97 | 975 | 56 |  |
| 195 | 191 | 274 | 392 | 543 | 750 |  | 94 | 55 | 97 | 97 | 559 |  |
| 195 | 192 | 275 | 39 | 542 | 75 | 859 | 94 | 959 | 97 | 97 | 557 | 213 |
| 5 | 190 | 275 | 39 | 543 | 750 | 859 | 94 | 58 | 97 | 970 | 557 |  |
|  | 190 | 275 | 39 | 543 | 751 | 859 | 94 | 958 | 97 | 96 | 55 | 20 |
| 192 | 190 | 275 | 392 | 545 | 75 | 860 | 945 | 958 | 97 | 96 | 555 | O |
| 2 | 191 | 275 | 39 | 544 | 75 | 860 | 94 | 960 | 975 | 96 | 55 |  |
| 190 | 190 | 278 | 39 | 545 | 755 | 859 | 94 | 95 | 97 | 96 | 55 | 088 |
| 188 | 190 | 278 | 393 | 546 | 758 | 859 | 94 | 960 | 976 | 965 | 55 | 08 |
| 86 | 190 | 279 | 391 | 48 | 757 | 858 | 946 | 60 | 976 | 66 | 550 |  |
| 186 | 190 | 280 | 39 | 548 | 758 | 85 |  | 960 | 975 | 96 | 549 | 00 |
| 186 | 191 | 282 | 39 | 550 | 759 | 860 | 948 | 960 | 975 | 963 | 54 | 0 |
| 83 | 192 | 283 | 39 | 551 | 60 | 86 | 948 | 960 | 976 | 965 | 54 | 06 |
| 83 | 192 | 283 | 39 | 549 | 759 | 862 | 94 | 960 | 97 | 963 | 546 |  |
| 181 | 192 | 288 | 393 | 552 | 760 | 862 | 950 | 960 | 978 | 960 | 54 | 06 |
| 181 | 192 | 288 | 394 | 553 | 762 | 862 | 951 | 962 | 978 | 961 | 545 |  |
| 179 | 193 | 287 | 395 | 554 | 763 | 862 | 951 | 963 | 978 | 963 | 544 | 20 |
| 178 | 194 | 291 | 395 | 555 | 763 | 862 | 953 | 965 | 978 | 96 | 542 | 203 |
| 178 | 195 | 293 | 395 | 557 | 763 | 864 | 95 | 966 | 978 | 960 | 541 | 20 |
| 178 | 195 | 294 | 397 | 558 | 763 | 862 | 955 | 963 | 976 | 958 | 541 | 20 |


| 177 | 195 | 294 | 397 | 559 | 762 | 864 | 955 | 964 | 975 | 960 | 539 | 202 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 176 | 194 | 295 | 398 | 560 | 763 | 863 | 956 | 964 | 975 | 958 | 539 | 202 |
| 176 | 194 | 297 | 398 | 561 | 765 | 863 | 958 | 963 | 976 | 958 | 538 | 202 |
| 174 | 192 | 297 | 398 | 563 | 765 | 863 | 958 | 963 | 974 | 956 | 538 | 200 |
| 174 | 192 | 299 | 399 | 563 | 767 | 863 | 959 | 963 | 976 | 954 | 538 | 200 |
| 175 | 193 | 299 | 400 | 565 | 764 | 866 | 958 | 963 | 977 | 951 | 537 | 199 |
| 173 | 192 | 301 | 401 | 567 | 767 | 863 | 958 | 962 | 978 | 949 | 537 | 201 |
| 173 | 192 | 302 | 400 | 567 | 767 | 866 | 957 | 962 | 977 | 947 | 536 | 200 |



Figure 1 Logomatic V1.0.

## REFERENCES

1. Behrman A, Harkema S, "Locomotor training after human spinal cord injury: A series of case studies." Physical Therapy Vol. 80, No. 7 (11 July 2000): pp.668-700.
2. Elin K, Wells R, "Comparison of measurement methods for quantifying hand." Ergonomics Vol. 48, No. 8 (22 June 2005): pp.983-1007.
3. Bao S, Howard N, "Quantifying repetitive hand activity for epidemiological research on musculoskeletal disorders - Part II: comparison of different methods of measuring force level and repetitiveness." Ergonomics Vol. 49, No. 4 (15 March 2006): pp.381-392.
4. Tarchanidis K, Lygouras J, "Data Glove with a Force Sensor." IEEE Vol. 52, No. 3 (30 June 2003): pp.984-989.
5. Reinkensmeyer D, Sanchez R, "Automating Arm movement training following severe stroke: Functional exercises with quantitative feedback in a gravityreduced environment." IEEE Vol. 14, No. 3 (17 September 2006): pp.378-389.
6. Ferris D, Harkema S, "Muscle activation during unilateral stepping occurs in the nonstepping limb of humans with clinically complete spinal cord injury." Spinal Cord Vol. 42, No. 2 (11 May 2004): pp 14-23.
7. Dobkin B, Harkema S, "Modulation of locomotor-like EMG activity in subjects with complete and incomplete spinal cord injury." Neural Rehab Vol. 9, No. 4 (30 August 1995): pp.183-190.
8. "Locomotor Training." Human Locomotion Research Center, University of California, Los Angeles. 02 December 2006 <http.//www.harkema.ucla.edu/LTpp.html>.
9. "Body Weight Support." Human Locomotion Research Center, University of California, Los Angeles. 04 December 2006
<http.//www.harkema.ucla.edu/bws.html>.
10. "Spinal Cord Injury." Spinal Cord Injury Resource Center. 11 January 2007 [http://www.spinalinjury.net/html/_spinal_cord_101.html](http://www.spinalinjury.net/html/_spinal_cord_101.html).
11. "Flexiforce Force Sensors." Tekscan, Inc. 30 June 2007 [http://www.tekscan.com/flexiforce/flexiforce.html](http://www.tekscan.com/flexiforce/flexiforce.html).
12. "Touch Glove V1.7-L." I-CUBE X Online Store. 25 July 2007 [http://infusionsystems.com/catalog/product_info.php/products_id/45](http://infusionsystems.com/catalog/product_info.php/products_id/45).
13. "Force Sensors." FGP Sensors \& Instrumentation. 19 August 2007 [http://www.fgpsensors.com](http://www.fgpsensors.com).
14. "Sparkfun Datalogger." Sparkfun Electronics. 11 January 2008
[http://www.sparkfun.com/datasheets/Widgets/Logomatic/Logomatic_V1_0.pdf](http://www.sparkfun.com/datasheets/Widgets/Logomatic/Logomatic_V1_0.pdf)
