Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page # to: last page #" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT

SUSTAINABLE SITE REMEDIATION: A LIFE CYCLE ASSESSMENT APPROACH

by

Harnoor Dhaliwal

Remediation of contaminated areas is often a resource-intensive activity that itself can create environmental burdens. Life cycle assessment (LCA) was used as a tool to examine the environmental impacts associated with remediation activities. A hypothetical contaminated site with five remediation alternatives was developed for this analysis. The results of Life cycle Impact Assessment (LCIA) indicated that greater site activity in terms of transportation, material and equipment use translated into higher environmental impacts.

A sensitivity analysis was performed to evaluate the environmental impacts further in different time horizons. The results showed that choice of time horizon can have a significant effect on the magnitude of impacts and the interpretation of results. Additionally, it was found that LCA presently has important limitations related to the characterization of certain emissions. It is concluded that LCA as a tool is insufficient for addressing sustainability completely; it should be supplemented with other approaches.

SUSTAINABLE SITE REMEDIATION:

A LIFE CYCLE ASSESSMENT APPROACH

by Harnoor Dhaliwal

A Thesis Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Environmental Policy Studies

Department of Chemistry and Environmental Science

January 2009

APPROVAL PAGE

SUSTAINABLE SITE REMEDIATION: A LIFE CYCLE ASSESSMENT APPROACH

Harnoor Dhaliwal

Dr. Daniel J. Watts Thesis Advisor Date Executive Director of York Center for Environmental Engineering and Science, NJIT

Dr. Lisa Axe, Committee Member Professor of Civil and Environmental Engineering, NJIT

Dr. Zeyuan Qiu, Committee Member Associate Professor of Chemistry and Environmental Science, NJIT

9/4/2008 Date

9-4-08

<u>9/4/08</u> Date

BIOGRAPHICAL SKETCH

Author: Harnoor Dhaliwal

Degree: Master of Science

Date: August 2008

Undergraduate and Graduate Education:

- Master of Science in Environmental Policy Studies, New Jersey Institute of Technology, Newark, NJ, 2008
- Master of Science in Environmental Management, G.G.S. Indraprastha University, Delhi, India, 2006
- Bachelor of Science in Botany (Honors) University of Delhi, New Delhi, India, 2004

Major: Environmental Policy Studies

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Daniel Watts, who gave me the opportunity to pursue this thesis. Dr. Watts not only provided me with valuable insights and guidance but also gave me support and encouragement. Special thanks to Dr. Lisa Axe and Dr. Zeyuan Qiu for their time and effort in reviewing this work.

I am grateful to DuPont, who is the financial sponsor of this work. DuPont's aim of finding sustainable ways to perform remediation to protect human health and environment is the reason for this study. I also wish to thank Lise Laurin from EarthShift, who provided me with valuable technical support and assistance.

I dedicate this thesis to my family.

TABLE	OF	CONTENTS
-------	----	----------

C	hapter	Page
1	INTRODUCTION	1
	1.1 Background	1
	1.2 Objectives	6
	1.3 Overview of the Thesis	7
2	LIFE CYCLE ASSESSMENT – THE FRAMEWORK	8
	2.1 Goal and Scope Definition	11
	2.2 Inventory Assessment	12
	2.3 Life Cycle Impact Assessment (LCIA)	13
	2.4 Interpretation	14
3	METHODOLOGY	15
	3.1 Site Characteristics	15
	3.2 Goal and Scope of Study	15
	3.2.1 Treatment Scenarios	16
	3.3 Life Cycle Inventory (LCI)	19
	3.4 LCIA Method	22
4	RESULTS	24
	4.1 Impact Assessment	24
	4.2 Depletion And Emissions	. 27
	4.3 Contribution Analysis	30
5	SENSITIVITY ANALYSIS	33

TABLE OF CONTENTS (Continued)

C	hapter	Page
	5.1 Background	33
	5.2 Results of Sensitivity Analysis	35
6	DISCUSSION	42
	6.1 Limitations in LCA	. 44
	6.2 Limitations of the Study	46
7	SUSTAINABLE REMEDIATION	47
	7.1 Use of LCA as Sustainability Tool	. 49
	7.2 Decision Support Approaches for Sustainability	. 50
8	CONCLUSION AND RECOMMENDATIONS	. 53
A	PPENDIX A INVENTORY OF ENVIRONMENTAL INTERVENTIONS	55
	A.1 MNA.	. 55
	A.2 Bioventing.	. 56
	A.3 Chemical oxidation	. 64
	A.4 In-situ S/S	. 74
	A.5 Ex-situ S/S	. 83
A	PPENDIX B CONTRIBUTION ANALYSIS	. 92
R	EFERENCES	. 99

	LIST	OF	TA	BL	ÆS
--	------	----	----	----	----

L	Table	Pa	ıge
	3.1	Treatment technology description	17
	3.2	Mass of material inputs	20
	4.1	Inventory of environmental interventions (normalized values)	28
	A.1	Environmental interventions – MNA	55
	A.2	Environmental interventions – Bioventing	56
	A.3	Environmental interventions – Chemical oxidation	64
	A.4	Environmental interventions – In-situ S/S	74
	A.5	Environmental interventions – Ex-situ S/S	83
	B.1	Contribution of processes (normalized values)	92

LIST OF FIGURES

Figure	Pa	ge
1.1	General Scheme for LCA (ISO 14040, 1997)	11
3.1	Processes forming the system boundary	21
4.1	Option (1) MNA – Normalized impacts	25
4.2	Option (2) Bioventing – Normalized impacts	25
4.3	Option (3) Chemical oxidation – Normalized impacts	26
4.4	Option (4) In-situ S/S – Normalized impacts	26
4.5	Option (5) Ex-situ S/S – Normalized impacts	26
5.1	Option (1) MNA – Baseline characterization	35
5.2	Option (2) Bioventing – Normalized impacts (20 year Time horizon)	36
5.3	Option (2) Bioventing – Normalized impacts (100 year Time horizon)	36
5.4	Option (2) Bioventing – Normalized impacts (500 year Time horizon)	36
5.5	Option (2) Bioventing – Normalized impacts (Baseline characterization)	36
5.6	Option (3) Chemical oxidation-Normalized impacts (20 year Time horizon)	37
5.7	Option (3) Chemical oxidation -Normalized impacts (100 year Time horizon).	37
5.8	Option (3) Chemical oxidation -Normalized impacts (500 year Time horizon).	37
5.9	Option (3) Chemical oxidation -Normalized impacts(Baseline characterization)) 37
5.10	Option (4) In-situ S/S – Normalized impacts (20 years Time horizon)	38
5.11	Option (4) In-situ S/S – Normalized impacts (100 years Time horizon)	38
5.12	Option (4) In-situ S/S – Normalized impacts (500 years Time horizon)	38
5.13	Option (4) In-situ S/S – Normalized impacts (Baseline characterization)	38
5.14	Option (5) Ex-situ S/S – Normalized impacts (20 years Time horizon)	39
5.15	Option (5) Ex-situ S/S – Normalized impacts (100 years Time horizon)	39
5.16	Option (5) Ex-situ S/S – Normalized impacts (500 years Time horizon)	39
5.17	Option (5) Ex-situ S/S – Normalized impacts (Baseline characterization)	39

GLOSSARY

Afcfee	Air Force Center for Environmental Excellence
AfrS	Methodology for Remediation Selection
ADP	Abiotic Depletion Potential
AP	Acidification Potential
BTEX	Benzene, Toluene, Ethylbenzene and Xylene
CML	Centre of Environmental Science – Leiden University
EP	Eutrophication Potential
FAETP	Freshwater Aquatic Ecotoxicity Potential
GWP	Global Warming Potential
HTP	Human toxicity potential
IPCC	Intergovernmental Panel on Climate Change
ISO	International Organization for standardization
ITRC	Interstate Technology & Regulatory Council
LCA	Life Cycle Assessment
LCI	Life Cycle Inventory
LCIA	Life Cycle Impact Assessment
LCM	Life Cycle Management
MAETP	Marine Aquatic Ecotoxicity Potential
NJSSI	New Jersey Sustainable State Institute
ODP	Ozone Depletion Potential
PM	Particulate Matter
PCOP	Photochemical Oxidation Potential
S/S	Solidification/Stabilization
SARA	Superfund Amendment and Reauthorization Act
SETAC	Society of Environmental Toxicology and Chemistry
SPL	Spill Pot Lining
TETP	Terrestrial Ecotoxicity Potential
TNO	Environment, Energy and Process Innovation
TPH	Total Petroleum Hydrocarbons
US EPA	United States Environmental Protection Agency
USES	Uniform System for the Evaluation of Substances
WMO	World Meteorological Organization

CHAPTER 1 INTRODUCTION

1.1 Background

Contaminated sites are a common occurrence in the United States and most of the world. These sites present a controversial and complex environmental problem. Health and environmental risk, liability, social equity, as well as appropriate and reliable remediation technology are some important aspects of the problems associated with contaminated areas (Soesilo and Wilson, 1997).

Remediation of contaminated sites is often governed by considerations of statutory compliance, cost, social acceptance and technical suitability. Until recently there had been little recognition of the range of impacts caused by remediation itself. Clean up activities are often resource-intensive; while they remove contamination from a localized area they can often create problems like resource depletion, global warming, and emissions to air and water on a larger geographical and temporal scale (Diamond et al., 1999).

In the United States, the use of innovative technologies has been encouraged to return contaminated sites to a productive use. The Superfund Amendment and Reauthorization Act, 1986 (SARA) encourages remedy of contamination by means other than the practice of excavation and disposal or containment. While redevelopment in the US has focused on encouraging economic and social redevelopment by clean up through innovative technologies (US EPA, 2001; US EPA, 1999a), the environmental impact of remediation has received little attention.

1

In its recent efforts, EPA has recognized the need to incorporate environmental concerns in remediation practices. EPA's Technology Innovation Program has introduced "Green Remediation" (US EPA, 2008) to encourage sustainable practices such as:

- Efficiency in energy use
- Reduction in resource utilization
- Reduction of pollution
- Reduction of waste/ Recycling

An initial set of best management practices has been created to provide building blocks for sustainable remediation (US EPA, 2008). An important component of a sustainable outlook for remediation of contaminated areas is therefore consideration of environmental impacts of the remediation activities.

A number of tools for measuring and monitoring sustainable development have been built in the past, for example, Ecological Footprint (Rees and Wackernagel, 1994), Sustainable Technology Development (Weaver et al., 2000) and Natural Capitalism (Hawken and Lovins, 1999). Life Cycle Assessment (LCA) is one such approach. It has been applied to quantify environmental emissions throughout the life of products and services to achieve sustainable solutions. Impact assessment in LCA is based on a wide spatial and temporal scale where results are presented in relation to a functional unit. (ISO 14040, 1997; Guinée et al., 2002). A functional unit is a specific "function" performed by the product or the product system, which can be used as the basis to compare alternative choices and quantify environmental concerns (Guinée et al., 2002).

Many authors have used the LCA perspective to quantify and assess "secondary impacts" (Volkwein et al., 1999) associated with materials and services used for remediation. Diamond et al. 1999 introduced an LCM (Life Cycle Management) approach - a framework derived from LCA, to provide a qualitative understanding of impacts associated with remediation, where potential impacts are distinguished into three main categories, viz., pollution, disturbance and depletion. This approach was used in a quantitative study to quantify impacts of an excavation and disposal scenario (Page et al., 1999). Solid waste production, land-use impacts and energy consumption (due to off-site transportation) were identified as important environmental issues within a time boundary of 25 years.

LCA has also been used in site remediation studies as a tool to compare practicable options (Harbottle et al., 2007; Blanc et al., 2004; Cadotte et al., 2007; Godin et al., 2004). Harbottle et al., 2007, compared excavation and off-site disposal with stabilization/solidification (S/S). LCA was used to assess impacts and assign scores to four categories in a multi-criteria analysis: human health and safety, local environment, stakeholder concern, future site use and global environment. The study did not conclude that one option was better than the other because of the limited number of parameters considered, but the manufacture of cement in the case of S/S and the transportation for landfilling were identified as the main sources of environmental impact. Another study compared five treatment options for a sulfur contaminated soil (Blanc et al., 2004). LCA was used to guide the selection with respect to resource utilization. The results indicated that treatment options requiring less resources were environmentally more suitable. However, these results were based on short term evaluation of options because the fate of emissions was not taken into account. Cadotte et al., 2007 compared in-situ and ex-situ treatment scenarios for a dieselfuel contaminated site. The study included both primary and secondary impacts while also considering the treatment time. It was concluded that the remediation options requiring a long treatment time produced low environmental impact, and the options with short treatment time had relatively higher impacts. Also, the impact assessment identified aquatic ecotoxicity to be most the impacted category. A study by Godin et al., 2004 compared four scenarios to treat an SPL (spent pot lining) - aluminum refining waste landfill. While also identifying ecotoxicity as most dominant; it concluded that LCA can be useful as a "screening tool" for impacts. Ecotoxicity has also been identified as a significant impact in bioremediation of diesel-fuel contaminated soil (Toffoletto et al., 2005).

Although LCA is a tool widely used to assess environmental impacts, there are certain unresolved issues that can affect the decision making. Time horizon is one such issue that is being realized as important in impact assessment results (Huijbregts et al., 2001). Life Cycle Impact Assessment (LCIA) methods typically use a steady state approach where the fate of emissions is calculated with an infinite time horizon (Guinée et al., 1996; Huijbregts et al., 2000b; Hertwich et al., 1998). While the underlying rationale is to capture the long term "potential impacts", the use of an infinite time period is a currently debated subject for reasons such as high uncertainty related to long term impacts. Additionally, some authors have pointed out that using an infinite time horizon can be misleading because an indefinite future is "unknowable" (Cohen, 1995).

The question of temporal scale becomes particularly relevant as the LCA approach is often associated with achieving sustainability goals. Sustainable

Development was defined by the Brundtland Commission as: "To meet the needs of the present without compromising the ability of future generations to meet their own needs" (Brundtland Commission, 1987). The question of future or time horizon therefore becomes an important one considering that it is one of the foundations of sustainability.

This work applies the LCA approach to site remediation to assess the secondary impacts and evaluate the usefulness of LCA as a tool to achieve environmental sustainability goals as a result of remediation activities. Relevant sustainability goals have been defined by many organizations in the past. Eleven goals and forty-one indicators of sustainability have been developed for the State of New Jersey (NJSSI, 2004), with an aim to address the three components of sustainable development: society, economy and environment. This study has attempted to align the environmental indicators with a set of ten environmental impact potentials identified as baseline (Guinée et al., 2002).

The recommended baseline impact categories include a number of time dependent categories such as global warming, human and eco-toxicity, ozone depletion, acidification and eutrophication. It is important to assess not only their magnitude but also to understand the effect of temporality, the nature of underlying characterization and any weaknesses in the life-cycle approach to realistically assess the possible environmental problems associated with site remediation.

1.2 Objectives

The objective of this thesis is to apply LCA approach to a set of five remediation options created for a hypothetical contamination situation in order to quantify their secondary

impacts. The LCA approach is used as a tool to help understand how best to achieve environmental sustainability goals in site remediation activities. Process contribution and scenario analysis is performed to identify the potential areas within the Life Cycle of remediation activities that lead to emissions and to evaluate the sensitivity of impacts to different time horizons respectively.

The results of this work are intended to be used for optimization of remediation design through identification of major sources of impacts. Reduction of environmental impacts serves as the broader context of this study. While the secondary impacts that arise at larger geographical and temporal scales during remedial actions are important for overall sustainability evaluation, the primary environmental impacts (those that occur at the site due to contamination), on sustainability metrics, are crucial components as well (Toffoletto et al., 2005). The scope of this work is limited to analysis of the secondary impacts is expected to be part of further work.

A hypothetical site with hydrocarbon contamination served as the base for this assessment. The assessment of impacts was performed by using the CML 2 baseline (2000) impact assessment method. Further, a sensitivity analysis was performed to assess the sensitivity of these impacts to different time horizons.

The objective is specified further through consideration of the following questions:

- What are the secondary impacts related to the selected remediation options?
- What are the key processes connected to the remediation options and what is their contribution to the impacts?

- How does a different time horizon affect the time-dependent impacts, and its potential significance for optimizing pollution causing processes?
- What are the strengths and weaknesses of LCA as a tool to assess the environmental sustainability aspects of site remediation?

1.3 Overview of the Thesis

This thesis is divided into eight chapters. After the first introductory chapter, a general framework of LCA, in four basic steps is described in chapter two. The methodology of this study is detailed in the third chapter. Results of LCIA, environmental interventions and contribution analysis are presented in the fourth chapter. A sensitivity analysis is performed in chapter five to evaluate the results further. It is followed by discussion of the implications of the results in chapter six. Chapter seven discusses the results from a sustainability perspective. The last chapter provides concluding remarks and summarizes the main findings.

CHAPTER 2

LIFE CYCLE ASSESSMENT – THE FRAMEWORK

LCA is a method of quantifying environmental impacts associated with a system where both inputs and outputs of the system connected with production, use, and disposal of the product or service activity are considered. The impacts are assessed along the entire life cycle that includes all the stages from extraction of raw materials, transportation and production to distribution, maintenance, use, recycling and final disposal (Consoli et al., 1993). The results from the assessment are characterized as environmental implications of the significant stages in the life cycle of products and services.

LCA is used as a decision support tool by many organizations. Its usefulness has been recognized historically as a tool to compare alternative products and technologies through quantitative evaluation of the environmental impacts. In recent years, use of LCA has increased considerably. Much is expected from this approach, but there is concern and criticism related to some features of the LCA results (Owen, 1997; Gloria et al., 2006; Perriman, 1995; Heijungs et al., 2004). While the basic framework is widely accepted, certain aspects such as impact-assessment and interpretation of results are still much debated subjects. Different LCA methods vary from each other in many respects, for example selected impact categories, coverage, characterization factors and data requirements. The variations can easily result in different interpretations of the results and affect decision making. Some studies have shown that inadequacy of underlying fateexposure models for toxicity characterization, particularly in the case of metals, can lead to a possible overestimation of the impact (Owen, 1997; Heijungs et al., 2004). The issue of time and space is another problem in LCA that has been the subject of much debate and research. LCIA results are presented on a broad scale that lacks temporal and spatial specificity. Past studies have shown that spatially derived characterization factors can differ substantially from generic factors, reflecting the importance of the spatial aspect in impact categories such as acidification and eutrophication potential (Potting et al., 1997; Huijbregts et al., 2000a). Also, it has been shown that ecotoxicity impact due to metals is dependent on ambient environmental conditions, thereby emphasizing the need for "spatially differentiated" modeling (Strandesen et al., 2007). While the lack of specificity may result in less precise results, it does enable a wide applicability of LCA as a decision tool.

In the use of LCA it is observed that cumulative impact of long term emissions can be much greater when evaluated with the same impact factors as current emissions (Ecoinvent, 2004). While this kind of assessment in the present LCIA methods is a concern, long term emissions cannot be ignored especially in case of waste management processes. Finnveden and Nielsen 1999, presented an argument in support of considering landfill emissions beyond 100 years (which is often a default standard timeframe in the use of LCA) by pointing to the fact that the utility of a landfill area is restricted far beyond 100 years and that only a small fraction of the total emissions are emitted during the first 100 year period. Long term emissions for disposal related processes are found to be particularly meaningful in LCA; however, their relevance in other processes may be limited (Doka, 2003).

The use of discounting (differentiated weighting) has been suggested by some authors, where every additional year is assigned a lower weight (Hellweg et al., 2003). But the discounting approach can be difficult to implement because it not only requires technical knowledge and assessment of future uncertainty; but also stirs ethical debates regarding the moral obligation to future generations and non-human entities (Heijungs et al., 2004).

The answer to the issue of time and space in LCA is not an easy one. While there is a general consensus about the procedural aspects of LCA, there are on-going efforts leading to modifications that aim to provide more temporal and spatial specificity. There are several available guidelines addressing the framework and terminology in LCA. For example, SETAC's (Society of Environmental Toxicology and Chemistry) "Code of Practice" (Consoli et al., 1993) and the ISO (International Organization for Standardization) series (14040, 1997; 14041, 1998; 14042, 2000a; 14043, 2000b). A Handbook on LCA, an "operational guide to ISO standards", has also been published to provide step by step guidance at each phase in LCA (Guinée et al., 2002)

The framework of LCA is has been outlined as consisting of four phases: goal and scope definition, inventory analysis, impact assessment and interpretation (ISO 14042 2000a; Guinée et al., 2002). The following sections give a brief overview of the LCA steps.

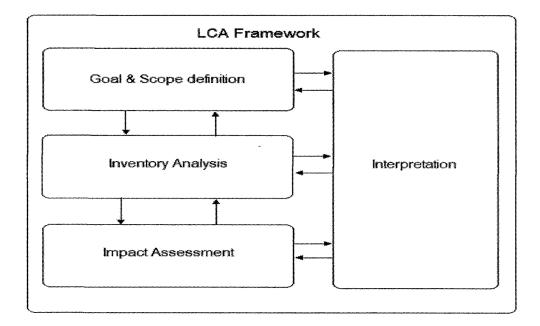


Figure 2.1 General Scheme for LCA (ISO 14040, 1997)

2.1 Goal and Scope Definition

This is the first step in the LCA where objectives of the study, the scope, the functional unit that will be used and the alternatives to be compared are described (ISO 14040, 1997; Guinée et al., 2002). It is important to describe the purpose for conducting LCA and the context in which the results will be used in order to assure that the results obtained are useful in accomplishing the objectives (ISO 14040, 1997). This phase provides the foundation for the study and guides the choices that will be made in the following phases.

Defining the functional unit is an important part of this step. The functional unit identifies the primary "function(s)" of a system based on which alternative systems are considered "functionally equivalent" (Guinée et al., 2002). This facilitates determination of reference flows for each option. Among other things, this means that the functional unit must have characteristics in common with all of the alternatives that will be compared. Functional unit therefore simply facilitates the comparison between two or more products or product systems. When alternative remediation technologies are compared for a particular site, it has been recommended to use the mass of contaminated soil as the functional unit (Shakweer and Nathanail, 2003). For sites with contaminated ground water or other classes of contamination, analogous choices could be made. The use of treated soil as the functional unit has been suggested by Diamond et al., 1999 but according to Shakweer and Nathanail, 2003 it would be an inappropriate unit of comparison as different technologies achieve different clean-up levels.

Additionally, the selected alternatives should be in accordance with the goal and scope of the study. The alternatives should also have an actual possibility of being used as substitutes (Guinée et al., 2002).

2.2 Inventory Analysis

Inventory analysis includes defining the system boundaries, allocation of resources for multifunctional processes, and quantifying the environmental interventions from the defined system with respect to the functional unit (Guinée et al., 2002). Description of the system boundaries includes specifying the sources of data for the selected processes, the choice of impact assessment method and limitations (Guinée et al., 2002). Limitations state the life cycle stages excluded from the system for the particular study, for example environmental interventions related to manufacturing of equipment and machinery. The selected processes are often depicted in the form of flow diagrams that create a simplified model of the system.

The inventory data represents the "cradle to grave" perspective of LCA as all the substances emitted and resources used during the life cycle of a product or a service are quantified (Guinée et al., 2002). However, this information is not sufficient for decision making because the environmental impacts of emissions are not assessed. The next phase, LCIA, processes the inventory data further and enables an interpretation in terms of impacts associated with various emissions (Saur et al., 1996).

2.3 Life Cycle Impact Assessment (LCIA)

The impact assessment has been divided into six phases: selection of impact categories, classification, characterization, normalization, grouping and weighing (Guinée et al., 2002; ISO 14042, 2000a). The selection of impact categories involves identifying categories according to the goal and scope of the study. In the next phase, classification, the inventory data is assigned to the selected impact categories. The characterization phase is the last mandatory step (ISO 14041, 2000a). A modeling approach is used to derive characterization factors, which are then used to convert the inventory data into impact category indicators (Guinée et al., 2002). These indicators represent the impact potential of each environmental intervention. Overall, characterization determines the potential contribution of the system to various environmental impacts.

Normalization is often performed as the next step. According to ISO standards, normalization is not a mandatory step, but it is often performed to obtain a more comprehensive view. Normalization relates the pollution and/or depletion created by a product to its surroundings (ISO 14042, 2000a). In other words, "normalization relates the micro world of an LCA study to the macro world in which the product/service is

embedded" (Lindeijer, 1996). Normalization results are therefore spatially bounded by local, regional or global references. They are obtained by dividing the characterized magnitude of each impact category by its normalization factor (an estimated total impact in that category in a given reference area). This results in the unit-less measure of impacts. For example, normalized impact for global warming can be obtained by dividing the characterized global warming impact caused by a product or a system by the total global warming impact produced in a given area during a one year period.

The next optional step is grouping, where impact categories are aggregated into one or more groups based on characteristics such as spatial scale or type of environmental intervention (Guinée et al., 2002). No clear guidelines are available for this step.

Weighting is another optional step where normalized results are assigned weighting factors. These factors are based on value choices such as standards, "willingness to pay" and expert judgment (Guinée et at., 2002). Presently there are no recommended weighting factors or methods for performing this step. The ISO 14042 does not allow weighting in comparative studies.

2.4 Interpretation

Interpretation involves drawing final conclusions and recommendations with respect to the defined goal and scope of the study (Guinée et al., 2002).

CHAPTER 3

METHODOLOGY

3.1 Site Characteristics

A hypothetical site of area 625 yd², with a total contaminated soil of volume $5000yd^3$ (approximately 5000 tons) is developed for this study. The contamination extends to a depth of 8m in the vadose zone. The contaminants of concern are assumed to be organic in nature: Total Petroleum Hydrocarbon (TPH) and Benzene, Toluene, Ethylbenzene and Xylene (BTEX). The concentration of TPH and BTEX is assumed to range from 1 - 5000 mg/kg in soil. The soil type is assumed to be medium sandy. For the purposes of this study, there is assumed to be no interaction of the contaminants with ground water.

3.2 Goal and Scope of Study

The goal of this study is to assess the secondary impacts of a set of five site remediation alternatives and to evaluate the results from the perspective of environmental sustainability. As a prerequisite to the analysis, the remediation options are assumed to be feasible.

The functional unit is defined as remediation of 5000 yd^3 of soil. The design of the treatment options is generic, and lacks parameters such as site characteristics, hydrology and efficiency of technology. Although they can become overriding factors in technology selection at a particular site, the scope of this work is limited to the assessment of secondary environmental impacts that arise due to material and energy use at the site; and their implication from a sustainability perspective.

15

The results are intended to be used further to identify potential "hot spots" in the life cycle of materials and services used and draw conclusions for improvement of remediation practice. Finally, the results are to be used to discuss the usefulness of LCA as a tool to achieve environmental sustainability goals.

A simplified hypothetical site was therefore developed and five possible remediation scenarios were selected to perform LCA. The remediation scenarios were selected to be illustrative of technical types and not necessarily as the techniques that would be selected for remediation of this particular type of site.

3.3 Treatment Scenarios

The following five treatment scenarios were selected. Table 3.1 presents a short description of each technology.

- (1) Monitored Natural Attenuation (MNA)
- (2) Bioremediation
- (3) Chemical oxidation
- (4) In-situ Solidification/Stabilization (S/S)
- (5) Ex-situ Solidification/Stabilization (S/S)

For MNA, option (1), it is assumed that the contaminants will degrade in a period of 50 years, hence the monitoring time. Natural attenuation is a process of risk reduction at the site due to the natural course of biodegradation or chemical degradation, dilution, dispersion, volatilization and sorption (US EPA, 1999b; US EPA 2004). Application of natural attenuation as a remedial alternative needs careful evaluation of a number of site parameters such as hydrology, contaminant distribution, fate, geochemistry and receptor location (US EPA, 2004). Long-term monitoring is an integral part of a natural attenuation approach where the collected data is used for evaluation of contaminant behavior with time, efficiency of natural attenuation, and verification of the risk to down-gradient receptors (US EPA, 2004). The degradation rate is slow and can sometimes take a few hundred years to reach a regulatory standard. Therefore, the 50-year timeframe used in this study should be seen as only a working estimate of time.

Treatment Technology	Description	
(1) MNA	Long-term monitoring	Monitoring time: 50 yrs 2 workers/month
(2)Bioventing	2 Vent wells (7m deep, dia. 6.25 cm) 6 Monitoring points (7 m deep, dia. 20 cm) Radius of Influence, 10 m Blower (500 W)	Tipper truck (20t) Treatment time: 4 years 10 workers/d: 1 month 2 workers/month: 47 months
(3) Chemical oxidation	50 Paired injection steel wells (6 and 2 m deep, dia. 6.25 cm) Radius of Influence, 2 m 4 monitoring wells (8 m deep, dia. 6.25 cm) Oxidizing agent: Fenton reagent	Pump (1kW) Tipper truck (20t) Treatment time: 1 year 10 workers/d
(4) In-situ S/S	Auger – Caisson system Excavator Compactor	Tipper truck (40 t) Treatment time: 5 months 8 workers/d
(5) Ex-situ S/S	Mixer (Pug mill) Excavator Compactor Front loader	Hopper & blower Tipper truck (40 t) Treatment time: 5 months 10 workers/d

 Table 3.1 Treatment technology description

The design for bioventing (option 2), is based on the EPA guidance manual, Bioventing Principles and Practice (US EPA, 1995b). Estimation of number of vent wells and monitoring points is based on the guidelines provided by the manual. An average biodegradation rate (K_B) of 3.29 mg/kg/day from an average of 145 sites (Afcfee, 1996) was used to estimate the treatment time for bioventing.

Bioventing is a process of injecting air into contaminated soil to aerate the soil and achieve biological degradation of hydrocarbons or other biodegradable materials. Air at a low rate is pumped into the soil to facilitate biodegradation while avoiding volatilization of the hydrocarbon contaminant. Where applicable, bioventing can bring about significant degradation and reduction in the level of contamination (US EPA 1995a), although it is a time consuming treatment technology that frequently takes a number of years to achieve the contamination reduction standards.

Option (3), chemical oxidation involves oxidation of BTEX and TPH by using Fenton reagent (hydrogen peroxide and ferrous sulfate) as an oxidizing agent. The required Fenton reagent to oxidize the hydrocarbon was estimated from available reports on actual site applications (ITRC, 2005; US EPA, 1998). The injections were assumed to be performed intermittently during the course of one year.

Chemical oxidation has been used as an in-situ technology to destroy hydrocarbon contamination. The treatment time is usually a few months (US EPA, 1998). Hydrogen peroxide is one of the frequently used oxidizing agents among others such as KMnO₄ and Ozone (ITRC, 2005). Once injected into the contaminated zone, peroxide disintegrates into oxygen and water within hours. The chemical reaction generated by this solution, originally described by Fenton, 1894, creates a hydroxyl radical that very effectively

oxidizes complex organic compounds. Typically, peroxide is used at remediation sites in liquid form at dose concentrations that range from five percent to fifty percent by weight.

Remediation option (4), in-situ (S/S), involves use of cement and bentonite as binders to solidify and stabilize the contaminated soil. On-site mixing machinery – auger/caisson system was assumed to be used. Option (5) was designed for ex-situ (S/S) treatment where contaminated soil was excavated, blended in a pug-mill and disposed of off-site, which required transportation. The amount of binders required for the treatment was estimated from available reports on actual site applications. The transportation distances for suppliers, landfill and clean-fill source were assumed to be 75 km. An average time of operation, 5 months (US EPA, 2000) was assumed for both in-situ and ex-situ treatment.

3.4 Life Cycle Inventory (LCI)

The system boundary for generating the LCI included the remediation processes occurring at the site and the transportation to and from the site. Figure 3.1 presents a schematic representation of the processes considered for the five treatment options studied. Three main life cycle stages were included for options (2), (3), (4) & (5), viz., site preparation, treatment and site dismantling. Transportation of material and equipment was included in the site preparation stage; material and electricity was used during the treatment stage and finally transportation was considered again during site dismantling to return the equipment to its original location. For option (1) only transportation for monitoring was considered.

Secondary data for this analysis was obtained from the Ecoinvent and Franklin US databases provided with the SimaPro 7.0 software (PR'e Consultants, 2006). The life cycle processes included in the Ecoinvent database (Ecoinvent 1.3, 2000) and the Franklin US databases (Franklin Associates, 1998) were considered as the system boundary for the material and energy input. The CML 2 baseline (2000) method was chosen for performing the LCIA (Guinée et al., 2002)

The calculated amount of materials and energy used for these processes is presented in Table 3.2. The environmental load for each option is presented in relation to the functional unit. The required diesel and electricity for equipment operations were calculated according to the treatment time for each technology.

Material Input	MNA	Bioventing	Chemical oxidation	In-situ S/S	Ex-situ S/S
Portland cement (Kg)	-	-	-	1×10^{6}	1x10 ⁶
Bentonite (Kg)	-	600	530	$4x \ 10^5$	$4x \ 10^5$
Sand (Kg)	-	1100	113	-	
PVC (Kg)	-	16	-	-	-
Steel (Kg)	-	-	3400	-	-
Cement mortar (Kg)	-	150	1600	-	-
H ₂ O ₂ (50%) (l)	-	-	10,000	-	-
Iron(II)Sulfate(Kg)	-	-	20,000	-	-
Electricity (KWh)	-	17520	100	-	9000
Diesel machinery (1)	-	-	-	38,000	57,000
Transport _{passenger car} (Km)	72,000	30,000	16,000	48,000	60,000
Transport _{truck} (Km)	-	300	450	5,550	53,000

	Table 3.2	Mass	of mat	terial	input
--	-----------	------	--------	--------	-------

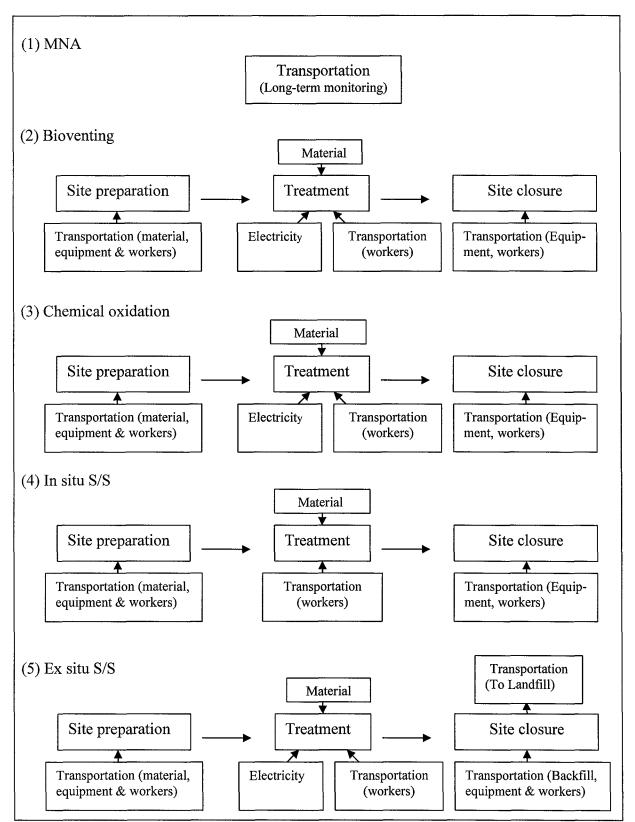


Figure 3.1 Processes forming the system boundary

The outcome of the LCI is the list of all resources used and substances emitted. The complete LCI data for the five remediation options is provided in the appendix A. The assumptions and limitations used in LCI generation for this study are the following:

- The site characterization phase of remediation was not included.
- The transportation distance from the landfill and suppliers was assumed to be 75 km. For personal transportation of workers, the distance from home to work-site was assumed to be 30 km.
- Resource utilization and emissions during manufacture of trucks, cars and equipment were not included in the LCI.
- All staff activities except transportation of workers (to and from the site) were excluded in the LCI.
- Time, energy and material inputs were estimated by considering a reduction in contaminant concentration of approximately 90-95% for each remediation option.
- Emissions from stabilized soil were not considered.
- Direct fugitive emissions from on-site contaminants during remediation were not considered.
- Contaminants were assumed to reach an asymptotic level in a period of 50 years for the MNA option.

3.5 LCIA Method

The standard method of CML - 2 (2000) was selected for impact assessment. It is a problem-oriented (mid-point) approach based on best available practice. The SimaPro 7.0 (PR'e Consultants, 2006) computational software tool was used to perform the impact

assessment. The normalization step for characterized impacts was performed for this analysis.

The impact assessment method covers a set of core baseline impact categories – Abiotic Depletion Potential (ADP), Global Warming Potential (GWP), Human Toxicity Potential (HTP), Freshwater Aquatic Ecotoxicity Potential (FAETP), Marine Aquatic Ecotoxicity Potential (MAETP), Terrestrial Ecotoxicity Potential (TETP), Photochemical Oxidation Potential (PCOP), Acidification Potential (AP) and Eutrophication Potential (EP).

This impact assessment method elaborates a problem oriented approach that is based on the mid-point of the cause-effect chain of an environmental problem, rather than the end point of this chain (Guinée et al., 2002). Characterization factors for time dependent impact categories are based on fate-exposure models. Baseline characterization factors for GWP consider a 100 year time horizon, which is derived from the IPCC (Intergovernmental Panel on Climate Change) model for GWP. The ODP baseline factors are steady-state factors, developed by WMO (World Meteorological Organization). Characterization factors for toxicity are derived from a multimedia fateexposure model, USES – LCA developed by Huijbregts et al., 2000b. The model uses a steady-state equilibrium that is based on an infinite time-horizon. Acidification potentials are also derived from steady-state models (Huijbregts et al., 2000a). In the case of Eutrophication however, the current characterization factors are not based on fateexposure modeling (Guinée et al., 2002).

The CML method includes continental and global spatial scales for normalization. The global scale was chosen for this study in order to reduce geographical specificity.

CHAPTER 4

RESULTS

4.1 LCIA

The secondary impacts of the five remediation options were assessed by performing LCIA, including the normalization step. A category-wise comparison of the four options showed Natural attenuation to be the lowest impact option followed by Bioventing. The highest secondary impacts were produced by Ex-situ S/S. The relative magnitude of other impacts, particularly in the case of the bioventing and chemical oxidation options appeared to be diminished due to the pronounced impact of marine ecotoxicity. The LCIA results are presented in figure 4.1 - 4.5.

Results show that MAETP impact category had the highest contribution in the cases of bioventing, chemical oxidation and in-situ S/S. It was also an important category for ex-situ S/S. ADP was particularly significant for both of the S/S options due to a greater input of resources. GWP, AP, PCOP and EU were also significant for these two options. For MNA, direct emissions from transportation are considered. They produced a relative dominance of ADP and GWP followed by PCOP, AP and EP. No toxicity (HTP, FAETP, MAETP, and TETP) impacts were observed for this option.

For bioventing a high proportion of the total impact came from the electricity use (64.5%) to power the blower, passenger car (18%) for monitoring and bentonite for construction (13%). In the case of chemical oxidation, the use of H_2O_2 for oxidation was the most dominant process, contributing nearly 40% of the total impacts. The input of other materials such as steel and iron sulfate contributed 35.8 % and 6% respectively. Transportation of workers contributed 9% to the total impact. The use of Portland cement

had the highest impacts in the case of in-situ S/S (55%). The use of diesel for onsite equipment operation contributed 13.5% and transportation by truck contributed 21%. In the case of ex-situ S/S, truck transportation had the highest contribution of 66% due to the transportation of stabilized soil to a disposal facility and bringing clean fill to the site. Portland cement contributed nearly 28% while diesel equipment operation contributed 3% to the total impacts.

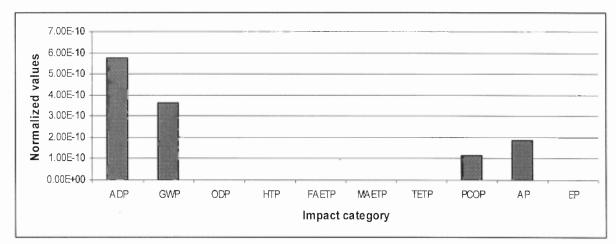


Figure 4.1 Option (1) MNA - Normalized impacts

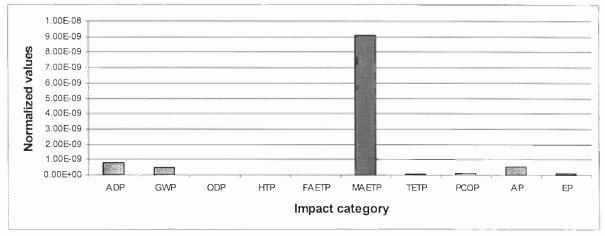


Figure 4.2 Option (2) Bioventing - Normalized impacts

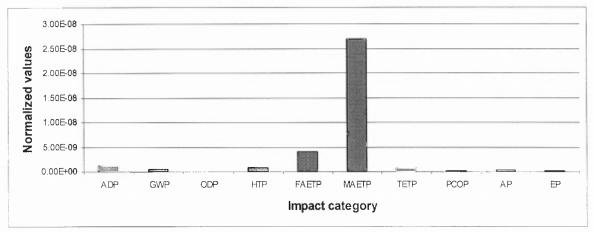


Figure 4.3 Option (3) Chemical oxidation - Normalized impacts

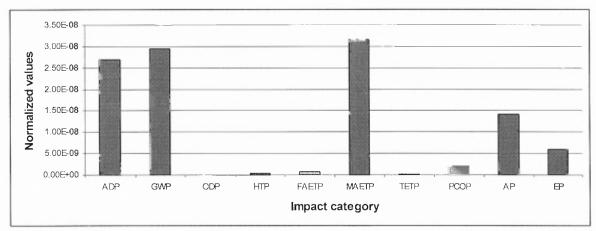


Figure 4.4 Option (4) In-situ S/S - Normalized impacts

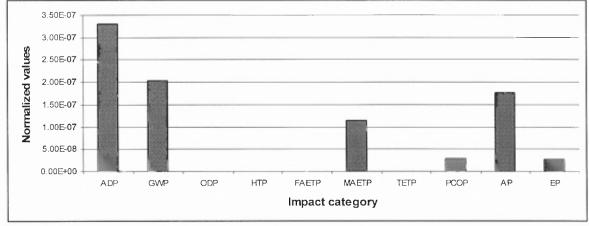


Figure 4.5 Option (5) Chemical oxidation - Normalized impacts

4.2 Depletion and Emissions

Table 4.1 presents the inventory of resource inputs and emissions for the five remediation options. These are normalized results. Substances contributing more than 1% of the total impact are presented here. The inventory is differentiated for each impact category and the compartment of release.

The ADP category was dominated by non-renewable resources such as coal, natural gas and oil in all the remediation options. In the case of global warming impact, carbon dioxide and methane emissions were the primary contributors.

The toxicity impact was found to be due mainly to metal emissions in the four remediation options, (2), (3), (4) and (5). For the HTP category, certain persistent hydrocarbon emissions such as benzene and polyaromatic hydrocarbons (PAH) were observed in addition to metals. In case of ex-situ S/S, particulate matter (PM), oxides of nitrogen and sulfur also contributed to HTP. FAETP showed emissions of metals such as copper, nickel, vanadium, barium and cobalt. In the case of the MAETP category, hydrogen fluoride emissions into the air compartment were found to be particularly dominant for all the treatment options except MNA. Metals were also found to be the main emissions in the case of TETP.

In the PCOP category, emissions of air pollutants such as oxides of sulfur and carbon monoxide were the main contributors for all options. The AP was dominated by oxides of nitrogen and sulfur in all the options. Finally, in the EP category oxides of nitrogen, ammonia and phosphorous were observed.

Bioventing	Chemical Oxidation	In-situ S/S	Ex-situ S/S
	0 00 0 10		0.1.45.00
			8.14E-09
			2.28E-08
10 2.67E-10	1.55E-10	2.03E-08	2.93E-07
4.37E-10	4.41E-10	2.96E-08	2.03E-07
			-
4.37E-15	1.18E-12	1.20E-12	1.20E-12
6.60E-15	1.72E-12	4.38E-11	4.38E-11
2 01E 12			
	-	- 1 14E 10	- 2.52E-1(
-	-		-
- 2 22E 12	-		-
		5.21E-11	5.23E-11
		-	-
	-		
	-		1.15E-10
5.12E-13	1.38E-10		1.34E-10
	-	2.99E-11	-
5 3 (F 10		1.2000 11	C 0 CT 1
			6.35E-1
	1.01E-11		3.40E-10
	-		1.44E-09
2.34E-13			1.39E-10
-	1.78E-11	4.69E-11	4.69E-1
-	-	-	1.28E-10
9.02E-13	-	-	-
-	5.67E-10	-	-
-	-	-	3.12E-1
-	-	8.89E-11	8.89E-1
-	3.94E-10 11 1.45E-10 10 2.67E-10 10 4.37E-10 1.41E-11 4.37E-15	$\begin{array}{c} 3.94E-10 \\ 11 \\ 1.45E-10 \\ 3.90E-10 \\ 10 \\ 2.67E-10 \\ 1.55E-10 \\ 1.55E-10 \\ 1.55E-10 \\ 1.41E-11 \\ 1.36E-11 \\ 1.72E-12 \\ 1.05E-11 \\ 1.05E-11 \\ 1.33E-13 \\ 1.05E-11 \\ 1.38E-13 \\ 1.38E-10 \\ - \\ 5.36E-12 \\ 1.27E-12 \\ 1.01E-11 \\ 1.38E-10 \\ - \\ 5.36E-12 \\ 1.27E-12 \\ 1.01E-11 \\ 1.78E-11 \\ - \\ 9.02E-13 \\ - \\ 9.02E-13 \\ - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

 Table 4.1 Inventory of environmental interventions (Normalized values)

Substance by Impact-Category	Compartment	MNA	Bioventing	Chemical Oxidation	In-situ S/S	Ex-situ S/S
			Diovenning	Omuunon		
FAETP						
Barium	Water	-	3.50E-13	3.44E-11	1.89E-10	1.89E-10
Beryllium	Air	-	5.38E-13	-	2.35E-11	3.69E-11
Beryllium	Water	-	5.78E-13	2.28E-11	6.51E-11	6.51E-11
Cadmium, ion	Water	-	1.45E-12	-	-	2.98E-10
Cobalt	Water	-	8.46E-13	1.42E-10	1.68E-10	1.68E-10
Copper, ion	Water	-	2.88E-12	6.10E-10	2.03E-10	2.03E-10
Formaldehyde	Air	-	-	-	1.29E-10	1.93E-10
Hydrogen	Air	-	2.52E-13	-	-	
fluoride						
Nickel	Air	-	6.59E-13	-	-	1.71E-10
Nickel, ion	Water	-	4.04E-12	1.58E-9	7.83E-10	7.83E-10
Selenium	Air	-	2.99E-13	-	-	-
Phenol	Water	-	-	-	-	3.57E-11
Vanadium	Air	-	2.68E-13	4.06E-11	6.85E-11	6.85E-11
Vanadium, ion	Water	-	2.76E-12	3.68E-10	4.18E-10	4.18E-10
Zinc, ion	Water	-	2.37E-13	2.16E-11	2.74E-11	3.57E-11
PAH	Water	-		2.30E-11	1.26E-10	1.26E-10
MAETP						
Barite	Water	-	-	7.63E-10	4.01E-09	4.01E-09
Barium	Water	-	-	5.26E-10	3.25E-09	3.25E-09
Beryllium	Air	-	-	-	2.57E-09	4.04E-09
Beryllium	Water	-	-	5.37E-10	1.53E-09	1.53E-09
Cobalt	Water	-	-	7.27E-10	8.59E-10	-
Copper, ion	Water	-	-	4.88E-10	-	-
Hydrogen	Air	-	6.05E-09	1.16E-08	2.17E-08	1.01E-07
fluoride						
Nickel	Air	-	-	-	5.27E-10	4.07E-09
Nickel, ion	Water	-	-	4.09E-09	2.17E-09	2.17E-09
Thallium	Air	-	-	-	5.87E-10	-
Selenium	Water	-	-	3.08E-10	-	-
Vanadium	Air	-	-	1.14E-09	1.92E-09	1.92E-09
Vanadium, ion	Water	-	-	1.40E-09	1.60E-09	1.60E-09
ТЕТР						
Arsenic	Air	_	3.55E-12	1.03E-11	1.12E-10	2.48E-10
Chromium VI	Air	-	-	1.03E-11 1.24E-11	1.1213*1U	2.40L-1U
Chromium VI	Soil	-	- 9.26E-13	1.24E-11 3.66E-11	- 4.85E-10	- 4.85E-10
Formaldehyde	Air	_	- -	-	4.83E-10 1.12E-10	4.83E-10 1.67E-10
ronnaidenryde		-	-	-	1.1212-10	1.0/12-10

۰,

Substance by Impact-Category	Compartment	MNA	Bioventing	Chemical Oxidation	In-situ S/S	Ex-situ S/S
Nickel Mercury Sodium dichromate Vanadium	Air Air Air Air	-	9.53E-13 4.44E-11 - 8.09E-13	7.14E-12 1.45E-10 1.06E-10 1.18E-10	- 3.41E-09 - 2.00E-10	2.40E-10 4.21E-09 - 2.00E-10
PCOP Carbon monoxide Ethane Formaldehyde Methane Pentane Sulfur dioxide Sulfur oxides	Air Air Air Air Air Air Air	1.14E-10 - - - 3.27E-12 -	4.68E-11 - - 1.55E-12 - 4.68E-11 -	2.57E-11 5.71E-13 - 1.53E-12 6.97E-13 1.53E-11 1.01E-11 -	1.01E-09 - 1.72E-11 4.11E-11 - 2.21E-10 4.54E-10 -	1.80E-08 - - - 9.26E-09 -
AP Ammonia Nitrogen oxides Sulfur dioxide Sulfur oxides EP Ammonia COD Nitrate Nitrogen oxides Phosphorus	Air Air Air Air Air Water Water Air Water	- 1.61E-10 2.44E-11 - - - 1.02E-10	- 1.41E-10 3.77E-10 - - - 8.93E-11 9.49E-13	- 7.26E-11 1.90E-10 - 1.07E-12 8.63E-12 1.73E-12 4.59E-11 7.97E-12	1.46E-10 9.09E-09 1.66E-09 3.40E-09 7.74E-11 - - 5.74E-09	- 1.06E-07 6.92E-08 - 6.73E-08 - -

4.3 Contribution Analysis

Contribution analysis, also referred to as "dominance analysis" helps in identification of constituent processes in impact assessment results. Knowledge of the share of certain processes that contribute to an impact category can help identify the source of emissions.

This analysis can be helpful in developing pollution prevention or reduction strategies by redesigning products (Heijungs & Kleijn, 2005). Appendix B present results of contribution analysis for the remediation options. Processes contributing to more than 1% of the overall impact were considered.

A category-wise analysis for each option showed dominance of energy based processes such as use of coal for boilers; natural gas and crude oil in the ADP category. This was due to the energy dependence of on-site activities such as use of electricity and diesel for transportation. Also, the production and processing of materials such as cement is an energy intensive process that further leads to dominance of non-renewable sources of energy in the ADP category. ADP was a significant impact category for option (4) and (5) because of greater material input than in the other options. For MNA (option 1), ADP was due to the gasoline consumption for transportation.

Global warming gases (CO_2 and methane) for bioventing and chemical oxidation came from transportation of workers, and the use of fuel oil burned in industrial furnaces and coal in boilers for electricity production. For the S/S options (both in-situ and exsitu), onsite equipment use and transportation related activities were important contributors to GWP. Clinker production was also a significant contributor due to the energy intensive nature of cement production. The processes causing ODP varied from chlorine gas production to industrial use of coal and fuel oil.

HTP, in the case of bioventing was mainly due to burning of coal for electricity generation. In the chemical oxidation option, HTP was mostly impacted by processes related to steel and H_2O_2 production. For S/S (in-situ) processes related to clinker production had a significant impact on HTP. Direct emissions from the truck operation,

clinker production and the production of fuel oil for transportation were the main processes causing HTP in case of ex-situ S/S.

The FAETP category was mainly impacted by waste management activities such as disposal in a landfill. For MAETP, hydrogen fluoride emissions (air compartment) due to burning of coal in industrial processes stood out as the most dominant emission in case of bioventing. For other options, disposal processes along with use of coal were significant.

Processes causing terrestrial ecotoxicity were more varied for the four treatment options, ranging from burning of coal in power production in the case of bioventing to production of steel in the case of chemical oxidation, and clinker production for the S/S scenarios.

Transportation related activities had a high share of contribution to the following categories: GWP, PCOP, AP and EP. This was due to the emissions of carbon dioxide, oxides of sulfur and nitrogen from vehicular operation. PCOP, AP and EP were also impacted by the industrial use of non-renewable resources.

This analysis considered the significant processes (contributing more than 1%) leading to emissions into the air, water and soil compartments. In addition to the use of energy in processing activities and directly in electricity use and transportation, disposal related processes were identified to be important contributors.

1

CHAPTER 5

SENSITIVITY ANALYSIS

5.1 Background

Characterization factors are often based on steady-state modeling where an infinite time horizon is chosen to determine impact potential (Guinée et al., 2002; Hertwich et al., 1998; Huijbregts et al., 2000). This ensures that long term impacts of emissions are captured and the new level of concentration represents a steady-state in the dose-response relationship.

Previous work has shown that choice of time horizon can be an important factor in determining the magnitude of an impact (Huijbregts et al., 2001; Zelm et al., 2007; Solomon and Albritton, 1992). Huijbregts et al., 2001 performed a scenario analysis for toxicity potentials of 181 substances by using different time horizons. In a comparison of toxicity potentials for 20, 100 and 500 years with toxicity potential for an infinite time horizon, it was found that for metals the time dependent difference can be of several orders of magnitude (6.5) and that a large part of the impacts is passed on to the future generations.

Zelm et al., 2007 used an end-point impact assessment approach to develop characterization factors for acidification potential in different time horizons (20, 100 and 500 years). Characterization factors were found to approach a steady-state after a period of only 500 years. An increase in characterization factors with time was observed because of the decreasing buffering capacity of soil. Another study by Solomon and Albritton, 1992, developed time-dependent ozone depletion factors to determine the change in magnitude of ozone depleting substances with time. While a steady-state was reached within 500 years for all substances, it was found that the magnitude of some substances like bromotrifluoromethane - Halon 1301 and carbon tetrachloride (CCl₄) remains almost the same in different time horizons, other substances that have a shorter life time (for example, Halon 2402, Halon 1211 and HCFCs) tend to have a much higher ODP over a smaller time period.

Applying available dynamic models to a set of environmental concerns can provide important insight to interpretation of LCIA results. A sensitivity analysis was therefore performed to examine the impacts from site remediation with respect to different time horizons (20, 100 and 500 years). Alternative characterization factors developed for the problem oriented (mid-point) approach were used (Guinée et al., 2002). The impact categories that are known to have time-dependent impacts are: GWP, ODP, HTP, FAETP, MAETP, TETP, AP and EP.

In the case of GWP, steady-state characterization factors have not been developed (Guinée et al., 2002) therefore the sensitivity analysis uses 20 and 500 year time horizons as the alternatives. Also, the mid-point based time dependent AP and EP characterization factors are not available. This study did not include them in the sensitivity analysis. However, since the AP characterization factors for 500 year time horizon were found comparable to the steady state factors developed by Huijbregts et al., 2000a in a study by Zelm et al., 2007, it can be assumed that the AP category in the following results represents a 500 year time horizon.

5.2 Results of Sensitivity Analysis

The results of the analysis are presented for each remediation option (Figure 5.1 - 5.17). Impact assessment with the baseline characterization is also presented along with the alternative characterization for a comparative view.

In the case of MNA, no change was observed with a different time horizon. This can be attributed to the negligible impact in the toxicity categories. The GWP was only due to carbon dioxide emissions, whose impact potential does not differ in the three time horizons (20, 100 and 500 years) (Guinée et al., 2002).

Characterization in three different time horizons shows a decrease in GWP as the time horizon lengthens. The results depict an average decrease of 86% from the 20 year time horizon to the 500 year horizon in options (2), (3), (4) and (5). Global warming was caused primarily by two major emissions: methane and carbon dioxide. The decrease in GWP impact is due to the gradual removal of global warming gases through various mechanisms. However, the decrease observed in the results is only due to the decrease in methane levels, as the characterization factor for carbon dioxide does not vary in the three time horizons (20, 100 and 500 years).

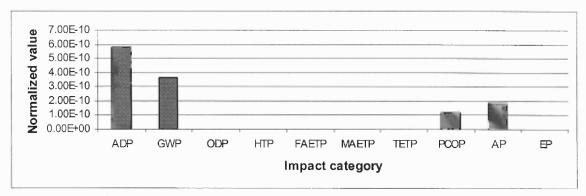


Figure 5.1 Option (1) MNA - Normalized impact (Baseline characterization)

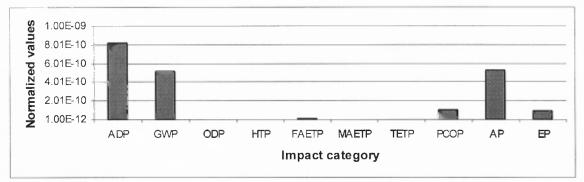
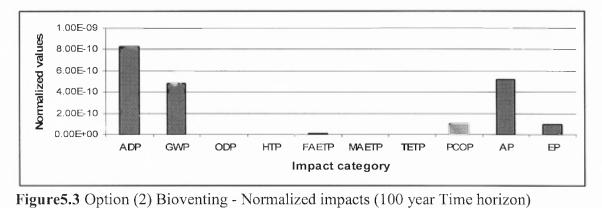
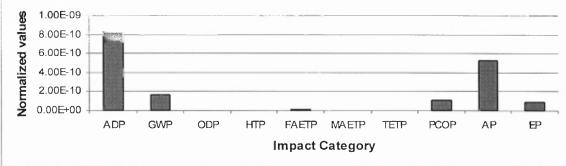
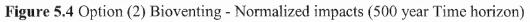





Figure 5.2 Option (2) Bioventing - Normalized impacts (20 year Time horizon)

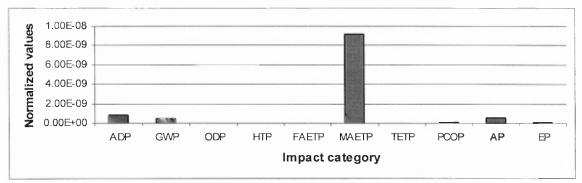


Figure 5.5 Option (2) Bioventing - Normalized impacts (Baseline characterization)

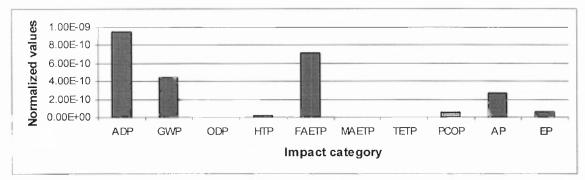


Figure 5.6 Option (3) Chemical oxidation - Normalized impacts (20 year Time horizon)

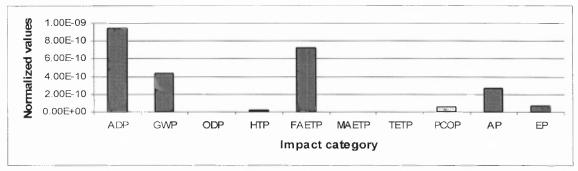


Figure 5.7 Option (3) Chemical oxidation - Normalized impacts (100 year Time horizon)

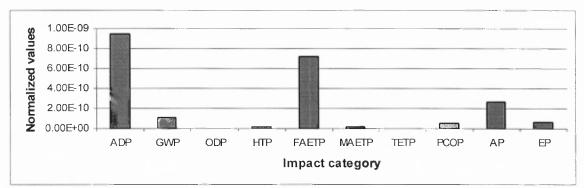


Figure 5.8 Option (3) Chemical oxidation - Normalized impacts (500 year Time horizon)

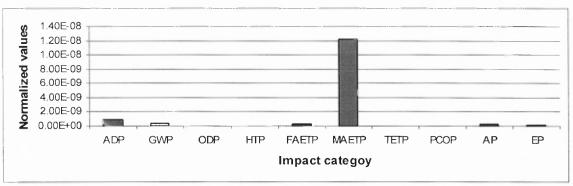


Figure 5.9 Option (3) Chemical oxidation - Normalized impacts (Baseline characterization)

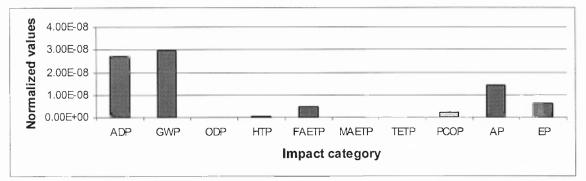
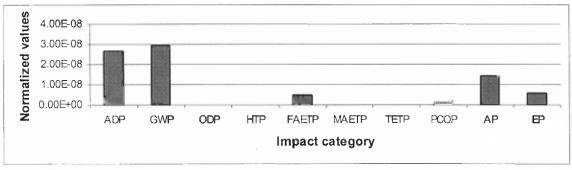
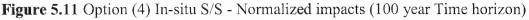




Figure 5.10 Option (4) In-situ S/S - Normalized impacts (20 year Time horizon)

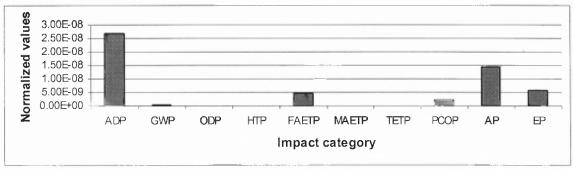


Figure 5.12 Option (4) In-situ S/S - Normalized impacts (500 year Time horizon)

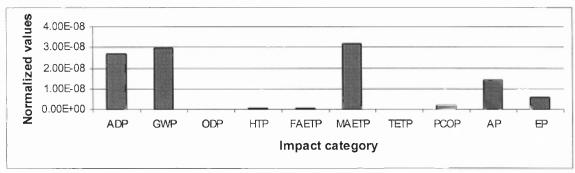


Figure 5.13 Option (4) In-situ S/S - Normalized impacts (Baseline characterization)

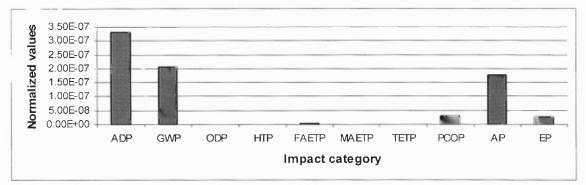


Figure 5.14 Option (5) Ex-situ S/S - Normalized impacts (20 year Time horizon)

Figure 5.15 Option (5) Ex-situ S/S - Normalized impacts (100 year Time horizon)

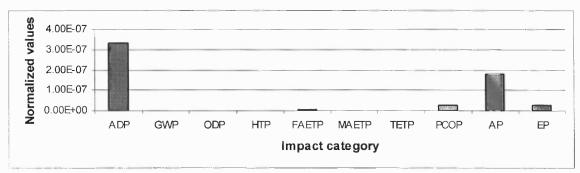


Figure 5.16 Option (5) Ex-situ S/S - Normalized impacts (500 year Time horizon)

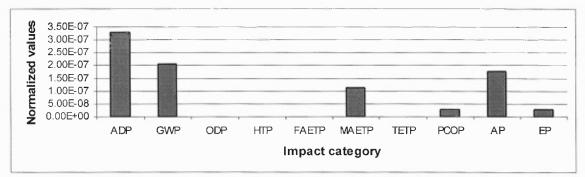


Figure 5.17 Option (5) Ex-situ S/S - Normalized impacts (Baseline characterization)

ODP was caused primarily by bromochlorodifluoromethane - Halon 1211 and bromotrifluoromethane - Halon 1301. The results of the sensitivity analysis do not exhibit a visible change in the relative magnitude of ODP. While Halon 1211 is known to have a larger impact over a short time horizon (Solomon and Albritton, 1992), the choice of a short time scale did not produce a significant change in its relative impact.

The toxicity impacts show an increasing trend in impact with the increase in the time horizon. For HTP, the average percentage increase from a 20 year to an infinite time horizon of the four options was 52%. The average increase in FAETP and MAETP was nearly 41% and 100% respectively. Finally, the average increase for TETP was found to be 56%.

The results of the sensitivity analysis are comparable to work by Huijbregts et al., 2001 where 181 substances were studied for their behavior in different time horizons. Impacts from metals have a significant contribution in marine ecotoxicity over an infinite time horizon. In a shorter time scale, impact from metals is relatively low. These results can be explained by the fact that substances emitted into the environment demonstrate different impacts over ranges of time frames because of their different environmental residence time.

In the case of metals, disposal activities particularly land-filling, release metals into the environment at extremely slow rates and concentrations (Finnveden and Nielsen, 1999), which can lead to higher cumulative impacts in a long time frame.

The time horizon dependent impact is also attributed to the extremely long "modeled residence time" (Huijbregts et al., 2001) of metals in the environment in the fate exposure models that are used. Although exposure to direct emissions into fresh water is completed in a short time period through mechanisms such as burial in deep freshwater sediment and run-off to the marine compartment, indirect emissions into fresh water from the air and soil compartments lead to a time-dependent impact (Huijbregts et a., 2001).

For the marine environment, the time horizon dependency of impact is especially large because the metals released into other compartments such as soil are modeled to take an extremely long time before they run-off into the marine system. (Cleven et al., 1993; Guinée et al., 1999). The HTP in the model is factored in through different exposure pathways (Huijbregts et al., 2001). The time dependent increase in its magnitude can be very significant if the exposure occurs through marine environment (Huijbregts et al., 2001).

CHAPTER 6

DISCUSSION

Secondary impacts of five remediation alternatives for a hypothetical hydrocarbon contaminated site were analyzed with LCA. LCA was used to quantify secondary impacts related to remediation activities and to identify opportunities to improve remediation design from a sustainability perspective.

The results showed MNA to be the lowest impact option due to limited resource input requirements. Bioventing had a greater environmental impact in comparison to MNA, but it was the lowest impact option among the active remediation approaches examined that also included chemical oxidation, in-situ S/S and ex situ S/S. The input of resources is directly related to the magnitude of impacts. The more a technological approach required energy and resources for treatment, the greater were the impacts. In this respect, ex-situ S/S produced the greatest overall impact among the approaches considered due to the additional resources required for transportation of the backfill and the stabilized soil to an off-site disposal facility.

Contribution analysis showed that the life cycle of material and services used onsite was dominated by processes related to energy use, particularly for the categories: ADP, GWP, AP, PCOP and EP. At the same time aquatic ecotoxicity impact categories were mainly dominated by waste disposal activities. Although disposal activities such as landfilling were the primary contributors of metal emissions, the use of coal (for electricity generation and processing of materials) was also identified as a contributor of metals. This source of metals to the environment means that the environmental impact from energy use was not limited to emissions of global warming gases and resource depletion.

Although the results of impact assessment showed the dominance of MAETP among the impact estimates resulting from use of options (2, 3, 4 and 5) it is noteworthy that the toxicity impacts are modeled using an infinite time horizon. Because metal emissions were identified as major contributors to the toxicity impacts, the combination of their persistent nature and the choice of an infinite time horizon resulted in the dominance of MAETP – as the ocean is the modeled final sink for metals. Also, it was observed that when using shorter time scales (20, 100 and 500 years) the FAETP was greater than MAETP for the four options - (2), (3), (4), and (5). FAETP decreased with time due to removal processes, which in turn deposit the metals into the marine environment causing the increase in MAETP with time.

The overall magnitude of the toxicity impact was found to increase with increasing time horizon due to the future emissions from landfills, which are modeled as lasting for thousands of years in the Ecoinvent database (Ecoinvent, 2000). This explains the long-term nature of the impacts associated with waste disposal activities.

Many processes contributed to GWP. They were related to energy use during either the processing stages of materials used in the remediation processes such as cement, bentonite, steel and PVC or their end use (for example, transportation activities). Although sensitivity analysis showed that the GWP gradually decreases with time, the relative magnitude of the GWP increased when the potential impact for time dependent categories (GWP, ODP, HTP, FWAETP, MAETP and TETP) is characterized in a single time horizon (20, 100 and 500 years). The infinite time horizon for toxicity impact categories seems intended to capture long term impacts, but the choice of a 100 year time horizon for GWP in the baseline categories leads to an unrealistic dominance of MAETP. Additionally, impact categories such as ADP, PCOP, and EP are diminished in magnitude where fate is either irrelevant or not included. The results of sensitivity analysis did not affect the ranking of the five treatment options. But use of shorter time scales (20, 100 and 500 years) provided a shift in environmental concerns towards categories other than MAETP, such as ADP, GWP, FAETP, PCOP, AD and EP in option (2), (3) and (4).

Since the LCIA phase is designed to interpret inventory results with regard to which environmental interventions are more important than the others in order to draw conclusions for improvement (Saur et al., 1996), it is important to interpret results in a single time scale to justify the relative magnitude of the potential impacts and to have a more meaningful representation.

There are both long term and short term environmental issues associated with remediation activities. It can be useful therefore to assess impacts on a smaller time scale from the perspective of policy making and setting pollution reduction goals for the near future while also recognizing the long term impacts and emissions of persistent substances.

6.1 Limitations in LCA

LCA is a developing field that holds promise for important contributions but currently has important limitations. The impact assessment results are dependent on the models used for characterization. Several assumptions and simplifications can bring errors, incompleteness, and uncertainty in the final results. This study found FAETP and MAETP to be significant toxicity categories for short (20, 100, 500 years) and long (infinite) time horizons respectively. Metal emissions were the main contributors for both. Hydrogen fluoride emissions followed by beryllium emissions were also dominant sources of MAETP in the infinite time horizon. But it must be noted that toxicity assessments coming from the LCIA methods involve some uncertainties. In the case of MAETP (infinite time horizon) there are known errors (overestimation) in the characterization of Hydrogen fluoride (Frischknecht and Jungbluth, 2007) in the CML 2 (2000) method. Factors for some metals such as beryllium are also known to have inaccuracies due to the uncertainty about their average oceanic residence time. This is an important shortcoming especially because this study involves processes that release metals and hydrogen fluoride into the environment.

Fate modeling of metals is also complicated by factors such as persistence, essentiality, bioavailability and speciation. These are currently not taken into account in the fate exposure models (Heijungs et al., 2004). An implication of this is a potential overestimation of toxicity due to metals.

6.2 Limitations of the Study

A hypothetical contaminated site was developed to perform this study. Certain assumptions were made to create a simplified system. While they provided ease and clarity for consideration of the LCA application, the assumptions and simplifications can be a source of uncertainty in the results and how they can be used. Additionally, parameters like site characterization, changes in technology efficiency and the primary impacts from site contaminants are not included in the consideration. It is recognized that these are important factors and the assessment of direct impacts from contamination can be especially significant in decision making. However, the present study lacks these components. Subsequent work is expected to address them.

CHAPTER 7

SUSTAINABLE REMEDIATION

Reduction of risk to human health is a widely used basis for regulatory action and for decision making about contaminated sites (US EPA 1989; US EPA 1996). Other factors that may also be considered are technical suitability, cost and social acceptance (Soesilo and Wilson, 1997). These factors are often focused on reduction of risk at a micro scale as defined by the site's geographic boundaries. The potential broader environmental cost of remediation is largely ignored in the current management practices for contaminated sites. In order to be truly sustainable, decision making must also consider negative impacts of remediation and strive to achieve a balance that addresses the maximum number of parameters (Bardos et al., 2001).

The findings of this work indicate that greater site disturbance, use of equipment, energy and material translate into a higher magnitude of environmental impacts. MNA in this respect was environmentally the most suitable of the options considered. At the same time passive remediation like MNA is known to take a long period to reach regulatory goals. Long remediation times, uncertainty in reaching remediation goals, restricted future land use and risk (real and perceived) from contaminants are some factors that limit application of MNA (US EPA, 1999; Kean et al., 2005). Additionally, a Stateregulator's experience with MNA, as well as the existence and understanding of protocols to evaluate MNA proposals can also affect its approval for a site (Kean et al., 2005). But remediation planners should take into consideration the conclusion that MNA causes the least environmental damage from the perspective of the secondary impacts

47

considered in this study. MNA can therefore prove to be more environmentally sustainable at certain sites in the long term. Further, the remediation options that minimize onsite activity and disturbance such as enhanced attenuation (for example, bioremediation) where natural attenuation is boosted by controlled and strategic active remediation approaches (Early et al., 2006), can be more sustainable than some more aggressive approaches because they are less resource intensive and can also reduce total treatment time.

Whether the risk from a certain contaminated site outweighs the wider environmental damage caused by active remediation methods should be evaluated in more detail at a policy or regulatory level to take actions that produce the greatest net environmental benefit.

This study also identified non-renewable energy use as one of the most dominant life cycle stages in all remediation options with regard to secondary impacts. While impact from fossil fuels was clearly most significant in the case of electricity consumption and transportation, production of materials such as cement, steel, hydrogen peroxide and ferrous sulfate was also identified to be energy intensive where use of fossil fuels produced highest impacts. Available conceptual models for sustainability can be applied at these "hot spots" (refer to chapter 4) of environmental impact. For example, Robert, et al., 2003, have developed a systems model where two basic mechanisms of meeting sustainability objectives are described as "dematerialization" and "substitution". These mechanisms can be further broken down into practices such as the use of more efficient engines, recycling, use of renewable energy, and use of sustainable materials to optimize a remedial design.

7.1 LCA as a Tool for Sustainability

LCA is often used as a management tool for sustainable development because it is designed to capture environmental considerations of products and services throughout their life cycle. LCA's primary strength lies in its "cradle to grave" perspective. At the same time, the impact assessment methodologies in LCA have been criticized primarily due to their lack of spatial and temporal context (Strandesen et al., 2007; Owen, 1997; Heijungs et al., 2004). This limits the capacity of LCA to clearly assess a system.

Impact assessment in LCA does not specify the location and time of an environmental intervention. The same kinds of interventions are clubbed together regardless of when and where they take place. In part, the aggregation over space and time is necessary for developing a practical tool with wide applicability, at the same time the actual realization of an impact is dependent on local conditions such as the threshold level, background concentration and dose-response curve (Strandesen et al., 2007; Heijungs et al., 2004; Owen, 1997). These factors bring uncertainty in assessment, particularly for categories such as ecotoxicity, human toxicity, photochemical smog and eutrophication (Owen, 1997).

To overcome some of the criticism, impacts are often referred to as "potential impacts" (Guinée and Heijungs, 1993) because they reflect the potential of pollutants to cause damage while the actual realization may depend on site specific factors. LCA results therefore should be viewed as "directional indicators" (Owen, 1997) which can be supplemented further with site specific risk assessment studies. Nevertheless, LCA can well identify material and energy flow in a system and can be used to optimize its efficiency (Owen, 1997).

Additionally, LCA only focuses on the environmental aspect of an activity and says nothing about social and economic aspects. They can be addressed through other available frameworks. These are discussed in the following section.

Therefore LCA should be considered as a tool that is still in its developmental stages and has limitations. And, it only partially addresses the full scope of sustainability. To get a comprehensive analysis other frameworks should also be included.

7.2 Decision Support Approaches for Sustainability

The concept of sustainability is based on the environmental, social and economic aspects of an activity. A few studies in the past have developed frameworks to address this range of aspects in site remediation. Bardos et al., 2001 have contributed in this respect by proposing an overarching, qualitative decision support approach for site remediation. It includes a number of parameters such as risk management, technical suitability of a technology, stakeholder views, long term sustainability and cost. These are identified as several "layers" of decision support system comprised of both extensive site specific data and general information. It was emphasized that management of contaminated land must include a number of relevant "layers" to call it truly sustainable.

A quantitative decision support tool called the REC method (Risk reduction, Environmental merit and Costs) has been developed by Beinat et al., 1997. It addresses the environmental and cost concerns in selection of remediation alternatives at a given site. Each alternative is evaluated based on reduction in risk, environmental effects and cost. Risk is determined at a local scale for humans, agriculture and ecosystems, and the physical environment. The environmental merit is somewhat based on the LCA approach. The selected number of categories are weighted according to the judgment of experts to obtain a single score for each alternative. The costs related to each alternative include initial, operational, replacement and overhead costs. These are based on estimates of expected costs.

The strength of this method lies in the assessment of local impacts and economic aspects along with the wider environmental concerns. However, one of the criticisms of this method can be the lack of sophistication in calculation of environmental merit when compared to the available LCA methods. For example, the processes related to manufacturing of materials used in remediation are not included (Drunen et al., 2000). Additionally, only a small number of emissions are considered (Drunen at al., 2000).

Shakweer and Nathanail, 2003 have developed the Methodology for Remediation Selection (AfrS) for consideration of the environmental, social and economic components in remediation technology selection. The method is quantitative in nature and is based on the LCA approach. It consists of eleven phases: planning and social interpretation, scope definition, preliminary data collection, screening, data collection, analysis, ranking, economic interpretation, final interpretation, environmental interpretation, and evaluation. The stakeholders are involved by holding workshops and focus groups. Their concerns and expectations are solicited through questionnaires. An impact score is obtained for each remediation alternative by assigning weights (based on stakeholders' preferences) to the normalized environmental impacts. The economic aspect is included by dividing the environmental impact saved by the remediation alternative (determined by subtracting the impact of remediation from the impact of contaminants in no action scenario) by the cost of that alternative. The inverse of this figure is added to the impact scores previously obtained. The alternative with the lowest total score is considered as the most suitable.

Although the AfrS is a simple method that includes site specific stakeholder concerns and costs, the simplification and subjectivity in the total score calculation can be the source of uncertainty. This can affect the representativeness of the total score as the criterion for decision making.

Determining the social impacts of an activity is a difficult task that presently has no widely accepted methods. Nevertheless, this field is evolving into more practicable approaches. "Societal LCA" (Hunkeler, 2006) is a promising method that uses labor hours as the "intermediate variable". The method uses LCI data to convert the environmental interventions into labor hours (the hours needed for production, transportation etc.). One prerequisite of this method is the availability of regionally differentiated LCI. The employment hours are then used to determine social indicators such as education and housing. The methodology can be used to identify trade-offs and key areas of substitution between alternatives.

Achieving sustainable remediation that appropriately addresses all three components of sustainability can be difficult as the field of sustainability is currently a developing one. However, various available approaches can be used in a complementary way to strengthen the accuracy of the decision as well as to include maximum number of parameters.

CHAPTER 8

CONCLUSION AND RECOMMENDATIONS

The results of this study show that treatment option (1) MNA produced the lowest environmental impact followed by option (2), bioventing, simply because of lower input of material and energy with MNA. While these options caused less life-cycle environmental damage, the treatment time was longer compared to the timeframes for chemical oxidation, in-situ S/S and ex-situ S/S. This negative time aspect should therefore be balanced with the long term positive reductions in impacts during the decision making process to lead to choices that are protective of human health and the environment not only in the near future but also in the long term. Also, development of better regulatory and technical guidance for implementation of natural attenuation options could result in wider acceptance of these methods because currently several states do not accept natural attenuation as a remediation option.

MAETP was identified as a dominant impact category for options 2, 3, 4 and 5. This is attributed to three factors: persistence of metals, marine environment as the modeled sink for metals and use of an infinite time horizon. Sensitivity analysis showed that when GWP, ODP, HTP, FAETP, MAETP and TETP are characterized in a single shorter time horizon the relative dominance of MAETP changes and the impacts are spread to ADP, GWP, FWATP, PCOP, AP and EP. Further, it is concluded that a single time horizon should be used for characterization of impacts to avoid unrealistic dominance of long term impacts, and to have a more meaningful representation of the relative magnitude of likely impacts.

Many processes involved emission of metals. These were found to be the primary contributors to toxicity impact categories – HTP, FAETP, MAETP and TETP. In the case of MAETP (infinite time horizon), in addition to metals, hydrogen fluoride emissions were significant contributors to impacts. It was noted that the current HF characterization factors for MAETP (infinite time horizon) are overestimated (Frischknecht and Jungbluth, 2007) in the CML 2 (2000) method. That overestimation is another likely reason for the high MAETP. This limitation should be clearly communicated in studies using the CML 2 (2000) method.

Use of fossil energy was clearly the most dominant process contributing to impacts in the life cycle of remediation activities. Based on that conclusion, use of nonrenewable sources of energy should be emphasized in the remedial design along with lower-energy consuming options. Also, the LCA results should be supplemented with site specific risk assessments to assess the spatial context of impacts. This leads to the conclusion that while general consideration of the sustainability parameters of alternative remediation options can be useful and informative, decisions for particular sites still must be based on site-specific factors and considerations.

APPENDIX A

INVENTORY OF ENVIRONMENTAL INTERVENTIONS

A.1 MNA

Table A.1 Environmental interventions – MNA

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Ammonia	Water	g	42.264	Iron ore, in			
Bauxite, in		-		ground	Raw	g	845.28
ground	Raw	kg	1.69056	Metallic ions,		-	
BOD5, Biological		_		unspecified	Water	g	4.2264
Oxygen Demand	Water	g	42.264	Mineral waste	Waste	g	591.696
Carbon dioxide	Air	ton	15.54113	Nitrogen oxides	Air	kg	106.5751
Carbon monoxide	Air	kg	417.9635	Hydrogen		C	
Chloride	Water	g	84.528	chloride	Air	g	4.2264
Coal, 29.3 MJ per		-		Hydrogen	Water	g	4.2264
kg, in ground	Raw	kg	1.436976	Oil, crude, 42.7		-	
COD, Chemical		-		MJ per kg, in			
Oxygen Demand	Water	g	169.056	ground	Raw	ton	4.348966
Dinitrogen		-		Particulates, SPM	Air	kg	1.26792
monoxide	Air	kg	2.88	Slags	Waste	g	211.32
Energy,				Soot	Air	kg	1.008
unspecified	Raw	GJ	14.3275	Sulfur dioxide	Air	kg	6.73704
Gas, natural, 36.6				Transformation,		-	
MJ per m3, in				to industrial area	Raw	cm2	101.011
ground	Raw	m3	274.716	VOC, volatile			
Hydrocarbons,				organic			
unspecified	Air	kg	12.76373	compounds	Air	kg	59.76
Hydrocarbons,		-		Water,		C	
unspecified	Water	g	84.528	unspecified			
Hydrogen	Air	g	16.06032	natural origin/kg	Raw	kg	232.452

A.2 BIOVENTING

Table A.2 Enviro	onmental in		ons - Bioventir	1 <u>g</u>			
Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Acenaphthene	Water	μg	10.04555	Adsorbable Organic			
Acenaphthylene	Water	ng	628.2505	Halogen as Cl	Water	mg	108.9388
Acetaldehyde	Air	mg	48.63724	Argon-41	Air	Bq	975.9246
Acetic acid	Air	g	27.66218	Arsenic	Air	mg	588.9244
Acetic acid	Water	g	1.559906	Arsenic	Soil	μg	416.1314
Acetone	Air	mg	64.78152	Arsenic, ion	Water	mg	175.1214
Acidity, unspecified	Water	g	2.167674	Atrazine	Soil	μg	1.286909
Aclonifen	Soil	μg	69.59408	Barite	Water	g	8.849345
Acrolein	Air	mg	158.6922	Barite, 15% in crude		-	
Actinides,				ore, in ground	Raw	g	268.1289
radioactive,				Barium	Air	mg	21.49309
unspecified	Air	μBq	46.59616	Barium	Water	g	4.19415
Actinides,				Barium	Soil	mg	425.8163
radioactive,				Barium-140	Air	mBq	5.037012
unspecified	Water	Bq	5.293902	Barium-140	Water	mBq	13.10433
Aerosols,				Basalt, in ground	Raw	g	448.3045
radioactive,				Bauxite, in ground	Raw	g	704.4
unspecified	Air	mBq	670.4243	Bentazone	Soil	μg	35.44314
Aldehydes,		-		Benzaldehyde	Air	μg	24.59921
unspecified	Air	g	35.95187	Benzene	Air	g	12.56205
Aluminium, 24% in				Benzene	Water	g	18.18234
bauxite, 11% in				Benzene, ethyl-	Air	mg	49.20372
crude ore, in ground	Raw	g	139.0045	Benzene, ethyl-	Water	mg	38.76775
Aluminum	Air	g	9.318603	Benzene, hexachloro-	Air	μg	27.16521
Aluminum	Water	g	174.0834	Benzene,			
Aluminum	Soil	g	1.345336	pentachloro-	Air	μg	12.04117
Ammonia	Air	g	79.70154	Benzo(a)pyrene	Air	mg	4.538589
Ammonia	Water	g	24.74295	Beryllium	Air	mg	65.21245
Ammonium				Beryllium	Water	mg	16.04215
carbonate	Air	mg	1.075065	BOD5, Biological		-	
Ammonium, ion	Water	g	7.58382	Oxygen Demand	Water	g	639.4363
Anhydrite, in ground	Raw	mg	605.1136	Borax, in ground	Raw	mg	45.18177
Antimony	Air	mg	74.18734	Boron	Air	g	1.380934
Antimony	Water	mg	613.5663	Boron	Water	g	429.9953
Antimony	Soil	ng	229.5165	Boron	Soil	mg	17.14415
Antimony-122	Water	mBq	2.991494	Bromate	Water	g	6.749302
Antimony-124	Air	μBq	7.420073	Bromine	Air	mg	76.09999
Antimony-124	Water	mBq	855.0194	Bromine	Water	g	1.834422
Antimony-125	Air	μBq	77.43469	Butadiene	Air	ng	12.38131

Table A.2 Environmental interventions - Bioventing

Substance	Commart	I Init	Total	Substance	Compart	Tinit	Total
Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Butene	Air	mg	35.5062	Chloroform	Water	pg	118.1855
Butene	Water	μg	39.19127	Chlorothalonil	Soil	μg	969.7569
Cadmium	Air	με mg	131.1362	Chromate	Water	mg	104.0982
Cadmium	Soil	μg	344.8863	Chromium	Air	g	1.328069
Cadmium, ion	Water	рв g	1.958647	Chromium	Water	g	1.920009
Calcite, in ground	Raw	s kg	49.10338	Chromium	Soil	5 mg	17.12991
Calcium	Air	mg	288.9934	Chromium-51	Air	μBq	78.24695
Calcium	Soil	g	5.625857	Chromium-51	Water	Bq	1.247198
Calcium, ion	Water	s kg	1.502775	Chromium VI	Air	mg	10.84266
Carbetamide	Soil	μg	13.47884	Chromium VI	Water	mg	880.4097
Carbon	Soil	рь g	7.767346	Chromium VI	Soil	mg	48.67564
Carbon-14	Air	Б Bq	3295.927	Chromium, 25.5 in	5011	mg	40.07504
Carbon dioxide	Air	kg	6475.47	chromite, 11.6% in			
Carbon dioxide,	A II	кg	0+/3.4/	crude ore, in ground	Raw	g	126.1275
biogenic	Air	kg	14.05026	Chromium, ion	Water	s mg	21.88126
Carbon dioxide,	2 111	кg	14.03020	Chrysotile, in ground	Raw	g	1.277518
fossil	Air	kg	12681.91	Cinnabar, in ground	Raw	ь mg	117.4977
Carbon dioxide, in	2 111	ĸg	12001.91	Clay, bentonite, in	IXaw	шg	117.4777
air	Raw	kg	9.628767	ground	Raw	kg	600.0608
Carbon disulfide	Air	mg	939.1178	Clay, unspecified, in	IXaw	кg	000.0008
Carbon monoxide	Air	kg	180.6149	ground	Raw	kg	22.11393
Carbon monoxide,	2 111	. Kg	100.0147	Coal, 26.4 MJ per kg,	IXaw	кg	22.11393
biogenic	Air	a	8.732309	in ground	Raw	kg	4647.751
Carbon monoxide,	7 111	g	0.752507	Coal, 29.3 MJ per kg,	IXaw	кg	+0+7.751
fossil	Air	σ	543.1286	in ground	Raw	a	598.74
Carbonate	Water	g g	42.61469	Coal, brown, in	IXaw	g	<i>JJO</i> .74
Carboxylic acids,	vv ator	В	42.01407	ground	Raw	kg	53.12082
unspecified	Water	g	6.949605	Coal, hard,	IXaw	кg	55.12082
Cerium-141	Air	g mBq	1.221086	unspecified, in			
Cerium-141	Water	mBq	5.239326	ground	Raw	kg	63.37895
Cerium-144	Water	mBq	1.595022	Cobalt	Air	mg	215.7066
Cesium	Water	mg	1.61504	Cobalt	Water	mg	606.0033
Cesium-134	Air	μBq	58.48215	Cobalt	Soil	μg	284.5697
Cesium-134	Water	mBq	585.912	Cobalt-57	Water	mBq	29.51784
Cesium-134	Water	μBq	929.8782	Cobalt-58	Air	μBq	108.9621
Cesium-137	Air	mBq	1.036698	Cobalt-58	Water	μDq Bq	7.684659
Cesium-137	Water	Bq	609.3999	Cobalt-60	Air	μBq	962.5788
Chlorate	Water	g	56.91951	Cobalt-60	Water	μDq Bq	6.391397
Chloride	Water	s kg	8.417851	Cobalt, in ground	Raw	-	377.1927
Chloride	Soil		12.49509	COD, Chemical	IXaw	μg	577.1927
Chlorinated solvents,	5011	g	12.77507	Oxygen Demand	Water	kg	2.240171
unspecified	Water	ma	817.8442	Colemanite, in	vv atel	мg	2.2 4 01/1
Chlorine	Air	mg g	94.402	ground	Raw	ma	196.3046
Chlorine	Water	g ma	122.0592	Copper	Air	mg mg	339.4291
Chiornic	water	mg	122.0372	Copper	ЛІІ	mg	557.4471

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Copper, 0.99% in				Ethane	Air	g	5.667938
sulfide, Cu 0.36%				Ethane, 1,1,1,2-		U	
and Mo 8.2E-3% in				tetrafluoro-, HFC-			
crude ore, in ground	Raw	g	8.083119	134a	Air	mg	11.96282
Copper, 1.18% in				Ethane, 1,2-dichloro-	Air	g	1.52572
sulfide, Cu 0.39%				Ethane, 1,2-dichloro-	Water	mg	28.41612
and Mo 8.2E-3% in				Ethane, 1,2-dichloro-			
crude ore, in ground	Raw	g	37.84939	1,1,2,2-tetrafluoro-,			
Copper, 1.42% in				CFC-114	Air	mg	1.326052
sulfide, Cu 0.81%				Ethane, hexafluoro-,			
and Mo 8.2E-3% in				HFC-116	Air	mg	2.083574
crude ore, in ground	Raw	g	10.02642	Ethanol	Air	mg	86.5438
Copper, 2.19% in				Ethene	Air	g	4.877319
sulfide, Cu 1.83%				Ethene	Water	g	7.453653
and Mo 8.2E-3% in			10.0000	Ethene, chloro-	Air	g	2.902301
crude ore, in ground	Raw	g	49.80082	Ethene, chloro-	Water	mg	63.41401
Copper, ion	Water	g	2.764131	Ethene, tetrachloro-	Air	mg	151.06
Cumene	Air	g	7.458449	Ethene, trichloro-	Air	mg	149.8123
Cumene	Water	g	17.92254	Ethylene diamine	Air	ng	156.7545
Cyanide	Air	mg	15.6399	Ethylene diamine	Water	ng	380.0109
Cyanide	Water	mg	267.5497	Ethylene oxide	Air	mg	95.17276
Cypermethrin	Soil	ng	319.6813	Ethylene oxide	Water	μg	12.29227
Diatomite, in ground	Raw	μg	24.59126	Ethyne	Air	mg	43.44156
Dichromate	Water	mg 1- ~	1.271443	Feldspar, in ground	Raw	mg	1.38444
Dinitrogen monoxide Dinoseb	Air Soil	kg	1.305984	Fenpiclonil Fluoride	Soil	μg	40.5546
	5011	μg	263.5761	Fluoride	Water	g	19.77447
Dioxins, measured as 2,3,7,8-				Fluorine	Soil Air	mg	75.53916
tetrachlorodibenzo-p-				Fluorine, 4.5% in	Alf	mg	8.493996
dioxin	Air	na	970.6626	apatite, 1% in crude			
DOC, Dissolved	ЛІІ	ng	970.0020	ore, in ground	Raw	ma	492.7876
Organic Carbon	Water	g	232.7341	Fluorine, 4.5% in	Naw	mg	492.7870
Dolomite, in ground	Raw	5 g	7.902862	apatite, 3% in crude			
Energy, from hydro	1(4)	5	1.902002	ore, in ground	Raw	ma	221.0649
power	Raw	MJ	6671.269	Fluorspar, 92%, in	IXaw	mg	221.0049
Energy, gross	1(u)	1710	0071.209	ground	Raw	σ	14.53351
calorific value, in				Fluosilicic acid	Air	g mg	2.435582
biomass	Raw	MJ	112.2242	Fluosilicic acid	Water	-	4.38332
Energy, kinetic, flow,	120011	1110	1 1 <i>2,24</i> 76	Formaldehyde	Air	mg g	4.38332
in wind	Raw	MJ	39.64885	Formaldehyde	Water	g mg	935.5783
Energy, potential,	~ ~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	1.10	22101000	Gas, mine, off-gas,	11 ato1	шş	2010.00
stock, in barrage				process, coal			
water	Raw	MJ	196.8487	mining/m3	Raw	1	621.7552
Energy, solar	Raw	kJ	564.1599		****	T	021.7552
Livi 51, 50101	12011	110	00111077				

······································							
Substance	Compart	T T !+	T-4-1	Substance	Compart	Unit	Total
	-ment	Unit	Total	TT	-ment	~	6 5 4 4 7 4 0
Gas, natural, 46.8 MJ	D	1	705 0021	Hydrogen sulfide	Air	g	6.544742
per kg, in ground	Raw	kg	795.8031	Hydrogen sulfide	Water	mg	138.5829
Gas, natural, in	-	•	.	Hydroxide	Water	mg	3.97245
ground	Raw	m3	76.89336	Hypochlorite	Water	mg	84.85511
Glutaraldehyde	Water	mg	1.092512	Iodide	Water	mg	168.119
Glyphosate	Soil	mg	3.802737	Iodine	Air	mg	41.19202
Granite, in ground	Raw	mg	51.21927	Iodine-129	Air	Bq	3.259235
Gravel, in ground	Raw	kg	1354.611	Iodine-131	Air	Bq	386.476
Gypsum, in ground	Raw	g	8.078425	Iodine-131	Water	mBq	179.0896
Heat, waste	Air	MJ	5893.113	Iodine-133	Air	mBq	6.022698
Heat, waste	Water	MJ	91.14599	Iodine-133	Water	mBq	8.226609
Heat, waste	Soil	MJ	4.70535	Iron	Air	mg	424.4083
Helium	Air	mg	90.51848	Iron	Water	g	629.2337
Heptane	Air	mg	354.8981	Iron	Soil	g	12.66404
Hexane	Air	g	1.047562	Iron-59	Water	mBq	2.261671
Hydrocarbons,				Iron ore, in ground	Raw	g	352.2
aliphatic, alkanes,				Iron, 46% in ore,			
cyclic	Air	mg	1.576469	25% in crude ore, in			
Hydrocarbons,		U		ground	Raw	kg	3.130158
aliphatic, alkanes,				Iron, ion	Water	g	188.926
unspecified	Air	g	1.69768	Isocyanic acid	Air	mg	1.895285
Hydrocarbons,		U		Kaolinite, 24% in		U	
aliphatic, alkanes,				crude ore, in ground	Raw	g	1.297413
unspecified	Water	mg	209.9552	Kerosene	Air	g	4.050097
Hydrocarbons,		0		Kieserite, 25% in		0	
aliphatic, unsaturated	Air	mg	383.5771	crude ore, in ground	Raw	mg	7.747055
Hydrocarbons,		8		Krypton-85	Air	Bq	3054.07
aliphatic, unsaturated	Water	mg	19.38048	Krypton-85m	Air	Bq	121.5548
Hydrocarbons,	ii ator		19180010	Krypton-87	Air	Bq	53.3261
aromatic	Air	g	1.750262	Krypton-88	Air	Bq	50.41525
Hydrocarbons,	1 111	5	1.700202	Krypton-89	Air	Bq	11.49578
aromatic	Water	mg	876.7071	Lanthanum-140	Air	μBq	430.4936
Hydrocarbons,	() ator	<u>6</u>	0/0./0/1	Lanthanum-140	Water	mBq	13.9572
chlorinated	Air	mg	242.8947	Lead	Air	mg	676.8961
Hydrocarbons,	7 111	ш <u>ь</u>	242.0747	Lead	Water	mg	526.7754
unspecified	Air	kg	5.31822	Lead	Soil	mg	5.533871
Hydrocarbons,	All	кg	5.51622	Lead-210	Air	Bq	16.76652
	Water	a	44.79576	Lead-210 Lead-210	Water	-	15.75468
unspecified	Air	g	44.79376		vv alci	Bq	13./3400
Hydrogen		g		Lead, 5%, in sulfide,			
Hydrogen	Water	g Da	1.761	Pb 2.97% and Zn 5.24% in and a sec			
Hydrogen-3, Tritium	Air	Bq 1-D ~	18574.55	5.34% in crude ore,	Darr	~	17 70100
Hydrogen-3, Tritium	Water	kBq	1403.559	in ground	Raw	g 1	17.72199
Hydrogen chloride	Air	g	815.9611	Limestone, in ground	Raw	kg	267.9765
Hydrogen fluoride	Air	g	112.3295	Linuron	Soil	μg	538.5718

Culator	Comerciant			Cultore -	Course (TTAL	T-4-1
Substance	Compart	T T	T-4-1	Substance	Compart	Unit	Total
Managita (00/ in	-ment	Unit	Total	M-41 C	-ment		0166401
Magnesite, 60% in	D	-	11 51100	Methane, fossil	Air	g	916.6421
crude ore, in ground	Raw	g	44.54402	Methane,			0 (1 70 40
Magnesium	Air	mg	334.5735	monochloro-, R-40	Air	ng	9.617349
Magnesium	Water	g	107.9827	Methane, tetrachloro-			
Magnesium	Soil	mg	931.0505	, CFC-10	Air	mg	359.2096
Magnesium, 0.13%			1	Methane, tetrafluoro-			
in water	Raw	mg	1.895234	, FC-14	Air	mg	18.75217
Mancozeb	Soil	mg	1.262524	Methane,			
Manganese	Air	g	1.807027	trichlorofluoro-,			
Manganese	Water	g	366.0393	CFC-11	Air	pg	191.8678
Manganese	Soil	mg	92.91284	Methane, trifluoro-,			
Manganese-54	Air	μBq	40.0711	HFC-23	Air	ng	37.60447
Manganese-54	Water	mBq	465.2573	Methanol	Air	g	17.49548
Manganese, 35.7% in				Methanol	Water	mg	296.8493
sedimentary deposit,				Metolachlor	Soil	mg	3.895438
14.2% in crude ore,				Metribuzin	Soil	μg	44.37424
in ground	Raw	g	14.0955	Mineral waste	Waste	g	246.54
Mercury	Air	mg	354.529	Molybdenum	Air	mg	4.282875
Mercury	Water	mg	17.89918	Molybdenum	Water	mg	112.7119
Mercury	Soil	μg	42.35282	Molybdenum	Soil	μg	150.7722
Metaldehyde	Soil	μg	2.770347	Molybdenum-99	Water	mBq	4.812142
Metallic ions,				Molybdenum,			
unspecified	Water	g	5.721809	0.010% in sulfide,			
Metals, unspecified	Air	g	1.691709	Mo 8.2E-3% and Cu			
Methane	Air	kg	26.92972	1.83% in crude ore,			
Methane, biogenic	Air	g	4.476814	in ground	Raw	mg	925.4837
Methane,				Molybdenum,			
bromochlorodifluoro-				0.014% in sulfide,			
, Halon 1211	Air	mg	1.179999	Mo 8.2E-3% and Cu			
Methane,				0.81% in crude ore,			
bromotrifluoro-,				in ground	Raw	mg	131.6978
Halon 1301	Air	μg	988.0451	Molybdenum,		•	
Methane,		. –		0.022% in sulfide,			
chlorodifluoro-,				Mo 8.2E-3% and Cu			
HCFC-22	Air	mg	5.792827	0.36% in crude ore,			
Methane, dichloro-,		Ŭ		in ground	Raw	g	5.016103
HCC-30	Air	mg	672.3112	Molybdenum,		0	
Methane, dichloro-,		5		0.025% in sulfide,			
НСС-30	Water	mg	21.55943	Mo 8.2E-3% and Cu			
Methane,		8		0.39% in crude ore,			
dichlorodifluoro-,				in ground	Raw	mg	483.2394
CFC-12	Air	μg	6.566853	0	11011	5	102.4377
	* ***	rd	0.000000				

.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Monoethanolamine N-	Air	mg	8.362086	PAH, polycyclic aromatic			
Nitrodimethylamine	Air	mg	33.48963	hydrocarbons	Water	mg	18.71404
Naphthalene	Air	mg	8.547607	Paraffins	Air	μg	1.898473
Napropamide	Soil	μg	4.902675	Paraffins	Water	μg	5.509555
Nickel	Air	g	2.17972	Particulates, < 10 um	Air	kg	2.40506
Nickel	Soil	mg	8.3428	Particulates, < 2.5		U	
Nickel, 1.13% in		-		um	Air	g	102.4969
sulfide, Ni 0.76%				Particulates, > 10 um	Air	g	229.5176
and Cu 0.76% in				Particulates, > 2.5		C	
crude ore, in ground	Raw	g	1.826183	um, and < 10 um	Air	g	130.2327
Nickel, 1.98% in		-		Particulates, SPM	Air	g	528.3
silicates, 1.04% in				Particulates,		0	
crude ore, in ground	Raw	g	319.5215	unspecified	Air	kg	11.7706
Nickel, ion	Water	g	2.396909	Pd, Pd 2.0E-4%, Pt		C	
Niobium-95	Air	μBq	4.756789	4.8E-4%, Rh 2.4E-			
Niobium-95	Water	mBq	52.64716	5%, Ni 3.7E-2%, Cu			
Nitrate	Air	μg	380.1654	5.2E-2% in ore, in			
Nitrate	Water	g	49.95415	ground	Raw	μg	68.74711
Nitrite	Water	mg	295.6939	Pd, Pd 7.3E-4%, Pt			
Nitrogen	Water	g	3.44848	2.5E-4%, Rh 2.0E-			
Nitrogen oxides	Air	kg	90.16639	5%, Ni 2.3E+0%, Cu			
Nitrogen, organic				3.2E+0% in ore, in			
bound	Water	mg	650.4092	ground	Raw	μg	165.2194
NMVOC, non-				Peat, in ground	Raw	g	18.67254
methane volatile				Pentane	Air	g	3.252065
organic compounds,				Phenol	Air	mg	524.8496
unspecified origin	Air	kg	9.012223	Phenol	Water	mg	410.0012
Noble gases,				Phenol, pentachloro-	Air	mg	1.813392
radioactive,				Phosphate	Water	g	63.55316
unspecified	Air	kBq	31313.29	Phosphorus	Air	mg	14.3502
Oil, crude, 42.7 MJ	_			Phosphorus	Water	g	43.14296
per kg, in ground	Raw	kg	1812.069	Phosphorus	Soil	mg	67.57832
Oil, crude, in ground	Raw	kg	61.72331	Phosphorus, 18% in			
Oils, biogenic	Soil	mg	308.2935	apatite, 12% in crude			
Oils, unspecified	Water	g	856.5838	ore, in ground	Raw	g	1.28103
Oils, unspecified	Soil	g	105.9489	Phosphorus, 18% in			
Olivine, in ground	Raw	mg	218.0999	apatite, 4% in crude	_		
Orbencarb	Soil	μg	239.4633	ore, in ground	Raw	g	1.97115
Organic substances,				Pirimicarb	Soil	μg	3.359714
unspecified	Air	g	148.6063	Platinum	Air	ng	379.3138
Organic substances,				Plutonium-238	Air	nBq	444.6124
unspecified	Water	g	202.9305	Plutonium-alpha	Air	μBq	1.019217
Ozone	Air	g	1.194746	Polonium-210	Air	Bq	29.39854

,

· · · · · · · · · · · · · · · · · · ·							
Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Polychlorinated				Rhenium, in crude			
biphenyls	Air	μg	41.9817	ore, in ground	Raw	μg	6.209954
Potassium	Air	mg	717.7621	Rubidium	Water	mg	16.51172
Potassium	Soil	mg	437.081	Ruthenium-103	Air	μBq	1.045098
Potassium-40	Air	Bq	3.962839	Ruthenium-103	Water	mBq	1.015405
Potassium-40	Water	Вq	13.36234	Rutile, in ground	Raw	mg	1.38059
Potassium, ion	Water	g	72.36523	Sand, unspecified, in		•	
Propanal	Air	μg	24.59921	ground	Raw	g	13.58919
Propane	Air	g	3.202278	Scandium	Air	μg	108.13
Propene	Air	g	2.87907	Scandium	Water	mg	27.22074
Propene	Water	g	6.602261	Selenium	Air	g	1.134206
Propionic acid	Air	mg	13.31361	Selenium	Water	mg	35.78929
Propylene oxide	Air	μg	712.9128	Shale, in ground	Raw	g	1.716651
Propylene oxide	Water	mg	1.715446	Silicon	Air	g	1.382401
Protactinium-234	Air	mBq	504.8246	Silicon	Water	kg	1.545741
Protactinium-234	Water	Bq	9.348605	Silicon	Soil	g	1.17677
Pt, Pt 2.5E-4%, Pd				Silicon tetrafluoride	Air	μg	14.90272
7.3E-4%, Rh 2.0E-				Silver	Air	μg	7.178444
5%, Ni 2.3E+0%, Cu				Silver	Soil	μg	199.9488
3.2E+0% in ore, in				Silver-110	Air	μBq	10.35772
ground	Raw	μg	1.999826	Silver-110	Water	Bq	6.054255
Pt, Pt 4.8E-4%, Pd				Silver, 0.01% in		-	
2.0E-4%, Rh 2.4E-				crude ore, in ground	Raw	μg	236.0037
5%, Ni 3.7E-2%, Cu				Silver, ion	Water	mg	2.699227
5.2E-2% in ore, in				Slags	Waste	g	88.05
ground	Raw	μg	7.169082	Sodium	Air	mg	242.9495
Radioactive species,				Sodium	Soil	g	1.720386
alpha emitters	Water	mBq	17.24034	Sodium-24	Water	mBq	36.40995
Radioactive species,				Sodium chlorate	Air	μg	204.5022
Nuclides, unspecified	Water	Bq	3174.391	Sodium chloride, in			
Radioactive species,				ground	Raw	kg	117.2707
other beta emitters	Air	Bq	39.48737	Sodium dichromate	Air	μg	343.4443
Radioactive species,				Sodium formate	Air	μg	551.0297
unspecified	Air	Bq	2.22E+08	Sodium formate	Water	mg	1.323815
Radium-224	Water	Bq	80.75199	Sodium sulphate,			
Radium-226	Air	Bq	20.57079	various forms, in			
Radium-226	Water	Bq	5956.637	ground	Raw	g	3.993094
Radium-228	Air	Bq	6.278975	Sodium, ion	Water	kg	2.67973
Radium-228	Water	Bq	161.504	Solids, inorganic	Water	g	917.7253
Radon-220	Air	mBq	81.73546	Solved solids	Water	kg	42.88297
Radon-222	Air	kBq	67002.62	Soot	Air	g	420
				Stibnite, in ground	Raw	μg	2.555563
				Strontium	Air	mg	24.62881
				Strontium	Water	g	11.91184

	~					<u> </u>	
Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Strontium-89	Water	mBq	109.7307	Titanium	Air	Mg	32.43315
Strontium-90	Water	Bq	10592.86	Titanium	Soil	mg	3.520201
Styrene	Air	μg	23.06931	Titanium, ion	Water	g	5.142979
Sulfate	Air	g	456.7251	TOC, Total Organic			
Sulfate	Water	kg	6.753185	Carbon	Water	g	233.2491
Sulfide	Water	mg	42.20431	Toluene	Air	g	2.335402
Sulfite	Water	mg	232.3917	Toluene	Water	mg	211.0229
Sulfur	Water	mg	279.4816	Tributyltin			
Sulfur	Soil	mg	995.7802	compounds	Water	mg	3.56591
Sulfur dioxide	Air	kg	4.999458	Triethylene glycol	Water	mg	14.48872
Sulfur hexafluoride	Air	mg	20.87439	Tungsten	Water	mg	30.62594
Sulfur oxides	Air	kg	95.77079	Ulexite, in ground	Raw	mg	19.21818
Sulfur, in ground	Raw	g	42.80429	Uranium	Air	μg	209.3993
Sulfuric acid	Water	g	106.6148	Uranium-234	Air	Bq	5.917057
Suspended solids,				Uranium-234	Water	Bq	11.21833
unspecified	Water	kg	19.03548	Uranium-235	Air	mBq	286.0673
Sylvite, 25 % in		-		Uranium-235	Water	Bq	18.51024
sylvinite, in ground	Raw	g	560.5829	Uranium-238	Air	Bq	8.755087
t-Butyl methyl ether	Air	mg	30.77268	Uranium-238	Water	Bq	36.07653
t-Butyl methyl ether	Water	mg	6.58138	Uranium alpha	Air	Bq	27.50385
Talc, in ground	Raw	g	1.062401	Uranium alpha	Water	Bq	538.5256
Tebutam	Soil	μg	11.61867	Uranium, 2291 GJ		•	
Technetium-99m	Water	mBq	111.77	per kg, in ground	Raw	g	18.35138
Teflubenzuron	Soil	μg	2.954999	Uranium, in ground	Raw	g	2.41499
Tellurium-123m	Water	mBq	78.176	Vanadium	Air	mg	391.511
Tellurium-132	Water	μBq	278.6325	Vanadium	Soil	μg	100.7594
Thallium	Air	μg	510.9986	Vanadium, ion	Water	mg	511.0175
Thallium	Water	mg	2.692212	Vermiculite, in		-	
Thorium	Air	μg	160.4407	ground	Raw	mg	14.98636
Thorium-228	Air	mBq	970.1294	VOC, volatile		-	
Thorium-228	Water	Bq	323.0773	organic compounds	Air	kg	24.9
Thorium-230	Air	Bq	1.897568	VOC, volatile			
Thorium-230	Water	Bq	1275.526	organic compounds,			
Thorium-232	Air	Bq	1.103899	unspecified origin	Water	mg	588.5065
Thorium-232	Water	Bq	2.363856	Volume occupied,			
Thorium-234	Air	mBq	504.9702	final repository for			
Thorium-234	Water	Bq	9.350161	low-active			
Tin	Air	mg	7.623544	radioactive waste	Raw	cm3	4.28661
Tin	Soil	μg	591.9064	Volume occupied,			
Tin, 79% in				final repository for			
cassiterite, 0.1% in				radioactive waste	Raw	cm3	1.014063
crude ore, in ground	Raw	mg	283.9251	Volume occupied,			
Tin, ion	Water	mg	119.7535	reservoir	Raw	m3day	904.5295
						2	

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Waste, solid	Waste	kg	2143.59	Xenon-131m	Air	Bq	241.2697
water	Air	g	12.90975	Xenon-133	Air	Bq	7530.248
Water, cooling,				Xenon-133m	Air	Bq	35.93438
unspecified natural				Xenon-135	Air	Bq	3098.555
origin/m3	Raw	m3	14.51852	Xenon-135m	Air	Bq	1809.041
Water, lake	Raw	1	15.71737	Xenon-137	Air	Bq	31.52898
Water, river	Raw	m3	1.021967	Xenon-138	Air	Bq	290.3507
Water, salt, ocean	Raw	1	140.4768	Xylene	Air	g	2.594745
Water, salt, sole	Raw	1	19.76458	Xylene	Water	mg	166.0151
Water, turbine use,				Zinc	Air	mg	530.3875
unspecified natural				Zinc	Soil	mg	153.7119
origin	Raw	m3	1189.74	Zinc-65	Air	μBq	200.0848
Water, unspecified				Zinc-65	Water	mBq	493.6365
natural origin/kg	Raw	kg	96.855	Zinc 9%, in sulfide,			
Water, unspecified				Zn 5.34% and Pb			
natural origin/m3	Raw	m3	8.575944	2.97% in crude ore,			
Water, well, in				in ground	Raw	g	75.49876
ground	Raw	m3	4.790703	Zinc, ion	Water	g	3.060626
Wood and wood				Zirconium	Air	μg	63.52058
waste, 9.5 MJ per kg	Raw	kg	3.008591	Zirconium-95	Air	μBq	195.5753
Wood, hard, standing	Raw	1	1.085159	Zirconium-95	Water	mBq	5.716449
Wood, soft, standing	Raw	1	10.22211				

A.3 CHEMICAL OXIDATION

Table A.3 Environmental interventions - Chemical oxidation

•

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Acenaphthene	Water	μg	346.0132	Actinides,			
Acenaphthylene	Water	mg	205.3274	radioactive,	Air	mBq	1.931185
Acetaldehyde	Air	g	4.866399	Aerosols,		•	
Acetic acid	Air	g	62.96913	radioactive,			
Acetic acid	Water	g	1.884182	unspecified	Air	Bq	36.98052
Acetone	Air	g	5.415913	Aldehydes,			
Acidity, unspecified	Water	g	29.91929	unspecified	Air	g	136.6499
Acids, unspecified	Water	mg	213.396	Aluminium, 24% in		U	
Aclonifen	Soil	mg	1.478794	bauxite, 11% in			
Acrolein	Air	mg	2.371561	crude ore, in ground	Raw	kg	65.21028

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Aluminum	Water	kg	46.92507	Benzene,		·	
Aluminum	Soil	g	49.1653	pentachloro-	Air	mg	2.41532
Americium-241	Air	mBq	375.2137	Benzo(a)pyrene	Air	mg	209.700
Americium-241	Water	Bq	49.43292	Beryllium	Air	mg	28.2352
Ammonia	Air	g	942.6415	Beryllium	Water	mg	660.049
Ammonia	Water	g	9.75155	BOD5, Biological		U	
Ammonia, as N	Water	g	15.34247	Oxygen Demand	Water	kg	55.0664
Ammonium		U		Borax, in ground	Raw	g	1.51586
carbonate	Air	mg	3.682696	Boron	Water	g	124.843
Ammonium, ion	Water	g	45.96207	Boron	Soil	mg	704.409
Anhydrite, in ground	Raw	g	12.55935	Bromate	Water	g	14.236
Antimony	Air	mg	183.1738	Bromine	Air	g	6.20128
Antimony	Water	g	21.39956	Bromine	Water	g	62.2521
Antimony	Soil	μg	5.393527	Butadiene	Air	ng	194.101
Antimony-124	Air	mBq	5.754127	Butane	Air	g	154.271
Antimony-124	Water	Bq	76.07669	Butene	Air	g	3.04641
Antimony-125	Air	mBq	3.007951	Butene	Water	g	3.79168
Antimony-125	Water	Bq	36.8797	Cadmium	Air	mg	956.763
AOX, Adsorbable				Cadmium	Soil	mg	9.91430
Organic Halogen as				Cadmium-109	Water	mBq	1.4244
Cl	Water	mg	190.0326	Cadmium, ion	Water	g	21.5243
Argon-41	Air	Bq	67590.95	Calcite, in ground	Raw	kg	1163.19
Arsenic	Air	g	2.844264	Calcium	Air	g	69.0773
Arsenic	Soil	mg	19.32599	Calcium	Soil	g	214.424
Arsenic, ion	Water	g	36.99641	Calcium, ion	Water	kg	51.7445
Atrazine	Soil	μg	88.84096	Carbetamide	Soil	μg	319.763
Barite	Water	g	735.6077	Carbon	Soil	g	150.727
Barite, 15% in crude	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	8		Carbon-14	Air	Bq	186170
ore, in ground	Raw	kg	7.321033	Carbon-14	Water	Bq	2501.42
Barium	Air	g	1.926038	Carbon dioxide	Air	kg	5691.14
Barium	Water	g	350.2228	Carbon dioxide,		<u>~8</u>	5071.1
Barium	Soil	e g	18.65488	biogenic	Air	kg	874.113
Barium-140	Air	mBq	228.6141	Carbon dioxide,		~ 5	074.111
Barium-140	Water	mBq	636.495	fossil	Air	kg	15908.7
Baryte, in ground	Raw	g	707.5666	Carbon dioxide, in	1 111	мg	15700.1
Basalt, in ground	Raw	s kg	11.90085	air	Raw	kg	259.632
Bauxite, in ground	Raw	kg	1.54287	Carbon disulfide	Air	g	777.282
Bentazone	Soil	-	753.1262	Carbon monoxide	Air	s kg	98.3973
Benzaldehyde	Air	μg	263.3248	Carbon monoxide,	4 XII	мg	10.3712
Benzene	Air	μg σ	109.2961	biogenic	Air	α	495.874
Benzene	Water	g a	36.75133	Carbon monoxide,	All	g	473.0/4
Benzene, chloro-	Water	g ng	14.80085	fossil	Air	ka	84.5660
Benzene, ethyl-	Air	ng	4.51761	Carbonate	Water	kg	232.192
•		g				g	
Benzene, ethyl-	Water	g	1.491769	Carboxylic acids	Water	g	244.012

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Cerium-144	Air	Bq	3.990409	Coal, brown, in		· · · ·	
Cerium-144	Water	Bq	1131.655	ground	Raw	kg	1685.447
Cesium	Water	mg	62.29017	Cobalt	Air	g	4.01627
Cesium-134	Air	Βq	14.26196	Cobalt	Water	g	239.6148
Cesium-134	Water	Bq	2561.419	Cobalt	Soil	mg	2.19655
Cesium-137	Air	Bq	27.5516	Cobalt-57	Air	μĒq	34.59583
Cesium-137	Water	Bq	52672.67	Cobalt-57	Water	Bq	1.131537
Chlorate	Water	g	111.4931	Cobalt-58	Air	mBq	575.5411
Chloride	Water	kg	107.3534	Cobalt-58	Water	Bq	537.8423
Chloride	Soil	g	672.5007	Cobalt-60	Air	mBq	880.361
Chlorinated solvents,		U		Cobalt-60	Water	Bq	11197.48
unspecified	Water	mg	306.4143	Cobalt, in ground	Raw	mg	6.113762
Chlorine	Air	g	91.41353	COD, Chemical		U U	
Chlorine	Water	g	2.709062	Oxygen Demand	Water	kg	85.6988
Chloroform	Air	mg	2.820477	Colemanite, in		•	
Chloroform	Water	mg	13.22388	ground	Raw	g	4.401961
Chlorothalonil	Soil	mg	53.6833	Copper	Air	g	16.19365
Chromate	Water	mg	2.826026	Copper	Soil	g	1.978198
Chromium	Air	g	122.625	Copper, 0.99% in		U	
Chromium	Water	mg	40.56676	sulfide, Cu 0.36%			
Chromium	Soil	mg	600.8085	and Mo 8.2E-3% in			
Chromium-51	Air	mBq	73.1671	crude ore, in ground	Raw	g	213.4413
Chromium-51	Water	Bq	49.52136	Copper, 1.18% in		U	
Chromium VI	Air	g	2.970836	sulfide, Cu 0.39%			
Chromium VI	Water	g	674.3016	and Mo 8.2E-3% in			
Chromium VI	Soil	g	1.869348	crude ore, in ground	Raw	kg	1.182779
Chromium, 25.5 in		U		Copper, 1.42% in		U	
chromite, 11.6% in				sulfide, Cu 0.81%			
crude ore, in ground	Raw	kg	42.48514	and Mo 8.2E-3% in			
Chromium, in ground	Raw	g	42.21826	crude ore, in ground	Raw	g	313.3218
Chromium, ion	Water	g	209.9792	Copper, 2.19% in		U	
Chrysotile, in ground	Raw	g	2.698194	sulfide, Cu 1.83%			
Cinnabar, in ground	Raw	mg	248.3561	and Mo 8.2E-3% in			
Clay, bentonite, in		U		crude ore, in ground	Raw	kg	1.556256
ground	Raw	kg	566.0616	Copper, in ground	Raw	g	516.2806
Clay, unspecified, in		U		Copper, ion	Water	kg	1.175093
ground	Raw	kg	423.504	Cumene	Air	g	10.98711
Coal, 18 MJ per kg,		U		Cumene	Water	g	26.4019
in ground	Raw	kg	566.2505	Curium-242	Air	μBq	1.980884
Coal, 26.4 MJ per kg,		0		Curium-244	Air	μBq	17.98364
in ground	Raw	kg	29.48889	Curium alpha	Air	mBq	595.5773
Coal, 29.3 MJ per kg,		0		Curium alpha	Water	Bq	65.51351
, r				-		-	
in ground	Raw	g	319.328	Cyanide	Air	g	4.305718

•

Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Cypermethrin	Soil	μg	8.490847	Ethene, trichloro-	Air	μg	955.299
Diatomite, in ground	Raw	μg	913.6749	Ethene, trichloro-	Water	mg	3.606496
Dinitrogen monoxide	Air	kg	1.049445	Ethylene diamine	Air	μg	12.58508
Dinoseb	Soil	mg	14.59091	Ethylene diamine	Water	μg	30.50928
Dioxins, measured as				Ethylene oxide	Air	mg	121.4612
2,3,7,8-				Ethylene oxide	Water	μg	333.3076
tetrachlorodibenzo-p-				Ethyne	Air	g	3.890536
dioxin	Air	μg	31.44216	Fatty acids as C	Water	g	33.28602
DOC, Dissolved				Feldspar, in ground	Raw	mg	3.844588
Organic Carbon	Water	kg	28.17813	Fenpiclonil	Soil	mg	2.163147
Dolomite, in ground	Raw	kg	7.041258	Fluoride	Water	g	338.5426
Energy, from hydro				Fluoride	Soil	g	3.131139
power	Raw	MJ	38.07802	Fluorine	Air	g	4.339081
Energy, gross				Fluorine, 4.5% in			
calorific value, in				apatite, 1% in crude			
biomass	Raw	MJ	2907.628	ore, in ground	Raw	g	73.20847
Energy, kinetic, flow,				Fluorine, 4.5% in			
in wind	Raw	MJ	1233.094	apatite, 3% in crude			
Energy, potential,				ore, in ground	Raw	g	32.20817
stock, in barrage				Fluorspar, 92%, in			
water	Raw	MJ	12527.12	ground	Raw	kg	1.720655
Energy, solar	Raw	MJ	16.64294	Fluosilicic acid	Air	mg	115.2865
Energy, unspecified	Raw	MJ	3183.888	Fluosilicic acid	Water	mg	207.4885
Ethane	Air	g	520.8877	Formaldehyde	Air	g	37.26526
Ethane, 1,1,1-				Formaldehyde	Water	g	1.317592
trichloro-, HCFC-				Gas, mine, off-gas,			
140	Water	μg	2.83219	process, coal			
Ethane, 1,1,1,2-				mining/kg	Raw	kg	3.807674
tetrafluoro-, HFC-				Gas, mine, off-gas,			
134a	Air	mg	698.6011	process, coal			
Ethane, 1,2-dichloro-	Air	g	5.838423	mining/m3	Raw	m3	32.14368
Ethane, 1,2-dichloro-	Water	mg	46.23056	Gas, natural, 35 MJ			
Ethane, 1,2-dichloro-				per m3, in ground	Raw	m3	97.12782
1,1,2,2-tetrafluoro-,				Gas, natural, 36.6 MJ			
CFC-114	Air	mg	444.6508	per m3, in ground	Raw	m3	61.048
Ethane, dichloro-	Air	mg	42.07697	Gas, natural, 46.8 MJ			
Ethane, dichloro-	Water	mg	21.64462	per kg, in ground	Raw	kg	16.61251
Ethane, hexachloro-	Water	ng	480.8662	Gas, natural, in			
Ethane, hexafluoro-,				ground	Raw	m3	3487.112
HFC-116	Air	mg	111.3146	Gas, petroleum, 35			
Ethanol	Air	g	9.54811	MJ per m3, in ground	Raw	m3	8.90704
Ethene	Air	g	72.37836	Glutaraldehyde	Water	mg	90.81577
Ethene	Water	g	9.99336	Glyphosate	Soil	mg	190.7249
Ethene, chloro-	Air	g	3.354305	Granite, in ground	Raw	g	1.824759

SubstanceCompart -mentUnit TotalTotal SubstanceSubstanceCompart -mentUnit -mentTotal -mentGypsum, in ground Heat, wasteRaw Airg24.62867HydroxideWatermg117.1394Heat, wasteMaterMJ303765.5HypochloriteWaterg1.52249Heat, wasteWaterMJ327.6923IodideWaterg7.917881Heat, wasteSoilMJ327.6923IodideWaterg6.475074HeliumAirg11.70684Iodine-129AirBq264.4608HexaneAirg43.06114Iodine-129WaterBq7146.928Idoincatoons, aliphatic, alkanes,rmg9.396533Iodine-131WaterBq12.13531cyclicAirmg9.396533Iodine-133AirBq9.986564unspecifiedAirg400.5984IronAirg78.03504Hydrocarbons, aliphatic, alkanes,ronSoilg441.6638unspecifiedWaterg3.296315Iron, 59AirHawg18.7.842Hydrocarbons, aliphatic, alkenes,rmg79.59753Iron, inground groundRawg18.50267Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedAirg13.
Gypsum, in ground Heat, wasteRaw Airg24.62867HydroxideWater Watermg117.1394Heat, wasteAirMJ303765.5HypochloriueWaterg12.52249Heat, wasteWaterMJ4959.813Hypochlorous acidWaterg6.475074HeliumAirg11.70684IodineAirg3.116256HeptaneAirg14.27024Iodine-129AirBq264.4608HexaneAirg43.06114Iodine-129WaterBq7146.928Hydrocarbons,aliphatic, alkanes,Iodine-131WaterBq12.13531cyclicAirmg9.396533Iodine-133AirBq9.886564Hydrocarbons,Iodine-133WaterBq1.372399Jodine-135AirBq9.886564Hydrocarbons,IronKaterg8.094324Iron-59AirmBq71.69234Iphatic, alkanes,IronSoilg441.6638Iron-59WatermBq71.69234Iphatic, alkenes,Iron ore, in groundRawg18.7.84Iron, ionWaterg18.50267aliphatic, alkenes,Iron, ionWaterg13.31416Iscoyanic acidAirmg76.63284Hydrocarbons,Iron, ionWaterg13.31416Iscoyanic acidAirmg76.63284Hydrocarbons,Iron, ionWaterg13.31416<
Heat, wasteAirMJ 303765.5 HypochloriteWaterg 12.52249 Heat, wasteWaterMJ 4959.813 Hypochlorous acidWaterg 7.917881 Heat, wasteSoilMJ 327.6923 IodideWaterg 6.475074 HeliumAirg 11.70684 IodineAirg 3.116256 HeptaneAirg 14.27024 Iodine-129AirBq 264.4608 HexaneAirg 43.06114 Iodine-129WaterBq 7146.928 Hydrocarbons,airng 9.396533 Iodine-131AirBq 6.848449 Hydrocarbons,aiphatic, alkanes,ng 9.396533 Iodine-133WaterBq 1.372399 aliphatic, alkanes,ng 9.396534 IronAirg 9.986564 unspecifiedAirg 8.094324 IronAirg 441.6638 unspecifiedWaterg 8.094324 Iron-59AirµBq 78.8221 Hydrocarbons,irong 3.296315 Iron, 46% in ore, 25% in crude ore, in groundRawg 88.50267 aliphatic, alkenes,g 13.31416 Isocyanic acidAirmg 76.63284 Hydrocarbons,aiphatic, unsaturatedAirg 13.31416 Isocyanic acidAirmg 76.63284 Hydrocarbons,aiphatic, unsaturatedAirg 13.31416 Isocyanic acid
Heat, wasteWaterMJ 4959.813 Hypochlorous acidWaterg 7.917881 Heat, wasteSoilMJ 327.6923 IodineWaterg 6.475074 HeliumAirg 11.70684 Iodine-129Airg 3.116256 HeptaneAirg 14.27024 Iodine-129AirBq 264.608 HexaneAirg 43.06114 Iodine-129WaterBq 7146.928 Hydrocarbons,Iodine-131AirBq 9426.396 aliphatic, alkanes,Iodine-133WaterBq 12.13531 cyclicAirmg 9.396533 Iodine-133WaterBqHydrocarbons,Iodine-133WaterBq 9.986564 unspecifiedAirg 400.5984 IronAirg 78.03504 Hydrocarbons,IronSoilg 441.6638 unspecifiedWaterg 8.094324 Iron-59Air μBq 78.38221 Hydrocarbons,Iron-59Airg 3.296315 Iron, 6% in ore, 25% in crude ore, in 18.784 unspecifiedAirg 3.296315 Iron, in groundRawkg 2804.589 unspecifiedMarg 13.31416 Isocyanic acidAirmg 76.63284 Hydrocarbons,Iron, in groundRawkg 12.99558 76.63284 Hydrocarbons,Iron, ing roundRawg $12.933.952$
Heat, wasteSoilMJ 327.6923 IodideWaterg 6.475074 HeliumAirg 11.70684 IodineAirg 3.116256 HeptaneAirg 14.27024 Iodine-129AirBq 264.4608 HexaneAirg 43.06114 Iodine-129WaterBq 7146.928 Hydrocarbons,Iodine-131AirBq 9426.396 aliphatic, alkanes,Iodine-131WaterBq 12.13531 cyclicAirmg 9.396533 Iodine-133AirBq 6.848449 Hydrocarbons,Iodine-133WaterBq 1.372399 aliphatic, alkanes,IronAirg 78.03504 unspecifiedAirg 400.5984 IronAirg 78.03504 Hydrocarbons,IronSoilg 441.6638 unspecifiedWaterg 8.094324 Iron-59Air μBq 78.32214 Hydrocarbons,Iron ore, in groundRawg 187.84 unspecifiedAirg 3.296315 Iron, 46% in ore, 25% in crude ore, inHydrocarbons,Iron, ing roundRawkg 2804.589 unspecifiedAirg 13.31416 Isocyanic acidAirmg 76.63284 Hydrocarbons,Airg 13.31416 Isocyanic acidAirmg 25.3944 Hydrocarbons,Iron-secrude ore, in groundRawg<
HeliumAirg11.70684IodineAirg3.116256HeptaneAirg14.27024Iodine-129AirBq264.4608HexaneAirg43.06114Iodine-129WaterBq7146.928Hydrocarbons,Iodine-131KirBq9426.396Iodine-131WaterBq12.13531cyclicAirmg9.396533Iodine-133AirBq6.848449Hydrocarbons,Iodine-133WaterBq1.372399aliphatic, alkanes,Iodine-133WaterBq9.986564unspecifiedAirg400.5984IronAirg78.03504Hydrocarbons,IronKirg8.094324Iron-59AirµBq78.38221Hydrocarbons,IronFronSoilg441.6638unspecifiedVaterg3.296315Iron-59WatermBq71.69234Hydrocarbons,Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, in groundRawg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,Iron, in groundRawkg18.5026718.50267aliphatic, unsaturatedAirg13.31416Isocyanic acidAirmg76.3284Hydrocarbons,Iron, ing uroudRawkg12.0935818.50267<
HeptaneAirg14.27024Iodine-129AirBq264.4608HexaneAirg43.06114Iodine-129WaterBq7146.928Hydrocarbons,Iodine-131MirBq9426.396aliphatic, alkanes,Iodine-131WaterBq12.13531cyclicAirmg9.396533Iodine-133AirBq6.848449Hydrocarbons,Iodine-133WaterBq1.372399aliphatic, alkanes,Iodine-135AirBq9.986564unspecifiedAirg400.5984IronAirg78.03504Hydrocarbons,IronSoilg441.628unspecifiedWaterg8.094324Iron-59AirµBq71.69234aliphatic, alkenes,Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg6.815946Hydrocarbons,Iron, ing groundRawkg18.5026718.50267aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inmg76.63284Hydrocarbons,IronKeroseneAirmg21.09358Hydrocarbons,Irodine, in groundRawg120.9358Hydrocarbons,Irodine, in groundRawg120.9358Hydrocarbons,Irodine, in groundRawg120.9358Hydrocarbons,Ir
HexaneAirg43.06114Iodine-129WaterBq7146.928Hydrocarbons,Iodine-131AirBq9426.396aliphatic, alkanes,Iodine-131MitrBq12.13531cyclicAirmg9.396533Iodine-133AirBq6.848449Hydrocarbons,Iodine-133WaterBq1.372399aliphatic, alkanes,Iodine-135AirBq9.986564unspecifiedAirg400.5984IronAirgHydrocarbons,IronVaterkg1.441221aliphatic, alkanes,IronSoilg441.6638unspecifiedWaterg8.094324Iron-59AirµBqHydrocarbons,IronSoilg441.6638unspecifiedAirg3.296315Iron, for groundRawgHydrocarbons,Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, for groundRawgHydrocarbons,Iron, ion rule ore, ingroundRawkg6.815946Hydrocarbons,Iron, ionWaterg18.5026718.50267aliphatic, unsaturatedAirg13.31416Isocyanic acidAirmg25.3944Hydrocarbons,Iron, ionWaterkg120.9358120.9358Hydrocarbons,IronKeerste, 25% inIronIron120.9358Hydrocarbons,Ai
aliphatic, alkanes, cyclicAirmg 9.396533 Iodine-131WaterBq 12.13531 cyclicAirmg 9.396533 Iodine-133AirBq 6.848449 Hydrocarbons, aliphatic, alkanes, umspecifiedAirg 400.5984 IronAirBq 1.372399 Iodine-135AirBq 9.986564 ImspecifiedAirg 400.5984 IronAirg 78.03504 Hydrocarbons, aliphatic, alkanes, umspecifiedWaterg 8.094324 IronSoilg 441.6638 InconSoilg 441.6638 Iron-59AirµBq 78.38221 Hydrocarbons, aliphatic, alkenes, umspecifiedAirg 3.296315 Iron, 46% in ore, 25% in crude ore, in groundRawg 187.84 InspecifiedAirg 13.31416 Isocyanic acid Kaolinic, 24% inRawkg 2804.589 InspecifiedWatermg 79.59753 Iron, in groundRawkg 68.15946 Hydrocarbons, aliphatic, unsaturatedAirg 13.31416 Isocyanic acid Kaolinic, 24% inAirmg 76.63284 Hydrocarbons, aromaticAirkg 1.403883 Kieserite, 25% in crude ore, in groundRawg 120.9358 Hydrocarbons, aromaticAirkg 1.403883 Kieserite, 25% in crude ore, in groundRawmg 25.3944 Hydrocarbons, aromaticAir<
cyclicAirmg 9.396533 Iodine-133AirBq 6.848449 Hydrocarbons,Iodine-133Iodine-133WaterBq 1.372399 aliphatic, alkanes,Iodine-135AirBq 9.986564 unspecifiedAirg 400.5984 IronAirg 78.03504 Hydrocarbons,IronKaterkg 1.441221 aliphatic, alkanes,IronSoilg 441.6638 unspecifiedWaterg 8.094324 Iron-59AirµBq 78.38221 Hydrocarbons,Iron ore, in groundIron ore, in groundRawg 187.84 unspecifiedAirg 3.296315 Iron, 46% in ore, 25% in crude ore, ingroundRawkg 2804.589 unspecifiedAirg 13.31416 Isocyanic acidAirmg 76.63284 Kaolinit, 24% in 24% 76.63284 Hydrocarbons,Iron, ionWatermg 67.5495 crude ore, in groundRawkg 120.9358 Hydrocarbons,Matermg 667.5495 crude ore, in groundRawg 120.9358 Hydrocarbons,Matermg 667.5495 crude ore, in groundRawg 120.9358 Hydrocarbons,Airkg 1.403883 Kieserite, 25% inmg 453.3952 aromaticAirkg 38.05372 Krypton- 85 AirBq $1.85E+09$ Hydrocarbons,Kater <t< td=""></t<>
Hydrocarbons, aliphatic, alkanes, unspecifiedAirgIodine-133 Iodine-135WaterBq 1.372399 9.986564unspecifiedAirg400.5984IronAirg 9.986564 Hydrocarbons, aliphatic, alkanes, unspecifiedWaterg 8.094324 IronAirg 78.03504 Hydrocarbons, aliphatic, alkenes, unspecifiedWaterg 8.094324 Iron-59AirµBq 783.8221 Hydrocarbons, aliphatic, alkenes, unspecifiedAirg 3.296315 Iron, 46% in ore, 25% in crude ore, in groundRawg 187.84 Hydrocarbons, aliphatic, alkenes, unspecifiedWatermg 79.59753 Iron, in ground Iron, in groundRawkg 2804.589 Hydrocarbons, aliphatic, unsaturatedAirg 13.31416 Isocyanic acid Kaolinite, 24% inAirg 120.9358 Hydrocarbons, aliphatic, unsaturatedAirg 13.31416 Isocyanic acid Kaolinite, 24% inAirmg 25.3944 Hydrocarbons, aromaticAirkg 1.403883 Kieserite, 25% in crude ore, in groundRawg 120.9358 Hydrocarbons, aromaticAirkg 1.403883 Kieserite, 25% in crude ore, in groundRawmg 453.3952 Hydrocarbons, aromaticAirkg 1.403883 Kieserite, 25% in crude ore, in groundRawmg 453.3952 Hydrocarbons, aromaticWaterg
aliphatic, alkanes, unspecifiedAirg400.5984IronAir Bq 9.986564unspecifiedAirg400.5984IronAirg78.03504Hydrocarbons, aliphatic, alkanes, unspecifiedWaterg8.094324IronWaterkg1.441221IronSoilg441.6638unspecifiedWaterg8.094324Iron-59Air μ Bq783.8221Hydrocarbons, aliphatic, alkenes, unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawg187.84Hydrocarbons, aliphatic, alkenes, unspecifiedWatermg79.59753Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawg120.9358Hydrocarbons, aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, aromaticWaterg38.05372Krypton-85mAirBq5532.536
unspecified Hydrocarbons, aliphatic, alkanes, unspecifiedAirg400.5984Iron IronAirg78.03504 kgHydrocarbons, aliphatic, alkenes, unspecifiedWaterg8.094324Iron-59Air Iron-59µBq783.8221 mBqHydrocarbons, aliphatic, alkenes, unspecifiedWaterg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg18.50267aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedAirmg667.5495crude ore, in ground keroseneRawg120.9358 keroseneHydrocarbons, aliphatic, unsaturatedAirkg1.403883Kieserite, 25% in crude ore, in ground keroseneRawmg453.3952Hydrocarbons, aromaticAirkg38.05372Krypton-85 Krypton-85mAirBq1.85E+09Hydrocarbons, aromaticWaterg38.05372Krypton-85mAirBq5532.536
Hydrocarbons,IronWaterkg1.441221aliphatic, alkanes,IronSoilg441.6638unspecifiedWaterg8.094324Iron-59AirµBq783.8221Hydrocarbons,Iron-59WatermBq71.69234aliphatic, alkenes,Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,Iron, ionWaterkg18.5026718.50267aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons,IronKeroseneAirmg25.39441403883Kieserite, 25% in crude ore, in groundRawg120.9358Hydrocarbons,Irong38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Waterg38.05372Krypton-85mAirBq5532.536
aliphatic, alkanes, unspecifiedWaterg8.094324IronSoilg441.6638Hydrocarbons, aliphatic, alkenes, unspecifiedWaterg8.094324Iron-59Air μ Bq783.8221Hydrocarbons, aliphatic, alkenes, unspecifiedAirg3.296315Iron ore, in ground groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in ground Iron, in groundRawkg6.815946Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedMatermg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952Hydrocarbons, aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, aromaticWaterg38.05372Krypton-85mAirBq5532.536
unspecifiedWaterg8.094324Iron-59AirµBq783.8221Hydrocarbons,Iron-59Iron-59WatermBq71.69234aliphatic, alkenes,Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589Hydrocarbons,watermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,watermg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons,aliphatic, unsaturatedAirg13.31416Isocyanic acid KeroseneAirmg76.63284Hydrocarbons,Airg13.31416Isocyanic acid KeroseneAirmg25.3944Hydrocarbons,Airmg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons,Airkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952aromaticAirkg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Katerg38.05372Krypton-85mAirBq5532.536
Hydrocarbons,Iron-59WatermBq71.69234aliphatic, alkenes,Airg3.296315Iron ore, in groundRawg187.84unspecifiedAirg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,Iron, ionWaterg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons,Airg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons,Airkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952aromaticAirkg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Krypton-85mAirBq5532.5361.852.536
aliphatic, alkenes, unspecifiedAirg3.296315Iron ore, in ground Iron, 46% in ore, 25% in crude ore, in groundRawg187.84Hydrocarbons, aliphatic, alkenes, unspecifiedWatermg79.59753Iron, in ground Iron, in groundRawkg2804.589Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedWatermg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Kirpyton-85mAirBq5532.536
unspecified Hydrocarbons,Airg3.296315Iron, 46% in ore, 25% in crude ore, in groundRawkg2804.589unspecified Hydrocarbons,Watermg79.59753Iron, in groundRawkg6.815946Hydrocarbons, aliphatic, unsaturated Hydrocarbons,Matermg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedMatermg667.5495crude ore, in ground kceroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in ground kceroseneRawmg453.3952aromaticAirkg38.05372Krypton-85 Krypton-85mAirBq1.85E+09Hydrocarbons,Katerg38.05372Krypton-85mAirBq5532.536
Hydrocarbons, aliphatic, alkenes, unspecifiedWatermg79.59753Iron, in groundRawkg2804.589unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedWatermg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952aromaticAirkg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, aromaticWaterg38.05372Krypton-85mAirBq5532.536
aliphatic, alkenes, unspecifiedWatermg79.59753groundRawkg2804.589Hydrocarbons, aliphatic, unsaturatedAirmg79.59753Iron, in groundRawkg6.815946Hydrocarbons, aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturatedWatermg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952AromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, aromaticWaterg38.05372Krypton-85mAirBq5532.536
unspecifiedWatermg79.59753Iron, in groundRawkg6.815946Hydrocarbons,Airg13.31416Isocyanic acidAirmg76.63284Hydrocarbons,Airg13.31416Isocyanic acidAirmg76.63284Hydrocarbons,aliphatic, unsaturatedWatermg667.5495crude ore, in groundRawg120.9358Hydrocarbons,aromaticAirkg1.403883Kieserite, 25% inmg25.3944aromaticAirkg1.403883Kieserite, 25% inmg453.3952aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Krypton-85mAirBq5532.5365532.536
Hydrocarbons,Iron, ionWaterkg18.50267aliphatic, unsaturatedAirg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons,mg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons,aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawg453.3952Hydrocarbons,aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Krypton-85mAirBq5532.5365532.5365532.536
aliphatic, unsaturated Hydrocarbons,Airg13.31416Isocyanic acid Kaolinite, 24% inAirmg76.63284Hydrocarbons, aliphatic, unsaturated Hydrocarbons,Watermg667.5495crude ore, in ground KeroseneRawg120.9358Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952Hydrocarbons, aromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, Hydrocarbons,Krypton-85mAirBq5532.536
Hydrocarbons,Kaolinite, 24% inaliphatic, unsaturatedWatermg667.5495crude ore, in groundRawg120.9358Hydrocarbons,KeroseneAirmg25.3944aromaticAirkg1.403883Kieserite, 25% inHydrocarbons,crude ore, in groundRawmg453.3952aromaticWaterg38.05372Krypton-85AirBqHydrocarbons,Krypton-85AirBq5532.536
aliphatic, unsaturated Hydrocarbons,Watermg667.5495 667.5495crude ore, in ground KeroseneRawg120.9358 mgAirMirkg1.403883Kieserite, 25% in crude ore, in groundMirmg453.3952Hydrocarbons, aromaticWaterg38.05372Krypton-85 Krypton-85mAirBq1.85E+09Hydrocarbons, Hydrocarbons,
Hydrocarbons, aromaticAirkg1.403883KeroseneAirmg25.3944Hydrocarbons, aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundRawmg453.3952AiromaticWaterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons, Hydrocarbons,Krypton-85mAirBq5532.536
aromaticAirkg1.403883Kieserite, 25% in crude ore, in groundMagHydrocarbons,88.05372Krypton-85AirBqHydrocarbons,88.05372Krypton-85AirBqHydrocarbons,84.05372Krypton-85AirBqHydrocarbons,84.0537210.0527310.05273
Hydrocarbons, aromaticWaterg38.05372crude ore, in groundRawmg453.3952Hydrocarbons,Waterg38.05372Krypton-85AirBq1.85E+09Hydrocarbons,Krypton-85mAirBq5532.536
aromatic Water g 38.05372 Krypton-85 Air Bq 1.85E+09 Hydrocarbons, Krypton-85m Air Bq 5532.536
Hydrocarbons, Krypton-85m Air Bq 5532.536
chlorinated Air g 5.798304 Krypton-87 Air Bq 2361.141
Hydrocarbons, Krypton-88 Air Bq 88517.52
unspecified Air kg 2.836384 Krypton-89 Air Bq 1012.446
Hydrocarbons, Lanthanum Air mg 16.98634
unspecified Water g 87.11473 Lanthanum-140 Air mBq 62.64057
Hydrogen Air g 514.7517 Lanthanum-140 Water mBq 466.5749
Hydrogen Water mg 939.2 Lead Air g 23.9781
Hydrogen-3, Tritium Air Bq 1205593 Lead Water g 254.1065
Hydrogen-3, Tritium Water kBq 141381.6 Lead Soil mg 113.6118
Hydrogen chloride Air kg 1.030341 Lead-210 Air Bq 1215.831
Hydrogen fluoride Air g 153.362 Lead-210 Water Bq 1264.691
Hydrogen peroxide Water kg 6.000019
Hydrogen sulfide Air g 134.0963

,

Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Lead, in ground	Raw	g	37.98036	Methane, dichloro-,			
Limestone, in ground	Raw	kg	1.701263	HCC-30	Air	mg	6.199926
Linuron	Soil	mg	11.44403	Methane, dichloro-,		-	
m-Xylene	Air	mg	91.74642	HCC-30	Water	g	1.009018
Magnesite, 60% in				Methane,			
crude ore, in ground	Raw	kg	38.20483	dichlorodifluoro-,			
Magnesium	Air	g	39.83624	CFC-12	Air	mg	213.7049
Magnesium	Water	kg	7.663476	Methane,			
Magnesium	Soil	g	33.03003	dichlorofluoro-,			
Magnesium, 0.13%				HCFC-21	Air	mg	11.8728
in water	Raw	mg	49.67739	Methane, fossil	Air	kg	36.44166
Mancozeb	Soil	mg	69.89013	Methane,			
Manganese	Air	g	8.415865	monochloro-, R-40	Air	ng	129.3859
Manganese	Water	g	356.0513	Methane, tetrachloro-			
Manganese	Soil	g	3.685984	, CFC-10	Air	mg	129.0454
Manganese-54	Air	mBq	21.66398	Methane, tetrachloro-			
Manganese-54	Water	Bq	1697.242	, CFC-10	Water	μg	87.15699
Manganese, 35.7% in				Methane, tetrafluoro-			
sedimentary deposit,				, FC-14	Air	g	1.001834
14.2% in crude ore,	_	_		Methane,			
in ground	Raw	kg	43.00797	trichlorofluoro-,			
Manganese, in	-			CFC-11	Air	mg	15.45114
ground	Raw	g	7.029207	Methane, trifluoro-,			
Marl, in ground	Raw	kg	13.81329	HFC-23	Air	μg	3.20626
Mercury	Air	g	3.54732	Methanol	Air	g	33.44963
Mercury	Water	g	2.918447	Methanol	Water	g	2.28411
Mercury	Soil	μg	125.6217	Metolachlor	Soil	mg	82.82851
Metaldehyde	Soil	μg	73.58139	Metribuzin	Soil	mg	2.456446
Metallic ions,				Mineral waste	Waste	g	131.488
unspecified	Water	g	5.061138	Molybdenum	Air	mg	442.4564
Metals, unspecified	Air	mg	66.59102	Molybdenum	Water	g	9.73198
Methane	Air	kg	4.389393	Molybdenum	Soil	μg	565.9287
Methane, biogenic	Air	g	82.41849	Molybdenum-99	Water	mBq	160.4755
Methane,				Molybdenum,			
bromochlorodifluoro-				0.010% in sulfide,			
, Halon 1211	Air	mg	134.5812	Mo 8.2E-3% and Cu			
Methane,				1.83% in crude ore,			
bromotrifluoro-,			00.00	in ground	Raw	g	28.92101
Halon 1301	Air	mg	82.85448	Molybdenum,			
Methane,				0.014% in sulfide,			
chlorodifluoro-,				Mo 8.2E-3% and Cu			
HCFC-22	Air	mg	520.64	0.81% in crude ore,	_		
				in ground	Raw	g	4.115507
			46				

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Molybdenum,				Noble gases,			
0.025% in sulfide,				radioactive,			
Mo 8.2E-3% and Cu				unspecified	Air	kBq	1511113
0.39% in crude ore,				Occupation, water			
in ground	Raw	g	15.10105	courses, artificial	Raw	m2a	7.874312
Molybdenum, 0.11%				Oil, crude, 42 MJ per			
in sulfide, Mo 4.1E-				kg, in ground	Raw	kg	175.0197
2% and Cu 0.36% in	_			Oil, crude, 42.6 MJ			
crude ore, in ground	Raw	kg	30.42118	per kg, in ground	Raw	kg	130.1283
Molybdenum, in	_			Oil, crude, 42.7 MJ			
ground	Raw	μg	22.71236	per kg, in ground	Raw	kg	966.4368
Monoethanolamine	Air	mg	226.7399	Oil, crude, in ground	Raw	kg	1279.529
N-				Oils, biogenic	Soil	g	8.929652
Nitrodimethylamine	Air	μg	213.6972	Oils, unspecified	Water	kg	5.887099
Naphthalene	Air	μg	208.2061	Oils, unspecified	Soil	kg	3.794516
Napropamide	Soil	μg	130.2168	Olivine, in ground	Raw	g	3.85945
Neptunium-237	Air	μBq	19.65405	Orbencarb	Soil	mg	13.25609
Neptunium-237	Water	Bq	3.15656	Organic substances,			
Nickel	Air	g	21.72233	unspecified	Air	kg	2.649471
Nickel	Soil	mg	251.6234	Organic substances,			
Nickel, 1.13% in				unspecified	Water	g	3.094074
sulfide, Ni 0.76%				Ozone	Air	g	48.39808
and Cu 0.76% in				PAH, polycyclic			
crude ore, in ground	Raw	g	6.208531	aromatic			
Nickel, 1.98% in				hydrocarbons	Air	g	3.186426
silicates, 1.04% in				PAH, polycyclic			
crude ore, in ground	Raw	kg	164.2432	aromatic			
Nickel, in ground	Raw	g	30.102	hydrocarbons	Water	g	4.808563
Nickel, ion	Water	kg	1.224073	Palladium, in ground	Raw	μg	19.03558
Niobium-95	Air	mBq	3.760358	Paraffins	Air	μg	49.95309
Niobium-95	Water	Bq	2.590249	Paraffins	Water	μg	144.9687
Nitrate	Air	mg	82.98259	Particulates, < 10 um	Air	g	692.3945
Nitrate	Water	kg	2.349139	Particulates, < 10 um			
Nitrite	Water	g	2.857006	(mobile)	Air	g	13.69127
Nitrogen	Air	g	26.26466	Particulates, < 10 um			
Nitrogen	Water	g	63.64159	(stationary)	Air	g	549.7027
Nitrogen	Soil	mg	8.594264	Particulates, < 2.5		-	
Nitrogen oxides	Air	kg	65.70038	um	Air	kg	8.231194
Nitrogen, organic				Particulates, > 10 um	Air	kg	18.84148
bound	Water	g	205.3222	Particulates, > 10 um		U	
Nitrogen, total	Water	g	7.843355	(process)	Air	kg	1.05779
		-		Particulates, > 2.5		0	
				um, and < 10um	Air	kg	12.61676
				Particulates, SPM	Air	g	281.76
				-		-	

.

-

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Pd, Pd 2.0E-4%, Pt	1110110			Potassium	Air	g	37.08925
4.8E-4%, Rh 2.4E-				Potassium	Water	g	304.5242
5%, Ni 3.7E-2%, Cu				Potassium	Soil	g	17.99021
5.2E-2% in ore, in				Potassium-40	Air	Bq	254.2935
ground	Raw	mg	1.060535	Potassium-40	Water	Bq	642.8337
Pd, Pd 7.3E-4%, Pt		8		Potassium, ion	Water	kg	3.341365
2.5E-4%, Rh 2.0E-				Promethium-147	Air	Bq	10.12481
5%, Ni 2.3E+0%, Cu				Propanal	Air	μg	259.8542
3.2E+0% in ore, in				Propane	Air	g	236.1395
ground	Raw	mg	2.548772	Propene	Air	g	15.21147
Peat, in ground	Raw	g	52.86013	Propene	Water	g	14.95168
Pentane	Air	g	201.2264	Propionic acid	Air	g	1.766162
Phenol	Air	g	3.614987	Propylene oxide	Air	s mg	38.12241
Phenol	Water	g	7.341032	Propylene oxide	Water	mg	91.7321
Phenol, pentachloro-	Air	ь mg	56.35176	Protactinium-234	Air	Bq	33.3629
Phenols, unspecified	Water	mg	926.4377	Protactinium-234	Water	Bq	617.8315
Phosphate	Water	kg	2.429568	Pt, Pt 2.5E-4%, Pd	11 ato1	Ъч	017.0515
Phosphorus	Air	g	1.429899	7.3E-4%, Rh 2.0E-			
Phosphorus	Water	g	41.46764	5%, Ni 2.3E+0%, Cu			
Phosphorus	Soil	g	3.232098	3.2E+0% in ore, in			
Phosphorus	5011	5	5.252070	ground	Raw	цσ	38.13499
compounds,				Pt, Pt 4.8E-4%, Pd	IXaw	μg	30.13499
unspecified	Water	mg	5.723578	2.0E-4%, Rh 2.4E-			
Phosphorus, 18% in	IT acci	1115	5.725570	5%, Ni 3.7E-2%, Cu			
apatite, 12% in crude				5.2E-2% in ore, in			
ore, in ground	Raw	g	130.6927	ground	Raw	ша	136.7083
Phosphorus, 18% in	11411	5	150.0727	Radioactive species,	ixaw	μg	130.7083
apatite, 4% in crude				alpha emitters	Water	Bq	2.523059
ore, in ground	Raw	a	292.8339	Radioactive species,	vv ater	БЧ	2.525059
Phosphorus, total	Air	g mg	516.7068	from fission and			
Phthalate, dioctyl-	Water	-	1.936456	activation	Water	Pa	148.1175
Phthalate, p-dibutyl-	Water	μg	20.78721	Radioactive species,	vv alci	Bq	140.11/3
Phthalate, p-	water	μg	20.76721	Nuclides, unspecified	Water	Da	1522076
dimethyl-	Water	Цœ	130.8824	Radioactive species,	vv ater	Bq	153207.6
Pirimicarb	Soil	μg	71.39008	other beta emitters	Air	Da	1166 561
Platinum	Air	μg	9.540688	Radioactive species,	All	Bq	1466.561
Platinum, in ground	Raw	μg	9.540088	unspecified	Air	D-	1428990
Plutonium-238	Air	μg uBa	66.17629	Radium-224	Water	Bq Ba	
Plutonium-241	Air	µBq Ba	32.75675	Radium-226	Air	Bq Ba	3107.329
Plutonium-241	Water	Bq Ba	4883.734	Radium-226		Bq Ba	1346.121
	Air	Bq Ba			Water	Bq Da	1163125
Plutonium-alpha		Bq Ba	1.191219	Radium-228 Radan 220	Air	Bq	377.7345
Plutonium-alpha Polonium-210	Water	Bq Ba	196.5405	Radon-220 Radon 222	Air	Bq 1-D ~	2617.677
F0101110111-210	Water	Bq	1702.801	Radon-222	Air	kBq	5526717
				Rh, Rh 2.0E-5%, Pt	Raw	μg	24.19892

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Rhenium, in crude	······································			Solids, inorganic	Water	kg	7.97046
ore, in ground	Raw	μg	35.41309	Solved solids	Water	kg	27.1313
Rhenium, in ground	Raw	μg	19.98954	Solved substances	Water	g	384.565
Rhodium, in ground	Raw	μg	20.21859	Soot	Air	g	224
Rubidium	Water	mg	571.636	Stibnite, in ground	Raw	μg	94.9505
Ruthenium	Water	mg	66.40942	Strontium	Air	g	2.16350
Ruthenium-103	Air	μBq	235.5344	Strontium	Water	g	464.610
Ruthenium-103	Water	mBq	112.8238	Strontium	Soil	mg	374.942
Ruthenium-106	Air	Bq	119.1155	Strontium-89	Air	mBq	35.7891
Ruthenium-106	Water	Bq	11911.55	Strontium-89	Water	Bq	4.51867
Rutile, in ground	Raw	mg	2.847257	Strontium-90	Air	Bq	19.6608
Salts, unspecified	Water	kg	2.528011	Strontium-90	Water	Bq	262007
Sand, unspecified, in		8		Styrene	Air	μg	714.042
ground	Raw	kg	3.37128	Sulfate	Air	kg	1.17494
Scandium	Air	mg	15.46447	Sulfate	Water	kg	73.5967
Scandium	Water	g	1.162282	Sulfide	Water	mg	923.291
Selenium	Air	mg	999.606	Sulfite	Water	g	12.015
Selenium	Water	g	6.527265	Sulfur	Water	g	10.4134
Shale, in ground	Raw	g	35.48631	Sulfur	Soil	g	29.5239
Silicon	Air	g	263.2811	Sulfur dioxide	Air	kg	42.4749
Silicon	Water	kg	261.8623	Sulfur hexafluoride	Air	mg	744.250
Silicon	Soil	g	12.64651	Sulfur oxides	Air	kg	15.4973
Silicon tetrafluoride	Air	mg	2.213953	Sulfur trioxide	Water	mg	817.75
Silver	Air	μg	13.18643	Sulfur, in ground	Raw	g	60.116
Silver	Water	mg	4.584341	Sulfuric acid	Water	mg	765.673
Silver	Soil	mg	6.659462	Suspended solids,		8	/ 00107.
Silver-110	Air	mBq	20.47786	unspecified	Water	kg	15.010
Silver-110	Water	Bq	382.493	Sylvite, 25 % in	i i ator		10.010
Silver, 0.01% in		24	0021190	sylvinite, in ground	Raw	g	187.234
crude ore, in ground	Raw	mg	6.96347	t-Butyl methyl ether	Air	mg	38.4944
Silver, in ground	Raw	mg	409.6548	t-Butyl methyl ether	Water	mg	119.883
Silver, ion	Water	mg	462.6252	Tebutam	Soil	μg	308.59
Sodium	Air	g	32.13414	Technetium-99	Air	μBq	833.80
Sodium	Soil	g	75.3968	Technetium-99	Water	Bq	1250.7
Sodium-24	Water	Bq	8.67209	Technetium-99m	Water	Bq	3.43692
Sodium chlorate	Air	mg	23.16014	Teflubenzuron	Soil	μg	163.58
Sodium chloride, in		mg	25.10014	Tellurium-123m	Air	μg mBq	89.995
ground	Raw	ka	168.29	Tellurium-123m	Water	Bq	4.2185
Sodium dichromate	Air	kg a	23.81324	Tellurium-132	Water	вч mBq	4.2185
Sodium formate	Air	g ma	6.088423	Thallium	Air	*	12.555
Sodium formate	Water	mg mg	0.088423	Thallium	Water	mg	
		mg a	536.6387	Thorium	Air	mg mg	112.92
Sodium sulphate,	Raw	g	220.020/	Thorium-228	Air	mg Pa	23.639
various forms						Bq	75.981
				Thorium-228	Water	Bq	12439.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Thorium-230	Water	Bq	88690.47	Vermiculite, in			
Thorium-232	Air	Bq	73.85818	ground	Raw	g	3.90706
Thorium-232	Water	Bq	101.0831	VOC, volatile		U	
Thorium-234	Air	Bq	33.36706	organic compounds	Air	kg	13.28
Thorium-234	Water	Bq	619.7301	VOC, volatile		U	
Tin	Air	g	1.742002	organic compounds			
Tin	Soil	μg	977.7376	as C	Water	g	2.28111
Tin, 79% in		. 0		VOC, volatile		U	
cassiterite, 0.1% in				organic compounds,			
crude ore, in ground	Raw	g	10.50464	unspecified origin	Water	g	20.4628
Tin, in ground	Raw	mg	227.586	Volume occupied,		0	
Tin, ion	Water	g	42.68791	final repository for			
TiO2, 45-60% in		0		low-active			
Ilmenite, in ground	Raw	kg	1.213725	radioactive waste	Raw	cm3	181.218
Titanium	Air	g	4.038263	Volume occupied,			101.210
Titanium	Soil	mg	124.8892	final repository for			
Titanium, ion	Water	kg	1.198245	radioactive waste	Raw	cm3	45.4718
TOC, Total Organic		0		Volume occupied,		UIIID	1011710
Carbon	Water	kg	31.31826	reservoir	Raw	m3y	183.254
Toluene	Air	g	38.87735	Volume occupied,	10011	ine y	105.25
Toluene	Water	g	7.634404	underground deposit	Raw	1	4.29711
Tributyltin	Water	mg	22.29989	Waste, solid	Waste	kg	15.2640
Tributyltin		0		water	Air	kg	2.83083
compounds	Water	mg	290.2995	Water, cooling,	* ***	~ 8	2.05005
Triethylene glycol	Water	g	3.006718	unspecified natural			
Tungsten	Water	g	1.156005	origin/m3	Raw	m3	1967.10
Ulexite, in ground	Raw	mg	598.0731	Water, lake	Raw	m3	4.10129
Undissolved		0	0,010,101	Water, salt, ocean	Raw	m3	7.71636
substances	Water	g	560.8188	Water, salt, sole	Raw	1	687.883
Uranium	Air	mg	25.90298	Water, turbine use,	1(u))	1	007.002
Uranium-234	Water	Bq	771.5248	unspecified natural			
Uranium-235	Air	Bq	19.07477	origin	Raw	m3	84301.8
Uranium-235	Water	Bq	1225.786	Water, unspecified	1.uvv	1115	04501.0
Uranium-238	Air	Bq	595.0755	natural origin/kg	Raw	kg	101954
Uranium-238	Water	Bq	2514.996	Water, unspecified	1.um	K 5	101754
Uranium alpha	Air	Bq	1597.436	natural origin/m3	Raw	m3	92.1892
Uranium alpha	Water	Bq	37303.6	Water, well, in		mJ	92.1092
Uranium, 2291 GJ	TT GLOI	~Y	0,000,0	ground	Raw	m3	23.3238
per kg, in ground	Raw	mg	116.8156	Wood and wood	1/4 //	1115	23,3230
Uranium, 560 GJ per	17014	шg	110.0150	waste, 9.5 MJ per kg	Raw	a	1/1 510
kg, in ground	Raw	a	48.73852	Wood, dry matter	Raw Raw	g ka	141.518
Uranium, in ground	Raw	g	48.73832 88.04857	•		kg	6.98876
Vanadium	Air	g	50.81324	Wood, hard, standing	Raw	1	47.4847
Vanadium		g ma		Wood, soft, standing	Raw	1	249.269
v allaululli	Soil	mg	3.574727	Wood, unspecified	Raw	cm3	8.93638

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Xenon-133	Air	Bq	1527031	Zinc	Air	g	66.50914
Xenon-133m	Air	Bq	1558.357	Zinc	Soil	g	4.355994
Xenon-135	Air	Βq	308350	Zinc-65	Air	mBq	93.75808
Xenon-135m	Air	Βq	70590.39	Zinc-65	Water	Bq	30.71628
Xenon-137	Air	Βq	1455.474	Zinc, in ground	Raw	mg	198.7035
Xenon-138	Air	Βq	14112.99	Zinc, ion	Water	g	838.3893
Xylene	Air	g	52.10704	Zirconium	Air	mg	49.8403
Xylene	Water	g	6.315903	Zirconium-95	Air	mBq	7.132802
Yttrium-90	Water	mBq	28.45392	Zirconium-95	Water	Bq	101.4523

A.4 IN-SITU S/S

Table A.4 Environmental interventions – In-situ S/S

.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Aluminium, 24% in				Coal, 26.4 MJ per kg,			
bauxite, 11% in				in ground	Raw	kg	1956.414
crude ore, in ground	Raw	kg	105.9293	Coal, 29.3 MJ per kg,		U	
Anhydrite, in ground	Raw	g	1.699139	in ground	Raw	g	957.984
Barite, 15% in crude				Coal, brown, in		-	
ore, in ground	Raw	kg	102.8394	ground	Raw	kg	5205.954
Basalt, in ground	Raw	kg	109.4332	Coal, hard,			
Bauxite, in ground	Raw	kg	1.12704	unspecified, in			
Borax, in ground	Raw	g	1.508389	ground	Raw	kg	53545.67
Calcite, in ground	Raw	kg	1081041	Cobalt, in ground	Raw	mg	193.2332
Coal, brown in				Colemanite, in			
ground	Raw	kg	2125.005	ground	Raw	g	36.72939
Chromium, 25.5 in				Copper, 0.99% in			
chromite, 11.6% in				sulfide, Cu 0.36%			
crude ore, in ground	Raw	kg	26.63343	and Mo 8.2E-3% in			
Chrysotile, in ground	Raw	mg	884.3689	crude ore, in ground	Raw	kg	1.285286
Cinnabar, in ground	Raw	mg	81.18298	Copper, 1.18% in			
Clay, bentonite	Raw	kg	400021.6	sulfide, Cu 0.39%	Raw	kg	7.124322

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Dolomite, in ground	Raw	kg	2.216181	Limestone	Raw	kg	113.472
Energy, gross		8		Magnesium, 0.13%		8	
calorific value, in				in water	Raw	mg	527.8301
biomass	Raw	MJ	23753.9	Manganese, 35.7% in		U	
Energy, kinetic, flow,				sedimentary deposit,			
in wind	Raw	MJ	4001.444	14.2% in crude ore,			
Energy, potential,				in ground	Raw	kg	5.517967
stock, in barrage				Molybdenum,			
water	Raw	MJ	251230.5	0.010% in sulfide,			
Energy, solar	Raw	MJ	265.4486	Mo 8.2E-3% and Cu			
Energy, unspecified	Raw	MJ	9551.664	1.83% in crude ore,			
Feldspar, in ground	Raw	mg	17.49542	in ground	Raw	g	174.2021
Fluorine, 4.5% in				Molybdenum,			
apatite, 1% in crude	_			0.014% in sulfide,			
ore, in ground	Raw	g	74.6461	Mo 8.2E-3% and Cu			
Fluorine, 4.5% in				0.81% in crude ore,	_		
apatite, 3% in crude				in ground	Raw	g	24.78924
ore, in ground	Raw	g	33.75957	Molybdenum,			
Fluorspar, 92%, in	D			0.022% in sulfide,			
ground	Raw	kg	2.995414	Mo 8.2E-3% and Cu			
Gas, mine, off-gas,				0.36% in crude ore,	D		4 0 0 4 0 - 0
process, coal	D		040.0616	in ground	Raw	kg	1.931979
mining/m3	Raw	m3	849.8616	Molybdenum,			
Gas, natural, 36.6 MJ	Dow		102 144	0.025% in sulfide,			
per m3, in ground	Raw	m3	183.144	Mo 8.2E-3% and Cu			
Gas, natural, 46.8 MJ per kg, in ground	Dow	ton	7 076149	0.39% in crude ore,	D	_	00.05000
Gas, natural, in	Raw	ton	7.976148	in ground	Raw	g	90.95928
ground	Raw	m3	5609.708	Molybdenum, 0.11% in sulfide, Mo 4.1E-			
Granite, in ground	Raw		5.462804	2% and Cu 0.36% in			
Gravel, in ground	Raw	g kg	20601.81	crude ore, in ground	Raw	ka	3.899167
Gypsum, in ground	Raw	g	9.313815	Nickel, 1.13% in	ixaw	kg	5.899107
Iron ore, in ground	Raw	g	563.52	sulfide, Ni 0.76%			
Iron, 46% in ore,	1XU W	5	505.52	and Cu 0.76% in			
25% in crude ore, in				crude ore, in ground	Raw	g	336.233
ground	Raw	kg	951.4907	Nickel, 1.98% in	1\u vv	5	550.255
Kaolinite, 24% in		8	2011207	silicates, 1.04% in			
crude ore, in ground	Raw	g	959.215	crude ore, in ground	Raw	kg	60.50383
Kieserite, 25% in		8		Oil, crude, 42 MJ per			
crude ore, in ground	Raw	g	3.714463	kg, in ground	Raw	ton	114.9318
Lead, 5%, in sulfide,		U		Oil, crude, 42.7 MJ	· ·		
Pb 2.97% and Zn				per kg, in ground	Raw	kg	2899.31
5.34% in crude ore,				Oil, crude, in ground	Raw	kg	37658.24
in ground	Raw	kg	9.05018	Olivine, in ground	Raw	mg	622.825
U U		0		<i>,</i> 0		0	

Pd, Pd 7.3E-4%, Pt					-ment		
				Talc, in ground	Raw	g	100.5844
2.5E-4%, Rh 2.0E-				Tin, 79% in		2	
5%, Ni 2.3E+0%, Cu				cassiterite, 0.1% in			
3.2E+0% in ore, in				crude ore, in ground	Raw	g	216.9115
ground	Raw	mg	97.00497	TiO2, 45-60% in		2	
Peat, in ground	Raw	g	282.1023	Ilmenite, in ground	Raw	kg	2.398212
Phosphorus, 18% in		U		Transformation, from		U	
apatite, 4% in crude				arable	Raw	cm2	785.6018
ore, in ground	Raw	g	298.5844	Transformation, from			
Pt, Pt 2.5E-4%, Pd		-		arable, non-irrigated	Raw	dm2	864.9714
7.3E-4%, Rh 2.0E-				Ulexite, in ground	Raw	g	1.95802
5%, Ni 2.3E+0%, Cu				Uranium, in ground	Raw	kg	1.098481
3.2E+0% in ore, in				Vermiculite, in		U	
ground	Raw	mg	1.254964	ground	Raw	g	64.30087
Pt, Pt 4.8E-4%, Pd		-		Volume occupied,		U	
2.0E-4%, Rh 2.4E-				final repository for			
5%, Ni 3.7E-2%, Cu				low-active			
5.2E-2% in ore, in				radioactive waste	Raw	1	2.264903
ground	Raw	mg	4.498862	Volume occupied,			
Rh, Rh 2.0E-5%, Pt		-		final repository for			
2.5E-4%, Pd 7.3E-				radioactive waste	Raw	cm3	505.7269
4%, Ni 2.3E+0%, Cu				Volume occupied,			
3.2E+0% in ore, in				reservoir	Raw	m3y	3357.713
ground	Raw	μg	920.1448	Volume occupied,		•	
Rh, Rh 2.4E-5%, Pt				underground deposit	Raw	cm3	975.292
4.8E-4%, Pd 2.0E-				Water, cooling,			
4%, Ni 3.7E-2%, Cu				unspecified natural			
5.2E-2% in ore, in				origin/m3	Raw	m3	666.5715
ground	Raw	mg	2.882011	Water, lake	Raw	m3	67.4917
Rhenium, in crude		-		Water, river	Raw	m3	590.6241
ore, in ground	Raw	mg	3.616412	Water, salt, ocean	Raw	m3	47.35109
Rutile, in ground	Raw	μg	998.278	Water, salt, sole	Raw	m3	20.56113
Sand, unspecified, in				Water, turbine use,			
ground	Raw	g	55.48315	unspecified natural			
Shale, in ground	Raw	g	4.809224	origin	Raw	m3	1594900
Silver, 0.01% in				Water, unspecified			
crude ore, in ground	Raw	mg	125.7066	natural origin/kg	Raw	kg	154.968
Sodium chloride, in				Water, unspecified		•	
ground	Raw	kg	81.33357	natural origin/m3	Raw	m3	1632.155
Sodium sulphate,		-		Water, well, in			
various forms, in				ground	Raw	m3	254.4985
ground	Raw	g	593.481	Wood and wood			
Stibnite, in ground	Raw	μg	579.5039	waste, 9.5 MJ per kg	Raw	kg	82.16938
Sulfur, in ground	Raw	g	85.36559	Wood, hard, standing	Raw	1	563.0552

.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Wood, unspecified,				Carbon dioxide,			
standing/m3	Raw	cm3	41.33072	biogenic	Air	kg	15401.06
Zinc 9%, in sulfide,				Carbon dioxide,		-	
Zn 5.34% and Pb				fossil	Air	kg	1197682
2.97% in crude ore,				Carbon disulfide	Air	g	227.0956
in ground	Raw	kg	10.077	Carbon monoxide	Air	kg	3034.323
Acenaphthene	Air	μg	26.77255	Carbon monoxide,		-	
Acetaldehyde	Air	g	6.694996	biogenic	Air	kg	2.864642
Acetic acid	Air	g	47.19083	Carbon monoxide,			
Acetone	Air	g	8.983988	fossil	Air	kg	669.4051
Acrolein	Air	mg	116.8596	Cerium-141	Air	Bq	4.766695
Actinides,				Cesium-134	Air	mBq	228.2941
radioactive,				Cesium-137	Air	Bq	4.046911
unspecified	Air	mBq	16.38459	Chlorine	Air	g	39.77895
Aerosols,				Chloroform	Air	mg	36.31662
radioactive,				Chromium	Air	g	73.31667
unspecified	Air	Bq	281.5789	Chromium-51	Air	mBq	305.449
Aluminum	Air	kg	14.42865	Chromium VI	Air	g	2.236264
Ammonia	Air	kg	29.25555	Cobalt	Air	g	8.380051
Ammonium		-		Cobalt-58	Air	mBq	425.3503
carbonate	Air	mg	28.06865	Cobalt-60	Air	Bq	3.757575
Antimony	Air	g	3.09282	Cumene	Air	g	14.42069
Antimony-124	Air	mBq	28.9654	Cyanide	Air	g	2.411478
Antimony-125	Air	mBq	302.2782	Dinitrogen monoxide	Air	ќg	4.350519
Argon-41	Air	Bq	121064.2	Dioxins, measured as		U	
Arsenic	Air	g	18.68877	2,3,7,8-			
Barium	Air	g	2.25432	tetrachlorodibenzo-p-			
Barium-140	Air	Βq	19.66275	dioxin	Air	μg	885.8775
Benzaldehyde	Air	mg	22.29808	Ethane	Air	kg	1.121872
Benzene	Air	kg	1.567482	Ethane, 1,1,1,2-		C	
Benzene, ethyl-	Air	g	61.68926	tetrafluoro-, HFC-			
Benzene, hexachloro-	Air	mg	9.919333	134a	Air	g	7.700277
Benzene,		-		Ethane, 1,2-dichloro-	Air	g	2.298153
pentachloro-	Air	mg	2.496321	Ethane, 1,2-dichloro-		U	
Benzo(a)pyrene	Air	mg	692.6713	1,1,2,2-tetrafluoro-,			
Beryllium	Air	g	2.807729	CFC-114	Air	mg	552.9017
Boron	Air	g	128.9747	Ethane, hexafluoro-,		U	
Bromine	Air	g	9.415192	HFC-116	Air	mg	704.4162
Butadiene	Air	μg	7.303268	Ethanol	Air	g	12.48999
Butane	Air	kg	2.384753	Ethene	Air	g	182.571
Butene	Air	g	52.94059	Ethene, chloro-	Air	g	4.746744
Cadmium	Air	g	11.29845	Ethene, tetrachloro-	Air	mg	69.22695
Calcium	Air	g	39.19074	Ethene, trichloro-	Air	mg	66.21708
Carbon-14	Air	Bq	2100292	Ethylene diamine	Air	μg	96.80508
		T			-	1.0	

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Ethyne	Air	g	4.039788	Mercury	Air	g	32.41285
Fluorine	Air	g	1.453605	Metals, unspecified	Air	g	37.62334
Fluosilicic acid	Air	mg	823.3782	Methane	Air	kg	60.94981
Formaldehyde	Air	kg	31.91336	Methane, biogenic	Air	g	509.9114
Heat, waste	Air	мJ	4562388	Methane,		U	
Helium	Air	g	289.2284	bromochlorodifluoro-			
Heptane	Air	g	529.3723	, Halon 1211	Air	mg	120.955
Hexane	Air	kg	1.177841	Methane,		0	
Hydrocarbons,		U		bromotrifluoro-,			
aliphatic, alkanes,				Halon 1301	Air	g	1.88181
cyclic	Air	mg	59.30332	Methane,		0	
Hydrocarbons,		U		chlorodifluoro-,			
aliphatic, alkanes,				HCFC-22	Air	mg	621.9746
unspecified	Air	g	508.0488	Methane, dichloro-,			
Hydrocarbons,		0		HCC-30	Air	mg	317.136
aliphatic, unsaturated	Air	g	79.79588	Methane,		8	01/100
Hydrocarbons,		0		dichlorodifluoro-,			
aromatic	Air	g	99.69912	CFC-12	Air	μg	879.6368
Hydrocarbons,		8		Methane,		r0	077.0200
chlorinated	Air	g	2.043728	dichlorofluoro-,			
Hydrocarbons,		0		HCFC-21	Air	ng	166.9262
unspecified	Air	kg	8.509152	Methane, fossil	Air	kg	659.4497
Hydrogen	Air	g	179.2981	Methane,		8	
Hydrogen-3, Tritium	Air	Bq	8189232	monochloro-, R-40	Air	ng	770.4656
Hydrogen fluoride	Air	g	273.6139	Methane, tetrachloro-		0	
Hydrogen sulfide	Air	g	89.77572	, CFC-10	Air	mg	315.8236
Iodine	Air	g	4.649122	Methane, tetrafluoro-		8	
Iodine-129	Air	Бq	1559.277	, FC-14	Air	g	6.339746
Iodine-131	Air	Βq	44296.95	Methane, trifluoro-,		0	
Iodine-133	Air	Bq	23.51053	HFC-23	Air	μg	53.11288
Iron	Air	g	47.03536	Molybdenum	Air	mg	781.6389
Isocyanic acid	Air	mg	592.1315	Monoethanolamine	Air	g	2.106165
Kerosene	Air	g	1.504934	N-		U	
Krypton-85	Air	Bq	392526.1	Nitrodimethylamine	Air	mg	14.89884
Krypton-85m	Air	Bq	288403.8	Naphthalene	Air	mg	105.3454
Krypton-87	Air	Bq	66981.84	Nickel	Air	g	71.91111
Krypton-88	Air	Bq	86359.94	Niobium-95	Air	mBq	18.56886
Krypton-89	Air	Bq	35680.32	Nitrate	Air	mg	648.478
Lanthanum-140	Air	Bq	1.680498	Nitrogen oxides	Air	kg	5803.736
Lead	Air	g	109.5977	NMVOC, non-		8	
Lead-210	Air	Bq	3371.975	methane volatile			
m-Xylene	Air	mg	451.0679	organic compounds,			
Magnesium	Air	g	29.56695	unspecified origin	Air	kg	1500.923
Manganese	Air	g	6.633315	Noble gases,	Air	Bq	1.50E+10
0		0				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1.001.10

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Ozone	Air	g	492.68	Silver-110	Air	mBq	40.43294
PAH, polycyclic	2 111	Ð	172.00	Sodium	Air	g	46.78827
aromatic				Sodium chlorate	Air	s mg	48.53807
hydrocarbons	Air	g	13.856	Sodium dichromate	Air	mg	146.1077
Paraffins	Air	μg	470.7667	Sodium formate	Air	mg	5.055045
Particulates, < 10 um	Air	kg	465.2531	Soot	Air	-	672
Particulates, < 2.5	2 111	кg	405.2551	Strontium	Air	g	2.389912
um	Air	kg	54.67534	Styrene	Air	g ma	2.3333312
Particulates, > 10 um	Air	-	196.0133	Sulfate	Air	mg	239.1086
Particulates, > 10 un Particulates, > 2.5	All	kg	170.0155	Sulfur dioxide	Air	g Ira	
um, and < 10 um	Air	lra	69.23615	Sulfur hexafluoride	Air	kg	440.9983
-	Air	kg		Sulfur oxides	Air	g 1- ~	5.204347
Particulates, SPM	All	g	845.28			kg	910.3792
Particulates,	Air	1	24.9819	t-Butyl methyl ether	Air	g	20.54969
unspecified		kg		Thallium	Air	g	11.75884
Pentane	Air	kg	3.08182	Thorium	Air	mg	13.90655
Phenol	Air	g	24.70247	Thorium-228	Air	Bq	106.0938
Phenol, pentachloro-	Air	mg	223.6854	Thorium-230	Air	Bq	999.8057
Phosphorus	Air	g	1.901606	Thorium-232	Air	Bq	133.2225
Platinum	Air	μg	263.8523	Thorium-234	Air	Bq	268.8195
Plutonium-238	Air	μBq	212.7107	Tin	Air	g	9.781935
Plutonium-alpha	Air	μBq	487.6121	Titanium	Air	g	2.836492
Polonium-210	Air	Bq	5508.648	Toluene	Air	kg	1.60861
Polychlorinated				Uranium	Air	mg	17.25448
biphenyls	Air	mg	15.2784	Uranium-234	Air	Bq	3139.74
Potassium	Air	g	98.40248	Uranium-235	Air	Bq	152.2993
Potassium-40	Air	Bq	463.4547	Uranium-238	Air	Bq	3456.327
Propanal	Air	mg	22.29808	Uranium alpha	Air	Bq	14668.73
Propane	Air	kg	2.439238	Vanadium	Air	g	80.83834
Propene	Air	g	117.6313	VOC, volatile		-	
Propionic acid	Air	g	1.107146	organic compounds	Air	kg	39.84
Protactinium-234	Air	Bq	268.7634	water	Air	kg	22.04729
Radioactive species,				Xenon-131m	Air	Βq	347444.2
other beta emitters	Air	Bq	8950.194	Xenon-133	Air	Bq	12603690
Radioactive species,		-		Xenon-133m	Air	Bq	15035.54
unspecified	Air	kBq	106833.5	Xenon-135m	Air	Bq	3170285
Radium-226	Air	Bq	9508.455	Xenon-137	Air	Bq	97675.15
Radium-228	Air	Bq	553.6715	Xenon-138	Air	Bq	733766.3
Radon-220	Air	Bq	6.513283	Xylene	Air	kg	1.385374
Radon-222	Air	Bq	3.57E+10	Zinc	Air	g	172.9175
Ruthenium-103	Air	mBq	4.079699	Zinc-65	Air	s mBq	781.0616
Scandium	Air	mg	9.738104	Zirconium	Air	-	18.92734
Selenium	Air	g	4.845865	Zirconium-95	Air	mg mBq	763.4581
Silicon	Air	в g	124.1205	Acenaphthene	Water	-	11.57146
Silicon tetrafluoride	Air	-	2.25742	Acenaphthylene	Water	mg	
Smoon conamutinde	ЛШ	mg	4.23/42	Accuaptionytene	vv alt1	μg	723.6815

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Acidity, unspecified	Water	g	11.19165	Chromium-51	Water	Bq	3814.92
Actinides,		U		Chromium VI	Water	g	197.3878
radioactive,				Chromium, ion	Water	g	10.35835
unspecified	Water	Bq	2532.699	Cobalt	Water	g	100.5989
Aluminum	Water	kg	19.21558	Cobalt-57	Water	Bq	115.2274
Ammonia	Water	g	238.8667	Cobalt-58	Water	Bq	16879.86
Ammonium, ion	Water	g	316.0197	Cobalt-60	Water	Вq	14941.86
Antimony	Water	g	9.795409	COD, Chemical		1	
Antimony-122	Water	Вq	11.67776	Oxygen Demand	Water	kg	317.9004
Antimony-124	Water	Bq	801.7283	Copper, ion	Water	g	357.4111
Antimony-125	Water	Bq	740.2149	Cumene	Water	g	34.65271
AOX, Adsorbable		1		Cyanide	Water	g	110.3758
Organic Halogen as				Dichromate	Water	mg	539.9524
Cl	Water	g	1.257438	DOC, Dissolved			
Arsenic, ion	Water	g	24.78932	Organic Carbon	Water	kg	81.32451
Barite	Water	kg	3.217727	Ethane, 1,2-dichloro-	Water	mg	156.2162
Barium	Water	kg	1.92961	Ethene	Water	g	4.566682
Barium-140	Water	Bq	51.15478	Ethene, chloro-	Water	mg	104.2789
Benzene	Water	g	143.6146	Ethylene diamine	Water	μg	234.679
Benzene, ethyl-	Water	g	44.6535	Ethylene oxide	Water	mg	3.096062
Beryllium	Water	g	1.455828	Fluoride	Water	g	495.2155
BOD5, Biological		8	1	Fluosilicic acid	Water	g	1.481916
Oxygen Demand	Water	kg	228.0068	Formaldehyde	Water	g	2.579756
Boron	Water	g	784.743	Glutaraldehyde	Water	mg	397.2503
Bromate	Water	g	4.675654	Heat, waste	Water	MJ	24529.6
Bromine	Water	kg	1.372185	Hydrocarbons,		1.10	2.025.0
Butene	Water	mg	8.016169	aliphatic, alkanes,			
Cadmium, ion	Water	g	30.77401	unspecified	Water	g	241.8473
Calcium, ion	Water	kg	136.5166	Hydrocarbons,		ъ	211.0175
Carbonate	Water	g	120.1278	aliphatic, unsaturated	Water	g	22.32437
Carboxylic acids,	,,	8		Hydrocarbons,		Б	22.02107
unspecified	Water	kg	7.375705	aromatic	Water	g	989.0582
Cerium-141	Water	Bq	20.45252	Hydrocarbons,	, ator	ъ	202.0202
Cerium-144	Water	Bq	6.226415	unspecified	Water	g	160.8193
Cesium	Water	g	1.860364	Hydrogen	Water	g	2.8176
Cesium-134	Water	Bq	301.3719	Hydrogen-3, Tritium	Water	Bq	6.72E+08
Cesium-136	Water	Bq	3.629922	Hydrogen peroxide	Water	mg	196.0804
Cesium-137	Water	Bq	296681.3	Hydrogen sulfide	Water	_	28.41191
Chlorate	Water	g	46.18591	Hydroxide	Water	g o	1.297901
Chlorinated solvents,	11 ato1	ъ	10.10371	Hypochlorite	Water	g g	8.776591
unspecified	Water	σ	1.41358	Iodide	Water	g a	186.6924
Chlorine	Water	g o	41.06047	Iodine-133	Water	g Bq	32.11383
Chloroform	Water	g ng	166.9262	Iron	Water	-	285.9374
Chromate	Water	ng	1.474835	Iron-59	Water	g Ba	
Cillomate	vy ater	g	1.4/4000	11011-37	w aler	Bq	8.828779

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Lanthanum-140	Water	Bq	54.48407	Scandium	Water	g	2.627046
Lead	Water	g	107.6114	Selenium	Water	g	4.693698
Lead-210	Water	Bq	2042.541	Silicon	Water	kg	180.9711
Magnesium	Water	kg	19.12412	Silver-110	Water	Bq	14603.28
Manganese	Water	g	581.9528	Silver, ion	Water	g	2.084372
Manganese-54	Water	Bq	1015.911	Sodium-24	Water	Bq	142.1318
Mercury	Water	g	1.4063	Sodium formate	Water	mg	12.14444
Metallic ions,		0		Sodium, ion	Water	kg	584.1175
unspecified	Water	kg	2.711698	Solids, inorganic	Water	kg	19.5375
Methane, dichloro-,		8		Solved solids	Water	kg	538.0819
HCC-30	Water	g	15.72295	Strontium	Water	kg	11.55870
Methanol	Water	g	2.226286	Strontium-89	Water	Βq	318.655
Molybdenum	Water	g	21.17766	Strontium-90	Water	Bq	1219553
Molybdenum-99	Water	Bq	18.78494	Sulfate	Water	kg	146.665
Nickel, ion	Water	g	493.442	Sulfide	Water	g	3.694163
Niobium-95	Water	Bq	69.46923	Sulfite	Water	g	24.6713
Nitrate	Water	kg	1.048203	Sulfur	Water	g	164.096
Nitrite	Water	g	6.428429	Sulfuric acid	Water	g	103.840
Nitrogen	Water	g	247.4571	Suspended solids,		0	
Nitrogen, organic		0		unspecified	Water	kg	27.0676
bound	Water	g	396.7081	t-Butyl methyl ether	Water	g	2.07215
Oils, unspecified	Water	kg	78.66533	Technetium-99m	Water	Bq	431.722
Organic substances,		0		Tellurium-123m	Water	Βq	47.6120
unspecified	Water	kg	1.279194	Tellurium-132	Water	Bq	1.08768
PAH, polycyclic		0		Thallium	Water	mg	238.850
aromatic				Thorium-228	Water	Βq	372083.
hydrocarbons	Water	g	11.47325	Thorium-230	Water	Βq	679076.
Paraffins	Water	mg	1.366211	Thorium-232	Water	Βq	276.795
Phenol	Water	g	177.0328	Thorium-234	Water	Bq	4977.7
Phosphate	Water	kg	1.088428	Tin, ion	Water	g	21.1841
Phosphorus	Water	g	13.0789	Titanium, ion	Water	g	874.350
Polonium-210	Water	Bq	2494.897	TOC, Total Organic		0	
Potassium-40	Water	Bq	1588.562	Carbon	Water	kg	81.6427
Potassium, ion	Water	kg	10.79457	Toluene	Water	g	228.435
Propene	Water	g	13.49248	Tributyltin		0	
Propylene oxide	Water	mg	901.9694	compounds	Water	g	1.99806
Protactinium-234	Water	Bq	4977.1	Triethylene glycol	Water	g	1.23590
Radioactive species,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- 1		Tungsten	Water	g	3.09162
alpha emitters	Water	Bq	3.501732	Uranium-234	Water	Bq	5972.52
Radioactive species,		- 1		Uranium-235	Water	Bq	9854.65
Nuclides, unspecified	Water	Bq	1518581	Uranium-238	Water	Bq	16050.7
Radium-224	Water	Bq	93018.19	Uranium alpha	Water	Bq	286737.
Radium-226	Water	Bq	3246285	Vanadium, ion	Water	g	95.2175
Radium-228	Water	Bq	186036.4		Water	в g	663.011

Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Zinc-65	Water	Bq	1926.986	Heat, waste	Soil	MJ	2260.568
Zinc, ion	Water	g	787.0663	Iron	Soil	kg	3.470359
Mineral waste	Waste	g	394.464	Lead	Soil	mg	421.7381
Slags	Waste	g	140.88	Magnesium	Soil	g	513.1078
Waste, solid	Waste	kg	2001.562	Mancozeb	Soil	mg	480.5468
Aclonifen	Soil	mg	13.68242	Manganese	Soil	g	34.40278
Aluminum	Soil	g	633.6044	Metolachlor	Soil	mg	766.2906
Antimony	Soil	μg	45.41375	Metribuzin	Soil	mg	16.8899
Arsenic	Soil	mg	251.9337	Molybdenum	Soil	mg	2.515795
Atrazine	Soil	μg	739.936	Napropamide	Soil	mg	1.104975
Barium	Soil	g	310.5479	Nickel	Soil	mg	655.1712
Bentazone	Soil	mg	6.968236	Oils, biogenic	Soil	g	77.72302
Boron	Soil	g	9.883695	Oils, unspecified	Soil	kg	58.09093
Cadmium	Soil	mg	79.80806	Orbencarb	Soil	mg	91.14547
Calcium	Soil	kg	2.629291	Phosphorus	Soil	g	35.69712
Carbetamide	Soil	mg	2.8307	Pirimicarb	Soil	μg	660.5307
Carbon	Soil	kg	1.903967	Potassium	Soil	g	243.1977
Chloride	Soil	kg	8.995306	Silicon	Soil	g	106.0101
Chlorothalonil	Soil	mg	369.1128	Silver	Soil	mg	1.828347
Chromium	Soil	g	3.946349	Sodium	Soil	kg	1.260997
Chromium VI	Soil	g	20.70349	Strontium	Soil	g	6.280828
Cobalt	Soil	mg	9.817182	Sulfur	Soil	g	379.4808
Copper	Soil	g	14.32225	Tebutam	Soil	mg	2.61864
Cypermethrin	Soil	μg	72.05045	Teflubenzuron	Soil	mg	1.124744
Dinoseb	Soil	mg	100.3234	Tin	Soil	mg	3.286072
Fenpiclonil	Soil	mg	14.99444	Titanium	Soil	mg	653.9978
Fluoride	Soil	g	45.07049	Vanadium	Soil	mg	18.7195
Glyphosate	Soil	g	1.283573	Zinc	Soil	g	67.63829

•

A.5 EX-SITU S/S

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Acenaphthene	Air	μg	26.77245	Antimony-124	Air	mBq	28.96539
Acenaphthene	Water	mg	11.57135	Antimony-124	Water	Bq	801.7279
Acenaphthylene	Water	μg	723.6745	Antimony-125	Water	Bq	740.2146
Acetaldehyde	Air	g	6.694974	AOX, Adsorbable		-	
Acetic acid	Air	g	47.19056	Organic Halogen as			
Acetic acid	Water	g	2.325055	Cl	Water	g	1.257423
Acetone	Air	g	8.983961	Argon-41	Air	Bq	121064
Acidity, unspecified	Water	g	13.57561	Arsenic	Air	g	41.42345
Aclonifen	Soil	mg	13.68241	Arsenic	Soil	mg	251.9303
Acrolein	Air	g	1.541223	Arsenic, ion	Water	g	24.78902
Actinides,		-		Atrazine	Soil	μg	739.9357
radioactive,				Barite	Water	kg	3.217659
unspecified	Air	mBq	16.38458	Barite, 15% in crude		U	
Actinides,		-		ore, in ground	Raw	kg	102.838
radioactive,				Barium	Air	g	2.254312
unspecified	Water	Bq	2532.697	Barium	Water	kg	1.929593
Aerosols,		-		Barium	Soil	g	310.5437
radioactive,				Barium-140	Air	Bq	19.66275
unspecified	Air	Bq	281.5785	Barium-140	Water	Bq	51.15478
Aldehydes,		-		Basalt, in ground	Raw	kg	109.4332
unspecified	Air	kg	1746.691	Bauxite, in ground	Raw	kg	1.4088
Aluminium, 24% in		÷		Bentazone	Soil	mg	6.968231
bauxite, 11% in				Benzaldehyde	Air	mg	22.29806
crude ore, in ground	Raw	kg	105.9293	Benzene	Air	kg	1.571864
Aluminum	Air	kg	14.42864	Benzene	Water	g	143.6133
Aluminum	Water	kg	19.21552	Benzene, ethyl-	Air	g	61.68888
Aluminum	Soil	g	633.5959	Benzene, ethyl-	Water	g	44.65300
Ammonia	Air	kg	40.63099	Benzene, hexachloro-	Air	mg	9.919099
Ammonia	Water	kg	4.223088	Benzene,		0	
Ammonium				pentachloro-	Air	mg	2.49632
carbonate	Air	mg	28.06862	Benzo(a)pyrene	Air	mg	692.662
Ammonium, ion	Water	g	316.018	Beryllium	Air	g	4.405689
Anhydrite, in ground	Raw	g	1.699136	Beryllium	Water	g	1.45582
Antimony	Air	g	13.91693	BOD5, Biological		0	
Antimony	Water	g	9.795383	Oxygen Demand	Water	kg	264.927
Antimony	Soil	μg	45.41374	Borax, in ground	Raw	g	1.50838

Table A.5 Environmental interventions – Ex-situ S/S

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Boron	Soil	g	9.883606	Chloride	Water	kg	2237.1
Bromate	Water	g	4.675633	Chlorinated solvents,		-	
Bromine	Air	g	9.415162	unspecified	Soil	kg	8.99526
Butadiene		-		-	Compart	Unit	Total
Butane	Air	μg	7.303205	Chlorine	-ment		
Butene	Air	kg	2.384735	Chloroform	Water	g	41.0604
Butene	Air	g	52.94021	Chloroform	Air	mg	36.3166
Cadmium	Water	mg	8.016166	Chlorothalonil	Water	ng	166.926
Cadmium	Air	g	45.41995	Chromate	Soil	mg	369.112
Cadmium, ion	Soil	mg	79.80799	Chromium	Water	g	29.3459
Calcite, in ground	Water	g	400.8011	Chromium	Air	g	99.3701
Calcium	Raw	kg	1081041	Chromium	Water	ğ	389.591
Calcium	Air	g	39.19063	Chromium-51	Soil	g	3.94630
Calcium, ion	Soil	kg	2.629257	Chromium-51	Air	mBq	305.449
Carbetamide	Water	kg	136.5433	Chromium VI	Water	Bq	3814.91
Carbon	Soil	mg	2.830698	Chromium VI	Air	g	2.23625
Carbon-14	Soil	kg	1.903941	Chromium VI	Water	g	197.383
Carbon dioxide	Air	Βq	2100291	Chromium, 25.5 in		U	
Carbon dioxide,		-		chromite, 11.6% in			
biogenic	Air	kg	12950.94	crude ore, in ground	Soil	g	20.7034
Carbon dioxide,		-		Chromium, ion	Raw	kg	26.6333
fossil	Air	kg	17134.59	Chrysotile, in ground	Water	g	10.3582
Carbon dioxide, in		2		Cinnabar, in ground	Raw	mg	884.364
air	Air	ton	8422.051	Clay, bentonite, in		0	
Carbon disulfide	Raw	kg	2125.004	ground	Raw	mg	81.1826
Carbon monoxide	Air	g	227.0936	Clay, unspecified, in		0	
Carbon monoxide,		U		ground	Raw	kg	400021
biogenic	Air	kg	63982.72	Coal, 26.4 MJ per kg,		8	
Carbon monoxide,		U		in ground	Raw	kg	406731
fossil	Air	kg	2.864641	Coal, 29.3 MJ per kg,		0	
Carbonate	Air	kg	669.4014	in ground	Raw	kg	41502.3
Carboxylic acids,		Ũ		Coal, brown, in		0	
unspecified	Water	g	120.1278	ground	Raw	kg	1.19748
Cerium-141	Water	kg	7.375626	Coal, hard,		0	
Cerium-141	Air	Βq	4.766695	unspecified, in			
Cerium-144	Water	Bq	20.45252	ground	Raw	kg	5205.93
Cesium	Water	Bq	6.226415	Cobalt	Raw	kg	53545.6
Cesium-134	Water	g	1.860346	Cobalt	Air	g	39.7103
Cesium-134	Air	mBq	228.294	Cobalt	Water	g	100.598
Cesium-136	Water	Bq	301.3716	Cobalt-57	Soil	s mg	9.81716
Cesium-137	Water	Bq	3.629922	Cobalt-58	Water	Bq	115.22
Cesium-137	Air	Bq	4.046911	Cobalt-58	Air	mBq	425.350
www.waaa aw /		-				-	
Chlorate	Water	Bq	296681	Cobalt-60	Water	Bq	16879.8

.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
COD, Chemical				Energy, solar	Raw	MJ	265.4485
Oxygen Demand	Raw	mg	193.2256	Ethane	Air	kg	1.121864
Copper	Water	kg	565.1667	Ethane, 1,1,1,2-			
Copper, 0.99% in				tetrafluoro-, HFC-			
sulfide, Cu 0.36%				134a	Air	g	7.700267
and Mo 8.2E-3% in				Ethane, 1,2-dichloro-	Air	g	2.298151
crude ore, in ground	Raw	kg	1.285285	Ethane, 1,2-dichloro-	Water	mg	156.2159
Copper, 1.18% in				Ethane, 1,2-dichloro-			
sulfide, Cu 0.39%				1,1,2,2-tetrafluoro-,			
and Mo 8.2E-3% in				CFC-114	Air	mg	552.9014
crude ore, in ground	Raw	kg	7.124318	Ethane, hexafluoro-,		-	
Copper, 1.42% in				HFC-116	Air	mg	704.4158
sulfide, Cu 0.81%				Ethanol	Air	g	12.48995
and Mo 8.2E-3% in				Ethene	Air	g	182.5698
crude ore, in ground	Raw	kg	1.887254	Ethene	Water	g	4.56665
Copper, 2.19% in		Ũ		Ethene, chloro-	Air	g	4.746743
sulfide, Cu 1.83%				Ethene, chloro-	Water	mg	104.2789
and Mo 8.2E-3% in				Ethene, tetrachloro-	Air	g	1.460897
crude ore, in ground	Raw	kg	9.373912	Ethene, trichloro-	Air	g	1.400417
Copper, ion	Water	g	357.4099	Ethylene diamine	Air	μg	96.80503
Cumene	Air	g	14.42066	Ethylene diamine	Water	μg	234.6789
Cumene	Water	g	34.65263	Ethylene oxide	Air	g	2.812336
Cyanide	Air	g	2.411472	Ethylene oxide	Water	mg	3.096061
Cyanide	Water	g	110.9148	Ethyne	Air	g	4.039766
Cypermethrin	Soil	μg	72.05039	Feldspar, in ground	Raw	mg	17.49542
Diatomite, in ground	Raw	mg	5.576355	Fenpiclonil	Soil	mg	14.99443
Dichromate	Water	mg	539.9518	Fluoride	Water	g	620.7838
Dinitrogen monoxide	Air	kg	5.681665	Fluoride	Soil	g	45.07005
Dinoseb	Soil	mg	100.3233	Fluorine	Air	g	1.453593
Dioxins, measured as		0		Fluorine, 4.5% in		0	111000000
2,3,7,8-				apatite, 1% in crude			
tetrachlorodibenzo-p-				ore, in ground	Raw	g	74.64517
dioxin	Air	μg	893.4667	Fluorine, 4.5% in		8	/ 110 10 17
DOC, Dissolved		10		apatite, 3% in crude			
Organic Carbon	Water	kg	81.32314	ore, in ground	Raw	g	33.75917
Dolomite, in ground	Raw	kg	2.216121	Fluorspar, 92%, in	1	8	55175717
Energy, from hydro		~~0		ground	Raw	kg	2.995392
power	Raw	GJ	3.807802	Fluosilicic acid	Air	mg	823.3776
Energy, gross			2.20,000	Fluosilicic acid	Water	g	1.481915
calorific value, in				Formaldehyde	Air	s kg	47.79536
biomass	Raw	MJ	23753.88	Formaldehyde	Water	g	2.579752
Energy, kinetic, flow,		1 · 1V		Gas, mine, off-gas,	11 0001	ъ	2.517134
in wind	Raw	MJ	4001.433	process, coal			
Energy, potential	Raw	MJ	251230.4	mining/m3	Raw	m3	849.8613
Eller 57, Potential	12011	1113	<i>23123</i> 0,7	mming m5	12014	1115	077.0013

,

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Granite, in ground	Raw	g	5.462794	Iodine-129	Air	Bq	1559.27
Gravel, in ground	Raw	kg	20601.79	Iodine-131	Air	Βq	44296.8
Gypsum, in ground	Raw	g	9.313789	Iodine-131	Water	Bq	193.498
Heat, waste	Air	мJ	4562373	Iodine-133	Air	Bq	23.5105
Heat, waste	Water	MJ	24529.35	Iodine-133	Water	Bq	32.1138
Heat, waste	Soil	MJ	2260.565	Iron	Air	g	47.0349
Helium	Air	g	289.2278	Iron	Water	kg	6.03716
Heptane	Air	g	529.3686	Iron	Soil	kg	3.47033
Hexane	Air	kg	1.177833	Iron-59	Water	Βq	8.82877
Hydrocarbons,		U		Iron ore, in ground	Raw	g	704.4
aliphatic, alkanes,				Iron, 46% in ore,		U	
cyclic	Air	mg	59.30327	25% in crude ore, in			
Hydrocarbons,		U		ground	Raw	kg	951.465
aliphatic, alkanes,				Iron, ion	Water	kg	22.2034
unspecified	Air	g	508.0451	Isocyanic acid	Air	mg	592.130
Hydrocarbons,		C		Kaolinite, 24% in		0	
aliphatic, alkanes,				crude ore, in ground	Raw	g	959.214
unspecified	Water	g	241.8449	Kerosene	Air	g	32.1959
Hydrocarbons,		U		Kieserite, 25% in		U	
aliphatic, unsaturated	Air	g	79.79579	crude ore, in ground	Raw	g	3.71446
Hydrocarbons,		U		Krypton-85	Air	Bq	392525
aliphatic, unsaturated	Water	g	22.32415	Krypton-85m	Air	Bq	288403
Hydrocarbons,		U		Krypton-87	Air	Bq	66981.8
aromatic	Air	g	99.6981	Krypton-88	Air	Bq	86359.9
Hydrocarbons,		U		Krypton-89	Air	Bq	35680.3
aromatic	Water	g	989.0485	Lanthanum-140	Air	Bq	1.68049
Hydrocarbons,		U		Lanthanum-140	Water	Βq	54.4840
chlorinated	Air	g	2.043726	Lead	Air	g	149.62
Hydrocarbons,		U		Lead	Water	g	111.868
unspecified	Air	kg	10.63644		Soil	mg	421.73
Hydrocarbons,		U		Lead-210	Air	Βq	3371.90
unspecified	Water	g	174.906	Lead-210	Water	Bq	2042.52
Hydrogen	Air	g	181.974	Lead, 5%, in sulfide,		-1	
Hydrogen	Water	g	3.522	Pb 2.97% and Zn			
Hydrogen-3, Tritium	Air	Bq	8189224	5.34% in crude ore,			
Hydrogen-3, Tritium	Water	Bq	6.72E+08	in ground	Raw	kg	9.0501
Hydrogen chloride	Air	kg	15.04155	Limestone, in ground	Raw	kg	2406.2
Hydrogen fluoride	Air	kg	1.273228	Linuron	Soil	mg	105.884
Hydrogen peroxide	Water	mg	196.0804	m-Xylene	Air	mg	451.06
Hydrogen sulfide	Air	g	92.09931	Magnesite, 60% in		0	
Hydrogen sulfide	Water	g	28.41179	crude ore, in ground	Raw	kg	383.28
Hydroxide	Water	g	1.2979	Magnesium	Air	g	29.566
Hypochlorite	Water	g	8.776549	Magnesium	Water	kg	19.123
Iodide	Water	ь g	186.6905	Magnesium	Soil	g	513.10

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Mancozeb	Soil	mg	480.5465	Metolachlor	Soil	mg	766.29
Manganese	Air	g	38.86662	Metribuzin	Soil	mg	16.88989
Manganese	Water	kg	3.400596	Mineral waste	Waste	g	493.08
Manganese	Soil	g	34.40243	Molybdenum	Air	mg	781.6325
Manganese-54	Air	mBq	156.4237	Molybdenum	Water	g	21.17762
Manganese-54	Water	Bq	1015.911	Molybdenum	Soil	mg	2.515792
Manganese, 35.7% in		-		Molybdenum-99	Water	Βq	18.78494
sedimentary deposit,				Molybdenum,		1	
14.2% in crude ore,				0.010% in sulfide,			
in ground	Raw	kg	5.517857	Mo 8.2E-3% and Cu			
Mercury	Air	g	39.96402	1.83% in crude ore,			
Mercury	Water	g	1.434173	in ground	Raw	g	174.202
Mercury	Soil	μg	448.8764	Molybdenum,		U	
Metaldehyde	Soil	μg	624.3863	0.014% in sulfide,			
Metallic ions,		. 0		Mo 8.2E-3% and Cu			
unspecified	Water	kg	53.79745	0.81% in crude ore,			
Metals, unspecified	Air	g	748.0721	in ground	Raw	g	24.7892
Methane	Air	kg	1225.683	Molybdenum,		0	
Methane, biogenic	Air	g	509.9106	0.022% in sulfide,			
Methane,		U		Mo 8.2E-3% and Cu			
bromochlorodifluoro-				0.36% in crude ore,			
, Halon 1211	Air	mg	120.9542	in ground	Raw	kg	1.93194
Methane,		U		Molybdenum,		0	
bromotrifluoro-,				0.025% in sulfide,			
Halon 1301	Air	g	1.881801	Mo 8.2E-3% and Cu			
Methane,		U		0.39% in crude ore,			
chlorodifluoro-,				in ground	Raw	g	90.9592
HCFC-22	Air	mg	621.9715	Molybdenum, 0.11%		8	, ., . , .
Methane, dichloro-,		0		in sulfide, Mo 4.1E-			
HCC-30	Air	g	6.660529	2% and Cu 0.36% in			
Methane, dichloro-,		0		crude ore, in ground	Raw	kg	3.89908
HCC-30	Water	g	15.72274	Monoethanolamine	Air	g	2.10616
Methane,		U		N-		0	
dichlorodifluoro-,				Nitrodimethylamine	Air	mg	314.969
CFC-12	Air	μg	879.633	Naphthalene	Air	g	2.09677
Methane,		10		Napropamide	Soil	s mg	1.10497
dichlorofluoro-,				Nickel	Air	g	555.494
HCFC-21	Air	ng	166.9262	Nickel	Soil	s mg	655.170
Methane, fossil	Air	kg	659.449	Nickel, 1.13% in	~ ~ 11	8	555.170
Methane,		0		sulfide, Ni 0.76%			
monochloro-, R-40	Air	ng	770.4647	and Cu 0.76% in			
Methane, tetrachloro-		0		crude ore, in ground	Raw	g	336.232
				erade ore, in Bround	T / 11 11	5	
, CFC-10	Air	g	5.84828	Nickel, ion	Water	g	493.436

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Nitrate	Air	mg	648.4777	Pd, Pd 2.0E-4%, Pt			•
Nitrate	Water	kg	1.060137	4.8E-4%, Rh 2.4E-			
Nitrite	Water	g	6.428421	5%, Ni 3.7E-2%, Cu			
Nitrogen	Water	g	247.4557	5.2E-2% in ore, in			
Nitrogen oxides	Air	kg	68434.73	ground	Raw	mg	40.3630
Nitrogen, organic		Ũ		Pd, Pd 7.3E-4%, Pt		U	
bound	Water	g	396.7063	2.5E-4%, Rh 2.0E-			
NMVOC, non-		U		5%, Ni 2.3E+0%, Cu			
methane volatile				3.2E+0% in ore, in			
organic compounds,				ground	Raw	mg	97.00412
unspecified origin	Air	kg	26450.91	Peat, in ground	Raw	g	282.102
Noble gases,		0		Pentane	Air	kg	3.08179
radioactive,				Phenol	Air	g	58.9933
unspecified	Air	Bq	1.50E+10	Phenol	Water	g	341.638
Oil, crude, 42 MJ per		-1	1.001 10	Phenol, pentachloro-	Air	s mg	223.684
kg, in ground	Raw	kg	2282370	Phosphate	Water	kg	2.1121
Oil, crude, 42.7 MJ	10011	8	2202270	Phosphorus	Air	g	1.9016
per kg, in ground	Raw	kg	3624.138	Phosphorus	Water	s g	13.0787
Oil, crude, in ground	Raw	kg	37657.95	Phosphorus	Soil	s g	35.6966
Oils, biogenic	Soil	g	77.72298	Phosphorus, 18% in	5011	8	55.0900
Oils, unspecified	Water	s kg	308.9632	apatite, 12% in crude			
Oils, unspecified	Soil	kg	58.08962	ore, in ground	Raw	a	155.342
Olivine, in ground	Raw		622.8242	Phosphorus, 18% in	Naw	g	155.542
Orbencarb	Soil	mg mg	91.14542	apatite, 4% in crude			
Organic substances,	5011	mg	71.14J4 2	-	Dow	~	200 500
unspecified	Air	lea	33966.23	ore, in ground Pirimicarb	Raw	g	298.580
-	All	kg	55900.25		Soil	μg	660.530
Organic substances,	Watan	1	25 51745	Platinum	Air	μg	263.852
unspecified	Water	kg	25.51745	Plutonium-238	Air	μBq	212.710
Ozone	Air	g	492.6795	Plutonium-alpha	Air	μBq	487.611
PAH, polycyclic				Polonium-210	Air	Bq	5508.63
aromatic	. •		12 05514	Polonium-210	Water	Вq	2494.87
hydrocarbons	Air	g	13.85514	Polychlorinated			
PAH, polycyclic				biphenyls	Air	mg	15.278
aromatic	11 7 /		11 45010	Potassium	Air	g	98.4023
hydrocarbons	Water	g	11.47313	Potassium	Soil	g	243.194
Paraffins	Air	μg	470.7666	Potassium-40	Air	Bq	463.453
Paraffins	Water	mg	1.366211	Potassium-40	Water	Bq	1588.55
Particulates, < 10 um	Air	kg	8932.057	Potassium, ion	Water	kg	10.7944
Particulates, < 2.5				Propanal	Air	mg	22.2980
um	Air	kg	54.67426	Propane	Air	kg	2.43922
Particulates, > 10 um	Air	kg	196.0131	Propene	Air	g	117.630
Particulates, > 2.5				Propene	Water	g	13.4924
um, and < 10um	Air	kg	69.23601	Propionic acid	Air	g	1.10713
Particulates, SPM	Air	kg	1.0566	Propylene oxide	Air	mg	374.843

.

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Protactinium-234	Air	Bq	268.7632	Selenium	Air	g	25.9192
Protactinium-234	Water	Βq	4977.096	Selenium	Water	g	4.69368
Pt, Pt 2.5E-4%, Pd		•		Shale, in ground	Raw	g	4.80921
7.3E-4%, Rh 2.0E-				Silicon	Air	g	124.12
5%, Ni 2.3E+0%, Cu				Silicon	Water	kg	180.969
3.2E+0% in ore, in				Silicon	Soil	g	106.009
ground	Raw	mg	1.254956	Silicon tetrafluoride	Air	mg	2.25739
Pt, Pt 4.8E-4%, Pd		U		Silver	Air	μg	54.5893
2.0E-4%, Rh 2.4E-				Silver	Soil	mg	1.82834
5%, Ni 3.7E-2%, Cu				Silver-110	Air	mBq	40.4329
5.2E-2% in ore, in				Silver-110	Water	Bq	14603.2
ground	Raw	mg	4.498833	Silver, 0.01% in		- 1	
Radioactive species,		U		crude ore, in ground	Raw	mg	125.706
alpha emitters	Water	Bq	3.5017	Silver, ion	Water	g	2.08435
Radioactive species,				Slags	Waste	g	176.1
Nuclides, unspecified	Water	Bq	1518580	Sodium	Air	g	46.7879
Radioactive species,		1		Sodium	Soil	kg	1.26098
other beta emitters	Air	Bq	8950.189	Sodium-24	Water	Bq	142.131
Radioactive species,		1		Sodium chlorate	Air	mg	48.5377
unspecified	Air	kBq	2248181	Sodium chloride, in		8	1010077
Radium-224	Water	Bq	93017.28	ground	Raw	kg	81.3332
Radium-226	Air	Bq	9508.447	Sodium dichromate	Air	mg	146.107
Radium-226	Water	Bq	3246281	Sodium formate	Air	mg	5.05504
Radium-228	Air	Bq	553.67	Sodium formate	Water	mg	12.1444
Radium-228	Water	Bq	186034.6	Sodium sulphate,			12.1
Radon-220	Air	Bq	6.513266	various forms, in			
Radon-222	Air	Bq	3.57E+10	ground	Raw	g	593.473
Rh, Rh 2.0E-5%, Pt		1		Sodium, ion	Water	kg	584.161
2.5E-4%, Pd 7.3E-				Solids, inorganic	Water	kg	19.5374
4%, Ni 2.3E+0%, Cu				Solved solids	Water	kg	10438.3
3.2E+0% in ore, in				Soot	Air	g	840
ground	Raw	μg	920.1367	Stibnite, in ground	Raw	μg	579.503
Rh, Rh 2.4E-5%, Pt		F-8		Strontium	Air	ре g	2.38990
4.8E-4%, Pd 2.0E-				Strontium	Water	s kg	11.5586
4%, Ni 3.7E-2%, Cu				Strontium	Soil	g	6.28074
5.2E-2% in ore, in				Strontium-89	Water	Bq	318.654
ground	Raw	mg	2.881986	Strontium-90	Water	Bq	121955
Rhenium, in crude		0		Styrene	Air	mg	2.84417
ore, in ground	Raw	mg	3.616401	Sulfate	Air	g	239.107
Rubidium	Water	g	18.79582	Sulfate	Water	5 kg	440.981
Ruthenium-103	Air	mBq	4.079699	Sulfide	Water	g	3.69414
Ruthenium-103	Water	Bq	3.963791	Sulfite	Water	в g	24.6712
Rutile, in ground	Raw	μg	998.2721	Sulfur	Water	Б g	164.093
Scandium	Air	mg mg	9.738048	Sulfur	Soil	в g	379.475

Substance	Compart -ment	Unit	Total	Substance	Compart -ment	Unit	Total
Sulfur hexafluoride	Air	g	5.20434	Tungsten	Water	g	3.091619
Sulfur oxides	Air	kg	18548.89	Ulexite, in ground	Raw	g	1.95801
Sulfur, in ground	Raw	g	85.36548	Uranium	Air	mg	17.25442
Sulfuric acid	Water	kg	2.122867	Uranium-234	Air	Βq	3139.73′
Suspended solids,		-		Uranium-234	Water	Bq	5972.510
unspecified	Water	kg	255.7615	Uranium-235	Air	Bq	152.2992
Sylvite, 25 % in		•		Uranium-235	Water	Bq	9854.65
sylvinite, in ground	Raw	g	893.0491	Uranium-238	Air	Βq	3456.32
t-Butyl methyl ether	Air	g	20.54969	Uranium-238	Water	Bq	16050.7
t-Butyl methyl ether	Water	g	2.072111	Uranium alpha	Air	Bq	14668.7
Talc, in ground	Raw	g	100.5843	Uranium alpha	Water	Вq	286737.
Tebutam	Soil	mg	2.618638	Uranium, 2291 GJ		1	
Technetium-99m	Water	Βq	431.7227	per kg, in ground	Raw	g	168.861
Teflubenzuron	Soil	mg	1.124743	Uranium, in ground	Raw	kg	1.09848
Tellurium-123m	Water	Βq	47.61204	Vanadium	Air	g	80.8379
Tellurium-132	Water	Bq	1.087685	Vanadium	Soil	mg	18.7194
Thallium	Air	g	11.75884	Vanadium, ion	Water	g	95.2165
Thallium	Water	mg	238.8486	Vermiculite, in		0	
Thorium	Air	mg	13.90648	ground	Raw	g	64.3008
Thorium-228	Air	Βq	106.0934	VOC, volatile		0	0
Thorium-228	Water	Bq	372079.7	organic compounds	Air	kg	49.8
Thorium-230	Air	Bq	999.805	VOC, volatile		8	1210
Thorium-230	Water	Bq	679076.2	organic compounds,			
Thorium-232	Air	Bq	133.222	unspecified origin	Water	g	663.004
Thorium-232	Water	Bq	276.7945	Volume occupied,		8	002.001
Thorium-234	Air	Bq	268.8193	final repository for			
Thorium-234	Water	Bq	4977.696	low-active			
Tin	Air	g	9.781929	radioactive waste	Raw	1	2.26490
Tin	Soil	mg	3.28607	Volume occupied,		•	2.20170
Tin, 79% in		0		final repository for			
cassiterite, 0.1% in				radioactive waste	Raw	cm3	505.726
crude ore, in ground	Raw	g	216.9115	Volume occupied,		Unio	505.720
Tin, ion	Water	g	21.18417	reservoir	Raw	m3y	3357.71
TiO2, 45-60% in		8	21110117	Volume occupied,	itun	iii y	5557.71
Ilmenite, in ground	Raw	kg	2.398197	underground deposit	Raw	cm3	975.286
Titanium	Air	g	2.83648	Waste, solid	Waste	kg	40969.5
Titanium	Soil	mg	653.9969	water	Air	kg	22.0472
Titanium, ion	Water	g	874.3483	Water, cooling,	7 111	кg	22.0472
TOC, Total Organic	,, utv1	Ð	07 1.700	unspecified natural			
Carbon	Water	kg	81.64139	origin/m3	Raw	m3	666.568
Toluene	Air	kg	1.608608	Water, lake	Raw	m3	67.4917
Toluene	Water	-	228.4336	Water, river	Raw	m3	
Tributyltin	matci	g	220.4330	Water, salt, ocean	Raw		590.623
compounds	Water	σ	1.998047	Water, salt, sole	Raw	m3	47.3509
compounds	vv atel	g	1.99004/	water, San, Sole	Naw	m3	20.5609

•

Substance	Compart	Unit	Total	Substance	Compart	Unit	Total
	-ment				-ment		
Water, unspecified				Xenon-133m	Air	Bq	15035.54
natural origin/kg	Raw	kg	193.71	Xenon-135	Air	Bq	5049175
Water, unspecified				Xylene	Air	kg	1.385372
natural origin/m3	Raw	m3	1632.154	Xylene	Water	g	183.0967
Water, well, in				Zinc	Air	g	172.9168
ground	Raw	m3	254.4984	Zinc	Soil	g	67.63812
Wood and wood				Zinc-65	Air	mBq	781.0616
waste, 9.5 MJ per kg	Raw	kg	1633.398	Zinc-65	Water	Bq	1926.986
Wood, hard, standing	Raw	1	563.0548	Zinc 9%, in sulfide,			
Wood, soft, standing	Raw	m3	1.789137	Zn 5.34% and Pb			
Wood, unspecified,				2.97% in crude ore,			
standing/m3	Raw	cm3	41.3307	in ground	Raw	kg	10.07699
Xenon-131m	Air	Bq	347444.2	Zinc, ion	Water	g	971.9011
Xenon-133	Air	Bq	12603688	Zirconium	Air	mg	18.9269
Xenon-137	Air	Bq	97675.15	Zirconium-95	Air	mBq	763.458
		•		Zirconium-95	Water	Bq	22.31504

ł

APPENDIX B

CONTRIBUTION ANALYSIS

Processes by			Chemical	In – situ	Ex – situ
Impact-category	MNA	Bioventing	Oxidation	S/S	S/S
ADP					
Passenger car, operation	5.92E-10	2.46E-10	_	-	
Coal at mine	-	3.99E-10	2.46E-10	4.45E-09	4.45E-09
Natural gas, at production	-	1.12E-10	-	-	-
Residual Fuel Oil (RFO)	-	1.30E-11	_	-	_
Hydrogen, cracking	-	_	1.26E-10	_	-
Natural gas, at production	-	-	3.10E-10	_	-
Petrol	_	-	1.30E-10	3.94E-10	_
Crude lignite at mine	-	-	3.08E-11	-	_
Crude oil, at production	-	_	1.01E-10	4.77E-09	_
Distillate Fuel Oil (DFO)	-	-	2.44E-11	1.61E-08	3.19E-0 [°]
GWP					
Passenger car, operation	3.63E-10	1.60E-10	8.51E-11	_	_
Coal into electricity boilers	-	2.22E-10	6.62E-11	-	_
Coal into industrial boilers	_	1.38E-11	-	-	_
Nat. gas into electr. boilers	-	1.97E-11	_	-	
Nat. gas into industr.					
poilers	_	1.85E-11	9.74E-10	-	_
RFO into electricity boilers	-	6.84E-12	-	_	-
Fractor-trailer (diesel)	-	-	1.27E-11	5.86E-09	1.63E-07
Heavy fuel oil, burned in			_ ·		10010
ndustrial furnace	-	-	2.50E-11	-	-
Hydrogen, cracking,	-	-	1.86E-11	_	-
Pig iron, at plant	-	_	2.16E-11	-	-
Sinter, iron, at plant	-	-	1.33E-11	-	-
Clinker, at plant	-	-	-	1.86E-08	1.86E-08
Diesel equipment	-	_	-	2.53E-09	3.80E-09
Distillate Fuel Oil (DFO)	_	-	_	9.94E-10	1.97E-08

Table B.1 Contribution of processes (Normalized values)

ODP Chlorin

Chlorine gas, diaphragm			
cell	-	6.20E-14	-

-

••

Processes by Impact-category	MNA	Bioventing	Chemical Oxidation	In – situ S/S	Ex – situ S/S
Coal into electricity boilers		3.62E-13	_	_	_
RFO into electricity boilers	-	1.64E-13	_	_	_
Crude oil production	-	1.0412-15	1.70E-12	4.39E-11	3.85E-11
Dichloromethane, at plant	-	_	1.03E-12	-	-
Tetrachloroethylene, at	-	-	1.05L-15		
plant			2.31E-13	_	_
Transport, natural gas, long	-	-	2.511-15		
distance		_	9.08E-13	_	_
	-	- 1.45E-13	1.44E-13	_	_
Chlorine gas, mercury cell	-	1.451-15	1.4412-13	-	
НТР					
Passenger car, operation	1.97E-12	8.20E-13	-	3.79E-11	3.79E-11
Coal into electricity boilers	-	9.43E-12	-	-	-
Coal into industrial boilers	-	1.73E-12	_	_	_
Copper, primary, at					
refinery	-	1.96E-13	-	3.35E-11	-
Diesel, burned in building				0.000 11	
machine	_	2.54E-13	_	-	9.82E-11
Ethyl benzene, at plant	-	3.27E-13	_	-	-
RFO into electricity boilers	-	8.00E-13	-	_	-
Anthraquinone, at plant	_	-	5.68E-10	_	-
Ferrochromium, high-					
carbon, 68% Cr, at plant	_	_	1.89E-10	1.09E-10	1.09E-10
Ferromanganese, 74.5%			1.072 10	1.072 10	1.072 10
Mn, at regional storage	_	_	9.60E-12	-	-
Ferronickel, 25% Ni, at			9.00E 12		
plant	-	_	1.18E-11	-	_
Heavy fuel oil, burned in			1.101 11		
industrial furnace	_	_	1.18E-11	_	_
Sinter, iron, at plant	_	_	1.17E-11	_	-
Discharge, produced water,			1.1712 11		
onshore	_	_	_	5.49E-11	5.49E-11
Tractor-trailer (diesel)	_	_	_	5.15E-11	1.43E-09
Diesel equipment	_	_	_	4.76E-11	7.13E-11
Clinker, at plant	_	_	_	2.73E-10	2.73E-10
Distillate Fuel Oil (DFO)	-	_	-	2.75E-10 3.64E-11	2.73E-10 7.24E-10
	-	-	_	2.041/-11	7. 2 7 1 2 ⁻ 10

FAETP

Coal into electricity boilers Coal into industrial boilers	-	1.06E-12 2.91E-13	-	-	-
	-		-	-	-

Processes by Impact-category	MNA	Bioventing	Chemical Oxidation	In – situ S/S	Ex – situ S/S
		Dioventing	Oxidation	0/0	5/5
Discharge, produced water,					
onshore	_	6.29E-13	-	2.75E-10	2.75E-10
Disposal, average		0.272 15			2.7012 10
incineration residue, to					
residual material landfill	_	3.59E-13	_	-	_
Disposal, coal ash, to					
residual material landfill	_	2.41E-12	_	1.07E-10	1.07E-10
Disposal, municipal solid					
waste, to municipal					
incineration	-	4.43E-13	7.36E-10	1.71E-10	1.71E-10
Disposal, nickel smelter					
slag, to residual material					
landfill	-	4.10E-12	1.72E-09	6.58E-10	6.58E-10
Disposal, red-mud from					
bauxite digestion, to					
residual material landfill	-	2.49E-13	1.35E-10	6.52E-11	6.52E-11
Disposal, slag, to residual					
material landfill	-	7.82E-13	5.41E-10	1.84E-10	-
Disposal, sludge from steel					
rolling, to residual material					
landfill	-	3.28E-13	1.68E-10	8.08E-11	8.08E-11
Disposal, steel, to					
municipal incineration	-	3.22E-13		-	-
Iron ore, 65% Fe, at					
beneficiation	-	4.22E-13	2.47E-10	-	8.36E-11
Natural gas	-	1.43E-12		8.36E-11	-
Coal tailings in landfill U	-	-	4.83E-11		-
Clinker, at plant	-	-	-	4.71E-11	4.71E-11
Magnesium oxide, at plant	-	-	-	3.94E-11	3.94E-11
Distillate Fuel Oil (DFO)	-	-	-	3.11E-11	6.19E-10
Heavy fuel oil, burned in					
industrial furnace	-	-	-	2.39E-11	-
Diesel equipment	-	-	-	1.29E-10	1.93E-10
MAETP		0.475.00		4 4 4 17	
Coal into electricity boilers	-	8.66E-09	1.75E-09	1.11E-08	4.95E-09
Coal tailings in landfill	-	-	4.63E-10	-	-
Disposal, lignite ash, to			C 00E 10	1 405 00	1 405 00
opencast refill	-	-	5.02E-10	1.42E-09	1.42E-09

.

Processes by Impact-category	MNA	Bioventing	Chemical Oxidation	In – situ S/S	Ex – situ S/S
Disposal, municipal solid waste, to municipal					
incineration	_	_	1.12E-09	-	-
Disposal, nickel smelter					
slag, to residual material					
landfill	-	-	5.61E-09	2.15E-09	2.15E-09
Disposal, red-mud from					
bauxite digestion, to					
residual material landfill	-	-	5.46E-10	-	-
Disposal, slag, to residual material landfill			1.93E-09		
Disposal, sludge from steel	-	-	1.93E-09	-	-
rolling, to residual material					
landfill	-	-	4.58E-10	-	-
Hard coal, burned in					
industrial furnace	-	-	2.27E-09	-	-
Heavy fuel oil, burned in					
industrial furnace	-	-	1.05E-09	7.79E-10	-
Iron ore, 65% Fe, at beneficiation			4.97E-10		
Pellets, iron, at plant	_	-	4.97E-10 1.36E-09	-	-
Sinter, iron, at plant	_	-	4.06E-10	_	-
Discharge, produced water,			1.001 10		
onshore	-	-	-	2.25E-09	2.25E-09
Clinker, at plant	-	-	-	3.44E-09	3.44E-09
Aluminum, primary,					
liquid, at plant	-	-	-	1.08E-09	-
Ammonia, steam					
reforming, liquid, at plant	-	-	-	4.70E-10	-
Pellets, iron, at plant	-	-	-	4.62E-10	-
ТЕТР					
Chlorine, gaseous, mercury					
cell, at plant	-	1.57E-12	-	-	-
Coal into electricity boilers	-	3.25E-11	-	-	-
Coal into industrial boilers	-	2.12E-12	-	-	-
Mercury, liquid, at plant	-	1.54E-12	-	-	-
Polyvinylchloride, at plant	-	7.12E-13	-	-	-
RFO into electricity boilers	-	6.44E-13	-	-	-

Processes by Impact-category	MNA	Bioventing	Chemical Oxidation	In – situ S/S	Ex – situ S/S
Transmission network,		1.26E-12		4.44E-10	4.44E-10
electricity, medium voltage Anthraquinone, at plant	-	1.20E-12	- 1.09E-10	4.44C-10	4.44E-10
Ferrochromium, 68% Cr,	_	_	1.072-10	-	-
at plant	-	_	3.32E-11	-	_
Ferronickel, 25% Ni, at					
plant	840	-	1.24E-11	-	-
Heavy fuel oil, burned in					
industrial furnace	-	-	1.04E-10	6.73E-11	6.73E-11
Sinter, iron, at plant	-	-	1.86E-11	-	-
Steel, electric, un- and low-alloyed, at plant	_	_	3.07E-10	_	_
Clinker, at plant	-	_	-	- 3.27E-09	- 3.27E-09
Diesel equipment	-	_	_	1.11E-10	1.67E-10
Distillate Fuel Oil (DFO)	-	-	-	6.83E-11	1.36E-09
Natural gas, burned in					
production flare	-	-	-	4.59E-11	-
РОСР					
Passenger car, operation	3.22E-12	4.93E-11	2.63E-11	1.89E-10	-
Coal into electricity boilers	-	3.15E-11	2.44E-12	-	-
Coal into industrial boilers	-	2.00E-12	-	-	-
Natural gas	-	1.42E-11	-	-	-
Uranium in electricity					
boilers	-	1.61E-12	-	-	-
Tractor-trailer (diesel)	-	-	1.75E-12	-	-
Hard coal, burned in industrial furnace	_	_	4.20E-12		
Heavy fuel oil, burned in	-	-	4.2012-12	-	-
industrial furnace		-	3.75E-12	2.36E-11	_
Hydrogen, cracking	-	-	1.00E-12	-	-
Sinter, iron, at plant	-	-	1.77E-11	-	-
Tractor-trailer (diesel)	-	-	-	8.07E-10	2.24E-08
Diesel equipment	-	-	-	3.72E-10	5.58E-10
Clinker, at plant	-	-	-	2.80E-10	-
Distillate Fuel Oil (DFO)	-	-	-	2.25E-10	4.46E-09
AP					
Coal into electricity boilers	-	2.71E-10	6.90E-11	-	-
Coal into industrial boilers	-	1.65E-11	-	-	-

Processes by			Chemical	In – situ	Ex – situ
Impact-category	MNA	Bioventing	Oxidation	S/S	S/S
Natural gas	-	1.00E-10	-	-	-
Passenger car, operation	1.60E-10	7.56E-11	3.41E-11	_	-
RFO into electricity boilers	-	7.61E-12	-	_	_
Heavy fuel oil, burned in					
industrial furnace	-	-	3.18E-11	-	-
Hydrogen, cracking	-	-	1.00E-11	-	-
Operation, lorry 32t	-	-	3.57E-12	-	-
Petrol I	-	-	8.34E-12	-	-
Sinter, iron, at plant	-	-	1.25E-11	-	-
Anthraquinone, at plant	-	-	5.36E-12	-	-
Blasting	-	-	9.82E-12	-	-
Tractor-trailer (diesel)		-	-	4.85E-09	1.35E-07
Diesel equipment	-	-	-	3.84E-09	5.75E-09
Clinker, at plant	-	-	-	2.82E-09	2.82E-09
Distillate Fuel Oil (DFO)	-	-	-	1.65E-09	3.28E-08
Diesel, burned in building					
machine	-	-	-	2.04E-10	-
ED					
EP Cool into alastricitas hailant		2 2017 11			
Coal into electricity boilers	-	3.39E-11	-	-	-
Coal into industrial boilers	-	2.30E-12	-	-	-
Nat. gas into electr. boilers	-	2.67E-12	-	-	-
Nat. gas into industr. boilers		2.01E-12	1.27E-12		
Passenger car, operation	- 1.50E-10	2.01E-12 4.10E-11	1.27E-12 2.04E-11	- 6.13E-11	-
Uranium in electricity	1.50E-10	4.10E-11	2.04E-11	0.13E-11	-
boilers	_	1.05E-12	_		
Blasting	_	-	- 5.85E-12	-	-
Hydrogen peroxide, 50%	-	-	5.6512-12	-	-
in H2O, at plant	_	_	4.04E-12		
Crude oil, at production		_	7.041-12	-	-
onshore	_	_	1.57E-12	_	_
Diesel, burned in building		-	1.5/12-12	-	-
machine	_	_	1.43E-12	1.22E-10	_
Disposal, basic oxygen			1,7217-14	1.221-10	-
furnace wastes, to residual					
material landfill	_	-	1.36E-11	_	_
Heavy fuel oil, burned in			1.002 11		
industrial furnace 1MW,					
non-modulating/RER U	_	_	2.30E-12	-	-
Hydrogen, cracking	-	-	2.85E-12	_	_

Processes by Impact-category	MNA	Bioventing	Chemical Oxidation	In – situ S/S	Ex – situ S/S
Iron ore, 65% Fe, at					
beneficiation	-	-	4.88E-12	-	-
Operation, lorry 32t	-	-	2.15E-12	-	-
Tractor-trailer (diesel)	-	-	-	2.17E-09	6.03E-08
Diesel equipment	-	-	-	2.09E-09	3.14E-09
Clinker, at plant	-	-	-	1.01E-09	-
Distillate Fuel Oil (DFO)	-	-	-	1.30E-10	2.58E-09

REFERENCES

Afcfee [Air Force Center for Environmental Excellence] (1996). Bioventing Performance and Cost Results from Multiple Air Force Test Sites. *Technology Demonstration Final Technical Memorandum USAF*. F33615-90-D-4014.

Bardos, R.P., Mariotti, C., Marot, F. and Sullivan, T. (2001). Framework for Decision Support used in Contaminated Land Management in Europe and North America. *Land Contamination & Reclamation*, 9 (1), 149-163.

Bienat, E., Drunen Van M.A., Nijboer, M.H., Koolenbrander, J.G.M., Oks, J.P., Schutte, A.R., (1997). *REC: a methodology for comparing soil remediation alternatives on the basis of risk reduction, environmental merit and costs. Nobis report 95-10-3.* Gouda, Netherlands.

Blanc, A., Métivier-Pignon, H., Gourdon, R., Rousseaux, P. (2003). Life cycle assessment as a tool for controlling the development of technical activities: application to the remediation of a site contaminated by sulfur. *Advances in Environmental Research* 8, 613-627.

Brundtland Commission, Our Common Future, (1987). Oxford University Press.

Cleven, R.F.M.J., Janus, J.A., Annema, J.A., Slooff, W., (1993). *Integrated criteria document zinc*. National Institute of Public Health and Environmental Protection. Report, 710401028. Bilthoven, Netherlands.

Gloria, T.P, Russell, A.J, Atherton, J., Baker, S.R., Cook, M. (2006). Ecological Toxicity Methods and Metals: An examination of two case studies. *International Journal of Life Cycle Assessment*, 11 (1), 26-33.

Cadotte, M., Deschênes, L., Samson, R. (2007). Selection of a Remediation Scenario for a Diesel-Contaminated Site Using LCA, *International Journal of Life Cycle Assessment*, 12 (4), 239-251.

Consoli, F., Allen, D., Boustead, I., Fava, J., Franklin, W., Jensen, A.A., de Oude, N., Parrish, R., Perriman, R., Postlethwaite, D., Quay, B., Séguin, J., Vigon, B. (eds.) (1993). *Guidelines for lifecycle assessment: A "Code of Practice"*. SETAC-Europe, Brussels, Belgium.

Cohen, Joel. E. (1995). *How Many People Can the Earth Support?* New York: W. W. Norton & Company.

Diamond, M.L., Page, C.A., Campbell, M., McKenna, S., Lall, R. (1999). Life-cycle framework for assessment of site remediation options: method and generic survey. *Environmental Toxicology Chemistry*, *18*, 788-800.

Doka, G. (2003). Life Cycle Inventories of Waste Treatment Services. Final report ecoinvent 2000, 13. Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland.

Drunen van, M.A., Beinat, E., Nijboer, M.H., Hasselhoff, A., Veld, in 't M., Schütte, A.R. (2000). De RMK-methodiek voor het beoordelen van bodemsaneringsvarianten - Een methode gebaseerd op Risicoreductie, Milieuverdienste en Kosten - RMK fas 3.

Early, T., Borden, B., Heitkamp, M., Looney, B.B., Major, D., Waugh, J., Wein, G., Wiedemeier, T., Vangelas, K.M., Adams, K.M., Sink, C.H. (2006). *Enhanced Attenuation: A Reference Guide on Approaches to increase the Natural Treatment Capacity of a System.* Westinghouse, Savannah river Company, Aiken, S.C. <u>http://www.clu-in.org/download/contaminantfocus/tce/DOE_EA_doc.pdf.</u> Accessed on 05/08.

Ecoinvent database (2000). version 1.3. <u>http://www.pre.nl/</u>. Accessed on 04/07.

Ecoinvent Centre (2004). ecoinvent data v1.1, Final reports ecoinvent 2000 No. 1-15. CD-ROM ISBN 3-905594-38-2, Swiss Centre for Life Cycle Inventories, Dübendorf, Switzerland.

Fenton, H.J.H. (1894). Oxidation of tartaric acid in presence of iron. *Journal of Chemical Society*, 65, 899-910.

Finnveden, G. and Nielsen, P.H. (1999). Long-Term Emissions from Landfills Should Not be Disregarded. *International Journal of Life Cycle Assessment*, 4 (3), 125-126.

Franklin Associates (1998). Franklin US LCI database. <u>http://www.pre.nl/</u> download/manuals/DatabaseManualFranklinUS98.pdf. Accessed on 04/07.

Frischknecht, R., (Ed.) Jungbluth, N., (Ed.), Althaus, H.J., Bauer, C., Doka, G., Dones, R., Hischier, R., Hellweg, S., Humbert, S., Köllner, T., Loerincik, Y., Margni, M., Nemecek, T. (2007). *Implementation of Life Cycle Impact Assessment Methods Data* v2.0. ecoinvent report No. 3 Dübendorf, Switzerland.

Guinée, J.B. (Ed.), Gorrée, M., Heijungs, R., Huppes, G., Kleijn, K., de Koning, A., van Oers, L., Sleeswijk, A.W., Suh, S., Udo de Haes, H.A., de Bruijn, J.A., van Duin, R Huijbregts, M.AJ., Lindeijer, E., Roorda, A.A.H., van der Ven, B.L. & Weidema, B.P. (2002). Handbook on Life Cycle Assessment: Operational Guide to the ISO Standards. Part 1: LCA in perspective; Part 2a: Guide; Part 2b: Operational annex; Part 3: Scientific Background. Kluwer Academic Publishers. Dordrecht, Netherlands.

Guinée, J.B., Heijungs, R., Van Oers, L.F.C.M., Van de Meent, D., Vermeire, T., Rikken, M. (1996). Inclusion of fate in LCA characterization of toxic releases. Applying USES 1.0. *International Journal of Life Cycle Assessment*, *1*, 133-138.

Guinée, J.B., Heijungs, R. (1993). A proposal for the classification of toxic substances within the framework of Life Cycle Assessment of Products. *Chemisphere*, 26 (10), 1925-1944.

Guinée, J.B., Van den Bergh, J.C.M., Boelens, J., Fraanje, P.J., Huppes, G., Kandelaars, P.P.A.A.H, Lexmond, Th.M., Moolendenaar, S.W., Olsthoorn, A.A., Udo de Haes, H.A., Verkuijlen, E., Van der Voet, E., (1999). Evaluation of risks of metal flows and accumulation in economy and environment. *Ecology and Environment*, *30*, 47-65.

Hawken P.A and Lovins L.H. (1999). *Natural capitalism: Creating the next industrial revolution*. Rocky Mountain Institute.

Hellweg, S., Hofstetter, T. and Hungerbühler, K. (2003). Discounting and the Environment: Should Current Impacts be Weighted Differently than Impacts Harming Future Generations? *International Journal of Life Cycle Assessment*, 8 (1), 8-18.

Heijungs, R., de Konung, A., Ligthart, T., Korenromp, R. (2004). Improvement of LCA Characterization factors and LCA practice for metals. *TNO-report* R 2004/347, 67 pp Available at: http://www.leidenuniv.nl/interfac/cml/ssp/projects/finalreportmetals.pdf

Heijungs, R., and Kleijn, R. (2005). Numerical approaches towards life cycle interpretation: The case of the ecoinvent'96 database. *International Journal of Life Cycle Assessment*, 10 (2), 103-112.

Hertwich, E.G., Pease, W.S., McKone, E.E., (1998). Evaluating toxic impact assessment methods: what works best? *Environmental Science & Technology, 32*, A138-A144.

Huijbregts, M.A.J., Guinée, J.B., and Reijnders, L. (2001). Priority assessment of toxic substances in life cycle assessment. Part III: Export of potential impact over time and space. *Chemosphere*, 44, 59-65.

Huijbregts, M. A. J., Schöpp, W., Verkuijlen, E., Heijungs, R., Reijnders, L. (2000a). Spatially explicit characterization of acidifying and eutrophying air pollution in life-cycle assessment. *Journal of Industrial Ecology*, *4*, 75-92.

Huijbregts, M.A.J., Thissen, U., Guinée, J.B., Jager, R., Kalf, D., van de Meent, D., Ragas, A.M.J., Sleeswijk, A.W., Reijnders, L. (2000b). Priority assessment of toxic substances in life cycle assessment. Part I: Calculation of toxicity potentials for 181 substances with nested multi-media fate, exposure and effects model USES-LCA. *Chemosphere, 4*, 119-151.

Hunkeler, D. (2006). Societal LCA Methodology and Case Study. International Journal of Life Cycle Assessment, 11 (6), 371-382.

ISO [International Organization for Standardization] (1997). *ISO 14040: Environmental management - Life cycle assessment - Principles and framework*. International Organization for Standardization, Geneva.

ISO [International Organization for Standardization] (2000a). *ISO 14042: Environmental management - Life cycle assessment - Life cycle impact assessment*. International Organization for Standardization, Geneva.

ISO [International Organization for Standardization] (2000b). *ISO 14043: Environmental management - Life cycle assessment - Life cycle impact interpretation*. International Organization for Standardization, Geneva.

ITRC [Interstate Technology & Regulatory Council] (2005). *Technical and Regulatory Guidance for In Situ Chemical Oxidation of Contaminated Soil and Groundwater, 2nd ed.* Washington, D.C.: Interstate Technology & Regulatory Council, In Situ Chemical Oxidation Team.

http://www.itrcweb.org. Accessed on 07/07.

Kean, J., Doyon, J., Vangelas, K.M., Carey, G., Wilson, K. (2005). Monitored Natural Attenuation and Enhanced Attenuation—Results of an ITRC Survey. <u>http://www.itrcweb.org/Documents/EACO_Survey_Results.pdf</u>. Accessed on 05/08.

Lindeijer, E. (1996). Normalization and Valuation. *Towards a Methodology for Life Cycle Impact Assessment*, Udo de Haes, H. A., Ed.; SETAC-Europe: Brussels, Belgium.

NJSSI (The New Jersey Sustainable State Institute) (2004). *Living With the Future in Mind: Goals and Indicators for New Jersey's Quality of Life.* 3rd edition. http://www.state.nj.us/dep/dsr/sustainable-state/. Accessed on 05/07.

Owen, J.W. (1997). Life-Cycle Assessment: Constraints on Moving from Inventory to Impact Assessment. *Journal of Industrial Ecology*, 1 (1), 37-49.

Perriman, R.J., (1995). Is LCA losing its way? SETAC Europe News, 5 (1), 4-5.

PRé Consultants. (2006). SimaPro 7.0 LCA Software. <u>http://www.pre.nl/</u>. Accessed on 04/07.

Rees, W.E., Wackernagel, M, (1994). Ecological footprints and appropriated carrying capacity: measuring the natural capital requirement of the human economy. *Investing in natural capital: The ecological economics approach to sustainability*. Island Press. Washington (DC).

Potting, J., Schöpp, W., Blok, K., and Hauschild, M. (1997). Site-dependent life-cycle impact assessment of acidification. *Journal of Industrial Ecology*, 2 (2), 63-87

Robèrt, K.H., Schmidt-Bleek, B., Aloisi de Larderel, J., Basile, G., Jansen, J.L., Kuehr, R., Price Thomas, P., Suzuki, M., Hawken, P., Wackernagel, M. (2002). Strategic sustainable development: selection, design and synergies of applied tools. *Journal of Cleaner Production*, *10*, 197–214.

Saur, K., Gediga, J., Hesselbach, J., Schuckert, M. & Eyerer, P. (1996). Life cycle assessment as an engineering tool in the automotive industry. *International Journal of Life Cycle Assessment*, 1 (1), 15-21.

Shakweer A. F., and Nathanail P. C. (2003) LCA Methodology for Remediation Strategy Selection, *ConSoil 8th International FZK/TNO Conference on Contaminated Soil*, Gent, Belgium.

Soesilo, J. A and Wilson, S.R. (1997). *Site Remediation: Planning and Management*. Lewis Publishers.

Solomon, S., Albritton, D.L. (1992). Time-dependent ozone depletion potentials for short- and long-term forecasts. *Nature*, 357, 33-37.

Strandesena, M., Birkvedb, M., Holmc, P.E., Hauschild, M.Z. (2007). Fate and distribution modelling of metals in life cycle impact assessment. *Ecological Modelling*, 203, 327-338.

Toffoletto, L., Deschênes, L., Samson, R. (2005). LCA of ex-situ bioremediation of diesel-contaminated soil. *International Journal of Life Cycle Assessment*, 10 (6), 406-416.

US EPA [United States Environmental Protection Agency] (1989). Risk Assessment Guidance for Superfund Volume I. Human Health Evaluation manual (Part A) Interim Final. Office of Emergency and Remedial Response, Washington, DC. *EPA/540/1-89/002*.

http://www.epa.gov/oswer/riskassessment/pdf/OSWERdirective9285.6-03.pdf. Accessed on 05/08.

US EPA [United States Environmental Protection Agency] (1995a). Bioventing Principles and Practice Volume I: Bioventing Design. Office of Research and Development, Washington DC. *EPA/540/R-95/534a*. http://www.epa.gov/nrmrl/pubs/biorem/pdf/iibiov.pdf. Accessed on 06/07.

US EPA [United States Environmental Protection Agency] (1995b). Bioventing Principles and Practice Volume II: Bioventing Design. Office of Research and Development, Washington DC. *EPA/625/XXX/001*. http://www.epa.gov/nrmrl/pubs/biorem/pdf/iibiov.pdf. Accessed on 06/07. US EPA [United States Environmental Protection Agency] (1996). Soil Screening Guidance: Technical Background Document. Office of Emergency and Remedial Response, Washington, DC. *EPA/ 540/R-95/128*. <u>http://rais.ornl.gov/homepage/SSG_nonrad_technical.pdf</u>. Accessed on 06/08.

US EPA [United States Environmental Protection Agency] (1998). Field Applications of In Situ Remediation Technologies: Chemical Oxidation. Office of Solid Waste and Emergency Response, Washington DC. *EPA 542-R-98-008*. <u>http://clu-in.org/download/remed/chemox.pdf</u>. Accessed on 06/07.

US EPA [United States Environmental Protection Agency] (1999a). A Sustainable Brownfields Model Framework. Office of Solid Waste and Emergency Response, Washington DC. *EPA/500-R-99-001*. <u>http://epa.gov/brownfields/pdf/susmodel.pdf</u>. Accessed on 03/07.

US EPA [United States Environmental Protection Agency] (1999b). Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Office of Solid Waste and Emergency Response, Washington DC, *EPA*/540/R-99/009 (*OSWER Directive, 9200, 4-17*). http://www.cluin.org/download/reg/d9200417.pdf. Accessed on 04/08.

US EPA [United States Environmental Protection Agency] (2001). Superfund Innovative Technology Evaluation Program, Annual Report to Congress. Office of Research and Development, Washington DC. *EPA/540/R-03/ 502*. http://epa.gov/ORD/SITE/congress/2001/540r03502.htm. Accessed on 07/07.

US EPA [United States Environmental Protection Agency] (2000). Solidification/Stabilization use at Superfund Site. Office of Solid Waste and Emergency Response, Washington DC. *EPA/542/R/00/010*. <u>http://cluin.org/download/remed/ss_sfund.pdf</u>. Accessed on 06/07.

US EPA [United States Environmental Protection Agency] (2004). Performance Monitoring of MNA Remedies for VOCs in Ground Water. Office of Research and Development, Cincinnati OH. *EPA/600/R-04/027*. <u>http://www.epa.gov/ahaazvuc/download/reports/600R04027/600R04027.pdf</u>. Accessed on 02/08.

U.S. EPA [United States Environmental Protection Agency] (2008). Incorporating Sustainable Environmental Practices into Remediation of Contaminated Sites. Office of Solid Waste and Emergency Response, Washington DC. *EPA 542-R-08-002*. <u>http://cluin.org/download/techdrct/epa-542-f-08-002.pdf</u>. Accessed 05/08.

Volkwein, S., Hurtig, H.W., Klöpffer, W. (1999). Life Cycle Assessment of Contaminated Sites Remediation. *International Journal of Life Cycle Assessment*, 4 (5), 263-274. Weaver P, Jansen L, van Grootveld G, van Spiegel E, Vergragt P., (2000). Sustainable technology development. Greenleaf Publishing. Sheffield, UK.

Zelm, R.V., Huijbrejts M.A.J., Jaarsveld, H.V., Reinds, J.G., Zewart, D.D., Struijs, J., Meent, D.V. D. (2007). Time Horizon Dependent Characterization Factors for Acidification in Life-Cycle Assessment Based on Forest Plant Species Occurrence in Europe. *Environmental Science & Technology*, 41 (3), 922-927.