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ABSTRACT

OPTIMIZING FARE STRUCTURE AND SERVICE FREQUENCY
FOR AN INTERCITY TRANSIT SYSTEM

by
Feng-Ming Tsai

This study presents an approach to jointly optimize service headway and differentiated

fare for an intercity transit system with an objective of total profit maximization and with

consideration given to the economic and social sustainability of the system. Service

capacity and fleet size constraints are considered. The optimization problem is structured

into four scenarios which are comprised of the combinations of whether the Ranges of

Travel Distance (RTD) is fixed or variable and if the time period is for a single period or

for multiple periods. A successive substitution method (specifically, a modified Gauss

Southwell method) is applied to solve for the optimal solutions when the RTD is

considered fixed, while a heuristic solution algorithm (specifically, a Genetic Algorithm)

is developed to find the optimal solutions when the RTD is considered to be optimized.

The methodology discussed in this dissertation contributes to the field of

transportation network modeling because it establishes how to solve the fare and

headway design problem for an intercity transit system. Intercity transit agencies are

faced with the challenge of determining fares for a very complicated setting in which

demand elasticity, realistic geographic conditions, and facility locations of the transit

system all must be taken into account.

A real world case study - Taiwan High Speed Rail is used to demonstrate the

applicability of the developed methodology. Numerical results of optimal solutions and

sensitivity analyses are presented for each scenario. The sensitivity analyses enable



transit planners to quantify the impact of fare policies and address social equity issues,

which can be a major hurdle of implementing optimal fare policy to achieve maximum

profit operation. According to the sensitivity analysis, the total profit surfaces for various

headways, fares, and RTD are relatively flat near the optimum. This indicates that the

transit operator has flexibility in shifting the solution marginally away from the optimum

without significantly reducing the maximum profit. By varying the elasticity parameters

of fare and demand one can observe how these variables affect the optimized RTD. The

results indicate that as the elasticity parameters of fare increase or demand decreases, the

optimal number of RTD increase while the boundaries of RTD are concentrated in the

range of shorter travel distances.
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CHAPTER 1

INTRODUCTION

Public transit systems are an integral part and essential feature of urban mobility in

developed as well as developing countries. An efficient transit service may attract

travelers from riding automobiles, which has been recognized as a potential way of

alleviating traffic congestion, improving mobility, reducing air pollution, and reducing

energy consumption. One of the key issues in developing an efficient transit system is to

set a fare combined with good service quality to stimulate passenger demand and increase

revenue.

As indicated in a report by the American Public Transportation Association

(APTA, 2005), transit ridership increases by 3.3 percent across all public transit systems

for every 10 percent increase in fuel prices, with particularly high ridership growth

experienced by light rail (e.g., 8.8 percent). A similar study conducted by Litman (2004)

based on selected European public transit systems was found that a 10 percent rise in fuel

prices increased transit ridership of 1.6 percent in the short run and 1.2 percent over the

long run. In another study, it was found that due to a drastic increase of fuel price from

1.07 dollars per gallon in 1998 to 3.61 dollars per gallon in 2008 (until August),

commuters changed their travel habits and relied more on public transit (Currie et al.

2007). APTA announced that Americans took more than 2.8 billion trips on public

transportation in the second quarter of 2008. This is almost 140 million more trips than

last year for the same time period. In 2007, there were 10.3 billion passenger trips served

by U.S. public transportation, which reach the highest ridership over the past 50 years.

1
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Therefore, transit agencies have to adjust their service frequency and fare to justify

increasing demand and the associated operating expenses. Optimizing a transit system

with proper service operation and fare is therefore an important goal of the public

transportation industry.

Transit fare policies are established mostly in response to a particular issue or

problem (e.g., a revenue shortfall, a new competitive transit system, etc.). According to a

report by APTA (1994), only 3% of transit agencies made fare changes on a regularly

scheduled basis while the remaining 97% reported making fare changes only as needed.

However, a later APTA report (1998) indicated that more than half of the transit agencies

have a regular fare review process on an unexpected revenue shortfall.

The out-of-pocket cost (e.g., fare) and its relationship to service quality greatly

influence transit ridership. The transit fare is a key source of revenue and is essential to

the operation of a reasonable service. However, structuring the fare is a challenging task

to fulfill different objectives, such as maximizing profit and/or minimizing operator cost

subject to practical constraints of operable fleet size.

The parameters for setting transit fare are correlated with three major factors,

including fare strategy, payment/collection options, and pricing levels (Fleishman, 1996).

Although each parameter is typically evaluated separately, these are all interrelated, and

decisions must be made by considering the joint impact from all parameters. Basic fare

strategies are in general either flat or differentiated. In a flat fare, riders are charged the

same fare regardless of the length of the trip, time of day, or quality of service.

Alternatively, fares can be differentiated by various dimensions, such as distance- or

zone-based, time-based (e.g., peak versus off-peak), and service-based (e.g., express
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versus local). Payment options include cash, period pass, single or multiple ride tickets,

and stored-value/ride fare card. The fmal piece is the actual pricing levels of each

payment option, including discounts for prepaid options.

While considering differentiated fares, a higher fare should be charged to cover

the higher operating costs associated with serving longer trips, operating peak period

service, or providing express service. Otherwise, the users of the higher cost services are

effectively cross-subsidized by the users of short distance, off-peak, or local service. In

many cases, differentiated fares are deemed a better approach to generate greater revenue

than using a flat fare. If the users are traveling longer distances, they would be considered

less price sensitive than those using a shorter distance service.

The ultimate goal of this study is to optimize fare and service to yield a maximum

profit operation for an intercity transit system, which relies on substantial revenue to

cover the operating cost. Although it is costly to provide convenient service, demand will

be stimulated if the fare charged to the users is reasonable.

1.1 Problem Statement

Before evaluating an intercity transit system, a set of performance measures, such as level

of service, on-time performance and equitable fare must be identified. The trade-off

between economically efficient operation and adequate services for the public is very

complex and requires sophisticated analyses. Transit suppliers need to decide what

service level to provide (e.g., how frequently vehicles will be dispatched) and what fare

to charge. To maintain good financial health, the service provider has a challenging task,

maximizing either social welfare or profit (defined as the total fare box revenue minus the



4

operator's cost). In the case of a profit maximizing objective, when expenditures exceed

revenues, as it is the case in many public transportation systems, the objective becomes

minimization of the subsidy.

On the other hand, transit riders prefer short wait time (or frequent service) that

can be usually achieved by decreasing service headway (i.e., the time between the

successive arrivals), which increases fleet size and that escalates the operator's cost.

Understandably, most transit agencies would prefer to minimize the number of departures

to reduce operating cost. In addition, steady riders prefer lower fares, which in turn may

lead to insufficient revenue to cover the cost. The trade-off between the level of fare and

operating cost should be carefully considered when transit agencies plan a new intercity

transit route or extend an existing intercity transit service.

While designing intercity transit service, transit agencies should have a proper

understanding of passenger demand, which is a function of fare and service

characteristics. Previous studies (Meyer, 1965; Daskin et al. 1998; Ling, 1998) found that

the impact of travel distance on intercity transit fare is diminished as distance increases.

If the elasticity of demand is strongly dependent on distance, then differentiated fares can

maximize total revenue. Therefore, a potential way to increase the revenue could be

handled by using a distance-based fare, which accounts for the sensitivity of passengers

traveling within different Ranges of Travel Distance (RTD). This helps transit agencies

quantify how much better of, in terms of additional revenue or profit, they can be by

comparing this case with charging pure distance-based rates.

It is desirable to develop an analytical model to optimize and evaluate an intercity

transit system whose characteristics (i.e., fare, demand, service frequency, and fare
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elasticity) vary irregularly over trip length and time. Such a model can reliably evaluate

and compare intercity transit systems, especially when demand fluctuates significantly

over different time periods.

1.2 Objective and Work Scope

This study presents an optimization approach for an intercity transit service considering

demand elasticity, which is sensitive to fare and travel time. The objective of this study is

to develop models which jointly optimize headway, differentiated fare, and RTD that

yield the maximum total profit for an intercity transit system, subject to service capacity

and fleet size constraints. The optimized differentiated fares are based on the trip length

and time of the trip (e.g., peak and off-peak periods).

To develop a differentiated fare, four scenarios shown in Table 1.1 are used,

which consider given or variable RTD with single period or temporal distance-based fare.

The developed model for each scenario is discussed below.

Table 1.1 Definitions of the Study Fare Optimization Scenarios

Ranges of Travel Distance (RTD)

Given Variable to be
optimized

Distance-based
Fare

Fixed over
time

Scenario I Scenario II

Temporal Scenario III Scenario IV

• Scenario I: A base model developed in this scenario is to optimize distance-based

fare and headway for peak period under the given RTD for fare differentiation.
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The peak period considered in this scenario is based on the highest potential

hourly demand, and thus the objective is maximizing the hourly profit.

• Scenario II: The model developed in this scenario is enhanced from Scenario I by

considering variable RTD for fare differentiation, which optimizes the headway

and distance-based fare. The objective is maximizing the hourly profit

considering the peak period demand.

• Scenario III: The model developed in this scenario is to optimize temporal

distance-based fares and headway for peak and off-peak periods under the given

RTD for fare differentiation. The objective is maximizing the daily profit

considering daily demand.

• Scenario IV: The model developed in this scenario is enhanced from Scenario III

by considering variable RTD for fare differentiation, which optimizes the

temporal headway and distance-based fare. The objective is maximizing daily

profit considering daily demand.

It is worth noting that fare elasticities in Scenarios I and III are identical within

the same RTD, however in Scenarios II and IV, variable elasticity parameters of fare in

different origin-destination (0-D) pairs are considered.

The developed models are used for a real-world case study, the Taiwan High

Speed Rail (THSR), a 212 - mile long high speed rail line with eight stations connecting

three major cities, Taipei, Taichung, and Kaohsiung, on Taiwan's west coast. All

numerical data used in this study are based on real world operating data, which include

station spacing, vehicle travel time, potential demand, and vehicle capacity. The THSR

system began revenue operation in January, 2007, and the optimal solutions from the
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developed models may influence future managerial decisions.

The overall framework for this research approach is shown in Figure 1.1. To

achieve the objective of this research, various previous studies related to transit network

and fare structures, optimization methods, passenger travel behavior, and solution

algorithms are thoroughly reviewed and discussed in Chapter 2.

Determine Objectives and
Work Scope

Conduct Literature Review

Develop System
Assumptions

Develop Models

Develop Solution Methods
and Algorithms

Implement Case Study

Conduct Sensitivity Analyses

Summarize Results and
Findings

Figure 1.1 Framework of research approach.
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1.3 Research Approach

To satisfy the aforementioned objectives of Section 1.2 and models for each scenario, an

analytical approach is used to optimize fare and headway under the condition of fixed

RTD. This optimization approach relies essentially on the methods of differential

calculus. Analytical results are presented for the optimized decision variables and

objective functions. However, as model complexity increases, analytical solutions

become very difficult to obtain. Thus, a solution algorithm, called Genetic Algorithm, is

developed to search for a near optimum solution.

The optimization models developed in Scenarios I and III are multi-dimensional

and nonlinear functions, including the decision variables (e.g., headway and fare), which

can be solved by numerical methods (e.g., Gauss-Southwell and Powell methods). Thus,

a modified Gauss-Southwell method (successive substitution method) is implemented to

determine the optimized solutions (i.e., fixed and temporal fares and service headways)

numerically.

The optimization models developed in Scenarios II and IV are also multi-

dimensional, nonlinear, and have multiple real and integer variables. The determination

of fare is a large combinatorial problem where the solution space consists of

combinations of distance-based fare and headway (i.e., fixed and temporal) with various

RTD. Therefore, a Genetic Algorithm (GA) is developed to solve the optimized RTD

(e.g., optimal number of RTD and corresponding travel distance range) as well as service

headway and fare for single and multiple time periods (e.g., peak and off-peak).
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1.4 Dissertation Organization

This dissertation is organized into six chapters. In Chapter 1, the background of the fare

optimization problem, the research objective, and work scope are presented. Previous

studies are thoroughly reviewed and discussed in Chapter 2. Chapter 3 presents the

formulation of the total profit function for the four scenarios considering both given and

variable RTD during single and multiple time periods, while in Chapter 4, the successive

substitute method and developed Genetic Algorithm are presented to solve the

optimization problems defined in Scenarios I through IV. Chapter 5 presents a case study

of the Taiwan High Speed Rail system, in which the applicability and performance of the

developed models are tested and assessed. Numerical results, including optimal solutions

and sensitivity analyses are conducted. Finally, conclusions and suggestions for future

studies are presented in Chapter 6.



CHAPTER 2

LITERATURE REVIEW

Previous studies reviewed in this chapter are summarized in topical sections, which

includes transit fare structures, transit system and fare optimization, optimization

algorithms and heuristics, transit travel demand functions, and fare elasticities.

2.1 Transit Fare Structures

Fleishman et al. (1996) and Vuchic (2004) classified fare structures based on the

relationship between the amount of fare and distance traveled. According to this criterion,

fare structures are flat or differentiated. The differentiated fare can be further subdivided -

into zonal fare, distance-based fare, sectional fare, and time-based fare.

Previous studies on transit fare structures found that the use of flat fare is highly

inequitable and penalizing to short-distance or off-peak users (Cervero, 1981). Meyer

(1965) found that passengers who travel longer distance are generally in higher income

brackets. Hence, to avoid the inequity of short distance riders subsidizing long travel

distance riders, implementing differentiated fares not only provides a solution for the

equity issue but also bring a potential benefit to generate greater revenue. Thus, a

differentiated fare policy was deemed better than a flat fare policy.

For flat fare, transit users are charged a constant fare regardless of trip length or

type of services (e.g., express vs. local) throughout the transit network (Fleishman et al.

1996). A flat fare is the simplest and most convenient fare structure for both passengers

and transit operators in terms of payment and collection (LaBelle et al. 1995). Travel

10
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distances are relatively uniform in cities with limited geographic size, so that the

conveniences of the flat fare outweigh the inequities related to its lack of correlation with

trip length (Vuchic, 2004). Therefore, small and medium size systems generally opt for

flat fare.

The fare in a differentiated structure may vary with one or multiple factors (e.g.,

distance, time and service type) and is considered one of many important transit

marketing strategies. Differentiated fares can be classified into four categories

(Fleishman et al. 1996): (1) Distance- or zonal-based fares, which is based on the distance

traversed; (2) Time-based fare, determined by when the trip is made (e.g., peak and off-

peak); (3) Service-based fare, determined by the mode (i.e., a higher fare for rail than for

bus) or by speed (e.g., express or local service); and (4) Market-based fare, determined by

the frequency of use and willingness to use.

The complexity is found in the range of market-based options offered for all of

these systems, rather than in the existence of differentials on the basis of distance, time-

of-day, or type of service. Other types of differentiated fare structure widely used by the

transit industry include quality-based, cost-based, route-based, and patron-based fares.

The quality and cost-based fares are determined by the service quality (e.g., business or

standard class) and the operator cost (e.g., vehicles with or without air-conditioning

systems). The route-based fare is determined by different origin-destination routes, and

the patron-based fare is determined by passenger class (e.g., discounted fares for students

and senior citizens).

The zone-based and section-based fare structures have been discussed by Vuchic

(2004). The main characteristic of a zone-based fare is that it provides a uniform fare
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within central business districts (CBD) and non-uniform (e.g., distance-based) fare for

longer trips to and from sub-urban areas. This treatment is more equitable by

differentiating the fare charged to passengers traveling short and long distances. However

in section-based fares, transit routes are divided into sections which are shorter and fare

increments smaller than zone-based fares. The comparison among various characteristics

of different fare structures is summarized in Table 2.1.

Table 2.1 Characteristics of Various Fare Structures

Fare Structures

Characteristics Flat Zone-based
Distance-based/

Sectional
Equity Poor Good Very good

Passenger attraction Good Very good Very good

Revenue collected Variable Good Very good

Simplicity of collection Excellent Fair-good Poor

Simplicity of control Excellent Fair Poor

Simplicity of passengers Excellent Fair-good Poor

Line length Short Medium Long

Network type Ubiquitous Divisible in zones Long lines

Travel distance Short Variable Variable

Source: Urban Transit Operation, Planning, and Economics (Vuchic, 2004)

Zone-based or distance-based fare structures are common used by transit agencies,

such as NJ Transit, WMATA, D.C. Many large cities still retained zone-based fares

without considering the length of the routes even after the government takeover. A case

study of zone-based fares and off-peak fare reduction was implemented in Broom

County, NY, from 1986 to 1988. The total revenues were down during the 1987 interim
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fare changes and increased in 1988 when fares were increased and a zone-based fare was

implemented. The fare zones were placed approximately 3 miles away from the

Binghamton CBD, in which about 35 percent of passengers paid one zone fare. It was

found that transit systems that adopted a fare differentiation (e.g., zone-based fare)

suffered no detrimental effect. The zone-based fare may have greater potential to increase

revenue in a large-sized system, since more riders would pay zone-based fares (Andrle,

1991).

Over one third of the North American transit systems use distance-based fares

(primarily zone-based), and only 5% use time (e.g., peak vs. off-peak) differentials

(LaBelle et al. 1995). The distance-based fare was recommended because of the higher

operating costs associated with long distance travel services. In addition, higher operating

cost services tend to display lower elasticities than lower operating cost services. Hence,

the majority of transit agencies (e.g., BART, San Francisco, CA) have adopted either

distance-based or time-based fares with the exception of CTA (Chicago, IL) and

WMATA (Washington, D.C.), in which an integration of distance- and time-based fares

is used. The fare structures employed by transit systems in North America were

summarized in the Transit Cooperative Research Program (TCRP) Report 10 (Fleishman

et al. 1996) as shown in Table 2.2.



Table 2.2 Fare Structures of Transit Systems in North America

LA County Metropolitan Transportation Los Angelus, CA
	Authority (LACMTA) 

Orange County Transportation Authority Orange Co., CA(OCTA)

Bay Area Rapid Transit District 
(BART) San Francisco,

CA
Southern California Regional Rail Authority CA(SCRRA)

Washington Metropolitan Area Transit DC
Authority (WMATA) 	 Washington,

	Miami-Dade Transit Agency (MDTA) 	 Miami, FL 
Metropolitan Atlanta Rapid Transit Atlanta, GA

Authority (MARTA)__
Chicago Transit Authority (CTA) 	 Chicago, IL

Greater Lafayette Public Transportation f IN
Corp. (GLPTC) 	 La ayette,

	Transit Authority of River City (TARC) 	 Louisville, KY
	Bi-State Development Agency  (BSDA) 	 St. Louis, MO

Massachusetts Bay Transportation Authority Boston, MA	  (MBTA)
Maryland Transit Administration (MTA) Baltimore, MD

New Jersey Transit (NJ Transit) 	 NJ 
Port Authority of New York and New Jersey NY/NJ(PATH) 
New York City Transit Authority (NYCTA) 	 NYC, NY 

Greater Cleveland Regional Transit Cleveland, OH
Authority (GCRTA)

Miami Valley Regional Transit Authority Dayton, OH(MVRTA) 
	Toronto Transit Commission (TTC) 	 Toronto, ON

Southeastern Pennsylvania Transportation Philadelphia, PAAgency (SEPTA)
Calgary Transit (CT) 	 Montreal, QC

	Dallas Area Rapid Transit (DART) 	 Dallas, TX 
Metro 	 Seattle, WA 

Madison Metro 	 WI

Source: TCRP Report 10 (Fleishman, 1996).

14
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Jorgensen (2004) conducted an empirical analysis of transit systems in Norway to

determine the impact of fare and service quality (e.g., passengers' comfort, the speed of

transport vehicle) on travel distance for different modes of travel (e.g., buses, trains,

planes, and ferries). The study found that transit fares are positively related to traveling

distance (e.g., a linear function). The result also indicated that the positive effects of

increased transport quality are outweighed by long distance travel. However, for trains

the same relationship is weakly concave, meaning fare is less influenced by the increase

in travel distance. Furthermore, it was found that if the trip length is less than 360 km, the

fare is influenced by travel distance more for trains than buses.

Time-based fares are used when the work-related demand during peak periods

tends to be heavier and less elastic to fare than the more discretionary demand during off-

peak periods. Hence, reducing off-peak fare may increase overall ridership and minimize

potential revenue loss (LaBelle, 1995). The idea of time-based fare was to shift some

riders away from peak hours to reduce the operating cost, and increasing the ridership

during off-peak hours. Several studies in New York City and London (Mayworm et al.

1980; Collins, 1984) found that fare elasticities during off-peak hours range between -

0.11 and -0.84, while the elasticities of peak hours range between -0.04 and -0.32. In

CTA (Chicago, IL) fare elasticities during peak and off-peak hours were -0.10 and -0.46,

respectively. A similar study conducted by Pham (1991) illustrated that the difference

between peak and off-peak fares should be sufficiently large (over 25%) to create a

measurable effect which may influence the decision to use the public transit system

during the peak period.
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2.2 Fare Optimization

A number of studies related to transit fare optimization have been conducted in the past

two decades, which include fare optimization for a grid transit network (Kocur and

Hendrickson, 1982; Chang and Schonfeld, 1989, 1991; Chien and Spasovic, 2002, etc),

irregular geographic areas (Spasovic, Boile, and Bladikas, 1994) and transit lines (Lam

and Zhou, 2000; Lee and Tsai, 2004; Chien and Tsai, 2006, etc). The objective functions

in the above studies were to maximize either total profit and/or social welfare.

Previous transit optimization models used to over simplify passenger demand

distributions and shape of service areas to observe the relationship among decision

variables and model parameters. Typically, the assumption of a grid transit network and

directional demand to and from a transfer station or central business district (CBD) were

assumed to maximize profit or social welfare (i.e., Kocur and Hendrickson, 1982; Chang

and Schonfeld, 1989, 1991; Chien and Spasovic, 2002). This assumption enables a model

to be solved analytically, but the models were used for a hypothetical, simplified transit

system.

Without considering temporal demand, analytical models to assess characteristics

of urban public transportation systems, such as stop spacing, service frequency, and fare

for bus and tram networks were found in previous studies. Kocur and Hendrickson (1982)

analyzed bus service, considering that demand is sensitive to service quality and fare.

Closed form solutions for optimal route spacing, headway, and fare were derived based

on maximizing objective functions for profit and social welfare on a rectangular grid

street network. Using a linearized approximation approach to transit system design, an

analytic model considering elastic demand, financial constraints, and the effect of fleet
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size on congestion was developed by Oldfield and Bly (1988) to determine the optimal

vehicle size for an urban bus system. The study mentioned above did not consider time

dependent demand.

Considering temporal demand, Chang and Schonfeld (1991) developed on

optimization model for a feeder bus system whose customers are sensitive to service

quality and fare. The optimized closed form solutions, including headway, fare, fleet size,

and route spacing were derived for different objectives, such as cost minimization and

profit/social welfare maximization. The models were formulated and compared on the

basis of four demand conditions, which include steady fixed demand, cyclical fixed

demand, steady equilibrium demand, and cyclical equilibrium demand. The optimization

objective was to maximize operator profit and social welfare. The optimal fare was found

to be very sensitive to the fare elasticity parameter for profit maximization and the

elasticity was zero for social welfare maximization in equilibrium cases. However, the

model can only deal with many-to-one or one-to-many demand.

Chien and Spasovic (2002) developed a model to optimize route and stop

spacings, service headway, and fare by maximizing the total profit and social welfare of a

grid transit system considering a linear demand function which is sensitive to travel time

and fare. It was found that the profit and welfare functions are relatively flat near the

optimum. This shallowness of the objective functions gave transit operators flexibility to

slightly alter the optimal solution without significantly reducing the profit or social

welfare.

In designing transit service, agencies should determine fares that generate revenue

to cover the cost of providing the service (van Nes, 2002). When the operator cost
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exceeds revenue in profit maximization problems, the objective becomes one of

minimizing the subsidy instead of maximizing profit. The most likely situation was that

the main objective to maximize social welfare for urban public transport network,

whereas profit maximization was used for an interurban network (Berechman, 1993).

The studies mentioned above did not consider more realistic demand distributions

and shapes of service areas. Spasovic, Boile, and Bladikas (1994) optimized bus transit

service coverage by maximizing operator's profit and social welfare. In marked contrast

to the above papers, this paper determined optimal public transit facilities (route and

station spacing), operating headway, and fare, while considering the impact of

realistically irregular geographic, socio-economic, demand, and traffic characteristics.

Lam and Zhou (2000) proposed a bi-level programming approach based on the

method developed by Tobin and Friesz (1988) to determine the optimal fare structure of a

transit network with fixed service frequency by maximizing the operator's total revenues,

where the passenger route choice behavior was taken into consideration through a

stochastic user equilibrium (SUE) transit assignment model. Under a user equilibrium

condition, the passenger demand was a function of minimum travel time between each

origin-destination. Both flat and distance-based fares were considered for the service line

in the study. The difference in degree of passengers' perception of travel time was used

as a measurement parameter. The result showed that both demand and fare decreased as

the measurement parameter increased, because passengers having additional knowledge

of travel cost of each transit line, which were more sensitive to fare charges. Moreover,

fare elasticities were found to be more sensitive to fare changes for express service lines

than for local service.
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Lee and Tsai (2004) developed a product-line pricing method for a simplified

Taiwan High Speed Rail in which only 3 stations were considered. A pricing model for

two types of service classes (e.g., express and local) and two types of passenger classes

(e.g., first and second class) was developed, which considered service choice of

passengers and market competition in three intercity transit routes. In the demand model,

passengers' service choice was formulated as a logit function, market competition was

represented by a linear demand function, and service capacity was used as a constraint to

restrict the feasible solution spaces. A bi-level program was developed to maximize profit

in the upper level and minimize the generalized cost (e.g., a function of fare, travel time

and comfort) in the lower level, while sensitivity analysis and a convergence test were

used to test the results.

Yang (1996) presented the transit fare structure as a typical leader-follower

problem (Stackelberg Game), in which the transit operator (leader) can predict responses

of passengers (follower) before they decide on what fare to charge users. The results

showed that the consideration of a market differential (e.g., service at all station vs. each

station) seemed more effective in increasing profit and capacity utilization than product

differential (e.g., express vs. regular). However, the developed model could not handle

temporal transit demand situations.

Considering differentiated fares, Chien and Tsai (2006) developed a model that

jointly optimizes temporal headways and differentiated fares to maximize profit for urban

light rail transit. The developed model was formulated by considering a general situation

(e.g., with or without temporal and differentiated fare structure), and a numerical example

was used from the City Subway in Newark, New Jersey. The result showed that
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maximum profit can be achieved by temporal headway and differentiated fare. The

sensitive analysis was conducted to evaluate the decreasing of the difference between the

operating costs for idle and on duty vehicles. It was found that the optimal headway

increases during the peak period, but decreases during the off-peak period

Tsai, Chien, and Spasovic (2007) developed an optimization approach for an

intercity public transit service under elastic travel demand where the passengers are

sensitive to fare and wait time. The approach jointly optimized service headway and

distance-based fare structure which maximized the total profit subject to service capacity

and fleet size constraints. The optimal fares were differentiated based on trip length. An

efficient solution method was developed and used to solve the profit maximization for a

real world intercity transit system (e.g., Taiwan High Speed Rail). It was found that the

profit surfaces for various headways, unit fares and weight factors for different travel

ranges are relatively flat near the optimum. This indicates that the transit operator has

flexibility to shift the solution marginally away from the optimum without reducing the

optimal profit significantly. This finding could be very useful especially in determining

the threshold values of travel distance ranges.

A classification of existing analytic models for transit fare optimization is

summarized in Table 2.3, in which most previous studies found that improving transit

services (e.g., reduced fare or increased frequency) leads to an increase in passenger

demand.



Number of Zones,
Headway, and Fare

Minimize Operator, User
Cost, and Maximize

Social Welfare

Grid

Grid

Elastic, Many-
to-Many

Irregular Elastic, Many-
grid	 to-One

Grid

Line Elastic

Line Elastic

Temporal
Headway, and

Differentiated Fare

Time
Dependent,

Elastic

Chien and Tsai
(2006)

Maximize Profit Line

Elastic,	
Tsai, Chien,

ny-to-Many and Spasovic
(2007)

Headway, and
Differentiated Fare

Maximum Profit Line

Table 2.3 Analytical Models for Transit System and Fare Optimization

21

Decision
Variables

Objective
Function

Transit	 Demand
Network	 Pattern

Authors
(Year)

Route Spacing,	 Maximize Profit, and
Headway, and Fare	 User Benefit

Minimize Operation Cost,
and Maximize

Profit/Social Welfare

Elastic, Many-
to-One

Elastic,
Many-to-One

Time
Grid	 Dependent,

Elastic

Kocur and
Hendrickson

(1982)

Chang and
Schonfeld

(1989)

Chang and
Schonfeld

(1991)

Headway, Fare,
Fleet Size, and
Route Spacing

Elastic

Route and Stop
Spacing, Headway,

and Fare

Route and Station
Spacing, Headway,

and Fare,

Fare Structure

Fare, Passenger
Route Choice

Fare, Number of
Passengers

Maximize Profit, and
Social Welfare

Maximize Profit, and
Social Welfare

Minimize User Cost

Maximize Revenues

Maximize Profit, and
Minimize Generalized 	 Line

Cost

Chien and
Spasovic
(2002)

Spasovic,
Boile, and
Bladikas
(1994)

Lam and Zhou
(1999)

Lam and Zhou
(2000)

Lee and Tsai
(2004)
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2.3 Optimization Algorithms and Heuristics

The studied differentiated fare optimization problem is a large combinatorial optimization

problem in which decision variables include the ranges of travel distance, service

frequency, and fare. In spite of the importance of the zone/distance-based fare design

problem, few studies developed algorithms to optimize differentiated transit fares.

Some of the recent studies focused on both fare optimization and zone design

(e.g., optimize number of zones) used operations research models. Hamacher and

Schobel (2004) developed a model to count zone fares by minimizing the deviation

between distance-based and zone-based fares. Later, a study was conducted by Schobel

(2006) about the zone design problem with an arbitrary fare. The algorithm was

developed based on the clustering theory, particularly in the sequential agglomerative

hierarchical non-overlapping (SAHN) algorithm. The optimal fare problem was solved

by a closed form solutions with respect to a given zone partition and three heuristic

algorithms were proposed to solve the zone design problem. Babel and Kellerer (2003)

presented theoretical results for local public transportation networks based on the same

model developed by Hamacher and Schobel (2006). A Tabu Search (TS) method was

implemented to solve the general transportation network problem.

Pratelli (2004) developed a bi-level model to optimize zone-based fare under

various zone partitions. The objective of the model was to minimize an aggregated cost

function mainly related to both the budget required for transit operations and the fare

charged to patrons. The optimal zone partitions were obtained by a heuristic iterative

procedure based on simulated annealing (SA), which randomly searches for an optimal

zone configuration reflecting a given fare policy.
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A robust searching algorithm, such as the Genetic Algorithm (GA) and other

intelligent optimization techniques, are desirable to be developed to find a near optimum

solution efficiently in the enormous solution space. Many techniques have been

developed to approximate optimal solutions for the basic and multiple-depot vehicle

routing problems. These include ant algorithms (Bulinheimer et al. 1999), the tabu search

method (Cordeau et al. 1997), evolutionary algorithms (Machado et al. 2002), and GA

(Chien et al. 2001).

GA, introduced by Holland (1975) in his seminal work, is commonly used as an

adaptive approach that provides a randomized, parallel, and global search method based

on the mechanics of natural selection and genetics to find solutions of a problem. GA is

different from normal optimization and search procedures in four ways (Herrera et al.

1994): (a) GA works with a coded parameter set, not the parameters themselves, (b) GA

searches from random selected points, not from a single point, (c) GA uses objective

function information, and (d) GA uses probabilistic transition rules, not deterministic

ones.

Although there are many possible variants of genetic algorithms (Ho et al. 1999)

and (Tang et al. 1998), the fundamental is based on the Simple Genetic Algorithm (SGA)

(Holland, 1992). In general, GA starts with some randomly selected genes, the first

generation, called population. Each individual in the population corresponding to a

solution in the problem domain is called chromosome. An objective, or fitness function,

is used to evaluate the quality of each chromosome. The chromosomes with high quality

will survive and form the population of the next generation. By using three operators,

reproduction, crossover, and mutation, a new generation is recombined to find the best
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solution. The process will iterate many times until a predefined condition is satisfied, or a

pre-specified number of iterations is reached.

Chien et al. (2001) developed a GA to search for the optimal bus route using two

major operations: Route Generator and Genetic Operator. The GA starts with an initial

population size and street pattern of a service area. The developed GA algorithm consists

of three genetic operators (e.g., reproduction, crossover, and mutation), which incorporate

the ideas of survival of the fittest and genetic selection. The function of the crossover

operator is to generate new routes based on the existing routes. Since certain segments of

different routes may be desirable for optimal operation and therefore by combining these

desirable segments, a better route can be obtained. The function of the mutation operator

is to introduce random variations into the population so that it would not be saturated

with a single route and lead to premature convergence.

The literature revealed that each algorithm has its own advantage in solving

particular types of optimization problems. It was found that GA outperforms SA and TS

in solving traveling salesman problems (Pharr and Karaboga, 2000). However, a

comparative study of SA, TS and GA was conducted in solving machine-grouping

problems by Zolfaghari and Liang (2002), and the results indicated that SA outperforms

both GA and TS for large-scale problems, while GA is slightly better than TS for

comprehensive grouping problems.

GA is heuristic in nature, involving algorithmic parameters that may have a

critical impact on their performance, but must be chosen empirically. This empirical

nature of the approach makes it even more important to synthesize applications in past

studies (Fu, 2004). It was found that GA can solve almost any types of objective function
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(e.g., linear, nonlinear, integer, mix-integer, logical, or discontinuous) subject to a set of

constraints (Dandy and Engelhardt, 2001). The studied fare optimization problem under

flexible RTD in this study has a nonlinear, mix-integer objective function, which is

solved by the GA developed in Chapter 4.

2.4 Transit Demand

Most previous studies (Baumol 1965, Henderson and Quandt 1985) have been focused on

developing stochastic disaggregate and deterministic aggregate demand prediction

functions. Stochastic disaggregate demand models were used to predict the behavior of a

single consumer and explore the models used for predicting responses of different

consumers in various situations. It is assumed that consumers formulate their preferences

explicitly, identify the alternatives and their consequences, evaluate the alternatives, and

choose the best one among them using a well-defined decision. For practical predictions

of the impacts of transportation strategies, however, it is important to predict the behavior

of groups of consumers (e.g., several individuals, households). Therefore, an aggregate

demand function is well fit to predict the behavior of a group of consumers in response to

changes in future conditions.

Historically, transportation demand analysis has been focused on aggregate

demand functions, which predicts the behavior of a potential volume and composition of

flow between two (or more) points as a function of the service attributes for a particular

social, economic, and other characteristics activity system. The activity system variables

describe the characteristics of the consumers whose behavior is represented by the
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demand function that influences their choices (Manheim, 1979). The general form of the

demand functions is shown in Equation 2.1

V = D (A, S) (2.1)

where D is the aggregate demand function, V is the vector of volumes or numbers of

consumers making particular choices, A represents the social, economic, and other

characteristics of the activity system and of the individuals in the group, and S represents

the service attributes that characterize the transportation choices open to prospective

travelers.

In Equation 2.1, various choices can be made to decide what activity system and

service variables are explicitly included in the demand function. The activity system may

be described in terms of variables, such as population, market segment (e.g., income or

household), and employment. The service attributes of the transportation system include

travel time (e.g., in-vehicle time, access time, transfer time), service schedule, and fare

that have been the primary service variables used to predict traveler behavior in urban

transportation, especially for conventional transportation. The relationships might simply

be described by Manheim (1979) that as transit travel time, wait time, and fare decrease,

more consumers will find the transit mode more attractive.

There are many different forms of demand functions that can be represented by

basic algebraic forms, such as linear, product, exponential, and logistic, as shown in

Equations 4.2 to 4.5 by Manheim (1979).

Linear demand function:

V = + 	 (4.2)

Product demand function:
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(4.3)

(4.4)

(4.5)

Exponential demand function:

Logistic demand function:

where X represents a single service attribute or activity system variable, and a , /3

represent the elasticity parameters of different curves which express the preferences of

the consumer. For the linear demand function, the ratio of the two parameters represents

the value of time to the consumer.

These functions are commonly used because of simplicity, and are particularly

suitable for calibration by standard statistical techniques. For example, linear regression

techniques can be used to estimate the parameters of the linear form of the demand model

directly from observed (X, V). To estimate the coefficients of the product and

exponential forms, logarithms are taken to transform the equation into a linear form, and

then regression techniques are used on this transformed equation.

Some major historical streams of aggregate demand functions were focused on

the intercity passenger demand models, gravity models, and the urban transportation

model system. Intercity passenger travel models were first developed for the Northeast

Corridor project by the U.S. Department of Transportation (Kraft, 1963). The models

were used to predict the level of travel demand between any pair of cities and the split

among the competing modes. The gravity model by Isard (1960) is the classic

transportation demand model to predict to which destination people will travel. The most

commonly used models for urban transportation planning typically predict travel flows in
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four steps. This breaks the demand model into four submodels, but also involves some

significant assumptions and approximations in the way the submodels are used to

compute equilibrium. The submodels are trip generation, trip distribution, mode split, and

trip assignment.

Three similar intercity transportation demand models were developed, which are

the Kraft-SARC model by Kraft (1963), the Quandt and Baumol model (1966), and the

McLynn model by McLynn and Woronka (1969). These models considered time and cost

as service variables, and assumed only one path connecting each O-D pair of zones. Later,

a model developed by Lave (1972) included time series demand models, which focused

on estimating demand for a single mode; and cross section models, which assumed that

the prospective traveler would focus on the speed of the fastest mode, fare of the cheapest

mode, and the frequency of schedule. A generalized model was developed having

relevant demand functions without constant elasticities over the entire travel range, but

having constant elasticities only within a limited range. It is worth noting that the

conventional approach to estimate the demand for a mode contains a fundamental defect

in that no attempt is made to separate direct elasticities from cross elasticities. One

possible method to separate direct from cross elasticities is to formulate a simultaneous

equation framework, where the demand for all modes is estimated simultaneously by

taking account of interactions between cross and direct elasticities.

One approach to empirically test decision structure hypotheses as well as to

provide an alternative decision structure between single level choice and sequential

structures choice is presented as the nested decision structure by McFadden (1979). In a

nested mode, decisions are made sequentially with higher-level decisions (e.g., one
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makes decision early) including the calculated expectations concerning subsequent

lower-level decisions (e.g., one makes decision later). In particular, the expected

maximum utility associated with the next stage in the decision process is included in the

current stage's utility function.

The choice of an algebraic form (e.g., linear, product, exponential, and logistic)

for a demand function is determined based on the different assumptions on how

consumers will respond to changes in the choices available. In this study, the demand

function can be represented as the potential demand justified by a function of variables,

including service frequency and fare.

2.5 Fare Elasticities

Transit ridership is a function of fare and service characteristics of a product. Fare

elasticities are used to estimate the effects of fare changes on ridership. The industry

standard for fare elasticity is called the Simpson-Curtin's rule (1968), which indicates

that a decrease of three percent in ridership for every ten percent increase in fares has

proved to be accurate in overall forecasts of ridership response to fare changes. This rate

of demand decline corresponding to a fare elasticity of -0.33. The Simpson-Curtin's rule

is based on a study of 77 cases of transit fare increases occurring over a twenty year

period. The rule can be used for preliminary analysis and is too simple and generic for

detail planning and modeling of transit service.

Studies examining particular groups of riders have revealed significant

differences in fare elasticities (Mayworm, 1980, Fleishman, 1996). These studies

concluded that regular commuters, riders with long trips, and peak-period riders are less
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sensitive to fare changes than non-work riders, riders making short trips, and off-peak

riders. A review of past behavioral research on transit pricing was conducted by Cervero

(1990) with emphasis on rider's response to changes in transit fare levels and structures.

Analyses were refined by studying ridership responses among sub-markets, which is

broken down by user groups (e.g., age, gender), trip characteristics (e.g., purpose, length),

and service types (e.g., express vs. local, peak vs. off-peak, bus vs. rail). The purpose of

dividing riders and service types into subgroups was to study homogeneous groups that

are fairly similar in their response to fare changes and differences between groups.

Previous studies (Thomson, 1967; Schmenner, 1976) showed that for passengers

making short trips, fares are relatively elastic because the option of walking is readily

available and the fare component constitutes a significant share of total generalized cost,

the sum of fare and travel time cost. A study conducted by Ministry of Transport (1968)

found that bus trips less than one mile had higher fare elasticity (-0.55) than trips between

one to three miles (-0.29). Another study done in Germany by Baum (1973) indicated a

similar result about fare elasticities for short trips (-0.32) and longer ones (-0.12).

Research has also shown that fare elasticity varies due to different transit operating

environments. Users are less sensitive to fare increase when trips are: radial vs. cross-

town; intra-city vs. inter-city; rail vs. bus; and express vs. local (Mayworm et al. 1980;

Cummings et al. 1989). Particularly, the intra-CBD trips have proven to be highly fare

sensitive.

Three different time series scenarios were selected to estimate the fare elasticity

by Guenthner and Jea (1985). The evaluation of distance-based fares for each express bus

service route was based on its length, where the fare elasticities for short to long travel



31

distance ranged from -0.37 to -0.74 based on 95 percent confidence interval. It was found

that revenue increased without reducing ridership when a small increment of distance-

based fare was implemented. The demand elasticity with respect to fare change can be

predicted for new ridership.

Issues dealing with how fare and quality of transport services relate to travel

distance were discussed by Jorgensen (2004). It was found that the relationship between

ordinary fares and trip length is a linear function for buses, ferries, and planes. However,

the relationship for trains is weakly concave. This means that the impact of travel

distances on fares is diminished as the distance increases, which confirms the finding of

Meyer (1965) and Daskin et al. (1998) that if the elasticity of demand is strongly

dependent on distance, then the differentiated fares can maximize total revenue.

McFadden (1974) studied a rail transit system in the San Francisco Bay Area. The

individual passenger travel behavior was investigated by using a conditional logit model

and it was found that the ridership is elastic to fare changes. Voith (1991, 1997)

conducted studies on demand elasticity with respect to the change in fare policy and

demographic factors from a 13 year panel data, and found that in the long-run the demand

elasticity is approximately twice as much as that of the short-run.

Ling (1998) found that the optimal fare was significantly affected by the elasticity

of demand. The revenue, ridership, passenger-mile travel, and consumer surplus of a

transit system under differential and flat fare structures were analyzed. A numerical

example of a distance-based fare system was considered in which there are only two

available destinations from a given origin (e.g., short trip and long trip). A sensitivity

analysis was performed by varying the number of short trips and the fare elasticity of
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short trip while the long trip elasticity was fixed. It was found that promoting a

differentiated fare system may be viable to increase revenue, if the short distance trip

elasticity is greater than that for long trips or the number of long trips is greater than that

of short trips.

Chien and Spasovic (2001) considered realistic demand distributions and shapes

of service areas to optimize public transit facilities (e.g., route and station spacing),

operating headway, and fare. Sensitivity analyses were conducted for various pairs of

important variables and parameters. It was found that if demand and fare elasticity

increased, the optimal fare increased as well.

2.6 Summary

In summary, when designing a public transportation system, the service provider must

decide what level of service to provide (e.g., how frequently vehicles will be dispatched)

and what fare to charge. To maintain good financial health and provide adequate service

quality, the service provider has a challenging objective of maximizing profit. In this

study, the profit is defined as the total fare-box revenue minus the operator's cost, and the

variables considered here include service headway and fare corresponding to ranges of

travel distance.

The demand function in this study can be assumed to be linear for the

development of the transit system optimization model. The ridership can be represented

as the potential demand justified by a function of variables, such as service frequency and

fare. The fare elasticity considered in this study estimates the changes in ridership. It is

important for a transit company to have a good understanding of the nature of passenger
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demand, to develop differential fares that are both based on the operator's average cost

(e.g., cost per mile) and travel distance, while considering the travelers' willingness to

pay. This approach can help service providers quantify how much better off, in terms of

additional revenue and profit, they can be compared to the case of charging pure

distance-based rates.

In this study, the developed methodologies are to optimize distance-based fares

and service headway that will account for the sensitivity among the travelers traveling

different distances. Four different models are developed in Chapter 3 by considering both

given and variable ranges of travel distance for single and multiple time periods.



CHAPTER 3

METHODOLOGY

In this chapter, the objective functions for the four scenarios discussed in Chapter 1 are

formulated. The total profit objective considered in this research is the revenue minus

operator's cost, which is a function of fare and service frequency.

A set of system assumptions are made to formulate the research problem for each

scenario and associated constraints, which are discussed in Sections 3.1 through 3.4 for

Scenarios I through IV, respectively. The models are developed on a basis of the same

transit network configuration. However, the model parameters, such as elasticity of fare,

vary over the scenarios. The optimal solutions for each scenario are obtained considering

the joint impact of elasticity parameters as well as the distribution of spatial and temporal

demand for the studied intercity transit system.

3.1 Fixed RTD and Single Time Period — Scenario I

The base model formulated in Scenario I optimizes distance-based fare and service

headway for a single time period with a given RTD. To formulate the model, the system

assumptions, model formulation, constraints, and optimization problem are discussed in

the following sections.

3.1.1 System Assumptions

To formulate a mathematical model for optimizing an intercity transit system, the

following assumptions on system configuration (e.g., network configuration, station

34
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spacing between stops), supply relations (e.g., service pattern, transit travel time,

headway), demand characteristics (e.g., O-D demand, passengers' waiting time), and

distance-based fare are made.

1. A transit route with n stations and a matrix of station-to-station distances Lij

from station i to j as shown in Figure 3.1 is given. The RTD may be mandatorily
classified into three categories, such as short, medium and long travel distance.

2. All vehicles serve passengers boarding and alighting at every station in a
designated service route, and the station-to-station travel time is independent of
fare and service headway. The average speed is equal to the round trip route
length divided by round trip travel time, excluding terminal time. The round trip
travel time consists of operating time for the two directions between terminals,
denoted as Tv , and terminal time, denoted as TT . Note that the dwell time at

each station between the terminals is included in T r, . Thus,

3. Assume that the long distance trips are less elastic with respect to fare than short
distance trips. A weight factor is introduced to adjust unit fare per mile for
different RTD (See Figure 3.1). The weight factor of unit fare, denoted as y; , is

a constant but may vary with RTD. Note that z represents the index of RTD.
Thus, the weight factor of unit fare for short range of travel distance is denoted
as γs , and medium and long RTD are denoted as γ m  and y,, respectively.

4. The distance-based fare for a passenger traveling from station i to j, denoted as
Fri , is the product of unit fare (8), the weight factor of unit fare ( z ij ), and the

travel distance between stations i and j ( Lij ). Note that γzij for each
corresponding RTD decreases as the index of RTD (zij) increases from a short

to long distance range. Thus,

where i represents the departing station; j represents the destination station.



Figure 3.1 Studied transit route configuration and station-to-station distance.

36
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5. The average passenger wait time, denoted as tw , is assumed to be a fraction of

headway. Most intercity transportation systems, and especially trains, will
dispatch vehicles according to a posted schedule. Newell (1971) discussed that
the passenger arrival rate should follow a hypothetical smooth curve because the
probability of passenger arrival times are dependent on two adjacent vehicle
departure times, or headway denoted as H. The headway considered here is
fixed for the study time period, and the average passenger wait time can be
formulated as

(3.3)

where 13, the ratio of average wait time to the headway, can be determined by
service frequency, the actual passenger travel behavior and terminal/station
required processing time for each passenger.

6. The ridership (i.e., actual demand) from station i to j during the study time
period, denoted as Qij , can be estimated from a demand function formulated as

Equation 3.4. The potential hourly O-D demand for the study time period,
denoted as Yu , is sensitive to fare and level of service (e.g., the travel time of

passengers). Note that the elasticity parameter of fare, denoted as EF , is

constant within the same index of RTD, z.

The average in-vehicle time from station i to j during the study time period,
denoted as tl , can be referred to the operating schedule. The elasticity

parameters of wait time, denoted as EW , and in-vehicle time, denoted as E1 , are

constant. Note that the elasticity parameters are not actual elasticities. The ratio
between the elasticity parameter for wait time and fare determines the implied
value of wait time. Similarly, the ratio between the elasticity parameter for in-
vehicle time and fare determines the implied value of in-vehicle time.

3.1.2 Model Formulation

The objective profit function defines a range of possible combinations of fare, travel

demand, and service quality that are achievable by various conditions. The total profit

function, denoted as P, is defined as the total fare box revenue, denoted as R, minus the

operators' cost, denoted as C. Thus,

(3.5)
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Since the potential demand and all model parameters are fixed within the studied

time period in the model of Scenario I, the hourly revenue and operator's cost are

formulated on a hourly basis for estimating the profit. The revenue is the product of

actual hourly demand, denoted as Q./ and obtainable from Equation 3.4, multiplied by

the fare, denoted as Fij for all O-D pairs of i and j, where i, j E {l,2,..., n}. Thus,

(3.6)

The operator's cost, denoted as C, is defined as the cost of operating a transit

system, which is affected by the service frequency (or headway) and the costs of

maintaining the rail line and stations of the studied network. The hourly vehicle operating

cost, denoted as co , reflects the cost to maintain and repair vehicles (e.g., rolling stock

for train operation), and other administrative expenses associated with running vehicles

on the route. As formulated in Equation 3.7, the vehicle operating cost, denoted as Co , is

equal to the fleet size multiplied by the operating cost per vehicle-hour:

(3.7)

where N is given as the round trip vehicle travel time, denoted as TR , divided by the

headway , denoted as H. The fleet size is defined as the number of vehicles (or trains in

this study) needed for maintaining the desired service, which is an integer, and

[ r indicates that the fleet size, if not integer already, is rounded up. Thus,

(3.8)
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The unit transit line cost, denoted as cL , is related to the length of transit line and

includes maintenance of roadway, signal equipment, and administrative costs. The transit

line cost, denoted as CL , equals to the route length (L) multiplied by cL . Thus,

(3.9)

Similarly, the station cost, denoted as Cs , accounts for station maintenance

operation and costs, which is the number of stations multiply by the unit station cost,

denoted as cs . Thus,

(3.10)

Finally, the operator's cost, denoted as C, is the sum of Co , CL , and Cs . Note

that the transit line and station costs considered in this study are given (the costs of

station and route length are known), while the operator's cost varies with headway. Thus,

(3.11)

The revenue can be formulated by substituting the distance-based fare structure of

Equation 3.2 into Equation 3.6. Therefore, the hourly profit function can be derived by

substituting Equations 3.6 and 3.11 into Equation 3.5. Thus,

(3.12)

3.1.3 Constraints

Two practical constraints are considered in Scenario I. The first constraint, called

capacity constraint, ensures that the transit service operates at a sufficient capacity to

accommodate the design ridership. The second constraint, called fleet size constraint,

establishes the maximum capacity, i.e., it calculates the minimum headway that can be
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maintained given the route characteristics, such as round trip travel time and the available

fleet size. Therefore, bounds are placed on the optimal headway. It must not exceed the

headway at which the capacity accommodates the design ridership; meanwhile, it can not

be smaller than the minimum headway that can be attained.

Capacity Constraint

The capacity constraint is designed to ensure sufficient service capacity to accommodate

demand. The hourly capacity in each link is the maximum number of passengers that can

be loaded in a vehicle divided by the vehicle headway. To satisfy the capacity constraint,

the maximum design headway equals the hourly capacity divided by the maximum

demand through flow in link g. To this end, the optimized headway must not exceed the

maximum headway, denoted as H.. Thus,

where B is train capacity. Note that the product of B and the inverse of H. (called

minimum frequency) is equal to the maximum demand to be served.

In general, the demand from station i to j, the outbound (e.g., from 1 to n) demand

and inbound (e.g., from n to 1) demand of link g can be represented by 	 Og, and /g 9

respectively. Note that g, the index of links, varies between 1 and (n-1). With Equation

3.14, the maximum demand can be identified by calculating the number of inbound and

outbound trips on all links of the studied route.

(3.14)
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Figures 3.2 and 3.3 illustrate the example of the outbound and inbound demand

for all O-D trips that travel through link m, denoted as O. and /m , which can be

calculated by Equations 3.15 and 3.16, respectively. A link with the highest demand can

be identified from the outbound and inbound demand for any link g as discussed below.

Outbound demand of link m (Om ):

(3.15)

Figure 3.2 Configuration of outbound travel demand at link m.

Inbound demand of link m (I m ):

(3.16)

Figure 3.3 Configuration of inbound travel demand at link m.
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Fleet Size Constraint

The minimum headway during the study time period, denoted as Hmin , equals the round

trip travel time divided by the maximum operable fleet size, denoted as N' . Thus,

The optimal headway, denoted as H * , is governed by the maximum and

minimum headways formulated in Equations 3.13 and 3.17, respectively. Thus,

3.1.4 Optimization Problem

Based on the discussion from Sections 3.1.1 through 3.1.3, the studied fare and service

headway optimization problem that maximizes the hourly profit of transit service under

the condition of given RTD subject to the capacity and fleet size constraints is thus

formulated as follows:

Note that the objective function of P1 is given by Equation 3.12, while the constraint is

derived from Equations 3.13 and 3.17. Q. in Equation 3.13 is replaced by Equation

3.14.
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The optimal service design consists of the fixed optimal headway and fare. The

optimal service design problem, structured as P1, is a constrained non-linear optimization

problem. Assuming that the optimal headway will fall within the acceptable headway

range, the constraints can be relaxed; therefore, P1 can be solved as an unconstrained

optimization problem.

This is accomplished by first deriving formulae for the optimal headway and fare

structure. These are obtained by taking the partial derivatives of the profit function

(Equation 3.12) with respect to headway, unit fare and weight factor of unit fare, and

setting them equal to zero. By solving these equations with respect to the decision

variables yields a set of optimal solutions that maximize profit. The optimal headway,

unit fare, and weight factor of unit fare can be derived as follows:

If H* fulfils the constraints discussed in Equation 3.18, the solution is optimal.

Figure 3.4 shows that the optimal headway that maximizes profit is dependent on

its relationship vis-à-vis Hmin, and H.. Figure 3.4a shows that H * is within the feasible
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range; therefore, the optimal headway can be calculated using Equation 3.19. However,

in Figure 3.4b, the optimal headway is limited by H. and is calculated by Equation

3.13. Figure 3.4c, shows that the optimal headway is governed by Hmin that is achievable

on the route and is thus calculated using Equation 3.17. The solution algorithm to solve

P1 is discussed in Section 4.1.

Figure 3.4 Optimal headway for various feasible conditions (Single time period)
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3.2 Variable RTD and Single Time Period — Scenario II

The optimization model developed in Scenario II enhances Scenario I and optimizes RTD,

distance-based fare and service frequency. Similar to Scenario I, a single time period is

considered in Scenario II, in which each O-D demand is uniformly distributed within the

studied time period. The optimized RTD, including the number of ranges and the distance

of each range, can be determined by maximizing the objective hourly profit function.

The optimization problem considering variable RTD, service headways, and fare

for the study time period is a large combinatorial problem. It is a challenging task to

optimize all possible combinations of the numbers and RTD that best satisfy the given

objectives and constraints. A solution algorithm, called Genetic Algorithm, is developed

in Chapter 4 to search for the optimal solution. To formulate the optimization model, the

system assumptions, model formulation, constraints, and optimization problem are

discussed in the following sections.

3.2.1 System Assumptions

The model in Scenario II is developed mostly based on the assumptions discussed for

Scenario I, except that assumption of given RTD is released. Therefore, the formulation

of fare and demand are based on variable RTD. Thus, fare, service frequency, and RTD

can be optimized simultaneously. The assumptions of Scenario II are:

1. The transit route is referred to 3.1.1 item 1. The maximum number of RTD,
denoted as q , is based on the number of stations, denoted as n, which is equal to

(2) . The travel distance at range z is between dzij-1 and dzij as shown in Table

3.1. Note that zij is the index of RTD, which varies from 1 to q.

2. The round trip travel time is the same as in Assumption 2 discussed in Section
3.1.1
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3. A more general classification of the weight factor of unit fare during the study
time period, denoted as γzij , is shown in Table 3.1.

4. The distance-based fare is the product of unit fare (8 ), the weight factor of unit
fare (γzij), and the travel distance between stations i and j (La ). Note that y; for

each corresponding RTD decreases as the index of RTD ( ) increases from

short to long distance range. Thus,

(3.22)

5. The average wait time is the same as Assumption 5 discussed in Section 3.1.1.

6. The fare elasticity parameter from station i to j, denoted as EFij, varies by each

O-D pair. The hourly ridership (i.e., actual demand) can be estimated by using a
demand function as

(3.23)

where the potential hourly O-D demand for the study time period, denoted as Y ij ,

is sensitive to fare and level of service (e.g., the travel time of passengers). The
average in-vehicle time from station i to j during the study time period, denoted as

, can be obtained from the operating schedule. Elasticity parameters of wait

time, denoted as EW , and in-vehicle time, denoted as El , are constant.

Table 3.1 Weight Factors of Unit Fare by Different RTD (Single Time Period)
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3.2.2 Model Formulation

The total profit function for Scenario II can be obtained from Equation 3.5 in Scenario I.

The hourly revenue and operator's cost are formulated to calculate the hourly profit. The

revenue is the product of hourly demand multiplied by fare which can be formulated by

substituting the distance-based fare of Equation 3.22 into Equation 3.6. Furthermore, the

hourly operator's cost has been formulated in Scenario I as the sum of vehicle operating

cost, transit line cost, and station cost as Equation 3.11. Therefore, the hourly profit

function can then be derived by substituting Equations 3.6 and 3.11 into Equation 3.5.

Thus,

Note that the ridership and fare varies with the optimized number of RTD,

denoted as q*, corresponding with the weight factor of unit fare for each RTD, which

yields the maximum total profit.

3.2.3 Constraints

The capacity and fleet size constraints considered in Scenario I are both used in Scenario

II. Since the weight factor of unit fare is determined based on the optimized RTD, the

estimation of hourly demand can be calculated by Equation 3.23. Meanwhile, the

capacity and fleet size constraints can be determined by Equations 3.13 and 3.17,

respectively. The optimal headway during the studied time period is governed by the

minimum and maximum headways as shown in Equation 3.18.
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3.2.4 Optimization Problem

Based on the discussion from Section 3.2.1 through 3.2.3, the studied fare and service

headway optimization problem that maximizes the hourly profit of transit service under

the optimized numbers and RTD subject to the capacity and fleet size constraints is

formulated as follows:

Note that the objective function of P2 is given by Equation 3.24, while the

constraint is derived from Equations 3.13 and 3.17. Fij and Qij are calculated by

Equations 3.22 and 3.23 based on the optimized RTD.

Optimizing the number of RTD, denoted as q* to yield the maximum profit

operation while considering the joint impact of fare and service frequency, is a large

combinatorial problem. A GA is used to solve P2 as discussed in Chapter 4.

The general procedure to solve P2 is an iterative process, which first determines

the feasible RTD, and therefore, the decision variables (e.g., headway, fare) can be

optimized by taking the partial derivatives of the profit function (Equation 3.24) with

respect to headway, unit fare and the weight factor of unit fare, and setting them equal to

zero. To solve these equations with respect to the decision variables yields a set of
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optimal solutions that maximize profit. The optimal headway, unit fare, and weight factor

of unit fare can be derived as follows:

If H* fulfils the constraints discussed in Equation 3.18, the solution is optimal.

The solution algorithm for P2 is discussed in Section 4.2.

3.3 Fixed RTD for Multiple Time Periods — Scenario III

The model developed in Scenario III considers temporal distance-based fare and service

headway with given RTD. It enhances Scenario I by considering that the daily operation

is sensitive to temporal demand in peak and off-peak hours. The system assumptions,

model formulation, constraints, and optimization problem for daily operation are

discussed next.

3.3.1 System Assumptions

The Scenario III model considers temporal O-D demand, waiting time, and fare with

given RTD. The assumptions made for formulating the model are discussed below:
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1. The transit route and corresponding RTD is the same as in Assumption 1
discussed in Section 3.1.1.

2. The round trip travel time is the same as in Assumption 2 discussed in Section
3.1.1.

3. The weight factor of unit fare, denoted as γ tzij , is a constant but may vary with

RID and time periods (e.g., peak and off-peak). While considering the
differentiated fare for peak and off-peak periods, the weight factors of unit fare
for short, median, and long range of travel distance during time periods t are
denoted as γts ,,y, , andy; ,respectively.

4. The temporal distance-based fare for passengers traveling from stations i to j
during the study time periods, denoted as F , is the product of the time

differential unit fare (8`) and weight factor of unit fare ( y: ). Note that γtzij for

each corresponding RTD decreases as the index of RTD ( z ij ) increases from

short to long distance range. Thus,

(3.28)

5. The average passenger wait time is determined by the temporal headway. Thus,
the average wait time can be formulated as

(3.29)

where p , the ratio of average wait time to headway, can be determined by
service frequency, the actual passenger travel behavior and terminal/station
required processing time for each passenger. H' denotes the temporal headway.

6. The hourly ridership (i.e., actual demand) and potential O-D travel demand from
station i to j during multiple time periods, denoted as Y tijand a ft , can be

estimated from a demand function formulated in Equation 3.30. Thus,

where the average in-vehicle time from station i to j during the study time period,
denoted as t, . , can be obtained from the operating schedule. The elasticity

parameters of wait time, denoted as EW , and in-vehicle time, denoted as El , are
constant.
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3.3.2 Model Formulation

The objective total profit function for Scenario III is obtained from a modified Equation

3.5 discussed in Scenario I by considering daily revenue and operator's cost due to

temporal demand. The daily revenue is the product of operation hours (e.g., peak and off-

peak periods) multiplied by hourly ridership, denoted as Qt ijand obtained from Equation

3.30, and temporal fare, denoted as F„; for all O-D pairs of i and j, where i, j E 	 n}.

Thus,

(3.31)

where D' is the number of operation hours during period t, and n represents the number

of stations on the route.

The daily vehicle operating cost is the product of fleet size, denoted as N' ,

multiplied by the number of operation hours (e.g., peak and off-peak periods), denoted as

, and hourly vehicle operating cost, denoted as co , for peak and off-peak hours. The

daily operating cost and fleet size are respectively formulated as Equations 3.32 and 3.33:

where N' is fleet size and equal to the round trip vehicle travel time, denoted as TR ,

divided by the headway, denoted as H' . The fleet size is integer and [ ]
+ 

indicates that

the fleet size, if not integer already, is rounded up.



52

The unit transit line cost, denoted as CL , and the unit station cost, denoted as cs ,

considered in this study are fixed in different time periods. Thus, the daily transit line

cost and station cost are shown in Equations 3.34 and 3.35, respectively.

(3.34)

(3.35)

Finally, the operator's cost, denoted as C, is the sum of Co , CL , and Cs . Thus, the daily

operator's cost is shown in Equation 3.36.

(3.36)

The revenue can be formulated by substituting temporal distance-based fare (e.g.,

Equation 3.28) into Equation 3.31. Therefore, the daily profit function can then be

derived by substituting Equations 3.31 and 3.36 into Equation 3.5. Thus,

(3.37)

3.3.3 Constraints

The capacity and fleet size constraints considered in Scenario I are used in Scenario III.

However, the capacity constraints are dominated by temporal demand. Note that the

operable fleet size is fixed in any time period of the day.

Capacity Constraint

The maximum design headway during time periods t, denoted as H tmax ,  ensures that the

capacity is greater than or equal to the maximum demand. The hourly capacity, denoted

as 13 1 , equals to the train capacity, denoted as B, divided by temporal headway:



53

(3.38)

To satisfy the capacity constraint, I,' must be greater than or equal to the

maximum demand through flow in link g, denoted as Q; ,ax . Thus, from Equation 3.39,

the maximum headway, denoted as Hint is derived as:

(3.39)

In general, the demand from station i to j, the outbound (e.g., from 1 to n) demand

and inbound (e.g., from n to 1) demand of link g can be represented by Q 	 0g , and

Itg , respectively. Note that g , the index of links, varies between 1 and (n-1). With

Equation 3.40, the maximum demand can be identified by calculating the number of

inbound and outbound trips on all links of the studied route for the study time period.

(3.40)

Fleet Size Constraint

Since the operable fleet sizes are constant for peak and off-peak periods, the minimum

headway, denoted as H t . , can be obtained from the same equation as Scenario I. Thus,

(3.41)

The optimal headways for the multiple time periods, denoted as H t* , are governed by the

maximum and minimum temporal headways as shown in Equation 3.42.

(3.42)
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3.3.4 Optimization Problem

Based on the discussion from Section 3.3.1 through 3.3.3, the studied temporal fare and

headway optimization problem that maximizes the daily profit of transit service under the

condition of given RTD subject to the capacity and fleet size constraints is thus

formulated as follows:

Note that the objective function of P3 is formulated in Equation 3.37, while the

constraints are derived in Equations 3.39 and 3.41. Q tmax in Equation 3.39 is replaced by

Equation 3.40.

The optimal service design consists of the temporal optimal headway and fare.

The optimal service design problem, structured as P3, is a constrained non-linear

optimization problem. Assuming that the optimal headway will fall within the acceptable

headway range, the constraints can be relaxed; therefore, P3 can be solved as un-

constrained optimization problems.

This is accomplished by first deriving formulae for the optimal headway and fare

structure. These are obtained by taking the partial derivatives of the profit function

(Equation 3.37) with respect to headway, unit fare and the weight factor of unit fare, and

setting them equal to zero. By solving these equations with respect to the decision
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variables yields a set of optimal solutions that maximize profit. The optimal temporal

headway, unit fare, and weight factor of unit fare can be derived as follows:

If Ht * fulfils the constraints discussed in Equation 3.42, the solution is optimal.

Figure 3.5 shows that the optimal headway that maximizes profit is dependent on

its relationship vis-a-vis H I . and Ht max . Figure 3.5a shows that H i* is within the

feasible range; therefore, the optimal headway can be calculated using Equations 3.43

and 3.44. However, in Figure 3.5b, the optimal headway is limited by Htmax  and is

calculated by Equation 3.39. Figure 3.5c, shows that the optimal headway is governed by

the H i that is achievable on the route and is thus calculated using Equation 3.41. The

solution algorithm to solve P3 is discussed in Section 4.1.



56

Figure 3.5 Optimal headway for various feasible conditions (Multiple time periods).

3.4 Variable RTD for Multiple Time Periods — Scenario IV

The optimization model developed in Scenario IV enhances Scenario III and optimizes

RTD, temporal distance-based fare and headway. Similar to Scenario III, the daily

operation hours including peak and off-peak periods are considered in the optimization

model. The optimized RTD, including the number of ranges and the distance of each
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range, can be determined by maximizing the objective daily profit function. The

developed model is to find all possible combinations of RTD that best satisfy the given

objectives and constraints, which can be used for the operator's decision making. To

formulate the optimization model, the system assumptions, model formulation,

constraints, and optimization problem are discussed in the following sections.

3.4.1 System Assumptions

The model in Scenario IV is developed mostly based on the assumptions discussed in

Scenario III, except that the assumption of given RTD is relaxed. Therefore, the

formulation of fare and demand are based on variable RTD during peak and off-peak

periods. The assumptions of Scenario IV are:

1. The transit route and corresponding RTD is the same as in Assumption 1
discussed in Section 3.2.1.

2. The round trip travel time is the same as in Assumption 2 discussed in Section
3.1.1.

3. A more general classification of the weight factor of unit fare for the study time
periods, denoted as y ,̀ij, , is shown in Table 3.2.

4. The temporal distance-based fare for the study time periods, denoted as F: , is

formulated as the product of time differential unit fare (6' ) and weight factor of
unit fare (γtzij ). Note that γtzij for each corresponding RTD decreases as the index

of RTD (z ij ) increases from short to long distance range. Thus,

5. The average wait time is the same as in Assumption 5 discussed in Section 3.3.1.

6. The elasticity parameter of fare from station i to j, denoted as EF , varies by

each O-D trip. Thus, the hourly ridership (i.e., actual demand) during multiple
time periods can be estimated through an assumed demand function shown in
Equation 3.48.
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(3.48)

where the average in-vehicle time from station i to j during the study time period,
denoted as t1  , can be referred to the operating schedule. Elasticity parameters of

wait time, denoted as EW , and in-vehicle time, denoted as E1 , are constant.

Table 3.2 Weight Factors of Unit Fare for Different RTD (Multiple Time Periods)

3.4.2 Model Formulation

The total profit function for Scenario IV is the same as defined in Equation 3.5 for

Scenario I. The daily revenue and operator's cost are calculated to formulate the daily

profit. The daily revenue is the product of daily operation hours multiplied by hourly

demand fare which can be formulated by substituting the temporal distance-based fare of

Equation 3.47 into Equation 3.31. The daily operator's cost is defined the same way as in

Scenario III by calculating the summation of vehicle operating cost, transit line cost, and

station cost in Equation 3.36. Therefore, the daily profit function can then be derived by

substituting Equations 3.31 and 3.36 into Equation 3.5. Thus,
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3.4.3 Constraints

The capacity and fleet size constraints considered in Scenario II are both used in Scenario

IV. Since the weight factor of unit fare is determined based on the optimized RTD by

different time periods, the ridership during peak and off-peak periods can be calculated

by using Equation 3.48. Meanwhile, the capacity and fleet size constraints can be

determined by using Equations 3.39 and 3.41, respectively. The optimal headways during

the multiple time periods are governed by the minimum and maximum headways as

shown in Equation 3.42.

3.4.4 Optimization Problem

Based on the discussion from Sections 3.4.1 through 3.4.3, the studied fare and headway

optimization problem that maximizes the daily profit of transit service under the

condition of optimized RTD subject to the capacity and fleet size constraints is

formulated as follows:

Note that the objective function of P4 is given by Equation 3.49, while the constraint is

derived from Equations 3.39 and 3.41. F: and Q tij are calculated by Equations 3.47 and

3.48 based on the optimized RTD.



60

Optimizing the number of RTD, denoted as q* to yield the maximum daily profit

operation, while considering the joint impact of temporal fare and headway, is a large

combinatorial problem. This research uses a GA to solve P4, which is discussed in

Chapter 4.

The general procedure to solve this problem is an iterative process, which first

determines a feasible RTD and therefore, the decision variables of temporal headway and

fare can be optimized by taking the partial derivatives of the profit function (Equation

3.49) with respect to headway, unit fare and the weight factor of unit fare, and setting

them equal to zero. By solving these equations with respect to the decision variables

yields a set of optimal solutions that maximize profit. The optimal temporal headway,

unit fare, and weight factor of unit fare can be derived as follows:

If Ht* fulfils the constraints discussed in Equation 3.41, the solution is optimal.

The solution algorithm to solve P4 is discussed in Section 4.2.
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3.5 Summary

In this chapter, the objective total profit functions and sets of constraints for Scenarios I

through IV were formulated. The developed models are based on the assumptions and

constraints summarized in Table 3.3; and the decision variables used in each model

include unit fare (e.g., 5 in Scenarios I and II, and 5 in Scenarios III and IV), service

headway (e.g., H in Scenarios I and II, and H' in Scenarios III and IV), weight factor

of unit fare (e.g., γzij in Scenarios I and II, and γ tzijin Scenarios III and IV), the number

of RTD (e.g., given in Scenarios I and II, and q * to be optimized in Scenarios II and IV),

and the index of travel distance at range z ij (dzij, where z=- 1, 2, ..., q) are summarized in

Table 3.4. Note that the index of travel distance range (zij ) is determined based on the

optimized number of RTD (q * ).

While considering the given RTD in Scenarios I and III, the optimization model

can be solved by using the modified Gauss-Southwell method to optimize differentiated

fares and headways. However, the combination and interdependent relations among the

decision variables in Scenarios II and IV has an enormous number of decision variables

to be optimized. By employing the Genetic Algorithm developed in Chapter 4, the

combinatorial optimization problem of fare and headway with variable RTD can be

solved.
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Table 3.3 Characteristics of Models for Scenarios I through IV

Scenario I	 Scenario II	 Scenario III	 Scenario IV

System Assumptions:

Geometric Given 	 Given 	 Given 	 Givenconfiguration

Service pattern	 Serve every 	 Serve every 	 Serve every 	 Serve every
stop 	 stop 	 stop 	 stop

Elasticity	 Fixed in each 	 Fixed in eachVary with O-D 	 Vary with O-Dparameter of fare 	 RTD 	 RTD

O-D demand	 Peak 	 Peak 	 Temporal 	 Temporal

Waiting time	 Peak 	 Peak 	 Temporal 	 Temporal

Constraints:

Capacity	 Peak 	 Peak 	 Temporal 	 Temporal

Operable fleet Given 	 Given 	 Given 	 Givensize

Table 3.4 Decision Variables in the Models for Scenarios I through IV

Decision Variables Scenario I Scenario II	 Scenario III	 Scenario IV

Number of RTD

Travel distance
range

Unit fare

Weight factors of
unit fare

Headway
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CHAPTER 4

SOLUTION ALGORITHMS

As discussed previously in this dissertation, the objective of this study is to develop

models, discussed in Chapter 3, which maximize the total profit functions for Scenarios I

through IV. The decision variables of the developed models include fare, service

headway, and RTD. Due to the various combinations and interdependent relation among

these decision variables summarized in Section 3.5, the studied optimization problem has

an enormous number of decision variables to be optimized.

This chapter presents a successive substitution method (i.e., modified Gauss-

Southwell method) to optimize differentiated fares and service headways for solving

fixed RTD problems discussed in Scenarios I and III. The RTD is treated as a decision

variable in Scenarios II and IV, making the models combinatorial optimization problems

due to the combination and interdependent relationships among the decision variables. A

solution algorithm, called Genetic Algorithm (GA), is also developed in this chapter to

search for the optimal solution.

The successive substitution method for Scenarios I and III is discussed in Section

4.1, and the developed GA for Scenarios II and IV is discussed in Section 4.2.
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4.1 Fixed RTD in Scenarios I and III

4.1.1 Successive Substitution Method

The objective function of the profit maximization problem formulated in Chapter 3.1 is a

multi-dimensional function for a single time period. Several purely numerical algorithms

are available to solve such a multi-dimensional optimization problem, including

variations of the Conjugate Gradient method (Hestenes and Stiefel, 1952), Powell's

method (Powell, 1964), and Variable Metric methods (Press et al. 1992). However, a

more efficient optimization method has been used in this study using ideas similar to the

Gauss Southwell (1989), and Powell methods. The basic concept of the optimization

method is to derive, for each decision variable, the gradient vector by setting the first

derivative of the objective function with respect to each decision variable equal to zero

and solving it.

In the Gauss Southwell method, changes in a single decision variable are allowed

in seeking a new gradient vector. Unlike the Gauss Southwell method, the method used

here is a modified Gauss Southwell (1989) method, also called the successive substitution

method by Chien and Schonfeld (1997). The successive substitution method used here

allows changes in all decision variables within each iteration. The method provides an

efficient way to find an ascent direction in searching for optimal solutions by computing

the components in the gradient vector sequentially and iteratively.

A numerical successive substitution method is used to optimize differentiated fare

and headway for the given RTD. Since RTD are fixed in Scenarios I and III, the decision

variables of fare and headway can be optimized by maximizing the total profit with
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successive substitutions through numerous iterations. Meanwhile, the concavity of the

objective function must be verified to guarantee that the optimized solution is unique.

The successive substitution method is employed to search for the optimal solution

for fixed RTD problems, which is described below and shown in Figure 4.1.

Step 1: Select a set of initial solutions for all decision variables (e.g., unit fare (8 ),

the weight factor of unit fare (γzij ), service headway (H)) and give a

solution tolerance limit (6 ).

Step 2: Start the iteration counter (k).

Step 3: Calculate the optimal decision variables by using Equations 3.17 through

3.19; and compute the actual ridership with Equation 3.4.

Step 4: Check the optimal headway. If it falls within the range specified by

Equations 3.14 and 3.15, then set H * as the optimal service headway. If

not, H * is obtained from one of the governing bounds as indicated in

Figure 3.2.

Step 5: Determine the required fleet size (N) with Equation 3.8 and re-calculate all

decision variables and the objective value.

Step 6: Record the values of all decision variables and the objective function.

Step 7: Compare the objective solution. If it is sufficiently close, stop. The

optimal solution has been reached. Otherwise, go to Step 2 and advance

the iteration counter.

Step 8: Check the Hessian matrix. If all nonzero principal minors have the same

sign as (-1)h, where h is the order of partial derivatives, a global solution

of maximum profit is reached. Otherwise, a local maximum is obtained.
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Step 9: Report the optimal solution and stop.

First, create an initial set of non-negative initial values for the decision variables.

Secondly, the sequence for calculating the optimal solution is developed according to the

relative importance of each variable in influencing the objective function with capacity

constraints. The provisional solutions are obtained by the sequence of headway, unit fare,

and weight factor of unit fare. Corresponding to the initial values from Step 1 or a

provisional set of values from the previous iteration, an updated provisional set of

optimal decision variables can be calculated by means of the derivative equations

developed in Step 3. The optimal headway should be located within the bounded

headway in Step 4, and the corresponding required fleet size is obtained in Step 5. After

all decision variables have been calculated, the entire process is repeated until adequate

convergence has been attained in Steps 6 and 7. The optimality test is implemented by

calculating the Hessian matrix of the total profit function to verify whether the maximum

solution is obtained.
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LEGEND
M: Maximum number of

iterations
k : Iteration counter
E : Tolerance limit
13(k) : Profit at iteration k
N: Fleet size

Figure 4.1 Flow chart of the modified Gauss-Southwell method.



4.8. The three diagonal entries of ) are represented as first-
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4.1.2 The Hessian Matrix

To determine the convexity of an objection function, evaluating the values of the second

derivative of the objective function to each decision variable is required. The square

matrix of second-order partial derivatives of the objective function is known as the

Hessian matrix. The objective function is a concave function if and only if all nonzero

principal minors have the same sign as (-1)", where h is the order of partial derivatives

based on the number of variables. Assume that the objective function of profit

maximization has continuous second-order partial derivatives for all decision variables

[e.g., unit fare (8), service headway (H ), and the weight factor of unit fare (γe,. )]. The

necessary and sufficient conditions for a maximum result are that the Hessian

determinants are all satisfied within the range of interest for the design variables.

The example below indicates an objective function, denoted as P, with three

decision variables [e.g., unit fare (8), service headway (H), and the weight factor of unit

fare (γ). Thus, the Hessian matrix, denoted as Hx , is expressed by

(4.1)

The total of seven principal minors of H x is obtained by Equations 4.2 through

order principal minors shown in Equations 4.2 through 4.4, while the three second-order
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principal minors are calculated by deleting corresponding rows and columns for each

variable shown in Equations 4.5 through 4.7. The third-order principal minor is the

determinant of Hx as shown in Equation 4.8. To determine the concavity of the profit

function, the determinant of first- and third-order principal minors in Equations 4.2

through 4.4 and Equation 4.8 should be definite negative; and the second-order principle

minors in Equations 4.5 through 4.7 should be positive definite. If the principal minors

violate one of the checking criteria for any point, the objective function is neither

concave nor convex. Therefore, the optimal solution obtained for the profit maximization

problem is a local optimum. Each of the Hessian determinants can be calculated using

Equations 4.2 through 4.8.

By deleting rows and columns 2 and 3 of the Hessian matrix, the first-order

principal minor is derived as

(4.2)

Similarly, by deleting rows and columns 1 and 3 (and 1 and 2) of the Hessian matrix, the

first-order principal minors are derived as Equation 4.3 (and 4.4) respectively.

(4.3)

(4.4)

By deleting row 1 and column 1 of the Hessian matrix, the second-order principal minor

is derived as
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By deleting row 2 and column 2 of the Hessian matrix, the second-order principal minor

is derived as

By deleting row 3 and column 3 of the Hessian matrix, the second-order principal minor

is derived as

The third-order principal minor is simply the determinant of the Hessian itself.

Expanding by row 1 of the cofactors, the third-order principal minor is derived as

In general, suppose f(x„x2,...,xm) has continuous second-order partial

derivatives for each point x = (x 1 , x2 ,..., x,,,) E S . Then f(x,,x2 ,...,xm) is a concave

function on S, if and only if, for each x E S and k=1,2,...,m , all nonzero principal
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minors have the same sign as (-1) k . The total numbers of principal minors for a m x m

Hessian matrix are calculated by

(4.9)

Table 4.1 indicates that the total number of principle minors increase dramatically

when the number of decision variable increases, especially in solving the variable RTD in

Scenarios II and IV. The optimality test of the Hessian matrix in calculating the principal

minors becomes an encumbrance of the solution method. Therefore, GA is used to

maximize the total profit achieved by the optimal RTD in Scenarios II and IV.

Table 4.1 Number of Decision Variables and Principal Minors

Number of decision
variables (m)

Number of principle
minors

4.2 Variable RTD in Scenarios II and IV

4.2.1 Genetic Algorithm

The objective function of profit maximization problem formulated in Scenarios II and IV

are enhanced from models developed for Scenarios I and III respectively, by treating

RTD as a decision variable. This enhancement results in the studied problem become

combinatorial optimization problems. In Scenarios II, the decision variables are

determined by the unit fare (8), service headway (H ), weight factor of unit fare ( ),
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number of RTD (q*), and the index of travel distance range zij (dzij), where zij varies

from 1 to q* . Therefore, the total number of decision variables in Scenario II are

f (2n )t( * x (2q * +3) }. However, considering temporal unit fare (6"), service headwayq i 

(11'), weight factor of unit fare ( ), number of RTD (q*), and the index of travel

distance range z ij (di ) in Scenario IV, the total number of decision variables increases to

The developed GA is used to search for the maximum total profit for various

combinations of RTD. Assuming that the service line with n stations consists of (z) pairs

of unique O-D travel distance (La ), the total number of decision variables for three RTD

in Scenarios II and IV can be derived by Equations 4.10 and 4.11, respectively.

(4.10)

(4.11)

The number of decision variables for each RTD in Scenarios II and IV can be

estimated based on equations summarized in Table 4.2, which increases more than

exponentially as the number of RTD increases. Figure 4.3 indicates that more than

100,000 decision variables, consisting of the combinations of RTD and corresponding

variables, need to be generated when the number of RTD is 5 and greater.



Table 4.2 Number of Decision Variables for Different RTD
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Figure 4.2 Total number of decision variables vs. RTD of Scenario II.
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The GA procedure developed is different from a successive substitution method

in three ways: (a) GA works with a coded variable set, not the variables themselves, (b)

GA uses the objective profit function to determine the optimized RTD, and (c) GA uses

probabilistic transition rules, not deterministic ones.

The successive substitution method discussed in the Section 4.1 is very costly to

use to optimize RTD and other decision variables because Scenarios II and IV are

combinatory optimization problems. Therefore, GA with the mechanics of natural

selection and natural genetics is developed and used to search for the optimal solutions

which yield maximum total profit. Note that the studied profit maximization problem is a

mixed-integer, non-linear, and constrained optimization problem.

As discussed in the literature review, GA is a stochastic algorithm which mimics

the natural phenomena of genetic inheritance and Darwinian strife for survival

(Michalewicz, 1999) to search for the optimal solution. Although there are many possible

variants of GA, the fundamental concept is based on the Simple Genetic Algorithm (SGA)

by Holland (1992). The seminal work introduced by Holland was commonly used as an

adaptive approach that provides a randomized, parallel, and global search based on the

mechanics of natural selection and genetics to find solutions of a problem. Generally,

within a GA operation four major components are involved as discussed below:

1. A criterion for evaluating the performance of a solution. In this study, the
maximum total profit is the criterion to determine the optimal RTD.

2. A genetic representation for encoding feasible solutions. An efficient genetic
representation needs to accommodate all decision variables and reduce the
difficulties of encoding a solution, which is a key component of GA. An
efficient data structure can also facilitate the processes of generating new
valid solutions and reducing computation time. In this study, the developed
integer string is designed to transform the problem of optimizing RTD
concerning a distanced-base fare to a GA, which is discussed in Section 4.2.2.
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3. A reproduction process to produce offspring solutions. Crossover and
mutation operations corresponding to the genetic representations were
developed to generate new solutions in the potential solution space, which are
discussed in Sections 4.2.3.

4. A constraint checking method to direct the search of feasible solution space is
needed to verify the constraints defined in Section 4.2.4.

In general, GA starts with some randomly selected genes as the first generation,

called population. Each individual in the population corresponding to a solution in the

problem domain is called chromosome. The criterion of an objective function, called

fitness function, is used to evaluate the performance of a solution (e.g., total profit) of

each chromosome. The chromosomes with higher profit will survive and form the new

population of the next generation. Therefore, the equality of the new generation, in terms

of profit, is always superior to the one generated in the previous iteration. To recombine a

new generation to find the best solution, three operators: reproduction, crossover, and

mutation were used. The process is repeated until a predefined condition is satisfied or a

constant number of iterations are reached. The predefined condition in this study is the

situation when we can eventually reach the maximum total profit.

The developed GA in this study for searching the optimal RTD includes two

major operations: RTD generation and genetic operation. To generate all feasible travel

distance ranges, each pair of O-D travel distance (La ) of the service route is selected and

sorted in an ascending order. Note that the duplicated O-D travel distances will be

eliminated and only a unique O-D travel distance is considered as a feasible boundary.

The developed GA consists of three genetic operators (e.g., reproduction,

crossover, and mutation), which incorporate the ideas of survival of the fittest and genetic

selection processes, which begins with defining the objective function, numbers of genes,
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sizes of population (e.g., population pool), crossover rate, critical value and mutation rate.

Then, a step procedure for implementing the genetic operation is performed, which is

summarized below and shown in Figure 4.3.

Step 1: Generate a group of random feasible solutions (e.g., RTD, unit fare, and

weight factor of unit fare). Then, the GA starts with the initial group of

solutions as the first generation, called the population pool.

Step 2: Translate integers into real numbers for each corresponding chromosome.

Then, calculate the service headway by using Equation 3.23.

Step 3: Calculate the objective value of total profit for each chromosome.

Step 4: Select the solutions with good performance to reproduce new solutions

(i.e., offspring) in accordance with the elitist selection method discussed in

Section 4.2.3.

Step 5: Obtain the new generation by recombining the preceding chromosomes

(e.g., the solutions selected in Step 4) using crossover and mutation. Thus,

a new population pool is formed for the next generation.

Step 6: Apply the constraints discussed in Section 4.2.3 to verify that each new

solution satisfies the constraints.

Step 7: Terminate the GA processes and output the optimized solutions if the

predefined stop-criteria (e.g., maximum iterations or maximum total profit)

are reached. Otherwise terminate. Repeat Steps 1 to 6 until a predefined

condition is satisfied, or a constant number of iterations is reached.
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Generate initial solution poolGA Starts

Translate integers into real
numbers

Calculate the objective value for
each chromosome

Implement the elitist selection

Reproduce the fitness according
the fitness value

Recombine new chromosomes
by crossover and mutation

Compute the total profit

Satisfy the predefined
condition?

Obtain the best solutions GA Ends

Figure 4.3 Flow chart of the developed Genetic Algorithm.
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4.2.2 Encoding and Decoding Schemes

This section introduces the encoding and decoding scheme of the genetic representation.

The procedures of reproduction, crossover and mutation as well as the constraint

handling method are discussed in Sections 4.2.3 and 4.2.4, respectively. To apply GA to

the studied profit maximization problems, a chromosome, denoted as G , consisting of

three parts of genes is encoded as shown in Figure 4.4. An integer string consisting of a

series of cells is designed to represent various travel distance ranges, denoted as Part 1,

the corresponding unit fares, denoted as Part 2, and weight factors of unit fare, denoted as

Part 3.

Figure 4.4 Encoding scheme of a chromosome representation.

In Part 1, an integer attribute is assigned to define the genes corresponding to each

unique pair of O-D travel distance (La ) by ascending order, while "1" represents that the

boundary of RTD is selected and "0" represents that it is not selected. An integer attribute,
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denoted as gk , is assigned to define the boundary of RTD is selected or not, as indicated

in Equation 4.12.

The genes decoded in Parts 2 and 3 correspond to the value of unit fare (8) and

the weight factor of unit fare ( ), respectively. Note that the unit fare is represented by

a binary string with ten-digit genes in Part 2. In Part 3, each set of ten-digit genes

corresponds to γzij is also represented by the binary string, while z varies between 1 and

the optimal number of RTD denoted as q* . Therefore, the total number of genes in Part

3 is (10 x q). In Figure 4.4, the number of genes in Part 1 for single and multiple time

periods are consistent, however, they are doubled in Parts 2 and 3 when both the peak and

off-peak periods are considered.

For example, the studied transit route having seven stations and 19 unique O-D

pairs of travel distance (e.g., excluding two duplicated pairs of travel distance) is

illustrated in an ascending order in the first column of Table 4.3, while the gene is

decoded as "1" or "0" in the second column with corresponding to each travel distance.

The integer attribute (gk , k=1,2, ...,19) of this example is (0000000100000000000). Note

that "1" represents that the boundary of RTD is selected and "0" represents that it is not

selected. Therefore, the example indicated that the boundary of RTD locates at O-D

travel distance of 58.8 mile, and two RTD between the range of 0 Lij 58.8 and

58.8 < L ij 211.9 are assigned and shown in the third column of Table 4.3.



Table 4.3 Usage of the Genes in Part 1
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The unit fare ( 8 ) is encoded in Part 2 of the chromosome as shown in Figure 4.4.

The unit fare is defined as a real number in the range of (0-1), and it can be decoded

based on the binary ten-digit genes illustrated in the first row of Table 4.4. The value (e.g.,

third row) represented in Table 4.4 is calculated by multiplying each binary gene,

denoted as gk , and factor, denoted as 2 k1 , where gk is the value of kth gene and

k=1,2,...,10. For instance, the representation of the ten-digit genes (1011011000) can be

translated into real numbers of unit fare by using Equation 4.13.



Table 4.4 Representation of the genes in Part 2
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where gk is the value of kth gene and k varies from 1 to 10.

The weight factor of unit fare (γ ) is encoded in the Part 3 of the chromosome as

shown in Figure 4.4. The maximum number of 19 possible boundaries is considered to

determine the optimal RTD in this study. Therefore, a total number of 190 and 380 genes

are designed to determine the value of weight factor for single (e.g., Scenario II) and

multiple (e.g., Scenario IV) time periods, respectively. The γ zij for each RTD can be

calculated based on the binary string of ten-digit genes and translate into real numbers.

While considering that the elasticity parameter of fare (EFL ) varies with distance between

an O-D pair, the maximum profit is reached by sorting the γzij in a descending order with

γzij =1 in the longest travel distance.

γzij is defined as a real number between 1 and 2, and it can be decoded based on

the ten-digit genes illustrated in Table 4.5 for two RTD. The value of each travel distance

range (z ij ) is calculated by multiplying each binary gene, denoted as 	 and factor,

denoted as 2" , where g4 is the value of the k th gene at travel distance range (zij ), and



82

k varies between 1 and 10. The calculated values for each 	 are sorted by a descending

order, and 7; for each zij can be formulated in Equation 4.14. An example indicated in

Table 4.5 represents two sets of genes, Ti (1101011101) and 72 (0010111111), which

can be translated into real numbers by using Equation 4.14.

Table 43 Representation of the Genes in Part 3

(4.14)

where g is the value of kth gene at travel distance range ( z ij ) and k=1,2,...,10. Note

10

that min {E gk  x 2k-1 } is retrieved from the minimum value of the descending order.
k=1

4.2.3 Reproduction, Crossover, and Mutation

The performance of each solution is evaluated by a fitness function (i.e., total profit). For

profit maximization problems, the solution with a higher total profit is identified as a
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better solution with greater probability to be selected to reproduce new solutions in the

next generation. A straightforward GA selection method is used to insure that the new

generation is produced based on the chromosomes having superior evaluation values in

the current generation. Note that in each generation, the new population is generated by

the operations of reproduction, crossover, and mutation. The size of the new population is

the same as the size of the population in previous generations.

During the processes of reproduction, the classic genetic operators (i.e., crossover

and mutation) are adopted to produce new solutions by altering their parent solutions (i.e.,

solution strings in a previous population pool). The top 12.5% reproduce excellent

chromosomes from the population because of their high qualities (e.g., greater profit).

Since GA is a stochastic algorithm, the probabilities of performing the crossover and

mutation operations are defined as crossover and mutation ratios, which are pre-

determined model parameters. In this study, there are 40 chromosomes in each generation,

and the ratios of reproduction, crossover, and mutation are assumed as 0.125, 0.75, and

0.125, respectively. The procedures of crossover and mutation are illustrated in Tables

4.6 and 4.7 for the ten-digit genes of chromosome.

Let Rp , RM , and Rc denote the ratios of production, mutation, and crossover,

respectively. In the beginning, a small Rp and RM and a large Rc were selected to

enable the global search. After certain iterations, decreasing the value of Rc and

increasing the values of RM and Rp can shift the focus to local search if the current

generation is better than the old one; otherwise, continuously increase Rc and decrease

RM and Rp to enlarge the range of global search. Note that this property must be

satisfied: Rp +RM +Rc =100%.
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This operation generates chromosomes by exchanging genes from their parents. It

is used to gestate better offspring by inheriting good genes (i.e., higher profit in the

fitness evaluation) from their parents. The often-used crossovers are one-point, two-point,

and multipoint crossovers shown in Table 4.6. The criteria of selecting a suitable

crossover depend on the length and structure of chromosomes. In this study, the one and

two-point crossovers were adopted in this study by selecting from each part of the

chromosome.

Table 4.6 One-Point and Two-Point Crossovers

The operation randomly selects a chromosome from the population and change

the kth bit. It is used to generate new chromosomes. The mutation is usually performed

with a probability p (0<p<1), meaning that only a portion of the genes in a chromosome

will be selected to be mutated. The one and two-point mutations are adopted in this study

from each part of the chromosomes shown in Table 4.7.

Table 4.7 One-Point and Two-Point Mutations
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The service capacity and fleet size constraints are used to ensure that the route

operates at a sufficient capacity to accommodate the design ridership and satisfy the

operable fleet size. The optimal service headway calculated by the developed GA is

examined by the bounds of maximum headway where the service capacity accommodates

the design ridership. The optimal headway can not be smaller than the minimum headway

that can be attained. The constraint indicates that if the optimal headway is within the

feasible range, then the calculated headway has reached the optimal solution. Otherwise,

the optimal headway is limited by the maximum and minimum headway.

4.3 Summary

In this chapter, two solution algorithms were developed to solve the optimization

problems discussed in Chapter 3. The successive substitution method (i.e., modified

Gauss-Southwell method) is used to optimize differentiated fares and service headways

for given RTD in Scenarios I and III. However, a Genetic Algorithm is developed to

search for optimal solutions of combinatorial optimization problems in Scenarios II and

IV. To search for the optimal number of RTD, the developed GA can be used to calculate

the maximum total profit for various combinations of RTD. To demonstrate that the

developed solution algorithms are applicable in the studied optimization problems, a real-

world example of the Taiwan High Speed Rail (THSR) system is discussed in Chapter 5.



CHAPTER 5

CASE STUDY

This chapter demonstrates the applicability of the developed models for various scenarios

discussed in Chapter 3 and employs the solution algorithms developed in Chapter 4 to

optimize the studied research problems. The system configuration and operation data of a

real-world intercity transit system, The Taiwan High Speed Rail (THSR) system, are

discussed in Sections 5.1, while the input parameters and optimal results, such as

optimized solutions and performance measures for Scenarios I through IV are presented

in Sections 5.2 through 5.5, respectively. The findings and comparisons are indicated in

Section 5.6. Finally, the sensitive analyses conducted in Section 5.7 focuses on evaluating

the impact of decision variables to various indicators, such as profit, revenue, and

operator cost.

5.1 The Taiwan High Speed Rail System

The Taiwan High Speed Rail (THSR) is a 212-mile long rail line serving eight stations

shown in Figure 5.1, which connects three major cities, Taipei, Taichung, and Kaohsiung,

along the west coast of Taiwan. It provides a vital corridor for business and leisure trips.

The initial construction of THSR began in March 2000, and the revenue operation

commenced in January 2007. It is worth noting that Taipei and Banchiao stations are very

close to each other, the demand at both stations is assumed to be concentrated in Taipei in

this chapter.

86
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Figure 5.1 Configuration of the Taiwan High Speed Rail line.

The THSR offers better level of service to users, such as shorter travel time and a

comfortable and quiet ride. As a public transportation mode, the THSR requires low land

occupancy, generates low pollution, and results in drastic energy savings (Su et al. 2007),

while carrying a high passenger volume. As indicated in an artical published by The New

York Times (Bradsher, 2007), one passenger traveling on a fully loaded train will use only

one sixth of the energy and generate one-ninth of the carbon dioxide, compared to driving

a car. By comparing with a bus ride, only half the energy and a quarter of the carbon
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dioxide is used. Thus, the THSR service is welcome by many travelers who originally use

automobiles, buses, conventional passenger trains, and air planes.

To demonstrate the applicability of the developed models, all THSR trains are

assumed to depart from end terminals and serve every stop along the line. THSR uses the

700 series train (e.g., 700T locomotive), which adopted Japan's Shinkansen technology

for the core system and is manufactured by Japanese company. The total THSR fleet

includes thirty 12-car trains with capacity of 990 passengers per train. The vehicle

operating cost, transit line cost and station cost were obtained from the statistics of six

Japanese Rail (JR) passenger railway companies in fiscal year 2004 (Demery, 2006).

The THSR trains are operated at an average speed of 155 mph, whose maximum

operating speed is 186 mph. Therefore, a round-trip between the end terminals takes

about five hours. During the peak periods, the service frequency is five to six trains per

hour with headway less than 12 minutes. The average waiting time is about a half of the

headway (e.g., )6=0.5). The station-to-station distance and travel time (including dwell

time) between each pair of stations are shown in Table 5.1, in which the numbers at the

upper right triangle represent station-to-station distances (in miles), and that at the lower

left triangle represent travel times (in hours). The base line values of input parameters for

all scenarios are summarized in Table 5.2, and are used to demonstrate the developed

models.



Table 5.1 Station-to-Station Distances and Travel Times
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Table 5.2 Baseline Values of Input Parameters for All Scenarios

Variables 	 Descriptions	 Baseline Values

Capacity of train includes seats

Vehicle operating cost

Transit line cost

Station operation cost

Boundary distance between RTD z ij and z ij +1

Boundary distance between RTD s and m

Boundary distance between RTD m and 1

Boundary distance at RTD 1

Duration of peak period

Duration of off-peak period

Elasticity parameter of fare from station i to j

Elasticity parameter of fare for short distance trip

Elasticity parameter of fare for medium distance trip

Elasticity parameter of fare for long distance trip

Elasticity parameter of wait time

Elasticity parameter of in-vehicle time

Length of the THSR line

Distance from station i to j

Operable fleet size

Number of stations

Average in-vehicle time from station i to j

Round-trip travel time considering terminal time

Round-trip time

Terminal time

Potential demand from station i to j

Potential demand from station i toj for peak period

Potential demand from station i toj for off-peak period

Ratio of average waiting time to headway

990 pass./train

420 $/train-hour

67 $/mile-hour

341 $/station-hour

To be determined

65 miles

155 miles

212 miles

6 hours

9 hours

Table 5.5

0.033

0.013

0.008

0.200

0.075

212 miles

Miles (Table 5.1)

30 vehicles

7 stations

Hours (Table 5.1)

5.0 hours

4.33 hours

0.67 hours

pass./hour (Table 5.3)

pass./hour (Table 5.15)

pass./hour (Table 5.16)

0.5
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5.2 Fixed RTD and Single Time Period — Scenario I

The potential hourly O-D travel demand was predicted by MVA Hong Kong Ltd. in 2005,

as shown in Table 5.3, considering the demand shifting from other competing

transportation modes (e.g., airplanes, buses, conventional trains, automobiles, etc.) after

the start of THSR' s operations. The potential O-D demand matrix given in Table 5.3 is

calculated based on the highest peak hour demand from outbound and inbound trips.

Table 5.3 Potential Demand in Passengers per Hour

Source: Demand Forecast Report, MVA Hong Kong Ltd., 2005

The demand considered in this chapter is a function of fare and service quality

(e.g., travel time and wait time). In Scenario I, the elasticity parameter of wait time,

denoted as EW , and elasticity parameter of in-vehicle time, denoted as El , are given as

0.20 and 0.075, respectively, while RTD is classified into three categories: short distance

trips (0 ~ 65 miles and z ij =s), medium distance trips (66 ~ 155 miles and z ij =m), and

long distance trips (156 ~ 212 miles and z u =1). The corresponding elasticity parameter of
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fare, denoted as EF , for short, medium, and long distance travel is 0.033, 0.013 and

0.008, respectively.

With the baseline model parameters shown in Tables 5.2 and the potential O-D

demand of THSR shown in Table 5.3, the distance-based fare and service headway are

optimized for maximum total profit. It was found that the maximum hourly profit of

$254,586 is achieved when THSR is operated at a headway of 0.25 hours per train with a

unit fare, 5, of $0.260 per mile, while the optimal weight factors of unit fare for short,

medium and long travel ranges, denoted as γs and γm , and γl , are 1.192, 1.117, and

1.000, respectively. Thus, the resulting optimal weighted unit fares for short, medium,

and long trips are 0.310 (= 0.260*1.192) $/mile, 0.290 (= 0.260*1.117) $/mile, and 0.260

(=0.260* 1.000) $/mile, respectively.

As shown in Table 5.4, the RTD of THSR and corresponding weight factors are

indicated with the optimal weighted unit fare and final fares (e.g., the product of the

optimal weighted unit fare and associated travel distance) placed in the lower left and

upper right triangles, respectively. For instance, the optimal fare of $55.1 for a long travel

range (e.g., between (1) and (7)) is equal to the distance of 211.9 miles multiplied by 0.26

$/mile. Meanwhile, the optimal fare of $44.6 and $12.8 for medium (e.g., between (1)

and (5)) and short trips (e.g., between (1) and (3)) are equal to the distance of 153.8 and

41.3 miles multiplied by 0.29 and 0.31 $/mile, respectively.



Table 5.4 Optimized Fares and Weighted Unit Fares of Scenario I
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The transit ridership under the optimal operation is shown in Table 5.5, where

short, medium and long distance travel are presented. As shown in Table 5.6, the total

hourly ridership for all O-D pairs is 11,241 pass./hour, consisting of 5,279 pass./hour

(46.91%), 4,358 pass./hour (38.73%), and 1,616 pass./hour (14.36%) falling in the short,

medium and long travel ranges, respectively. The resulting total revenue of 279,672

$/hour was yield by 58,854 $/hour (21.04%), 137,370 $/hour (49.12 %) and 83,448

$/hour (29.84%) for short, medium and long distance trips.

The Revenue per Passenger-Mile (RPM) and Revenue per Seat-Mile (RSM) are

equal to the revenue divided by the total passenger-miles and seat-miles traveled for each

RTD. The results indicate that the highest RPM and RSM are both achieved by short

distance travelers (see Table 5.6), while the overall RPM and RSM are $0.28 and $0.17,

respectively. Meanwhile, an overall Profit per Passenger-Mile (PPM) of $0.26 and Profit

per Seat-Mile (PPS) of $0.15 as well as a Cost (from operator cost) per Passenger-Mile

(CPM) of $0.03 and a Cost per Seat-Mile (CSM) of $0.01 are obtained.



Table 5.5 Ridership under Optimal Operation of Scenario I 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Total 

Note: Ridership in Passengers per Hour (pass.lhour) 

Legend: 'iii: z .. = s D: z .. = m .: z .. = I 1.21 lj lj IJ 

(4) (5) 

Table 5.6 Ridership and Revenue under Optimal Operation of Scenario I 

58,854 137,370 83,448 

0.31 0.29 0.26 

0.23 0.16 0.06 

94 

Total 

2,853 

680 

1,347 

2,417 

1,096 

1,365 

1,483 

11,241 

The travel direction from Taiepi (1) to Zuoying (7) is defined as, the outbound 

direction, while the inbound direction is from Station (7) to (1). In Table 5.7, the link and 

average load factors for outbound and inbound services were calculated. It was found that 

the most congested segment occurs in the inbound direction from Station (3) to (2), 

whose load factor is 0.90, while the lowest occupancy segment is at the inbound direction 

from Station (7) to (6), whose load factor is 0.37. The average load factors for outbound 

and inbound trips are 0.51 and 0.66, respectively. 
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Table 5.7 Load Factor under Optimal Operation of Scenario I 

Load Factor 0.56 0.47 0.39 0.38 

Load Factor 
0.84 0.90 0.79 0.58 0.50 0.37 

5.3 Variable RTD and Single Time Period - Scenario II 

The potential O-D demand matrix used in Scenario II is taken from Table 5.3. The 

elasticity parameters of wait time (Ew) and in-vehicle time (EI ) are also the same as 

those used in Scenario I, but the elasticity parameters of fare (E F,. ) considered here are 
" 

varying with O-D pairs. Assume that the elasticity parameter of fare is affected by trip 

length (See Table 5.8), E F, decreases as travel distance increases. 
" 

Table 5.8 Elasticity Parameter of Fare of Scenario II 

~ (1) (2) (3) (4) (5) (6) (7) 

(1) 

----------
0.029 0.025 0.015 0.010 0.006 0.005 

(2) 0.029 ----- 0.033 0.017 0.012 0.009 0.007 

(3) 0.025 0.033 

----------
0.019 0.013 0.011 0.008 

(4) 0.015 0.017 0.019 ----- 0.023 0.016 0.014 

(5) 0.010 0.012 0.013 0.023 ~ 0.027 0.021 

(6) 0.006 0.009 0.011 0.016 0.027 

----------
0.031 

(7) 0.005 0.007 0.008 0.014 0.021 0.031 ~ 

The studied intercity transit line with seven stations results in different distances 

for 19 O-D pairs, which can be arranged in an ascending order, as discussed in Section 
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4.2.2. To maximize profit, the developed GA programmed in C language and compiled

by the Borland C++ Builder 2002 Version 6.0 was used to search for the optimal RTD in

the combinatorial problem. As discussed in Section 4.2.3, the GA parameters used were a

population size of 40, a reproduction rate of 0.125, and ratios of two-point crossover and

mutation of 0.75, and 0.125, respectively. The optimization process terminates as 50

generations are completed.

Figure 5.2 shows that the maximum profit varies with the number of RTD, while

the greatest profit of 319,419 $/hr is achieved by seven RTD with as optimized headway

of 0.24 hours and unit fare (5) of 0.31 $/mile. The weight factors of unit fare ( yzif) are

determined corresponding to the optimized RTD, while the optimized γzij for the shortest

RTD, denoted as y, , through the longest RTD, denoted as γ 7 , are 1.366, 1.326, 1.216,

1.088, 1.016, 1.002, and 1, respectively. In Figure 5.2, the distance-based fare under one

RTD is defined as the fare determined purely based on the distance traveled, while the

weight factor of unit fare is equal to one. It was found that the maximum profit is

relatively low when it is purely distance-based as opposed to using optimized RTD.
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Figure 5.2 Maximum profit vs. number of RTD of Scenario II by GA.

The weighted unit fare is defined as the product of 6 and yz where z= 1, 2,...,q.

The optimal weighted unit fare and final fares (e.g., the product of the optimal weighted

unit fare and associated travel distance) are indicated in the lower left and upper right

triangles of Table 5.9, respectively. For instance, the fare between Taipei (1) and Zuoying

(7), is the distance of 211.9 miles multiplied by 0.329 $/mile, and equal to 69.7 $/trip.

The optimal fares in Table 5.9 illustrate that passengers starting from the same station are

charged higher fares as the travel distance increases. The resulting ridership for all O-D

pairs is shown in Table 5.10. Note that the optimized RTD are presented in Tables 5.9

and 5.10.



Table 5.9 Optimized Fares and Weighted Unit Fares of Scenario II 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Note: []: Optimal Fare ($/trip); (): Optimal Weighted Unit Fare ($/mile); 
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Legend: Iml zij =1~: zij =2.: zij =3.: zij =40: zij =5 : zij =6.: zij =7 

Table 5.10 Ridership under Optimal Operation of Scenario II 

Total 

2,635 

(2) 507 

~ 1~ 

(4) 2,113 

~ 1~ 

(6) 1,155 

m 1~ 

Total 10,445 

Note: Ridership in Passengers per Hour (pass./hour) 

Legend: 1m: zij =1~: zij =2.: zij =3.: zij =40: zij =5 : zij =6. : zij =7 

The hourly ridership is 10,445 pass./hour, consisting of ridership from seven RTD 

summarized in Table 5.11, where the RPM and RSM are also indicated. It was found that 

the highest ridership of 1,775 pass./hour and revenue of 116,993 $/hour are achieved by 

the longest RTD between 153.8 and 211.9 miles. However, the highest RPM and RSM 
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are achieved by the shortest RID between 0 and 22.5 miles since a great percentage of 

ridership contributed significantly revenue within short travel distances. The overall RPM 

and RSM are $0.35 and $0.16, respectively. Meanwhile, an overall PPM of $0.33 and 

PSM $0.15 as well as a CPM (from operator cost) of $0.03 and CSM of $0.01 are 

obtained. 

Table 5.11 Ridership and Revenue under Optimal Operation of Scenario II 

Optimized RTD Ridership Revenue RPM RSM 
(mile) (pass.lhour) ($/hour) ($/pass-mi) ($/pass-mi) 

z=l «22.5) 1,771 23,481 0.64 0.21 

z=2 (22.6-41.3) 1,399 24,834 0.45 0.08 

z=3 (41.4-58.8) 1,817 41,324 0.40 0.08 

z=4 (58.9~77.5) 250 6,925 0.34 0.01 

z=5 (77.6~112.5) 2,557 87,333 0.33 0.09 

z=6 (112.6~153.8) 876 43,725 0.32 0.03 

z=7 (153.9~211.9) 1,775 116,993 0.32 0.06 

l~>~:~--, __ .Q;~~\ ;:-;.(:. -"~"~=~~2~::~~~E;;~~~'~- _'~: - -_- -',~~t;i~l~EZ:::~,'::~~_~:Q;~:;:> =~-'-"~'1;, ~_ ~--~::~'~:'C:- ]=:] 

In Table 5.12, the link and average load factors for outbound and inbound 

services are calculated. The most congested segment occurs at the inbound direction from 

station (3) to (2), whose load factor is 0.66. However, the lowest occupancy segment is at 

the outbound direction from station (6) to (7), whose load factor is 0.29. The average load 

factors for the outbound and inbound directions are 0.41 and 0.52, respectively. 

Table 5.12 Load Factor under Optimal Operation of Scenario II 

Load Factor 

Load Factor 0.62 0.66 0.61 0.47 0.40 0.30 
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5.4 Fixed RTD and Multiple Time Periods — Scenario III

The model developed in Scenario III was used to maximize profit, considering multiple

time periods of a day for a given RTD. The THSR operates 16 hours per day including 6-

hour peak and 10-hour off-peak periods. The potential O-D demand matrix for each time

period is shown in Tables 5.13 and 5.14, where the demand for peak periods were

calculated by averaging potential demand during the morning peak (6AM to 9AM) and

afternoon peak (4PM to 7PM) and the demand for off-peak period was calculated by

averaging demand for the rest of the hours. Note that the elasticity parameters of fare

( EF ), wait time (Em ) and in-vehicle time (E1 ) have the same values discussed in

Scenario I.

Table 5.13 Potential Demand in Passengers per Hour (Peak)

Source: Demand Forecast Report, MVA Hong Kong Ltd., 2005



Table 5.14 Potential Demand in Passengers per Hour (Off-peak)
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Source: Demand Forecast Report, MVA Hong Kong Ltd., 2005

The model developed in Scenario III considers both temporal distance-based fare

and service headway. It was found that the maximum profit of 2,410,523 $/day is

achieved by headways of 0.27 and 0.45 hours/train at the optimal unit fare of 0.265 and

0.244 $/mile and temporal weight factors of unit fare for short and medium travel ranges

of 1.36, 1.14 and 1.13, 1.04 for peak and off-peak periods, respectively. Note that γ; is

equal to 1 in both periods to reduce the number of variables.

In Tables 5.15 and 5.16, the optimal RTD of THSR and the corresponding

optimal weighted unit fares in the lower left triangle and optimal fares in the upper right

triangle for peak and off-peak periods are indicated. For instance, the optimal peak (off-

peak) fare between (1) and (7) of $56.1 ($51.6) is equal to the distance of 211.9 miles

multiplied by 0.265 (0.244) $/mile, respectively. Meanwhile, the optimal peak (off-peak)

fare for medium RTD (e.g., between (1) and (5)) of $46.4 ($39.0) is equal to the distance

of 153.8 (41.3) miles multiplied by 0.302 (0.254) $/mile. The optimal peak (off-peak)
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fare for short RTD (e.g., between (1) and (3» of$14.9 ($11.3) is equal to the distance of 

41.3 miles mUltiplied by 0.360 and (0.276) $/mile. 

Table 5.15 Optimized Fares and Weighted Unit Fares of Scenario III (peak) 

(4) (5) 

[30.1] [46.4] 

(3) 

(4) 

(5) 

(6) 

(7) 

Note: [] : Optimal Fare ($/trip); (): Optimal Weighted Unit Fare ($/mile); 

Legend: Iti): zij = s D: zij = m .: zij = I 

Table 5.16 Optimized Fares and Weighted Unit Fares of Scenario III (Off-peak) 

(4) (5) 

[25.3] [39.0] 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Note: []: Optimal Fare ($Itrip); (): Optimal Weighted Unit Fare ($/mile); 

Legend:~: zij =s D: zij =m .: zij =1 
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The optimized transit ridership under the optimal operation for peak and off-peak 

periods are shown in Tables 5.17 and 5.18, in which the hourly ridership for short, 

medium and long distance trips is indicated. 

Table 5.17 Ridership under Optimal Operation of Scenario III (Peak Hour) 

(4) 

837 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Total 

Note: Ridership in Passengers per Hour (pass.lhour) 

Legend: R~~I: zij = S D: zij = m .: zij = I 

(5) 

260 

Table 5.18 Ridership under Optimal Operation of Scenario III (Off-peak Hour) 

(4) 

340 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

Total 

Note: Ridership in Passengers per Hour (pass.lhour) 

Legend: 11$1: zij = S D: zij = m .: zij = I 

(5) 

125 

Total 

2,809 

706 

1,065 

1,811 

754 

1,032 

1,101 

9,278 

Total 

1,194 

831 

564 

866 

434 

487 

671 

5,047 
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As shown in Table 5.19, the resulting daily ridership for all O-D pairs is 106,138 

pass./day, consisting of 50,210 pass./day (46.7%), 40,196 pass./day (38.2%), and 15,732 

pass./day (15.l%) in the short, medium and long travel ranges, respectively. In the 

meantime, the total revenue of 2,520,448 $/day was generated by 519,971 $/day (20.6%), 

1,205,724 $/day (47.9 %) and 794,725 $/day (31.5%) from short, medium and long 

distance travelers. It was found that the highest RPM and RSM are both contributed by 

short distance travelers who constitute the greatest percentage of ridership. The overall 

RPM and RSM are $0.28 and $0.l9, respectively. Meanwhile, an overall PPM of $0.27 

and PSM of $0.l9 as well as a CPM (from operator cost) of $0.012 and CSM of $0.008 

are obtained. 

Table 5.19 Ridership and Revenue under Optimal Operation of Scenario III 

RTD 

Short Range Medium Range Long Range 

Ridership (pass.lday) 50,210 40,196 15,732 

Revenue ($/day) 519,971 1,205,724 794,725 

RPM ($/pass-mi) 0.32 0.28 0.26 

RSM ($/pass-mi) 0.26 0.18 0.07 

In Table 5.20, the link and average load factors for outbound and inbound 

services are calculated. It was found that the most congested segment occurs at the 

outbound direction from stations (1) to (2) during the peak hour, whose load factor is 

0.71. However, the lowest occupancy segment is at the outbound direction from stations 

(6) to (7) during the off-peak hour, whose load factor is 0.21. The average load factors for 
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the outbound direction are 0.51 and 0.33 and for the inbound direction during peak and 

off-peak periods are 0.47 and 0.33, respectively. 

Table 5.20 Load Factor under Optimal Operation of Scenario III 

Load Factor 

Peak 
Load Factor 

0.60 0.66 0.56 0.40 0.34 0.28 

Load Factor 
0.40 0.47 0.39 0.28 0.23 0.21 

Off-
peak Load Factor 

0.42 0.46 0.39 0.29 0.24 0.23 

5.5 Variable RTD and Multiple Time Periods - Scenario IV 

The potential O-D demand used for Scenario IV was presented in Tables 5.13 and 5.14. 

The same elasticity parameters of fare (E F)' wait time (Ew) and in-vehicle time (El ) 
" 

discussed in Scenario II are assumed. Figure 5.3 shows the maximum daily profit varying 

with the number ofRTD. The optimal total profit of 2,979,787 $/day is achieved by eight 

RTD. In Figure 5.3, the distance-based fare under one RTD is defined as the fare 

determined purely based on the distance traveled, while the weight factor of unit fare is 

equal to one. It was found that the maximum profit is relatively low when it is purely 

distance-based as opposed to using optimized RTD. 
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Figure 5.3 Maximum profit vs. number of RTD of Scenario IV by GA.

The maximum profit is achieved when the service is operated at headways of 0.25

and 0.39 hours/train corresponding to optimal unit fares of 0.33 and 0.30 $/mile for peak

and off-peak periods, respectively. The weighted unit fare is defined as the product of g

and γz where z= 1, 2, ...,q. The optimized weight factors of unit fares of the optimized

RTD are used to calculate the optimal weighted unit fares in the lower left triangle and

final fares (e.g., the product of the optimal weighted unit fare and associated travel

distance) in the upper right triangle of Tables 5.21 and 5.22 for peak and off-peak

periods.
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Table 5.23 Ridership under Optimal Operation of Scenario IV (Peak) 

Total 

2,798 

~) Ml 

(3) 1,179 

(4) 1,605 

(5) 980 

(6) 958 

(7) 1,192 

Total 9,353 

Note: [] : Optimal Fare ($/trip); (): Optimal Weighted Unit Fare ($/mile); 

Legend:lS): zij = I ~: zij = 2.: zij = 3.: zij = 4.: zij = 50: zij = 6 ~ : zij = 7 : zij = 8 

Table 5.24 Ridership under Optimal Operation of Scenario IV (Off-peak) 

Total 

1,135 

(2) 723 

(3) 552 

~ m 
~ 4~ 

W ~ 

(~ 669 

Total 4,701 

Note: []: Optimal Fare ($/trip); (): Optimal Weighted Unit Fare ($/mile); 

Legend:~: zij=l~: zij=2.: zij=3.: zij=4.: zij=5D: zij=6 rat : zij=7 : zij=8 

The daily ridership for all O-D pairs is 103,128 pass./hour, consisting of ridership 

from seven RTD summarized in Table 5.25, where the RPM and RSM are also indicated. 

It was found that the ridership within the shortest (e.g., < 22.5 mile) and longest (e.g., 
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131.4~211.9 mile) travel ranges is relatively higher than that of others RTD. The highest 

revenue of 1,464,895 $/day is achieved by the RTD between 131.4 and 211.9 miles. 

However, the highest RPM of $0.44 and RSM of $0.31 are achieved by RID of less than 

22.5 miles, while the overall RPM and RSM are $0.34 and $0.22, respectively. 

Meanwhile, an overall PPM of $0.33 and PSM of $0.21 as well as a CPM of $0.013 and 

CSM of $0.009 are obtained. 

Table 5.25 Average Revenue under Optimal Operation of Scenario IV 

Optimized RTD Ridership Revenue RPM RSM 
(mile) (pass./day) ($/day) ($/pass-mi) ($/pass-mi) 

z=1 «22.5) 26,418 243,584 0.44 0.31 

z=2 (22.6~39.5) 2,452 40,942 0.43 0.02 

z=3 (39.~3.8) 14,104 262,591 0.41 0.09 

z=4 (53.9~8.8) 10,118 228,502 0.39 0.06 

z=5 (58.9~77.5) 3,956 107,714 0.35 0.02 

z=6 (77 .6~ 100.0) 14,876 494,727 0.34 0.09 

z=7 (100.1~131.3) 6,768 259,087 0.33 0.03 

z=8 (131.4~211.9) 24,436 1,464,895 0.32 0.13 
._ .v - _ . . <t j 

~ "'~' ,~q It __ ~ _~ __ ~~~_~ ~~~ ___ ~: ~ _ ~;_~_IJ_'.~~t!2:,I: __ . M _: _ _ ~ __ ~~_~ ~~~~ A-__ ~:~_~~' __ ~~~/~~~_! 

In Table 5.26, the link and average load factors for outbound and inbound 

services are calculated. It was found that the most congested segment occurs at the 

outbound direction from stations (1) to (2) during the peak hour, whose load factor is 

0.72. However, the lowest occupancy segment is at the outbound direction from stations 

(6) to (7) during the off-peak hour, whose load factor is as 0.20. The average load factors 

for outbound trips during peak and off-peak periods are 0.54 and 0.29, and for inbound 

trips during peak and off-peak periods are 0.48 and 0.30. 
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Table 5.26 Load Factor under Optimal Operation of Scenario IV 

Load Factor 

Peak 
Load Factor 

0.60 0.64 0.56 0.44 0.37 0.31 

Load Factor 
0.36 0.40 0.34 0.26 0.22 0.20 

Off-
peak Load Factor 

0.37 0.40 0.34 0.27 0.22 0.22 

5.6 Optimal Results Comparison 

The results of the optimization model such as profit, ridership, fare, and load factor 

obtained from previous sections for Scenarios I through IV are compared and discussed 

in this section. The optimized results generated from Scenarios I and II are shown in 

Table 5.27. The difference in Table 5.27 is the optimal values of Scenario II minus those 

of Scenario 1. By comparing the profit for single time period with fixed and variable RTD 

respectively, the maximum hourly profit achieved by the optimized seven RTD of 

Scenario II is about 25% more than that with the fixed RTD of Scenario I, while the 

optimized service headway of Scenario II is shorter than that of Scenario 1, but very close. 

However, the ridership under the optimized fare setting of Scenario II is 8% less than that 

of Scenario I because of higher fares. The comparison of the optimal fares for each O-D 

pair between Scenarios I and II is shown in Figure 5.4. 



111 

Table 5.27 Optimized Results of Scenarios I and II 

~s Optimal Results Scenario I Scenario II Difference 

Unit Fare ($/mile) 0.26 0.33 0.07 

Headway (hours) 0.25 0.23 -0.02 

Ridership (pass.lhour) 11,241 10,445 -796 

Number ofRTD 3 7 4 

Revenue ($/hour) 279,672 344,615 64,943 

Operator Cost ($/hour) 25,086 25,196 110 

Profit ($/hour) 254,586 319,419 64,833 
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Figure 5.4 Optimized fares of Scenarios I and II. 

The load factors for outbound and inbound services at each station link between 

Taiepi (1) and Zuoying (7) of Scenarios I and II are illustrated in the top and bottom of 

Figure 5.5, respectively. The load factors between the first four stations (e.g., (1)-(2), (2)-

(3), (3)-(4» for both outbound and inbound trips are all greater than the average load 

factors. It was also found that the load factors of Scenario I are greater than those of 
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Scenario II because that there are less fleet size (e.g., number of vehicles) and more

ridership of Scenario I.

Figure 5.5 Load factor under optimal operation of Scenarios I and II.

The optimized results of the ridership, profit, temporal distance-based fare and

service headway generated from Scenarios III and IV are shown in Table 5.28. The

difference in Table 5.28 is the optimal values of Scenario IV minus those of Scenario III.

By comparing the profit for multiple time periods with fixed and variable RTD, the

maximum daily profit achieved of Scenario IV is about 24% more than that with the

fixed RTD of Scenario III, while the optimized service headways during peak and off-

peak periods of Scenario IV are both shorter than that of Scenario III. However, the

ridership under the optimized fare setting of Scenario IV is only 3% less than that of

Scenario III because of higher fares. The comparison of optimal differentiated fares in
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each O-D pair is shown in Figure 5.6. It was found that optimal fares during peak and

off-peak periods under optimized RTD are generally higher than those of Scenario III.

Table 5.28 Optimized Results of Scenarios III and IV

Station-to-Station

Figure 5.6 Optimized fares of Scenarios III and IV.
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The load factors for outbound and inbound services at each station link between

Taiepi (1) and Zuoying (7) of Scenarios III and IV are illustrated in the top and bottom of

Figure 5.7, respectively. Similar to the result indicated for Scenarios I and II, the load

factors between the first four stations (e.g., (1)-(2), (2)-(3), (3)-(4)) for both outbound and

inbound trips are all greater than the average load factors. It was found that the load

factors for outbound and inbound services between stations (2) and (3) have a relatively

high ridership during the off-peak hour. As shown in Figure 5.7, the load factors for both

outbound and inbound services are very close of Scenarios III and IV during the peak

hour, which also implied that the distributions of ridership are very similar. Therefore, the

distribution of ridership on each segment is not affected by the optimized RTD in this

study.

Stations

Figure 5.7 Load factor under optimal operation of Scenarios III and IV.
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The optimal RTD for each scenario are identical in Figure 5.8. Note that the RTD

are fixed in Scenarios I and III, and the optimal number of RTD for Scenarios II and IV

are seven and eight, respectively. For example, the optimized RTD in Scenario II are

classified into seven ranges, indicating z =1 (022.5 miles), z = 2 (22.641.3 miles),

z = 3 (41.458.8 miles), z = 4 (58.977.5 miles), z = 5 (77.6-412.5 miles),

z = 6 (112.6-453.8 miles), and z = 7 (153.9211.9 miles).

Figure 5.8 Optimized numbers and RTD of Scenarios I through IV.
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In Scenario I, the model was tested by substituting various sets of nonzero initial

values of the decision variables, and the same results were obtained. Therefore, the model

has the flexibility and capability to achieve convergence of the decision variables to the

same optimal values in a few iterations. Furthermore, the same optimal solution is

reached when the decision variables are given any positive initial values that are very

unreasonable (i.e., 20 hour initial headway, 30 $/mile initial unit fare, etc.). Many sets of

initial decision variables were used to test the optimality of the model. It was found that

all sets of initial values achieve the same maximum total profit as shown in Figure 5.9.

The concavity test of the total profit function was also conducted by evaluating the values

of the 2nd derivative of the objective function with respect to each decision variable and

the Hessian Matrix. It was found that the objective profit function is not strictly concave;

therefore, the maximized profit from the optimal results may not be the global maximum.

Figure 5.9 Profit achieved in each iteration of Scenario I.
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To compare the results solved by the developed solution algorithms in Chapter 4,

the comparison between profits, headways, unit fares, and weight factor of unit fare can

be observed in Table 5.29, which shows that the maximum profit achieved by the

heuristic GA is close to that from the successive substitution method. Therefore, the

developed GA was used to confidently solve the combinatorial fare RTD optimization

problem in Scenarios II and IV.

Table 5.29 Optimized Results of Scenario I by Various Solution Algorithms

5.7 Sensitivity Analysis

Previous sections discussed the optimized fares and service headway under various

scenarios considering different peak/off-peak and fixed/variable RTD while utilizing the

baseline values of input parameters shown in Table 5.2. Numerical results, including the

optimized solutions and sensitivity analyses are presented. A sensitivity analysis was

conducted to evaluate the differences in maximum profits obtained by changing

headways, fares, unit weight factors of travel distance, elasticity parameters, and demand

multipliers. Observations and solutions that could influence managerial decisions are

discussed in the remainder of this chapter.

Figure 5.10 shows the impact on profit by varying headway from 0.10 to 0.37

hours/train while keeping the optimal fare and RTD fixed for Scenarios I and II. By
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comparing the total profits in Figure 5.10, the maximum profits of 319,419 $/hour is

achieved by the optimized service headway of 0.23 hours/train of Scenario II. The total

profits for Scenarios I and II are both shallow concave near the optimal profit for various

headways. Similarly, Figure 5.11 shows the changes in profit by varying the unit fare

(from $0.15 to $0.42), while the optimal headway, RTD and weight factors of unit fare

are fixed. The maximum profit of 319,419 $/hour is achieved by the optimized unit fare

of 0.33 $/mile of Scenario II.

Figure 5.10 Profit vs. headway for Scenarios I and II.



Figure 5.11 Profit vs. unit fare (8 ) for Scenarios I and II.

Headway varies from 0.03 to 0.69 hours/train while keeping the optimal fare and

RTD fixed for Scenarios III and IV in Figure 5.12. The maximum profits of 2,979,787

$/day can be achieved by Scenario IV with an optimal headways of 0.25 and 0.39

hours/train for peak and off-peak periods, respectively. Note that for those profit curves

(S -III, P) and profit (S-IV, P) in Figure 5.12 are derived by altering the headway for the

peak hour, while fixing the optimal fare and headway for the off-peak hour. It was found

that the total profit for Scenarios III and IV are both shallow concave near the optimal

profit for various headways.

119
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Figure 5.12 Profit vs. headway for Scenarios III and IV.

Similarly, Figures 5.13 and 5.14 show the changes in profit by varying the unit

fare (from $0.15 to $0.42), while the optimal headway, RTD and weight factors of unit

fare are fixed. The maximum profit of 2,979,787 $/day is achieved by the optimized unit

fare of 0.33 and 0.30 $/mile for peak and off-peak periods in Scenario IV.



Figure 5.13 Profit vs. unit fare (8 1 ) for Scenario III.

121

Figure 5.14 Profit vs. unit fare (8') for Scenario IV.
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Figure 5.15 demonstrates that the objective total profit function is concave by 

varying Ys (from 1.16 to 1.22), and Ym (from 1.09 to 1.15) while fixing the optimized 

headways, unit fare and RTD. From Figures 5.10 through 5.15, it is observed that the 

profit function is a shallow concave function at the optimum (Le., the profit decreases 

rather slowly as one moves away from the optimum solution). The managerial 

implication is that many near-optimal solutions are available for the transit operator to 

adjust differentiated fare and service frequency without reducing the profit significantly. 

This is especially critical in setting the boundaries ofRTD. The results also indicated that 

there are diminishing returns to increasing the fare differentiation, since much of the 

profit came from the initial attempt to reflect a differentiation principle and lesser profit 

improvements can be achieved from further fine tuning to obtain the exact optimum. 

254,700 

254,670 
254,640 
254,610 

'3' 
254,580 
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Figure 5.15 Profit vs. unit fares Ys and Y m for Scenario I. 
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Figures 5.16 and 5.17 show the impact of the fare elasticity parameter for a given

RTD in Scenarios I and III (e.g., EF , where zij = s, m, and 1) on hourly and daily profits

and ridership by comparing the results with and without re-optimized headway and

weighted unit fare. The sensitivity of profit and ridership to EFs is calculated with fixed

EFm and EFl  . Without the re-optimization, the profit and ridership decrease as EFzij

increases for all RTD. However, the re-optimization achieves higher maximum profit

because the ridership can be retained by using re-optimized headway, unit fare, and

weight factor.

By comparing the reduction of ridership on different RTD (e.g., short, medium,

and long) without the re-optimization for Scenarios I and III, the ridership significantly

decreases due to passengers' sensitivity to fare. However, the ridership slightly decreases

for long distance travel. Figures 5.16 and 5.17 also show that riders traveling long

distances are less sensitive to the fare compared to those traveling short distances. In

addition, the maximum profit is very sensitive to EFl, especially when EFl, approaches

zero. The managerial implication of this is that riders traveling long distances are critical

for the financial health of the route.



Figure 5.16 Profit and ridership vs. EFzij in each RTD for Scenario I.

Figure 5.17 Profit and ridership vs. EF  in each RTD for Scenario III.
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As shown in Figures 5.18 and 5.19, by increasing the elasticity parameter of fare

( EFij ) for each O-D pair with a multiplier from 0.1 to 1.8, the profit and ridership

decrease because passengers become more sensitive to fare. It was found that the profit is

very sensitive especially when the EFij multiplier is less than 0.4, at which point the

optimal profit increases quickly as EFij reduces. However, the decrease of the maximum

profit is governed by the capacity constraint (e.g., maximum headway) when the

multiplier ofEF increases more than 1.4 and 1.6 in Scenarios H and IV, respectively. At

this headway, the train capacity accommodates the ridership.

Figure 5.18 Maximized profit and ridership vs. EFij multiplier for Scenario II.
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Figure 5.19 Maximized profit and ridership vs. E. multiplier for Scenario IV.

Determining the number of RTD and the distance in each RTD for establishing

distance-based fare is a critical step in the optimization process. It affects the unit fare,

weight factors of unit fare and service headway for the designed service. The sensitive

analysis in Figure 5.20 indicates that as the EFij multiplier increases from 0.1 to 1.8 for

all RTD, indicating that the elasticity of demand with respect to fare increases from being

inelastic to elastic, the optimal number of RTD tend to increase. Thus, the impact of fare

on the demand of each RTD can be considered into the optimization process. However,

the optimized unit fares decrease dramatically during the peak hour when the EFij

multiplier is less than one because of the value of users' time (e.g., wait time and in-

vehicle time) decreases.
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Figure 5.20 Optimal number of RTD vs. EFij multiplier for Scenarios II and IV.

The optimized RTD (e.g., optimal number of RTD and the distance of each RTD)

are indicated in Figures 5.21 (Scenario II) and 5.22 (Scenario IV) for various elasticity

parameter of fare ( EFij ) multipliers. Because of demand and elasticity parameter

heterogeneity, the optimized RTD generally increase as the EFij multiplier increases. It

was also found that the boundaries of RTD are concentrated in the range of shorter travel

distances (e.g., travel distance less than 100 miles), specifically as the EF multiplier is

greater than 1.4 and 1.2 for Scenarios II and IV, respectively.
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Figure 5.21 Optimized RTD for various EF multipliers for Scenario II. 
o 
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Figure 5.22 Optimized RTD for various E~ multipliers for Scenario IV. 
C if 

Results from the sensitivity analyses for the elasticity parameter of wait time (Ew) 

in Scenarios I through IV are respectively shown in Figures 5.23 and 5.24. It was found 

that the profit and re-optimized service headway decrease as (Ew ) increases from 0.05 to 

0.6. The increase of Ew indicates that the demand becomes more sensitive to wait time, 

which results in the reduction of service headway. Thus, the profit decreases due to 

increase of operation cost. However, as Ew continuously decreases to less than 0.1 and 
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0.15 in Scenarios I and II respectively, the maximum profit is governed by the operating

cost at the maximum headway of 0.28 and 0.29 hours/trip. At these headways, the train

capacity can accommodate the peak demand. Meanwhile, as EW increases beyond 0.4

(0.5) in Scenario II (IV), the optimal headway is equal to the minimum headway to

satisfy the constraint of operable fleet size.

Figure 5.23 Maximized profit and optimal headway vs. EW for Scenarios I and II.

Similar to Figure 5.23, the temporal headway and daily profit are re-optimized by

varying EW for Scenarios III and IV in Figure 5.24. It was found that as EW increases,

the optimal headway decreases resulting in a concurrent increase in the operator's cost.

The combined effect of this change is the reduction in profit. Therefore, by doubling the

value of the wait time (e.g., EW from 0.2 to 0.4), the maximum profit decreases five
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percent (from 2,965,860 $/day to 2,805,116 $/day). As a result, the transit operator will

reduce the service frequency to cut the cost of running the service and offset the lost

revenue. The service headway during the off-peak hour drops dramatically when EW is

less than 0.15, however, it is dominated by the capacity constraint during the peak period

when Ely is less than 0.1.

Figure 5.24 Maximized profit and optimal headway vs. EW for Scenarios III and IV.

Figure 5.25 shows the variation of maximum profit and optimal headway for each

RTD as the increase of demand multiplier in Scenarios I and II, while the optimal

headway decreases to meet the increased demand. It was found that as the demand

multiplier exceeds 1.8 in Scenarios I and II, the optimal headway is limited by H.. and
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thus the profit becomes constant within each RTD. As a result, the profit is dominated by

the operable fleet size of the transit system.

Figure 5.25 Maximized profit and optimal headway vs. demand multiplier for Scenarios
I and II

Figure 5.26 indicates the changes of maximum profit and optimal headway versus

demand increase in Scenarios III and IV. Similar to Figure 5.25, the optimal headway

decreases to meet the increased demand. In Scenarios III and IV, the optimal headway

during the peak hour reaches the Hmin when the demand multiplier increases to more

than 2.2. However, the profit keeps increasing slowly since the optimal weighted unit

fares and ridership keep increasing slightly during the off-peak hour. As a result, the

profit is dominated by the operable fleet size of the transit system.
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Figure 5.26 Maximized profit and optimal headway vs. demand multiplier for Scenarios
III and IV.

The variation of optimal weighted unit fare for each RTD as the demand

multiplier increase for Scenarios I and III is shown in Figure 5.27. It was found that the

optimal weighted unit fare for each RTD increases to compensate for the increased

operating cost. When the demand multiplier increases to more than 2.0, the transit service

is constrained by the minimum headway (e.g., operable fleet size) and the optimal

weighted unit fares during the peak hour are constant for short, medium and long travel

distances.
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Figure 5.27 Optimal weighted unit fare vs. demand multiplier for Scenarios I and III.

Figure 5.28 shows the changes of the optimal unit fare versus the increases of

demand for Scenarios II and IV. Similar to Figure 5.27, the optimal unit fare increases to

compensate for the increased operating cost due to increased passenger demand. When

the demand multiplier increases beyond 2.2, the transit service is constrained by the

minimum headway during the peak hour and the optimal unit fares are constant for each

RTD.
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Figure 5.28 Optimal unit fare vs. demand multiplier for Scenarios II and IV.

Figure 5.29 shows the relationship of maximum profit and optimal fleet size

versus demand for Scenario IV. As demand increases to more than 2.2 times (e.g., 220%)

the current demand, the optimized fleet size exceeds the operable fleet size. Therefore,

additional vehicles is needed to satisfy increasing demand as well as profit. The

managerial decision can be made by considering the marginal profit gained by increasing

the operable fleet size.

Maximum profit is achieved by the optimal fleet size of 20 vehicles in this case

study. While increasing the demand by 20%, 40%, 60%, 80%, and 100%, the

corresponding optimal fleet size increases to 23, 24, 27, 28, and 30, respectively.

Therefore, the marginal profit for each extra vehicle can be achieved by $203,457,
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$296,862, $269,561, $307,455, and $311,097. It was found that if demand increases 40%,

80% and 100%, the operator could make more profit by adding extra vehicle service.

Figure 5.29 Maximized profit and optimal fleet size vs. demand multiplier for Scenario IV.

Finally, while investigating the relationship of maximum profit and optimal

number of RTD versus demand in Figure 5.30, it was found that the maximum profit

increases and the optimal number of RTD tends to decrease as demand multipliers

increase from 0.2 to 2.4. However, the maximum profit remains constant when demand

multiplier exceeds 2.2 due to the capacity constraint. By doubling the demand (e.g.,

demand multiplier equal to two), the optimal number of RTD decreases from seven and

eight to five and four in Scenarios II and IV, respectively. Meanwhile, the maximum
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profits increase 107% (from 313,268 $/hour to 651,193 $/hour) and 104% (from

2,965,860 $/day to 6,055,368 $/day) in Scenarios II and IV, respectively.

Figure 5.30 Maximized profit and optimal number of RTD vs. demand multiplier for
Scenarios II and IV.

Due to demand heterogeneity, the optimized RTD vary with demand as shown in

Figures 5.31 and 5.32. It was also found that as the number of RTD increase, the

boundaries of RTD are concentrated in the range of shorter travel distances (e.g., travel

distance less than 100 miles). One of the possible explanations behind this phenomenon

is related to the demand distribution. The ridership for trips less than 100 miles in

Scenario IV is 70% of the total ridership. The other possibility is that the optimal

weighted unit fares for the shorter travel distance are higher than those of the longer
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travel distance. In this case, more revenue can be generated by fares established with 

more RID for short distance trips. 

Travel Distance 
(miles) 

o < LIj ~18.8 
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Figure 5.31 Optimized RTD for various demand multipliers for Scenario II. 
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Figure 5.32 Optimized RID for various demand multipliers for Scenario IV. 



CHAPTER 6

CONCLUSION AND FUTURE RESEARCH

A complex transportation fare and service frequency problem of an intercity transit

system has been defined, formulated, optimized, and analyzed in this research. The

objective total profit functions and sets of constraints were developed for Scenarios I

through IV, while two solution algorithms were used to search for constrained optimal

solutions. A modified Gauss-Southwell method was used to optimize fare and frequency

for Scenarios I and III while RTD is treated as exogenous parameters. To optimize a

combinatorial problem while considering RTD as decision variables, a Genetic

Algorithm was developed. The methodology discussed in this study integrated the

analytical approach and solution algorithms that jointly optimized differentiated fare and

service headway for an intercity transit system.

Finally, a real world example of the Taiwan High Speed Rail (THSR) was introduced to

demonstrate the efficiency and applicability of the developed models and solution

algorithms to optimize the studied problem. Given a temporal, heterogeneous demand

distribution, the differentiation of trip lengths and operator's costs were considered in the

developed models which maximized total profit. The optimal results considering pre-

specified and optimized RTD were obtained, and then sensitivity analyses were

conducted for investigating the relationships among important decision variables and

model parameters.

140
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6.1 Conclusions

Subject to the time-dependent potential demand as well as various elasticity parameters

of fare (EFij ) for each O-D pair, the optimal differentiated, temporal fare and headway

corresponding to pre-specified and optimized RTD were obtained by a modified Gauss-

Southwell method and a genetic algorithm, respectively. In summary, the major findings

and conclusions are as follows:

(1) Methodology

• The developed models consider the differentiated fare based on passenger travel
distance multiplied by the weighted unit fare. The weighted unit fare is
determined by the product of unite fare (8) and weight factor of unit fare (y e  )

for all RTD with index z (z= 1, 2, ...,q ), while both 8 and γ z, are decision

variables in Scenarios I through IV. The optimal weighted unit fares of different
O-D pairs show that passengers travel shorter distances will be charged a higher
rate than those traveling longer distances.

• The fare optimization problem for an intercity transit system was analyzed under
both capacity and fleet size constraints. In the numeric example, the capacity
constraint affects train service for the baseline demand volumes. If the demand
keeps increasing, the train service cannot satisfy the demand during the peak
period (see Figure 5.33). Therefore, the optimal headway decreases in order to
increase the train fleet size for serving more demand.

• A previous study (Hamacher and Schobel, 2004) focused on optimizing the
number of zones by maximizing revenue. In this study, the optimization problem
of distance-based fare, service headway, and RTD design is developed to
maximize total profit. The optimized distance-based fare does not only consider
the travel distance, but also optimize number of RTD and the distance of each
RTD which might be affected by the elasticity parameters and demand. Therefore,
the designed fares can reflect passengers' travel behavior for all O-D pairs.

• Since RTD is treated as a decision variable, the model becomes a combinatorial
optimization problem due to the combination and interdependent relationships
among the decision variables. Therefore, the total number of decision variables
increases more than exponentially as the number of RTD increases.

• The developed models can be utilized to optimize the fare and headway of
existing intercity transportation systems or a pre-planed transit route as soon as a
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realistic demand function is available. In this study, a given demand function was
adopted in the developed models.

(2) Solution algorithms

• The optimal results obtained by the successive substitution method were tested by
substituting various sets of nonzero initial values of the decision variables, and all
sets of initial values achieve the same maximum total profit (see Figure 5.9). By
comparing the optimal results achieved by the developed GA and the successive
substitution method, it was found that the maximum total profit is close.
Therefore, the developed GA can be used to search for the optimal solution
considering either pre-specified (e.g., for Scenarios I and III) or variable (e.g., for
Scenarios II and IV) RTD.

• The developed GA is suitable for solving the combinatorial optimization problem
formulated in this study, which has a nonlinear, integer and discontinuous
objective function. The parameters of the developed GA, such as crossover and
mutation ratios as well as population size, were determined by enumerating the
ratios of production (RP ), mutation (RM ), and crossover (Re ). The best values of

RP , RM , and I?, were determined based on initiating a large R, to enable the

global search and then increasing RP , RM to focus on a local search. The ratios

of RP , RM , and k used were 0.125, 0.125, 0.75. Note that the ratios of

production, mutation, and crossover must be RP + RM + RC =1.

(3) Optimal results and sensitivity analysis

• By comparing the optimal results among Scenarios I through IV, the maximum
profits obtained by an optimized RTD were about 25% higher than those with
pre-specified RTD. However, the ridership under the optimized fare setting for a
pre-specified RTD was about 5% less than that under optimized RTD because of
higher fare. It was also found that the highest RPM and RSM were all achieved at
the shortest RTD since a great percentage of ridership contributed significantly to
revenue within short travel distances.

• The load factors at each station-to-station link under the given RTD were
generally greater than those under the optimized RTD since more ridership was
generated from lower fare charged for each O-D pair.

• The profit surfaces for various headways, unit fares and weight factors of unit fare
within short and medium travel ranges (as presented by their weight factors, γ s

and y. ) are relatively flat near the optimum as shown in Figures 5.11 through

5.16. The managerial implication of this is that the decision variables can be
adjusted marginally with only minor deviations from optimality. This is especially
critical in setting the boundaries of the travel distance ranges.
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• The results also indicate that there are diminishing returns to increase the fare
differentiation, much of the gains coming from the initial attempts to reflect a
differentiation principle and little coming from further fine tuning to hit on the
exact optimum.

• The impact of fare elasticity parameters for given RTD (e.g., EFzij , where zij = s,

m, and 1) in Scenarios I and III that the ridership significantly decreases for short
distance travel due to passengers' sensitivity to fare; however, ridership slightly
decreases for medium and long distance travel (see Figures 5.17 and 5.18) The
managerial implication of this is that riders traveling long distances are critical for
the financial health of the route. While increasing the elasticity parameter of fare
(EFij ) for each O-D pairs in Scenarios II and IV (see Figures 5.19 and 5.20), the

profit and ridership decreases because passengers become more sensitive to fare.

• The optimized RTD with corresponding differentiated fare and headway were
determined based on maximum profit. As shown in the sensitivity analyses, the
optimal numbers of RTD tend to increase when the elasticity parameter of fare
increases and demand increases. It was found that the boundaries of RTD are
concentrated in the range of shorter travel distances. Thus, the impact of fare to
demand of each RTD can be considered into the optimization process.

• Results from the sensitivity analyses for the elasticity parameter of wait time (Em )

indicate that demand becomes more sensitive to wait time, which results in the
reduction of service headway. Thus, the profit decreases due to increases in
operation cost.

• While considering the demand keeps increasing, the optimized fleet size may
exceed the operable fleet size. Therefore, an additional number of vehicles is
needed to satisfy increasing demand as well as profit. The managerial decision
can be made by considering the marginal profit gained by increasing the operable
fleet size.

6.2 Future Research

Future research for the differentiated fare and service headway optimization problem can

be extended but not limited to the following aspects:

• This study focused on an intercity transit system serving at each stop with a single
user class. An immediate expansion of this study will integrate service patterns
(i.e., skip stopping or express), while considering multiple-class users (i.e.,
business or economy class).
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• Some other assumptions can be relaxed in further research efforts. For instance,
the weight factors of unit fare for each RTD can be randomly assigned instead of
decreasing as the index of RTD ( ) increases from a short to a long distance

range.

• A multi-objective optimization problem can be extended by considering social
welfare maximization as well as subsidy in addition to the total profit function.
Thus, the researched profit maximization problem may also deal with subsidy
minimization when the fare box revenue cannot cover the expenses of operating
the service. There are many other issues that can be explored in future research,
such as fare management, fare discount, coordination of fare and other marketing
elements, and consideration of long-term profitability.

• The formulation of the operator's cost can be enhanced by considering the various
operating cost between idle and on duty vehicles during peak and off-peak periods.
Through this extension, the model can estimate operator's cost accurately based
on a known operable vehicle fleet.

• The distance-based fares have the same value within the same O-D travel distance
in the optimization models. While considering competing transportation modes,
the pricing theory may take into account traveler's willingness to pay by setting
differentiated fares for the same travel distance.

• A further extension of this study may focus on an intermodal transit service, such
as rail and feeder buses which has been discussed by Chien and Schonfeld (1997).
Moreover, optimization of timed transfer may be jointly optimized to yield the
best performance of an integrated transit service, in terms of total social welfare
and profit.

• The developed GA can be enhanced by generating a new chromosome with
desired minor adjustment when the previous generation is close to the goal. It was
found that the mutation tends to be more efficient than the crossover if a candidate
solution is close to the real optimum solution. Therefore, the strategy of
dynamically determining the ratio of three GA operations could further improved
the results. (Wu and Shih, 2006)



REFERENCES

Andrle, S., Kraus, J., Spielberg, F. (1991). "Lesson from the Broome County Distance-
Based Fare Demonstration: Effects of Zone Fares and Off-Peak Discounts on
Ridership, Revenue, Pass Sales, and Public Opinion." Transportation Research
Record 1297, pp. 50-56.

Babel, L., and Kellerer, H. (2003). "Design of Tariff Zones in Public Transportation
Networks: Theoretical Results and Heuristics." Mathematical Methods of
Operations Research, Vol. 58, pp. 359-374.

Baum, H. J. (1973). "Free Public Transport." Journal of Transportation Economics and
Policy 7, pp. 3-19.

Bell, M. G., and Y. Iida (1997). Transportation Network Analysis. Chichester, U.K: John
Wiley & Sons.

Berechman, J. (1993). Public Transit Economics and Deregulation Policy. Netherlands:
North-Holland.

Bullnheimer B.; Hartl, R.; and Strauss, C. (1999). "An Improved Ant System Algorithm
for the Vehicle Routing Problem." Annals of Operations Research 89: pp. 319-
328.

Cervero, R. (1981). "Flat versus Differentiated Transit Pricing: What's a Fair Fare?"
Transportation 10, pp. 211-232.

Cervero, R. (1985). "Experiences with Time-of-Day Transit Pricing in the United States."
Transportation Research Record 1039, pp. 21-30.

Cervero, R. (1990). "Transit Pricing Research — A Review and Synthesis."
Transportation 17, pp. 117-139.

Chang, S. W., and Schonfeld, P. (2004). "Optimized Schedules for Airline Routes."
Journal of Transportation Engineering, Vol. 130, No. 4, pp. 412-418.

Chang, S. K., and Schonfeld, P. (1991). "Multiple Period Optimization of Bus Transit
Systems." Transportation Research Part B, Vol. 25, No. 6, pp. 453-478.

Chien, S. I., and Schonfeld, P. (1997). "Joint Optimization of a Rail Transit Line and Its
Feeder Bus System." Journal of Advanced Transportation, Vol. 32, No. 3, pp.
253-284.

145



146

Chien, S.I., Yang, Z., and Hou, E. (2001) "A Genetic Algorithm Approach for Transit
Route Planning and Design." Journal of Transportation Engineering, ASCE, Vol.
127, No. 3, pp. 200-207.

Chien, S. I., and Spasovic, L. (2002). "Optimization of Grid Bus Transit Systems with
Elastic Demand." Journal of Advanced Transportation, Vol. 36, No. 1, pp. 63-91.

Chien, S. I., and Tsai, F. M. (2007). "Optimization of Fare Structure and Service
Frequency for Maximum Profitability of Transit Systems." Transportation
Planning and Technology, Vol. 30, No. 5, pp. 477-500.

Chang, Y. H.(1999). Transportation Economics, No. 2. Taiwan: Hwa Tai Publishing.

Cordeau, J.F.; Gendreau, M.; and Laporte, G. (1997). "A Tabu Search Heuristic for
Periodic and Multi-Depot Vehicle Routing Problems." Networks 30, pp. 115-119.

Cummings, C. P., Fairhurst, M., LaBelle, S., and Stuart, D. (1989). "Market
Segmentation of Transit Fare Elasticities." Transportation Quarterly 43 (3), pp.
407-420.

Curtin, J. F. (1968). "Effect of Fares on Transit Riding." Highway Research Record 213,
pp. 8-20.

Currie, G. and Phung, J. (2007). "Transit Ridership, Automobile Gas Prices, and World
Events: New Drivers of Change?" Transportation Research Record 1992, pp. 3-
10.

Dandy, G. C. and Engelhardt, M. (2001). "Optimal Scheduling of Water Pipe
Replacement Using Genetic Algorithms." Journal of Water Resources Planning
and Management, Vol. 127, pp. 214-222.

Daskin, M.S., Schofer, J.L., and Haghani, A.E. (1998). "A Quadratic Programming
Model for Designing and Evaluating Distance-Based and Zone Fares for Urban
Transit." Transportation Research 22B, pp. 25-44.

Demery, L.W. (2006). "Japanese Railway Operating Cost Formulas." Retrieved June,
2006, from http://www.publictransit.us .

Earl, P. E. (1995). Microeconomics for Business and Marketing. Vermont: Edward Elgar.

Fleishman, D, Shaw, N., Joshi, A., Freeze, R., and Oram, R. (1996). "Fare Policies,
Structures, and Technologies." Transportation Research Board, TCRP Report 10.

Guenthner, R. P., and Jea, S. H. (1985). "Distance-Based Fare on Express Bus Routes."
Transportation Research Record 1039, pp. 30-33.



147

Gen, M., and Cheng, R. (1997). "Genetic Algorithms and Engineering Design." New
York: John Wiley and Sons.

Hamacher, H. W., and Schobel, A. (2004). "Design of Zone Tariff Systems in Public
Transportation." Operations Research, Vol. 52, No. 6, pp. 897-908.

Henderson, J., and Fu, L. (2004). "Applications of Genetic Algorithms in Transportation
Engineering." presentation in the Annual Meeting of Transportation Research
Board, Washington, D.C., January 10-14.

Herrera, F., Lozano, M., and Verdegay, J. L. (1994). "Applying Genetic Algorithms in
Fuzzy Optimization Problems." Fuzzy Systems and Artificial Intelligence, Vol. 3,
No. 1, pp. 39-52.

Hestenes, M. R., and Stiefel, E. (1952). "Methods of Conjugate Gradients for Solving
Linear Systems." Journal of Research of the National Bureau of Standard, Vol.
49, No.6, pp. 409-436.

Ho, S. Y., Chen, H. M., and Shu, L. S. (1999). "Solving Large Knowledge Base
Partitioning Problems Using the Intelligent Genetic Algorithm." in Process
Genetic and Evolutionary Computation Conference, pp. 1567-1572.

Holland, J. H. (1975). Adaptation in Natural and Artificial Systems. Cambridge, MA:
MIT Press.

Holland, J. H. (1992). Adaptation in Natural and Artificial System: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence.
Cambridge, MA: MIT press.

Holroyd, E. M. (1967). "The Optimum Bus Service: A Theoretical Model for a Large
Uniform Urban Area." Vehicular Traffic Science, pp 309-328.

Hurdle, V. F. (1973). "Minimum Cost Schedules for a Public Transportation Route, I.
Theory." Transportation Science, Vol. 7, pp. 109-137.

Jorgensen, F., and Pedersen, P. A. (2004). "Travel Distance and Optimal Transport
Policy." Transportation Research Part B 38, pp. 415-430.

Kocur, G., and Hendrickson, C. (1982). "Design of Local Bus Service with Demand
Equilibrium." Transportation Science, 16(2), pp. 149-170.

LaBelle, S. J., and Fleishman, D. (1995). "Common Issues in Fare Structure Design."
Retrieved January, 1995 from Federal Transit Administration: http://
www.fta.dot.gov/library/technology/symops/LABELLE.htm.



148

Lam, W. H. K., and J. Zhou. (2000). "Optimal Fare Structure for Transit Networks with
Elastic Demand." Transportation Research Record 1733, pp. 8-14.

Lam, W., and Morrall, J. (1982). "Bus Passenger Walking Distances and Waiting Times:
A Summer-Winter Comparison." Transportation Quarterly, Vol. 36, No. 3, pp.
407-421.

Lave, L.B. (1972). "The Demand for Intercity Passenger Transportation." Journal of
Regional Science, Vol. 12, No. 1, pp. 71-84.

Lee, C. K. and Tsai, T. H. (2004). "Demand-Responsive Pricing Method for the Product
Line of Taiwan High-Speed Rail." Transportation Research Record 1863, pp. 1-
8.

Lee, Y. J. and Vuchic, V. R. (2005). "Transit Network Design Variable Demand."
Journal of Transportation Engineering, Vol. 131, No. 1, pp. 1-10.

Link, H. and Polak, J. (2003). "Acceptability of Transportation Pricing Measures among
Public and Professionals in Europe." Transportation Research Record 1839, pp.
34-44.

Ling, J. H. (1995). "Transit Fare Differentials: A Theoretical Analysis." Journal of
Advanced Transportation, Vol. 32, No. 3, pp. 297-314.

Litman, T. (2004). "Transit Price Elasticities and Cross-Elasticities." Journal of Public
Transportation, Vol. 7, No.2.

Luenberger, D.G. (1989). Linear and Non-Linear Programming, 2nd Edition. Reading
MA: Addison Wesley.

Machado, P.; Tavares, J.; Pereira, F.; and Costa, E. (2002). Vehicle Routing Problem:
Doing it the Evolutionary Way. In Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO'2002), New York, USA, pp. 9-13.

Manheim, M.L. (1979). Fundamentals of Transportation Systems Analysis. Cambridge,
MA: MIT Press.

Mayworm, P., Lago, A., and McEnroe, J. (1980). "Patronage Impacts of Changes in
Transit Fares and Services." Washington D.C.: Urban Mass Transportation
Administrations (Report No. MD-06-0054-81-1).

McFadden, D. (1974). "The Measurement of Urban Travel Demand." Journal of Public
Economics, Vol. 3, No.4, pp. 303-328.

Meyer, J. R. (1965). The Urban Transportation Problem. Cambridge, MA: Harvard
University Press.



149

Meyer, M.D., and Miller, E.J. (2001). Urban Transportation Planning, 2nd edition, New
York: McGraw-Hill.

Michalewicz, Z. (1999). Genetic Algorithms + Data Structures = Evolution Programs,
Third, Revised and Extended Edition. New York: Springer- Verlag Berlin
Heidelberg.

Multisystem, INC., Mundle & Associates, INC., and Simon & Simon Research and
Associated, INC. (2003). "Fare Policies, Structures, and Technologies: Update"
Transportation Research Board, TCRP Report 94.

Newell, G. F. (1971). "Dispatching Policies for a Transportation Route." Transportation
Science, Vol.5 (1), pp. 91-105.

Pham, D.T., and Karaboga, D. (2000). Intelligent Optimisation Techniques-Genetic
Algorithms, Tabu Search, Simulated Annealing and Neural Networks. London:
Springer- Verlag London Limited.

Pham, L. (1991). "Effects of Fare Changes on Bus Ridership." American Public Transit
Association, Washington, D.C.

Powell, M.J.D. (1964). "An Efficient Method for Finding the Minimum of a Function of
Several Variables without Calculating Derivatives." Computer Journal, Vol. 7,
pp. 155-162.

Pratelli, A. (2004). "The Combined Zone and Fare Planning Problem." Urban Transport
X. Urban Transport and Environment in the 21 st Century, WIT Press, pp. 311-
320.

Press, W. H. et al. (1992). Numerical recipes. New York: Cambridge University Press.

Schmenner, R. (1976). "The Demand for Urban Bus Transit: A Route-by-route
Analysis." Journal of Transportation Economics and Policy 10, pp. 68-86.

Schobel, A. (2006). Optimization in Public Transportation. New York: Springer Science.

Spasovic, L. N., Boile, M. P., and Bladikas, A. K. (1994). "Bus transit service coverage
for maximum profit and social welfare." Transportation Research Record 1451,
pp. 12-22.

Su, C.H. et al. (2007). "Development of High-Speed Rail and Maglev Transportation
System in Greater China Area." Transportation Research Board 86th Annual
Meeting.



150

O'Sullivan (2003). Microeconomics: Principles and Tools. Englewood Cliffs, NJ:
Princeton Hall.

Tang, K. S., Man, K. F., Liu, Z. F., and Kwong, S. (1998). "Minimal Fuzzy Memberships
and Rules Using Hierarchical Genetic Algorithms," IEEE Transaction on
Industrial Electronics, vol. 45, no. 1, pp. 162-169.

Thomson, J. M. (1967). "An Evaluation of Two Proposals for traffic Restraint in Central
London." Journal of the Royal Statistical Society 130, pp. 340-348.

Tobin, R. L., and T. L. Friesz (1988). "Sensitivity Analysis for Equilibrium Flow."
Transportation Science, Vol. 22, No. 4, pp. 242-250.

Tsai, F. M., Chien, S. I., and Spasovic, L. N. (2007). "Optimizing Distance-based Fares
and Headway of and Intercity Transportation System with Elastic Demand and
Trip Length Differentiation." Transportation Research Board 87th Annual
Meeting.

Virginia Miller (2006). "Even with Decline in Gas Price in November, Strong Ridership
Trend Continues As More Than 25 Agencies Show Double Digit Increases."
Retrieved January 18, 2006, from American Public Transportation Association
Web site: http://www.apta.com/media/releases/060118ridership_increases.cfm.

Voith, R. (1991). "The Long-Run Elasticity of Demand for Commuter Rail
Transportation." Journal of Urban Economics, Vol. 30, No. 3, pp. 360-372.

Voith, R. (1997). "Fares, Service Levels, and Demographics: What Determines
Commuter Rail Ridership in the Long Run?" Journal of Urban Economics, Vol.
41, No. 2, pp. 176-197.

Vuchic, V. R. (2004). Urban Transit: Operations, Planning, and Economics. New York:
John Wiley & Sons.

Yang, H., and Lam, W.H. K. (1996). "Optimal Road Tolls Under Conditions of Queuing
and Congestion." Transportation Research, Vol. 30A, pp. 463-486.

Wu, Y. T., and Shih, F. Y. (2006). "Genetic Algorithm Based Methodology for Breaking
the Steganalytic Systems." IEEE Transactions on Systems, Man, and Cybernetics-
Part B: Cybernetics, Vol. 36, No. 1, pp. 24-31.

Zolfaghari, S. and Liang, M. (2002). "Comparison Study of Simulated Annealing,
Genetic Algorithms and Tabu Search for Solving Binary Comprehensive Machine
Grouping Problems." International Journal of Production Research, Vol. 40 (9),
pp. 2141-2148.


	Copyright Warning & Restrictions 

	Personal Info Statement

	Abstract (1 of 2)
	Abstract (2 of 2)


	Title Page

	Title Page

	Copyright Page

	Approval Page

	Biographical Sketch 

	Dedication Page

	Acknowledgment

	Table of Contents (1 of 3)
	Table of Contents (2 of 3)

	Table of Contents (3 of 3)
	Chapter 1: Introduction 

	Chapter 2: Literature Review 

	Chapter 3: Methodology 

	Chapter 4: Solution Algorithms 

	Chapter 5: Case Study 

	Chapter 6: Conclusion and Future Research

	References


	List of Tables (1 of 2)
	List of Tables (2 of 2)


	List of Figures (1 of 2)

	List of Figures (2 of 2)



