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ABSTRACT

ELECTRO HYDRODYNAMIC MANIPULATION OF THE PROCESS OF
SELF-ASSEMBLY OF PARTICLES AT FLUID-FLUID INTERFACES

by

Muhammad Mansoor Janjua

This dissertation is divided into two parts, first deals with the numerical study of motion

of dielectric particles subjected to nonuniform electric fields and second deals with the

process of self-assembly of particles at fluid-fluid interfaces and subjected to uniform

electric field normal to the interface. In the numerical study, the particles are moved

using a direct simulation scheme (DNS) in which the fundamental equations of motion of

fluid and solid particles are solved without the use of models. The motion of particles is

tracked using a distributed Lagrange multiplier method (DLM) and the electric force

acting on the particles is calculated by integrating the Maxwell stress tensor (MST) over

the particle surfaces. One of the key features of the DLM method is that the fluid-particle

system is treated implicitly by using a combined weak formulation where the forces and

moments between the particles and fluid cancel, as they are internal to the combined

system. The MST is obtained from the electric potential, which, in turn, is obtained by

solving the electrostatic problem. A comparison of the DNS results with those from the

point-dipole approximation shows that the accuracy of the latter diminishes when the

distance between the particles becomes comparable to the particle diameter, the domain

size is comparable to the diameter, and also when the dielectric mismatch between the

fluid and particles is relatively large.



The second part of the dissertation deals with the process of self assembly of

particles at fluid fluid interface. One of the most popular techniques for two-dimensional

assembly (self-assembled monolayers) is based on capillary forces acting on particles

placed at a liquid interface. Capillarity-induced clustering, however, has several

limitations: it applies to relatively large (radius greater than —10 um) particles only, the

clustering is usually non-defect free and lacks long range order, and the lattice spacing

cannot be adjusted. The goal of this thesis is to show that these shortcomings can be

addressed by utilizing an external electric field normal to the interface. The resulting self-

assembly is capable of controlling the lattice spacing statically or dynamically, forming

virtually defect-free monolayers, and manipulating a broad range of particle sizes and

types including nano-particles and electrically neutral particles. It is also demonstrated

that technique also works for rod-like, ellipsoidal and cubical particles floating on fluid-

fluid interfaces. The method consists of sprinkling particles at a liquid interface and

applying an electric field normal to the interface, thus resulting in a combination of

hydrodynamic (capillary) and electrostatic forces acting on the particles. It is shown that

the relative orientation of two rod-like particles can be controlled by applying an electric

field normal to the interface. The spacing between monolayer of ellipsoids is also

controlled. The spacing between two cubes, as well as the spacing of a monolayer of

cubes, can be adjusted by controlling the electric field strength. Similarly, the lattice

spacing of the self-assembled monolayer of rods increases with increasing the electric

field strength. Furthermore, there is a tendency for the rods to align so that they are

parallel to each other.
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CHAPTER 1

INTRODUCTION

The study of particles subjected to uniform and non uniform electric fields deserves

special attention because of its enormous potential and unique effects. A few applications

associated with this idea are pumping of fluids, removal of particulate matter from liquid

suspensions, classification and separation of minerals, classification of micro organisms,

and self assembly of micro and nano particles.

This research is divided into two parts. First part is to numerically study the

motion of electrically-neutral particles suspended in a liquid and subjected to varying

electric fields. The particles experience a net force due to the non-uniformity of the

electric-field. This force is called the dielectrophoretic (DEP) force and the phenomenon

is called dielectrophoresis. The magnitude and direction of the force experienced by a

particle depends on the strength and spatial variation of the applied electric-field. The

second part of the research is to experimentally study the process of self-assembly of

particles at a fluid-fluid interface. By utilizing an external electric field normal to the

interface, self-assembly is capable of controlling the lattice spacing statically or

dynamically, forming virtually defect free monolayers. A salient feature of these

processes is that there are no moving parts involved, and the particles can be moved

without touching them. This makes the force suitable for manipulating biological

particles in various applications such as cell lysing, cell sorting, cell fusion, etc.

Before moving into the details of the numerical simulations and the results of

simulations and experiments, the basic theory of dielectrophoresis along with the process

1
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of self assembly of particles at fluid-fluid interface will be discussed. In the following

section, a review of the literature that talks about the immense research that has been

done and also ongoing in the area of dielectrophoresis and self-assembly of particles at

fluid-fluid interface is presented. The rest of the thesis is organized as follows. In the

second chapter, a numerical study has been performed to study the motion of particles

under the influence of a varying electric field. In the third chapter, the self-assembly

process of spheres at a fluid-fluid interface subjected to a uniform electric field normal to

the interface is discussed. In the fourth chapter, the self-assembly process for rods and

ellipsoids is analyzed with and without the presence of a uniform electric field normal to

the interface. In the fifth chapter, the self-assembly of particles with sharp edges under

the influence of an electric field is considered as they float differently compared to

spheres, rods and ellipsoids. The conclusions derived from numerical and experimental

research are presented in the last chapter.

1.1 Theory

An uncharged particle subjected to an electric field develops an induced dipole if the

dielectric constant of particle is different from that of the suspending fluid. The dielectric

constant is a relative measure of polarity, and more polarisable substances have a

dielectric constant much greater than 1. The induced dipole on the particle due to the

electric field is further enhanced if there are other particles in the vicinity as they

intensify the local electric-field experienced by any single particle. A dipole can be

thought of a concentration of positive charge on one side of the particle and negative on
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the other side (shown in Figure 1.1). Why Electrorheological (ER) fluids form chains of

particles aligned with the electric field can be qualitatively explained [1].

Two particles are subjected to a uniform electric field in a fluid that has a

different dielectric constant than that of the particles (see Figure 1.1). The particles are

polarized. There will be attraction between the positive and negative charges on the

particle surfaces and there will repulsion between charges of same sign. When the applied

electric field is parallel to the line joining the centers of particles, they move toward each

other. Similarly if the applied electric field is perpendicular to the line joining their

centers, they experience a net repulsion and move away from each other. For particles

whose line of centers are neither parallel nor perpendicular, they experience both

attraction and repulsion causing the particles to eventually translate and rotate into

alignment with the electric field [2]. This result in formation of particle chains aligned

with the electric field. The microstructure of a suspension is related to its bulk rheological

properties, so by increasing the dielectric mismatch between the particle and fluid and

increasing the electric-field intensity, stronger chains are formed and that affect the

viscosity of an ER fluid.

Figure 1.1 Due to the dielectric mismatch between the particles and the fluid, the
particles have an induced dielectric as illustrated. The interaction of these dipoles cause
attraction, repulsion, rotation and alignment of particles, creating chains that are aligned
with the applied electric field.
The above picture is taken from Ref, [2],
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Another interesting phenomenon occurs when dielectric particles suspended in a

fluid are subjected to non-uniform electric fields. The particles go to regions of either

high or low electric-field intensity depending on their dielectric mismatch with the

suspended fluid (as shown in Figure 1.2). This phenomenon is called dielectrophoresis [3,

4]. The force which the particles experience is called Dielectrophoretic (DEP) force. The

Dielectrophoretic (DEP) force also acts in an AC electric-field, The magnitude of the

force depends on the Root-Mean-Square (RMS) value of the AC electric-field, The

electrostatic forces exerted by a non-uniform field on the particles of the suspension can

be utilized in many biological and engineering applications such as manipulation of

biological cells, filtration of dirty fluids, etc.

Figure 1.2 Two different particles in a non-uniform electric field. The particle on the left
is more polarisable than the surrounding medium and is attracted towards the strong field
at the pin electrode. The particle on the right has low polarisability compared to the
surrounding medium and is directed away from the strong electric field region.

The DEP force arises because a dielectric sphere placed in a spatially varying

electric field becomes polarized and experiences a net force:
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FDEP = 4πa3ε0εcβEVE

where a is the particle radius„ = 8.8542x10-12 F/m is the permittivity of free space, E.,

the permittivity of the fluid and E is the electric field, fi is the real part of the complex

frequency dependent Clausius-Mossotti factor ( ε*p -

 

ε*c/ε*p +2ε*c), i.e., β(f) = Re

(ε*p-ε*c/ε*p+2ε*c), ε*p and ε*c being the complex permittivities of the particles and the fluid, and E =e—j-cr

where cs is the conductivity, E is the permittivity and f is the angular frequency of the

applied electric field.

The value of la is limited within the range -0.5 to 1.0 (shown in Figure 1.3), and it

has negative values when the dielectric constant of the suspending fluid is greater than

that of the particles, and assumes positive values when the dielectric constant of the

suspending fluid is less than that of the particles. Since 18 is frequency dependent, it is

possible, at least in theory, for every fluid particle system to have a frequency at which fi

goes to zero. This frequency at which the Clausius-Mossotti factor is zero is called the

crossover frequency. At frequencies above and below the crossover frequency 16 will

have opposite signs.
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Figure 1.3 A typical curve for Clausius-Mossotti factor, showing the crossover
frequency.

From the expression for the Clausius-Mossotti factor, notice that when is

positive the direction of the dielectrophoretic force is along the gradient of the electric-

field magnitude and when fi is negative, the force acts in the opposite direction. In these

simulations, it is assumed that both fluid and suspended particles are nonconductive or

ideal dielectrics. Notice that in this case the Clausius-Mossotti factor is real as the

conductivities of both mediums are zero. However, the equations used here are applicable

even for lossy dielectrics, provided the frequency of the applied AC electric field is

cisufficiently large such that e » .

It follows that the direction of the dielectrophoretic force determines the regions

in which the particles collect. For example, when )6 is positive, the dielectrophoretic

force moves the particles into the regions where the electric field strength is locally

maximum which is normally on the electrode surfaces, while when 16 is negative, it

moves the particles into the regions where the electric field strength is locally minimum.

The dielectrophoretic force, therefore, makes the particle distribution less uniform and
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thus, as mentioned above, can have a dramatic impact on the particle suspension

structure. Such a force can also be used for removing particles from a suspending liquid,

as well as for separating particles for which the sign of /3 is different. For a given particle,

the sign of depends on the dielectric constant of the fluid, as well as the frequency of

the applied AC field. Therefore, at least in principle, any two sets of particles with

different dielectric constants can be separated, provided a suitable fluid is used, such that

the sign of 16 is different for each set. Particles also experience an electrostatic particle-

particle interaction force, known as mutual dielectrophoresis [4]. So the total electrostatic

force acting on a particle will have two contributions, one arising from DEP force and

other from mutual dielectrophoresis.

Particles float on the surface of a liquid due to surface tension. While surface

tension is a macroscopic effect, its origin lies in the micro scale. The molecules in a fluid

exert a variety of forces on each other, both attractive and repulsive. The magnitude of

attractive forces is not strong enough to bind molecules together, but these forces do

affect the behavior of the fluid. A molecule, interior in the fluid will experience an equal

average force from all directions. This however, is not the case for a molecule near the

surface of liquid. A molecule at the surface of a liquid experiences less force from the

gaseous region above it and more force from molecules in the bulk liquid. The net force

resulting on a molecule at the surface pulls it into the bulk liquid. At macroscopic scale, it

appears that the surface is behaving like an elastic membrane. The surface exerts a force

and tries to minimize its area, and this phenomenon is called surface tension.
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Mathematically, the concept of surface tension is given by the Laplace Young

Law.

Ap = a H

Here Ap deonotes the jump in pressure across a fluid surface, G is the surface

tension, and H is the mean curvature of the surface.

When two heavy hydrophobic spheres are close to each other, the defon-ned

interface is not symmetric around the spheres. The interface is lowered in between the

two spheres and this result in a net lateral capillary force that tend to cluster the particles

(shown in Figure 1.4), The same is true for hydrophilic particles, in which case the

interface between two particles is elevated, resulting in a lateral force between the two

spheres, This force is attractive and that result in clustering of particles (shown in Figure

1.4),

Figure 1.4 A schematic diagram that shows that particles deform the interface. There is a
net lateral capillary force because in the case of hydrophobic particles, the interface is
depressed in between the particles, For hydrophilic case the interface is elevated and that
resulted in net lateral capillary force.
The above picture is taken from Ref. [95].
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1.2 Literature Review

Winslow, observed in 1930 [1] that when he applied a uniform electric field to dielectric

particles suspended in oil that the electrically-induced particles formed chains in the

direction of the applied electric field. One salient feature Winslow discovered was that

the effective viscosity of the liquid could be controlled by changing the electric field

strength. The Electrorehelogical (ER) response noted by Winslow was the induced

electrostatic polarization forces on particles due to dielectric mismatch between particle

and fluid.

Pohl [4], did extensive experiments related to dielectrophoresis and its

applications and discussed about the topic in detail in one of his classic books on the

subject, Die/ectrophoresis, 1978. This book also covers extensively the various

mechanisms of polarization in neutral matter. It also mentions that the conductivity of

matter has to be taken into consideration along with permittivity for dielectrophoresis in

real dielectrics. Pohl performed extensive experiments with electrorheological fluids and

biological particles, and listed the various factors that influence particle separation or

"yield" during dielectrophoresis.

Most of the research done in this area before 1980's is predominantly on

manipulation of biological cells. Chen, C.S and Pohl H.A analyzed the behavior of single

cells under dielectrophoresis [5]. Gvozdiak, P.I., and Chekhovckaia, T.P., used

dielectrophoresis to separate microorganisms from water [6]. They concluded from their

experiments that separation efficiency increases with increase in voltage and also from

decrease in the flow rate of the suspending fluid. Dielectrophoresis was again used as a

cell separation technique by Glaser, Pescheck, and Krause [7], where the coaxial wire
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electrode was moved with a constant rate, and cells were collected on the wire and were

removed in a filtration chamber. In addition, Jone et al. [8, 9], examined the behavior of

biological cells, and the dielectrophoresis of bubbles, spheres and shells.

In early 1980's, the emphasis of research in dielectrophorsis continued to concern

biological applications. However, the focus was on more-sophisticated applications such

as cell sorting, cell lysing, cell fusion etc. [10, 11]. Also to be mentioned is the work by

Zimmermann et al. [12]. It deals with the electro-rotation of particles which depends on

the imaginary part of Clausius-Mossotti factor. He used the method of electro rotation to

extract the dielectric properties of the particles. The work done by Gherardi et al. [13]

and Mognashci et al. [14] considered particles as lossy. In this approach, instead of

considering the particles to be pure dielectrics, their conductivity was also taken into

account (which is true for a real particle) before analyzing the experimental results.

A few computational studies were also reported during this period, such as

Goossens et al. [15] and Henry et al. [16]. In the later, numerical investigations were

performed on the particle collection efficiency of a fibrous filter. Their model considered

the effect of various forces like dielectrophoresis, electrophoresis, Brownian motion, and

particle inertia, and predicted the collection efficiency of the filter under the influence of

these forces.

Hitherto, electrodes built for dielectrophoresis were made using conventional

manufacturing processes. For example, Pohl used the pin-plate or the wire-wire

arrangements in his experiments, and Adamson and Kaler [17] used a more sophisticated

"isomotive" electrode geometry manufactured by numerically-controlled milling

machines. Washizu et al. [18, 19 and 20] revolutionized the dielectrophoretic processes
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by introducing a novel device called the "fluid integrated circuit, (FIC)", in which

photolithographic techniques were used to integrate all components of the device in a

single substrate. These were the first dielectrophoretic devices manufactured using

Microelectro-mechanical systems (MEMS) manufacturing processes. FIC enabled

accurate control of the electrostatic and hydrodynamic forces, and therefore, the

manipulation of single cells. The width of flow channels were slightly larger than the

diameter of cells which allowed only single cells to pass through.

As already discussed, Pohl was the leading researcher in this area. However, his

experimental apparatus was not capable of handling submicron and nano particles, as

manipulation of small-size particles require strongly-divergent electric fields which he

was not able to create in his devices. With the development of micro-fabrication

techniques and MEMS devices, a renewed interest arose in dielectrophoretic

manipulation of particles. These small devices could produce high-gradient electric fields

which were of large magnitude, capable of manipulating submicron and nanoscale

particles by applying voltages of order 1 volt.

Pethig, who was doing research in biological dielectrophoresis [21, 22] built on

the idea of microelectrodes for dielectrophoresis and designed a new microelectrode

structure for biological dielectrophoresis [23, 24]. He investigated the dielectrophoresis

of live yeast suspensions [25, 26] using a device featuring integrated castellated

microelectrode design. Yeast cells experienced positive dielectrophoresis for frequencies

above 10 kHz and negative dielectrophoresis below 500 kHz. Pethig, made another

important contribution with unified studies of dielectrophoresis and electrorotation [27,

28 and 29]. He derived a new theoretical relationship linking the dielectric properties of a
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colloidal suspension to both dielectrophoresis and electrorotation. Until this point, these

two phenomena were treated separately, even though they are closely related by the fact

that they depend on real and imaginary parts of the induced dipole moment respectively.

Another important phenomenon observed by Batchelder in 1983 was traveling

wave dielectrophoresis [30]. For producing a traveling wave, microelectrodes were

arranged linearly with each electrode 90° phase advanced than the previous. An electric

field produced by this moves with the electrodes, and the polarized particles will also

move along with the field. This phenomenon also depends on the imaginary part of the

induced dipole moment. Fuhr et al. developed practical applications like micropumps

using traveling wave dielectrophoresis.

Jones, gave insight into various theoretical aspects of dielectrophoresis in his

classic book Electromagnetics of Particles [3]. The conventional theory of

dielectrophoresis was based on dipole approximation which doesn't explain the

dielectrophoretic phenomenon in the regions of highly-divergent electric fields and in

microchannels where the domain size is comparable to that of particle size. Jones along

with Washizu developed a theory which included multipole terms to calculate the

dielectrophoretic force [31,32 and 33]. Lab-on-a-chip was another idea which was later

introduced. These systems rely on various electrostatic forces to move around small

volumes of fluid samples. Gunji, Washiz and Jones used dielectrophoresis to control the

movement of water in such devices [34]. The high conductivity of water and associated

joule heat made it impossible in the past to use dielectrophoreis for manipulation of

water. However, the governing equations scale in such a way in microelectrode structures

that the dielectrophoretic manipulation of water is impossible. The scaling laws for the



13

various electrostatic forces in lab-on-a-chip, which is a microdevice described in [35, 36].

He demonstrated high-speed dielectrophoretic actuators including "wall-less" flow

structures, siphons and nanodroplet dispensers that operate with water [37, 38].

The breakfast food cheerios scattered randomly on the surface of milk in a bowl

will cluster under the action of capillary force [39]. A similar experiment first proposed

by Campell et al. [40], used ordinary soda straws to demonstrate capillary driven self-

assembly. This clustering of particles on interfaces changes the interfacial properties of a

two-phase system and is used in many flotation based extraction and separation processes

[41]. This effect has been used for the self assembly of submicron particles on two liquid

interfaces [42]. However, if one particle is hydrophobic and one is hydrophilic, the net

lateral capillary force between these two particles is repulsive and the particles move

away from each other. Kracichevsky & Nagayama [43] and Saif [44] discussed these

forces in detail. Even when particles experience attractive forces, the resulting structure

obtained by this has several deficiencies: i) the resulting particle structure is usually not

defect free and the defects take place because the particles physically block one another

and the clustering lacks long range order, ii) the lateral capillary forces become

insignificant when the particle size is small (nanoparticle) (more precisely, when the

dimensionless Bond number, which accounts for the particle and fluid densities, is much

smaller than one), thus restricting particle assembly using this method to the

manipulation of mesoscale particles (larger than —10 p.m); and (iii) for a given particle

and fluid system, and the lattice spacing is not adjustable.

To obtain a uniform structure, charged spherical particles were used at an air-

water interface [45], dipolar electric fields induce surface charges that distort the
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interface. This deformation of the interface causes attractive capillary forces while the

dipolar interaction causes repulsion. Particles arrange themselves in a nice hexagonal

structure while keeping a distance from each other because of induced charge upon them.

The lattice spacing can not be altered for this system by external means. A similar study

was done for charged mono-dispersed polymer particles that were adsorbed at an oil-

water interface [46], the particles exhibited a long range repulsive force and an attractive

capillary force. They also arranged in nice hexagonal structures at a distance from each

other.

Hosokawa et al. [47] used differently-shaped particles for self-assembly. If the

edges of particle are different, the deformation of interface around the particle is different

and hence, particles approach each other in the orientation where they experience

maximum attractive force. This allows them to assemble in nice structure. Bowden et al.

[81], developed a strategy for the directed self-assembly of small objects. The idea is that

ordered aggregates are energetically more stable than the individual particles or

disordered aggregates, hydrophobic sides are attracted to one another over large distances

resulting in rapid assembly, and particles can also move laterally from side to side,

lubricated by intervening film of CioFis, thus maximizing the amount of hydrophobic

area in contact.

Golosovsky et al. [48] used magnetic particles for self-assembly at a fluid-fluid

interface to create uniform structures. The particles self assembled into ordered two-

dimensional and three-dimensional structures whose symmetry and lattice parameters can

be controlled by an external magnetic field. The structures achieved were used in the
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design and construction of tunable and non-tunable photonic bandgap devices in the

microwave and mm-wave range.

An ingenious method to move particles on a fluid-fluid interface was created by

the Whitesides group [49], where they manufactured a particle composed of different

materials. One edge of the particle was created with a material that when in contact with

liquid caused small gas bubbles. The ejection of these bubbles provide a locomotive force

for the particle.

Magnetic and hydrodynamic forces collaborate and contend in the formation of

dynamic self-assembly of particles. Whitesides, Grzybowski and various collaborators

[50, 51, 52 and 53] studied disks floating over a rotating bar magnet. When the magnet

was not moving the particles in the fluid did feel a magnetic force and clustered in the

region of fluid above the poles. Once the magnetic bar was set in motion the system came

alive. Along with the magnetic force, the rotation of particles set the surrounding liquid in

motion and created a repulsive hydrodynamic force between the particles. By changing

the number of particles in the system, it was able to create a variety of dynamic

structures.

In equilibrium, the vertical position of a floating particle within a two-fluid

interface is such that the sum of the forces acting on the particle in the direction normal to

the interface is zero. A particle denser than the liquid below can float on its surface

because the vertical component of the capillary force acting upwards, which arises due to

the deformation of the interface, balances the particle's buoyant weight which is acting

downwards. For a small particle of radius a, the buoyant weight, which scales as a 3 ,

becomes negligible, and therefore only a small interfacial deformation is needed in this
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case for the vertical capillary force to balance the buoyant weight. Consequently, the

lateral capillary forces due to this small deformation of the interface are too small to

move micron and nano-sized particles, and thus, small particles, in general, do not self-

assemble. It is known that for particles floating on the air-water interface the attractive

capillary forces are significant only when the particle radius is larger than —10 Rm. This

restriction, however, does not apply to particles trapped in thin films with a thickness

smaller than the particle diameter. In fact, particles ranging from protein macromolecules

to millimeter-sized particles can self-assemble in such thin films. Moreover, small

particles can self-assemble if they are charged or if they have irregular contact lines.

All these techniques were intended to eliminate any defects in the structures

obtained by self-assembly of particles. A novel technique is discussed in the later sections

which allow us to produce defect free lattices and adjust the monolayers of particles. This

idea can be applied along with dielectrophoresis on particles trapped at the drop interface.



CHAPTER 2

DIRECT NUMERICAL SIMULATION OF SUSPENSIONS
SUBJECTED TO ELECTRIC FIELDS

2.1 Overview

Over the last two decades considerable effort has been directed at developing efficient

techniques for segregating and trapping micro to nano scale biological and other particles

suspended in fluids. These techniques are important for a variety of applications, such as

in devices being developed for classifying DNA and protein molecules in which the first

step is to concentrate them [54], and also in devices being developed for detecting cells,

and for removing particulates from fluids [55-60].

It is well known that a particle in a spatially non-uniform electric field is

subjected to an electrostatic force, called the dielectrophoretic (DEP) force, as well as

interacts electrostatically with other particles. The latter is usually modeled as dipole-

dipole interactions which are present even when the electric field is uniform. The DEP

force arises because the particle becomes polarized and a polarized particle (or dipole)

placed in a spatially varying electric field experiences a net force. This phenomenon itself

is referred to as dielectropherosis [4].

Dielectrophoresis is a powerful technique because particles with different

dielectric constants respond differently as the force depends on their dielectric constant

relative to that of the fluid in which they are suspended. Therefore, in principle,

dielectropherosis can be used to selectively manipulate and separate particles [54]. For

example, it has been demonstrated that cancer cells can be removed from human blood

since their dielectric constant is different from that of normal cells [61, 62].

17
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Numerical simulations are essential for understanding the behavior of particles

under various physical conditions, as well as for developing better designs for such

devices. A direct numerical simulation method is developed to study the phenomena of

dielectrophoresis in which the exact governing equations are solved to obtain the time

dependent motion of a fluid-particle system. Direct numerical simulation (DNS) scheme

based on the distributed Lagrange multiplier (DLM) method is used [74], to study the

problem numerically.

In most numerical studies to date, the electric force acting on a particle is

computed using the point dipole (PD) approximation [3, 4]. In this approximation, the

particle is considered small compared to the characteristic length over which the electric

field varies, and the distance between particles is assumed to be much larger than the

diameter. In the PD model, the electric force a particle experiences has two components,

one due to dielectrophoresis, and other due to particle-particle interaction. An energy

based method was used in [65] to compute the electrostatic energy of the system

subjected to an electrical field. This method allows one to include particle-particle

interaction in both far and near fields. As mentioned before, the accuracy of PD

approximation diminishes as non uniformity of electric field increases or the distance

between the particles is reduced. Some of these limitations can be improved by involving

higher order multipole moment terms [66]. Even though the multipole technique is more

accurate than the PD model, it still lacks the completeness of the Maxwell Stress Tensor

(MST), in which the force is computed in terms of the electric field that is obtained by

accounting for the presence of particles [67]. The MST method, however, requires
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calculation of the updated electric potential at each time step and thus is computationally

more demanding [68, 69 and 70].

This research is performed to numerically study the movement of particles

subjected to non uniform electric field by PD approximation and the MST method. The

DEP force acting on the particles is computed numerically by solving Laplace's equation

for the dielectric continuous medium, with appropriate boundary conditions. Key features

of the method are discussed in later sections. The code used for the numerical analysis

was written by Singh [ 75].

2.2 Governing Equations

The governing mass and momentum conservation equations for the motion of fluid and

particles are given below. Then these equations are nondimensionalized and the

governing dimensionless parameters are obtained. Let us denote the domain containing a

Newtonian fluid and N solid particles by 12, the interior of the ith particle by Pi(t), and the

domain boundary by F. The governing equations for the fluid-particle system are:

Here u is the fluid velocity, p is the pressure, ij is the dynamic viscosity of the fluid, pi, is

the density of the fluid, D is the symmetric part of the velocity gradient tensor and Ui and

coi are the linear and angular velocities of the ith particle and Fpi = DP, (t) is the boundary
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of the ith particle. The above equations are solved using the initial condition u|t=0 = uo ,

where uo is the known initial value of the velocity.

The linear velocity Ui and the angular velocity a of the ith particle are governed

by

where mi and I' are the mass and moment of inertia of the ith particle, F, and Ti are the

hydrodynamic force and torque acting on the ith particle, FE, i is the electrostatic force

acting on the ith particle and TE,i is the electrostatic torque acting on the ith particle. In this

work, there is no need to keep track of the particle orientation because, only spherical

particles are considered. The particle positions are obtained from

where Xi,0 is the position of the ith particle at time t = 0. Here, the assumption is that all

particles have the same density pp, and since they have the same radius, they also have

the same mass m.
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2.2.1 Point-Dipole and Maxwell Stress Tensor Approaches

According to the point dipole (PD) model, which assumes that the gradient of the electric

field is constant, the time averaged dielectrophoretic (DEP) force acting on a particle in

an AC electric field is given by [3, 4]

where a is the particle radius, ec is the dielectric constant of the fluid, = 8.8542x10-12

F/m is the permittivity of free space and E is the RMS value of the electric field.

Expression (1) is also valid for a DC electric field where E is simply the electric field

intensity. The coefficient NO is the real part of the frequency dependent Clausius-

Mossotti factor given by β (ω )= Re(ε*p - ε *c/ ε*p + 2ε*c) where ε*pand ε*care the frequency

dependent complex permittivity of the particle and fluid, respectively. The complex

permittivity e* = e— jo-I w, where e is the permittivity, cr is the conductivity

and j = Jii. The frequency dependence can be included in simulations by selecting an

appropriate value of p. The Clausius-Mossotti factor can take values between -0.5 and

1.0.

According to the PD model, the particle-particle interaction force on the ith

particle due to the jth particle in a non uniform electric field is [64-66]

where rij is the unit vector in the direction from the center of ith particle to the center of jth

particle. This force is present even if the applied electric field is uniform.

To calculate the electric field E, first solve the electric potential φ problem



with the boundary conditions on the particle surface given by

where cpi and 4)2 are the electric potential in the liquid and particles, respectively, and the

electric field E = —VØ. The Maxwell stress tensor is given by

The electrostatic force and torque on the ith particle are given by

were ni is the unit outer normal on the surface of the ith particles and xi is the center of the

•th particle.

2.2.2 Dimensionless Equations and Parameters

Equations (2.1) and (2.2) are nondimensionalized by assuming that the characteristic

length, velocity, time, stress, angular velocity and electric field scales are a, U, a/U,

qU/a, U/a and E0, respectively. The gradient of the electric field is assumed to scale as

E0/L, where L is the distance between the electrodes which is taken to be the same as the

domain width. The nondimensional equations for the liquid, after using the same symbols

for the dimensionless variables, are:

22
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If the point dipole approximation is used for evaluating the electrostatic force, the

dimensionless equations for the particles become

and in terms of the Maxwell stress tensor they are

If the point dipole approximation is used, the above equations contain the

following dimensionless parameters:
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Here Re is the Reynolds number, which determines the relative importance of the fluid

inertia and viscous forces, P1 is the ratio of the viscous and inertia forces, P2 is the ratio

of the electrostatic particle-particle interaction and inertia forces and P3 is the ratio of the

dielectrophoretic and inertia forces. Another important parameter, which does not appear

directly in the above equations, is the solids fraction of the particles; the rheological

properties of ER suspensions depend strongly on the solids fraction. Now, define another

Reynolds number ReL = ρLLU/η based on the channel width L.

If the Maxwell stress tensor approach is used, an alternative parameter PE

=εE20a3/mU2 is obtained, which is a measure of the electrostatic forces, in place ofP2andP3.

This parameter is less informative than parameters P2 and P3, as it does not contain any

information about the extent of polarization or the shape of the particle. In flows for

which the applied pressure gradient or the imposed flow velocity is zero, assume that the

characteristic velocity U = 2Eoecfia2 1E012  , which is obtained by assuming that the
.3/7L

dielectrophoretic force and the viscous drag terms balance each other.

In order to investigate the relative importance of the electrostatic particle-particle

and dielectrophoretic forces, we define another parameter

Expression (2.18) implies that if i(0(1) and L>>a, and thus P4> 1, the particle-particle

interaction forces will dominate, which is the case in most applications of
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dielectrophoresis. On the other hand, if p«o(i) and —L 0(1), and thus P4 < 1, then the
a

dielectrophoretic force dominates.

2.3 Finite Element Method

The computational scheme used here is a generalization of the DLM finite-element

scheme described in [67, 68]. In this scheme, the fluid flow equations are solved on the

combined fluid-solid domain, and the motion inside the particle boundaries is forced to

be rigid-body motion using a distributed Lagrange multiplier. The fluid and particle

equations of motion are combined into a single combined weak equation of motion,

eliminating the hydrodynamic forces and torques, which helps ensure the stability of the

time integration. For the sake of simplicity, in this section, assume that there is only one

particle. The extension to the multi-particle case is straightforward.

The solution and variation are required to satisfy the strong form of the constraint

of rigid body motion throughout P(t). In the distributed Lagrange multiplier method, this

constraint is removed from the velocity space and enforced weakly as a side constraint

using a distributed Lagrange multiplier term. It was shown in [76, 77] that the following

weak formulation of the problem holds in the extended domain:

For a.e. t > 0, find u E W 	 ,pe L20(12), X, e A(t),U ER3 and (0 E R3, satisfying
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as well as the kinematic equations and the initial conditions for the particle linear and

angular velocities. Here F' is the additional body force applied to the particles to limit

the extent of overlap and X is the distributed Lagrange multiplier

and A(t) is L2 (P(t))3, with (. ")P(t) denoting the L2 inner product over the particle, where

F- is the upstream part of F. In simulations, since the velocity and II are in L2, the

following inner product is used

In order to solve the above problem numerically, discretize the domain using a

regular tetrahedral mesh Th for the velocity, where h is the mesh size, and a regular

tetrahedral mesh T2h for the pressure. The following finite dimensional spaces are defined

for approximating WuD, W0 , L2(Ω ) and L2(Ω ) :
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The particle inner product terms in (2.30) and (2.32) are obtained using the discrete L2

inner product defined in Glowinski, et al. [74]. Specifically, choose M points, x1,...,xm

that uniformly cover P(t), and define

Using these finite dimensional spaces, it is straightforward to discretize equations (2.30-

2.33).

Time Discretization Using the Marchuk-Yanenko Operator Splitting Scheme

The initial value problem (Equations 2.30-2.33) is solved by using the Marchuk-Yanenko

operator-splitting scheme, which allows us to decouple its three primary difficulties:

1. The incompressibility condition, and the related unknown pressure ph,

2. The nonlinear advection term,

3. The constraint of rigid-body motion in Ph(t), and the related distributed Lagrange

multiplier λh.

The Marchuk-Yanenko operator-splitting scheme can be applied to an initial value

problem of the form

where the operators A1, A2 and A3 can be multi-valued. Let At be the time step. Now, use

the following version of the Marchuk-Yanenko operator splitting scheme to simulate the

motion of particles in an ER fluid:
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Set u° = uo,h, U° = Uo, X° = X0 and co° = (.0 0, and calculate E by solving V2φ = 0,

subjected to the electric potential boundary conditions, and then calculating E = Vy

For n = 0, 1, 2,... assuming le, Un, Xn, and uf are known, find the values for the (n+l)th

time step using the following steps:

STEP 1:
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end do

Then set Un+2/4= 
Unn,K, r+2/4 = xn,K. (2.47)

The next step consists of finding un+1 E Wn+1 uD,h, λn+1 E Ah((n + 2/4)Δ t),Un+1 e R3 , and

c0n+1 e R3, satisfying

where the center of the particle P((n +2/ 4) Δ t) is at the location X'n+2/4 .

Then set 3C1+1'° =

For k = 1, K, follow the do-loop

end do
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Then set Xn+1 
= xn+1,K. (2.49)

Then set pn+1= 
pn+1/4, and go back to the first step.

Remarks:

1. The problems arising in the first and second steps are solved using the conjugate

gradient algorithm described in [74].

2. al and a2 are assumed to be the same and its value is 0.5.

3. The third step is used to obtain the distributed Lagrange multiplier that enforces rigid

body motion inside the particles. This problem is solved by using the conjugate

gradient method described in [74, 75]. In this step, electrostatic forces are accounted

that arise due to the dielectrophoretic effect and the particle-particle interactions.

2.4 Results

Results are obtained using finite element code by performing direct numerical

simulations of the transient motion of particles in a three dimensional dielectrophoretic

cage. The cage is formed by embedding four electrodes in the four side walls parallel to

the yz- and xy-coordinate planes of a square shaped channel (see Figure 2.1). The

electrodes are placed at the center of the side walls and their width is one half the length

of the sides. The voltage applied to the electrodes is selected such that the electric field

magnitude is locally minimal at the center of the domain where one wishes to attract and

hold particles. This device is of practical interest as it provides a way to trap one or more

particles at the center of the cage in a contact less fashion.

The fluid density A = 1.0 g/cm3, and the particles are assumed to be neutrally

buoyant. The viscosity of the fluid is 0.01 g/(cm. ․). Both particles and fluid are assumed
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to be nonconducting. The normalized dielectric constant of particles is varied and that of

the fluid is assumed to be one. The voltage applied to the electrodes is 1000 volts. All

dimensional lengths reported in this paper are expressed in mm and the time is reported

in seconds. The initial fluid and particle velocities are set to zero. The fluid velocity is

assumed to be zero on the domain side walls. The domain is discretized using a pseudo

P2-P1 tetrahedral mesh.

The domain dimensions are L, L/2 and L, along the x, y and z directions,

respectively, (as shown in Figure 2.1). All lengths are nondimensionalized using L. Also

note that there are two other characteristic length scales in this problem: the particle

radius and the distance between the particles. The latter in general is related to the

concentration of particles in the device which is not important since for most cases

considered in this paper there are only 1-2 particles in the domain.

The magnitude of the electric field E in the xz-plane is shown (in Figure 2.1).

Notice that the magnitude is locally minimum at the center of the domain and increases

with increasing distance from the center. The figure also shows that the electric field

inside the cage is nonuniform, and its gradient near the domain center is non zero, except

at the center itself where it is zero. Figure 2.1b shows that the gradient of the electric field

magnitude points radially outward from the center and towards the edges of the

electrodes. Therefore, if a particle is placed in this domain and its dielectric constant is

smaller than that of the liquid, it will experience an electric force towards the center of

the domain, i.e., in the direction opposite to the lines of the gradient of the electric field

magnitude. If the dielectric constant of the particle is greater than that of the liquid, the

direction of the electric force is away from the center.
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Figures 2.2 and 2.3 show the modified electric field distribution when two

particles are present in the domain. Notice that the electric field is changed in the vicinity

of the particles and that this change is especially significant (in Figure 2.3) where particle

diameters are larger and comparable to the cage size. Therefore, as discussed below,

under these conditions the error in the electric force given by the PD model is relatively

larger as it does not account for the fact that the electric field changes when particles are

present in the domain. This is also the case, i.e., the electric field changes substantially,

when the distance between particles is comparable to their diameter. It is therefore

important that for such cases the electric force be computed by first solving the Laplace's

equation for the dielectric medium, and then this computed electric potential is used to

compute the MST which is integrated over the particle's surface to obtain the force.

Figure 2.1 Electric field distribution, (a) Isovalues of loglEj at y = 0.25, i.e., the domain
mid plane. Electric field does not vary with y. The magnitude is maximum near the
electrode edges and decreases with increasing distance. The minimum is at the center. (b)
Magnitude and direction of VE2to which the dielectrophoretic force is proportional.
Arrows indicate the direction of positive DEP force (for negative DEP, the direction is
the opposite).
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. ,	 ... ,
Figure 2.2 Isovalues of logiEl are shown when two particles with radii 0.05 are present.
The particles coordinates are (a) (0.2, 0.25, 0.45) and (0.8, 0.25, 0,55), (b) (0.2, 0,25,
0.35) and (0.2, 0.25, 0,65).

Figure 2.3 Isovalues of loglE1 are modified when size of particles are bigger. The
particles coordinates are (a) (0.2, 0.25, 0.45) and (0.8, 0.25, 0,55) with radius 0.15. (b)
(0.2, 0.25, 0,34) and (0.2, 0.25, 0.66) with radius 0.15, (c) (0,35,0,25,0.4) with radius
0.20.
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2.4.1 Convergence Study

To show that the numerical results obtained using the MST method converge when the

time step is reduced or the mesh resolution is increased, the domain is discretized using

two meshes, one with 139425 nodes and second with 269001 nodes. The time step used

was 2.5x10-4 s or 5x10-4 s. The trajectories of two particles released close to each other

were studied. The initial positions of the two particles were (0.2, 0,25, 0,45) and (0.8,

0.25, 0.55) and the diameter is 0.05, Since the particles are initially close to each other,

the electric force contains contribution both from the electrostatic particle-particle

interactions and the spatial non uniformity of the electric field.

The dimensionless parameters for the case shown in Figure 2.4 are: ep= 0.2, Re =-

2.67x10 -8, Pe =7.36 x108, ep = 1,1 Re =2.37 x10 -9, Pe =9.36 x1010, Figure 2,4 shows the

z-position of the first particle for two different mesh resolutions and time steps, and for

εp=0.2 and 1.1. From (Figure 2.4) note that the particles trajectories remain virtuallyP

unchanged when the mesh is refined and also when the time step is reduced. Therefore,

the conclusion is that the results have converged for all two values of dielectric constant,

Figure 2.4 The z-component of the first particle is shown as a function of time. There are
two particles in the domain and their initial positions were (0.2, 0.25, 0.45) and (0,8, 0.25,
0.55). For "Coarse" there are 139425 nodes and the time step is 5x104, for "Refined"
there are 269001 nodes and the time step is 5x10-4, and for "Refined - t" there are 269001

nodes and the time step is 2.5x104. (a) E P =0,2 (b) E P = 1,1,
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2.4.2 Motion of a Single Particle:

(a) Variation with ep

A single particle with a = 0.05 is released from (0.35, 0.25, 0.40) at t = 0. The transient

motion of the particle is studied, and four values of ep used in this study are 0.2, 0,5, 1.5

and 5. When the value of εp <εc =1, particles go to regions of minimum electric field

due to negative dielectrophoresis, The final position and velocity obtained by particle for

PD and MST method is similar (shown in Figures 2,5 and 2.6) for different dielectric

mismatch. There is only one particle in the domain so there is no particle particle

interaction force.

Figure 2.5 The z-component of particle position computed using the PD and MST
methods for a = 0.05 and εp =0.2. The initial particle position is (0,35, 0,25, 0.40). (a) z-
coordinate, (b) z-velocity

Figure 2.6 The z-component of particle position computed using the PD and MST
methods for a = 0,05 and ep =0.5. The initial particle position is (0,35, 0.25, 0.40), (a) z-
coordinate, (b) z-velocity
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This however, is not the case when the value of e p> ec=1 and particle

experiences positive dielectrophoresis, and moves toward the regions of high electric

field. Velocity obtained by particle for two methods is similar when dielectric mismatch

between particle and liquid is less (as shown in Figure 2.7), but particle achieve much

higher velocity for MST method when dielectric mismatch between particle and fluid is

high (as shown in Figure 2.8),

Figure 2.7 The z-component of particle position computed using the PD and MST
methods for a= 0.05 and εp=1.5. The initial particle position is (0.35, 0.25, 0.40), (a) z-

coordinate, (b) z-velocity

Figure 2.8 The z-component of particle position computed using the PD and MST
methods for a= 0.05 and εp =5.0 The initial particle position is (0.35, 0.25, 0,40). (a) z-

coordinate, (b) z-velocity

(b) Variation with a

(i) Negative Dielectrophoresis

Now, discussion is about the influence of particle radius on trajectory and velocity of a

single particle for same dielectric constant. For ep = 0.2, particle experiences negative
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dielectrophoresis. The particle radius a is varied for two values 0.05 and 0.2. For both

a's, the velocities and trajectories obtained by particle remains similar for both PD and

MST method (as shown in Figures 2.9 and 2.10).

Figure 2.9 The z-component of particle position computed using the PD and MST
methods for a = 0.05 and Fp =0.2. The initial particle position is (0.35, 0.25, 0.40). (a) z-

coordinate, (b) z-velocity

Figure 2.10 The z-component of particle position computed using the PD and MST
methods for a = 0.2 and el, =0.2. The initial particle position is (0.35, 0.25, 0.40). (a) z-

coordinate, (b) z-velocity

(ii) Positive Dielectrophoresis

Particles experience positive dielectrophoresis when the values of εp> εc=1. A bigger

particle with higher dielectric mismatch will modify more electric field, thus the

trajectories and velocities obtained by MST method is significantly different from PD

approximation (Figures 2.11 and 2.12).
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Figure 2.11 The z-component of particle position computed using the PD and MST
methods for a= 0.05 and ep =5.0. The initial particle position is (0.35, 0.25, 0.40). (a) z-
coordinate, (b) z-velocity

Figure 2.12 The z-component of particle position computed using the PD and MST
methods for a= 0.2 and ep =5.0. The initial particle position is (0.35, 0.25, 0.40). (a) z-
coordinate, (b) z-velocity

2.4.3 Motion of Two Particles

(a) Variation with ep

Now, the results are for transient motion of two particles with ep =0.5, which at t=0 are

released at (0.2, 0.25, 0.45) and (0.8, 0.25, 0.55). Since ep<e, =1, this case corresponds

to negative dielectrophoresis, and thus the particles eventually move to the domain center

where the electric field strength is locally minimum (see Figure 2.13). Their final relative

arrangements at the device center given by the PD and MST methods are different. For

the PD method, they come close to each other and then rotate about the y-axis so that the

line joining their centers becomes parallel to the z-direction. For the MST method, the
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particles come close to each other, but then they rotate so that the line joining their

centers becomes parallel to the y-direction. Similar results were obtained when the initial

positions of the two particles were different showing that the final arrangement at the

domain center is independent of their initial positions in the domain (see Figure 2.14).

Here make a note that a comparison between the MST and PD methods is done to

determine the parameter values for which the error in the latter method is significant.

This is important because, in the past, the point dipole approach has been used to study

the formation of chains and columns in electrorheological suspensions even though the

particles of chains and column close each other and the PD model is likely to give

inaccurate results. The results describe above show that for some conditions even the

qualitative arrangement predicted by the two methods is different.

Figure 2.13 Top and side views of particles for 61)=0.5 at t = 0 and 0.70. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.45) and (0.8, 0.2, 0.55).
Their final positions are shown by black cirlces. (i) PD, (ii) MST.
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Figure 2.14 Top and side views of particles for ep =0.5 at t = 0 and 0.70. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.35), and (0.2, 0.25,
0.65). Their final positions are shown by black circles. (i) PD, (ii) MST.

For eP =1.5 ' which corresponds to the case of positive dielectrophoresis, the

particles are attracted to the nearby electrode edge and captured there (see Figures 2.15

and 2.16). The initial positions of the particles are the same as in Figures 2.13 and 2.14.

The final positions of the captured particles at the electrodes edges given by the MST and

PD methods are slightly different. This again is due to the fact that the presence of

particle modifies the electric field. Clearly, the particle-particle interactions are not

important in this case as the particles remained away from each other. Furthermore, since

the dielectric constant of particles is not significantly different from that of the

suspending fluid which is one, both methods give similar results.
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Figure 2.15 Top and side views of particles for sp =1.5 at t = 0 and 0.20. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.45), and (0.8, 0.25,
0.55). The final positions are shown by black circles. (i) PD, (ii) MST.

Figure 2.16 Top and side views of particles for sp=1.5 at t = 0 and 0.20. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.35) and (0.2, 0.25,
0.65). The final positions are shown by black circles. (i) PD, (ii) MST.

The differences between the PD and MST methods as expected, are greater when

e = 5.0. Figures 2.17 and 2.18 show that for both methods the particles are captured at

the electrode. Their final positions, including the orientation of the line joining their

centers, however, are different. Specifically, for the MST method, the particles come

closer to the electrode surface and the line joining their centers makes a smaller angle

with the electrode surface. For sp= 0.2 in both cases, as shown in Figures 2.19 and 2.20,
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the particles are captured at the domain center. However, as before, the orientation of the

line joining their centers for the PD method is parallel to the y-axis, and for the MST

method it is parallel to the z-axis.

Figure 2.17 Top and side views of particles for 81)=5.0 at t = 0 and 0.15. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.45), and (0.8, 0.25,
0.55). The final positions are shown by black circles. (i) PD, (ii) MST.

Figure 2.18 Top and side views of particles for ep =0.2 at t = 0 and 0.15. The initial
positions of the particles (shown as white circles) are (0.2, 0.25, 0.35) and (0.2, 0.25,
0.65). The final positions are shown by black circles. (i) PD, (ii) MST.
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Figure 2.19 Top and side views of particles for ep=0.2 at t = 0 and 0.20. The initial

positions of the particles (shown as white circles) are (0.2, 0.25, 0.45) and (0.8, 0.25,
0.55). The final positions are shown by black circles. (i) PD, (ii) MST.

Figure 2.20 Top and side views of particles for ep=0.2 at t = 0 and 0.20. The initial

positions of the particles (shown as white circles) are (0.2, 0.25, 0.35) and (0.2, 0.25,
0.65). The final positions are shown by black circles. (i) PD, (ii) MST.

(b) Variation with a

(i) Negative Dielectrophoresis

Here, the objective is to study the influence of the particle radius on the trajectories of

particles. Figure 2.21, shows that particles experience negative dielectrophoresis and due

to the presence of particles in domain center electric field is modified. Particles align

parallel to z axis in PD approximation and for MST method particles align parallel to y
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axis (as shown in Figure 2.21a). When the size of particle is increased in both cases

particles align parallel to y axis (as shown in Figure 2.21b).

Figure 2.21 The z-component of particle position computed using the PD and MST
methods for a = 0.05, 0.1 and Ep =0.2. The initial position of particles are (0.26, 0.25,
0.30) and (0.74, 0.25, 0.7). (a) z-coordinate for a = 0.05 (b) z-coordinate for a = 0.1.

(ii) Positive Dielectrophoresis

Particles that experience positive DEP gather at electrode edges. Particles initial positions

are chosen in such a way that they go to different electrodes. The final position of particle

at one electrode obtained by two methods is different (as shown in Figure 2.22). When

the size of the particles is increased, the particles do the same thing and the final position

in z axis obtained by MST method is smaller in comparison to PD method (as shown in

Figure 2.22).

Figure 2.22 The z-component of particle position computed using the PD and MST
methods for a = 0.05, 0.1 and 61)=5.0. The initial position of particles are (0.32, 0.25,
0.40) and (0.62, 0.25, 0.6). (a) z-coordinate for a = 0.05 (b) z-coordinate for a = 0.1.
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When particles initial positions are chosen, in such a way that they gather at same

electrode. The final positions obtained by two methods are different, as electric field is

modified due to the presence of other particle (as shown in Figure 2.23).

Figure 2.23 The z-component of particle position computed using the PD and MST
methods for a = 0.05, 0.1 and εp =5.0. The initial position of particles are (0.25, 0.25,
0.40) and (0.46, 0.25, 0.48) (a) z-coordinate for a = 0.05 (b) z-coordinate for a = 0.1.

2.5 Discussion

A numerical scheme based on the distributed Lagrange multiplier method is used to study

the dynamical behavior of particles in a dielectrophoretic cage. The Maxwell stress tensor

method is used for computing the electric forces on the particles. The study concludes

that the error in the point dipole method increases as the distance between the particles

decreases. Also, the error is relatively large when the particle radius is comparable to the

cage size, which determines the length scale over which the electric field varies. The

error also increases as the difference between the dielectric constants of the particles and

the fluid increases. The final steady positions of the particles, including the orientations

of the line joining their centers, for the MST method are different from those for the point

dipole method.



CHAPTER 3

MICRO AND NANO PARTICLES SELF ASSEMBLY FOR VIRTUALLY
DEFECT FREE MONOLAYERS

3.1 Overview

In recent years much effort has been directed to understand the behavior of particles

trapped at fluid-fluid interfaces because of its importance in a wide range of applications,

e.g., the self-assembly of particles at fluid-fluid interfaces resulting in novel nano-

structured materials, micro/nano manufacturing, the stabilization of emulsions, etc. [78-

84].

Particles get trapped at fluid-fluid interface due to surface tension. A popular

means used to assemble particles is based on the phenomenon of capillarity. A common

example of capillarity-driven self-assembly is the clustering of cereal flakes floating on

the surface of milk. The floating cereal particles experience attractive capillary forces due

to the fact that when two such particles are close to each other, the deformed interface

around them is not symmetric as the interface height between the particles is lowered due

to the interfacial tension. This lowering of the interface between the particles gives rise to

lateral forces that cause them to move toward one another and cluster [84-87].

This naturally-occurring phenomenon, however, leads to the uncontrollable

clustering of particles, as capillary forces are attractive and increase with decreasing

distance between the particles. As a result it produces monolayers that display many

defects, lack order (both short and long ranged) and whose distance between the particles

cannot be controlled. In addition, such a phenomenon does not manifest itself on particles

46
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smaller than —10 um. These drawbacks seriously limit the range of applications one can

target using this technique.

Figure 3.1 (a) Schematic of the experimental setup used to control the self-assembly of
particles on a fluid-fluid interface. The distance between neighboring particles is
controlled by adjusting the applied voltage; (b) Forces acting on particles in the presence
of applied electrical field.

The technique described in refs. [88-90] overcomes all these shortcomings (see

Figure 3.1) by applying an external electric field normal to the interface. The electric

field causes spherical particles trapped at the interface to experience an electrostatic force
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normal to the interface and since the particles become polarized they also repel each other

due to the dipole-dipole interactions. The former is a new phenomenon in which the

electrostatic force arises because of the jump in the dielectric properties across the

interface, and not because the applied electric field is non-uniform. In fact, an isolated

uncharged particle subjected to a uniform electric field and suspended in a single fluid

does not experience any electrostatic force. An interesting property of interfacial

phenomenon is that the electrostatic force generated varies as a2, where a is the particle

radius, and not as a3, which is the case of the well-known dielectrophoretic force [3,4]

acting on particles suspended in a bulk liquid and under the influence of a non-uniform

electric field. It follows that the new interfacial electrostatic force is stronger on small

particles than the classic dielectrophoretic force. In addition, the resulting self-assembly

process into two-dimensional arrays is capable of controlling the lattice spacing statically

or dynamically, forming virtually defect-free monolayers of monodispersed spherical

particles, and manipulating a broad range of particle sizes and types including nano-

particles and electrically neutral particles. Indeed, the electric field causes particles to

experience electrostatic and capillary forces, the magnitudes of which can be adjusted to

control the lattice spacing of the formed monolayer.

In this study, it is demonstrated that for a fluid-fluid interface the electric field

applied normal to interface produces a repulsive force on particles and the lattice spacing

can be controlled by changing the magnitude of electric field.
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3.2 Governing Equations

The domain containing the two fluids and spherical particles (of identical radii and

properties) is denoted by 12, the interior of the ith particle and its surface by Pi(t) and

δPi(t),respectively, and the domain boundary byF.To calculate the electric fieldE,the

electric potential problem for 0 in 12 is solved first, namely V. ( εVφ)=0 as subjected to

the boundary conditions on the particle surfaces and the two-fluid interface. On the

particle surface aP(t), the conditions are φ1 = φ2,	εc δφ1/δn=εp δφ2/δn,whereφ1 andφ

2 are the electric potentials in the liquid and particle, and E, and ep are the dielectric

constants of the fluid and particle. A similar boundary condition is applied at the two-

fluid interface. The electric potential is prescribed on the electrodes as constant values

and the normal derivative of the potential is taken to be zero on the remaining domain

boundary. The electric field is then deduced from the equation E –VØ . The Maxwell

stress tensor σm is given by σm = εEE-1/2ε(E•E)I , where I is the identity tensor and the
2

electrostatic force acting on the ith particle is then obtained by integrating am over its

surface, i.e. DEP	 sum .n ds , where n is the unit outer normal on the surface of the ith
aPi(t)

particle.

Even though the applied electric field away from the interface is uniform, a

particle within the interface experiences an electrostatic force normal to the interface due

to a jump in dielectric constants across the interface. If the interface does not contain any

particles, the electric field is normal to the interface and its intensity in the lower and
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upper fluids is constant, while changing discontinuously at the interface according to the

boundary condition stated above.

The vertical component of the electrostatic force in a DC field (or time averaged

force in an AC field) acting on a particle can be written as:

Fey = a 2ε0ε a(εL/εa -1)E2 fv(εL/εa, εp/εa, θc, h2/a)
(3.1)

Here a is the particle radius, E = Vo/L is the average electric field strength away from the

particle (or the RMS value of the electric field in an AC field), Ep, Ea and EL are the

dielectric constants of the particle, the upper fluid and the lower fluid, respectively, and

ED = 8.8542x10-12 F/m is the permittivity of free space. L is the distance between the

electrodes, Vo is the voltage difference applied to the electrodes, and M—Le , ,6 , ) is
Ea ea	 a

a dimensionless function of the included arguments (θ and h2 being defined in Figure

3.2).

Figure 3.2 is a schematic of a heavier than liquid hydrophilic (wetting) sphere of radius a
hanging on the contact line at θ.
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The dipole-dipole interaction force between two dielectric spheres immersed in

a fluid with the dielectric constant Ea and subjected to a uniform electric field, in the

point-dipole limit, is given by the following well-known expression in spherical

coordinates:

where A =127reoeaa2,62E2 (Ebeing the magnitude of the uniform electric field along the

z-axis), 0 denotes the angle between the z-axis and the vector r joining the centers of the

two particles, r=|r|, β=εp-εa/εp+2εa 	 is the Clausius-Mossotti factor, and is the dielectric
εp+2εa

constant of the particle.

However, the above expression is not applicable to particles floating in a two-

fluid interface between two fluids with different dielectric constants, as the fluid's

dielectric constant changes discontinuously across the interface. The modified expression

for the lateral interaction force can be written as

where fp is a dimensionless function of the included arguments, with the force

depending upon the sixth power of the particle radius a and on the fourth power of the

inverse of the distance between the particles

The repulsive interaction energy \AT') between two particles can be obtained by

integrating (Equation 3.3) with respect to r, which gives
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Now, assume that ea = 2.0, a= 4.0, E 3x106 volt/m, fD = 3.1, and r = 2a. For

these parameter values, the interaction energy is shown as a function of the particle radius

in Figure 3.3. For a = 1 gm, W D(r)= -1.67x104 kT and for a = 100 nm, WD (r)=~ —16.7kT,

where k is the Boltzman constant and T is the temperature, indicating that the repulsive

electrostatic force is larger than the random Brownian force acting on the particles. This

shows that the electrostatic repulsive force (Equation 3.3) can be used to manipulate

nanoparticles within a two-fluid interface.

Figure 3.3 Energies of capillary attraction (We) and dipole-dipole repulsion (Wd).

3.2.1 Vertical Force Balance in Equilibrium

Next consider the vertical force balance for a spherical particle floating within the

interface between two immiscible fluids. The buoyant weight Fb of the particle is

balanced by the capillary force Fe and the electrostatic force Fey, such as

Fe+ F, + Fb = O. 	 (3.5)
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The buoyant weight is given by Fb =-gPLa3 fb(1±-i- 	 where g is the
PL PL	 a

acceleration due to gravity, pp is the particle density, pa and pi, are the densities of the

upper and lower fluids, 0, and h2 are defined in Figure 3.2, and fb is a function of
PL

ρp , θc and	 . It can be deduced from Figure 3.2 that the capillary force Fc takes the
ρL 	 a

expression F, = -2z y a sin 6+, sink + a), where a is the contact angle. Therefore,

(Equation 3.5) can be rewritten as

= -21c a sin 0, sink + a) =

In dimensionless form, the previous equation has the form

Here B= pLa2gly is the Bond number and WE = eoea —aE2 is the electric Weber number.

As the particle radius a approaches zero, the Bond number B=pLa2gly ---> . In

this limit, in the absence of an electrostatic force, the right hand side of equation (3.6') is

zero and thus sin (a + 0c) - 0 or θc 7r- a (see Figure 3.2). This means that a small

particle floats so that the interfacial deformation is insignificant. Hence, the lateral

capillary force, which arises from the interfacial deformation, in this limit, is alsc

insignificant. As noted earlier, for particles floating on water, this limit is reached when

the particles radius is approximately 10 gm.
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Another important limit is the case for which the Bond number approaches zero,

but WE does not. This situation arises, for instance, for small particles when the

magnitude of the electric field is sufficiently large. The equilibrium position of a particle

within the interface in this case is determined by the balance of the interfacial and

electrostatic forces alone. The interface is then deformed by the particle, and so the lateral

(electric field induced) capillary forces are present and can cause particles within the

interface to cluster.

3.2.2 Interfacial Deformation and Lateral Capillary Force

In equilibrium, the external vertical force acting on a particle is balanced by the vertical

component of the capillary force which, as noted earlier, arises because of the

deformation of the interface. The profile of the deformed interface around a particle can

be obtained by integrating Laplace's equation and using the boundary conditions that (i)

the interface far away from the particle is flat and (ii) the angle between the interface and

the horizontal at the particle surface is known in terms of the total external force acting

on the particle. It can be shown that the interface height n(r) at a distance r from a

spherical particle is given by:

where K0(qr) is the modified Bessel function of zeroth order and q=√ρ I-ρa)/γ. Inr

obtaining the above expression the influence of the electrostatic stress on the interface,

including the stress that arises due to the presence of the particle has been ignored, and it

is assumed that the interfacial deformation is small.
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Now consider a second particle at a distance r from the first particle. The height

of the second particle is lowered because of the interfacial deformation caused by the first

particle, and thus the work done by the electrostatic force and gravity (buoyant weight) is

Notice that the electrostatic force is due to a field that is external to the fluid-

particle system, as is the gravitational field, and therefore the work done by both fields is

treated in a similar manner. In this analysis, work done by the electrostatic stress that acts

on the two-fluid interface will be ignored. In addition, this analysis of the behavior of two

particles does not account for the multi body interactions (which could be accounted for

by summing the forces exerted by all other particles on one given particle). Using

Equations (3.6) and (3.7), Equation (3.8) can be rewritten as

Figure 3.3 illustrates energies of capillary attraction (We) and dipole-dipole

repulsion (Wd), in kTunits, plotted against the particle radius. For Wl(k7)> 1, the capillary

attraction and the dipole-dipole repulsion are stronger than the Brownian force for all

particles sizes down to a radius of approximately 100 nm. The parameters are ea = 2.0, EL

= 4.0, E = 3x106 voltlm, f, =1, fp =1,7=0.01, pa =1 kg/m3, p 1, =1000, pp =3000

kg/m3 and r = 2a.

In Figure 3.3, the interaction energy Wc due to the lateral capillary force is plotted

as a function of the particle radius. The parameter values are Ea= 2.0, a= 4.0, E = 3x106

volt/m, fv =1, γ = 0.01, ρa =1 kg/m3, p =1000, pp = 3000 kg/m3 and r = 2a. The
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figure shows that for these parameter values, the interaction energy (Equation 3.9) is

significant for nano sized particles.

The lateral capillary force between two particles is therefore given by

where K1 (qr) is the modified Bessel function of first order. When the two particles are far

away from each other, the above reduces to

Notice that the lateral capillary force depends on the net vertical force acting on

the particle, which includes its buoyant weight and the vertical electrostatic force. The

force varies as the fourth power of the applied electric field, and if the electrostatic force

and the buoyant weight are in the same direction, the electric field enhances the lateral

capillary forces among the particles.

However, the vertical electrostatic force may not be in the same direction as the

buoyant weight, and if this is the case there is a critical value of the electric field strength

for which the net vertical force acting on the particle is zero. The lateral capillary force

among the particles under these conditions would also be zero; this suggests that the

electric field can be used to decrease, or even eliminate, capillarity induced attraction

among the particles. If the electric field strength is increased further, the particles move

upward in the interface and the capillary forces arise again but the interface near the

particles would be curved downwards. The capillary force can cause particles to interact

with each other only when the associated interaction energy is greater than kT, and
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therefore, when the net external vertical force acting on the particles is small the latter are

not likely to cluster as their motion would be governed by thermal fluctuations.

The lateral electric for due to particle-particle interactions can be written as

where r is the distance between the particles and f is an 0(1) dimensionless function of

the included arguments. The lateral electric force is repulsive and causes particles to

move away from each other.

3.3 Results

3.3.1 Spheres at a Liquid-Air Interface

An electric field is applied perpendicular to the interface (shown in Figure 3.1) which

allows to manipulate the clustering of particles floating at an interface to form well-

controlled, and even active monolayers (i.e., capable of changing in time) (see the

schematic in Figure 3.4). The technique is capable of not only expanding an already

assembled monolayer but also tuning the lattice spacing by changing the voltage as

shown later in Figure 3.7. It is interesting to point out that the particle arrangements are

very different before turning on the electric field (Figure 3.4a) and after turning on the

electric field and decreasing it to zero (Figure 3.4c). As previously mentioned, defects are

present in absence of an electric field. However, when the electric field is turned on and

slowly decreased to zero (Figure 3.4c), the particles gain a well-ordered, triangular

(hexagonal) lattice arrangement and maintain it as the lattice distance decreases until the

particles touch each other. Therefore, the interstices in between the particles (i.e., the

pores of the ultra-fine porous membrane) in this new state are also regular - the only
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irregularities remaining being due to the variation in the size of the particles themselves.

The same phenomenon is illustrated in Figures 3.5 and 3.6 for bigger (55 pm of radius)

and smaller sized particles (12 gm of radius). In all cases, the new states display long-

range order, which is highlighted in Figure 3.2c by drawing straight lines joining the

particles centers; notice that the lines are oriented at an angle of 120° of one another, a

value characteristic of a hexagonal lattice

The lateral capillary forces (Equation 3.11) dominate when the distance between

the particles is larger than a critical value (these forces decay as r-1). On the other hand,

the repulsive forces due to the inter-particles electrostatic interactions decay relatively

faster (Equation 3.12) with the distance between the particles (these forces decay as r-4)

[91-95]. Since the repulsive force decays faster than the attractive capillary force, there is

an equilibrium distance at which the two curves intersect and the total lateral force acting

on the particles is zero. The value of this equilibrium distance can be controlled by

adjusting the electric field strength. Since the electric field intensity can be varied with

time, the control can be exerted in a dynamic fashion to form dynamic monolayers with

adaptable characteristics and properties.

The equilibrium separation between two particles is estimated as

Notice that req /(2a) decreases with increasing particle radius a. In addition,

although the equation itself allows values req/(2a)<1, those values are not physically

possible and should therefore be excluded because once particles come in contact of one
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another the distance between them cannot decrease any further. Also note that since for

large particles the buoyant weight is much larger than the vertical electric force, as

2

req /(2a) increases with increasing electric field strength as E 3 . The attractive capillary

forces for such particles are primarily generated by the interfacial deformation due to

their buoyant weight. In the intermediate size range, req/(2a) varies as Efl , with 18 being

between 2/3 and —2/3, and decreases with decreasing particle radius and increasing

electric field strength. These results are in excellent agreement with our experimental

data for particles of radius a = 37 pm (Figure 3.7). For submicron sized particles (a=1

or smaller) for which the buoyant weight is negligible, req /(2a) decreases as E-2/3 with

increasing electric field strength. This behavior will be checked experimentally in the

future.
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Figure 3.4 Assembly of glass particles floating at the air-oil interface. The average radius
of particles is 37 jiM. (a) Particles self-assemble under the action of the lateral capillary
forces alone. The lattice is approximately triangular, but lacks long range order and
contains many defects. (b) When a voltage V=5000 volts is applied, particles move away
from each other and form a defect-free triangular lattice in which the distance between
the particles is approximately 2.7 times the particle radius. (c) The applied voltage is
slowly decreased to 0 volt. Particles touch each other in a well organized triangular
(hexagonal) lattice and the lattice exhibits long range order which is indicated by the
straight lines passing through their centers. Notice that the number of lattice defects is
considerably reduced compared to that in (a) where the monolayer was assembled under
the action of capillary forces alone.
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Figure 3.5 Assembled glass particles monolayers for particles with an average radius of
55 p.m. The monolayer on the left was assembled under the action of capillary forces
alone, and that on the right was formed by turning on the electric field and decreasing it
to zero. Monolayer is highly organized as particles are mono-dispersed.

Figure 3.6 Assembled glass particles monolayers for particles with an average radius of
12 gm. The monolayer on the left was assembled under the action of capillary forces
alone, and that on the right was formed by turning on the electric field and decreasing it
to zero. Notice that the monolayer is relatively less organized than in Figure 3.4 as the
size variation of the particles is quite significant.
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Figure 3.7 The equilibrium separation between two particles of radius a = 37 jim, as
given by equation (3.12) for the experiment described in Figure 3.4, and the actual
measured value are shown as functions of the voltage applied to the device. The electric
force coefficients were numerically estimated (using the numerical technique of
reference7) to be f„ =0.27, I*/ =0.019, and fb =0.64. From the experimental photographs

we estimated 0, =76.5 degrees. The agreement between the theory and the experimental
data is very good, especially when the distance between the particles is more than 2.5a,
considering that there are no adjustable parameters.

3.3.2 Spheres at a Liquid-Liquid Interface

In these experiments a hollow circular shaped device is used to self assemble particles on

liquid-liquid interface. Diameter of the circular device is 137 mm and height is 12 mm. A

mixture of corn oil (brand name Mazola) of density 0.924 g/cm3 and castor oil of density

0.957 g/cm3 was used with silicone oil of density 0.932 g/cm3 to create an interface. The

corn and castor oil are miscible and used in fixed proportion, so that the density of

mixture is 0.942 g/cm3. Silicon oil is immiscible with this mixture of corn and castor, and

thus stays on top. 40 ml of each liquid is inserted in the circular device. The dielectric

constant of corn oil is 2.87 and castor oil is 4.7. Silicone oil has a dielectric constant of
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2.4. Approximately mono-dispersed soda lime glass particles of 24 microns were used.

The density of glass particles is 1.3 g/cm3.To remove any moisture that the particles may

contain they were dried in oven for more than 3 hours at a temperature of 120° C.

The electric field is generated by two electrodes, one electrode was mounted at

the bottom of the circular device and a transparent electrode was placed at the top as

shown in Figure 3.1. The electrodes are carefully mounted so that they are parallel to

each other as well as to the liquid-liquid interface. AC voltage was used to energize the

electrodes. The magnitude of voltage is adjusted to control the electric field strength in

the device. A frequency of 100 hertz was used to eliminate any charge effect.

The experiments were started by simply sprinkling dried soda lime particles on

the silicone oil. Soda lime particles sink in silicone oil and become trapped at the

interface between two liquids. The particles experienced a vertical interfacial force that

ensured that the particles would stay afloat at the interface. Figure 3.8 shows the top view

of self-assembled particles for different values of electric field strength as well as the

distributions before the electric field was switched on and after the electric field strength

was reduced to zero. The self-assembled microstructure, however, contains many defects

as the particles physically block each other from forming a perfect lattice. The problem is

magnified, because particles used in this study were not perfectly mono dispersed or

spherical. Fig 3.8a shows the self assembly of particles. Figure 3.8b shows that when

5000 volts are applied, the particles expand and arrange them in a nice uniform structure.

The distance between the particles can be controlled with electric field strength. After the

electric field strength is reduced below a critical value the particles again touch each
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other. The lattice formed in Figure 3.8f by decreasing the voltage has a much nicer

structure to it compared to the original lattice in Figure 3.8a.

Figure 3.8. Self assembly of glass particles floating on the liquid-liquid interface. The
diameter of particles is 24 i.tm. (a) Particles self assemble under the action of lateral
capillary forces alone to form a triangular lattice. The lattice however contains many
defects. (b) For V = 5000 volts, particles move away from each other and forma a highly
organized lattice. (c-d) notice that as the voltage applied to the device is decreased, the
distance between particles decreases.
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Figure 3.8. Self assembly of glass particles floating on the liquid-liquid interface. The
diameter of particles is 24 μm. (e) Notice that as the voltage applied to the device is
decreased, the distance between particles decreases. They begin to touch each other when
the voltage is 2000 volts. (f) For V = 0 volts, particles touch each other in a relatively
well organized triangular lattice. Notice that the number of lattice defects is considerably
reduced compared to that in (a), where the monolayer was assembled under the action of
capillary forces alone (continued).

3.4 Discussion

Experiments performed using glass particles, with radii between 2 and 80 p.m, showed

that such particles sprinkled at a fluid/fluid interface in an electric field normal to the

interface are subjected to electrostatic forces which, when combined with capillary

forces, lead the particles to self-assembly and thus lattices whose spacing can be adjusted

by varying the electric field strength. Such self-assembly finds its root in the presence of

a vertical electrostatic force, which, contrarily to the case of a neutral particle suspended

in a bulk fluid in a uniform electric field, is non-zero. This force leads to a vertical

capillary force and the deformation of the interface. An (attractive) capillary force is then

also generated which, at equilibrium, balances the (repulsive) electrostatic particle-

particle interaction force. The latter (including its scaling) is also different from the
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electrostatic particle-particle interaction force known in the case of particles suspended in

a bulk fluid.

The new particle assembling technique offers various advantages compared to

capillarity-induced self-assembly based on the particles' buoyant weight alone. First, the

technique is applicable to both large and small particles. Although we performed

experiments using particles of size 2 gm or larger, we have also predicted (using force

analysis) that the technique is also applicable to smaller, submicron sized, floating

particles. In particular, it was shown that the lateral forces generated with the new

technique can overcome Brownian forces present in the case of nanoparticles.

Second, the lattice spacing of the assembled monolayers can be adjusted by

varying the intensity of the electric field, and thus the properties of a monolayer. Since

the electric field can be varied in time, such properties can be changed dynamically.

Third, the assembled monolayers display long range order and, for particles of

uniform size, shape and electrical properties, should be inherently low in defects or even

defect-free. This order is achieved when particles are away from each other and thus do

not block each other. For lattices in which particles touch each other, this is achieved by

applying an electric field sufficiently large to bring particles away from each other into a

an hexagonal pattern and then by decreasing the electric field to zero. The technique thus

eliminates defects related to the initial positions of the particles but not those due to a

possible non-uniformity in the particles' size, shape or electrical properties.



CHAPTER 4

ELECTRIC FIELD INDUCED ALIGNMENT AND SELF-ASSEMBLY
OF RODS AND ELLIPSOIDSON FLUID-FLUID INTERFACES

4.1 Overview

In this section we show that an external electric field normal to a fluid-fluid interface can

align rods floating on the interface as well as adjust the lattice spacing of a monolayer of

rods. The method consists of sprinkling rods onto a fluid interface, with the fluids

contained in a chamber subjected to a vertical electric field. The rods are attracted to one

another and cluster under the action of capillary forces. A rod floating on the fluid

interface experiences both a lateral force and a torque normal to the interface due to

capillarity, and in the presence of an electric field, it is also subjected to an electric force

and torque. While the electric force affects the rods' approach velocity, the torque aligns

the rods parallel to each other. In the absence of an electric field, two rods that are

initially more than one rod length away from each other come in contact so that they are

either perpendicular or parallel to the line joining their centers, depending on their initial

orientations. In the latter case, their ends are touching. These experiments show that in

an electric field of sufficiently large strength, only the latter arrangement is stable.

Experiments also show that in this case the electric field causes the rods of the monolayer

to align parallel to one another and that the lattice spacing of a self-assembled monolayer

of rods increases. The alignment, however, is not complete since the rods physically

block one another and the direction of the alignment is arbitrary in the sense that it only

depends on the initial orientations of the rods.

67
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4.2 Results

Here are some experimental results for the clustering behavior of borosilicate glass rods

floating on the surface of corn oil. Experiments were conducted in a device for which the

distance between the electrodes is 8 mm and the cross-section is circular with the

diameter of 48 mm (see Figure 3.1). The depth of the corn oil layer was 5 mm.

First result is for two rods floating on the surface of corn oil. The rods were made

by cutting borosilicate fibers. The diameter of the rods is 39.8 Rill, and the length of one

rod is 255.2 pm and of the second 260 gm. The dielectric constant of corn oil is 2.87, its

conductivity is 32.0 pSm"1 and its density is 0.922 g/cm3. The density of the borosilicate

glass rods is 2.5 g/cm3 and their dielectric constant is 5.8. A variable frequency AC signal

generator (BK Precision Model 4010A) was used along a high voltage amplifier (Trek

Model 5/80) to apply a voltage to the electrodes at a frequency of 1 kHz. The applied

voltage was 5000 V P/P (peak-to-peak). The motion of the rods was recorded using a

digital color camera connected to a Nikon Metallurgical MEC600 microscope. The use of

an AC electric field ensures that the motion of the rods is not due a coulomb force even if

the rods acquire an electrostatic charge.

As already noted, in experiments, rods float such that their axes are parallel to the

interface. In this configuration, the interfacial deformation at the contact line on the

curved surfaces is different from that at the flat ends. Thus, as discussed below, the lateral

attraction due to capillarity is not the same along all radial directions. Notice that

although the contact-angle condition is satisfied at both the curved and flat surfaces, the

direction of the normal at the two surfaces is different, and as a result, the interfacial



69

deformation at these surfaces is different. Experiments show that the attractive force in

the direction perpendicular to the rod's axis is greater than in the parallel direction.

Three different initial configurations for the two rods were considered. In the first,

the rods were parallel to one another and oriented perpendicular to the line joining their

centers, in the second they were parallel to one another and parallel to the line joining

their centers, and in the third they were perpendicular to each other. The initial distance

between the rods was about 1.5 times their length. Next, discussion is about the behavior

of the rods without and with the electric field. In the former case, the rods come together

under the action of the force and torque due to capillarity, and in the latter case it is

shown how this dynamics can be altered due to the additional presence of the electric

force and torque.

4.2.1 Alignment of Two Rods in the Absence of an Electric Field

Experiments described below show that in the absence of electric field, the rods arrange

themselves into one of the two stable configurations. In the first stable configuration, the

rods are parallel to each other with their long sides touching, and in the second they are

parallel to each other with their ends touching. The initial configuration of the rods

determines which one of these stable configurations they evolve to. In the presence of an

electric field of sufficiently large strength only the latter configuration is stable.
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Figure 4.1 Transient positions of two rods floating on the surface of corn oil. The electric
field is turned off. The rods diameter is 39.8 lim and the length of the left rod is 255.2 iim
and the right rod is 260 pm. Initially, the rods are approximately parallel. However, as
they come closer to one another under the action of the lateral capillary force, they rotate
so that their upper ends come in contact at t=5 min 31 sec. After coming in contact, the
rods become approximately parallel again. Initial distance between rods is 240.5 pm at t
=0 min,
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Figure 4.1 shows the case in which the two rods are initially approximately

parallel to each other and the line joining their centers is perpendicular to the rods. The

rods maintain this approximate orientation as they come closer. However, when the

distance between them is approximately one half of their length, they rotate so that the

upper ends of the rods come closer faster. This indicates that the attractive capillary force

between the upper ends is larger than between the lower ends, and thus the rods are

subjected to a net torque causing them to rotate so that the upper ends come closer faster.

This becomes even more clear in the photograph taken at t=5 min. The rods continue to

come closer and rotate with the rate of approach increasing as the distance between them

decreases. The upper ends of the rods touch at t=5 min 31 sec, and the lower ends touch at

t=13 min. In this final configuration, the rods are again parallel to each other. It is

noteworthy that the final orientation of the rods is arbitrary in the sense that it only

depends on their initial orientations.

Furthermore, notice that the upper ends of the rods are closer than the lower ends

which again is the result of the larger attractive force between these ends. For the case

described above, the attractive capillary force between the upper ends is larger than

between the lower ends because for the rods used in our experiments the geometry of the

end planes varies, i.e., the angle between the normal to the rods' end planes and the rod's

axis varies. In this case, the geometry is such that the attractive capillary force between

the upper ends is larger than between the lower ends. Also note that the torque due to this

asymmetry becomes significant only when the distance between the rods is about one-

half of their length causing them to rotate, and that when the distance between the rods is

larger they remain approximately parallel to each other.
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Figure 4.2 Attraction between two floating rods. The parameters are the same as in
Figure 4,1. The electric field is still turned off. Initially, the rods are approximately
parallel to the line joining their centers. As they come closer, they align so that they are
approximately parallel to the line joining their centers. In their final equilibrium position,
the rods maintain this orientation and touch each other at t=4 min 27sec. Initial distance
between rods is 141 Jim at t =0 min.

Next consider the case for which the two rods are initially approximately parallel

to the line joining their centers (see Figure 4,2). As before, the rods come closer under the

action of the attractive capillary force while approximately maintaining their initial

orientations. The approach velocity increases with decreasing distance between the rods.

The approach velocity in Figure 4.2 is smaller than for the case described in Figure 4,1.

Notice that the elapsed time in Figure 4.2 is smaller because the initial separation

between the rods was smaller, This indicates that the lateral capillary force for this



73

orientation of the rods is weaker. Notice that when the rods come in contact at t=-270 s

they are approximately parallel to the line joining their centers. This shows that this

orientation of the rods is also stable and that if the rods are initially parallel to the line

joining their centers they are likely to come together maintaining this orientation. The

final orientation attained is stable.

In Figure 4.3, the case is presented where initially the rods are approximately

perpendicular to each other. They rotate under the action of the capillary torque (acting

normal to the interface) to become parallel to each other, and afterwards their behavior is

similar to that for the case described in Figure 4.1 (not shown).

This shows that the preferred arrangement for the two rods (with a larger basin of

attraction) is to align parallel to each other with their broad sides touching. Also, as noted

above, the lateral capillary attraction between the rods for this configuration is greater as

the approach velocity is larger. However, if the rods are initially approximately parallel to

the line joining their centers, they maintain this orientation while coming closer. After

joining, they remain parallel with their ends touching.



74

Figure 4.3 Attraction between two floating rods. The parameters are the same as in figure
2, except that initially the rods are approximately perpendicular to each other. The
electric field is still turned off The rods rotate to become approximately parallel to one
another at t=270 min. Their motion after that point is similar to that in Figure 4,1, and is
thus not shown in this Figure.

4.2.2 Alignment of Two Rods in the Presence of an Electric Field

Next, look at the influence of an electric field normal to the interface on the motion and

orientation of the rods as they come closer under the combined action of the electric and

capillary forces, In Figure 4,4, the initial configuration which is similar to that in Figure

4.2 is considered, The two rods are attracted to one another because of the attractive

capillary forces, and their approach velocity increases with decreasing distance. As the

rods come closer, they align along the line joining their centers. They touch at t=4 min 30
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s, The approach velocity is approximately the same as for the case without electric field

(see Figure 4.5). This indicates that for this orientation of the rods the repulsive dipole-

dipole force between the rods is relatively small, and does not significantly influence the

rods' motion,

Figure 4.4 Attraction between two floating rods in the presence of the electric field. As
the rods come closer, they align along the line joining their centers and touch at t =4min
30 sec. They maintain this orientation until touching.
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Figure 4.5. The distance between the rods' tips is plotted as a function of time for the
experiments shown in Figures 4.2 and 4.4 (with and without electric field), The rods are
aligned parallel to the line joining their centers. Notice that the trajectories for the cases
with and without the electric field are approximately the same. The voltage applied to the
device is 5000 V.

Figure 4.6 Attraction between two floating rods in presence of an electric field. The
voltage applied is 5000 V. The other parameters are the same as in figure 4.1. Initially,
the rods are approximately parallel, but when they are closer, they rotate so that the lower
ends come in contact first at t =7min 40sec, After coming in contact, the rods rotate so
that the angle between them increases with time, In the final configuration, the rods align
parallel to the line joining their centers with their ends touching,
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Figure 4.6 Attraction between two floating rods in presence of an electric field. The
voltage applied is 5000 V, The other parameters are the same as in figure 4.1. Initially,
the rods are approximately parallel, but when they are closer, they rotate so that the lower
ends come in contact first at t =7min 40sec. After coming in contact, the rods rotate so
that the angle between them increases with time, In the final configuration, the rods align
parallel to the line joining their centers with their ends touching. (continued)



78

Figure 4.7 Distance between the rods' closest ends shown as a function of time in
presence of an electric field, for the experiments shown in Figures 4,1 and 4,6. Initially,
the rods are approximately perpendicular to the line joining their centers. The approach
velocity is reduced in the presence of the electric field. The voltage applied is 5000 V.

Figure 4.8, Attraction between two floating rods in presence of an electric field. The
voltage applied is 5000 V. The remaining parameters are the same as in Figure 4,1.
Initially, the rods are approximately perpendicular to each other. However, they rotate to
become approximately parallel to the line joining their centers. The rods' behavior being
the same as in Figure 4.2 after t=360 min, the dynamics after that time is not reproduced.
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In Figure 4.6, the influence of the electric field on the attraction of two rods

initially parallel and aligned approximately perpendicular to the line joining their centers

is considered. The rods come closer as time increases, with an average approach velocity

about 1.4 times smaller than without the electric field, the latter case being described in

Figure 4.1. This decrease in the approach velocity is due to the repulsive dipole-dipole

force between the rods. When the distance between the rods is greater than the rod length

they remain approximately parallel, but when the distance is smaller than about one half

of the rod length they rotate and the lower ends first come in contact. This was also the

case in Figure 4.1 without the electric field (although the upper ends came in contact

first). Once the rods touch, they begin to rotate so that the angle between them increases.

This is the opposite of what took place in Figure 4.1, where the angle between the rods

decreased. Here, in contrast the angle between the rods continues to increase until it

becomes 180 degrees. The influence of the electric field is thus to align the rods so that in

their equilibrium position they are parallel to the line joining their centers with their ends

touching. It is postulated that this rotation is due to an electric torque which arises

because of the dipole-dipole interaction between the rods. From symmetry, the electric

torque must be zero when the rods are parallel or perpendicular to each other.

To further verify that the influence of the electric field is indeed to align the rods

along a common line. Consider the initial configuration in which the two rods are

approximately perpendicular to each other (see Figure 4.8). The rods rotate to become

parallel to the line joining their centers, and afterwards their behavior is similar to that

described in Figure 4.6 (not shown in Figure 4.8). Therefore, it is concluded that the

preferred stable arrangement of two rods in the presence of electric field is to align
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parallel to the line joining their centers, with their ends touching. Just to remind that the

lateral capillary attraction between the rods makes them align perpendicular to the line

joining their centers. This indicates that for the case shown in Figure 4.8 the torque due to

the electric field was sufficiently strong to overcome the torque due to capillarity.

The influence of the electric field on two rods that are initially in contact, with

their long sides touching is also considered. The dipole-dipole repulsion causes the rods

to move away from each other to a distance of about one rod diameter. The rods stop

moving when this separation is reached. In some cases, two ends of the rods separate

while the other two ends remain joined, thus resulting in the rods forming a "V" shape

(see Figure 4.9). The angle between the rods increases with increasing electric field

strength and is larger for longer rods. After the electric field is turned off, the angle

between the rods decreases and the rods return to their original equilibrium configuration.

In some cases, the angle increases to 180 degrees and the rods become parallel. In these

cases, even after the electric field is removed, the rods remain parallel to the line joining

their centers with their ends touching.
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Figure 4.9 Repulsion between two rods with their long side touching when a voltage is
applied to the device, The rods assume a shape which looks like the letter "V". The angle
between the rods increases with increasing voltage,

4.2.3 Monolayers of Rods

Next consider the case in which many rods are sprinkled onto the corn oil surface in a

random fashion. The length of the rods used in this experiment varied significantly, As

shown in figure 4,10a, in the absence of electric field rods cluster under the action of

capillary forces, The arrangement of rods appears to be random with no overall pattern,

Nearby rods are, however, more likely to be parallel with their long sides touching. This
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happens because as the rods come closer they physically block each other and thus

prevent an overall pattern from developing.

The monolayer of rods is observed to expand when a voltage of 5000 V is applied

to the device (see Figure 4.10). The electric field also causes the rods to align parallel to

each other. Figure 4.10c shows a section of the monolayer in which rods form lines with

their tips approximately touching. The alignment is not complete, as some individual rods

seem trapped oriented in other directions. Furthermore, there are local regions in which

the rods are aligned parallel to each other. The alignment of the rods, however, is not

global as it may vary from region to region. It is postulated that this is due to both the

presence of neighboring rods which can physically prevent a particular rod from aligning

and the relatively large variation in the rods' lengths. Also, in these experiments the

extent of alignment was found to improve with increasing electric field strength. The

maximum voltage available was 5000 V.
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Figure 4.10 Self assembly of rods floating on the surface of corn oil, (a) In the absence
of electric field the rods cluster together. (b) When a voltage of 5000 V is applied to the
device, the distance between rods increases (c) After 30 minutes under the influence of
the electric field the rods align approximately parallel to each other.
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4.2.4 Alignment of Two Ellipsoids in the Absence of an Electric Field

Experiments described below show that in the absence of electric field, two ellipsoids

arrange themselves in only one stable configuration. The stable configuration is when

two major axes of ellipsoids are parallel and their long sides touch each other. Two initial

configurations are considered when the major axes of two ellipsoids are parallel (shown

in Figure 4.11) and when the major axes are inline (shown in Figure 4.12). The case

where major axis are parallel, ellipsoids approach each other because of capillary forces

and just before touching they rotate due to the hydrodynamic torque acting on them. The

final orientation obtained is shown in Figure 4.11. In the other case, ellipsoids approach

with their major axes inline, they start to rotate even before touching and after touching

the angle between the two major axis start to reduce and they end up being parallel with

long sides touching each other as shown in Figure 4.12.
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Figure 4.11 Transient positions of two ellipsoids floating on the surface of corn oil. The
electric field is turned off. The top ellipsoid major and minor diameters are 150 gm and
80 gm respectively, and the bottom ellipsoid major and minor diameters are 145 gm and
75 gm. Initially, the ellipsoids are approximately parallel. However, as they come closer
to one another under the action of the lateral capillary force, they rotate so that their ends
come in contact at t=5 min, After coming in contact, the ellipsoids become approximately
parallel again with their long sides touching.
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Figure 4.12 Transient positions of two ellipsoids floating on the surface of corn oil. The
electric field is turned off. The top ellipsoid major and minor diameters are 150 pm and
80 gm respectively, and the bottom ellipsoid major and minor diameters are 145 pm and
75 pm. Initially, the ellipsoids are approximately inline with respect to their major axes.
However, as they come closer to one another under the action of the lateral capillary
force, they rotate so that their ends come in contact at t=5 min. After coming in contact,
the ellipsoids become approximately parallel again with their long sides touching.

4.2.5 Alignment of Two Ellipsoids in the Presence of an Electric Field

Next, look at the influence of an electric field applied normal to the interface on the

orientation of the ellipsoids as they come closer under the combined action of the electric

and capillary forces. In Figure 4.13, the initial configuration which is similar to that in

Figure 4.11 is considered, The two ellipsoids are attracted to one another because of the
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attractive capillary forces. As the ellipsoids come closer, they align parallel with their

major axes but the line joining their centers makes a small angle with their major axes,

Figure 4.13 Attraction between two floating ellipsoids in presence of an electric field.
The voltage applied is 3000 V. The other parameters are the same as in Figure 4,11,
Initially, the ellipsoids are approximately parallel with respect to their major axes, The
ellipsoids rotate so that the angle between the major axes increases with time, In the final
configuration, the ellipsoids align parallel with their major axes but the line joining their
centers makes a small angle with their major axes,

In Figure 4.14, the influence of the electric field on the attraction of two ellipsoids

whose major axes are initially in-line is considered. The ellipsoids align parallel with

their major axes but the line joining their centers makes a small angle with their major

axes,
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Figure 4.14 Attraction between two floating ellipsoids in presence of an electric field.
The voltage applied is 3000 V. The other parameters are the same as in Figure 4.12.
Initially, the ellipsoids are inline with respect to their major axes, In the final
configuration, the ellipsoids align parallel with their major axes but the line joining their
centers makes a small angle with their major axes.

4.2.6 Monolayers of Ellipsoids

Next consider the case in which many ellipsoids are sprinkled onto the corn oil surface in

a random fashion. The ellipsoids have different sizes and there is some variation in their

shapes too, As shown in Figure 4.15a, in the absence of electric field ellipsoids cluster

under the action of capillary forces. The arrangement of ellipsoids appears to be random

with no overall pattern. This happens because as the ellipsoids come closer they

physically block each other and thus prevent an overall pattern from developing.

The monolayer of ellipsoids expands when a voltage of 5000 V is applied to the

device (see Figure 4.15b), The electric field also causes the ellipsoids to align parallel to

their major axes. Figure 4,10c shows the final picture when electric field is switched off.

The alignment is not complete, as some individual ellipsoids seem trapped oriented in

other directions. It is postulated that this is due to both the presence of neighboring
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ellipsoids which can physically prevent a particular ellipsoid from aligning and the

relatively large variation in the ellipsoids shapes and sizes.

Figure 4.10 Self-assembly of rods floating on the surface of corn oil. (a) In the absence
of electric field the rods cluster together. (b) When a voltage of 5000 V is applied to the
device, the distance between rods increases (c) After 30 minutes under the influence of
the electric field the rods align approximately parallel to each other,

4.3 Discussion

Experiments show that two or more glass rods floating on the surface of corn oil cluster

under the action of lateral capillary forces that arise because of the deformation of the

interface. Since rods are also subjected to a torque due to capillarity, they come together

either with their long sides touching or with their ends touching. In both cases they are
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parallel to each other. The alignment of rods in a monolayer assembled under the action

of capillary forces appears to be random as the rods physically block each other and

prevent any pattern from developing.

In the presence of an electric field of sufficiently large magnitude, two rods

released about one and half rod lengths away from each other arrange themselves to form

a single line, i.e., they become parallel to the line joining their centers and come in

contact so that their ends touch. This equilibrium arrangement is independent of their

initial orientation. The electric field causes a rod on the interface to experience an

electrostatic force normal to the interface. In addition, in an electric field the rods become

polarized and interact with each other via dipole-dipole interactions. This results in a

repulsive force and a torque. Furthermore, although the electric field causes rods to align

parallel to each other, the direction of the alignment is not determined by the electric field

which is normal to the interface. In experiments, the final direction of alignment depends

on the rods' initial orientations.

It is also shown that a monolayer of rods can be expanded and its rods aligned

approximately parallel to each other by applying an electric field normal to the interface.

The distance between the rods is determined by the balance of the attractive capillary

forces and the repulsive dipole-dipole forces. It is also shown that the lattice spacing of a

self-assembled monolayer of rods can be increased by applying an electric field. The

alignment, however, is not complete since the rods physically block each other.

The same analysis is done for ellipsoids. For the case of two ellipsoids, without

the presence of electric field, it is demonstrated that ellipsoids only achieve one stable

configurations with their major axes parallel and their larger sides touching. When
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electric field is applied, the stable orientation is that their major axes are parallel but the

line joining their centers makes a small angle with their major axes.

It is also shown that a monolayer of ellipsoids can be expanded and major axes of

ellipsoids align approximately parallel to each other when an electric field normal to the

interface is present. The distance between the ellipsoids is determined by the balance of

the attractive capillary forces and the repulsive dipole-dipole forces. The alignment,

however, is not complete since the ellipsoids physically block each other and ellipsoids

vary in size and shape.



CHAPTER 5

SELF ASSEMBLY OF PRISMATIC PARTICLES

5.1 Overview

It is worth noting that the deformed interface around an isolated spherical particle is

symmetric about the vertical passing through its center, and thus the lateral capillary

force that arises due to this deformation is independent of the radial direction. The

deformed interface around prismatic and non spherical particles, however, is not

symmetric, and consequently their clustering behavior is more complex.

In general, for non-spherical and prismatic particles deformed interface is such

that the interface slope at the contact line on the particle's surface varies, as the direction

of the normal to the surface varies. In fact, on a part of the contact line the slope of the

interface can be in the upward direction, and for the remaining part it can be in the

downward direction. Notice that the slope of the interface determines the direction of the

capillary force which acts on the particle. Thus, the magnitude of the vertical component

of capillary force varies along the contact line, and its direction on a portion of the

contact can be in the downward direction. As a result, although the total vertical capillary

force is still equal to the buoyant weight, the contribution of some sections of the contact

line to the vertical capillary force can be negative and for some positive.

The above implies that two particles can attract or repel depending on the

interface deformation between them, i.e., if both particles cause upward or downward

interface deformation of the interface, they attract; otherwise they repel. Depending on

the form of the asymmetric deformation around them, such particles can assemble into

several different periodic arrangements, e.g., hexagonal or cubic. In addition, rods and
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prismatic particles experience a torque normal to the interface that causes them to rotate

making them align in certain preferred orientations.

5.2 Results

Figure 5,1 shows that a cubical particle floats such that the contact line is pinned at its top

sharp edges, The floating behavior of prismatic particles is therefore different from that

of a spherical particle (shown in Figure 3.2) because in case of spherical particle, the

contact line moves to meet the contact angle requirement while in case of cube, contact

line moves to meet the weight requirement,

Figure 5.1 is a schematic of floating cube. The interface is pinned at the sharp edge. a is
the contact angle, 0 is the wedge angle and oto is the equilibrium contact angle.

Contact line [95], remain pinned even when an electric field normal to the

interface is applied. This is shown in Figure 5.2 for the case of two cubes which cluster

under the action of capillary forces when the electric field is not applied, After the

electric field of sufficiently large magnitude is applied, the cubes separate and the

distance between them increases with increasing electric field strength (see Figure 5,3),



Figure 5.2 The floating behavior of two cubes (size — 150 um) is shown. The lattice distance
between the cubes increases with electric field strength. The contact line is pinned at the upper
edge of the cubes, and remains pinned even when the electric field is present.
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Figure 5.3 The dimensionless distance between two cubes is plotted as a function of the
applied voltage. Notice that there a critical voltage at which the two cubes separate.

Also, since the interfacial deformation caused by a cube is asymmetric, they

arrange in certain preferred orientations. Figure 5.4 shows that in the absence of an

externally applied electric field cubes cluster, but when an electric field of sufficiently

large magnitude is applied the cluster is broken. The Figure 5.4 also shows that spacing

of the monolayer can be controlled by changing the electric field strength. Since the

contact line remains pinned at the sharp edge, the electro-wetting effect is not present

[96] (the contact angle, however, can change because the vertical electrostatic force on

the particle [88, 89 and 90]).



96

Figure 5.4 An assembled monolayer of cubes. In the absence of the electric field cubes
cluster. When an electric field normal to the interface is applied the lattice spacing
increases with increasing electric field strength, The contact line is pinned at the upper
edge of the cubes, and remains pinned even when the electric field is present,

5.3 Discussion

Experiments show that two or more cubical particles floating on the surface of corn oil

cluster under the action of lateral capillary forces that arise because of the deformation of

the interface, The cubical particles physically block each other and prevent any pattern

from developing,
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It is also shown that a monolayer of cubes can be expanded. The distance between

the cubes is determined by the balance of the attractive capillary forces and the repulsive

dipole-dipole forces. It is also shown that the lattice spacing of a self-assembled

monolayer of cubes can be increased by applying an electric field.



CHAPTER 6

CONCLUSIONS

The two main objectives of this work was to numerically study the motion of particles

subjected to non-uniform electric fields, and also to investigate the process of self

assembly of particles at a fluid-fluid interface under the influence of a uniform electric

field normal to the interface.

In the first case, the direct numerical simulations (DNS) used for studying the

fluid-particle system are based on the distributed Lagrange multiplier method. In this

approach the fluid equations are solved both inside and outside the particle boundaries

and rigid body motion is enforced inside the particle boundaries by using the distributed

Lagrange multiplier. In the direct numerical scheme the governing equations for the fluid

and particles are solved exactly without using any models. The electric forces acting on

the particles were computed using the Maxwell Stress Tensor (MST) method.

The numerical scheme was tested to ensure that the results converge in both time

and space. DNS results were compared with results obtained by point-dipole

approximation. The MST method is more accurate for larger particles and when the

dielectric mismatch between the particle and fluid is larger.

The second part of the research studied the electrostatic and capillary forces

acting on a particle within a two-fluid interface in the presence of both an externally

applied electric field and other particles. The electrostatic force was found to contain

components both normal and tangential to the interface. The former arises because the

dielectric constants of the two fluids involved are different (and is thus zero for two fluids

98
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of identical dielectric constants) and the latter is due to the dipole-dipole interactions

among the particles.

In equilibrium, the net vertical force acting on a particle at the interface, which

includes the electrostatic force and the buoyant weight, is balanced by the vertical

capillary force which arises because of the deformation of the interface. The deformation

of the interface, in turn, gives rise to lateral capillary forces which cause particles at the

interface to cluster. More specifically, the magnitude of these lateral forces is determined

by the square of the net vertical force acting on the particle which includes both the

buoyant weight and the vertical electrostatic force. The lateral capillary forces are long

ranged and depend on the fourth power of the electric field intensity. The buoyant weight

and the vertical electrostatic force, however, may not be in the same direction, and when

this is the case the electric field, in fact, reduces lateral capillary forces. If the

electrostatic force and buoyant weight are in the same direction, the electric field

enhances lateral capillary forces. This is an important result, especially for micron and

sub micron sized particles for which the buoyant weight is negligible, because it shows

that the clustering behavior of particles, including that of small particles, can be

controlled using an externally-applied electric field.

The equilibrium distance between two particles was obtained by equating the

attractive capillary and repulsive electrostatic forces. Equilibrium is possible because the

attractive capillary force between the particles is long ranged (decays as r -1) and

dominates the electrostatic repulsive force which is short ranged (decays as r4) when the

distance between the particles is large. The opposite is true when the distance between
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the particles is small. The equilibrium distance was shown to depend on the particle

radius, the electric field intensity, the buoyant weight, and the dielectric constants.

Experiments show that two or more glass rods floating on the surface of corn oil

cluster under the action of lateral capillary forces that arise because of the deformation of

the interface. Since rods are also subjected to a torque due to capillarity, they come

together either with their long sides touching or with their ends touching. In both cases

they are parallel to each other. The alignment of rods in a monolayer assembled under the

action of capillary forces appears to be random as the rods physically block each other

and prevent any pattern from developing.

In the presence of an electric field of sufficiently large magnitude, two rods

released about one and half rod lengths away from each other arrange themselves to form

a single line, i.e., they become parallel to the line joining their centers and come in

contact so that their ends touch. This equilibrium arrangement is independent of their

initial orientation. The electric field causes a rod on the interface to experience an

electrostatic force normal to the interface. In addition, in an electric field the rods become

polarized and interact with each other via dipole-dipole interactions. This results in a

repulsive force and a torque. Furthermore, although the electric field causes rods to align

parallel to each other, the direction of the alignment is not determined by the electric field

which is normal to the interface. In experiments, the final direction of alignment depends

on the rods' initial orientations.

It is also shown that a monolayer of rods can be expanded and its rods aligned

approximately parallel to each other by applying an electric field normal to the interface.

The distance between the rods is determined by the balance of the attractive capillary
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forces and the repulsive dipole-dipole forces. It is also shown that the lattice spacing of a

self-assembled monolayer of rods can be increased by applying an electric field. The

alignment, however, is not complete since the rods physically block each other.

Similar experiments are performed for ellipsoids. It is shown that for two

ellipsoids floating on a fluid-fluid interface. Only one orientation is stable when the

electric field is not present. The particles preferred orientation is when their major axes

are parallel and their major sides are touching. When electric field is present the preferred

orientation for ellipsoids is to align parallel to their major axes but the line joining their

centers makes a small angle with their major axes. It is also shown the lattice spacing of

self-assembled monolayer of ellipsoids can be increased by applying an electric field.

Experiments performed using spheres, rod-like, ellipsoids and cubic particles

show that the distance between them and their relative orientations can be controlled by

applying an electric field normal to the interface. The electric field causes particles on the

fluid/fluid interface to experience an electrostatic force normal to the interface. In

addition, particles become polarized and interact with each other via dipole-dipole

interactions, which for the particles trapped on the interface is repulsive. The distance

between the particles is determined by the balance of the attractive capillary forces and

the repulsive dipole-dipole forces. In the presence of the electric field, the preferred

orientation for rod-like particles is to align parallel to each other, and form lines with

their ends touching. Ellipsoids also align parallel to each other in the presence of electric

field but line joining their centers make a small angle with their major axes.

For future work, ellipsoids with different aspect ratios can be used to better

understand the physics as to why ellipsoids make an angle with line joining their centers
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with their major axes when electric field is present and the effect of aspect ratio on this

angle.

For sharp edged particles, interface is pinned at the edges. Contact angle will

change to meet the weight requirement when the electric field is applied. By mapping out

the surface profile close to sharp edge, the effect of electrostatic force can be separated

out.

Different type of particles by shape and dielectric constants can be used to see

what structures can be obtained. The idea of dielectrophoresis along with self-assembly

of particles can be employed to manipulate particles on the surface of drops.

The objective of future studies will be to control the self-assembly process and

this can be useful in micro-fabrication and controllable filters.
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