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ABSTRACT

SYNTHESIS AND CHARACTERIZATION OF ATMOSPHERIC PRESSURE
CHEMICALLY VAPOR DEPOSITED ALUMINUM

by
Sipeng Gu

This study investigates the use of atmospheric pressure chemical vapor deposition

(APCVD) to produce high quality aluminum coatings for corrosion protection of steel.

The coatings were produced through thermal decomposition of tri-isobutyl-aluminum

(TIBAL) over the 275 to 300°C temperature range. Under optimal deposition

conditions, growth rates as high as 1.2 µm/min· were achieved. X-ray photoelectron

spectroscopy, auger electron spectroscopy, glow discharge optical emission spectroscopy

and nuclear reaction analysis revealed that the coatings consisted essentially of pure

aluminum (-99 at.%) with oxygen and carbon present as minor constituents. The coatings

were characterized in terms of their morphological, structural, electrical, and mechanical

properties, and corrosion performance. The coatings were found to be continuous with a

rough surface topography typical of CVD metal deposits. The Al coatings showed x-ray

diffraction patterns that were similar to the typical polycrystalline aluminum powder

pattern regardless of deposition conditions. Cross-sectional SEM micrographs confirmed

that the APCVD process can offer excellent step coverage and throwing power.

Corrosion testing revealed that APCVD Al coatings exhibit excellent corrosion

resistance. With such correlations, this study offers an environmentally benign alternative

to cadmium plating, as well as promises to provide high production throughput, low cost,

and coatings with desirable properties and performance.
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CHAPTER 1

INTRODUCTION

1.1 Cadmium Coatings

Cadmium (Cd) coating has been used on high strength steel parts to provide corrosion

resistance in a wide range of Department of Defense (DoD) weapon systems. However,

cadmium is a hazardous material, to be a carcinogenic, teratogenic, and toxic metal that can

be easily leached causing potential contamination of the ground water supply and food

chain. Those environmental and health related concerns are further aggravated by the

common use of sodium cyanide as part of the plating process and the use of hexavalent

chromium-based post-treatments, which pose serious worker safety concerns [1, 2].

Cadmium has been widely accepted as a coating for high strength steel applications

due to its excellent adhesion, corrosion resistance, and proper lubricity characteristics.

Proposed replacements for cadmium must, therefore, not only match or surpass its current

performance, production throughput, maintainability, reparability, and cost, but also

guarantee elimination of the current cadmium related waste streams without generating

another Environment, Safety and Occupational Health (ESOH)-regulated hazardous waste

stream.

1.2 Alternatives to Cadmium Coatings

Several technologies pertinent to coating high strength steels have emerged to address this

challenge and these were reviewed by Legg [3]. They include the use of electrodeposited

Zn-Ni, Sn-Zn and Zn-Ni-X (X = Cd, P) alloys [4-6], metal-filled polymer composites [7],

1
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novel stainless steel alloys [8], and electrodeposition [9] as well as ion vapor deposition

(IVD) of aluminum [10].

1.2.1 Electroplate Zn-Ni and Sn-Zn

The Zn-Ni and Sn-Zn alternatives involve alloy plating, which are more complex and less

robust than the deposition of elemental cadmium because the alloy composition, which

determines the final coating performance, depends on many bath processing parameters

that are difficult to control. Furthermore, because steel parts are exposed to aqueous

solutions during plating, hydrogen generated in the part during plating must be removed by

either: 1) a post plating baking protocol (typically 24 hours at 375 °F) or 2) mitigated by

pre-coatings such as a nickel strike that provide a barrier to the migration of hydrogen into

the substrate during plating [6].

1.2.2 Polymer Composites

Another alternative technology to cadmium plating consists of using polymers filled with

metal flakes (i.e., Zn or Al). These coatings are deposited by the dip-spin method, in

which fastener parts to be coated are loaded in a basket that is dipped into the polymer resin

composite, then lifted out and spun at high speed to eject the excess material. The parts

are subsequently baked to set the resin. This technology has been tested by TACOM and

found to be as good as cadmium plating in the case of fasteners. Although highly

cost-effective (—$.30 per pound of parts), control of the process is crucial in insuring the

proper resin viscosity in order to avoid excess coating thickness that clogs fastener threads.

Coatings also typically require an elevated temperature cure that makes their use

impractical for in-situ repair of sacrificial coatings [7].
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1.2.3 Stainless Alloys

The environmental issues associated with cadmium-coated steels can be totally eliminated

by using specially designed stainless steel alloys. Stainless steel is defined as an

iron-carbon alloy with a minimum of 10·5% chromium content· It has high resistance to

oxidation and corrosion because of forming a passivation layer of chromium (III) oxide

(Cr2O3³) when exposed to air· Aircraft manufacturers have successfully implemented this

approach in engines (e·g·, F-119 engine used in the F-22), aircraft actuators, and landing

gears. Although such an approach works well for the aforementioned applications,

stainless steels are generally more costly and in some cases (e.g·, 15-5 PH precipitation

hardened steel) are inferior in strength to cadmium-coated high strength steel·

Furthermore, stainless steels still cannot be used without a sacrificial coating in

situations where painting is required or galvanic corrosion may develop, such as in the case

of airframes, where the steel would be in contact with the aluminum skin of the aircraft [8]·

1.2.4 Aluminum Coating

The simplest approach to cadmium replacement appears to be aluminum· It is

environmentally friendly, non-toxic, and safe to handle and use by workers· These

environmental qualities eliminate some life cycle costs, such as waste collection, storage,

and disposal in association with the processing of hazardous materials·

Aluminum is the third most abundant element in the earth's crust and the second

most commonly used metal in the world after steel, which has unique properties for its

outstanding position on the market: light weight, high strength, good thermal and electrical

conductivity, good formability, nontoxic and resistance to corrosion [11, 12]·
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Atomic Crystal Structure. Atomic number of the element aluminum is 13 and the atoms 

arrange themselves in the face-centred cubic (FCC) structure as shown in Figure 1.1, a 

typical crystal structure for highly ductile metals. 

Figure 1.1 The face-centered cubic (FCC) crystal structure 

Specific Light Weight. Aluminum has specific gravity of2.70 g'cm-3 at 20 dc. Its mass 

is only 34% percent of an equal volume of iron (7.87 g·cm-3). The lightness of aluminum 
/ 

has made it an attractive material for use in transportation applicatiQns, Aircraft, et al. 

Corrosion Resistance. As a chemically active metal, it is stabile and corrosion resistant 

due to the presence of an extremely hard and tenacious transparent aluminum oxide (A1203) 

film on the metal surface forming immediately when the metal reacts with the oxygen in air 

or water. This oxide layer is inert, giving a higher corrosion resistance than any of 

aluminum alloys, and fairly resistant to most acids but less to strong alkalis. 

Aluminum can be safely used in the range of pH 4 to 8.5. Corrosion of aluminum 
.. :; 011 . , 

can occur only if the oxide layer is ruptured and cannot be reformed. Acid salt fog, neutral 

salt fog, and outdoor exposure tests, has demonstrated unequivocally that aluminum 

coatings provide equal or superior corrosion protection to cadmium-plated steel parts. 
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Non-toxicity. Aluminum and its corrosion products are non-toxic [13]· One statement

from the World Health Organization mentioned that there is no evidence to prove the

toxicity of aluminum, alumina and other inorganic aluminum salts [12]·

Aluminum coatings offer additional advantages· They can be subjected to

temperatures as high as 925°F (496°C), while cadmium is limited to 450°F (232°C)· They

may be exposed to fuels with no adverse effects and can be used in space applications,

while cadmium sublimates in a vacuum environment and plates out on neighboring

surfaces·

1.3 Conventional Growth Techniques of Aluminum Coating

The advantages of aluminum coatings are widely recognized, and several processes are

available. In this section, typical examples of conventional growth techniques are

reviewed· Aluminum coatings can be deposited on steel by hot dipping, pack cementation,

spraying, ion vapor deposition (IVD), sputtering deposition and chemical vapor deposition

(CVD), respectively.

In particular, IVD and CVD methods will be paid more attention since both have

been proven to be the most successful techniques for aluminum coating growth·

1.3.1 Hot Dipping Aluminum

Hot dipping deposition is used to increase corrosion and wear resistance· It is based upon

atomic diffusion of elements at the interface and a chemical bond between the two metals

will be produced. The process is carried out by immersing a pre-treated substrate in a bath

of molten aluminum at 1023 k for a specific time to yield both an intermetallic layer of

Al3Fe and aluminum coating [14]·
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Hot dipping aluminum coating has two main disadvantages: 1) A brittle

iron-aluminum inter-metallic layer forming in hot dipping process, which cases poor

impact resistance of the coating, giving a severe drawback in highly corrosive

environments· 2) Poor coating thickness control on complex shapes and poor surface

smoothness·

1.3.2 Pack Cementation Aluminum

Pack aluminum coatings are widely applied to steels to improve their hot temperature

oxidation for gas turbine components [15, 16]· In the pack cementation process, the parts

to be coated are packed in metal powers in sealed retorts, which placed in a furnace with

well controlled coating temperature (700 - 1100 °C) and a protective atmosphere (Argon or

Nitrogen) to prevent their oxidation· A gaseous halide activator aluminum salt will be

delivered to the component surface in the aluminizing process, then decomposes to yield

aluminum coating and to release the halide activator· During this process, the aluminum

and metal atoms diffuse into each other with the deposition and the heat treatment

occurring simultaneously·

It should note that the pack cementation method suffers several drawbacks· The

coating thickness often varies widely in different substrates due to poor thermal

conductivity of the power pack· The coating diffusion may stick the parts together if the

parts come into direct contact with each other· Furthermore, this process will waste a

large amount of aluminum salt [17]·

1.3.3 Thermal Spray Aluminum

Thermal spray is a continuous, directed, melt-spray process, in which particles of 1 to 50

micron are, at least partially melted, and accelerated to high velocities through either a
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combustion flame or a dc or rf arc· The molten droplets successively impinge onto a

substrate surface and rapidly yield a film [18, 19]·

The porous structure of thermal spray aluminum coatings provide paths for the easy

access of the corrode species· It is necessary to conduct pretreatments, such as porosity

sealing and pre-heating treatment to increase adherence for preventing steel corrosion [20]·

Thermal spray aluminum coatings have some shortcomings including: 1)

Producing oxide content in the coating during spraying processes, 2) Generating open

pores and crevices within the coating structure, a big problems for the corrosion protection

in that the corrosive environment maybe penetrate towards steel substrate· 3) Degrading of

coating materials during spraying [20].

1.3.4 Electroplating Aluminum

The aluminum plating process, known as Alumiplate ® (produced by alumiPlate, Inc· in

Minneapolis, MN), is the only commercially available aluminum electroplate in the U·S·,

requiring the use of a toluene-based solution· It is achieved by an electric current passing

through an electrolyte containing aluminum alkyls and metal fluoride· Pure aluminum

serves as the cathode, dissolving in an electrochemical cell and providing a 99·99% pure

aluminum coating during plating· The deposition takes place in an enclosed, oxygen-and

water-free environment where the parts to be coated are introduced through a load-lock

system· No hydrogen is generated and, therefore, no post baking is required to mitigate

hydrogen embitterment [9, 21-23].

Although the coatings produced by this process appear to have excellent corrosion

resistance properties, several shortcomings are evident, namely: 1) the process uses toxic

chemicals and is unlikely to be implemented at DoD depots, logistics centers, or OEM
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facilities; 2) the technology is proprietary and controlled by a small business with only

one processing site; and 3) the part geometries and sizes that can be coated are limited by

the plating bath size [3]·

1.3.5 Vacuum Evaporation Aluminum

Vacuum evaporation, is the first physical vapor deposition process used on an industrial

basis for the aluminum metallization [24, 25]. The basic evaporation process involves the

transfer of atoms or molecules from a vaporization source to substrate without colliding

with residual gas molecules, forming a coating by physical means alone [26]· The energy

for volatilization of the source material can be provided by resistance heaters, radio

frequency (RF) induction or magnetically focused electron beams·

Aluminum films via vacuum evaporation can be produced with high growth rates

over large areas [27]· However, the resultant films provide non-uniform coverage and

relatively low adhesion unless glow discharge cleaning is used to remove surface atoms

from substrates [28]. Furthermore, it is a line-of-sight process. Although evaporation is

very successful in applications in decorative and optical uses [29], it is not used for critical

corrosion application because of low adhesion·

1.3.6 Sputter Aluminum

Aluminum sputter deposition, one of principal physical vapor deposition methods, is

commonly used in integrate circuit (IC) metallization processes in the semiconductor

industry [30]· Radio frequency (RF) or direct current (DC) sputtering involves the

transport of a material in a vacuum chamber from a source (target) to a substrate by

ionizing inert gas particles in an electric field to impinge the target, where atoms of the

source materials will be sputtered off from target surface [31-33]· Figure 1·2 shows a
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schematic view of sputtering deposition system and diagram of sputtering process. The 

vacuum system is not shown, but will be at low pressure in the mTorr or lower ranger. 

I'D I'D I'D I'D •• I'D ~egatwely. I'D I'D I'D I'D I'D I'D 
I'D I'D I'D I'D ••• I'D charged. I'D • I'D I'D I'D CD • 

surface 
•••••••• .e ••• e •• 

/In argon ion hits the target 
surface, sputtering a metal 
atom and releasing electrons. 

Key: • Metal Atom 

• ,Ar~on Ion 

o Electron 

Figure 1.2 Schematic of sputtering deposition system and sputtering process. 

In putter deposition method, film composition will be the same as that of source 

target. In addition, both adhesion and uniformity of films are excellent. Nevertheless, 

sputter method is a thickness limited, cost-inefficient, and line-of-sight deposition. 

1.3.7 Ion Vapor Deposited (IVD) Aluminum Coating 

Currently, Ion vapor-deposited aluminum coatings have been used on a
fi 
variety of parts 

including steel and titanium fasteners, electrical connectors, engine mounts and stator 

vanes, landing gear components, integrally machined wing skins, and a large number of 

miscellaneous components for corrosion protection [34]. IVD is a relatively new and 

typical physical vapor deposition (PVD) process that takes place in an evacuated chamber 

where aluminul11 is evaporated , onto a substrate , being simul~aneously ,subjected to 

bombardment by plasm~-i~nized argon gas . . . The major difference of IVD with general 

PVD is that the substrate during plating is held at a high negative potential (typically -5 kV) 

with respect to the vapor source [34, 35]. 

IVD process is applied in a batch mode, where parts to be coated are held at a high 

negative potential relative to the evaporation source. Positively charged gas ions bombard 
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substrate surface and perform a final cleaning action· Consequently, aluminum is

vaporized and ionized, to be accelerated toward the substrate surface where it plates as a

dense, tightly adherent coating·

IVD aluminum coatings are attractive as cadmium alternatives for both barrier and

sacrificial protection to the steel substrate in most common environments due to its

immunity of the environmental and toxicological problems associated with cadmium·

Meanwhile, since the aluminum deposition takes place in vacuum and no hydrogen is

generated, a hydrogen embrittlement relief bake is not necessary [10]·

Unfortunately, the IVD aluminum process exhibits several limitations as follows:

Columnar Grains. The IVD growth mechanism results in the formation of columnar

grains [36] that provide a conduit for oxygen and corrosive agents to readily diffuse

through the grain boundaries and attack the underlying substrate. Although this problem

may be minimized by increasing the coating thickness and penning, it can be eliminated by

forming, if possible, a randomly oriented grain structure.

Throughput. The fact that an evacuated chamber is required to produce the coatings

severely limits the throughput and results in a higher cost per coated part as compared to

continuously operated atmospheric processes· Furthermore, the IVD process, being

partly a line-of-sight deposition technique, often necessitates two coatings per cycle to

achieve acceptable coating thickness uniformity· After the application of the first coating,

the system is vented, the parts manually rotated, and the deposition process re-started·

Thus, both chamber size and processing times limit the utility of IVD.

Throwing Power. In addition to throughput and cost considerations, the IVD process has

proved to be unable to coat non-line-of-sight components/parts/surfaces· Typical IVD
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"throwing power" (or conformal coverage) allows for functional aluminum coatings to be

deposited in a cylinder to a depth equivalent to one time its diameter· In view of the fact

that a large percentage of parts requiring corrosion protection have inside diameters, blind

holes, and complex geometric surfaces, there is a need to resolve this coating

conformability issue·

Chromium Containing. IVD aluminum as well as other sacrificial coatings relies on

hexavalent chromium containing post treatments for the purpose of optimum corrosion

protection and paint adhesion. Therefore, although cadmium is eliminated from the

coating system life cycle, hexavalent chromium is still present for all alternatives·

1.3.8 Chemical Vapor Deposition Aluminum

Chemical vapor deposition aluminum is commonly used for various semiconductor

applications, which has been studied for its capability of conformal step coverage and

selective growth to overcome limitations that physical vapor deposition techniques

encounter in electronics industry [37-39]. Now CVD aluminum is also making great

inroads in replacing cadmium in corrosion protection of steel compounds [40]· In the

following section, a brief review of chemical vapor deposition techniques is given·

Meanwhile, a summary of atmosphere pressure chemical vapor deposition method and

CVD aluminum, classified by different precursors, is presented·

1.4 Chemical Vapor Deposition

1.4.1 Introduction to Chemical Vapor Deposition

Chemical vapor deposition (CVD) is a well-established process in which gas or vapor

chemically reacts with a suitably placed substrate to yield a desired solid product· This
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product can be in the form of a single thin/thick film or even a massive bulk deposited 

nanostructured and functionally graded coating. CVD process is used in different 

material fabrication such as insulators and dielectrics, elemental and compound 

semiconductors, electrical conductors, and superconductors. Depending on the growth 

conditions, the coating can be a single crystal, polycrystalline, or amorphous structure . 

• • • 
Figure 1.3 A simplistic view of a CVD process [41]. 

fI' 

Figure 1.3 schematically depicts CVD process in, which precursors in the vapor 

phase are broken down, resulting in growth of a thin film on a substrate [41]. Deposition 

variables such as temperature, pressure, input concentrations, gas flow rates, and reactor 

geometry determine deposition rate and deposit properties. 

A typical CVD process is surface-catalyzed reaction, involving heterogeneous gas 

phase reaction on or near a heated surface and homogeneous gas phase reaction in the gas 

phase. Chemical reactions that can take phic·e are pyrolysis (thermal decomposition), 

oxidation, reduction, hydrolysis, nitride and carbide formation, synthesis reactions, 

disproportionation, and chemical transport. Specially, alkyl decomposition to yield 

aluminum coatings in this study is a pyrolysis reaction. 
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As a relatively mature conventional technique, CVD has following distinctive

advantages [42]:

1) Producing highly dense and pure uniform films with good reproducibility and

adhesion at reasonable deposition rates·

2) Being a non-line-of-sight process with excellent "throwing power" to deposit

uniformly on complex shape components·

3) Ability to control crystal structure, surface morphology and orientation of CVD

products by adjusting CVD process parameters·

4) Relatively low deposition temperature and flexibility of using a wide range of

chemical precursors·

However it still has some drawbacks including chemical and safety hazards caused

by the use of toxic, corrosive, flammable precursor gas, difficult to deposit

multicomponent materials with well controlled stoichiomety·

1.4.2 Commercial CVD Process

CVD processes are classified according to the type of energy supplied to initiate

and sustain the reaction:

(1) Thermally activated reactions at various pressure ranges, where heat is

generated by resistance heating, RF induction heating, or infrared heating [37, 43, 44]·

(2) Plasma promoted reactions, where an RF- /or DC- induced glow discharge is

the source for most of energy that initiates and enhances reaction rate [45-48]·

(3) Photon-induced reactions, where radiation of a given wavelength triggers and

sustains the reaction by direct photolysis or an energy transfer agent (e·g·, UV-activated

mercury) [49, 50].
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(4) Laser-induced reactions, intensively fast and generally applicable processes for

depositing a wide range metals and substrates, which requires well-developed gas exhaust

and vacuum systems [49, 51]·

1.4.3 Atmospheric Pressure CVD (APCVD)

Chemical vapor deposition reactions can occur over the full range of pressure. It is

classified into two types in terms of working background pressure: low pressure CVD

(LPCVD) and atmospheric pressure CVD (APCVD)·

Compared to APCVD, the mass transfer rate relative to the heterogeneous surface

reaction rate in LPCVD is enhanced by lowering the gas pressure· Improved mass

transfer rate of LPCVD offers a possibility to uniformly deposit films in a highly

economical close spaced positioning of the wafers in a standup fashion· However, use of

LPCVD has limitations for various industrial applications· It is not suitable to use

vacuum technology for large scale processes, since high running cost of vacuum

equipment is a concern [52]· Using APCVD process is a way to get around these

limitations·

Conventional atmospheric pressure CVD (APCVD), as the simplest CVD process,

allows a single or multiple reactant gases in the reaction chamber at normal atmospheric

pressure· In general, the pressure in the reactor is slightly above atmospheric value due to

impedance of the gas flow at the exit part of system· If it is necessary to control pressure

like good uniformity, size of exhaust opening may be regulated· Energy is supplied by

heating the substrate to the temperature required to initiate and maintain chemical reaction·

Deposition temperature, reactant flow rate, and gas composition constitute of three

principal variables that determine coating deposition rate·
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(i.e·, randomly oriented versus columnar grains), and a good surface finish· However, the

key property that distinguishes CVD from PVD is its superior surface conformability (or

surface coverage)·

Large values of mean-free path (resulting from use of high vacuum conditions) and

high sticking coefficient of the atoms render PVD processes largely "line-of-sight"

depositions· In CVD, the mean-free path of molecules and their sticking coefficients are

often reduced, indicating "precursor" undergoes a large number of collisions upon entering

the reactor before it collides with a surface· Because of these collisions, both the lower

sticking coefficients of molecules (compared to the atoms produced in PVD) and the

enhanced surface diffusion caused by the heated substrate, yield perfectly conformal

surface coverage· In the microelectronics industry, CVD metal coatings (e·g·, TiN, W,

Cu, Al, etc·) are routinely used to conformally cover submicron-sized vias (< 0·12 µm)

with severe aspect ratios (hole depth/diameter ratio —20:1). For high strength steel parts

with blind holes having typical diameters of 0·25 inch, this means achieving conformal

surface coverage down to depths of 5 inches, or more.

Table 1.1 Strengths and Weaknesses in APCVD
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1.4.4 Strengths and Weaknesses of APCVD

Atmospheric pressure CVD achieves unique combinations of high growth rates and large

deposition area· It is particularly suited to high volume continuous growth process,

especially in glass industry. Furthermore, APCVD system is relatively simple and cost

competitive. Table 1·1 shows the strengths and weaknesses in APCVD process [41]·

1.4.5 APCVD Aluminum Coating

Up to date, little work on pure aluminum coating by APCVD process has been reported·

Jesse J· Crosby firstly reported that adherent aluminum coatings with low porosity were

deposited by thermally decomposing tri-isobutylaluminum (TIBAL) onto different

substrates, such as mild steel, copper, magnesium, titanium et al· at atmospheric pressure

with argon as the carrier gas [54]·

However, this process is somewhat far from ready to be used in commercial

systems, since the alkyl must be maintained at a sufficient vapor pressure for deposition;

the supply lines of precursor from the source to the reactor chamber must also be heated to

preserve a vapor state.

James C. Withers studied use of atomic alkyl into fine droplets over a heated

substrate by a process called "pyrolytic spray technique" to deposit good aluminum

coatings· In this work the key is to provide the precursor in the form of finely-divided

particles of liquid, having a particle size of about 500 nm units to 10 microns, against the

substrate heated by induction to the decomposition temperature· This process overcomes

the limitations to maintain the precursor in a vapor state for commercial applications· It is

also reported aluminum coatings were deposited in the temperature range of 498k to 598k

[55]· However, porous and severe surface roughness coatings could be produced over
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about 6·35 lam to 12.7	 thick with a high coating rate (about 12·7 µm/minute). Good

coatings could be obtained at about 4.3 µm/minutes, but the rate was not easily controlled·

Although previous attempts have obtained good aluminum coatings, it has been

proven to be difficult to transfer the process from CVD laboratory apparatus to large scale

equipment for mass production, as well obtain coating integrity in large CVD reactors

[56]· High quality of aluminum coatings with desirable density still is a challenge·

1.5 CVD Aluminum Using Alternate Routes

The candidates for aluminum CVD precursors can be divided into two main categories:

aluminum alkyls and alane complexes. In aluminum alkyls aluminum is directly bonded

to an organic structure or ligand. While alane complexes consist of alane (AlH 3) bonded

generally to a tertiary amine ligand·

1.5.1 Aluminum Alkyls and Aluminum Alkyl Hydrides

Both aluminum alkyls (triisobutylaluminum (TIBAL), trimethylaluminum (TMA))

and aluminum alkyl hydrides (dimethylaluminum hydride (DMAH)) are liquid phase at

room temperature and have relatively low vapor pressures·

Triisobutylaluminum (TIBAL). Triisobutylaluminum (TIBAL) is widely used as a

catalyst component in Ziegler-Natta type systems in olefin polymerization [57]· TIBAL

has been paid great attention among alkyl aluminum compounds as a CVD precursor

because of its ability to deposit high-purity aluminum films [58]·

Aluminum alkyls are typically clear, colorless liquids at ambient temperature·

Triisobuylaluminum (TIBAL), one of aluminum alkyls with high freezing point (0 °C), is
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moisture and air sensitive and also pyrophoric· Figure l·5 shows molecular structure of

TIBAL·

Figure 1.5 Molecular structure of TIBAL·

Back to the late 1950's, Ziegler and co-workers first reported that thermal

decomposition of the TIBAL could be used to deposit aluminum thin films at about 250 °C

[59]· Later on, a lot of effort was spent on investigation of chemical reactions of TIBAL

during thermal decomposition [37-39, 60-62]·

Reaction takes place at temperature of 50°C to 150°C· When temperature above

approximately 50 °C, TIBAL looses one isobutyl ligand to form di-isobutyl aluminum

hydride (DIBAH), which is a hydrogen bridged trimer with a substantially lower vapor

pressure of about 1·33 Pa at 40 °C compared to that of TIBAL of 13·3 Pa at 20 °C. TIBAL

and DIBALH compounds commonly associate into dimmers and trimers, respectively, via

electron-deficient bonding· Reaction [a] is reversible, and formation of di-isobutyl

aluminum hydride can be suppressed by adding excess isobutylene gas· At about 220 °C,
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reaction [b] occurs, in which pure aluminum is deposited by di-isobutyl aluminum hydride

thermal decomposition releasing both hydrogen and isobutylene gas [38, 61]·

A study on surface chemistry of TIBAL pyrolysis was done in depth during

aluminum thin film deposition [37]· Dominant simplified assumption is that TIBAL

undergoes a surface reaction to produce a metal film and gaseous byproducts of

isobutylene and hydrogen· It is suggested that reaction mechanism involves a β-hydride

elimination, a rate determined step [37, 44]·

Figure 1·6 shows proposed decomposition pathways during steady state CVD

aluminum growth using TIBAL· It is clear that the ß-hydride elimination dominates at

surface temperatures lower than 227 °C and yields carbon-free aluminum films· If

deposition temperature is further raised (above 330 °C), a more highly activated ß-methyl

elimination leads to carbon incorporation of aluminum films.

Figure 1.6 Proposed decomposition pathways for isobutene ligands on the surface of
aluminum (A) below 227 °C, (B) at higher temperature [37]·

J· Y· Tsao, and D. J. Ehrlich investigated mechanism of patterned photonucleation

of aluminum thin films from triisobutylaluminum (TIBAL) using laser-assisted CVD

(LCVD) technique. This mask-free direct writing of aluminum thin films might be

applicable with large nucleation barriers [49]·
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A very smooth surface aluminum film was deposited on Si (111) using epitaxial

growth by gas-temperature-controlled (GTC) CVD method using tri-isobutyl aluminum

(TIBAL)· The epitaxial aluminum film is likely applicable to hillock-free IC

interconnects [63]. However, additional anneal process at 430 °C for 40 minutes was

needed to eliminate hillock formation·

Trimethylaluminum (TMA). Trimethylaluminum (TMA) was one of the early

aluminum precursors[64], but the need to break Al-C bonds and the strong affinity of

aluminum typically suggested significant carbon incorporation and correspondingly high

resistivity aluminum deposition.

Kato et al· reported small roughness aluminum films deposition by a

magnetron-plasma CVD system using TMA· But these films were contaminated with

carbon of 5·7 at% and possessed relatively high resistivities about 8 µΩ·cm as deposited

and 3·8 µΩ·cm after annealing at 600 °C [65, 66]·

Dimethylaluminum Hydride (DMAH). DMAH, as a stable liquid precursor, could be

used to produce high purity and conformal aluminum films with low resistivity· It has

been reported that smoother aluminum films could be deposited on SiO2 substrates with

DMAH compared to using TIBAL [67]· However, high deposition temperature could be

a concern [68-71].

1.5.2 Alane Complexes

Alane complexes, such as dimethylethylamine alane (DMEAA) and trimethylamine alane

(TMAA), are monomeric, which have higher vapor pressures than that of aluminum alkyls,

offering higher deposition rates· Due to no direct Al-C bonds in their molecular
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structures, high purity carbon-free films could be produced· Alane complexes, however,

are not as thermally stable as the aluminum alkyls·

Dimethylethylamine Alane (DMEAA). DMEAA is one of the promising candidates for

CVD aluminum thin film deposition due to its long shelf life and a liquid phase [58], thus

providing high and stable vapor pressure [58, 72]· Furthermore, direct Al-C bonds are not

present in its molecular structure, which helps to prevent carbon contamination [67]·

Deposition of high purity aluminum from DMEAA has been carried out in laser

assisted CVD system with selective growth [73]· The resistivity of aluminum films (3·6

µΩ)) was about 1·5 times that of bulk aluminum (2·71.10)·

Ciaodong Li and co-workers investigated microstructure characterization and

deposition rate of aluminum thin films as a function of deposition temperature on various

substrate surfaces such as TiN, Al, Si, and SiO 2 using DMEAA [74, 75]· There was a

maximum deposition rate at around 150°C, whereas the rate became very low when the

temperature increased above 250 °C since gas phase reaction became very active·

Aluminum oxide particle inclusion was observed at the higher deposition temperature·

Meanwhile the aluminum films roughness increased with deposition time.

Compared to alkyl precursors, DMEAA slowly degrades during storage and its

thermal instability can also be a safety concern [76].

Trimethylamine Alane (TMAA). It has been reported that high-purity carbon-free

aluminum was deposited from TMAA in low pressure MOCVD systems with high growth

rates and low growth temperatures [77], as well as in a photo-thermal laser system without

heating the source [78]· Despite TMAA has higher stability compared to other amine

alane complexes, aluminum films formed from TMAA is through not only surface but
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gas-phase reactions [77]· It is difficult to handle TMAA in terms of maintaining constant

surface area as a practical CVD precursor due to its solid phase with relatively high melting

point [79]·

The formation of aluminum coatings by vapor phase deposition has been studied in

laboratories with a considerable number of alkyl aluminum compounds, but the adaptation

of these laboratory procedures to commercial processing has proved difficult to be

achieved·

1.6 Thesis Overview

The objective in this study is to investigate using atmospheric pressure chemical vapor

deposition (APCVD) to produce high quality aluminum coatings with

Triisobutylaluminum (TIBAL) as a precursor for corrosion protection of high strength

steels as the replacement of Cd coatings· In addition to offering an environmentally

benign alternative to cadmium plating, this strategy provides high production throughput,

low cost, and coatings with desirable properties and performance· Furthermore, the

process will be amenable for use at DoD depots, OEM and subcontractor facilities, and

logistics centers·

In order to achieve this goal, the following work has been done.

1) Utilization of a bench top reactor to deposit coatings and investigated growth as

a function of processing parameters to understand the deposition mechanism and its impact

on process throughput;

2) Investigation of coating composition as a function of processing parameters to

establish the achievable degree of chemical purity;
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3) Characterization of coatings in terms of their structural/morphological,

electrical, mechanical properties and electrochemical behavior to assemble a

comprehensive property database;

4) Corrosion behavior of APCVD aluminum coating on high strength steels as a

replacement of Cd coatings·



CHAPTER 2

APCVD EXPERIMENTAL METHODS AND
CHARACTERIZATION TECHNIQUES

This chapter describes APCVD reactor system and the operating procedure for sample

preparation· It also gives a briefly review of the techniques used to characterize the

coating properties·

2.1 Selection of Precursors

Triisobutylaluminum (TIBAL) is well known as a ziegler Natta catalyst in olefin

polymerization· It is an inexpensive organometallic compound, pyrophoric but can be

simply handled with safety· In this study, both TIBAL and blend TIBAl are used as a

precursor for APCVD aluminum deposition·

2.1.1 Pure TIBAL

TIBAL currently used in our deposition process has a commercial grade (min. 95·0%

purity) with minor impurities of tri-n-butyl aluminum (0.2%), other aluminum alkyl

compounds (0·1%), AlH 3 (0·5%), and isobutylene (2.6%)· Typically, the overall aluminum

content in TIBAL is 13·6 wt.%·

2.1.2 Blend TIBAL

Blend TIBAL used in this project is a mixture of pure TIBAL and other aluminum alkyls,

which provides higher vapor pressure than neat TIBAL· The attempt of utilizing blend

TIBAL is expected to improve coating quality and process control· The process requires

25





27

custom-designed copper heating coil· Heating to reaction temperature (250-320 °C) is

controlled by monitoring and adjusting voltage from induction power supply·

The gases from both thermal decomposition and residual aluminum alkyl vapor in

the reaction zone pass through a glass adapter and a refrigerated cold oil condenser system·

Residual aluminum alkyl in the vapor is condensed and collected in a glass receiver·

Gases remaining in the condenser then pass through a demister (filtering system) and are

trapped before the vent· The collected aluminum alkyl and solvent are disposed or

recycled through proper methods· Identification of the chemical species from the current

APCVD aluminum process has been established using gas chromatography (GC)· In

APCVD aluminum process, pure or blend tri-isobutyl aluminum (TIBAL) as a precursor

and N2 as a carrier gas are used·

As mentioned in Chapter 1, the overall chemical reaction involved in the

decomposition of tri-isobutyl aluminum (TIBAL) for the deposition of Aluminum coatings

is as following:

Table 2.1 GC Analysis of APCVD Vented Gas

Identified chemical species in the vent gas are given in Table 2·1. The effluents

consist of N2 (the carrier gas), isobutylene (major decomposition component), H2 (major

decomposition component), i-pentane (trace), methane (trace), and isobutane· Isobutane
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is produced during the hydrogenolysis reaction, a side reaction well documented in the

literature. Isobutylene and H2 represent the major by-products of thermal decomposition

process· The remaining species are generated from either olefinic impurities in

isobutylene used to produce TIBAL or minor side reactions in CVD aluminum process·

Thermolysis of these impurities in the Aluminization process generates methane in

concentration equivalent to that in the original TIBAL· These hydrocarbon chemical

species can be eliminated using a thermal treatment such as flare (ignition) or a chemical

scrubber·

2.3 Sample Preparation

2.3.1 Substrate Type

Substrates for APCVD aluminum coating are AISI 4130 or 4340 steel including coupons,

screw, bolts, rivet, rivet stem tube et al·, which are prepared by degreasing and

electrochemically cleaning· Equipment has been designed for deposition of aluminum

coatings onto the miscellaneous small parts mentioned above·

Coupon. Coupon substrates for APCVD aluminum coating are AISI 4130 steel·

Substrate roughness is —160 nm RMS measured using an Atomic Force Microscope

(AFM)· Structure and morphology, chemical composition, electrical and mechanical

properties and corrosion performance of aluminized coupons are evaluated·



Figure 2.2 Aluminized AISI 4130 coupon(1"x1") and aluminized AISI 4130 coupon 
after chromate conversion finishing (1 "x4"). 
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Fasteners. Fasteners with V -grooved outside and stepped inside surface are used to 

investigate conformal step coverage of aluminum coating by measuring coating thickness. 

Meanwhile, aluminized rivet stem sample is used to evaluate the coating density. 

Figure 2.3 Aluminized fasteners (Bolts, screw and nuts). 

Figure 2.4 Aluminized rivets sleeve and rivet stem. 
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Tubes. Aluminum coated steel tubes with 2-inch long and 5/16-inch or 3/16-inch OD are 

used to evaluate "throwing power". Surface morphology outside and inside is 

characterized by FE-SEM. 

Figure 2.5 Aluminized 5/16" OD and 3/16" OD 4130 steel tubes (2 " in length). 

Notch Bars (AISI 4340 steel). Notched round bars are used for hydrogen embrittlement 

(HE) testing with ASTM F519-05 "standard test method for mechanical hydrogen 

embrittlement evaluation of plating processes and service environment". Figure 2.6 

/ 
shows the specimen tested in this study. 

Figure 2.6 Aluminized notch bar. . ' , 

Carbon Steel Disks. Aluminized carbon steel disks, as shown In Figure 2.7, are 

employed to evaluate the relative sliding friction of aluminum coating using Pin-on-Disc 

technique. 
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Figure 2.7 Aluminized carbon steel disk (AISI 4340). 

2.3.2 Pre-treatment Procedure 

The general pre-treatment procedure of substrate is following: 

1) Oil removal from substrates by rinsing with solvents of heptane and acetone and 

drying with nitrogen 

2) Acid pickling using 12.5 wt.% HCI at 25°C for 4 minutes followed by rinsing 

with DI water for 30 seconds 

3) Rinsing with 3,,-,5 wt.% NaOH at 25°C for 2 minutes followed by ~insing with DI 

water for 30 seconds 

4) Rinsing with acetone to remove residual water 

5) Drying in vacuum to remove residual acetone and water 

2.4 ' Deposition Procedure 

After general pre-treatment as. aforementioned, substrates with clean, oxide-free and 

textured surface are used for the deposition step. 

An entire APCVD aluminum process is given in Figure 2.8. After loading the 

substrates into the rotary CVD reactor, aluminum coatings are deposited through TIBAL 



32 

pyrolysis in an APCVD system with atmospheric pressure (operation pressure is 760 

mmHg), deposition temperature of275 or 300°C and a nitrogen carrier gas. Temperature 

is monitored via vapor phase and solid phase thermocouples. Evolved gas generation rate 

and total volume are monitored by a totalizing gas meter. TIBAL aspiration is initiated 

when substrate temperature stabilizes within 275-320 DC. TIBAL injection rate is 

controlled to generate optimum growth rate (0.5 -1.2 /-lm/min) and maintain substantially 

saturated vapor/liquid conditions. Vapor temperatures are set to be slightly lower than 

230 .0 C during deposition process. Completed reaction is determined by net gas 

generation volume (vs target) or by time and temperature criteria. Coated substrates are 

cooled in an inert atmosphere and rinsed to remove excess reactant. Coating thickness is 

calculated by net weight gain and total surface area and direct measurement. 
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Figure 2.8 The schematic APCVD aluminum process. 

2.5 Characterization of APCVD Aluminum Coatings 

APCVD aluminum coated steels were evaluated using a variety of characterization 

methods with respect to their structural, morphological, compositional, electrical, 
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mechanical and corrosion properties· Accurate determination of aluminum coatings

performance is the key to assess the viability of APCVD process for commercial use and

transfer to the defense industrial base·

Prior to characterization, all coated samples were ultrasonically cleaned in acetone

followed by methanol, then rinsed with DI water and dried· The cross-section of

aluminum coating samples were ground on SiC paper with a final grit size down to 1200

grit, followed by a polishing process with polycrystalline diamond suspension with particle

size down to 0·25 µm, then washed with DI water and dried.

Structural and morphological properties were characterized by X-ray diffraction

(XRD), optical microscopy (OM), DekTak, scanning electron microscopy (SEM) and

atomic force microscopy (AFM). The correlation between processing parameters and

resultant coating composition was evaluated using a variety of diagnostic techniques

including auger electron spectroscopy (AES), X-ray photo electron spectroscopy (XPS),

glow discharge optical emission spectrometer (GD-OES), and nuclear reaction analysis

(NRA)· A four point resistivity probe was used to measure the resistance of coatings·

Characterization of mechanical properties was conducted with Nanoindentation test using

Hysitron nanoindenter and adhesion test using SEBASTIAN FIVE-A, respectively·

In the following subsection, the techniques used to examine the quality of APCVD

aluminum coatings were described·

2.5.1 Structure and Morphology

X-ray Diffraction (XRD). X-ray diffraction (XRD) was performed using a Philips

X'Pert MRD X-ray diffractometer (Bregg-Brentano 0:0) with Cu Ka radiation operated at

45 kV and 40 mA to investigate crystallographic structure of aluminum coatings·
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Stylus Profilometer (Veeco Dektak IIA). Dektak IIA, a very high precision measuring 

instrument capable of measuring minute physical surface variations, has four standard 

analytical functions: arithmetic average roughness, maximum height, average height and 

area-under-the curve. It was used to accurately measure vertical features in height of 131 

to 5 run and scan length of 50 to 30 mm on a wide variety of substrate surfaces. Figure 2.9 

shows a close view of Dektak IIA machine. Measurements are conducted 

electromechanically by moving the sample beneath a diamond-tipped stylus. 

/ 

Figure 2.9 Dektak IIA diagram. 

Scanning Electron Microscopy with EDS System (SEM &EDS). Surface morphology 

and conformal coverage (coating thickness) of the aluminum coatings were investigated 

using a field emission SEM (FE-SEM, LEO 1530 VP, FESEMI Oxford EDS system) on 

the surface and cross-sections of coatings. Elemental analysis of coating was conducted 

using EDX (Oxford INCA Energy 400). 
. " . 

Atomic Force Microscope (AFM). AFM is a high spatial resolution instrument capable 

of real space electronic and spectroscopic imaging of surface to visualize individual atoms 

in the Angstrom scale. The stuff (Nanoscope lIlA Multimode scanning probe 

microscope, Digital Instruments) in contact mode was explored to examine the topography 
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and degree of surface microscopic roughness with a unit of nanometer root mean square

(RMS) of APCVD aluminum coatings·

2.5.2 Chemical Composition

X-ray Photoelectron Spectroscopy (XPS). In order to evaluate the composition of

coatings, XPS (ThermoElectron VG Scientific ThetaProbe) with X-ray source of

monochromated Al Ka (1486·6 eV) operated at 15 kV and 100 W was used over the

analytical area of 400 x 400 µm². · Survey and profile pass energies were 300 and 100 eV,

respectively· the depth profile during XPS measurement was collected using Ar ion

etching with a 2 keV beam energy and 2·1 µA beam current over the rastered area of 3 x 3

mm². The corresponding etching rate was 1 Å/min (SiO2).

Auger Electron Spectroscopy (AES). AES (Perkin-Elmer Physical Electronic Model

660 Scanning Auger Microprobe) operated under the base pressure of < 1·0 x 10 -9 Ton

with the primary beam energy and current of 10 keV and 1.0 IAA was used to determine

composition in depth of coatings over three different areas· During AES measurement Ar

ion etching for depth profile was performed with 2 keV beam energy and 2·3 .µA beam

current over 2 x 2 mm 2 area. The corresponding etching rate was 15 nm/min.

Nuclear Reaction Analysis (NRA). Nuclear reaction analysis technique has been used

to determine H in silicon nitride [80]· It can be both sensitive and accurate for quantitative

hydrogen analysis· This method makes use of a narrow isolated resonance in the nuclear

reaction:

15N + H --> 12C + 4He + y (4·43 MeV)

where y represents gamma rays whose flux can be calibrated for H concentration·
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If coatings are bombarded with a beam of accelerated beam 15N ions at a precise

energy, 6·385 MeV, the number of γ rays measured coming from the sample is proportional

to the hydrogen concentration· There is negligible reaction with hydrogen with the beam

energy increasing, but as the 15N ions slow down passing through the film, the beam

reached resonance energy at some depth, and the yield of y rays was proportional to the

hydrogen concentration at this depth. Thus, by measuring γ-ray yield versus 15N energy, a

concentration profile of H versus depth was determined.

In this research, H(15N,αγ)¹²C resonance nuclear reaction method was employed to

determine the hydrogen incorporation in the aluminum coatings· The sample was loaded

in the analysis chamber at room temperature and bombarded by 15N ion of —20 nA· The

ion beam energies used for the depth profiles were 7·0 MeV (0·38 µm), 7·3 MeV (0·57

m), 7·6 MeV (0·76 µm) and 7·9 MeV (0.79 µm). Measurements at 7·0 MeV were

repeated to check the stability of each ion beam energy/depth then averaged·

Glow Discharge Optical Emission Spectrometer (GD-OES). To evaluate thickness

and chemical distribution of APCVD aluminum coatings, LECO GDS-750A optical

emission spectrometer was employed, which has the unique combination of fast sputtering

rate, high depth resolution, excellent sensitivity and multi-element capability for surface

and depth profile analysis [81-83]· Due to its ability of be applicable to conductive and

semi-conductive materials up to depths of tens of micrometers GD-OES was selected to

measure chemical depth profiles across aluminum oxide layers, aluminum coatings and the

substrates. GD-OES was more sensitive than other depth profiling techniques like AES,

detecting all elements of the periodic table with content above 10 ppm·
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The principle mechanism for GDS was as follows: positively charged argon (Ar+)

ions generated by the electric field of the source are accelerated in a vacuum across the

negative potential samples surface· These ions continuously bombard the sample and

cause atoms to be ejected toward the anode, then subsequently excited or ionized in the

negative glow of the plasma gas mainly by collisions with electrons, emitting energy in the

form of characteristic light emission· The light emitted by the sample passes into the

spectrometer to photomulitiplier tubes that simultaneously quantify the intensity of the

spectral lines (wavelengths) in the emitted light. Each individual element in the sample

has its own characteristic spectrum and its own unique wavelength.

2.5.3 Density Testing (He pycnometer)

The density determined using Accupyc 1330 (He pycnometer) is called skeletal density

(true density). This method utilizes a gas (He) displacement technique to determine

sample volume with high accuracy· The density was calculated using the measured sample

weight· The measured sample volume excluded interstitial voids in bulk powders and any

open pores in the individual particles where gases can access· Internal (closed) porosity

was still included in the volume· This test was normally performed at room temperature,

could be performed at a temperature in the range of 0 °C to 50 °C as well· Almost all of

solid samples as well as some fluid samples could be measured by this technique [84, 85]·

The density measurement method using He pycnometer and mercury porosimeter

is widely used not only for coated sample, but for bulk samples· Generally, it comprises

several steps·
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After general pre-treatment and aluminum deposition, the weight (Ws+c) and

volume (Vs+c) of coated substrates were measured. Substrate weight (Ws) and volume

(Vc) were measured after completely digesting aluminum coating from surface·

The density of coating was calculated according to the equation:

Unlike density measurement by X-ray reflectivity (XRR) that highly requires

smooth (mirror-like surface) and thin coating, no particular coating requirements were

needed in this method.

For precise measurement of coating density, selected substrate should possess

maximal difference in weight and volume before and after aluminum deposition· For

instance, cylindrical tube substrate (both-end open) rather than cylindrical bar (identical

length and outer diameter) can provide more reliable density information of coating·

The procedure for digesting aluminum from parts is simple:

1) Preparing an NaOH solution by dissolving 5 wt·% NaOH in DI water in a hood

2) Immersing aluminized substrates into freshly prepared NaOH solution (at room

temperature) and waiting until no hydrogen bubbles generated, then waiting another 5-10

minutes· Since produced fumes are very corrosive and will irritate throat, eyes and skin,

much more attention needs to be paid

3) Rinsing substrate thoroughly with water and drying in the air·

2.5.4 Electrical Properties

Electrical Sheet Resistance Measurements. Resistivity is one of the most important

properties revealing uniformity and purity of the deposited aluminum coating. Electrical



39

sheet resistance measurement was conducted using a four-point (FPP) resistance probe

with a mode of FPP-100 from Veeco instrument Inc· in NJIT·

Measurement on an Al coating deposited on a steel substrate is not possible because

the interface between the Al coating and the steel substrate provides an electrical

(grounding) contact. Samples prepared for electrical resistivity measurements consist of

AISI 4130 steel coupons on top of which an insulating silicon nitride layer (1µ.m thick) is

synthesized by plasma enhanced chemical vapor deposition (PECVD)· Optimal

conditions for this PECVD process were established to be a deposition temperature of 350

°C, RF power of 50 W, flow rates of SiH4 at 280 sccm and NH3 at 4 sccm, and process

pressure of 900 mTorr· APCVD Al coatings are deposited on top of these insulating

layers at 300 °C without shielding the substrate· The electrical resistivity measurement is

conducted using a four-point probe (Veeco FPP-5000)·

Electrical Contact Resistance (ECR). Electrical and electronic equipment often require

a low electrical resistance on its finished surfaces for uninterrupted contact, grounding, and

electromagnetic field shielding purposes·

The test method given in MIL-DTL-81706A evaluates a coating system's ability to

provide initial electrical contact resistance after application of post-treatment such as

chromate conversion coating, and after exposure to a corrosive environment· In

accordance with MIL-DTL-81706A, the samples evaluated in this test included APCVD

Al coatings as deposited and post-treated with glass bead burnishing followed by a Cr(VI)

conversion coating (Iridite™ 14-2)· The electrical contact resistance (ECR)

measurements were conducted before and after continuous exposure to a neutral salt fog

for 168 hours· Operation of the fog chamber for this test is done in accordance with
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ASTM B 117 [Standard Practice for Operating Salt Spray (Fog) Apparatus]· The samples

were placed into a fog chamber at a 6-degree angle. The coupons were not allowed to

contact other surfaces in the chamber, and condensate from a coupon did not contact any

other coupons. The salt solution and the fog chamber were prepared as specified in the

Test Methodology of the Nonchrome Aluminum Pretreatment Project (NCAP) Joint Test

Protocol (JTP). The nozzles were adjusted in the fog chamber so that sprayed salt solution

did not directly impinge on the coupon surfaces· After exposure, the coupons were

carefully removed and cleaned with running water at a temperature less than 38°C (100°F)·

The coupons were then air-dried at ambient conditions, and then visually examined for

corrosion·

2.6 Performance Testing of APCVD Aluminum Coatings

2.6.1 Mechanical Testing

The mechanical characterization of the aluminum coatings consists of measurements of

hardness, Young's modulus, adhesion, tensile strength and fatigue debit testing.

Nanoindentation Testing. Nanoindentation is a depth-sensing indentation testing for

characterization of material mechanical properties in the sub-micrometer rage, a few

square micrometers or even nanometers· In such a test, a hard tip is pressed into a sample

to make such tiny indentations while recording load and displacement with very high

accuracy and precision· Then hardness and modulus properties are obtained by analyzing

the load displacement data [86]·

In this study to estimate the hardness and Young's modulus of aluminum coatings

[86, 87], nanoindentation testing was performed using the Hysitron nanoindenter device
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equipped with a triangular (Berkovich) pyramid-shaped diamond tip as shown in Figure

2·10· It is a low load nanomechanical test system for measuring the hardness and elastic

modulus of thin films and coatings·

Figure 2.10 Hysitron nanoindenter equipment and the associated schematic diagram·

Young's modulus is calculated based on the reduced modulus (Er) from

where E and v are the Young's modulus and Poisson's ratio, respectively·

Adhesion Testing. Adhesion test (pull test) to evaluate adhesive bond strength between

aluminum coating and the steel substrate was carried out using the SEBASTIAN FIVE-A,

with the maximal load of 1755 kg/cm 2 and the accuracy of within l% at 20 ± 4 °C, as

shown in Figure 2·11· Figure 2·12 illustrates the overall layout and method of mounting

stud on sample· For comparison, similar measurements of thermal oxide film on silicon

were conducted as well, which exhibited relatively high adhesion (498·3 kg/cm 2)·

Prior to adhesion test, aluminum coated sample was mounted onto a stud by curing

standard high strength epoxy between them on a hotplate at 150 °C for one hour, then

cooling down to room temperature· Adhesion test was also confirmed by examining





43

According to the specification provided by an independent source (Dirats

Laboratories, Westfield, MA), the UTS of the notched round bars used for HE testing was

400·7 ksi (mean value of 10 bars) with a minimum of 395·1 and a maximum of 405·2 ksi·

Tensile tests were carried out by applying a load to the bars at a constant rate of 1,000 lb per

minute until fracture occurred· As per Table 2 in the ASTM F 519-97 test method, the

notched fracture strength (NFS) of the specimens under evaluation should exhibit a

difference within ±10 ksi of the average value measured for the bare bars [88]·

2.6.2 Hydrogen Embrittlement (HE) Testing

Hydrogen embrittlement (HE) testing was performed by NAVAIR according to ASTM

F519-05 "Standard Test Method for Mechanical Hydrogen Embrittlement Evaluation of

Plating Processes and Service Environment"· Notched round bars used in this test were

type 1a.1 (per ASTM F519-05) made of AISI E4340 steel per MIL-S-5000E· The bars

were 2.540" long with a notched diameter of 0·1750" (Figure 2·13)· They were quenched

and tempered per AMS-H-6875A to hardness of 51-53 Rockwell C· According to the

specification provide by manufacturer (Dirats laboratories, Westfield, MA), the ultimate

tensile strength of the notched round bar is 400·7 ksi (mean value of 10 bars) with min·

395·1 and max· 405.2 ksi·

HE test consisted of applying a load (75 % of the ultimate tensile strength (UTS) of

bare notched round bar) to specimens and sustaining the load for 200 hrs. Subsequently,

the sustained load was stepped up by 5 % per hour until the specimens were fractured·

Substrate qualified with HE test must withstand the 200-hour test period without showing

any signs of fracture·
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were then subjected to ASTM-B117 salt fog chamber for a total duration of 75 hours· The

samples were removed from the chamber for observations and friction measurements at

intervals of 3, 51, and 75 hours· After each removal from the chamber, the samples were

rinsed in deionized water and allowed to dry in ambient conditions for at least two hours

before testing. Different wear tracks were used for each test·

The relative sliding friction of each coating was measured using the Pin-on-Disc

technique· The system consisted of an Implant Sciences Corp ISC-200 tribometer and a

computer interface data acquisition unit, PC-stripchart, which is a computer based chart

recorder used to display and store data in real time· The samples were mounted on the top

of a rotating platform of the tribometer (in Figure 2·14). A 0·5-inch diameter stainless

steel ball (pin) was attached to a precision balanced lever arm that was used to both apply

vertical loads to the disc and to read the friction force on the pin· The ball was put in

contact with the surface of the sample and a load was applied· To measure friction

coefficient of the sample, the applied load used was 10 grams· The sample was then

rotated and the total distance the steel ball traveled on the sample was set· In this case, it

was rotated 200 revolutions (approx 8 meters)· All the friction measurements were

conducted in dry condition (without lubrication)·

2.6.4 Corrosion Testing

Potentiodynamic Polarization Measurement. Measurement of polarization can

provide significant useful information in terms of corrosion mechanisms, corrosion rate

and susceptibility of a metal over a wide range of oxidizing conditions in a single test

solution·
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Polarization methods involve changing the potential of working electrode and

monitoring current response as a function of potential· A Flat cell (Princeton Applied

Research) was used for both potentiodynamic polarization and electrochemical impedance

spectroscopy (EIS) with a three-electrode configuration consisting of a saturated calomel

electrode (SCE), a platinum gauze reference and auxiliary electrodes· The specimen

exposure area was 1 cm²
.

To investigate anodic polarization behavior of APCVD aluminum coatings,

potentiodynamic polarization experiments were performed in 3·5 wt·% NaCl solution with

and without 02 saturation at room temperature using a Gamry Reference 600™

Potentiostat. Potentiodynamic polarization was measured with a scan rate of 10 mV/min

from —0·2 to +1·5 V versus the open circuit potential (OCP) after 1 hr immersion.

Electrochemical Impedance Spectroscopy (EIS) Measurement. Electrochemical

impedance spectroscopy (EIS) as a function of immersion time (up to 10 days), tests were

performed using a Gamry Reference 600 in 3·5 wt% NaCl saturated with oxygen at room

temperature in a frequency range of 0·01 Hz to 100 kHz· The Ac amplitude used was 10

mV at open circuit potential· An electrochemical flat cell (Princeton Applied Research)

used in these measurements has a three electrode configuration including working

electrode (sample), a saturated calomel electrode (reference electrode), and a platinum

gauze (an auxiliary electrode)· All electrochemical tests were carried out with an

exposure area of 1 cm². IVD aluminum coating, aluminum foils (99·999% purity) and

AISI 4130 steel coupons were used as references for comparative purposes· Both Bode

magnitude plots and Nyquist plots of the data were obtained as representatives of

characteristic corrosion behavior.
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Corrosion Screening Testing. Corrosion tests based on ASTM B117 Salt Fog including

bare and painted aluminum coatings (-20 µm thickness) to evaluate their general

corrosion resistance and ability to provide sacrificial (galvanic) protection to the steel

substrate materials. Bare Al-coated specimens consist of unscribed and scribed

coupons, post-treated both with and without a trivalent chromium conversion coating

(TCP) or other post-treatment· Painted Al coatings are painted with a

MIL-PRF-23377C primer and a MIL-PRF-85285 topcoat· In addition, a paint adhesion

test - based on ASTM D3359 Method A - can be conducted before and after corrosion

testing·

Table 2.2 GM 9540P Cyclic Corrosion Test Sequence GM

Stage Description Time, min Temp., ±3°C

1 Ramp to salt fog test conditions 15 25

2 Salt fog cycle 1 25

3 Dry cycle 15 30

4 Ramp to salt fog test conditions 70 25

5 Salt fog cycle 1 25

6 Dry cycle 15 30

7 Ramp to salt fog test conditions 70 25

8 Salt fog cycle 1 25

9 Dry cycle 15 30

10 Ramp to salt fog test conditions 70 25

11 Salt fog cycle 1 25

12 Dry cycle 15 30

13 Ramp to relative humidity test conditions 15 49

14 Humidity cycle 480 49

15 Ramp to drying test conditions 15 60

16 Dry cycle 480 60

17 Ramp to ambient temperature test conditions 15 25

18 Ambient temperature cycle 480 25
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Cyclic Immersion Corrosion Testing. Corrosion more representative of in service

conditions was measured at the Army Research Laboratory facilities using the GM 9540P

Method B 18-stage testing protocol (Table 2.2)·

The AISI 4130 steel panels were 25mm wide by 35mm long (scribed) or 50mm

long (unscribed) and about 1 mm thick· These were coated with APCVD Al for this test·

Some received a commercial, trivalent chromium [Cr(III)] CCC post-treatment· The

C-ring specimens were coated with AlumiPlate Al, and some of these received a

commercial, Cr(VI) CCC post-treatment· An Atotech Model CCT-NC-20 chamber was

used to perform the testing· Standard steel mass loss specimens were used to calibrate this

chamber. The test solution was 0·9 % NaCl + 0·l % CaCl2 + 0.25 % NaHCO3. The

arbitrary acceptance criterion was 80 cycles with no visible red rust for unscribed

specimens and 40 cycles for scribed specimens·
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coatings exhibit a non-columnar structure with a rugged surface (-20 1.1m)· Pure

aluminum coated by APCVD process on high strength steel for corrosion protection, will

perform better compared to sputtered and IVD coating·

3.3 Coating Structure

The microscopic structure of aluminum coatings on AISI 4130 coupons with APCVD

process was inferred from x-ray diffraction measurements· Diffraction pattern of

aluminum coatings deposited at 275 and 300 °C suing pure TIBAL and 300 °C using a

blended TIBAL was shown in Figure 3·4 along with the aluminum powder diffraction

pattern· Aluminum coatings were polycrystalline (face centered cubic structure)

regardless of deposition conditions·

Table 3.1 Full Width at Half maximum of All Peaks Measured from XRD Analysis
on APCVD Aluminum Coated Steel and Aluminum Foil

20 (deg)
Miller indices

(hkl)
Pure TIBAL

(275 °C)

FWHM (deg)
Pure TIBAL	 Blended TIBAL

(300 °C)	 (300 °C)
Al foil

38·47 (111) 0·0960 0·1968 0·2165 0·1030

44·74 (200) 0·1200 0·1574 0·1680 0·1410

65·14 (220) 0·1200 0·1378 0·4320 0·1270

78·23 (311) 0·1200 0·1920 0·3360 0·1040

82·44 (222) 0·0960 0·1440 0·4320

99·08 (400) 0·1920 0·3840 0·5760

112·05 (331) 0·2400 0·1680 0·3360

116·57 (420) 0·1440 0·1920 0·2880

137·46 (422) 0·2880 0·2400 0·4800

The full width at half maximum (FWHM) of each peak , shown in Table 3.1,

together with that of aluminum foil, indicated that there was slight difference in the value

of FWHM between aluminum coatings with different deposition conditions· Meanwhile,
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all the coatings exhibit high degree of crystallinity expressed by FWHM compared to that

of pure aluminum foil·

Figure 3.4 XRD pattern of APCVD aluminum coatings on steel substrates·

3.4 Coating Composition

3.4.1 AES Analyses

Aluminum coatings deposited on steel substrates at 275 and 300 °C using pure TIBA and

blended TIBA at 300 °C were analyzed by AES to obtain comprehensive information

about composition as a function of depth· As mentioned earlier in the characterization

method section, three different areas on APCVD aluminum-coated steel substrates were

examined. Coating thicknesses corresponding to each deposition condition were 15·6,

13·1 and 16·9 lam, respectively.

Using AES, additional information about impurity elements was gathered for the

surface, as well as for the bulk of aluminum coatings. Figure 3.5 shows an elemental AES

survey of the surface of APCVD aluminum coating using pure TIBAL at 300 °C,
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exhibiting signals of aluminum, oxygen, carbon· The tendency of aluminum to combine

readily with oxygen in the environment to form a thin corrosion-resistant film of Al203

accounted for the presence of the oxygen in the spectrum, whereas the carbon was

considered here to be surface contaminants·

Figure 3.5 AES elemental survey of APCVD aluminum coatings at surface·

A second elemental survey taken at a depth of ~200nm exhibited the expected

aluminum peaks and low levels of oxygen and carbon, as shown on Figure 3·6·

Figure 3.6 AES elemental survey of APCVD aluminum coating at a depth of —200nm.

Depth profiles analysis achieved by ion-beam sputtering with Ar reveals in Figure

3·7 the rapid decrease in the oxygen concentration below the surface level and the increase
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and subsequent stabilization of the pure aluminum signal with the bulk of the coatings·

Atomic concentration of carbon and oxygen as impurities detected in depth was found to

be l·8 and 5·6 at·% respectively, with pure TIBAL at 275 °C; 0·7 and 2·2 at·% with pure

TIBAL at 300 °C; 0·2 and 11·0 at·% with blended TIBAL at 300 °C. Aluminum

concentration in each deposition conditions was the balance with 92.6, 97·1 and 88.8 at%

respectively· Due to the inhomogeneous and rough surface of aluminum coatings, Ar

etching used for depth profiling was not able to completely remove the coatings layer by

layer, indicating that oxygen concentration detected in the deep region appeared to be

attributed mostly to a native aluminum oxide presenting on coating surface·



Figure 3.7 AES depth profiles of APCVD aluminum coatings produced with different
deposition conditions achieved by ion-beam sputtering with Ar·
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Figure 3.8 AES depth profile of carbon impurity present in aluminum coatings produced
with different deposition conditions achieved by ion-beam sputtering with Ar·

Figure 3·8 shows depth profile of carbon impurity concentration for each

deposition conditions· APCVD aluminum coatings prepared with pure TIBAL exhibited

the decrease in carbon concentration with the increase in deposition temperature of 275 to

300 °C· In addition, the value with blended TIBAL was found to be lower than that of

aluminum coatings with pure TIBAL· In the case of the APCVD aluminum coatings
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deposited at 300 °C using either pure or blended TIBAL, significant low carbon

concentrations were noted (< l·0 at·%)·

Furthermore, it has been reported that TIBAL pyrolysis on aluminum (100) at a

temperature below 327 °C resulted in carbon-free aluminum deposition [37]· Considering

the APCVD aluminum deposition temperature used (275 and 300 °C) it is assumed that the

carbon detected in the aluminum coatings mostly originated from carbon contamination,

not from the reaction of TIBAL pyrolysis during deposition·

3.4.2 XPS Analyses

To evaluate both the composition and element's bonding environment of aluminum

coatings, XPS analysis was conducted on aluminized steel substrates with different

deposition conditions.

Typical XPS survey spectrums of aluminum coating using pure TIBAL at 300 °C

on the surface and at a depth of —120 nm were shown in Figure 3·9 and Figure 3·10,

indicating all peaks for oxygen, carbon, and aluminum consistent with the AES analysis·

Figure 3.9 XPS spectrum of APCVD aluminum coatings at surface.



Figure 3.10 XPS spectrum of APCVD aluminum coating at a depth of —120 nm·

XPS spectra of Al 1 p, 0 1 s, and C 1 s in aluminum coatings were plotted as a

function of argon sputter/etching level in Figure 3·11 without correction for binding energy

shift due to surface charging· The surface of aluminum coatings was charging slightly

because of aluminum oxide film naturally formed· The convention for determining

chemical composition in XPS data analysis was to reference the measured peak energy to

the well-known energy of C 1s line for elemental carbon, typically having a binding energy

of 285 eV· C 1 s peak on aluminum coating surface was positioned at 287·4 eV·

Therefore, the surface charging caused all peaks shifting up in binding energy by

approximately 2·4 eV·

This binding energy shift also was seen in the Al 2p line· The reference XPS data

base from NIST gives a range of energies for Al 203 from 74·2 to 74·9 eV· The

approximate average of these values (74·5 eV) was used for charge referencing in the

Aluminum coatings, as long as there was enough oxygen to ensure an oxide existing· As

the sputter etching time increases, Al 2p peak was clearly seen, indicating that coatings

were mostly pure aluminum in the bulk region·

57
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As for the carbon present in the Aluminum coatings, the binding energy of CIs 

with increasing sputter etching was found to approach to 285 eV, implying that the carbon 

observed in the coatings appeared to exist as elemental carbon and/or as carbide. It could 

be concluded that aluminum coatings were contaminated with carbon, which was not form 

TIBAL pyrolysis process. This result was consistent with the AES analysis. 

XPS results were gathered on aluminum coatings deposited at 275 and 300°C with 

pure TIBAL and at 300°C with blended TIBAL, revealing that all aluminum coatings 

exhibited no difference in the composition chemistry regardless of deposition conditions. 
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Figure 3.11 XPS A12p, 0 Is, and C Is spectra as a function of sputter time for the 
APCVD aluminum coatings. 

3.4.3 GD-OES Analyses 
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To know bulk chemical compositions of APCVD aluminum coatings, LECO glow 

discharge optical emission spectroscopy with quantitative depth profiling (GD-OES 

-QDP) was used for quantitative depth characterization. Before analyzed by GD-OES, 

the samples were cleaned with spectroscopically clean hexane. 

The QDP results for the two samples were plotted in Figure 3.12 and Figure 3.13, 

indicating that the coatings were made for elements C, 0, N and AI. The depth at which 

the AI-Fe analyze curves cross over (50-50 point) represents the thickness of the coatings 

on top of the substrate. Stable plasma was achieved after a depth of 0.020 f.1m for both 

samples, below which data should be discarded for any analysis. The QDP analysis 

shown high pure aluminum coatings were deposited by APCVD methods using blended 

TIBAL on steel coupons with thickness of 26.93 f.1m at 275°C and 30.42 f.1m at 300°C, 

respectively. Meanwhile, the QDP results illustrated no impurities was presented at the 

interface between the aluminum coating and the steel, indicating good pre-cleaning of 

substrates. 
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Figure 3.12 GD-OES depth profiles of APCVD aluminum coatings at 275°C. 
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Figure 3.13 GD-OES depth profiles of APCVD aluminum coatings at 300°C. 

3.4.4 NRA Analyses 
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The hydrogen in~orporation in the Aluminum coatings was evalu~ted by NRA with a 15N 

ion beam probing different depths. The concentrations of hydrogen incorporated in the 

aluminum coatings as a function of coating depth was shown in Figure 3.14. 
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Figure 3.14 Depth profile of hydrogen present in APCVD aluminum coatings·

The significant drop in H measured between beginning of the first run at 7 MeV and

the end of the final run at 7 MeV was observed in the aluminum coatings deposited on the

rivet substrates· This effect was much smaller (or absent) in the larger planer sample such

as the Aluminum coating deposited on the steel coupon at 300 °C using blended TIBAL,

indicating that there was an unstable component of the H in the aluminum coatings

deposited on the rivet substrates at 275 and 300 °C using pure TIBAL· Nonetheless, the

results revealed that the hydrogen concentration was well below 1% (atomic) in depth of

0·8

3.5 Electrical Properties

3.5.1 Electrical Sheet Resistance

Electrical sheet resistance measurements on aluminum coatings were conducted using a

four-point resistance probe (Veeco FPP-5000)· Direct measurements of the electrical

sheet resistance of aluminum coatings deposited on steel substrates were not possible
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because of an electrical contact of the interface between the aluminum coatings and the 

steel substrates. 

Samples were prepared for electrical resistivity measurements with an insulating 

silicon nitride layers (1 !-lm thickness) between aluminum coatings and steel substrates, 

which were synthesized by plasma enhanced chemical vapor deposition (PECVD). 

Optimal conditions for this PECVD process were established to be deposition temperature 

of350 °c, RF power of 50 W, flow rates ofSiH4 (280 sccm) and NH3 (4 sccm) and process 

pressure of 900 mTorr. APCVD aluminum coatings (~14.7 !-lm thickness) were 

deposited on top of these insulating layers at 300°C without shielding the substrates. 

Figure 3.15 SEM image of an aluminum coating deposited on SbN4-coated steel 
substrate. 

Electrical resistivity value of aluminum coating was found to be 3.5 ± 0.1 

Jl0hm·cm, close to that of hulk aluminum (2.7 Jl0hm·cm), indicating good electrical 

conductivity of APCVD aluminum coatings. The morphology of aluminum coatings on 

silicon-nitride-coated steel substrates was shown in Figure 3.15, revealing no different 

with that coated on steel substrates. 
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3.5.2 Electrical Contact Resistance

The ECR test results are shown in Table 3·2· All samples passed the initial electrical

contact resistance test criterion by measuring less than 5 milli-ohms per square inch·

After the Al deposited coatings (with chromate conversion coatings) were removed from

the salt fog chamber, rinsed and dried, they were subjected to electrical contact resistance

measurement· The results were a little higher than those measured before salt fog

exposure·

Table 3.2 Electrical Contact Resistance of APCVD Aluminum Coatings

3.6 Mechanical Properties

3.6.1 Young's Modulus and Hardness

Young's modulus and Poisson's ratio of the indenter were 1140 GPa and 0·070, and

Poisson's ratio of polycrystalline bulk aluminum is 0·345· Prior to the measurement on

the aluminum coatings the calibration was conducted by using the fused quartz with

reduced modulus of 70.7 GPa and hardness 10·0 GPa· Afterward the aluminum single
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crystal with (100) orientation was used as a reference sample, resulting in hardness of

836·5 ± 215·4 MPa and Young's modulus of 40·7 ± 3.6 GPa·

3.6.2 Adhesion Testing

The adhesion (pull-off) test on aluminum coating samples was conducted to obtain

information about the adhesive bond strength of the aluminum coatings to the steel

substrate· No failure of adhesion was observed by FE-SEM/EDX inspection·

The adhesive strengths of aluminum coating using pure TIBAL and blended

TIBAL were 703 ± 85 kg/cm2 and 684 ± 30 kg/cm 2 , respectively, indicting no significant

difference between the coatings with different precursors· Furthermore, these results

were even superior to those measured for thermal oxide on silicon (498.3 kg/cm 2)·

3.7 Tensile Strength Tests

Bare bars without pretreatment were used as control in tensile testing· Aluminum coated

bars with and without baking (23 hr at 190·6 °C) were tested to examine tensile strength

and hydrogen embrittlement· Meanwhile, the effect of deposition temperature on the

weakening of notched round bars was evaluated through tensile testing on the bars treated

in the APCVD process chamber only with heat· The temperatures of the heat treatment

were 250, 275, and 305 °C with exposure time of 20 minutes that is normal deposition time

and 275 °C for 45 minutes to see the effect of elongation of exposure time· The time of 45

minutes represents the time needed to obtain the same coating thickness as that at 300 °C·

Additionally, to evaluate the effect of HCl etching in pre-cleaning procedure on the

hydrogen embrittlement, bars pre-cleaned only in HCl were tested·
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According to the factory specification, the ultimate tensile strength (UTS) of the

bars was 400.7 ksi (average of 10 bars) with a minimum value of 395·1 ksi and a maximum

one of 405·2 ksi· To confirm this, tensile testing on 4 uncoated bare bars was performed at

NAVAIR, resulting in average UTS of 407·3 ksi and a higher standard deviation than the

factory value (Table 3·3)· Instead of using the factory value, the average UTS value of

407·3 ksi from our measurement was adopted as the reference for this effort·

Table 3.3 Tensile Strength of Uncoated Bare Notched Round Bars

Sample pretreatments used in these tests are briefly described in Table 3·4· As a

control experiment, bare bars without pretreatment were used in tensile test· Aluminum

coated bars with and without baking (23 hr at 190·6 °C) were tested to examine tensile

strength and hydrogen embrittlement. The effect of deposition temperature on the

weakening of notched round bars were evaluated through tensile test of heating treated

bars· The temperature in heat treatment was at 250, 275, and 305 °C with exposure time

of 20 minutes. Another heat treatment at 275 °C and of 45 minutes was conducted to

examine the effect of extending exposure time on tensile strength of the samples·

Additionally, bars pre-cleaned with HCl solution were tested to evaluate the effect of HCl

etching in pre-cleaning procedure on the hydrogen embrittlement.
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* Sample pretreatment
RO/S: Removing oil with solvents, rinsing with Heptane and Acetone, drying with nitrogen blowing

HCl: acid etching in 12·5 wt·% HCl solution at room temperature for 4 minutes, rinsing with water
Dil NaOH: rinsing with diluted NaOH (3-5 wt·%) solution at room temperature for 2 minutes
2X Acet: Rinsing with nonaqueous acetone by two times to remove water at room termperature
Vac Dry: Drying in vacuum

The results of tensile testing of aluminum coated bars with or without baking at

190·6 °C for 23 hrs was given in Table 3·5 indicating that the tensile strength of the

aluminum coated bars after baking was slightly greater than that of without baking·

Regardless of baking, the coated bars underwent a loss of 4·6-15·3 % from the ultimate

tensile strength of the bare bars. The weakening of these bars appeared to be attributed to

the deposition temperature (-300 °C) of the process. Therefore, the effect of deposition

temperature on the weakening of notched round bars was evaluated through tensile testing
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on heat treated bars only (no deposition)· The temperatures used for the heat treatment

were 250, 275, and 305 °C and the heat treating time was 20 minutes to simulate deposition

time·

Table 3.5 Results of Ttensile Testing of APCVD Aluminum Coated Notched Round
Bars Before and After Baking at 375 °F (190.6 °C) for 23 Hrs

Heat treatment was also conducted on a sample at 275 °C for 45 minutes to evaluate

the effect of heat treating time· The results given in Table 3·6 revealed that the loss in

tensile strength is highly dependent on temperature while no significant difference in

tensile strength was seen with exposure time at a given temperature·

The effect of the pre-cleaning procedure including HCl etching on tensile strength

was evaluated through tensile testing· As shown in Table 3·7, the results indicated no

effect·



Table 3.6 Results of Tensile Testing of Notched Round Bars Treated with Heat Only
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Table 3.7 Results of Tensile Testing of Notched Round Bars Treated with HCl Cleaning
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3.8 Hydrogen Embrittlement Test

As mentioned in the previous subsection, hydrogen embrittlement (HE) testing was

performed on aluminum coated bars with and without baking· Tests were also conducted

on heat-treated bars and pre-cleaned bars (without aluminum coatings) in air· Aluminum

coated bars without post baking experienced a premature failure of HE due to hydrogen gas

that evolved as one of the byproducts during the APCVD Aluminum process and was

absorbed by the substrates, implying that post baking was necessary to relieve the absorbed

hydrogen from the substrate· To address this issue, aluminum coated bars were subjected

to the baking at 190·6 °C for 23 hrs immediately after deposition·

Table 3.8 Results of Preliminary Hydrogen Embrittlement Testing

The results of the preliminary HE testing shows in Table 3·8 reviewing that the

specimen coated with APCVD aluminum at 300 °C after a hydrogen relief bake, passed

the test's criterion in air as expected· In contrast, the APCVD Al deposited at 275 °C

and tested in air failed this test, even though most specimens that had received the
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Figure 3·17 illustrated (a) cadmium coated steel and (b) APCVD aluminum coated

steel tested following 75 hours in ASTM-B117 salt fog· As expected, the cadmium has a

lower coefficient of friction, and maintains a low coefficient of friction even after

significant exposure to corrosive conditions· The aluminum coated samples also showed

an initial reduction in the measured coefficient after a few hours of exposure, but these

returned to the initial levels after the 75 hours of exposure·



CHAPTER 4

STEP COVERAGE AND THROWING POWER

Chemical vapor deposition is the only conformal growth method, offering surface

chemistry controlled conformality and good coating thickness distribution on substrates

with complex geometry [90]· Conformal step coverage is defined that the horizontal as

well as vertical surface of substrates is coated to the same thickness [91]· Figure 4·1

shows schematic illustration of film coverage of stepped substrate· Meanwhile, the ability

to coat oblique or hidden surfaces is called "throwing power" (TP) [92]· Both step

coverage and throwing power are very important parameters related to uniformity of film

thickness on non-planar substrates, such as steps, holes, and trenches·

The uniformity of APCVD aluminum coating thickness on different non-planar

substrates is discussed thoroughly by step coverage and throwing power, respectively in

Section 4·1 and 4·2·

4.1 Step Coverage

Conformity of step coverage is an important factor in a variety of coating technologies· In

fabrication process of integrated circuits, inadequate step coverage can lead to minute

cracks in the metallization, a major source of failure in device reliability testing [93]· In

gas separation systems, conformal coatings will reduce pore sizes in a highly controlled

way [94, 95]· Furthermore, these coatings can also improve catalyst efficiency through

enlarged surface area [96, 97]·

72
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A lot of effort is being spent on numerical and theoretical studies of conformal step

coverage of CVD coatings· However, there are few papers on APCVD process· K·

fujino and coworkers simulated the APCVD experimental profile of the TEOS/O3 thin

films (<1 µm) using an analytical gas diffusion model [98]· Unfortunately, systematic

study on thick metal coatings (-10 µm or more) via APCVD process has not been reported·

Figure 4.1 Schematic illustration of film coverage of stepped substrate: (A) uniform
coverage; (B) poor sidewall coverage; (C) lack of coverage-discontinuous film [91]·

V

4.1.1 Coupon and Bolt Specimens

To evaluate step coverage, the cross-sections of aluminum coating on the steel coupon and

bolt specimens were investigated· Conformal coverage of aluminum coatings was

observed from typical cross-sectional optical micrographs of aluminum coating deposited

on bolts, as seen in Figure 4·2 (a) and (b)·

Figure 4.2 Optical micrographs of conformal aluminum coating on bolts·
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Furthermore, FE-SEM analysis revealed that uniform aluminum coatings were 

deposited on bolt and coupon substrates with thickness of ~16).lm (Figure 4.3 (a)) and ~20 

).lm (Figure 4.3(b )), respectively. Meanwhile, this uniform thickness was also confirmed 

by EDX mapping analysis [Figure 4.3(c) and (d)]. 

AI Ka1 

/ 

f/ 

Figure 4.3 FE-SEM Cross-sectional images of coated bolt (a) and coupon (b) and EDX 
mapping of aluminum coated bolt (c) and coupon (d). 

4.1.2 Hollow Rivet Sleeve Specimen 

To further evaluate step coverage, one type of hollow rivet sleeve (plain steel) was used to 

deposit APCVD aluminum coating using a blended TIBA at 300°C. Figure 4.4 shows the 

cross section schematic diagram of a hollow rivet sleeve with a step present ihside. 

After aluminum depositi,on, the specimeh was cross-sectioned lengthwise followed 

by mounting and polishing procedures. The coating thickness at each point (shown in 

Figure 4.5) in outside and inside of the aluminum coated substrate was measured by 
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FE-SEM· The P4 and P4-1 represent the points of inside substrate where step coverage

was measured·

Figure 4.4 Cross-sectional schematic diagram of hollow rivet sleeve used for step
coverage measurement·

P4-1

Figure 4.5 Schematic diagram of coating thickness measurement points on
aluminum-coated hollow rivet sleeve·

Figure 4·6 illustrates cross-sectional FE-SEM images of aluminum coating at the

steps· Step coverage of aluminum coating was found to be close to 1·0, indicating

excellent conformal step coverage by APCVD process·

Except step coverage, the uniformity of coating thickness was examined outside

and inside of the aluminum coated hollow rivet sleeve along its length, in the following

section, called "throwing power"· The average thickness measured inside and outside
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was 15.10 ± 1.44 and 15.29 ± 1.90 ~m, respectively. Therefore, an average ratio of them 

was ~0.99, a representative of great throwing power (specific point measurement results 

shown in Table 4.1). 

r ", d2 ", 13.24ptn ", 0 .99 
d, 13.41pm 

..... d 2 ...• 13.56pm 0.96 
d1 '1 4 .12p tn 

Figure 4.6 FE-SEM Images of step coverage of APCVD aluminum coating. 
I 
fI 

Table 4.1 Coating Thickness of Outside and Inside of Coated Hollow Rivet Sleeve 

Points PI P2 P3 P4* P5 
Outside 17.21 16.49 17.95 NA 16.20 
Inside 16.08 15.87 13.41 13.24 15.23 
Ratio** 0.93 0.96 0.75 NA 0.94 
Points Pl-l P2-1 P3-1 P4-1* P5-1 
Outside 18.25 12.41 14.18 NA 16.61 
Inside 18.49 15.11 14.12 13.56 14.53 
Ratio * 1.01 1.22 1.00 NA 0.87 
*: Coating thickness (~m) at P4 is for step coverage measurement 
* *: Ratio of inside to outside coating thickness 

4.1.3 Special Trenches (Crevice) 

'P6 P7 
14.48 13.79 
15.05 17.18 
1.04 1.25 
P6-1 P7-1 
15.21 12.16 
14.74 13.76 
0.97 1.13 

P8 
14,37 
14.48 
1.01 
P8-J 
14.76 
13.30 
0.90 

Rivet stems with a special trench (crevice) were also employed to evaluate the step 

coverage (shown in Figure 4.7). These substrates were aluminized by APCVD process at 

300°C using blended TIBAL as precursor. 
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Figure 4.7 FE-SEM images of top view of aluminized trench and aluminum morphology 
on the side wall. 

Figure 4.8 shows typical SEM photographs of aluminum coating on rivet stems, 

indicating an average grain size of ~4 ~m and a quite uniform size distribution. 

fI 

Figure 4.8 FE-SEM photographs of APCVD aluminum coating on stems at low and high 
magnifi cati on. 

Figure 4.9 illustrates cross-sectional FE-SEM images of aluminum coating. The 

results show good conformal step coverage by APCVD process with blend TIBAL. 

In general, aspect ratio is defined as the ratio of the structure (trench or via) height 

to the trench width at the entrance: In this case, the trench width used for aspect ratio was 
.,- .... 

measured at the position· of tren9h with the narrowest aperture diameter. 
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Figure 4.9 SEM cross-sectional micrographs of APCVD aluminum coating on stems 
with trench structure. 
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The conformality of step coverage was evaluated quantitatively by the ratio of 

aluminum coating thickness on the different position of the sidewall and bottom in the 

trench (position 1-5 in Figure 4.10) to that on the top surface (position 0 ~n Figure 4.10). 

. if 

Shown in Figure 4.11 are step coverage ratios of aluminum coating with different 

aspect ratio trenches as a function of trench height. Here, two nearly rectangular trenches 

were used: one with 450 /-Lm in depth by 80 /-Lm in width (nominal aspect ratio 5.5), the 

other with 800 /-Lm in depth by 60 /-Lm width (nominal aspect ratio 13.3). 

o 

Figure 4.10 Illustration of trench cross-section with aluminum coating. 
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Figure 4.11 Step coverage ratio of APCVD aluminum coating on trenches with aspect 
ratio of 5.5 and 13.3. 
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The trench with the smaller aspect ratio (5.5) possesses better step coverage. 

Although increased aspect ratio leads to decreased step coverage conformity of the 

coatings, smallest step coverage ratio was higher than 55% in the trench with aspect ratio 

of 13.3. This indicated the narrow trenches did not significantly block aluminum 
it 

deposition into inside structure, even with much thicker 'coating growth (>8 ~m) when 

blend TIBAL was used in APCVD process. 

4.2 Throwing Power (TP) 

High throwing power enables metal coatings onto substrates with complex 

three-dimensional configurations ; such as internal 'and external tubing, gear teeth, and 

fasteners. Many methods hq,ve been proposed to measure the throwing power in 

electroplating process [99, 100]. W. Stowell and coworkers investigated throwing power 

of nickel-chromium alloy thin films obtained by magnetron sputtering method. Both the 

throwing power and shadowing effect were determined for specific geometries of coatings 
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deposited with different coating process parameters, such as sputtering pressure,

target-to-substrate distance and substrate bias·

To date, study on throwing power of APCVD coatings onto irregular surfaces has

not been discussed in depth. In this work, AISI 4130 tubes with different inner diameters

(ID) were utilized as substrates to evaluate the throwing power of aluminum coatings·

The ratios of aluminum coating thickness inside to outside were determined by

crosses-sectional SEM photographs.

4.2.1 Experimental

AISI 4130 tube has a length of —50·8 mm· For comparison, two types of AISI 4130

cylindrical tubes were used which possess ID of 3·0 (OD, 4·8mm) and 6·0 mm (OD, 8·0

mm), respectively. Aluminum coatings on tubes were deposited by APCVD aluminum

process at 300 °C using pure TIBAL and blended TIBAL as precursors for a contrast

purpose· As mentioned in Chapter 2, the blend TIBAL is a mixture of two different

aluminum alkyls that provide higher vapor pressure than neat TIBAL· Meanwhile, the

deposition temperature is slightly higher than neat TIBAL for equivalent deposition rate·

Figure 4.12 Schematic diagram of cross-sectional tube·

After deposition, Aluminum coated tubes were cross-sectioned lengthwise and

transversally as shown in Figure 4.12, where R and P represent transversal and lengthwise
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cross sections, respectively. The sectioned specimens were then mounted using epoxy

followed by mechanical polishing using diamond suspension with particle size down to 3

The cross-sectional SEM photographs of aluminum coated tubes with different IDs

using different TIBAL concentrations were collected. At the same time, coating thickness

was measured using LEO SEM image manage control tool, and then, the ratios of inside to

outside coating thickness were calculated to express the throwing power.

4.2.2 Structure

XRD analysis was carried out on the Aluminum coatings on AISI 4130 steel coupons using

pure and blended TIBAL as precursors at 300 °C, as shown in Figure 4.13. All aluminum

coatings obtained with various deposition conditions were found to be polycrystalline (face

centered cubic structure) with (111) preferred orientation, as demonstrated by their x-ray

diffraction patterns equivalent to that of the aluminum powder reference.

Figure 4.13 XRD patterns of aluminum coatings deposited at 275 and 300 °C.

The full width at half maximum (FWHM) of each peak revealed a slight difference

in the value of FWHM depending on different deposition condition, as shown in Table 4.2.
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4.2.4 Throwing Power Evaluation

The aluminum thickness distribution was determined by measuring inside and outside

coating thickness of tubes· The ratios of thicknesses at inside to outside with the same

position in the tubes were tabulated for the evaluation of throwing power· Typical

thickness and ratio data was shown in the following tables· The closer the ratio to 1·0, the

better the coating distribution was, indicating higher throwing power·

Thickness Distribution of aluminum coatings using neat TIBAL. Table 4·3 and Table

4·4 presented aluminum coating thicknesses obtained using neat TIBAL as precursor·

Measurement was carried out at each point (shown in Figure 4·12 ) of outside and inside of

the tubes with ID of 6·0 and 3·0 mm, respectively·

For the tube with an ID of 6·0 mm, the average thickness of aluminum coating

inside and outside was 14·19 µm and 14·57 	 providing a ratio of 0.85 - 1·25.

Table 4.3 Coating Thickness of Outside and Inside of Aluminized 4130 Steel Alloy
Tubes (ID, 6·0 mm) (pm)

*: Ratio of inside to outside coating thickness

For the tube with an ID of 3·0 mm, the average thickness of Aluminum coating

inside and outside was 7·89 µm and 14·841.1m, respectively (in Table 4·4), providing a ratio

of 0·37 - 0·80·
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Table 4.4 Coating Thickness of Outside and Inside of Aluminized 4130 Steel Alloy
Tubes (ID, 3.0 mm) (m)

*: Ratio of inside to outside coating thickness

Thickness Distribution of Aluminum Coatings Using Blended TIBAL. Table 4·5 and

Table 4·6 presented the coating thicknesses measured at each point (Figure 4·12) of outside

and inside of the tubes with inner diameter of 3·0 and 6.0 mm, respectively·

Table 4.5 Coating Thickness of Outside and Inside of Aluminized 4130 Steel Alloy
Tubes (ID, 6·0 mm) (m)

*: Ratio of inside to outside coating thickness

For the tube with ID of 6·0 mm, the average thickness of aluminum coating inside

and outside was 13·72 µm and 14·88 µm, respectively, providing a ratio of 0·84 - 1·04·

For the tube with ID of 3·0 mm, the average thickness of aluminum coating inside

and outside was 9·71	 and 13·73 µm, respectively, providing a ratio of 0·59 - 0·86·

Table 4.6 Coating Thickness of Outside and Inside of Aluminized 4130 Steel Alloy
Tubes (ID, 3·0 mm) (µm)

No*: Ratio of inside to outside coating thickness
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4.2.5 Summary

The ratios of aluminum coatings deposited on the tubes with an ID of 6·0 mm was 0·93 ±

0·07 for blended TIBAL and 1·00 ± 0·13 for pure TIBAL, indicating no significant

difference in throwing power between pure and blended TIBAL precursors· However, in

the case of tubes with the ID of 3·0 mm, aluminum thickness ratio (0·73 ± 0·09) with

blended TIBAL as the precursor was found to be larger than that (0·56 ± 0·19) with pure

TIBAL as the precursor·

Table 4.7 Aluminum Thickness Distribution in Different Tubes

Figure 4.15 Ratio of inside to outside aluminum coating thickness onto AISI 4130 tubes
along tube length·
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In both tubes with the ID of 3·0 and 6·0 mm, aluminum coatings deposited using

blended precursor showed less variation in throwing power along tube length than those

using pure TIBAL (shown in Table 4·7 and Figure 4·15)·

In brief, with the same deposition parameters, aluminum coatings onto tubes with

larger ID showed higher throwing power· Different precursors (neat or blend) have no

obvious effect on throwing power for the tube sample with the ID of 6·0 mm· APCVD

process using blended precursor with higher vapor pressure has better throwing power of

aluminum coatings for these tubes with the ID of 3.0 mm·



CHAPTER 5

ELECTROCHEMICAL TESTS

Advanced processing techniques including CVD method can produce pure and reliable

aluminum coating as a replacement of cadmium coating for the corrosion protection of

high strength steel· It is of great importance to investigate corrosion performance of

aluminum coating on high strength steel, thus to better understand its electrochemical

behavior·

An important aspect of aluminum is that it is thermodynamically unstable in its

natural state· Aluminum quickly reverts back to its stable form which is an aluminum

oxide· This protective oxide barrier bonds to the surface of aluminum and restricts the

ability of uniform corrosion to occur· In soft waters aluminum is cathodic with respect to

steel; however, in seawater or some fresh waters containing chloride ions or sulfate ions,

aluminum may become anodic to steel, and aluminum coatings should therefore corrode

sacrificially and provide cathodic protection to steel·

The aluminum oxide barrier is not stable under all conditions. The conditions for

the stability of the oxide film are expressed by a pourbaix diagram, which can provide

useful information about the corrosion behavior of metals. Figure 5·1 shows the E-pH

diagram of aluminum, illustrating the behavior of aluminum at given potentials and pH

levels· As shown in the diagram, the oxide barrier protects aluminum in a pH range of

about 4 to 8·5· At a pH above and below the passivation range, aluminum corrodes in

aqueous solutions because its oxides are soluble·

Even in the passive region of the Pourbaix Diagram, Corrosion of aluminum is

caused by the electrochemical reaction between aluminum and an aqueous phase according

87
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to a complex electrochemical process when the protective oxide barrier fails at a discrete

site· Along with the discontinuities, an aggressive species, usually chloride ions which

are readily abundant in marine environments will break down the barrier·

Figure 5.1 The pourbaxi diagram of aluminum·

5.1 Potentiodynamic Polarization Measurement

Aluminum coatings were deposited onto AISI 4130 steel coupons at 300 °C using pure

TIBAL· Aluminum foils (99·99 % in purity) and AISI 4130 steel coupons were used as

references· These reference specimens were mechanically polished using SiC with grit

sizes down to 600 µm followed by a polycrystalline diamond suspension with particle sizes

down to 3·0 µm·

Prior to potentiodynamic polarization measurements, all specimens were cleaned

ultrasonically in acetone and ethanol·

The polarization curves of the aluminum coatings, aluminum foils and AISI 4130

steel coupons were obtained after 1 hour immersion in 3·5 wt% NaCl solutions open to air

and purged with 0 2 , shown in Figure 5.2 and Figure 5·3·
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Figure 5.2 Anodic polarization curves of APCVD aluminum coating, aluminum foil, and
AISI 4130 steel substrate after 1 hr immersion in 3·5 wt·% NaCl solutions open to air·

Figure 5.3 Anodic polarization curves of APCVD aluminum coating, aluminum foil, and
AISI 4130 steel after 1 hr immersion in 3·5 wt.% NaCl solutions with O2 saturation·

The significant increase in corrosion current density of the AISI 4130 steel was

observed when immersed in the O 2 saturated solution, while the aluminum foil experienced

little effect of dissolved O 2 on the corrosion current density· As expected, the steel

substrate showed much greater corrosion potential and current density over those of

aluminum coatings, indicating that aluminum provides good sacrificial corrosion

protection for the steel substrate when the two metals are in galvanic coupling· The
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corrosion resistance and potential of aluminum coatings in the both corrosive

environments were found to be comparable to that of the aluminum foils· It is worth

indicating from this data that the aluminum coatings exhibit an easier tendency to be

passivated than the aluminum reference foils·

5.2 Electrochemical Impedance Spectroscopy (EIS) Measurement

5.2.1 APCVD and IVD Coatings for EIS Measurement

APCVD coatings must exhibit equal or better performance than the only currently

approved general replacement for cadmium coatings· Boeing-St· Louis arranged for test

panels to be coated with —25 µm of IVD aluminum coating· Because these coatings

traditionally receive a glass bead peening (or burnishing) after deposition to close surface

pores and pin-holes, and a Cr(VI)-containing chemical conversion coating (CCC) to

provide better corrosion resistance and paint adhesion, all of the specimens were subjected

to these post-treatments·

The protective CCCs on aluminum and aluminum alloys were produced using

Iridite 14-2 based on MIL-DTL-81706 B, both Calss 1A and Class 3, offering excellent

corrosion resistance of aluminum coatings· However, iridite 14-2 contains hazardous

ingredients and friendly replacement technologies are desired·

Both APCVD and IVD aluminum surfaces were glass bead peened manually at 40

psi using number 10 glass beads to reduce porosity before CCC process was applied·

SEM photomicrographs of the surfaces are shown in Figure 5·4, which might indicate

APCVD aluminum coating is a little harder than IVD aluminum coating because there are

fewer small "dimples" left by the glass beads· However, the average surface roughness
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(Ra) of the IVD Al coating was 1.98 ± 0.18!-lm, and that of the APCVD .AI coating was 3.68 

± 0.75 !-lm, indicating that the APCVD Al coating might be softer than the IVD Al coating. 

The hardness of these coatings was not determined in order to resolve these differences. 

The higher magnification photomicrographs in Figure 5.4 were chosen specifically to 

shown that a few pin-holes may be found in both types of coating. 

Figure 5.4 SEM images of APCVD Al and IVD Al coatings. 

XRD analysis also was carried out on Al coatings deposited at 300°C and IVD Al 

coatings, both with post-treatments comprised of glass bead burnishing followed by a 

Cr(VI)-containing chemical conyers ion coating. .The results ar.e shown in Figure 5.5 

indicating that the pos~-treatments have no . effect on coating structure . . However, the 

APCVD Al coating showed a higher degree of crystallinity than the IVD Al coatings, as 

indicated by the smaller full width at half maximum (FWHM) values shown in Table 5.1. 
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Figure 5.5 XRD patterns of APCVD Al and IVD Al coatings with post-treatments·

Table 5.1 Full Width at Half maximum of All Peaks Measured From XRD Analysis on
IVD and APCVD Aluminum Coatings

5.2.2 Corrosion Potential Measurement

Corrosion potential measurements were conducted by Gamry Reference 600 system using

a saturated calomel electrode (SCE) as the reference electrode· Those potential values

were collected taking 20 minutes just before each EIS measurement· Up to a maximum of

216 hours potential measurement was conducted at several time intervals before each set of

EIS measurements· All solutions were 3·5 wt% NaCl prepared using deionized water·
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Figure 5.6 Corrosion potential as a function of immersion time in 5.0 wt% NaCl.

Figure 5.6 shows the change of corrosion potential as a function of immersion time

for AISI 4130 steel coupon, aluminum foil and APCVD aluminum coating on steel

coupon. Steady values of the corrosion potential were obtained after 48 hours of

immersion except aluminum foil sample. AISI 4130 steel coupon achieved a corrosion

potential slightly higher than the corrosion potential of the APCVD aluminum coatings

with different coating thickness. While aluminum foil achieved the lowest corrosion

potential after 12 hours of immersion. A shift of the corrosion potential of aluminum

coated AISI 4130 steel coupon in the negative was indicative of the presence of a

protective effect on the aluminum coatings. It was not significant different of corrosion

potential value with different aluminum coating thickness.

Figure 5.7 shows that the corrosion potential value of APCVD aluminum was as

same as IVD sample after 192 hours immersion in 3.5 wt% NaCl solutions with saturated

oxygen.
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IVD aluminum coating, similar to that of corrosion potential changing with immersion 

time in Figure 5.7. 
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Figure 5.10 Zlf as a function of immersion time for AISI 4130, aluminum foil , IVD 
aluminum and APCVD aluminum coatings. 

5.3 Corrosion Screening Tests 

Four APCVD Aluminum coated coupons were used for the bare corrosion testing: one as 
f/ 

deposited, one as deposited scribed, one as deposited post treated with TCP (A trivalent 

chromium conversion coating), and one as deposited with TCP Scribed; Note, TCP 5 

minute immersion with 50 % dilution. These coupons were then subjected to ASTM BI17 

Salt Fog testing. 

Figure 5.11 illustrates the APCVD Aluminum coated coupons 17 days after 

exposure in salt fog and shows the formation of a white corrosion product with no red rust. 

The white corrosion product ~s caused by 'cotrosion of the Aluminum ~oatings due to 

galvanic action. Red rust was observed only after a 27 day-exposure. Post treatment with 

TCP did not improve corrosion resistance of APCVD Aluminum coated coupons 

indicating that it has no effect. 
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For painted corrosion testing, two APCVD Aluminum coated coupons were 

painted with Mil-PRF-23377C primer and Mil-PRF-85285 topcoat. A two-week cure 

time was allowed for the paint prior to ASTM B117 salt fog testing. Figure 5.12 

illustrates the APCVD Aluminum coated coupons with paint 17 days after exposure in salt 

fog. Neither blistering of the paint nor red rust formation was observed in 17 days of 

exposure. 

I 
Figure 5.11 APCVD aluminum coated coupons after 17 days in ASTM B117 salt fog. 

o f/ 

Figure 5.12 APCVD aluminum coated coupons after 17 days in ASTM B 117 salt fog, 
scribed and un-scribed)respectively. 

In addition to the painting corrosion testing, a paint adhesion test based on ASTM 

D3359 Method A was performed on four APCVD Aluminum coated coupons after a 



98 

two-week cure time of paint. DI water was used for wet test coupons. Figure 5.13 

illustrate APCVD Aluminum coated coupons with paint in painting adhesion testing. 

ASTM D3359 calls for a rating system of 0-5 where 5 is the best and ° is a complete 

removal of the paint. The ratings for these coupons is 5, indicating that the aluminum 

coatings exhibit excellent paint adhesion. 

7 day-weJ 
at 150 of 

Figure 5.13 APCVD Aluminum coatings after paint adhesion testing. 

/ 

5.4 Cyclic Corrosion Measurements 

Cyclic exposure testing was performed on unscribed and scribed APCVD aluminum 

coated mild steel coupons at the Army Research Laboratory Facilities using the GM 9540P 

Method B 18-stage testing protocol. The unscribed coupons were tested both with and 

without a commercial trivalent chromium chemical conversion coating. The acceptance 

criteria were no ,visible red rust ~fter 80 cycles for .unscribed coa.tings, andAO cycles for 

scribed coatings. Her~ visible red rust means corrosion of the underlying 'steel substrates. 

The panels were removed after 2, 10, 20, 30, 50, 60, 110 and 165 cycles for 

scanning on a flat bed scanner to provide an electronic record of the appearance of each. 

In each scan, the top five panels had received the Cr(Ill) post treatment to the APCVD 
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aluminum coating, while the bottom panels had no post treatment. The test was halted 

after 165 cycles, well beyond the acceptance criterion value mentioned above. 

Figure 5.14 APCVD Al coated panels after 2 cycles in GM 9540P test. 

/ 

Figure 5.15 APCVD Al coated panels after 10 Cycles in GM 9540P test. 

Note, after only two cycles (Figure 5. ~ ,4!. the beneficial eff~ct of the. post treatment 

can already be seen. The APC'vD aluminum coated panels without the Cr(IlI) treatment 

exhibited more corrosion and mottling on their surfaces. In comparison, similar mottling 

appeared on the lower half of the post-treated panels after 10 cycles (Figure 5.15). 



100 

Red rust appeared visible on some of the scribed panels after 20 cycles, although 

the post-treated panels only showed red rust on one panel. However, this did not seem to 

progressively corrode much until after 50-60 cycles of testing, as shown in Figure 5.16. 

Figure 5.16 APCVD Al coated panels after 60 cycles in GM 9540P test. 

/ 

Figure 5.17 APCVD Al coated panels after 165 cycles in GM 9540P test. 

By 110 cycles all the s~ribed panels 'had signifi~ant substrate corrosion, but the 

unscribed panels did not show red rust until 165 cycles, as shown in Figure 5.1 7. At 165 

cycles it is still apparent that the post treatment is adding significant corrosion protection. 



CHAPTER 6

CONCLUSION

In this study, the use of atmospheric pressure, chemical vapor deposition (APCVD) to

produce high quality aluminum coatings for the corrosion protection of high-strength steels

has been investigated. Both pure and blended TIBAL were used as precursors for

formation of the pure aluminum coatings on high strength steel specimens. As part of a

commercial development effort to produce atmospheric pressure chemically vapor

deposited (APCVD) aluminum, FUZEBOX® technology has been utilized in the

aluminization process through thermally induced decomposition. Optimization of the

APCVD process by depositing aluminum on high strength steel yielded the best deposition

conditions of temperature at 300 °C using blend TIBAL.

The morphological, structural, compositional, and step coverage properties of the

APCVD aluminum coating were evaluated using a variety of characterization methods.

Meanwhile, Performance testing, such as corrosion, tensile strength, electrical

conductivity, hydrogen embrittlement, and lubricity tests were performed on the APCVD

Al coatings.

The results of APCVD aluminum coating using TIBAL as precursors are

summarized as follows:

Morphological analysis by SEM, AFM and DekTak revealed that aluminum

coatings are dense with a rough surface (RMS, 917 nm). Aluminum coatings, regardless

of deposition conditions, are polycrystalline (face centered cubic structure).

Compositional analysis using AES, XPS and GD-OES showed that aluminum

coatings are oxidized on the surface and pure (99%) within the bulk coatings. The

101
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composition profiles are similar when coatings are prepared with pure or blended TIBAL

at 275 or 300 °C. NRA results indicated that that hydrogen incorporation in all the

coatings was well below 1 at.%.

The analysis of cross-sectional aluminum coatings deposited using TIBAL as

precursors revealed that aluminum coatings exhibited excellent conformal coverage and

throwing power with uniform thickness distribution (-20 µm) on complex shapes, and

inside and outside surface of cylindrical steel tubes.

Electrical resistivity was measured to be 3.5 ± 0.1 µΩ·cm, compared to 2.7 µΩ-cm

of bulk aluminum, indicating aluminum coatings have good electrical conductivity. All

aluminum coatings passed the electrical contact resistance test criterion by measuring less

than 5 milli-ohms per square inch before and after salt fog exposure.

Nano-indentation measurements on aluminum coatings yielded average hardness

and Young's Modulus values of 551 MPa and 36 GPa, respectively. Pull-off adhesion

tests on aluminum coatings showed that aluminum coatings deposited using blended

TIBAL exhibited as good adhesive strength (684 kg/cm2) as those using pure TIBAL (703

kg/cm2).

The average density of the Al coating was calculated to be 2.60±0.04 g/cm 3 . This

value is a little lower than that for bulk aluminum (2.7 g/cm 3) and may indicate some

closed pores were present in the coatings.

Potentiodynamic polarization measurements made after one hour of immersion in a

3.5 % NaCl solution revealed that aluminum coatings exhibited an easier tendency to be

passivated than the aluminum reference foils, and that the corrosion resistance was

comparable to that of pure aluminum foils.
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The galvanic corrosion of the APCVD aluminum coatings on high-strength steel

substrates has been investigated using EIS and SEM, indicating that a decrease in

protection can occur over time if open porosity or coating defects are present, and the

adjacent aluminum dissolves too rapidly. Similarly to IVD Al coatings, if fully dense

coatings cannot be obtained, post-treatments may be necessary, such as glass bead

burnishing and/or the application of a chromium-free chemical conversion coating.

Salt fog exposure corrosion testing on aluminum coated panels depositing at 300 °C

using a pure TIBAL precursor showed that red rust on the coatings was not observed until

the 27th day of exposure. The pass criterion for this test is 21 days before red rust is

visible; therefore, this APCVD Al coating can meet the Type I, Class 1 specification for

electroplated Cd coatings. The use of a non-optimized Cr(III) CCC on the scribed panels

did not provide any additional benefit in the tests that were performed. In contrast, similar

coatings that were painted - using a conventional MIL-SPEC primer and top coat cured for

14 days - did not show any signs of red rust after 27 days.

The results of the tensile strength tests revealed that regardless of a post baking

(23hr, 190.6 °C), aluminum coated AISI 4340 steel specimens experienced a loss of 4.6 -

15.3% in the notch fracture strength compared to bare specimens. The lower strength of

these bars appears to be attributable to the temperature (-300 °C) of the APCVD deposition

process. This was confirmed by the study of the relationship between tensile strength and

temperature, which indicated that the loss in tensile strength was highly dependent on

temperature, while no significant difference in tensile strength was seen with exposure

time at a given temperature.
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The hydrogen embrittlement tests revealed that premature failure was observed in

aluminum coated AISI 4340 steel specimens with no post baking. However, all the coated

specimens that received a post baking withstood at least 200 hrs in the HE test (conducted

in air or a salt solution) and passed. This implies that all the hydrogen that diffused into

the substrates was expelled during baking at 190.6 °C for 23hrs. Post baking of APCVD

aluminum coatings is a necessary and effective way to eliminate hydrogen embrittlement.

The lubricity testing results showed, as expected, a higher coefficient of friction

than cadmium and maintained a high coefficient of friction even after significant exposure

to corrosive conditions. The aluminum coated samples also showed an initial reduction in

the measured coefficient after a few hours of exposure, but these returned to the initial

levels after the 75 hrs of exposure. It is well known that aluminum coatings such as IVD

Aluminum have higher coefficients of friction than cadmium. However, this reinforces

the need to wisely choose sealers (such as Trivalent Cr) and lubricants for use with any

aluminum coating.
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