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ABSTRACT

FLEXIBLE ELECTRONICS: MATERIALS AND SENSOR FABRICATION

by
Katherine J Duncan

This dissertation demonstrates how to fabricate piezoelectric/pyroelectric thin films by

using different printing techniques. These techniques could replace vacuum techniques

for manufacturing piezoelectric/pyroelectric sensors. Ink-jet, screen and stencil printing

techniques were developed to print these devices.

This work outlines attempts to develop a solution processable conductive ink for

ink-jet printing. It then details the printing of commercial conductive ink on flexible

substrates employing the three printing methods. Raman spectroscopy and Fourier

transform infrared spectroscopy, are both used to investigate the structure of the

P(VDF-TrFE) films. Optical microscopy is used to investigate the thickness and

uniformity of the deposited films. The formulation of P(VDF-TrFE) for printing is also

described for the three printing methods.

Piezoelectric accelerometers have been developed and demonstrated. The sensors

are axial compression piezoelectric accelerometers which measure impacts in the

direction perpendicular to the sensors themselves. When the sensors are moved

downward the top electrode tends to move upward, inducing charge via the

piezoelectric effect. The sensors were mounted on an electrodynamic shaker and tested

with an input vibration up to 1.5 g's at 100 Hz. The test data show that the

accelerometers track the frequency of the input vibration; the output increases with

increasing input acceleration.



A comparison of the three printing methods to fabricate sensors on flexible

substrates with commercial conductive inks and formulated P(VDF-TrFE) ink specific

to the print method with similar geometries produces the following conclusions:

Excellent adhesion of the commercial silver ink for screen and stencil printing has

been achieved. The stencil printed silver films are smoother and more uniform than the

screen printed films. Adhesion of the commercial PEDOT/PSS ink-jettable was

successful. However, smoothness and uniformity were issues that need to be resolved.

Also, when the ink-jetted PDOT/PSS films were exposed to high temperatures the films

tended to crack and adhesion was lost.

Functional devices were fabricated with screen and stencil printing quickly. In a

one day period, multiple sheets of functional devices were obtained with both printing

methods. Ink-jet printing, on the other hand, required greater then twenty four hours to

fabricate one sheet of sensors even when the sensor size was reduced.

The cost of masks/cartridges was $0.75, $1.68 and $59 per layer for stencil,

screen and ink-jet printing respectively. The ink-jet print system cartridges were

manufactured for one time use, whereas the masks were reusable for both screen and

stencil printing.

The best stencil and screen printed accelerometers demonstrated a voltage

sensitivity of 145 mV/g. It is believed that the performance of these sensors can be

enhanced with an automated printing system that is equipped with optical vision and

automated alignment systems. The successful development of printed devices

demonstrates that these print methods will be beneficial to the future of flexible

electronics.



FLEXIBLE ELECTRONICS: MATERIALS AND SENSOR FABRICATION

by
Katherine J. Duncan

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, The State University of New Jersey-Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Applied Physics

Federated Physics Department

August 2008



Copyright 0 2008 by Katherine J. Duncan

ALL RIGHTS RESERVED

iv



APPROVAL PAGE

FLEXIBLE ELECTRONICS: MATERIALS AND SENSOR FABRICATION
Katherine J. Duncan

7Dr ohn F. Federici, Dissertation AdvisorDate
P fessor of Physics, NJIT

Dr. Zhen Wu, Committee Member 	 Date
Professor of Physics, Rutgers, The State University of New Jersey-Newark

Dr. Trevor A. Tyson, Committee Member 	 Date
Professor of Physics, NJIT

Dr. Gordon A. Thomas, Committee Member 	 Date
Professor of Physics and Biomedical Engineering, NJIT

Dr. Reginald Farrow, Committee Member 	 Date
Research Professor of Physics, NJIT

Dr. Hee Chuan Lim, committee Member	 Date
Assistant Research Professor of Physics, NJIT



BIOGRAPHICAL SKETCH

Author: 	 Katherine J. Duncan

Degree: 	 Doctor of Philosophy

Date: 	 August 2008

Undergraduate and Graduate Education:

• Doctor of Philosophy in Electrical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2008

• Master of Engineering in Electrical Engineering,
Stevens Institute of Technology, Hoboken, NJ, 1999

• Bachelor of Engineering in Computer Engineering,
Stevens Institute of Technology, Hoboken, NJ, 1998

Major: 	 Applied Physics



This dissertation is dedicated to John S. , who always comes first in my book.

v



ACKNOWLEDGMENT

I want to thank my dissertation advisor, Dr John Federici for introducing me to the field

of flexible electronics also thank you for your unfailing support encouragement and

guidance at every step of my research which led to this dissertation. In the same vain, I

would like to thank Dr. Zhen Wu, Dr. Trevor A. Tyson, Dr. Gordon A Thomas, Dr.

Reginald C. Farrow and Dr. Hee Chuan Lim, who actively participated in my dissertation

committee providing valuable recommendation at every point in this work.

I gratefully acknowledge Laura Ayers of the US Army AMRDEC Redstone

Arsenal, AL and James Zunino of the US Army ARDEC Picatinny Arsenal, NJ for

providing the funding to facilitate this work. As well special thanks go to Dr John

Rollino, Physics Department Rutgers Newark, for providing funding for the initial years

of my PhD. degree.

I appreciate the assistance of the following people who facilitated and assisted

me in my research; Dr Camelia Prodan and Ms. Corina T. Bot for providing the use of

their microscope and invaluable advice; Dr. Zafar Iqbal and Mr. William Wagner for

assisting with the Raman measurements; Dr. Daniel E. Murnick and Mr. Erhan Inman

for assisting in the IR measurements, for the use of their CO2 laser and for the

informative discussions; Dr. Amit Goyal for assisting with many chemistry issues that

arose and helping find the path to resolve them; Dr. Lukasz A. Lapok, for assisting at

the most critical point and helping in finding the necessary resources to complete this

work; Lastly I thank the NJIT Chemistry Department and specifically Mr. Yogesh

Gandhi without this assistance most of my research would not have been possible.

vi



I appreciate the assistance of the following people who supplied me with

engineering samples and technical assistance in my research; Mr. Don Farrelly, Technical

Specialist, DuPont HPF for the Kapton samples and the technical data; Mr. Patrick Reich,

FUJIFILM Dimatix, Inc., for all your technical assistance when our printer had unusual

failures; Dr Frank Keohan, Technical Marketing Specialist Electronics & Optics Group

H.C. Starck Inc., for providing technical information on modifying the materials that my

group had on hand, extensive technical information on the Baytron products and for

providing a very generous sample of Baytron P Jet N material; Dr. Mitch Thompson,

Measurement Specialties, Inc. for providing excellent resources on piezoelectric

polymers and for the very generous sample of P(VDF-TrFE) material.

Lastly, I wish to thank my friends and family without whom my success in this

endeavor would not have been possible.

vii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Background 	 1

1.2 Motivation 	 3

1.3 Overview of Thesis 	 4

2 REVIEW OF FLEXIBLE ELECTRONICS 	 7

2.1 Introduction 	 7

2.2 Materials for Flexible Electronics 	 8

2.2.1 Flexible Substrates  	 8

2.2.2 Solution Processable Materials  	 10

2.3 Deposition Methods	 15

2.3.1 Aqueous Solution Techniques  	 16

2.3.2 Ink-Jet Printing  	 19

2.3.3 Screen.Printing 	 21

2.3.4 Stencil Printing 	 23

2.4 Applications	 24

3 PRINTING METHODS FOR FLEXIBLE THIN FILMS... 	  38

3.1 Introduction 	 38

3.2 Ink-Jet Printed Thin Films 	 40

3.3 Screen Printed Thin Films 	 58

3.4 Stencil Printed Thin Films 	 65

3.5 Results and Discussions   	 69

Ali



TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.6 Conclusions   	 71

	

4 MATERIAL CHARACTERIZATION   73

4.1 Introduction 	 73

4.2 Raman Spectroscopy 	 73

4.3 Fourier Transform Infrared Spectroscopy (FT-IR) 	 75

4.4 Optical Microscopy 	 77

4.5 Conclusions   	 79

5 DEVICE FABRICATION AND CHARACTERIZATION 	  80

5.1 Introduction 	 80

5.2 Sensor Fabrication 	 81

5.3 Infrared Sensors.. 	 86

5.3.1 Infrared Sensor Design.  	 86

5.3.2 Infrared Sensor Testing.  	 87

5.4 Accelerometers. 	 88

5.4.1 Accelerometer Design 	 88

5.4.1 Accelerometer Testing 	 91

5.4 Results and Discussion 	 92

5.4.1 Results and Discussions on the Pyroelectric Sensor 	 92

5.4.2 Results and Discussions on the Accelerometer 	 99

	

5.5 Conclusions    107

	

6 CONCLUSIONS AND FUTURE WORK   109

6.1 Conclusion 	 109

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.2 Future Work 	  110

	

APPENDIX A INK FORMULATION RECIPE   112

	

APPENDIX B FABRICATION RECIPE    116

	

APPENDIX C DEVICE FABRICATION MATRIX   120

REFERENCES 	  125



LIST OF TABLES

Table Page

2.1 Commercially Available Metals  10

2.2 Reported piezoelectric properties for AIN, BaTiO3, PVDF, PZT and ZnO 27
[1, 71-82] 	

2.3 Commercially Available Flexible Electronics Products 	 36

2.4 University Research in Printed Electronics 	 37

3.1 Range of Dimatix Materials Printer System Parameters  41

3.2 Solvent properties and Required Fluid Properties for the Dimatix 43
Materials Printer DMP-2800 Series 	

3.3 Required Fluid Properties for the Dimatix Materials Printer DMP-2800 43
Series 	

3.4 Annealing Studies  43

3.5 Number of Layers of Ink-Jet Printed MO Silver on Kapton and 46
Transparency Film 	

3.6 Some Properties of Baytron Materials Used in This Study 	 46

3.7 Thickness Studies of Baytron Materials Used in This Study 	 48

3.8 Range of P(VDF-TrFE) Ink Printer System Parameters 	 50

3.9 Summary of P(VDF-TrFE) Ink Deposited onto MO Silver 	 55

3.10 Variations of P(VDF-TrFE) Ink Printed on Baytron Bottom 56
Contacts 	

3.11 Geometry of the Ink-Jet Printed Layers of Baytron Bottom and Top 58
Layers, P(VDF-TrFE) Middle
Layers 	

3.12 Resistance Values of Different Drying Methods and Mesh Sizes for 62
Screen Printing 	

3.13 Range of Resistance Values of Top Silver Layer Deposited by Screen 64
Printing 	

3.14 Resistance Values of Different Stencil Printed Geometries 	 67

3.15 Range of Resistance Values of Top Silver Layer Deposited by Stencil 68
Printing 	

5.1 Approximate Screen and Stencil Printed Sensor Layer Thicknesses 83
Deposited 	

5.2 Approximate Ink-Jet Printed Sensor Layer Thicknesses 	 85

5.3 Parameters used for Calculating IR Sensor Performance 	 95

xi



LIST OF TABLES
(Continued)

Table	 Page

5.4	 Parameters Used for Calculation of Expected Output Voltage 	 95

5.5	 Expected Output Voltages for the Various Light Sources 	 96

5.6	 Expected Output Voltages for Capineri Sensor [134] 	 98

5.7	 Thickness of Piezoelectric Pads and Anticipated Sensitivity for the Ink Jet, 	 99
Screen and Stencil Printed Sensors Measured With a Mututoyo 293-335
DigitalMicrometer 	

5.8	 Thickness of Piezoelectric Pads and Anticipated Sensitivity for the Ink- 	 100
Jet, Screen and Stencil Printed Sensors Measured Under an Olympus
Vanox Microscope With a Mututoyo 164-162 Digital Micrometer 	

5.9	 Average Measured Results Compared to the Calculated Sensors 	 102
Performance

5.10 Average Measured Results Compared to the Calculated Sensors 	 103
Performance for the Modified
Fixture 	

5.11 Average Measured Results Compared to the Calculated Sensors 	 104
Performance for the Modified Fixture Without the Rubber
Insert 	

6.1	 Comparison of Printing Techniques 	 109

B.1	 Sensor File Pattern Block Drop Position Details 	 119

B.2	 Sensor Jetting Parameters 	 119

C.1	 Screen Printed Device Matrix 	 121

C.2	 Stencil Printed Device Matrix 	 122

C.3	 Ink-jet Printed Device Matrix 	 123

xii



LIST OF FIGURES

Figure Page

1.1 First flexible circuit patent [1]   1

2.1 Polypyrrole, polyaniline and polythiophene [30]  13

2.2 Chemical bath deposition process flow chart  17

2.3 Chemical surface deposition process flow chart 	 18

2.4 Schematic of a continuous mode ink-jet print system [53] 	 20

2.5 Schematic of a drop on demand mode ink-jet print system [53]  21

2.6 Hysteresis loop for PVF2 film 25um thick, swept with a symmetric
triangular wave with a peak height of 280 MV m -1 [66] 	

26

2.7 Crystal structure of the polar 13 phase of PVF 2 [66] 	 29

2.8 PVDF chemical structure    29

2.9 Uniaxial stress-temperature phase diagram for PVDF predicted by theory 30
[99] 	

2.10 Polarization processing of piezoelectric material [106]..  32

2.11 Interrelationship between the four established phases of PVF2, and the
common solvents [109] .  

33

2.12 Actuation modes for piezoelectric materials [66] 	 34

3.1 Fabrication of multiple screen printed layers 	 39

3.2 (a) Ink jet printed conductive silver with butanol ink prior to annealing (b)
ink-jet printed conductive silver ink after
annealing    

44

3.3 (a) Typical Baytron material bottom contacts (b) Measurement of
resistance  

47

3.4 The two circuits on the left have polymer ink, jetted on top of MO silver 	 49

3.5 Piezoelectric polymer thickness
study 	

50

3.6 Unannealed bottom contacts with piezoelectric polymer printed on
top 	

51

3.7 (a) Typical front view of ink-jet printed annealed Ag bottom contacts (b) 52
Back side of ink-jet printed annealed Ag bottom contacts 	

3.8 Sensor with burned polymer and top contact 	 53

3.9 (a) Annealed Ag bottom contacts (b) piezoelectric polymer deposited on
top of annealed contacts (c) conductive top contacts (d) discontinuity in
the bottom
contact 	

54



LIST OF FIGURES
(Continued)

Figure	 Page

3.10 Polymer layer deposited on unmodified Baytron P Jet 	 56

3.11 Polymer layer deposited on modified Baytron P Jet with little definition.... 	 57

3.12 Procedure for generating screen for screen printing 	 59

3.13 Fabrication of multiple screen printed layers 	 60

3.14 Geometry of the first layer 	 60

3.15 Pictures of the screen printed silver bottom contact on (a) Kapton (b) 	 61
transparency film 	

3.16 (a) Annealed Ag bottom contacts with piezoelectric polymer screen 	 63
printed on top (b) close up view of piezoelectric polymer deposited on top
of annealed contact (c) second generation annealed contact with polymer
deposited (d) close up view of second generation contact with polymer
deposited 	

3.17 Pictures of the screen printed silver top contact on Kapton 	 64

3.18 Process for generating stencil for stencil printing 	 65

3.19 Geometries of the first layer via stencil printing 	 66

3.20 Pictures of the stencil printed silver bottom contact on (a) transparency 	 67
film (b) Kapton 	

3.21 (a) Dried stencil printed Ag bottom contacts on transparency film with 	 68
piezoelectric polymer stencil printed on top (b) Dried stencil printed Ag
bottom contacts on Kapton film with piezoelectric polymer stencil printed
on top 	

3.22 Pictures of the stencil printed silver top contact on Kapton 	 68

4.1	 Raman Spectra of stretched PVDF [123] 	 74

4.2	 (a) Raman spectra of NJIT-SP-Vibration-W-003-3M (b) Raman spectra of 	 75
NJIT-ST-Vibration-W-002-3M 	

4.3	 Absorption FT-IR spectrum of PVDF 1 — a-phase, 2 — sprayed PVDF in 	 76
DMF/acetone, 3 — β-phase [124] 	

4.4	 FT-IR spectrum of PVDF 1 — Stencil printed, 2 — Screen printed, 3 — 	 77
P(VDF-TrFE) dissolved in DMF film 	

4.5	 (a) Cross-section view of NJIT-ST-Vibration-W-002-3M (b) Cross- 	 78
section view of NJIT-SP-Vibration-W-003-3M 	

4.6	 (a) Cross-section view of NJIT-IJ-W-002-52HN (b) top view of 	 78
NJIT-IJ-W-00252HN 	

xiv



LIST OF FIGURES
(Continued)

Figure Page

5.1 Top view of the sensors 	 82

5.2 Geometries of the bottom and top contacts for the sensors 	 82

5.3 Side view of the sensors 	 82

5.4 Process flow for the sensors. Top view is as depicted in Figure. 4.1. (a) 83
Screen printing of Ag on Kapton substrate. (b) Screen printing of P(VDF-
TrFE). (c) Screen printing of Ag on P(VDF-TrFE). (d) Spray coating of
black pigment 	

5.5 Top view of the sensors 	 84

5.6 Geometries of the bottom, middle and top layers for the ink-jet printed
sensors 	

84

5.7 Side view of the ink-jet printed sensors 	 85

5.8 Process flow for the ink-jet printed sensors. Top view is as depicted in 85
Figure 5.5 (a) Printing of the Batron P Jet on Kapton substrate. (b) printing
of P(VDF-TrFE). (c) printing of P Jet on P(VDF-TrFE) 	

5.9 Screen printed IR sensor 	 86

5.10 a.) A common pyroelectric detecting system b.) Schematic diagram for
sensor response measurements 	

87

5.11 Compression accelerometer 	 88

5.12 Back to back calibration of accelerometer 	 92

5.13 Initial test fixture for the back-to-back measurement of the printed
accelerometer 	

101

5.14 Modified test fixture for the back-to-back measurement of the printed
accelerometer 	

103

5.15 Active region of the sensor exposed 	 104

5.16 Sensor measured toward the edge of the top plate 	 105

5.17 Sensor measured toward the center of the top plate 	 105

5.18 Redesigned test fixture 	 106

xv



CHAPTER 1

INTRODUCTION

1.1 Background

Some of the early concepts of flexible electronics date back to the turn of the 20th

century when the first patents [1] were filled for the flexible printed wires, as seen in

Figure 1.1. Over time, flexible printed wiring found applications in flip chip technology,

flexible interconnects and flexible electronics. Nearly every imaginable type of electrical

and electronic product today contains flexible interconnections. Examples are computer

keyboards, ipods and cell phones. The science of material and materials processing also

contributed to major advancements in flexible electronic systems such as displays,

sensors, and radio-frequency identification (RFID). As silicon technology progressed,

the technology has been transferred to flexible electronics.

Figure 1.1 	 First flexible circuit patent [1].

1
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Flexible electronics have found application as connectors in various systems

where flexibility and space constraints limited the options of the engineer. Today flexible

electronics have three main research concentrations: development of materials,

device/system development and processing/fabrication. As materials research matured

and special classes of polymers [2, 3] (with levels of conductivity between those of

insulators and metals) began to be developed so have the imagination of engineers. Most

conductive polymers have metal flakes or nanoparticles dispersed in polymers or resin.

Studies on conductive polymers [4, 5] have included the effects of the particle size, the

ratio of polymer to metal and the annealing temperature. Nano-materials have pushed the

capabilities of processing and potential flexible devices. The ability to produce

nanocomposite materials has given rise to conductive adhesives, embedded passives [6]

such as capacitors, inductors and resistors. This has made material science a driving force

of potential new devices applications.

In the past few years, a steady growth in research ranges from applications like

sensing, RFID, flexible display, flexible solar cells [7, 8] and wearable electronics [9]

while have been in the forefront of technology. The development of flexible electronics,

in the area of systems and devices such as flexible display technology and electronic

paper, has benefited from scientists carrying out studies of materials and processing.

Furthermore, many research groups around the world have developed competing

technologies. These advances in flexible display technologies have pushed the potential

for flexible fuel cells, RFID technologies and wearable electronics. These advances can

be seen in initial commercial offerings of rollable/foldable/flexible solar panels and

flexible displays.
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Presently, the field of flexible electronics is exploding due to the progress seen

with materials. Flexible electronics is on the edge to make a great impact by integrating

systems with the advantage of being mass producible, light weight and disposable.

However, one crucial restraining factor that needs to be overcome is the fabrication

process; currently people are working on printing methods [10, 11] as an alternative to

standard cleanroom technology.

This section has attempted to highlight some of the more significant work. This

by no means is an exhaustive compilation of work in the area of flexible electronics.

Many monthly journals, Internet websites and excellent books are published on the

subject and can be consulted for current research trends [12, 13].

1.2 Motivation

Recently flexible electronics has become a rich area for researchers across different fields

of science and yet some key aspects of this multidisciplinary subject remain immature.

Specifically, the choices of low cost and low temperature processing on flexible

substrates are still rather limited. Standard vacuum deposition and lithography technology

[14-16] continue to be used to fabricate flexible electronics, in some cases techniques

such as plasma etching and vapor deposition make the end product cost prohibitive.

Limitations in fabrication can be a disadvantage in many areas of flexible

electronics application. In some situations, if standard silicon processing is chosen, one

needs to tailor the processing for the vacuum system fixtures and photolithography

fixtures. If ink-jet printing is the fabrication method is chosen, again in most cases, the
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system needs to be modified. In certain cases, a system specifically designed to deposit

different types of exotic inks can be purchased.

In the present study, the goal is to resolve some of the significant aspects related

to flexible thin film deposition methods. The specific goal is to find low cost as well as

low temperature methods for processing to accommodate various substrates and to

eliminate the use of expensive clean room facilities. An in depth investigation of the

following issues has been made:

• Comparison of multiple printing processes to deposit electrically conductive
mechanically stable thin films and a similar study will be performed with an
active polymer. This study will determine which if any is the most viable
printing method of thin films suitable for flexible device fabrication.

• Design of a pyroelectric infrared sensor using a pyroelectric polymer.
Pyroelectric infrared sensors detect variations in temperature which modify
the electric polarization of the material in turn releasing charge. These
devices would offer a possibility of reducing the complexity of fabrication and
thus lowering the cost.

• Design of a compression type accelerometer using a piezoelectric polymer.
Piezoelectric accelerometers detect changes in acceleration in turn imparting a
mechanical stress on the polymer resulting in an electrical output voltage.
These devices would offer a possibility of reducing the complexity of
fabricating and thus lowering the cost and enabling the potential for
integration into other flexible systems.

1.3 Overview of Thesis

The aim of this study has been to develop low cost, low temperature fabrication

techniques to create piezoelectric and pyroelectric thin films for use in flexible sensors.

The research involved designing, fabricating and testing flexible accelerometers and

infrared sensors. A number of printing techniques have been used to fabricate devices

with the potential to advance the development of flexible electronics.
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In the current chapter, an introduction and the motivation of this work is outlined,

with the current state of flexible electronics summarized. Chapter 2 presents a detailed

review of flexible electronics, starting with typical materials and deposition techniques.

The materials and techniques presently employed in this research and standards for

flexible electronics are reviewed. Also different methods of sensing both infrared

radiation and acceleration are outlined.

Chapter 3 details the three printing methods employed for fabricating thin films.

This chapter describes the effects of modifying ink-jet printer parameters on the printed

thin films along with the effects of printing multiple layers and drop spacing. Details of

the effects of changing the mesh on the uniformity of the films for screen printing are

also detailed. Modification to standard stencil printing is described to obtain uniform thin

films.

Chapter 4 examines the material properties of the P(VDF-TrFE) films deposited

in Chapter 3. This chapter also looks at the cross section of the films to determine the

thickness and uniformity of the deposited films. Raman and Fourier transform

spectrometry are employed to determine the crystalline phase of the material. The films

were then cross sectioned and thickness and uniformity were measured with an optical

microscope.

Chapter 5 goes through the design of a thermal infrared sensor and a compression

accelerometer using P(VDF-TrFE). Fabrication of the devices entailed adjusting the

physical parameters like layer thickness, and overlap of the contacts to modify the

response of the devices. The sensitivity of the infrared sensors was measured and the

frequency response of the accelerometers was tested using a comparison calibration
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method. This study is an attempt to verify the piezoelectric and pyroelectric effect in the

P(VDF-TrFE) polymer.

Chapter 6 contains the conclusion and the recommendations for further research

in this field.



CHAPTER 2

REVIEW OF FLEXIBLE ELECTRONICS

2.1 Introduction

Flexible electronics is a growing field and has exhibited steady growth in fabrication

techniques and development of new materials which in turn have opened up new

application areas. Some applications utilize standard semiconductor fabrication

techniques which result in robust devices. Developments have been slowed due to the

thermal and chemical incompatibilities of the substrates with standard processing

techniques. Another of the principal reasons for the slowing of development is that

standard semiconductor fabrication techniques remain expensive and unavailable to many

researchers. Moreover, the introduction of non-standard materials to these environments

tends to be difficult.

Flexible electronics depends heavily on materials and fabrication techniques,

which are suited for specific applications. Various commercial printable inks will be

discussed in detail in the present chapter along with inks that can be formulated using

nanoparticles or chemicals readily available from chemical supply companies like Sigma

Aldrich. Three promising fabrication techniques, namely ink-jet printing, screen printing

and stencil printing will be discussed in detail. Some less utilized techniques for

deposition of thin films will also be discussed in detail in the present chapter along with

some applications of these thin films. To understand these fabrication techniques

properly, a review of presently available materials, printing technology along with some

applications will be discussed.

7
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2.2	 Materials for Flexible Electronics

2.2.1 Flexible Substrates

Recently there has been an increased interest in the use of flexible substrates in

microelectronic fabrication. The main benefits of flexible substrates are their lighter

weight, lower cost and the potential for roll-to-roll processing. Flexible substrates are

further classified into plastics and metal films.

2.2.1.1 Plastic Substrates. The two main plastic substrates used today are polyimide

substrates, for example DuPont's Kapton, and polyester or PET substrates, for example

DuPont's Mylar.

Polyester has dimensional stability, consistent color and good clarity. It is

chemical resistant, non-yellowing, non-tearing, and heat resistant to 230 degrees C [17].

On the other hand, polyimides' thermal, mechanical, chemical and electrical properties

are retained over a wide temperatures range (-200 C to 400 C). The upper temperature

limit for Kapton HN is 400 C [18]. Polyimides' thermal coefficient of expansion and

thermal conductivity are 20 ppm/K and 1.09 W/mK [19] respectively, whereas the

thermal conductivity of silicon (300K) is 1.3 W/cmC [20]. These properties make

polyimide an ideal candidate for devices that need high temperature and chemical

insensitivity. The main drawback of polyimide is its relatively high moisture absorption.

But researchers have minimized this by adding a passivation layer of Si3N4 [14].

Polyimide laminates with rolled annealed copper foil are commercially available

and suited for fabricating single and double sided circuitry [21, 22]. These laminates have

the same advantages of polyimide and can be processed in a similar manner to printed

circuit boards.
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2.2.1.2 Metallic Substrates. Plastic substrates have become a dominant force in flexible

electronics, although in display applications metallic substrates have dominated when

higher chemical resistance, higher temperature tolerance and affective heat dissipation

are required.

Stainless steel is an excellent flexible substrate for fabricating circuits that need

high temperature processing. Afentakis et al. [23] experimented with titanium,

molybdenum, stainless steel type-304 and Kovar. Prior to fabrication, polishing was

necessary as a surface preparation. Afentakis found that the best results were observed

with stainless steel type-304 and Kovar. One potential issue found from this research is

the possible diffusion of metal species from the steel during the thermal processing.

Their research has deduced that the Kovar having high cobalt content diffuses and causes

undesirable electrical properties in the layers deposited on the metallic substrate.

Recently, researchers have found that high-quality semiconductor thin films can

be grown on metal substrates with large grains by using nitride buffer layers. The use of

the semiconductor films grown the metallic substrates has advantages over conventional

semiconductor device fabrication processes when they are used for large-area and low-

cost applications [24].

Metallic substrates have a higher compatibility with standard CMOS processing

due to their higher resistance to chemicals, higher thermal stability, better thermal

dissipation and better long term substrate stability in reference to moisture absorption.

They also have the potential of EMI shielding and common signal supply through

conductive substrates compared to plastics [25].
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2.2.2 Solution Processable Materials

Depending on the printing methods, specific ink solutions need to be formulated or

purchased including conducting ink, semi-conducting ink and insulating ink. Inks for

flexible electronics are a very broad class of materials. Printable solutions need to have

their fluidic characteristics (viscosity, surface tension, shear behavior) tailored for the

specific printing method.

A short list of commercially available inks is given in Table 2.1. Two main

groups of solution processable metals are nanoparticles and orgo-metallic compounds.

Many research groups are currently working on preparing stable solutions of

nanoparticles. The details of the preparation of printable fluidic solutions will not be

discussed in this section. Alternatively, the physical and chemical properties of printable

inks and their applications will be summarized.

Table 2.1	 Commercially Available Metals

Name Producer Printing Method Ink Type

NanoGold/NanoSilver Nanomas Ink jet Nano particle

Functionalized nanoparticles solution Sigma Aldrich Ink-jet Nano particle

Baytron P Jet N Baytron Ink-jet PEDT/PSS

Baytron S V3 Baytron
Screen and
stencil

PEDT/PSS

C10903D14
Gwent Electronic
Materials (UK)

Screen and
stencil

Carbon paste

Orgacon® EL-P3000 AGFA
Screen and
stencil

PEDT/PSS
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2.2.2.1 Printable Metals. Two main groups of solution processable metals are

nanoparticles and orgo-metallic compounds [26]. Many research groups are currently

working on preparing stable solutions of nanoparticles with an eye toward device

contacts. Two of the most common physical methods of synthesizing metal nanoparticles

are laser ablation and solvated metal atom dispersion. Metal nanoparticles can also be

synthesized chemically by reducing the salt forms of the metal with alcohols or other

solvents. The details of the synthesis will not be discussed here. Instead, some

applications of nanoparticles and other printable metals will be summarized.

In the past 25 years the synthesis of nanoparticles has become a major area of

research. The dimensions of these particles, in the range of 1-20 nm, have resulted in

different physical properties from those observed in their bulk materials. As particle sizes

become smaller the surface properties start to influence the properties of the material. The

electronic and chemical properties of these materials can be tuned by controlling their

particle size.

Most precious metals have been utilized to form nanoparticles, chemical

reduction techniques are the most common methods of synthesis. Zhao et al. [27]

fabricated field-effect transistors using gold nanoparticle ink for source-drain electrodes

and obtained higher output currents in their devices compared to devices fabricated using

conducting polymers. They obtained channel lengths from 4 um down to 60 nm by

controlling the surface tension and drying time of the ink. A fluid dynamical model is

given to explain the mechanism by which the channel forms in the self-aligned printing

technique.
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Green [28] has used techniques normally utilized in the production of

semiconductor quantum dots and has applied these techniques in the synthesis of metal

nanoparticles. By controlling parameters such as reaction temperature and chemistry,

Green synthesized precise nanostructures that exhibited magnetic, optical and catalytic

properties.

An inexpensive silver ink-jettable ink can be formulated as Liu et al. [29]

demonstrated. Silver nitrate is mixed with water and dimethyl sulfoxide (DMSO) and

then passed through a filtered syringe, to achieve the correct particle size. The viscosity

of the ink can be adjusted by adjusting the ratio of water to DMSO. This ink was

deposited on Kapton 500 FPC, the deposition temperature was set to 120 C to dry the ink

quickly. The films were cured on a hot plate at 300 C for 20 minutes at ambient

conditions. After curing, the films were still highly flexible. These films were also free

from periodic wrinkles which have been observed with Ag nanoparticles depositions.

Silver nitrate melts at 212 C creating smooth traces. The resistivity of the Ag film was

1.5 x 10-5 *cm.

Intrinsically conductive polymers (ICPs), are a special class of polymers that have

a range of conductivity up to 10 2 - 103 S/cm. Polypyrrole, polyaniline and polythiophene

plus its derivatives have been actively studied since the early 1980s for their conductivity

properties. The conductivity of these polymers is due to the delocalization of the π-

bonded electrons in the conjugated double bonds. The degree of delocalization can be

limited by the charge interaction and the conformation, sis or trans.
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Figure 2.1 Polypyrrole, polyaniline and polythiophene [30].

Conducting polymers can be purchased from companies like H.C. Starck or they

can be formulated. Morrin et al. [31] describe the formulation of polyaniline (PANI)

nanoparticles films. PANI is a highly desirable conductive polymer due to the ease in

which its properties can be adjusted. Morrin obtained high quality uniform films;

conductivity was measured to be 0.2 to 04 mS*cm- I.

The most commonly used conducting polymers are formulated from 3,4-

ethylenedioxythiophene and an EDT monomer, the conductive polymer poly-3,4-

ethylenedioxythiophene-polystyrenesulfonate, (PEDOT/PSS). This polymer,

PEDOT/PSS, exhibits good chemical stability in air and its fluidic properties can be

adjusted for different printing methods. Intrinsically conductive polymers have found

applications as in sensors [32, 33], solar cells [34, 35], electrochromic [36] and organic or

polymer LEDs [37, 38]. Films exhibit conductivities in the range of 10 -5 to 500 S/cm.

Solution processable metals used in current technology have been briefly

summarized. The following section will concentrate on solution processable active

materials for use in flexible electronics.
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2.2.2.2 Printable Active Materials. Full-integration of printable devices on a single

substrate requires the ability to print the active materials. These active materials can

include ferroelectric ceramics, piezoelectric semiconductors, electro-active polymers,

electrochromic polymers and electroluminescent polymers to name a few.

Lead zirconate titanate (PZT) is one of the most utilized ferroelectric ceramics

due to its piezoelectric and pyroelectric properties. Devices fabricated with this material

as its active layer include accelerometers, thermal sensors and ultrasonic motors. In 1999

Windle et al. [39] produced a dilute aqueous suspension of PZT and ink-jet printed

complex two-dimensional shapes to be used for the rapid manufacture of devices. Tay et

al. [40] prepared a ceramic ink and optimized the printing parameters. Phenomena

occurring during the printing process were investigated such as the appearance of ridges,

splattering, and non-vertical walls.

AIN and ZnO are common piezoelectric ceramics used in sensor applications.

Both are wurtzite structured materials with a piezoelectric response along the [41] plane.

Both are commonly sputtered [42] but ZnO has been deposited by a chemical bath

deposition method [43]. ZnO films deposited at room temperature exhibit high

resistivity. AIN on the other hand can be grown between 100 and 900 C without

exhibiting conductivity issues.

Trindade et al. [44] have reviewed the synthesis of compound semiconductor

nanoparticle materials and their potential use in areas such as catalysis and electronic

device fabrication. Murray et al. [45] have demonstrated a simple method to synthesize

CdE (E = S, Se, Te) semiconductor nanocrystallites. These crystallites are prepared in a

single reaction, generating crystallites 12 g to 115 A° in diameter with consistent crystal
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properties. The controlled growth of nanocrystallites resulted in high sample quality in

terms of the size of the crystallites samples with narrow size distributions. Which then

resulted in sharp absorption features and strong "band-edge" emission this emission

which was tunable with particle size and choice of material.

Electrochromic and electroluminescent devices utilize conjugate polymers to

produce flexible displays, light emitting diodes, field effect transistors, solar cells and

chemical sensors. Small et al. [46] discuss the synthesis, inkjet printing and

characterization of a water dispersable polyaniline composite material with high carbon

content. Printed films displayed electrochromic behavior allowing switching between

yellow, green and blue. Sandee et al. [47] detail the synthesis of a solution-processible

phosphorescent iridium complex. The solutions are readily spin-coated with the

photoluminescence emission tunable from green to red.

Solution processable active materials used in current technology have been

summarized. The following section will concentrate on possible deposition methods for

the solutions processable materials discussed for use in functional flexible devices.

2.3 Deposition Methods

For this study a cleanroom facility was unavailable. Therefore, vacuum technology and

standard semiconductor technology will not be reviewed here. Also, the intent of this

study is to find alternative inexpensive rapid methods of fabricating thin films with an

eye toward piezoelectric and pyroelectric sensors. So for brevity, only the methods that

fall in this category will be reviewed.
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2.3.1 Aqueous Solution Techniques

Many low temperature solution-based techniques for depositing ceramics have been

developed as alternatives to vacuum deposition. Techniques like liquid flow deposition

[48], photochemical deposition [49], chemical bath [50], and chemical surface deposition

[51] all use aqueous solutions at temperatures below 100 C to deposit thin films.

Two solution based deposition techniques to be described encompass the

following steps:

1. Equilibrium between the complexing agent and water.

2. Formation/dissociation of the ionic metal-ligand complex [M (L) i ]n-ik , where

Lk denotes one or more ligands.

3. Hydrolysis of the chalcogenide source.

4. Formation of the solid.

The adjustment of the last three steps has the most control over the growth of the film.

Step 3 is critical as it provides non-metal species to pull the metal cations out of solution

to form the solid film. The kinetics of this step is highly sensitive to the solution's pH

and temperature.

2.3.1.1 Chemical Bath Deposition. Chemical bath deposition (CBD) involves

immersion of the substrate into a pre-heated liquid containing metal salts, a source of

chalcogenides, and a complexing agent. Heat from the substrate causes a heterogeneous

reaction between Group IIB and VIA ionic species in the solution. The process flow

diagram is shown in Figure 2.2.
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A working solution comprising at least one group IIB ionic species,
and at least one group VIA ionic species, and a complexing agent
capable of causing the group IIB ionic species and the group VIA

ionic species to combine is formed.

The working solution is heated; the substrate is at a temperature higher
than the temperature of the working solution; the substrate is inserted

into the heated working solution.

The system, the heated working solution plus the substrate, are heated
for 60 — 90 minutes, the time to complete the reaction varies for each

sample.

Once the substrate is removed from the working solution, the film/
substrate is rinsed in DI water and blown dry.

The process can be repeated for thicker films.

Figure 2.2	 Chemical bath deposition process flow chart [52].

2.3.1.2 Chemical Surface Deposition.	 Chemical surface deposition (CSD) involves

dispensing an aqueous solution containing Group IIB and Group VIA ionic species onto a

preheated substrate. Heat from the substrate causes a heterogeneous reaction between the
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Group IIB and VIA ionic species of the solution. The process flow diagram is shown in

Figure 2.3.

A working solution comprising at least one group IIB ionic species,
and at least one group VIA ionic species, and a complexing agent
capable of causing the group IIB ionic species and the group VIA

ionic species to combine is formed.

The working solution is applied to a heated substrate surface; the
substrate is at a temperature higher than the temperature of the

working solution.

The system, the working solution plus the heated substrate, are heated
for 2 — 6 minutes, the time to complete the reaction varies for each
sample, the samples are not permitted to dry during the reaction in

order to avoid the inclusion of secondary products and non-
uniformities in and on the films.

Excess liquid is removed from the substrate and the film/substrate is
rinsed in DI water and blown dry.

The process can be repeated for thicker films.

Figure 2.3	 Chemical surface deposition process flow chart [52].
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The chemistry involved with CSD parallels that of CBD. The difference in these

methods is in how the solution and substrate interact. With CBD the substrate is

immersed into a pre-heated solution, while in CSD the substrate is pre-heated and the

solution which is maintained at room temperature is dispensed onto the pre-heated

substrate. The advantage of CSD is that there is no particulate formation by homogeneous

reactions in the bath which forms on the beaker in the CBD method. Also it has been

reported that there is an increased utilization of Group JIB species and denser adherent

films have been obtained.

2.3.2 Ink Jet Printing

Ink-jet printers were standard equipment in most offices and homes for printing all sorts

of text, graphics onto paper and transparencies prior to the drop in cost of the laser

printer. The ink-jet printer has turned into a versatile tool for many industrial

manufacturing processes due to the development of solution processable materials.

The objective of ink-jet printers is to print images by creating tiny droplets of ink

and precisely dropping them onto a substrate. The two main methods of forming the

drops are continuous or drop on demand mode. Continuous mode is generally used in

graphics and labeling industries. A schematic of a continuous mode print system

detailing the drop formation is depicted in Figure 2.4. Pressurized fluid is pumped

through a tiny nozzle; the typical diameter of the nozzle is 50 to 80 um. Drops are

formed and charged by passing the pressurized fluid thorough an electrostatic field. The

charged drops are then passed through a deflection plate to direct the drop to the

substrate. This type of system is continuously producing droplets and the placement is
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varied by the charge applied. Commercially available systems can produce droplets as

small as 20 um with 150 um being the typical size. Typical commercial systems generate

droplets in the range of 80 to 100 kHz; systems operating at 1 MHz are also available.

Deflection Plates
Transducer Charge

Electrode
Substrate
Motion into

Page

Orifice

Pump Substrate

Fluid
Supply Character Data Catcher

Figure 2.4 Schematic of a continuous mode ink-jet print system [53].

Drop-on-demand mode print systems, on the other hand, are utilized most often

for fabrication of electronic devices, due to the capability of depositing smaller drops and

the accuracy of the drops' placement.

A schematic of a drop-on-demand print system detailing the drop formation is

depicted in Figure 2.5. A voltage pulse is applied to a piezoelectric material that is in

contact with the fluid to be jetted. This contact induces a change in volume of the fluid

causing pressure transients and forcing the. fluid through the nozzle. This type of system

only produces droplets when a potential is applied to the piezoelectric material. The

piezoelectric transducer can be substituted with a resistor forming a thermal ink-jet print

system. In this case, current passes through the resistor heating the fluid to form a

bubble. This bubble forces the fluid through the nozzle.
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Transducer
(piezo or heater)

SubstrateOrifice

I Substrate
F Motion

Character Data
Data Pulse Train

Fluid at
Ambient Pressure

Figure 2.5	 Schematic of a drop on demand mode ink-jet print system [53].

2.3.3 Screen Printing

Screen printing is a very mature technology, and has been used for industrial and graphic

arts applications for most of the 20th century. This printing method is used to produce

posters, labeling consumer goods and printed circuit boards. This method is attractive

due to the availability of the equipment, minimal chemical waste, little required capital

investment, and compatibility with most materials and substrates. Also, the simplicity of

this process enables one to fabricate films rapidly.

Prior to printing, screens are fabricated with the desired image to be printed. The

images are generated as stencils to be transferred to the screen. There are two common

methods of transferring the stencil's image to the screen; the first is by using photo

emulsion. Photo emulsion material is painted on the screen and then left to dry. The

stencil is placed over the dried screen with emulsion and exposed to UV light to transfer

the pattern to the screen. The photo emulsion in most cases is applied to only one side of

the screen, the side that faces the substrate when printing. The thickness of the printed

layer can be controlled by the thickness of this emulsion and with the correct choice of

the screen mesh count. The second method is the direct block out or screen filler method.
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In this method the stencil is traced onto the mesh and the resist material is painted onto

the mesh.

Once the screen has been generated, the screen is placed above the substrate in a

fixture so that the mesh is not directly in contact with the substrate. The ink is dispensed

on top of the mesh, and then the ink is pressed through the screen with a squeegee. The

ink only passes through to areas not covered by emulsion.

In recent years researchers have been working on characterizing thin films

deposited by screen printing. Deitz et al. [54] have screen printed lead—zirconate-

titanate (PZT) particulate and polyvinylidene-trifluoroethylene (PVDF-TrFE) copolymer

on indium—tin-oxide (ITO)-coated glass substrates. They have investigated the material

properties to demonstrate that screen printing is a cost-effective way of producing

structured functional thin films for pyroelectric and piezoelectric applications. Hafaiedh

et al. [55] deposited tin oxide by screen-printing on an alumina substrate with two gold

electrodes for use in chemical vapor sensors. Tin dioxide thick films were studied with

various techniques and highly reproducible films were produced with optimum

characteristics for detecting gas.

To date, screen printing has been used as an alternative step in device fabrication,

and not the total method to fabricate devices. Ito et al. [56] start by describing their

process for producing screen-printing pastes used to form both the transparent and light-

scattering layers of TiO2 electrodes for dye-sensitized solar cells with a conversion

efficiency of global air mass 1.5 (AM 1.5, 1000 W/m2) for converting solar light to

electric power of over 10%.



23

The main parameters in controlling the thickness of the films are the viscosity of

the ink, screen mesh count, and the emulsion. The resolution of the printed image

depends highly on the screen mesh and the emulsion layer. In this study, manual

equipment was used. With fully automated screen printing production lines

commercially available devices could, once optimized, be mass produced.

2.3.4 Stencil Printing

Stencil printing is a novel printing technique adapted from circuit board printing. This

technology is similar to screen printing with the stencil replacing the screen. Stencil

printing shares the benefits of simplicity and cost with screen printing but has the

additional benefits of reduction of clean up time and ease in generating stencils.

Stencil printing is a well established technology, and has been used extensively

for deposition of adhesives [57, 58] and solder pastes [59, 60]. Ufer et al. [61] used

stencil printing to pattern the ion-selective membranes in sensor arrays where high

viscosity pastes containing various membrane polymers, plasticizers, and ionophores

were used due to their electrochemical performance. Due to the size and spacing of the

sensors within the array, traditional casting methods were not able to be used to deposit

the membranes. To date, in all fabricated devices, stencil printing has been used as an

alternative step in device fabrication, mainly for deposition of solder paste and not the

total method of fabrication.

Typical stencils are fabricated from metal foils with openings where the inks are

free to be printed on the substrate. Fine lines and high height-to-width aspect ratios are

achievable due to the availability of different thicknesses of metal foils. Fine line stencils

can be fabricated by laser cutting or chemical means. Since the ink is not obstructed due
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to a mesh like screen printing there are no issues with shading nor any issues with

deformation of the mesh. Also, down time is reduced due to the ease of cleaning, longer

life span and less wear of the stencil [62]. In this study, plastic stencils were used and

the inks were rolled through the stencil.

2.4 Applications

In the last several decades, there has been tremendous growth in the number of functional

flexible devices in the areas of displays, RFID, solar cells, sensors and wearable

electronics. The experimentation with the materials and processes above has spurred

some of this growth. The intent of this study is to print thin film piezoelectric flexible

sensors

In 1880 the brothers Curie discovered the direct piezoelectric effect. The Curie

brothers found that when pressure was applied to certain materials, they generate a

potential. Piezoelectricity is a coupling between a material's mechanical and electrical

behaviors. In the simplest of terms, when a piezoelectric material is squeezed, an electric

charge builds up on its surface. On the other hand, when a piezoelectric material has a

voltage applied across it, the material deforms mechanically.

There are two necessary conditions for a material to be considered piezoelectric

[63]. The first is the lack of a crystal center of symmetry. If a crystal is symmetrical

with respect to a point, a line, or a plane the body is centrosymmetrical; it can possess no

polar properties and exhibits no piezoelectric effect. The second condition is that the

material's bonds need to be either ionic or partially ionic.
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All material crystal structures belong to one of thirty two point groups. Eleven of

these thirty two point groups are centerosymmetric and non-polar [64]. The other

twenty-one point groups do not exhibit a center of symmetry and are termed non-

centrosymmetric. Twenty of the twenty one point groups display piezoelectric activity.

Ten of the twenty point groups have a permanent dipole in which the positive charge is

not aligned with the center of the negative charge resulting in one or more polar axes in

these crystalline materials. The polarization of these ten crystals is temperature

dependent, and termed ferroelectric. Crystals that exhibit polarization without the

application of an applied field are known as pyroelectric [63]. The spontaneous

polarization can be reoriented by an applied field and the materials can be termed

ferroelectric. All ferroelectric crystals are pyroelectric and pyroelectric crystals are

piezoelectric, but piezoelectric crystals are not necessarily pyroelectric. Ferroelectricity

tends to dissipate above the Curie temperature of the material. The material is in a

paraelectric state above the Curie temperature and obeys the Curie-Weiss Law.

Ferroelectric materials exhibit hysteresis, a typical hysteresis loop for

polyvinylidene fluoride (PVDF) is seen in Figure 2.6. The remnant polarization, the

polarization present after the applied field has been removed, governs the piezoelectric

and pyroelectric activity. Tajitsu et al. [65] have shown that the remnant polarization as a

function of the crystallinity increases as the content of the VDF increases.
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Figure 2.6 	 Hysteresis loop for PVF2 film 25um thick, swept with a symmetric
triangular wave with a peak height of 280 MV m-1 [66].

It is observed in piezoelectric materials that mechanical stresses result in the

accumulation of electric surface charge on the material. The direct piezoelectric effect,

where a crystalline material with no center of symmetry, develops an electric charge

proportional to a mechanical stress, was discovered by the brothers Curie in 1880 [63].

Piezoelectric materials are generally classified into two categories, ferroelectric and non-

ferroelectric (sometimes called pure piezoelectric). The distinction is whether or not an

applied electric field can reorient the spontaneous electric dipoles in the material without

breaking bonds [64]. In ferroelectric materials such as PZT and BaTiO3, a process called

poling is where the dipoles are aligned by electric fields, orient the dipoles and polarize

the materials. The common method of poling consists of applying a high DC voltage

(>2kV/mm) across a heated material. The material is heated above its Curie temperature.
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If this temperature is exceeded the material loses its ferroelectric properties [67]. This is

also the maximum temperature limit of the material.

In non-ferroelectric materials like AIN and ZnO the polarization direction is fixed

by the crystal structure and an application of an electric field would result in breaking

bonds. For good piezoelectric response in non-ferroelectric materials, like AIN and ZnO,

c-oriented films with large grain size and narrow X-ray diffraction curves, are necessary

[68-71]. Table 2.2 summarizes some of the common piezoelectric materials' properties.

Table 2.2	 Reported piezoelectric properties for AIN, BaTiO3 , PVDF, PZT and ZnO
[1, 71-82]

Material p (kg/m³ ) Er cE (GPa) d³³ (pC/N)

AIN 3230 9 -11 395 3.4 - 5.1

BaTiO 3 5300 - 5700 1700 75 85

PVDF 1780 - 1850 8 - 13  2 -33 - 20

P(VDF-TrFE) 1820 7 - 8 2 -38

PZT 7500 - 7700 900 - 1300 98 90 - 223

ZnO 5680 8 - 12 208 7.5 - 12.4

Devices fabricated with ZnO include optical, accelerometers, solar cells and

sensors [83-90] to name a few. For maximum piezoelectric response the films must be

grown highly c-oriented [69], this has been achieved with chemical bath deposition. AIN

has a lower piezoelectric constant then ZnO but has lower dielectric loss and higher

acoustic velocity. Both are compatible with standard cleanroom fabrication techniques

and can be fabricated by low temperature means, such as chemical bath deposition.

Compared with the other materials, lead zirconate titanate (PZT) exhibits a much higher

response then the other materials listed in the table. PZT is commonly found in MEMS

application such as actuators and sensors [91-94].
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In 1969 Kawai discovered the piezoelectric polymer polyvinylidene fluoride

(PVDF) or (PVF2). Two years later Bergman concurrently with Nakamura and Wanda

discovered the pyroelectric effect in PVDF. Since the discovery of these effects many

other ferroelectric polymers have been discovered including the copolymers of PVDF

with trifluoroethylene (P(VDF-TrFE)) [95, 96] and with tetrafluroethylene (P(VDF-

TFE)) [97] (CH2=CF2) and several nylons. The copolymers have the largest piezo and

pyro effects out of the polymers but still the magnitude of these effects is much lower

than the effects with those of ferroelectric ceramics.

PVDF is a semi-crystalline polymer with its crystal structure shown in Figure 2.7

and chemical structure shown in Figure 2.8. Due to their high energy density, excellent

low power requirements, low mass, high flexibility and relatively low cost, PVDF and its

copolymers have found applications as actuators and sensors. Polyvinylidene fluoride

trifluoroethylene P(VDF-TrFe) is becoming the most widely used of the copolymers and

has the highest response [98]. Due to the size of the additional fluorine atom in the

copolymer P(VDF-TrFE), this copolymer crystallizes in the polar p phase [2.62].

Stretching of the copolymer is not necessary as is with PVDF. These materials are

commercially available in pellet and powder form. These piezoelectric polymers can be

deposited by screen printing, ink-jet printing and solution or spin casting.
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Figure 2.7	 Crystal structure of the polar 1 phase of PVF2 [66].

Figure 2.8	 PVDF chemical structure.

A mean-field theory was used to predict the phase transitions for the phase

diagram for PVDF given in Figure 2.9 [99]. The solid lines in the diagram delineate the

regions of phase stability. The broken lines indicate the regions of metastability. An

increase in the applied melting point of the a phase is lowered while the 1 phase melt

temperature is increased. By increasing the stress of the a phase, every second chain has

a rotation of 180 about its axis which forms the 6 phase.
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Figure 2.9
[99].

Uniaxial stress-temperature phase diagram for PVDF predicted by theory

Piezoelectric sensors are designed on the piezoelectric effect which is the ability

of the material to generate voltage in response to applied mechanical stress. Piezoelectric

materials generate an electrical charge proportional to stress. This can be measured

directly as a high- impedance signal (charge mode), or converted into a low-impedance

voltage output by internal electronics. Integrated electronics are used only to condition

the output signal allowing for the use of relatively simple electronic circuitry.

Piezoelectric sensors cannot be used to measure frequencies below 0.1Hz such as steady-

state tilt or static pressure.

The piezoelectric effect relates the electric field to the strain (the converse effect)

and the charge density to the stress (the direct effect). The weighting factor for the direct
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effect is the piezoelectric coefficient. Because the materials are anisotropic the

coefficients are determined for the three poling directions of the material. Based on

symmetry arguments the piezoelectric coefficient matrix for poled P(VDF-TrFE) can be

written as,

(2.1)

Five of the coefficients are non-zero. Three of these coefficients are unique

implying that there are three modes of operation [82]. The 3- direction is along the

poling direction and the 1-direction is along the stretching direction, typically as seen in

Figure 2.1. Typical values for the piezoelectric coefficient are: d³1 
= pC N

d³2 = pC/N and d³3 
= pC / N 

. The negative values indicate that the material contracts

in that direction. In order to generate a positive strain, the electric field would need to be

applied to oppose the polarization field.

PVDF and their copolymers are the most widely investigated ferroelectric

polymers due to their relatively high electromechanical properties. These polymers have

been deposited by a variety of techniques, including micropaterning, ink-jet printing,

electrospray deposition [100], and vacuum evaporation [101]. Ink, screen and stencil

printing have been chosen as the deposition methods for this study due to the ease in

which good quality films can be deposited. Other advantages include the low equipment

cost and the ability to cover large areas.
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One type of device that has capitalized on the piezoelectric effect is

accelerometers. Designs are based on three different concepts- compression, shearing

and bending. A piezoelectric material is formed on either a cantilever or a diaphragm, as

a force is applied to the sensor a change in resistance will be observed.

Devices have been fabricated to exploit the pyroelectric characteristics of the

films and include: infrared and ultraviolet fire sensor [102], microwave field-detecting

elements [103], hydrogen sensor [104] and visible/infrared integrated double detector

[105] to name a few.

Figure 2.10 diagrams the internal alignment of the domains in ferroelectric

materials. Domains are regions of homogenous polarization in the crystalline material.

As seen in Figure 2.10(a), initially the material is randomly aligned, (b) a potential is

applied for an extended period and (c) materials with regions in which the domains are

aligned is obtained.

(a)

Figure 2.10 Polarization processing of piezoelectric material [106].

Mechanical drawing is necessary for PVDF to be transformed into its

piezoelectric 13 phase. When PVDF is deposited, the CF2 dipoles are randomly oriented.

Typically an electric field and elevated temperature are used to rotate the dipoles in the
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direction of the applied field. It has been reported that the minimum poling field for

PVDF films is 0.5 MV/cm [107]. It has also been reported that the poling is not time

dependent, but the piezoelectric activity is highly dependent on the poling field [108].

The poling of piezoelectric polymers consists of applying an electric field, in some cases,

at an elevated temperature for a period of time. Applying an electric field to a

ferroelectric material induces alignment of dipoles. The applied field must be greater then

the coercive field in order to align the dipoles. PVDF needs to be drawn prior to poling

to convert its crystalline phase from non-polar a phase to ferroelectric 13 phase. The

copolymer P(VDF-TrFE) crystallizes directly in the beta form due to the addition of

fluorine atoms [67].

Figure 2.11 Interrelationship between the four established phases of PVF2, and the
common solvents [109].
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PVDF films are commonly poled utilizing the corona poling method. Tyler et al.

[110] were the first to demonstrated corona poling on cellulose acetate films, and this

technique has since been adapted for room temperature poling of PVDF thin films.

Corona poling has also been used on polymer/ceramic composites [Ill]. There are two

major advantages of corona poling, the first is the possibility of poling materials in which

only one side of the film has a contact deposited. The second advantage is the possibility

to pole large areas by moving the film through the poling set-up. Variations on corona

poling consist of poling through a mask in which electrodes are patterned on the polymer

to be poled. A related poling method is electron beam poling, in which an electron beam

irradiates the piezoelectric polymer. This method allows for the control of the properties

of the poled polymer by varying the electron beam [112].

Step-wise poling of the copolymer P(VDF-TrFE) has been demonstrated as a

successful method of room temperature poling with a low breakdown rate. These films

exhibit high pyroelectric coefficients [113].

Figure 2.12 Actuation modes for piezoelectric materials [66].
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These flexible devices are no longer the creation of academic researchers. There

is a commercial demand for these devices due to the personal portable devices such as

ipods and cell phones. The demand for wearable electronics is increasing every year, as

seen in Table 2.3. The ipod consumer is looking for controls and headphones built in

their clothes and the same is true of the cell phone user.
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CHAPTER 3

PRINTING METHODS FOR FLEXIBLE THIN FILMS

3.1 Introduction

Low temperature deposition of metallic, electroactive, and dielectric thin films is critical

for the fabrication of flexible electronics. In the prior chapter a review of present and

past materials, fabrication methods and devices were discussed. The primary motivation

of this study is to discuss three low temperature printing methods to deposit metallic and

electroactive polymer thin films onto flexible substrates: ink-jet printing, screen printing

and a modified stencil printing technique. Some basic electrical characterization of these

films is performed and discussed.

With the advent of ink-jet technology, inexpensive fabrication of electronic

devices has become possible. Associated with the development of ink-jet technology and

techniques, the ink formulations have become crucial. Ink-jet printing is advantageous as

useful substrates are virtually unlimited. This method eliminates the masking steps and

vapor deposition steps in standard cleanroom fabrication. In the present study, H.C.

Starck's Baytron materials, solution processable metal-organic complexes and an active

polymer ink have been formulated for use with a commercially available ink-jet printer

(Dimatix material printer DMP-2800 Series).

The inkjet printer has been placed in an Airfiltronix HEPA filtration enclosure

fitted with two RF-1000 positive blowers. This enclosure is placed on a vibration

damping table to reduce particle inclusion and errors in printing due to vibrations.

Screen printing on the other hand is a very mature technology. The equipment is

readily available, the chemical waste is minimal, and minimal capital investment is

required. The simplicity of this process enables one to fabricate films rapidly. In this

38
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study manual equipment was used, although fully automated screen printing production

lines are commercially available for large scale production once devices are optimized.

Stencil printing is similar to screen printing. The screen is replaced with a metal

stencil. In this study a transparent polymer stencil is used instead of steel stencils. The

fabrication of the polymer stencil is accomplished by printing the patterns on

transparency films with a laser printer, and cutting the patterns from the film with an

Exacto knife. In typical stencil printing the ink is squeegeed through the stencil. In this

study the inks are applied with a roller. Stencil printing shares the benefits of simplicity

and cost with screen printing and also reduces clean up time.

Substrate

Silver

P(VDF-TrFE)

Figure 3.1 Fabrication of multiple screen printed layers.

In all three printing studies the substrates used were DuPont's Polyimide Kapton E and

3M transparency film. These films were cleaned in acetone, isopropanol, and distilled

water. Multiple layers were deposited using the three different printing methods. The

layer structure is depicted in Figure 3.1. H.C. Stark Baytron material and a metal-organic

silver ink were deposited via ink-jet printing as the first layer depicted in Figure 3.1. The

first layer deposited via screen and stencil printing was DuPont's microcircuit materials
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CB028 silver conductor polymer thick film composition; this material had been designed

for low temperature drying and good adhesion to polymer substrates such as Kapton

[114]. The second layer was P(VDF-TrFE) which was printed directly on top of the

silver, and the third layer deposited on the P(VDF-TrFE) was another layer of silver.

3.1 Ink-jet Printed Thin Films

A commercially available drop on demand ink-jet print system produced by FUJIFILM

Dimatix, Inc [115] was used for this study. After considerable use it has been found that

this system is capable of printing small proof of concept devices, and is by no means a

production tool. Application specific software controls the system, and circuit designs

can be drawn with this software or a bit map file can be imported.

The application specific software, Dimatix Drop Manager (DDM), allows the user

to set the printing parameters and check the status of the printer. The standard parameters

adjusted for a print job are the pattern to be printed, thickness of the substrate, cartridge

settings, cartridge temperature, and substrate temperature, also referred to as the platen

temperature.

The requirements of the ink to be jettable through the printhead are that the ink

has a viscosity in the range of 10 - 30 cPs, a particle size smaller then 0.2 urn, a surface

tension range of 28 - 33 dynes/cm. The ink should have a low evaporation rate such that

it will not clog the jets of the printer.

The acoustical resonances of the inks differ due to compressibility properties

[116] of the various solvents that comprise the inks. Prior to printing the print parameters

need to be set and the jetting waveform needs to be optimized. These waveforms activate

the piezoelectric pumps in the printhead. While optimizing the jetting waveform, the

jetting of the ink can be observed with the system camera that allows the user to view the
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jetting nozzles. While viewing the printhead with the camera system, the voltage applied

to each nozzle on the printhead can be individually addressed. By adjusting the waveform

parameters, such as the pulse width and voltage, the parameters of the drop can be

enhanced in velocity and size.

The print system is equipped with another camera for alignment of the circuit

when multiple layers are deposited or the substrate has been removed from the print

system. This camera can also be used to view the printed circuit features and to obtain

pictures of the circuit after printing. Table 3.1 gives some of the more important

parameters that can be varied and the range of values that these parameters can take for

this printer system.

Table 3.1	 Range of Dimatix Materials Printer System Parameters

Parameter	 Range of Values

Drop Spacing (p.m)	 5 - 254

Platen Temperature (°C)	 Ambient — 60

Cartridge Temperature (°C)	 Ambient — 70

Number of Nozzles	 1 — 16

Drop Volume (pL)	 1 or 10

Substrate Size (mm)	 Up to 210 x 315

3.2.1 Metal Organic (MO) Silver

Ink-jettable silver ink was formulated with a silver metal-organic complex(1,5-

cyclooctadiene) (hexafluoroacetylacetonato) silver(I) , purchased from Sigma Aldrich.

The solvents used for the ink were butanol and isopropyl alcohol, due to their low

evaporation rates and low boiling temperatures. The formulation of the metal organic ink

for inkjet printing of silver conductors follows from the work done by Sankir [117] in

2005. Sankir had dispensed metal organic silver into butanol, due to the low viscosity

and increased adhesion of the silver to the substrate. Sankir's study had also found that
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toluene due to its high evaporation rate clogged the print head. The properties of the

solvents used for the inks in this study are given in Table 3.2 and the appropriate fluid

properties of the Dimatix printer are given in Table 3.3.
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Two silver metal organic compound inks were formed by first dissolving the silver

compound in butanol, the second by dissolving the silver compound in isopropyl alcohol.

Initial studies were conducted with the silver butanol ink to optimize the jetting of the ink

by adjusting the jetting waveform on the Dimatix material printer.

The viscosities of both of the solvents used for the inks were similar. The larger

the viscosity of the ink the more damping of the acoustic wave which in turn increases

the jetting potential that is required to form a drop. The difference in the density of the

solvents had little effect on the jetting waveform. The minimum jetting potential for

these inks was found to be 9 V, while the maximum jetting potential for this printer is 40

V. When set to the maximum jetting potential the pattern was not well defined and

exhibited drag marks. The jetting potential waveform pulse width was adjusted and a

pulse width of 10μm resulted in a well defined pattern. A 1 um pulse width was too short

and nothing printed, while a 100 pulse width gave a pattern that was very messy with

very little definition.

Figure 3.2 	 (a) Ink-jet printed conductive silver with butanol ink prior to annealing (b)
ink-jet printed conductive silver ink after annealing.
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The Kapton substrate was heated in a range from 30C to 60C during the printing

of the silver ink. The printed contacts were not electrically conductive as deposited.

Annealing was necessary for the films to become conductive as seen in Figure 3.2.

A vacuum oven, box oven, hotplate and heat lamp have been used for annealing.

Annealing using a vacuum oven and a box oven had been ruled out as viable methods.

Annealing in this way resulted in contacts that wipe off the surface with a q-tip and have

shown little conductivity. The hotplate has yielded the most consistent results, producing

conductive contacts, but also has problems with adhesion and conductivity. Table 3.4

summarizes the annealing results.

The number of layers printed, print temperature, anneal temperature and anneal

time were adjusted to observe the effects on both conduction and adhesion. Print

temperatures starting at 30 C increased in 5 degree steps to the maximum temperature of

60 C were examined. Layer thicknesses below fifty layers had spotty coverage and most

had high resistance.

For each case in Table 3.5 the resolution was modified by changing the drop

spacing. The drop spacing for this printer can be adjusted from 5 to 254 urn in one

micron increments; this is the center to center distance in x and y of the drops deposited.

In this study it was found that drop spacing less then 25 um tends to overlap and results in

puddles of ink. These puddles of ink do not have enough time to evaporate resulting in

non-uniform films. Drop spacing greater then 75 urn resulted in films that had

discontinuities and were not conductive after the anneal process.
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Conductive MO silver thin films that had good adhesion to Kapton were obtained,

but were not repeatable. The next section details the ink-jet printing of the commercial

ink Baytron P Jet on Kapton.

Table 3.5	 Number of Layers of Ink-Jet Printed MO Silver on Kapton and
Transparency Film

Number
of

Layers

Print
Temperature

(CC)

Anneal
Temperature

(°C)

Anneal
Time
(min)

5 30 - 60 100 - 250 5-60 

10 30 - 60 100 - 250 5 — 60

25 30 - 60 100 - 250 5 — 60

50 40 - 50 100 - 250 30 — 60

75 40 - 50 100 - 250 30 — 60

100 40 - 50 100 - 250 30 — 60

150 40 - 50 200 - 250 30 — 60

200 40 - 50 100 - 250 30 — 60

225 40 - 50 100 - 250 30 — 60

250 40 - 50 100 - 250 30 — 60

3.2.2 Baytron Conductive Films

In order to obtain conductive ink-jettable thin films that adhere and depositions that are

repeatable H.C. Starck materials were jetted.

Two jettable H.C. Starck Baytron products were available to this researcher for

conductive contacts: Baytron P Jet and Baytron P VP AL 4083. The properties of these

two Baytron materials can be seen in Table 3.6.

Table 3.6	 Some Properties of Baytron Materials Used in This Study

P Jet P VP AL 4083

Solid content (%) 1.2 - 1.4 1.3 -	 1.7

Viscosity (mPa*s) 5 - 11 5 - 12

Resistivity (C2cm) 500 - 5000 500 - 5000
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The P Jet material and the P VP AL 4083 Baytron material were jetted with no

modification to the chemistry. Both materials jetted with no major issues, and all

deposited similar to what was seen in Figure 3.3(a). All contacts were well defined with

no over spray initially. Once the contacts were dry they did well with the scotch tape test

and had little failure. The scotch tape test is a simple measure of adhesion; this test gives

a quick indication of adhesion but gives no data as to the force required to pull the thin

film from the substrate surface. Scotch brand tape is applied to the thin film and pulled

off. If the thin film remains on the substrate the Scotch tape test has been passed.

Figure 3.3 	 (a) Typical Baytron material bottom contacts (b) Measurement of
resistance.

As seen in Figure 3.3 (b) the resistance was measured in the mega Ohms range for

both Baytron products. The Baytron inks used in this study were originally developed for

use as hole-injection layers in polymer or organic light emitting diodes. These inks were

not developed for printing of conductive contacts. Layer thicknesses were jetted from 25

to 100 layers in 25 layer increments to see the optimum layer thickness. Resistance did
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not change from 75 to 100 layers. The chemistry of these materials was adjusted to

increase the conductivity [118].

The chemistry of the P Jet and the P VP AL 4083 was adjusted to see if an

observable increase in the conductivity could be achieved. The adjusted Baytron

materials jetted with no major issues. All contacts were well defined with no over spray

initially. Once the contacts were dry they did well with the Scotch tape test and had little

failure. The resistance of the P VP AL 4083 material stayed relatively the same in the

range of 5 to 20 Ma with the unmodified material having lower resistance. The modified

P Jet had a resistance in the range of 0.250 to 4 Ma and the unmodified P Jet had a

resistance in the range of 1 to 10 Ma A summary or the results are given in Table 3.7.

After the deposition of the unmodified Baytron material samples, and given the

film time to dry, the sample was immersed in ethylene glycol for two minutes to enhance

the 'conductivity of the thin films. As the sample sat in the solvent it was observed that

the Baytron contacts were dissolving and after 2 minutes the contact was totally

dissolved. This method of enhancing the conductivity was not recommended by H.C.

Starck. It had been reported to increase the conductivity by three times the annealed

value [3.4].

Table 3.7 	 Thickness Studies of Baytron Materials Used in This Study
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The H.C. Starck Baytron materials were successfully ink-jet printed. Adhesion

and conductivity were good enough to use as conductive contacts for sensor applications.

The next section will describe the ink-jet printing of P(VDF-TrFE) onto the MO silver

contacts.

3.2.3 P(VDF-TrFE)

In order to create functional devices, multiple layers and or active material must be

printed on the bottom contacts printed in the study. Therefore, two ink-jettable P(VDF-

TrFE) polymer inks were formulated, the first was dissolved in Dimethylformamide

(DMF) and the second was dissolved in methyl ethyl ketone (MEK) as seen in Figure

3.4.

Figure 3.4 The two circuits on the left have polymer ink, jetted on top of MO silver.

Initially the optimum number of layers of the P(VDF-TrFE) ink had been studied

along with the drop spacing, deposition temperature and ink concentration. As seen in

Figure 3.5 an array of 1 cm2 rectangles had been deposited starting with 1 layer up to 150

layers in 5 layer increments. Using the formulation of polymer ink the number of layers

necessary to make a uniform film is currently 125 to 150 layers. Also seen in Figure 3.5

are regions in which the printer cartridge may have clogged and not deposited entire lines
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in the film which left regions where there would be conduction between layers or non-

uniformities on the thickness of the films. When using brand new print heads uniform

usable films were obtained, otherwise the polymer films had little definition.

Figure 3.5 	 Piezoelectric polymer thickness study.

For each case in Table 3.8 the resolution was modified by changing the drop

spacing. In this study it was found that drop spacing less then 50 um tended to be too

close and did not give the solvent ample time to evaporate resulting in non-uniform films.

Drop spacing greater then 75 urn resulted in films that had discontinuities and were not

very uniform after deposition. Platen temperatures greater then 45 C tended to evaporate

the solvents rather quickly and resulted in clogged printer nozzles.

Table 3.8 	 Range of P(VDF-TrFE) Ink Printer System Parameters

Parameter	 Range of Values

Drop Spacing (p.m) 	 10 - 100

Platen Temperature (°C)	 Ambient — 60

Cartridge Temperature (°C) 	 Ambient — 30

Number of Nozzles 	 16

Drop Volume (pL)	 10
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P(VDF-TrFE) inks were formulated, successfully jetted and studies were

conducted to determine the number of layers necessary to form films that would isolate

the bottom conductive layer. The next sections detail the ink-jet printing of this ink onto

the conductive MO silver and the conductive Baytron films.

3.2.3.1 P(VDF-TrFE) onto MO Silver. Initially P(VDF-TrFE) ink was deposited on an

unannealed MO silver contact. The solvent in the P(VDF-TrFE) ink tended to mix with

the MO silver on the surface of the substrate and the sliver distributed throughout the

polymer as seen in Figure 3.6.

Figure 3.6 Unannealed bottom contacts with piezoelectric polymer printed on top.

Next, bottom contacts that had been annealed for 5 minutes at 100 C had 150

layers of P(VDF-TrFE) ink deposited on them. The bottom contacts had adhesion issues

prior to the deposition of the piezoelectric polymer. These contacts were conductive but

had spotty coverage and had silver flaking off the surface. When the polymer was

deposited on these contacts, the polymer redistributed the silver flakes into the polymer.
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This created an issue with both the uniformity of the piezoelectric polymer and

deteriorated the conductivity of the bottom contacts.

Another set of thin films where the bottom contacts had been annealed for five

minutes at 200 C had 150 layers of piezoelectric polymer deposited on them. In this case

the increase in the anneal temperature resulted in better conductivity but had little effect

on adhesion.

Further studies with anneal temperatures greater then 150 C not exceeding 250 C

and anneal times of 30 to 60 minutes started to exhibit good conductivity and better

adhesion. Figure 3.9 is an example of a typical sample prepared in this manner.

Repeatability of results was difficult to achieve, so samples were hand picked for further

processing. Samples annealed in such a way had 150 layers of the piezoelectric polymer

deposited on them and were visually inspected for any defects. Three samples were

fabricated that were free from defects and MO silver was deposited , onto the polymer.

The MO silver was dissolved in isopropanol in order not to interact with the P(VDF-

TrFE).

Figure 3.7 	 (a) Typical front view of ink-jet printed annealed Ag bottom contacts (b)
Back side of ink-jet printed annealed Ag bottom contacts.
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The first sample that had the MO silver deposited on the polymer was annealed at

200 C for 30 minutes. As seen in Figure 3.8, the anneal temperature was much to high

and burned the polymer. For the next sample, the top contact was annealed with a heat

lamp. This method of annealing the top contacts worked well, as it did not burn the

polymer as seen in Figure 3.9. Problems with these samples arose from excessive

handling leading to flaking of the silver from the bottom contact. As can be seen in

Figure 3.8 there are discontinuities in the bottom contacts that lead to an inability of

making good contacts.

Figure 3.8 Sensor with burned polymer and top contact.

Many trials to perfect the MO silver ink have been performed. A summary is

given in Table 3.9. Variations of deposition characteristics, utilizing different solvents

and different concentrations of the metal organic silver compound have been

experimented with along with different techniques for annealing the contacts. Single

layers have been deposited then annealed and another layer deposited on top of the initial

layer, neither layer has displayed conductivity. Contacts that adhere and are conductive
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tend to look like those in Figure 3.7, where the contact remains in approximately 70% of

the designed circuit area. Success was marginal. All bottom contacts were not well

defined. Most of the thin films exhibited high conductivity and reasonable adhesion but

repeatability was never achieved. Issues with repeatability lead the researcher to

experiment with commercial inks.

Figure 3.9 	 '(a) Annealed AS bottom contacts (b) piezoelectric polymer deposited on
top of annealed contacts (c) conductive top contacts (d) discontinuity in the bottom
contact.



Table 3.9 	 Summary of P(VDF-TrFE) Ink Deposited onto MO Silver

Bottom Contacts	 Top Contacts

P(VDF-TrFE)	 Duration of	 Temperature of	 Duration of	 Temperature of
Deposited On	 Annealing	 Annealing	

Top Contacts
Annealing Annealing	

Observations

Unannealed MO Silver
Bottom Contact

Annealed MO Silver
Bottom Contact

Annealed MO Silver
Bottom Contact

Annealed MO Silver
Bottom Contact

Annealed MO Silver
Bottom Contact

Annealed MO Silver
Bottom Contact

Absorbed MO silver from the
substrate surface and mixed the
silver with the polymer.

Absorbed MO silver flakes from
the substrate surface and mixed
the silver with the polymer.

Better conductivity but poor
adhesion.

Good conductivity, good
adhesion, but not repeatable.

P(VDF-TrFE) layer burned.

Not repeatable.

5555
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3.2.3.2 P(VDF-TrFE) onto Baytron Thin Films. Initially P(VDF-TrFE) ink was

deposited on unmodified Baytron P Jet bottom contacts. Two hundred and seventy five

layers of polymer were jetted onto the unmodified P Jet material to verify that the

polymer would not dissolve or lift the Baytron contact from the substrate. The initial

results were good. The polymer had excellent adhesion, the film was uniform and there

was no interaction between the polymer and the P Jet material, as seen in Figure 3.10.

Figure 3.10 Polymer layer deposited on unmodified Baytron P Jet.

Variations of the printing parameters given in Table 3.10 were jetted. Lower

platen temperature required a delay in the printing to give the solvent time to evaporate.

Similar results were obtained for drop spacing closer then 50 um which gave poor results

due to lack of evaporation of the solvents.

Table 3.10 	 Variations of P(VDF-TrFE) Ink Printed on Baytron Bottom Contacts

Parameters	 Variations

Number of Layers	 150 - 750

Drop spacing (urn)	 20 - 75

Platen Temperature ( C)	 Ambient - 35
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A marked degradation of print quality was observed after eight or more hours of

repeated use of the ink-jet cartridge. The pattern printed no longer had any definition and

tended to smear as seen in Figure 3.11. Due to the degradation of the print quality and

limited print head life span, more layers were needed to have isolation from the bottom

contact. With a brand new cartridge 200 layers would exhibit excellent isolation. After

many hours of use of the cartridge it became necessary to deposit well over 400 layers.

These additional layers added hours to the print job.

Figure 3.11 Polymer layer deposited on modified Baytron P Jet with little definition.

Once the issues with the printer cartridges were somewhat resolved, modified

Baytron P Jet was deposited on top of the polymer layer. Measurements verified there

was isolation between the top layer of Baytron P Jet and the bottom layer. Reductions in

size of the contacts were made to speed the lengthy printing process. Arrays of 8 x 5

were printed for each of the three geometries given in Table 3.11. For the three

geometries given in Table 3.11, one hundred layers of Baytron P Jet were jetted for each

of the bottom and top geometries, two hundred plus layers of P(VDF-TrFE) ink were

jetted for the middle layer. The variation in time to print these geometries was significant.

The first array had a print time greater then 40 hours, the second array had a print time of
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greater then twenty four hours, and the third array had a print time greater then fourteen

hours. The geometry of each of these arrays as seen in Table 3.11 needed to have the size

decreased to speed the printing process. Also, these printed arrays exhibited isolation

between layers.

Table 3.11	 Geometry of the Ink-Jet Printed Layers of Baytron Bottom and Top
Layers, P(VDF-TrFE) Middle Layers

Array Bottom Layer Middle Layer Top Layer

First (pm) 2.5 x 10 5 x 8 2.5 x 6

Second (μm) 2 x 5 3 x 3 2 x 2

Third (p.m) 1.5 x 3 3 x 2 1.5 x 1

Many well defined working samples were fabricated. 	 Issues with printer

cartridges lead to the search for more time efficient printing methods.

3.2 Screen Printed Thin Films

So far, ink-jet printing of MO silver, Baytron materials and P(VDF-TrFE) inks has been

discussed. Repeatability, reliability and speed negate utilizing that printing method.

Screen printing was chosen as a low-tech alternative that has a proven track record of

speed of deposition and is repeatable.

Screen printing is a very mature printing process. This method of printing has

been used for printing graphics on tee-shirts, poster and advertising literature for years.

Screen printing has also been used for hybrid circuits and Monolithic Microwave

Integrated Circuits (MMICs) fabrication [119]. Due to the maturity of the process there

are many research groups proceeding with fabricating devices that use this printing

method [120, 121].
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Stencils were generated, prior to printing, using the direct block out or screen

filler method, as seen in Figure 3.12. Resist material was used to generate the circuit such

that ink can be forced through the screen in the areas where the resist material has not

been applied.

Figure 3.12 Procedure for generating screen for screen printing.

The substrates used were DuPont's Polyimide Kapton E and 3M transparency

film. These films were cleaned in acetone, isopropanol, and distilled water. Multiple

layers were deposited using screen printing, as is depicted in Figure 3.13. Each layer was

deposited through three different screen meshes 12xx multifilament polyester, 8xx

multifilament polyester and shear material with unspecified hole spacing. The first layer

deposited was DuPont's microcircuit materials CB028 silver conductor polymer thick

film composition; this material had been designed for low temperature drying and good

adhesion to polymer substrates such as Kapton [122]. The second layer was P(VDF-

TrFE) which was screen printed directly on top of the silver, and the third layer deposited

on the P(VDF-TrFE) was another layer of DuPont's silver.
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Substrate

Silver

P(VDF-TrFE)

Figure 3.13 Fabrication of multiple screen printed layers.

Approximately 200 bottom silver contacts have been fabricated with the three

different screen meshes. The geometry of the pattern is shown in Figure 3.14. The

bottom silver layer was dried using a box oven, a heat lamp, a hot plate and by air drying

at room temperature for 24 hours. Drying using these four methods resulted in low

resistance, uniform contacts and excellent adhesion in all cases. The primary difference

noted between drying on a hot plate or heat lamp vs. the box oven and room temperature

was the respective anneal times of 10 minutes, 10 minutes, one hour and twenty four

hours.

0.25' 	 0.5'

Figure 3.14 Geometry of the first layer.



61

The resistances of these silver contacts were measured to determine if there was

an optimum method of drying to obtain low resistance silver layers. Also, the three

different meshes were used to see if this had an effect on the resistance. As seen in Table

3.12 the resistance of the silver contact layer is well below 1 ohm for each drying

method, and also for each mesh and substrate used. The best definition of the silver

layers was obtained using the 12xx mesh. For the 8xx and the undefined mesh the silver

ink tended to flow under the screen and distort the pattern. All contacts had been

subjected to the scotch tape test. All have passed and were flexed to see if the silver

would crack and peel. Resistance was measured after flexing the contacts; the resistance

did not change.

The silver bottom contact on Kapton and Transparency film can be seen in Figure

3.15, and the mesh pattern can be seen in the silver contact. Adjustments were made to

correct this by adding thumb tacks under the frame to act as spacers to keep the mesh
V

from sitting in the ink. This did not totally correct the problem but it did help in making

the films somewhat more uniform.

Figure 3.15 Pictures of the screen printed silver bottom contact on (a) Kapton (b)
transparency film.
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Table 3.12	 Resistance Values of Different Drying Methods and Mesh Sizes for
Screen Printing

Rmin
Material	 Mesh	

Drying	
Rmax()

Method	  (0)
Kapton	 12	 Box oven

Heat Lamp
Hot Plate
Air Dry

8	 Box oven
Heat Lamp
Hot Plate
Air Dry

Transparency 12	 Box oven
Heat Lamp

Hot Plate
Air Dry

8	 Box oven
Heat Lamp
Hot Plate
Air Dry 

Two different solvents, acetone and MEK, were used to dissolve the P(VDF-

TrFE) in different ratios to form screen printable inks. Approximately 60 of the bottom

silver layers had this polymer ink deposited on them with the three different screen

meshes. The geometry of the polymer layer was a one inch square. The mesh that

worked best for depositing the polymer layer was the mesh with unspecified hole

spacing, as it allows sufficient material flow for good coverage. Two to three printed

layers permit enough material build up so that there are no pin holes allowing isolation of

the bottom silver layer. Figure 3.16 shows typical polymer layers. The polymer tended

to have many bubbles due to the mesh sticking in the polymer; this was resolved by

reducing the viscosity of the ink, thereby allowing the trapped gasses to escape from the

thinner bodied material. Also noted, the screen filler material had a tendency after many
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uses to deteriorate and the screen material had in some cases become embedded in the

printed material. This problem was corrected by simply discarding the screens after a set

number of uses. Once printing was completed, the resistances of the silver bottom

contacts were checked and demonstrated good conductivity before and after they had

polymer deposited on them. The bottom contacts were no longer being dissolved by the

polymer.

Figure 3.16 (a) Annealed Ag bottom contacts with piezoelectric polymer screen
printed on top (b) close up view of piezoelectric polymer deposited on top of annealed
contact (c) second generation annealed contact with polymer deposited (d) close up view
of second generation contact with polymer deposited.
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Approximately 30 of the fabricated films had top silver contacts screen printed on

top of the polymer samples, and had been left to dry at room temperature. The top

contact layer has been deposited through the 12xx multifilament polyester mesh. All the

top contacts have been tested for resistance and have exhibited resistances below 1 ohm.

The silver top contact on Kapton film can be seen in Figure 3.17. As can be seen

in the photo, the polymer had shrinkage but the top contact was still successfully printed

and the top contacts were functional. Six of the approximate thirty top contacts were

isolated from the bottom contacts; the potential cause for the electrical short in the twenty

four samples is due to the layer thickness of the polymer being too thin. Further

characterization of these films will be discussed in Chapter 4 and Chapter 5.

Table 3.13 	 Range of Resistance Values of Top Silver Layer Deposited by Screen
Printing

Material

Kapton

Transparency

Figure 3.17 Pictures of the screen printed silver top contact on Kapton.
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3.3 Stencil Printed Thin Films

Screen printing has been found to be a rapid method of depositing thin films. Issues had

been encountered with this method where the screen stuck to the wet films that were

deposited, creating non-uniform films. To improve the uniformity of the silver layers a

modified stencil printing method was performed.

Prior to printing, plastic stencils were generated, as seen if Figure 3.18, in which

the artwork was transferred to transparency film via a laser printer. The areas were cut

out to generate the pattern such that ink could be rolled through the open areas where the

transparency material had been cut away. Three such plastic stencils were generated, one

for each of the layers, the bottom silver layer, top silver layer and the middle polymer

layer.

Transfer image
to transparency
via laser printer

Generate artwork in CAD 	 Cut out circuit with razor knife 	 Stencil for printing
software for the mask

Figure 3.18 Process for generating stencil for stencil printing.

The substrates used were DuPont's Polyimide Kapton E, 3M transparency film

and copy paper. The Kapton and transparency films were cleaned in acetone,

isopropanol, and distilled water. Multiple layers were deposited using stencil printing;

the same layers were deposited for screen printing as is depicted in Figure 3.1. The first

layer deposited was DuPont's silver conductor polymer; the second layer was P(VDF-
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TrFE) which was printed directly on top of the silver, and the third layer deposited on the

P(VDF-TrFE) was another layer of DuPont's silver conductor polymer.

Figure 3.19 Geometries of the first layer via stencil printing.

Approximately 200 bottom silver films have been fabricated using stencil

printing, with the geometry shown in Figure 4.19. The bottom silver layer was dried

using a hot plate set at 125 C for 20 minutes. The resistances of these silver contacts

were measured and the average data for all the silver contacts is seen in Table 3.14.

Some distortion of the pattern was observed due to the flexibility of the stencil. The silver

ink tended to get under the stencil and distort the pattern, contributing to the fluctuations

in resistance values. A 10% sample of the contacts were subjected to the scotch tape test.

All passed and were flexed to see if the silver would crack and peel. The measured

resistance did not change after flexing the contacts.

Table 3.14	 Resistance Values of Different Stencil Printed Geometries

Substrate Geometry Rmin(Ω) Rmax(t)

Transparency Large 0.08 0.53

Medium 0.3 0.71

Small 0.49 1.83

Kapton Large 0.06 1.21

Medium 0.1 1.3

Small 0.28 5.07

Paper Larget, 0.62 1.37

Medium 0.91 1.85

Small 1.1 2.27



67

Figure 3.20 Pictures of the stencil printed silver bottom contact on (a) transparency
film (b) Kapton.

Acetone was used to dissolve the P(VDF-TrFE) in different ratios to form screen

printable inks. Approximately 15 of the bottom silver films had this polymer ink

deposited through the stencil with a roller and some with an acid brush. The geometry of

the polymer layer was a one inch square. The roller worked well but would stick and tear

the polymer off the surface if rolled too long; the acid brush worked well also as it allows

sufficient material to be applied for good coverage and more material could be applied

with the brush than the roller. Two to three rolled layers allowed for enough material

build-up so that there was isolation of the bottom silver layer. Figure 3.21 shows typical

polymer layers, the polymer tended to adhere very well. The resistances of the silver

bottom contacts were checked.  They maintained good conductivity after they had

polymer deposited on them and none had any issue with being dissolved by the polymer.
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Figure 3.21 (a) Dried stencil printed Ag bottom contacts on transparency film with
piezoelectric polymer stencil printed on top (b) Dried stencil printed Ag bottom contacts
on Kapton film with piezoelectric polymer stencil printed on top.

Approximately 15 top silver films had been stencil printed on top of the polymer

samples that were deposited on the Kapton and transparency film. They have been left to

dry at room temperature. All the top contacts have been tested for resistance and all

have exhibited resistances below 1 ohm as shown in Table 3.15.

Figure 3.22 Pictures of the stencil printed silver top contact on Kapton.

Table 3.15
Printing

Range of Resistance Values of Top Silver Layer Deposited by Stencil

Material

Kapton
Transparency
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The silver top contact on the Kapton film can be seen in Figure 3.22. As can be

seen in the photo, the polymer had shrinkage but the top contact was still successfully

printed and the top contacts were functional. Nine of the approximate fifteen top contacts

were isolated from the bottom contacts; the potential cause is due to the layer thickness of

the polymer being too thin. Further characterization of these films will be performed in

Chapter 4 and Chapter 5.

3.4 Results and Discussions

As seen in Figure 3.6 through Figure 3.9 of the ink-jet printed films, both the silver and

the polymer films had issues with definition of the printed pattern. Most of the silver

films were not conductive and did not adhere. To resolve the issue of the conductivity of

the silver layer and the adhesion issue, the printer platen temperature needs to be

increased. Its current temperature limit is 60 C and needs to be adjusted to 85 — 100 C.

This is possible through a modification to the platen in which a temperature controlled

heated block is attached. Additional adjustments of fluid metering also appear to be

necessary in order to reduce the number of time consuming printings needed in order to

achieve sufficient homogeneous film build up. The largest nominal volume currently of a

single drop is 10 pL, the drop spacing in x and y is 51.1m. It appeared that the nozzles

would clog leaving bare spots and missing rows on some depositions. Also the corners

were not sharp on all of the depositions. It currently is not possible to adjust the volume

of the drop, so multiple layers were deposited leading to lengthy depositions.

Better results were obtained with the H.C. Starck Baytron products. Repeatability

was achieved, and well defined patterns were printed. Conductivity of the materials
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available to this researcher was very low, but higher conductivity materials are available.

All in all, issues with print speed and volume of ink deposited were still observed with

this material.

The screen printed films have demonstrated the potential of rapid fabrication of

thin metallic and polymer films and demonstrated excellent performance; all metallic

films passed the scotch tape test and exhibited very low resistance. The silver films had

issues with non-uniformity due to the screen lying in the wet ink during the deposition

process and the polymer films had the same issue leading to forming bubbles in the

polymer films. This issue can be resolved by using metal meshes and metal frames, and

also by having better control of the frame height above the substrate. The metal mesh in

a metal frame will control the tension in the screen such that it will not sag and lay in the

wet ink. When the polymer was deposited and the mask was used for multiple

depositions the mask was cleaned. The solvent used to clean the mask tended to soften

the mask filler material. When the mask was used for the next deposition this mask filler

material was transferred to the substrate. These issues with the screen printing process

are easily resolved by either buying an inexpensive manual screen printer or building a

simple frame to hold the screen and to control the height of the screen. The manual

screen printing method was able to provide proof of the concept of isolated thin films. An

automated system would be able to correct most if not all the issues, control over the

pressure of the squeegee material through the screen, as well as metal screens fabricated

with photolithography would also give better resolution of the circuits. There are many

parameters involved which can be used to control the screen printed result. The thickness

of the film depends on the viscosity of the ink, the mesh count, the screen emulsion, and
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the squeegee. The resolution of the printed pattern depends on the screen mesh count and

the resolution of the screen emulsion layer.

Stencil printing exhibited the best metallic films out of the three printing methods

studied. The stencil for the stencil printing method was fabricated from a plastic

transparency and there were occasions where the ink had gotten under the stencil

deforming the desired pattern. The stencil in these cases was repairable by wiping with a

solvent. Initial prototypes had the material squeegeed through the stencil which produced

adequate films, but more uniform films were obtained by rolling the material through the

stencil. If more consistent films were necessary a metal stencil and a frame similar to the

screen printing frame could be fabricated.

3.5 Conclusions

In this study, screen printing and stencil printing have been successfully demonstrated as

low temperature deposition methods for rapid fabrication of flexible thin films. Using

these methods it has been possible to fabricate many low resistance contact layers on

multiple substrates. Existing printing technology is capable of producing flexible thin

films for flexible electronics with little modification to the commercially available

systems and would require little capital investment. This study has shown the capability

of the adhesion of the materials and the low resistance contacts. More work is necessary

to achieve better resolution of the patterns. The simplicity of this process enables one to

fabricate films rapidly. For more complex and better resolution circuit features

commercially available systems could be used. Additionally, the proposed fabrication
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techniques could be set up for roll to roll fabrication for high volume mass production of

multi layer devices.

The issues with ink-jet printing appear to be related to the immaturity of the ink

technology and the system used. Currently corporations like DuPont do not offer ink

jettable conductive materials and materials available for ink jetting have adhesion issues

with Kapton [122]. Also the inflexibility of the machine in terms of heating the substrate

and the limitation of the volume of the ink dispensed with the current printer has impeded

the success in fabricating good thin films.



CHAPTER 4

MATERIALS CHARACTERIZATION

4.1 Introduction

The ultimate goal of this study is to characterize the printed films described in Chapter 3.

Three techniques are presented in this chapter. The first two, Raman spectroscopy and

Fourier transform infrared spectroscopy, are both used to investigate the structure of the

P(VDF-TrFE) films. The third characterization method is optical microscopy which is

used to investigate the thickness and uniformity of the deposited films.

In this chapter, the infrared and Raman spectrum are evaluated and compared to

theory. Raman and FT-IR spectrometry were chosen to characterize the P(VDF-TrFE)

thin films due to the rapid, non-invasive, non-destructive nature of the techniques. The

following section describes the use of an optical microscope to observe the films

morphology. These techniques also require little sample preparation.

4.2 Raman Spectroscopy

Raman spectroscopy is a technique that identifies unknown materials by measuring how

their vibrating molecular bonds scatter with an incident laser light into distinct

frequencies. The advantage of Raman spectroscopy is its ability to penetrate a variety of

glass and plastic materials. Raman spectroscopy was used to examine the structural and

phase of P(VDF-TrFE) films. Raman spectroscopy in the wavenumber range of 4000 to

400 cm-¹ , in transmission mode, was performed on the ink-jet, screen and stencil printed

films.

73
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The Raman spectra of the P(VDF-TrFE) films fabricated in Chapter 3 were taken

with a Mesophotonics SE1000 Spectrometer. The Mesophotonics SE1000 Spectrometer

is equipped with a 150 mW 785 nm ±1 nm laser. The films fabricated on the Kapton

material saturated the detector due to luminescence of the Kapton at 785 nm. The films

fabricated on the 3M transparency material exhibit a similar spectra as obtained by

Constantino et al [123] shown in Figure 4.1. The screen and stencil printed films spectra

are shown in Figure 4.2. The stencil printed film exhibited the strong peak at 841 cm -¹

and a weaker peak at 813 cm -¹ , which is similar to Constantino et al [7.1]. The screen

printed film exhibited a strong peak at 855 cm-¹ and a very weak peak at 846 cm -¹ . The

discrepancy in peaks and shifts is thought to be due to the mixture of the a and 0 phase in

the screen printed films. Due to this inconsistency in the screen and stencil printed

spectra further characterization was performed.

Figure 4.1	 Raman Spectra of stretched PVDF [123].
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Figure 4.2	 (a) Raman spectra of NJIT-SP-Vibration-W-003-3M (b) Raman spectra of
NJIT-ST-Vibration-W-002-3M.

4.3 Fourier Transform Infrared Spectroscopy (FT-IR)

Due to the ambiguous results of the Raman spectroscopy, Fourier-Transform Infrared

spectroscopy (FT-IR) was used to further investigate the phase of the P(VDF-TrFE)

films. FT-IR, a complementary technology to Raman spectrometery, is a non-destructive

analytical technique for the identification of unknown substances. This technique

identifies unknown materials by the characteristic frequencies of these materials due to

the molecular vibrations of the bonds and groups of bonds that hold the material together.

This unique spectrum acts like a "molecular fingerprint" for distinct materials.

A Perkin Elmer Spectrum one FT-IR was used to examine the structural and

phase of P(VDF-TrFE) films. FT-IR exposes a film to the full range of infrared

frequencies. The infrared beam passes through the film and hit the detector, the resulting

intensity of the beam is used to construct the spectra of the film. Screen and stencil

printed thin films were removed from the flexible substrates. P(VDF-TrFE) pellets were

dissolved in DMF and films were fabricated on glass slides and pealed off for the
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measurement. Abdelsayed [124] and references there in state that the characteristic a-

phase peaks are located at 614, 762, 795 and 975 cm -¹ and the β-phase characteristic

peaks are located at 440, 470, 510, 840 and 1280 cm -¹ . FT-IR spectroscopy in the

wavenumber range of 4000 to 400 cm - ', in transmission modes was performed on the,

screen printed, stencil printed and a DMF solution cast film.

1-Melt press from Pellets
2- Sprayed PVDF in DMF/Acetone
3- Piezoelectric commercially film

Wavenumbers (cm•I}

Figure 4.2	 Absorption FT-IR spectrum of PVDF 1 — a-phase, 2 — sprayed PVDF in
DMF/acetone, 3 — β-phase [124].
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Wavenumber 842 cm-1 C
Intensity, (ST) 28 264677
Intensity (SC). 1.788464

Intensity (OW). 0.147094

Wavenumber (cm-1)

Figure 4.3	 FT-IR spectrum of PVDF 1 — Stencil printed, 2 — Screen printed, 3 —
P(VDF-TrFE) dissolved in DMF film.

The transmission FT-IR spectrum of the screen printed, stencil printed and a DMF

solution cast films are shown if Figure 4.3. The three samples exhibit the same peaks

while the intensities vary due to the thickness of the films. Comparing the peaks in

Figure 4.3 to the characteristic peaks, these films contain the peaks related to the β-phase

(474, 508 and 842 cm -¹ ), and none of the a-phase peaks. The FT-IR data shows that the

films are in the piezoelectric β-phase.

4.4 Optical Microscopy

Optical microscopy is used to study the structure and morphology of thin films along

with obtaining information about density, topography and various types of flaws. In this
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study the optical microscope was used to examine the thickness and uniformity of the

ink-jet, screen and stencil printed films P(VDF-TrFE) films.

Figure 4.4	 (a) Cross-section view of NJIT-ST-Vibration-W-002-3M (b) Cross-section
view of NJIT-SP-Vibration-W-003-3M.

Figure 4.4 (a) shows a cross-section view of NJIT-ST-Vibration-W-002-3M. The

thickness varied from 51 um to 118 um. The stencil printed films when measured with a

micrometer demonstrated larger variation from sample to sample: 20 um to 300 Fn.

Figure 4.4 (b) shows a cross-section view of NJIT-SP-Vibration-W-003-3M. The

thickness varied from 204 um to 559 Inn. The screen printed films when measured with

a micrometer demonstrated smaller variation (10 !km to 200 !Am) from sample to sample.

Figure 4.5	 (a) Cross-section view of NJIT-IJ-W-002-HN (b) top view of NJIT-IJ-W-
002-HN.
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Figure 4.5 (a) shows a cross-section view of NJIT-IJ-W-002-HN. The thickness

varied from 71 um to 94 μm. The ink-jet printed films when measured with a

micrometer demonstrated larger variation (5 um to 10 um) from sample to sample.

Figure 4.5 (b) depicts the top view of NJIT-IJ-W-002-HN, in which the interface between

the polymer and the bottom contact is visible along with a ridge due to printing. These

ridges are seen with the naked eye on all the ink-jet printed sensors and are due to the

drop spacing and drying temperature of the film. Similar ridges were observed by Tay al

et. [40].

4.5 Conclusions

In this study, materials characterization of the printed P(VDF-TrFE) thin films were

demonstrated to be in the piezoelectric β-phase. The Raman and FT-IR spectra were

compared to the literature and were in good agreement. The Raman spectra were shifted

slightly and the screen printed films did not clearly exhibit the 846 cm-¹ peak. On the

other hand, FT-IR exhibited sharp peaks (474, 508 and 842 cm -¹ ) as found in the

literature. The optical microscope pictures demonstrated that the screen, stencil and ink-

jet printed film thicknesses varied by 260 um, 70 [tin, and 20 μm respectively. The non-

uniformity in film thickness leads to inaccuracies in calculating output voltages as will be

seen in the next chapter.



CHAPTER 5

DEVICE FABRICATION AND CHARACTERIZATION

5.1 Introduction

The primary motivation of this study is to develop functional devices utilizing the

printing methods described in Chapter 3. Two simple sensors are presented: the first a

pyroelectric infrared sensor and the second an accelerometer. The aim of these two

sensors is to observe the pyroelectric activity and piezoelectric activity in the

Poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)). Models for these sensors are

based on the basic physics of piezoelectric and pyroelectric materials.

P(VDF-TrFE) had been chosen because it has been utilized as an infrared sensor

and accelerometer on rigid substrates. The viscosity of the polymer was modified so both

an ink-jettable and a screen printable formulation were developed.

Thin-film infrared and acceleration transducers on rigid substrates have been well

received in the field of sensing technology. To date, fabrication by printing of these

sensors on flexible substrates, such as polyimide, has not been reported.

Odon [125] demonstrated that commercial PVDF thin films could be realized as

low cost pyroelectric sensors. In this case, the PVDF thin films are exposed to a short

radiation pulse and the voltage response is studied. Satiadi et al. [126] have reported the

design of an integrated pyroelectric P(VDF-TrFE) sensor on silicon with on chip step-

wise poling at room temperature of the copolymer. They have tested the pyroelectric

sensors voltage sensitivity and noise and found that the sensitivity depends on the thermal

behavior of the sensor along with the transfer function of the readout electronics.

80



81

The methods of depositing thin films from the prior chapter have been utilized to

fabricate functional devices on flexible substrates. In this chapter, the printed thin films

have been utilized to form devices on transparency and on Kapton films. The resulting

pyroelectric activity was evaluated by measuring the output potential when different light

sources irradiated the device. The piezoelectric activity was evaluated from sensitivity

measurements. In the next section infrared sensors will be investigated to observe the

pyroelectric effect in the printed P(VDF-TrFE) thin film. The following section will

investigate accelerometers to observe the piezoelectric effect.

5.2 	 Sensor Fabrication

The printing methods described in Chapter 3 were used to fabricate the sensors on

flexible substrates.

5.2.1 Screen and Stencil Printed Sensor Fabrication

The flexible substrates used in fabricating the devices were a 51 gm thick Kapton E®

polyimide film by DuPont, and a 100 gm thick transparent polyester film by 3M. The

top-view of the sensor is shown in Figure 4.1 with the different geometries of the contacts

fabricated in Figure 4.2. The P(VDF-TrFE) layer was one square inch in all devices.

The side-view of the sensors is shown in Figure 5.3.
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Figure 5.1	 Top-view of the sensors.

X	 Y Z

Figure 5.2	 Geometries of the bottom and top contacts for the sensors.

Black Pigment
Top Contact
P(VDF-TrFE)
Bottom Contact
Kapton

Figure 5.3 Side-view of the sensors.

All substrates were cleaned in acetone, isopropanol, and distilled water. The

process flow of the sensors is depicted in Figure 5.4. The first layer deposited, the

bottom contact, via screen and stencil printing was DuPont's microcircuit materials
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CB028 silver conductor polymer thick film composition. The next layer printed via

screen and stencil printing was P(VDF-TrFE) which was printed directly on top of the

silver bottom contact layer. The next layer deposited, via screen and stencil printing, on

top of the P(VDF-TrFE) was another layer of DuPont's silver for use as the top contact

for the sensors. And the final layer, the black pigment, was spray coated. The final layer

increased the absorption of incoming radiation for the IR sensors and had no effect in the

operation of the accelerometers. The approximate thicknesses of the layers are stated in

Table 5.1.

Figure 5.4	 Process flow for the sensors. Top view is as depicted in Figure. 4.1. (a)
Screen printing of Ag on Kapton substrate. (b) Screen printing of P(VDF-TrFE). (c)
Screen printing of Ag on P(VDF-TrFE). (d) Spray coating of black pigment.

Table 5.1	 Approximate Screen and Stencil Printed Sensor Layer Thicknesses
Deposited

Layer

Kapton E

3M Transparency

Bottom Electrode

P(VDF-TrFE)

Top Electrode

Black Pigment

Approximate Screen
Printed Thickness 
51 um

110 um

20- 130

10- 200

20 - 130 um

0.1 -1 p.m

Approximate Stencil
Printed Thickness 
51 um

110 um

20 — 35 um

20 - 300

20 - 35 μm
0.1 -1 μm
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5.2.2 Ink-jet Printed Sensor Fabrication

Due to the limitation of speed of the commercial print system utilized in this study the

size of the sensors needed to be reduced in order to have reasonable print time, days

compared to weeks. The flexible substrates used in fabricating the devices were a 51 μm

thick Kapton HN® polyimide film by DuPont. The top-view of the sensor is shown in

Figure 5.5 with the different geometries of the contacts fabricated in Figure 5.6. The

side-view of the sensors is shown in Figure 5.7.

Figure 5.5	 Top view of the sensors.

Figure 5.6	 Geometries of the bottom, middle and top layers for the ink-jet printed
sensors.
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Figure 5.7 Side-view of the ink-jet printed sensors.

All substrates were cleaned in acetone, isopropanol, and distilled water. The

process flow of the sensors is depicted in Figure 5.8. The first layer deposited, the

bottom contact, was HC. Starck Baytron P JET conductive polymer. The next layer

printed was P(VDF-TrFE) which was printed directly on top of the bottom contact layer.

The next layer deposited, on top of the P(VDF-TrFE) was another layer of HC. Starck

Baytron P JET for use as the top contact for the sensors.

P(VDF-TrFE)

Bottom Contact

Kapton

Figure 5.8	 Process flow for the ink-jet printed sensors. Top view is as depicted in
Figure. 5.5. (a) Printing of the Batron P Jet on Kapton substrate. (b) printing of P(VDF-
TrFE). (c) printing of P Jet on P(VDF-TrFE).

Table 5.2	 Approximate Ink-Jet Printed Sensor Layer Thicknesses

Layer	 Approximate Thickness

Kapton E	 51 um

Bottom Electrode	 7 - 30 um

P(VDF-TrFE)	 5 - 10 um

Top Electrode	 7 — 30 um
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5.3	 Infrared Sensors

5.3.1 Infrared Sensor Design

The infrared sensors fabricated in this study are pyroelectric thermal-type. The

pyroelectric element is sandwiched between two silver contacts. The sensitive area is

defined by the overlap between these contacts. A black pigment is deposited on the top

contact. When the pigment is irradiated with infrared radiation, the infrared radiation is

converted into heat which is transferred to the pyroelectric element. The absorbed heat in

the pyroelectric P(VDF-TrFE) leads to a change in temperature and consequently to a

voltage change. A screen printed IR sensor is depicted in Figure 5.9.

The functionality of the presented IR sensor is based on the spontaneous

polarization change of a pyroelectric film when the top contact is exposed to infrared

radiation. The voltage produced in the film is given by,

(5.1)

where p is the pyroelectric coefficient, t is the film thickness, AT is the change it

temperature, and 8 is the permittivity of material.

Figure 5.9	 Screen printed IR sensor.
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5.3.2 Infrared Sensor Testing

The measurement system that was used for detecting the voltage from the pyroelectric

sensor is shown in Figure 5.6. The sensitivity of the sensors was measured using various

light sources, such as a He-Ne laser (wavelength k= 0.6328 [1m), a Ti:Sa laser

(wavelength k= 0.78 a CO2 laser (wavelength k= 11.3 μm), and a heat lamp. For all

experiments, the light beam was mechanically chopped at 100 Hz. The beam irradiated

the top contact as shown in Figure 5.6. The pyroelectric voltage signal was measured

using a lock-in amplifier (Model 7260, EG&G, Princeton, NJ) and a digitizing

oscilloscope (Model HP- 54501A, Hewlett-Packard), while the detector was exposed to

the incident chopped radiation. The power of the light source was measured by an optical

power meter before the beam was chopped.

Figure 5.10 a) A common pyroelectric detecting system b) Schematic diagram for
sensor response measurements.
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5.4	 Accelerometers

5.4.1 Accelerometer Design

The accelerometers fabricated in this study are compression-type, as opposed to the shear

or bending type. The piezoelectric compression transducer incorporates a piezoelectric

layer with contacts on the top and bottom of the piezoelectric layer. When the transducer

is subjected to motion, a force is generated which acts on the piezoelectric layer to

produce an electrical output proportional to the acceleration/deceleration. The

accelerometer is depicted in Figure 5.11.

Figure 5.11 Compression accelerometer.

The fundamental linear relationships between the electrical and mechanical quantities of

a piezoelectric material for determining the relationship between the voltage and force is

described by the direct piezoelectric effect [127] and is given by,

(5.2)

T
where E is the electric field, T is the stress, D is the electric displacement, S is

permittivity under the condition of constant stress and g is the piezoelectric voltage

constant.
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Setting D =0, due to the fact that the electrodes are not shorted and no current

flows results in

But voltage is related to the electric field times the thickness e of the piezoelectric

element, such that,

where e is the thickness of the piezoelectric layer and stress is force per area,

Inserting these relations in to Equation 5.3 for the electric field one readily obtains,

a relationship between the voltage and force. Rearrangement results in,

(5.4)

As can be seen in Equation 5.4 the voltage on the piezoelectric material due to an

applied force is dependent on the geometry and g the piezoelectric voltage constant

which happens to be temperature dependent.

The natural resonant frequency is given by,

(5.5)

where k is the stiffness of the piezoelectric element, M is the mass of the seismic mass,

and m PV is the mass of the piezoelectric element.
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The stiffness of the piezoelectric element is given by,

(5.7)

G E .where ³3 is the stiffness coefficient of the piezoelectric element. The sensitivity can be

determined starting with Equation 5.3 that relates voltage to stress,

(5.8)

Using the relation where stress is force per area and force is mass times acceleration (a),

and substituting back into Equation 5.8 one readily obtains,

The sensitivity when the mass of the piezoelectric element is negligible is

(5.9)

The sensitivity when the mass of the piezoelectric element is not negligible is

(5.10)

And the sensitivity when there is no seismic mass is

(5.11)
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5.4.2 Accelerometer Testing

The back-to-back method has been used to measure the sensitivity of the printed sensors.

The back-to-back method is an industry standard method used by accelerometer

manufacturers to calibrate devices [128, 129].

The vibration test system in Figure 5.12 was constructed to test the fabricated

sensors. The Bruel & Kjaer 4809 vibration exciter is capable of 44.5 N sine peak rated

force and 60 N rated force with air cooling, at frequencies from 10 Hz to 20 kHz, with

maximum acceleration of 75 g and 100 g with air cooling. The fabricated sensors have

been tested using a comparison calibration method. This method entails mounting both a

known accelerometer (Endevco 2221D) and the printed accelerometer to a fixture. This

fixture was then mounted on the Bruel & Kjaer 4809 vibration exciter as shown in Figure

5.8. The 2221D has a transverse sensitivity of 0.9%, capacitance of 870 pF and a charge

sensitivity of 16.5 pC/g over the range 1 Hz to 6 kHz [130, 131]. The input acceleration

is the same for both devices and the ratio of their outputs is also the ratio of their

sensitivities. The sensitivity of the printed sensors has been calculated using Equation

5.12.

(5.12)
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Figure 5.12 Back to back calibration of accelerometer.

5.5	 Results and Discussions

5.5.1 Results and Discussions on the Pyroelectric Sensor

For each of the light sources employed, there was no detectable pyroelectric response.

Even in the case of physical damage (burning) of the sample using a powerful CO-) laser

beam, no pyroelectric response was detected. In each test, if some pyroelectric response

were present, its value was below the noise limits of the detection system.

In order to determine if the sensors should have produced an observable signal, an

estimate of the expected signal based on the known thermal and pyroelectric properties of

the materials used in the sensor was performed. Using Equation 5.1 and values from the

literature, the pyroelectric conversion has been calculated as seen in Table 5.2. The

( AV 	 = p t/ εcalculated pyroelectric conversion factor ( 	 from Equation 5.1) for a

commercial PVDF film (Measurement Specialties, Hampton Va.) as seen in Table 5.2 is

half the value of the deposited P(VDF-TrFE) film.

The temperature difference AT is estimated based on a thermal diffusion equation,

(5.13)
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where QL is the rate of laser energy deposited per unit volume per unit time. The spot size

of the illumination was approximated to be 2 mm. The layer thicknesses and thermal

properties of the two layers are tabulated in Table 5.3. Since the layers are so thin, heat

will equilibrate much more rapidly perpendicular to the plane of the film compared to

parallel to the film. Consequently, it is assumed that the films under the area being

illuminated by the light are all at the same temperature and all of these films are in

equilibrium. In the lateral direction, however, the heat is dissipated predominately by

thermal conduction in the silver conductor due to the high thermal conductivity compared

to the pigment/ P(VDF-TrFE) layers.

The rate of the lateral heat dissipation can be estimated from Equation 5.13 by

balancing the equation with no laser heating term (eg. The chopper blocks the

illuminating radiation). In that case, Equation 5.13 reduces to

(5.14)

In the lateral direction, the spatial scale over which there is a gradient in the temperature

is the spot size of the laser. Therefore, one can estimate that

(5.15)

where d is the spot size of the laser. Using Equations 5.14 and 5.15, the time scale for

lateral dissipation of heat is estimated as

(5.16)

where a is the thermal diffusivity. Using d = 0.2 cm and a from Table 5.3 gives a lateral

diffusion time of 23 ms corresponding to —43Hz. Therefore, for a chopper modulation
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rate of —100Hz the heat should be laterally diffusing. When the sample is illuminated, the

estimated temperature rise is given by the right-hand side of Equation 5.13. For short

time periods, there is not sufficient time for lateral diffusion of heat. The light induced

temperature change can then be approximated from

(5.17)

to be

(5.18)

In estimating QL, we account for the emissivity of the εn
 = 0.876 of the black pigment

[132]. About 10% power is approximated to be absorbed by the material as the black

pigment is intended as a layer to reduce the reflection of the incoming heat. Assuming

that the optical energy is distributed evenly in the volume defined by the combined

thickness of the three layers and the spot size of the optical beam, we estimate the

corresponding temperature rise and expected pryoelectric voltage for each light source in

Table 5.5.
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Table 5.5 	 Expected Output Voltages for the Various Light Sources

Laser Source

Absorbed	 Temperature	 Expected
Power	 Difference	 Voltage

A potential of the order of 1 mV is calculated in Table 5.5 for the HeNe laser.

This potential of 1 mV would not have been detectable with a measured noise level of 55

mV on the oscilloscope. When the EG&G 7260 lock-in amplifier is used, the average

measured noise level was 0.65 IA V. This noise level is lower than the expected voltage

level for all three different light sources. In conclusion, we should have had enough

experimental sensitivity to detect the pryoelectric response of the film provided that the

response was comparable to previously published values.

The negligible pyroelectric response of these samples is attributed to the lack of

poling of the sample. While there have been no reports on the value of the pyroelectric

coefficient of PVDF or any copolymers prior to poling, the expected enhancement can be

estimated based on other materials. Butler et al. [133] has reported that a YBaCuO thin

film deposited by RF magnetron sputtering at room temperature with gold contacts have

exhibited pyroelectric coefficients in the range of 65 nC/ cm²-K prior to poling. When

poled, the pyroelectric coefficient was found to increase to 18 μC/cm²-K. The

pyroelectric behavior in Butler's device prior to poling has been explained as a strain-

poled case when the films are fabricated a mechanical strain is induced in which the

domains line up in one direction.
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For comparison, we calculate the expected output of our device based on the

pyroelectric value of poled PVDF reported by Capineri et al. [134]. The expected output
.ac

voltage of their sensor is in good agreement with our fabricated sensor, as seen in Table

5.6. They fabricated their sensor on a glass-epoxy substrate that had a copper electrode.

A PVDF film was epoxied to the contact and a black pigment was spray coated to

enhance absorption. The PVDF film that was epoxied to the substrate was pre-poled

from the manufacturer.

The deposited P(VDF-TrFE) films exhibited piezoelectric activity. As Lee et al.

[135] state, the copolymer directly crystallizes in the piezoelectric β phase, which is the

polar form of PVDF and its copolymers. It is possible to increase the piezoelectric and

pyroelectric activity by poling the material, capacitive poling can be performed at room

temperature on the samples that had a lack of response as described by Kohler et al.

[136].
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5.5.2 Results and Discussions on the Accelerometer

The anticipated performance of the screen and stencil printed devices was calculated for

the three geometries shown in Figure 5.2. The expected performance of the ink-jet

printed devices was calculated for the three geometries shown in Figure 5.6. The

piezoelectric voltage constant was calculated using the values of the piezoelectric charge

constant and the average values of the permittivity with the typical values of the material

properties for P(VDF-TrFE ) given in Table 2.2. The sensitivity was calculated for the

S v =-1/2ρgl²

fabricated sensors using Equation 5.11 (	 2	 ). The calculated sensitivity for the

ink-jet, screen and stencil printed sensors is shown in Table 5.7 and Table 5.8. 	 A

Mitutoyo digital micrometer with a resolution of 0.001 mm and an accuracy of ±.00005

in. (0.00127 mm) was used to measure film thickness for the devices in Table 5.7. The

film thickness measures for Table 5.8 were made by cross sectioning the device and

making the measurements under an Olympus Vanox microscope with a Mitutoyo 164²

162 digital micrometer with a resolution of 0.001 mm and an accuracy of ±.00015 in.

(0.00381 mm). From this data it can be seen that the film thickness variations and

sensitivities of the devices varies significantly in all cases.

Table 5.7	 Thickness of Piezoelectric Pads and Anticipated Sensitivity for the Ink-Jet,
Screen and Stencil Printed Sensors Measured With a Mututoyo 293-335 Digital
Micrometer

Screen Stencil Ink-jet

Thickness of PE mt (um) 10 - 200 20 - 300 5 - 10

Minimum Sensitivity ( mV/g) 0.049 0.197 0.012

Maximum Sensitivity ( mV/g) 19.729 44.39 0.049

These devices have NJIT part numbersNJIT-SC/ST/IJ-Vibration-W-XXX52HN/52E/3M
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Table 5.8 	 Thickness of Piezoelectric Pads and Anticipated Sensitivity for the Ink-Jet,
Screen and Stencil Printed Sensors Measured Under an Olympus Vanox Microscope with
a Mututoyo 164-162 Digital Micrometer

Screen Stencil Ink-jet

Thickness of PE mt (um) 200 - 560 50 - 120 70 - 90

Minimum Sensitivity ( mV/g) 19.729 1.233 2.417

Maximum Sensitivity ( mV/g) 154.674 7.102 3.995

Film thicknesses variations in the case of the screen printed devices are due to the

manual screen printing set-up and the use of fabric screens. These discrepancies are due

to the fabric screens lying in the ink as the ink is being deposited and the when the screen

is removed the ink creates non-uniformities as it is pulled out of the wet ink. Further

improvement in fabrication consistency can be achieved by controlling the process.

Building a print box to control the screen position and using metal screens that have their

patterns generated by photolithography will remedy these issues.

Film thicknesses variations of the stencil printed devices were due to the use of

the roller in applying the ink through the stencil. The roller was used to apply the ink due

to the squeegee having issues with pushing the ink under the stencil. Improvements in

fabrication can be achieved by building a print box to control the stencil position and

using metal stencils.

Film thickness variations were minimal for the ink-jet printed films and were

generally caused by defective ink-jet cartridges and nozzles. While printing the nozzles

would clog and in worst case the cartridge would only out put a fraction of the ink

specified leading to non-uniformities in film thicknesses. In other cases there were

complete failures of the cartridge in which the ink was no longer being jetted from the

nozzle but was sprayed out parallel to the substrate surface resulting in undefined films as

seen in Figure 3.11. Further improvement in fabrication consistency can be achieved by
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being very aware of the ink-jet cartridge and at any sign of malfunction replacing it with

a new cartridge.

Vibration measurement accuracy depends on device mounting, measurement

location is repeatable and ensuring device mass is much less than the fixture (to ensure

there is no mass load effects). The initial fixture constructed for the testing is shown in

Figure 5.13. The fixture was designed to verify that the devices had an output voltage.

This fixture has a top plate fabricated out of thin plastic that cover the printed sensor.

The under side of this top plate has a spongy foam material covered by conductive tape at

the contact region and is bare in the active region. This material was intended so that the

top plate would not be in contact with the active region (i.e. the top plate would not add

mass to the sensor). Also the underside of this top plate had guide marks so that the

sensor could be placed in the same location for repeatability of measurements. Between

the bottom surface of the sensor and the bottom fixture plate was a thin sheet of rubber to

ensure that there was good electrical contact.

Figure 5.13 Initial test fixture for the back-to-back measurement of the printed
accelerometer.
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The vibration test system in Figure 5.8 was used to test the fabricated sensors.

Initial testing was performed from 10 Hz to 100 Hz in steps of 5 Hz from 10 to 30 Hz,

then in steps of 25 Hz from 50 to 100 Hz. Between the 50 and 75 Hz measurements there

was a dramatic jump in output voltage for both the commercial and printed sensors. This

increase was thought to be a resonance of that fixture and all measurements were made

from 10 to 30 Hz in 5 Hz steps. Table 5.9 compares the measured sensitivity to the

calculated. In all cases, with the exception of NJIT-ST-Vibration-W-003-52E, the

measured value is an order of magnitude greater then the calculated. To verify that the

top plate was in fact not adding mass to the sensor the top plate of the fixture was

modified

Table 5.9 	 Average Measured Results Compared to the Calculated Sensors
Performance

Sensitivity	 Sensitivity
Variation in film

Sensor	 Measured	 Calculated
(mV/g)	 (mV/g)	

thickness

NJIT-ST-Vibration-W-003-52E 	 39.5	 0.2 to 22	 0.020 to 0.200 um

NJIT-ST-Vibration-W-004-52E 	 39.7	 2.4 to 4	 0.07 to 0.09 um

NJIT-SP-Vibration-W-002-3M	 38.5	 1.8 to 9.0	 0.06 to 0.135 um

NJIT-SP-Vibration-W-002-52E	 31.1	 0.4 to 6.0	 0.03 to 0.110 um

NJIT-IJ-Vibration-W-006-52HN 	 5.67	 0.012 to 0.049	 0.005 to 0.010 um

NJIT-IJ-Vibration-W-002-52HN	 9.68	 0.012 to 0.049	 0.005 to 0.010 urn

Figure 5.14 shows the modified fixture. The devices were placed on the fixture

such that the active region of the sensor was aligned with the hole in the top plate of the

modified fixture and additional measurements were made such that the active region was

under the top plate. In the case of the ink-jet printed sensors, the sensors were placed

under the smaller hole on the left side of the top plate. Measurements of the ink-jet

printed sensors were made with the sensor the right and left of the hole such that the

devices were covered by the top plate plus measurements were obtained where the

sensors active region was between the hole in the fixture. Table 5.10 compares the
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measured sensitivity to the calculated. The measured output voltage of the sensor with

the active region not exposed to the top plate increase by four times that of the

unmodified fixture and the measurement on either side of the hole varied as initially

expected. To determine that this was no due to increased distance that the active region

could move the rubber insert was removed and the measurements repeated.

Figure 5.14 Modified test fixture for the back-to-back measurement of the printed
accelerometer.

Table 5.10	 Average Measured Results Compared to the Calculated Sensors
Performance for the Modified Fixture

Sensor
-Vibration-W-002-52HNNJIT-IJ-Vibration-W-002-52HN

Sensitivity
Measured

Sensitivity
Calculated

Variation in film
thickness

(mV/g) (mV/g)

Active region exposed 39.9 9.68 0.012 to 0.049

Active region to the right of the hole 24 9.68 0.012 to 0.049

Active region to the left of the hole 16.7 9.68 0.012 to 0.049

The rubber insert was removed fro8m the modified fixture. The devices were

placed on the fixture again such that the active region of the sensor was aligned with the

hole in the top plate of the modified fixture and to the left and right side of the hole in the

top plate. Table 5.11 compares the measured sensitivity to the calculated. The measured

output voltage of the sensor with the active region not exposed to the top plate was

measured to be 10.1 mV/g which within 2.1% of the calculated value. The
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measurements on either side of the hole were as much as 22% lower then the calculated

value. To further see the effects of the top plate the fixture was further modified and the

measurements repeated.

Table 5.11	 Average Measured Results Compared to the Calculated Sensors
Performance for the Modified Fixture Without the Rubber Insert

Sensor
NJIT-IJ-Vibration-W-002-52HN

Sensitivity
Measured

Sensitivity
Calculated

Variation in film
thickness

(mV/g) (mV/g)

Active region exposed 10.1 9.68 0.012 to 0.049

Active region to the right of the hole 7.61 9.68 0.012 to 0.049

Active region to the left of the hole 6.2 9.68 0.012 to 0.049

Figure 5.15 shows the typical response curves for the Endevco and the ink-jet

V = g — F
printed sensor. From Equation 5.4 (	 A ) and Newton's second law ( F = ma ) we

see that the curve of the output voltage verses gravitational force is linear. The curve of

output voltage verses frequency goes as the square of the frequency as acceleration is the

2 sin(ωt)).second derivative of the displacement (

a = -vo w

Figure 5.15 Active region of the sensor exposed .
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Figure 5.16 and Figure 5.17 shows the typical response curves for the Endevco

and the ink-jet printed sensor shifted slightly to the right and slightly to the left of the

hole in the fixture. Again in both cases we see that the data falls within the linear and

quadratic fits as they should. When the sensor is moved to different positions the

vibration measurement accuracy is not repeatable.

Figure 5.16 Sensor measured toward the edge of the top plate

15

Figure 5.17 Sensor measured toward the center of the top plate.
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Figure 5.14 shows the modified fixture. The devices were stuck on double sided

tape to the base of the fixture. 0.007 inch diameter gold wire was solder with indium

from the sensor to a printed circuit board which had leads soldered to them. Initial testing

was performed from 10 Hz to 500 Hz in steps of 5 Hz from 10 to 30 Hz, then in steps of

25 Hz from 50 to 100 Hz and then in steps of 100 Hz from 100 Hz to 500 Hz. No

response was measured in the printed sensor below 50 Hz. Between the 300 and 400 Hz

measurement there was a dramatic drop in output voltage for the commercial sensor.

This decrease was thought to be a resonance of that fixture and all measurements were

made from 50 to 300 Hz in 25 Hz steps from 50 to 100 Hz and then in 100 Hz steps from

100 to 300 Hz. The measured sensitivity of NJIT-U-Vibration-W-002-52HN was 0.039

mV/g. A potential cause to this low value is that when the thin gold wires where

repeatedly vibrated they would break. Also the Indium solder joint would break and the

connection was intermittent.

Figure 5.14 Redesigned test fixture.

The deposited P(VDF-TrFE) films exhibited piezoelectric activity. The fixture was

found to be critical in measuring these devices. As seen with the data the fixture with the

hole and the rubber insert removed gave the best results. Further engineering of the

fixture is required to get optimum results.
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5.6 Conclusions

This study demonstrates the potential of a flexible polyimide infrared sensor, with a

unique inexpensive fabrication technique. There has been no output voltage from the

printed IR sensors to date; the potential reason may be due to non-crystalline polymer

films or the incorrect phase of the polymer. The films need to be poled to see if the

pyroelectric coefficients can be increased.

Initial poling of the current IR sensors can potentially be done utilizing capacitive

poling where by the fabricated sensors are inserted between two plates and a potential

applied. Kohler et al. [136] has successfully poled P(VDF-TrFE) sensors at room

temperature with a poling strength of 120 v/μm, the time that the potential is applied will

need to be studied. Also, when more samples are fabricated prior to the deposition of the

top contact, the samples can be corona poled. The samples would be placed on a heated

grounded metal plate, a probe would be located approximately 2 cm above the sample to

supply a charge to the surface creating a potential difference between the top and bottom

surfaces.

This study was able to demonstrate the piezoelectric activity in the P(VDF-TrFE)

films by fabrication of accelerometers. The output voltage from the printed

accelerometers was compared to the output of an Endevco accelerometer and the

sensitivity of the printed device was calculated and measured. The crystallinity of the

polymer films was sufficient in the case of the accelerometers; the tested device exhibits

average voltage sensitivity within 2.1% of the calculated value. The films did not need to

be poled to observe their piezoelectric activity.

The data obtained utilizing the finial fixture shown in Figure 5.14, was plotted

and did not exhibit the quadratic trend as expected from Equation 5.11. This is due to the

changing amplitude of the exciter, as the frequency is increased the impedance of the
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exciter changes leading to the changing amplitude. Therefore the sensitivity of the

printed sensors was calculated with the ratio given in Equation 5.12. The original fixture

with the modifications did not exhibit this effect, but the sensors were tested at much

lower frequencies from 10 to 30 Hz.



CHAPTER 6

CONCLUSION AND FUTURE WORK

6.1 Conclusion

From the early concepts of flexible electronics at the turn of the 20th century, this

technology has come a long way. The initial concepts of flexible interconnects have

evolved into versatile devices with applications from areas such as flexible display

technology and wearable electronics to sensing. Flexible electronics is just beginning to

develop. This rapidly changing area of study is on the cusp of great advances as new

materials are engineered and new fabrication techniques are developed.

The present work has documented some of the preliminary issues with the ink-jet

printing of a metal organic silver ink. Due to the immaturity of the commercial ink-jet

print system used in this study, issues with adhesion and conductivity were observed.

These issues were overcome by the use of commercial inks. The H.C. Starck Baytron P

Jet material was printed on Kapton and on P(VDF-TrFE). Adhesion was adequate while

conductivity was low but working accelerometers were fabricated.

Table 6.1	 Comparison of Printing Techniques

Ink-Jet	 Screen Stencil

Mask generation Easy Moderate Moderate

Cost of Masks No Cost Inexpensive Inexpensive

Cost of Consumables Moderate Inexpensive Inexpensive

Speed of depositing films Slow Fast Fast

Available inks Few Many Many

Synopsis High resolution devices Refined proto-types Quick proto-types

109
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The attributes of the three printing techniques used in this study are compared in

Table 6.1. Generation of masks for ink-jet printing entailed specifying the dimensions in

the software provided with the printer. On the other hand the masks for screen and

stencil printing required transferring the pattern to specific media, screen or stencil. The

cost of all the screens and stencils generated for this study were under $100 for the

screens and under $35 for the stencils. The cost of the consumables for ink-jet printing

were relatively high, each layer requires a cartridge at a cost of $59 plus the syringe to fill

the cartridge. From the printer company these cartridges are one time use items. The

screens and stencils on the other hand can be reused and were reused without any major

problems. Other consumables have equivalent costs for the three methods of printing.

The main hindrance to ink-jet printing was found to be the speed of printing. Multiple

sheets of sensor devices could be printed with the other two methods in the same time

required to print the bottom contact layers using ink-jet printing. Over all the ink-jet

method produced uniform, high quality devices where as the screen and stencil methods

generated rapid devices.

The present work has also documented the success with the deposition of thin

films by screen and stencil printing. DuPont screen printable inks were deposited via

screen and stencil printing on Kapton, transparency films and copy paper. All the

conductive films exhibited excellent adhesion and very high conduction. Multi-layer

films were successfully fabricated. These low temperature, rapid, simple printing

methods could be adapted for mass production.

6.2 Future Work

The ultimate goal of this project was to develop simpler cost effective methods for

fabricating flexible electronics. Screen and stencil printing have provided quick methods
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for depositing many different thin films on flexible substrates. While ink jet printing was

slower over all it allows for rapid art work modifications and high print resolution. These

three methods open the area up to the researcher without access to fabrication facilities.

First and foremost, cost effective and simpler methods were demonstrated and successful

working devices were fabricated.

Finally in this concluding section, with particular reference to this present

dissertation, some further research is posed below. The aim is to incite future researchers

to continue the present quest to further development of low temperature active flexible

thin films with not only the application of sensors but also for display technology and

energy scavenging.

• Preliminary electrical measurements were made on the devices. Further
characterization of frequency response, and impact spectrum could be
ascertained.

• Initial studies of aqueous solution techniques for the synthesis of flexible
ceramic thin films have been carried out but not reported in this research.
Aqueous solution techniques are well published in journals and very
inexpensive to realize. Further work in structural characterization and then
transferring the process to ink-jet printing could lead to vast possibilities.

• Investment in a semi-automated screen printing set-up could lead to better
results in terms of better agreement in electrical performance from device to
device.

• Development of composite inks, such as PZT powder with polymer, could be
formulated to improve the sensor performance.

• Modifications to the commercial ink-jet materials printer system should be
implemented to increase the system's effectiveness. Increases in speed, platen
temperature and drop volume could improve the overall performance of this
system.



APPENDIX A

INK FORMULATION RECIPE FOR INK-JET, SCREEN AND STENCIL
PRINTING

The HC Starck materials and solvents should be at room temperature when mixing the

inks.

Ink-jet metal contacts:

1. Place a 30 ml beaker on a digital scale and then zero the scale.

2. Shake the Baytron P Jet (P Jet) bottle vigorously for approximately 10
seconds.

3. Dispense approximately 5 mL of the P Jet material into a 30 ml beaker.

4. With a syringe remove approximately 3 mL from the dispensed P Jet material
and dispense the syringed material into the 30 ml beaker on the scale (this
material should weight approximately 3 grams).

5. Calculate 4% of the measured value (in the case of 3 grams the calculated
value is 0.12g ±0.03 (c) this is the amount of solvent to be added to the P Jet
material.

6. Dispense approximately 2 ml of ethylene glycol into a 30 ml beaker.

7. With a syringe remove approximately 1 mL from the dispensed ethylene
glycol material and dispense the calculated value from the syringe into the 30
ml beaker on the scale (this material should be approximately 8 drops).

8. Remove the beaker with the P Jet material and ethylene glycol (ink) from the
scale and place it on a hotplate that is capable of stirring.

9. Place a small magnetic stirrer in the beaker with the ink that is on the hotplate.

10. Set the hotplate to room temperature and the stirrer to 3 or approximately 100
rpm. The ink should be stirring with the magnetic stirrer lying in the ink. The
stirrer should not be violently rotating if the stirrer is lower the sped or move
the beaker to a different spot on the hotplate.

11. After 30 minutes remove the beaker of ink from the hotplate.

12. Use a syringe to remove the ink from the beaker and it is ready to dispense
into the ink-jet cartridge.
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Notes:

a. All beaker sizes are recommended sizes bigger beakers can be used if the size
stated is unavailable.

b. If HC Starch Baytron P Jet N is available skip steps 4 -11.

c. This tolerance is ±1% of the calculated 4%.

Ink-jet polymer:

1. Place a 30 ml beaker on a digital scale and then zero the scale.

2. Place 0.2 g (approximately 20 pellets) of the polymer into the beaker on the
scale.

3. Dispense approximately 12 mL of the DMF into a 30 ml beaker.

4. With a syringe remove approximately 10 mL from the dispensed DMF
material and dispense the syringed material into the 30 ml beaker on the scale
(this material should weight approximately 9 grams).

5. Remove the beaker with the polymer and DMF (ink) from the scale and place
it on a hotplate that is capable of stirring.

6. Place a small magnetic stirrer in the beaker with the ink that is on the hotplate.

7. Set the hotplate to 50 C and the stirrer to 3 or approximately 100 rpm. The
ink should be stirring with the magnetic stirrer lying in the ink. The stirrer
should not be violently rotating if the stirrer is lower the sped or move the
beaker to a different spot on the hotplate.

8. After 30 minutes check to see that the polymer pellets have dissolved. If they
have then remove the beaker of ink from the hotplate.

9. Use a syringe to remove the ink from the beaker and it is ready to dispense
into the ink-jet cartridge.
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Screen and stencil printed polymer:

1. Place a 30 ml beaker on a digital scale and then zero the scale.

2. Place 2 g (approximately 100 pellets) of the polymer into the beaker on the
scale.

3. Dispense approximately 12 mL of the Acetone into a 30 ml beaker.

4. With a syringe remove approximately 10 mL from the dispensed Acetone
material and dispense the syringed material into the 30 ml beaker on the scale
(this material should weight approximately 9 grams).

5. Remove the beaker with the polymer and Acetone (ink) from the scale and
place it on a hotplate that is capable of stirring.

6. Place a small magnetic stirrer in the beaker with the ink that is on the hotplate.

7. leave the hotplate at room temperature 22 C and set the stirrer to 3 or
approximately 100 rpm. The ink should be stirring with the magnetic stirrer
lying in the ink. The stirrer should not be violently rotating if the stirrer is
lower the sped or move the beaker to a different spot on the hotplate.

8. After 30 minutes check to see that the polymer pellets have dissolved. If they
have then remove the beaker of ink from the hotplate.

H.C. Starck contact:
Paul Poirier
Customer Service Representative
Electronics & Optics Group
H.C. Starck Inc. 
Newton, MA 02461/USA
T 617-630-5831
F 617-559-3906
paul.poirier@hcstarck.com

Baytron P Jet - http://www.clevios.com/index.php?page  id=995&prod service id=310 
Baytron P Jet N -
http://www.clevios.com/index.php?page id=995&prod service id=1051 

Solvent contact:
Frank Grodio
KEM Chemical Corporation
P.O. Box 3019
Mount Vernon, NY 10553
(914) 699-3110

Ethylene glycol - http://www.jtbaker.com/msds/englishhtml/E5125.htm



Dimethylformamide (DMF) - http://www.jtbaker.com/msds/englishhtml/D6408.htm

VF2-TRFE Contact:
Solvay Solexis
Michael Krauss
Hylar Segment Manager
NAFTA Sales Manager - Melts Fluoropolymers
Office: 856-251-3439
Mobile: 856-693-5638

Solef VF2TrFe 75/25 (P(VDF-TrFE) 75:25)
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APPENDIX B

FABRICATION RECIPE

The power to the Dimatix system should be switched on and the lid to the system should

be closed. Next, open the Dimatix Drop Manager (DDM) software, either by the clicking

on the shortcut on the desktop or under the start button.

The first tab of the DDM software prompts you to install the cartridge. Prepare

the ink and cartridge as per Appendix A. Open the lid of the printer. Insert the cartridge

firmly into the holder on the printer with the electrical connection side toward the back of

the printer. Pull the latch forward and down until it clicks and firmly puts the cartridge

into place, the cartridge should sit flat in the holder. Close the lid to the print system.

The Select Cartridge Settings window will pop up and prompt for the cartridge settings

file. Click yes to load the last file used.

Click on the second tab, select pattern, choice the appropriate file to be printed.

Table B.1 lists the files and the geometries for the fabricated sensors.

The third tab prompts you to load the substrate. Under "Substrate Settings:"

thickness [in microns] and temperature [degrees C] select the appropriate setting from

Table B.2. If an individual sensor is to be printed use the higher temperature value to

drive off the solvent more rapidly.

To load the substrate, open the lid of the print system. Align the clean substrate to

the register mark in the back left corner on the platen. Use Scotch tape on the four

corners to assure that the substrate does not move during printing. Close the lid on the

print system. Back in the DDM software under the Substrate Settings section click on the

on button to turn on the vacuum.

116
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Click on the forth tab, Printer Set-up. Under cartridge settings select the file

kate.jst. In the bottom right corner of the DDM window click on the Drop Watcher

button. Both the Cartridge Settings window and the Drop Watcher window will pop up.

In the Drop Watcher window under cleaning select the file kate.clc. Click on the

Waveform tab in the Cartridge Settings window. In the Firing voltage section of this tab,

click on the button Reset, to reset all the nozzle firing voltages to sixteen volts. Back in

the Drop Watcher window on the right side is an image of the nozzles. With the mouse

click in this area, and hold the left mouse button as you drag the mouse to the left. You

want to get nozzle one on the screen. Once you have nozzle one on the screen click on

the box below the number 1. If ink jets from the nozzle unselect the box other wise leave

it selected and move to the next nozzle until you have checked each nozzle. If all the

nozzles do not jet increase the jetting potentials of those that do not jet to twenty volts.

Starting at nozzle 16 click the box below the number 16 if it jets unselect the box

otherwise leave it selected. Continue until all the nozzles have been checked. Increase

the jetting potential of those nozzles that did not jet by five volts and repeat the above

procedure until all jets are firing. All nozzles may not have the same jetting potential and

may differ from one printing to the next.

In the Cartridge Settings window select the Cartridge tab. Set the Cartridge

Temperature to ambient by clicking on the down arrow until a dashed line appears in the

Temperature Setpoint box. Leave the Meniscus Setpoint and the Cartridge Print Height

at the default of 2.5 and 1.000 respectively. If the first or last nozzles do not jet change

the number of Jets to reflect this and the Starting jet if applicable.

In the Cartridge Settings window select the Cleaning Cycle tab. Change the Start

of Printing and During Printing files to NONE. Set the End of printing and While Idle
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files to kate.clc. leave the Run every value set to the default of 300 seconds. In order for

the changes to take effect, go to file and save the changes.

In the Drop Watcher window go to file and exit to return to the DDM window and

to return the cartridge carriage to it original position.

In the DDM window under the Print Pattern section select edit and verify that the

drop spacing, number of layers and the other dimensions are the same as in Table B.1 and

B.2. Once these data are verified save the changes, if there are any, and close the

window.

In the bottom right of the DDM window click on the print button, the print

preview window will appear. This window shows the pattern to be printed and then gives

the number of jets to be used if these appear to be correct click on the print button, if the

information is not correct click on the cancel button and fix the error.
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APPENDIX C

DEVICE FABRICATION MATRIX

The following tables describe the differences in the fabricated devices.

Mesh material in Table C.1 is Screen Fabric-Multifilament Polyester purchased at Jerrys
artist outlet, West Orange, New Jersey

8XX = 86 holes per linear inch
12XX = 124 holes per linear inch
14XX = 138 holes per linear inch

Fabric with an undefined hole spacing was purchased at Jo-Ann Fabric, Middletown, NY
and is called Shear in the Mesh of Table C.1
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