
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

A VIRTUAL TRAINING ENVIRONMENT FOR
WHEELCHAIR MOUNTED ROBOT

by
Elizabeth Leichtnam

A model of a robotic manipulator designed to respond to different inputs from users with

different skills or conditions is presented. This model can be adapted to different input

variables and converted into joint angles which relate to movement in space of the

manipulator's links. The algorithm allows for real time response and the features of the

virtual environments (i.e., 3D design, stereoscopic vision) gives the designers the

opportunity to use this model for training and usability evaluation according to the skills

and different conditions that users could present.

Two types of virtual environments were created aiming to be used as training tools

for the user in the operation of the controllers. The first type is intended to develop

complex daily tasks; the second one was designed to be used as an evaluation of

usability. A relationship between the input given by the human motor system of the

potential user and the response obtained from the model is evaluated by using Fitts'

Law. Several works have been written using it as a model of prediction of human

performance for Human-Computer Interaction. This work uses structured virtual

environments where the variables required for Fitts' Law application are known and

controlled. The evaluation of the response of the manipulator to the inputs from the

operator have given information about the feasibility of controlling the movements of

the robot according to the skills of the user.

A VIRTUAL TRAINING ENVIRONMENT FOR
WHEELCHAIR MOUNTED ROBOT

by
Elizabeth Leichtnam

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2008

BIOGRAPHICAL SKETCH

Author:	 Elizabeth Leichtnam

Degree:	 Master of Science

Date:	 May 2008

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2008

• Bachelor of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2006

Major:	 Biomedical Engineering

To my mom for believing I could do anything

v

ACKNOWLEDGMENT

I would like to express my sincerest gratitude and appreciation to my advisor, Dr.

Richard Foulds, who provided invaluable guidance throughout my undergraduate and

graduate studies at New Jersey Institute of Technology. I would also like to thank my

committee members, Dr. Sergei Adamovich and Dr. Bruno Mantilla for their assistance.

I would also like to recognize my family. Without their continued love and support, I

could not have reached the goals I have today. Thank you to all my fellow colleagues in

the lab for their support and indispensable knowledge throughout my endeavor. Lastly, I

would like to thank the National Institute on Disabilities and Rehabilitative Research for

their funding through the Rehabilitation Engineering Research Center Grant

#H 13 3E05 00 1 1 -06. Thank you.

vi

TABLE OF CONTENTS

Chapter	 Page

1 BACKGROUND 	 1

1.1 Introduction. 	 1

1.2 Motivation 	 1

1.3 Assistive Robotics 	 2

1.4 Wheelchair Mounted Robotics 	 5

1.5 Virtual Reality 	 8

1.6 Stereoscopic Vision 	 9

1.7 Fitts' Law 	 11

1.8 Functional Testing 	 14

2 SOFTWARE AND SETUP 	 16

2.1 Interfaces 	 17

2.1.1 Immersion Probe and Personal Digitizer.. 	 17

2.1.2 Spaceball® 5000. 	 18

2.2 Software Applications 	 20

2.2.1 Virtual Reality Toolbox 	 20

2.2.2 VRML 	 20

2.2.3 Virtual Reality Editors 	 21

2.2.4 Virtual Reality Viewers 	 22

2.2.5 Robotics Toolbox 	 24

3 DESIGN 	 25

3.1 World Building 	 25

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2 Control Algorithms 	 29

3.2.1 Collision Detection 	 29

3.2.2 Object Rotation 	 36

3.2.3 Toggle Control. 	 37

3.2.4 Wheelchair Movement 	 39

4 IMPLEMENTATION 	 41

4.1 Experimental Design 	 41

4.2 Data Collection 	 45

4.3 Results 	 46

5 DISCUSSION AND FUTURE WORK. 	 55

APPENDIX A SAMPLE TRAJECTORIES FROM FITTS LAW TESTING 	 57

APPENDIX B SAMPLE TRAJECTORIES FROM BOX AND BLOCKS TESTING. 61

APPENDIX C SCREEN SHOTS FROM VR WORLDS 	 64

REFERENCES 	 66

viii

LIST OF TABLES

Table	 Page

4.1	 Analysis of Variance for MT for all input devices 	 47

4.2	 Mean Times per Task and ID's 	 47

ix

LIST OF FIGURES

Figure Page

2.1 Immersion Probe 17

2.2 Spaceball and Directions of Force.. 	 19

2.3 User interface for Spaceball 	 19

3.1 Coordinate Systems For Graphical Objects In Hierarchy 	 26

3.2 Robotics Tollbox Robot and Coordinate System 	 32

3.3 Transformation from VRML to Matlab Coordinates 	 33

3.4 Simulink Code For Moving Many Objects 	 35

3.5 Virtual World Where Robot Can Move Chess Pieces 	 36

4.1 Orientations for Fitts' Law Tapping Experiments 	 44

4.2 Interval Plot for Fitts' Law of MT over Condition, ID, and Task 	 48

4.3 Interval Plot for Fitts' Law of MT over Task Only 	 49

4.4 Interval Plot for BBT of Task Only 	 53

A.1 X, Y, Z Plot of Finger Movement 	 57

A.2 X, Y, Z Plot of Stylus 	 57

A.3 X, Y, Z Plot of VR Stylus 	 57

A.4 X, Y, Z Plot of Spaceball 	 57

A.5 X, Y Plot of Finger 	 58

A.6 X, Y Plot of Stylus 	 58

A.7 X, Y Plot of VR Stylus 	 58

A.8 X, Y Plot of Spaceball 	 58

x

LIST OF FIGURES
(Continued)

Figure	 Page

A.9 X, Y, Z vs. Time of Finger 	 59

A.10 X, Y, Z vs. Time of Stylus 	 59

A.11 X, Y, Z vs. Time of VR Stylus 	 59

A.12 X, Y, Z vs. Time of Spaceball 	 59

B.1	 X, Y, Z Plot of Finger Movement 	 60

B.2 X, Y, Z Plot of VR Stylus 	 60

B.3	 X, Y, Z Plot of Spaceball 	 60

C.1	 Virtual Kitchen with Movable Utensils and Jell-o Cubes 	 61

C.2	 Virtual Office with Computer, Desk, etc 	 61

C.3	 Sample Fitts' Law World Used for Experiments 	 62

C.4 Virtual Box and Blocks World used for Experiments 	 62

xi

CHAPTER 1

BACKGROUND

1.1 Introduction

Robotics as Assistive Technology is in need of improvements before mass market appeal.

The excessive price and limited usefulness of most assistive robots are two glaring

factors in the limited success of assistive robotics. Wheelchair mounted robots offer a

good option for those whose abilities make it necessary for nursing aid and/or robotic

assistance. They offer independence in unstructured environments but are sometimes too

slow. The expense of these systems and the danger of a large machine working so

closely with humans, and especially children, motivated the development of a three

dimensional virtual training system. The design of this system is presented in

conjunction with an evaluation of the system using Fitts' Law to verify the design and aid

in future redesigns of algorithms for the training system and new interfaces.

1.2 Motivation

There are many conditions and situations where a person's motor ability may be severely

diminished either permanently or temporarily. The New Jersey Institute of Technology

Rehabilitation Engineering Research Center (NJIT RERC) on Technology for Children

with Orthopedic Disabilities identified as its goal to improve the quality of life of

children with cerebral palsy, muscular dystrophies, arthrogryposis, contracture due to

burns, congenital and traumatic amputations, polio and bone diseases. These conditions

can require the use of wheelchairs and can also significantly impair the ability of their

1

2

arms. These impairments can be accompanied by a limited range of motion, diminished

strength, and loss of coordination. If these conditions reduce a person's ability to

manipulate objects and perform necessary daily tasks, the options of lifestyle are limited.

Current available options consist of assistive technologies or near fulltime nursing aid.

For several individuals in this situation many of the existing assistive technologies lack in

practicality and usability. The technology is either not real-world-ready, the device is too

simplistic or only conditionally useful, or the use is too slow to be practical in everyday

circumstances. Because of these reasons, many endure the cost of nursing aid and the

negative impact on their quality of life due to the lack of their independence.

1.3 Assistive Robotics

Assistive rehabilitation robotic technology is categorized by the three words themselves.

The definition of robotics differs from source to source but can be narrowed to two main

aspects, programmability and multi-functionality. The assistive or rehabilitation aspect's

main aim is to improve function. So any device that is programmable and improves

function can be considered an assistive robot. The assistive robots of the last thirty years

can be grouped into several categories: Fixed site or workstation robots, task specific

robots such as power feeders, mobile assistive robots, wheelchair-mounted manipulators,

orthotics, therapeutic robots, and educational robots (Hillman, 2003). These types of

robots can again be grouped into the type of function of which the device seeks to restore,

physical or social. Orthotics, therapeutic robots, and educational robots seek to restore

the actual physical function of a person where as workstation robots, power feeders,

mobile robots, and wheelchair mounted robots seek to give the user the ability to perform

3

certain tasks that they would otherwise not be able to perform on their own, which

provides improved social functionality by means of increasing their independence.

Hillman (2003) argues that the impact of any of these technologies is only significant if

they become commercially available and successful. Devices that improve social

functionality in the past have been most successful by this definition. Cost and

functionality of these devices seem to be the driving factors of success of these devices

where they usually sacrifice one factor for the other.

The simplest and least expensive technology in this field is the task or multitask

specific robot which sacrifices function for form and cost. These devices come in the

form of power feeders or grooming machines. The disadvantages to this type of system

are obvious. Not only do these devices serve one or only a few functions, but they also

require quite a great deal of preparatory work by the care giver to set up. The care giver

must prepare the food into tiny bits and place them in the tray or place the grooming

devices in their proper places (Topping et al, 1999). They must also place the user and

robot in working positions. The major selling point to these devices is a significantly

reduced price in comparison with other assistive robots available to the disabled public.

This technology is not completely dismissible. For those with severe physical disability,

their opinion of their own quality of life might be greatly improved due to the ability to

do at least one task on their own without the reliance of their care giver (Topping et al,

1998). The labor saving ability of these devices and the independence brought to their

users is questionable, but the value in giving the user independence in one or a few tasks

has had a convincing effect on the users' self-esteem.

4

The concept of this technology can be extended from a task independence into a

situational independence. Where power feeders provide task independence, workstation

robots provide situational or environmental independence. With workstation robots the

system is fixed and can only assist the user in the fixed environment. The environment

must be semi-structured (Van der Loos et al, 1998), meaning the system can not handle

any situation and any variable that presents itself Independence and assistance is only

provided to the disabled user when they are positioned inside the room in which the robot

is mounted. The potential to the improvement of the quality of life and self-esteem is

immense. The implementation of this technology in a person's life might enable them to

return to work or enjoy a hobby that they thought was impossible. Although this

restoration of function is impressive and appreciated if adequate to the user, it does not

maximally restore social function where other tasks or environments are concerned.

Mobile robots are another type of assistive robotic technology that has gotten

quite a bit of research attention in the past few decades. Mobile robots are usually

designed to be capable of autonomous operation in the unstructured environment. They

usually sacrifice manipulability for mobility, where task specific and workstation robots

sacrifice mobility for efficacy of manipulation in specific situations. Mobile robots

usually employ vision systems, and/or a complex series of integrated sensors that help the

robot chose its path and avoid obstacles (Yoshiyuki et al, 2003). These components and

the complex algorithms created to use them to control the robot add immensely to the

final cost to the user. The main goal of these robots is to reduce the amount of assistance

from a human care giver required by the handicapped user. The fetch and carry use

limits the ability of the system to give maximal independence to the user. The user

5

remains still while the robot identifies an object and brings it to the fixed position of the

user. Therefore the user must remain fixed and wait for the robot to carry out its

predefined commands. This fetch and carry approach also assumes that once the object is

brought to the user that he or she has enough ability to use or manipulate on their own the

object that was brought to them. For a user who is too disabled to use a wheelchair to

navigate, it is unlikely that he/she will have the ability to manipulate what ever is carried

to them by the robot. Along with expense and impracticality of the time of delivery, the

technology is also lacking. These systems are not usually an out of the box system. It

not only requires a great deal of customization in the programming of the algorithms of

the robot but occasionally the rooms or buildings also need to be outfitted with markers

(Evans, 1994) and if using a vision system the house/rooms need to be plainly decorated

so that the robot's vision system is not confused. These are not trivial inconveniences

and can cost a great deal in labor, time and disturbances to daily life. This chain of

assumptions made in the design of these types of robots and the limitations of their use

restricts the population and circumstances where these robots will be useful and worth the

investment of time and money.

1.4 Wheelchair Mounted robots

The wheelchair mounted robot design idea attempts to bridge the gap between mobility

and manipulation by involving the user. This type of robot is technically a

telemanipulator which means it relies solely on the user for its commands to move and

generate task goals. A group from the Netherlands developed and released on the market

a wheelchair-mounted assistive robot called the Manus arm. It is a six degree of freedom

6

robot with a gripper which operates in the direct space of the disabled end user. The six

degrees of freedom allow the robot to achieve any position and orientation in the space of

the robot which does not restrict the activities or space in which the robot will function

properly. The Manus allows for a human-like range of motion and acts somewhat as a

third arm. The Manus has no complex system of sensors in which it tries to obtain

information about its environment or the task performance at hand (Driessen et aI, 2001).

It relies on the user as the sensory information so that it can operate in an unstructured

world. Some robotic systems try to define the environment in which it operates, which

limits the use of the robot and the independence of the user. Other systems use complex

sensory systems which are not only expensive but have flaws and complications that do

not have solutions as of yet.

The Manus is not perfect though, by any means. When designing a device

specifically for the physically disabled it is important to keep in mind how a device is

going to interface with a population with not only a special need but also vastly varied

abilities. Creating an interface that controls all six degrees of freedom and making it

manageable by users with varying mobility is a difficult task. The Manus design team

focused mainly on developing interfaces that accommodate different abilities and not

those that alleviate the difficulty of operating the 6+ 1 degrees of freedom of the robot.

When delegating the responsibility of the movement of the robot to the user the designer

should make every effort to ease that burden. The interfaces available for the Manus

include a keypad, a two degree of freedom joystick, a foot peddle, etc. which force the

user to switch between several modes to control all joints and motions of the robot

(Driessen et aI, 2001) which can be a long and arduous task. One of the main advantages

7

to specifically the Manus robotic arm over other available wheelchair mounted robots, is

that it comes with software and settings that make interfacing and control of the robot

adaptable and updateable so that if a new device or technology is found to be more

effective, it is possible to provide it to the end user. For these reasons, and after review

of existing technologies, the NJIT RERC on Technology for Children with Orthopedic

Disabilities embarked on a task of improving the usefulness and marketability of the

Manus Arm.

The approach to this includes the development of new human-machine interfaces

and the conversion of existing devices to perform unstructured tasks in a near real-time

manner, as well as a virtual reality-based training environment. Before implementing the

control mechanisms in the actual manipulator, these mechanisms are designed and tested

in a 3D virtual environment in a scaled model from the actual one; this virtual

environment is improved by featuring stereoscopic perception through a pair of special

goggles combined with a software/hardware arrangement. The 3D model is necessary to

aid the clinicians and users determine which input interfacing device best suits the user's

requirements and conditions since each of the users has their own unique level of ability

and their own preferences. Offering multiple interfaces that can operate multiple degrees

of freedom at once and in a time efficient manner is an important aspect of the system.

Also, operating multiple degrees of freedom at once can be confusing and the learning

curve is possibly quite steep. Therefore, the 3D environments were created for the users

to familiarize themselves with their new assistant. This will be a safer and less costly

alternative to training patients directly to operate the Manus ARM. Training before using

8

the Manus ARM is necessary because there is risk of damaging a very expensive piece of

equipment and a possibility for the user to harm themselves or people around them.

1.5 Virtual Reality

The term virtual reality refers to computer displays that are interactive and give the

illusion of being in another location. The techniques and technology of modern evolved

from vehicle simulation technology of the 1960's (Ellis, S.R. 1994). Today VR is used

for laparoscopic surgical training, teleoperation, planetary surface visualization, and

advanced gaming. Media in the early stages of the technology gave the erroneous illusion

that the technology was more advanced and realistic than it actually is. Although modern

applications of virtual reality employ very advanced technologies such as haptics, and

highly advanced visual and auditory techniques, the scope of this project does not include

them. Instead virtual reality is used as a tool to create a system conducive for learning

how to operate a specific wheelchair mounted robot under realistic conditions.

Virtual reality usually refers to and implies an immersive 3D experience. For the

purposes of this document virtual reality, virtual worlds, and virtual environments all

refer to the same entity, which is the creation of a world or environment in which a

person can see and interact with the world itself or objects placed inside of it but is not

completely immersive. The technology created/used is most aptly comparable to that of a

video game, where input from a user is detected and employed to guide the visual output.

Although, the dissimilar aspect of the type of virtual reality used as compared to normal

computerized gaming, is the visual representation is usually first person and the

environment is not story or goal directed. The tools used to create the necessary visual

9

representation of the robot and the objects with which it interacts are the Virtual Reality

Modeling Language or VRML, 3D modeling software which can create 3D objects in the

VRML file type (.wrl) such as VRealm Builder®, 3D Studio Max®, ProEngineer®,

SolidWorks® etc., Matlab® and Simulink® for the creation of control algorithms,

Internet Explorer® (IE) with an IE plug-in such as Blaxxun Contact® for VRML viewing

in an IE window, and a computer with a graphics card capable of 3D stereoscopic

viewing.

1.6 Stereoscopic Vision

Stereoscopic vision is any technique capable of producing three-dimensional visual

information or creating the illusion of depth in an image. It can most easily be described

as the three dimensional viewing similar to what one can experience in movie theaters

and Imax around the globe when the show is advertised in "3D". Although the three

dimensional image is created by a different technique for movies and other media, the

principal is similar. The illusion of depth is created by presenting each eye with different

components or perspectives of the same image and letting the brain reconcile the two into

the third dimension. There are several techniques for creating a three dimensional image

including red-blue anaglyph, linear polarization, circular polarization, and shutter glasses.

Shutter glasses are used to create the 3D image for the environments described in this

document. They are made of a material that contains a polarizing filter which becomes

dark when voltage is applied, but is otherwise transparent. These glasses are connected

to the computer's video card through a sync. The sync causes the glasses to darken over

one eye, and then the other in synchronization with the refresh rate of the monitor. The

10

monitor, likewise, alternately displays different perspectives for each eye synchronized

with the eye which is given the transparent side of the eyeglasses. The setup employed

uses a CRT monitor with a refresh rate of 120 Hz, meaning each eye is exposed to 60 Hz

so that image flicker is difficult to detect and image ghosting is kept to a minimum.

The purpose behind creating a virtual environment with 3D stereoscopic

capabilities is to mimic as closely as possible real situations. If the purpose of the system

is to train individuals for real world situations, and tasks in the real world require

manipulation in three dimensions, then the training simulation should reproduce those

tasks in a virtual world that not only has those three dimensions but are perceivable and

are not just mathematically in existence. The stereoscopic display technology allows you

to place objects at different depths and allows those depths to be perceived inside and

outside of the plane of the monitor. Realism is not the only benefit to a stereoscopic

display. Research done in 1989 (Drascic et al) showed that with simple tasks, there is no

learning curve associated with a stereoscopic display. After repetition of the task,

subjects performed the task with the same level of proficiency at the first and last trials

meaning that stereo assisted their movements so that no improvement was necessary.

The experiment also showed that the proficiency of the task with monoscopic vision

approached the proficiency of stereoscopic vision with repetition. The same study

performed another experiment with a Fitts' Law paradigm. Using Fitts' Law to change

the difficulty of a task, they found that stereoscopic vision was more beneficial when the

difficulty of the task was increased. For simpler tasks the difference between the two

displays is less noticeable. The real world requires manipulation in all degrees of

freedom and complex motions in combination. The difficulty of the studied tasks is

11

small and measurable in comparison to real world tasks. Using this principal provides for

the logic that stereoscopic vision would allow for users to perform tasks more

proficiently at the onset of use, contrary to monoscopic where some instructional and

training time would be required for complex real world tasks. Eliminating this time

allows for users to transfer more quickly to the ultimate goal of control of the real

wheelchair mounted robot. These claims were supported in 1991 by Draper et al. Their

experimental set-up differed from the first study but confirmed that stereoscopic vision

allowed for tasks with higher difficulty (Fitts' Law index of difficulty) to be completed at

faster rates. They also performed an experiment measuring the length of time it took for

subjects to complete an unstructured, more realistic tasks. They found that on average

the task was performed 65% faster using a stereoscopic vision system over a monoscopic

view. Due to these results, stereoscopic vision was determined to be an important and

necessary aspect of the training system, because decreased task time and learning curve

allow users to train on the system with minimal frustration and maximal success. Also,

training time could focus on learning the how input device(s) control the movement of

the robotic manipulator in all degrees of freedom.

1.7 Fitts' Law

Fitts' Law was developed in 1954 as an extrapolation of information theory. Information

theory quantifies the capacity of the transmission of information, measured in bits,

through a non-ideal channel perturbed by noise. Paul Fitts drew an analogy of the

transmission of data though a medium such as a copper wire to the movement of

information through the human motor system. The Fitts experiments were aimed at

12

evaluating the behavior of the receptor-neural-effecter system of the human motor system

in developing specific repetitive tasks, tapping, disc transfer, and pin transfer (Fitts,

1954). The experiments yielded a measurement of information transmission capacity of

human motor system in controlling amplitude of movement. As a task becomes more

difficult the time taken to execute the task increases, in addition, as more accuracy is

demanded the time taken to execute the task also increases (Fitts, Peterson, 1964). The

mathematical formula for this law is most commonly found as:

Where C is the capacity of the human neuromuscular system

ID is the index of difficulty

MT is the mean movement time.

A is the amplitude of distance moved

W is the target width

and linear regression produces

where a and b are arbitrary task based constants

Since Fitts' first paper was published many researchers have tried to improve the model's

accuracy, to account for nonzero intercepts, or to account for low values of ID. Many

formulations have been published which try to account for these problems with Fitts'

original formulation. These competing models have used different dimensional variables

such as effective width and effective amplitude. They have taken into account approach

angle when the experiment is expanded into a second dimension. Other models have

used linear or power functions to describe the phenomena. Among all these models Fitts'

original equation describes best what physically happens and keeps intact the analogy of

13

information transmission through the human neuromuscular system with the exception of

Shannon's formulation (MacKenzie, I. S., 1992).

MT=a+blog A+W
2 W

Shannon's formulation is only significantly different from Fitts' Law when the ill

approaches zero. Although this exception is more accurate in the low region of ill bits, it

should be noted that the original information theory equation was only intended for

situations with high signal to noise ratio, and that assumption carried over to Fitts' Law is

that it should only be used for larger values of ID.

Fitts' Law was verified as a tool in evaluating tasks involved with human-computer

interaction. MacKenzie (1992) did an across study comparison of six different

employments of Fitts' Law with computer input devices. These studies compared mice,

isometric and displacement joysticks, trackballs, touch pads, eye tracker, and foot pedal.

Because of the diverse and large amount of variations introduced within and between

studies a consistent model was not found. Although a model predicting performance in

human-computer interfaces is not concrete, recommendations for experimental design

were given. MacKenzie postulates that more reliable within study results can be obtained

by "adopting a wide and representative range of A-W conditions" and "adopting the Fitts

paradigm for serial task or discrete tasks offers the benefit of a simple experimental setup

and invites access to a large body of past research." Therefore, the Fitts paradigm was

adapted for the verification of the design of the virtual world. Similar experiments to

those done for mice and joysticks will be performed inside the virtual 3D world. The

major difference between these experiments and the setup described in this document is

that the human movement is not directly correlated to the virtual movement. Subjects

14

are asked to use the isometric force controller or a large position controller to displace the

end-effecter of the virtual model of the wheelchair mounted robot, and reach specific

targets located in specific points in space (Exact experimental design described in

Chapter 4). These experiments will help identify any improvements that need to be made

to the algorithms, and to also assist in determining which interface is most suitable for a

disabled user's specific needs.

1.8 Functional Testing

Fitts' Law has been used as a way of quantifying human motion of limbs by describing it

as information transfer through the neuromuscular system. Previous Fitts' Law studies

have used only healthy subjects for the purpose of assessment of the model. This study

proposes the use of Fitts' paradigm as a tool for comparison between healthy and

disabled subjects. Because the design of the system is aimed at giving function to those

who have little to no motor function in their upper limbs the goal is to make a comparison

to their physical abilities and the effective function that can be restored due to the

implementation /use of the input systems and the wheelchair mounted robot. There are

many qualitative and quantitative measures of physical upper extremity being used by

physical therapists and researchers around the world. Many of the published general

functional tests are listed below.

• the Minnesota Rate of Manipulation (MRM) test
• the Upper Extremity Function Test (DEFT)
• the Purdue Pegboard test
• the Jebsen test of hand function
• the Nine-Hole Peg test
• the Smith hand function evaluation
• the Box and Block Test (BBT)

15

• the Physical Capacities Evaluation of Hand Skill (PCE)
• the Action Research Arm (ARA) test
• the Sollerman hand function test
• the Standardized Object Test (SOT)

For a more extensive review of these and other such tests see van Tuijl et al, 2002.

These tests are aimed at giving a measure to the function that exists with a person with

less than healthy function in their upper extremities. They are most often employed to

ascertain whether or not function has been gained after some therapeutic intervention.

Most of these tests include both gross and fine motor movements. These tests consist of

tasks like picking and placing objects of different sizes and weights, placing pegs in

holes, stacking objects, writing, and other simulated activities of daily living. Out of

these and other functional tests the Box and Blocks Test (BBT) was chosen as a simple

test that could be used as an experiment to compare the real world with the virtual

worlds. It was chosen for several reasons, first because the Test apparatus is available to

the NJIT RERC, it is easy to perform and takes very little time, published normative data

is available on healthy adults, and finally because the virtual version was easy to design

and render. The Box and Block test is made up of a larger wooden box with a partition

directly in the centre creating two equal sides. A number of small multi colored wooden

blocks are placed in one side of the box. The subject being tested is required to use the

dominant hand to grasp one block at a time and transport it over the partition and release

it into the opposite side. The subject is given 60 seconds in which to complete the test,

and the score of the test is reported as the number of blocks transported to the other side.

This test was originally developed to evaluate the gross manual dexterity of adults with

cerebral palsy but has since been used on children and patients with other disorders

(Mathiowetz et al, 1985).

CHAPTER 2

SETUP, REQUIREMENTS, AND PREVIOUS WORK

As of now two input devices are implemented with the 3D training system and two more

are in development. The first is a position sensing six degree of freedom stylus called the

Immersion Probe® . The other operational device is an isometric force input ball called

the Spacemouse 5000 ® that interprets forces and torques in six degrees of freedom at

once. There are two more devices that can be used as inputs and which interfaces are in

development. The first one is the Flock of Birds ® which uses a magnetic field in a

transmitter and sensor system to attain position and orientation in space (6 DOF). The

other one is a simpler three degree of freedom position recognition which implements

accelerometers. The development of these devices is important because it allows the

ability to cater to the specific special needs of our intended users.

Whichever device is implemented it is used to attain the joint angles of the robot.

These joint angles found through standard inverse kinematics and singularity avoidance

algorithms for the Spaceball or a simple conversion for the stylus. These angles are then

used as input for the 3D display. All the computation and control algorithms are written

in Matlab. The 3D worlds are created in VRML 97 programming language using VRealm

Builder software as the developing platform. Matlab's Virtual Reality Toolbox allows

for the interaction of the written algorithms and the VRML visualizations through an

internet plug-in. This plug-in allows for stereoscopic vision if the hardware conditions

are provided (i.e., video card and stereo devices).

The 3D worlds have been developed to mimic real life situations which will be

helpful for the users to be trained on for real life applications. The worlds created include

16

17

simple worlds which components are created to be part of functional tests. The design of

the worlds may include put and place tasks, stacking tasks, and a fine dexterity in the

foyn of a chess game. There are more complex environments where once the user has

mastered the movement of the joints of the robot he/she can simulate moving through as

in the wheelchair. These environments include a kitchen and an office. The user can

move through them and manipulate certain objects as they command by using the input

devices. These environments are helped in their realism through the use of an advanced

graphics card which allows for stereoscopic vision display. With this aspect users can

perceive depth and closely corresponds to their perception of space as if they were in

their wheelchair with the real manipulator attached to it.

2.1 Interfaces

2.1.1 Immersion Probe and Personal Digitizer

The Immersion Probe™ which will be referred to as the stylus, is a six-degree-of-

freedom tool with six revolute joints and three of them located in its end-effecter. In this

way its shape is similar to that of the robotic Arm that it is used to control, but the link

lengths and offsets differ which does not allow a direct one to one correlation. The shape

can be seen below.

Figure 2.1 Immersion Probe

18

Because of its similar shape this device controls the ARM manipulator through mapping

the position and orientation of the tip of the stylus to that of the end-effecter of the ARM.

Although it requires quite a bit of movement and control from the user, the advantage of

this device is that it uses intuitive movement that is similar to what the user would expect

if they were to manually move the end-effecter of the ARM itself. Although these

movements are not a directly scaled mapping it requires less imagination and learning of

the movements the ARM makes. A secondary advantage is that it requires less

processing of the input in terms of the response obtained from the model.

The stylus uses optical encoders at each of the joints and custom circuitry along with RS-

232 serial port to communicate with the PC (Immersion Corporation). The

communication protocol was previously established by another member of the NJIT

RERC on Technology for Children with Orthopedic Disabilities and more information on

how it was established, what the components of the system are, see Ramirez, 2007.

2.1.2 Spaceball® 5000

The Spaceball® 5000 is a device that receives forces and torques as inputs in six degrees

of freedom. Pressure can be applied directly to the device in six different directions and

the output is received as either positions or velocities. The directions of the inputs are

shown below, which are three axes of force (red arrows) in right/left, fore/aft, and

up/down and torques (blue arrows) around those axes. Figure 2.2, shown below,

illustrates the Spaceball device and demonstrate the forces and torques used to operate it.

19

Figure 2.2 Spaceball and Directions of Force

The device uses optical sensors to gather the input infonnation and communicates with

the PC through USB (universal serial bus). The device drivers are already available with

the use of Matlab's Virtual Reality toolbox so communication is simple. The input is

gathered as a Simulink source and the parameters of the Spaceball are adjustable through

a Simulink source parameter block GUI (graphical user interface), which is shown in

figure 2.3 below. These parameters include Mode, enabling axes, sensitivity and others

which can be changed by either entering values or checking boxes.

i& I l I

Magellan Space Mouse (mask) (link)

M ageilan 5 pace Mouse input device driver

Parameters

Port: I USB 'II I
Outputtype: I,--,Sp,-ee_d _______ -''''''''--1
o Dominant mexle

o Disable >mition rrovement

o Disable rotatioo movement

_ N ormaize output angle

I Limit position

Position sensitivity

10.0001

Rotation sensitiv'Y:

10.00001

Initial >mita,:

1(000)

initial rotation:

1[000]

Lower postioo lim.:

I ~H,-OO_.10,-0 '_100~1 _____________ :J
Upper postioo lim.:
!NI-O 100 1" 0'

Figure 2.3 User Interface for Spaceball

/

20

2.2 Software Applications

2.2.1 Virtual Reality Toolbox

The Virtual Reality Toolbox is a means for modeling active systems in virtual reality. It

broadens the capabilities of Matlab and Simulink to include virtual reality graphics. The

Virtual Reality Toolbox features include tools for creating and visualizing virtual reality

models. These features are Matlab functions and Simulink function blocks useful for

programming dynamically changing graphic scenes, and also software and installation

packages for creating, editing and viewing the virtual scenes. The software tools are

VRML support, VRealm Builder® which is software for building 3D worlds in the

VRML syntax, and Blaxxun Contact® IE plug-in for VRML viewing in an IE window.

2.2.2 VRML

VRML is an acronym for the Virtual Reality Modeling Language. VRML is a 3D

interchange format and can be thought of as a 3D analog to HTML. The creation of the

language stemmed from an effort to enhance the content of Web pages with advanced

three-dimensional graphics and interaction with those graphics. VRML is an open and

flexible platform for creating interactive three-dimensional scenes. The use of 3D

graphics has become more relevant outside of the traditional forums of art and gaming

due to the improvement of graphical and computational ability of computers. Technical

and scientific uses for 3D visualizations have become more attainable through the help of

the Virtual Reality toolbox by MATLAB (Humusoft s.r.o. and The Math Works, Inc,

2001).

21

VRML "defines most of the commonly used semantics found in today's 3D

applications such as hierarchal transformations, light sources, viewpoints, geometry,

animation, fog, material properties, and texture mapping" (Carey, R., Bell, G., 1997).

Virtual worlds are created in VRML using what is called hierarchal scene graph. The

scene graph is composed of nodes. VRML defines 54 different types of nodes which

contain information about the properties of the entities inside the virtual world. These

properties include geometry, appearance, sound, and others. Fields are the data storage

mechanism for nodes and are subordinate to nodes in the hierarchal structure. There are

20 types of fields which can be of varying data types (Carey, R., Bell, G., 1997). In this

structure nodes can have "children" meaning it contains other node(s) or nodes may have

more than one "parent" and is hierarchally underneath one or more nodes. This structure

allows for the creation of complex objects or worlds from simpler subparts. VRML files

(.wrl extension) contain the header, the scene graph, prototypes, and event routing. The

prototypes and event routing were not used in this document and will not be described

further. After a complete world is built the VRML files are then processed by a browser

for viewing.

2.2.3 Virtual Reality Editors

VRML files use a standard text format and therefore any common text editor can used to

create or edit VRML files. V-Realm Builder is a software application used to generate

VRML (.wrl) files, similar to the way text or software can generate HTML files for web

pages (Humusoft s.r.o. and The Math Works, Inc, 2001). V-Realm Builder provides a

platform for creating worlds without a deep understanding of the language. It ensures the

correctness of the syntax of VRML file and provides graphical feedback for the design

22

decisions made. There are other 3-D editors, which have different formats and abilities

that have the capability to export their format to the VRML format. These packages

include cad packages such 3D Studio and ProEngineer. V-Realm Builder is an editor that

uses VRML as its native format and it is included with the Virtual Reality toolbox from

Matlab. It is considered one of the best VRML native editors, but it was found to have a

steep learning curve by this author. Therefore, ProEngineer (a software package with

which this author had preexisting expertise) was used to create the more complex

geometries to cut down on the time that would otherwise be spent learning the software

and building. The non-native geometries were then imported into the geometry field of a

node in a world created in V-Realm Builder.

2.2.4 Virtual Reality Viewer

Once a VRML file is built and saved it can be manipulated dynamically through

Simulink blocks, and Matlab m-files. These manipulations can be also viewed

dynamically through the use of a VRML Viewer. The Virtual reality toolbox includes

two viewers for viewing virtual worlds, an internal and an external viewer. The internal

viewer is rigid and does not allow for stereoscopic viewing, so the external viewer was

used for both development and experimentation. The external viewer has to be installed

through Matlab and set as the default viewer. Once set as the default, any world opened

for viewing though Matlab or Simulink will be opened in the external viewer. The

viewer used is called Blaxxun Contact and it is technically a plug-in which allows VRML

viewing through either Internet Explorer or Netscape internet browsers. In order for

Blaxxun to work properly several adjustments need to be made to the host computer. The

virtual reality has known bugs when dealing with newer versions of Microsoft Internet

23

Explorer (IE) and operating systems (Humusoft s.r.o. and The Math Works, Inc, 2001).

If the system is using the version of IE 5.5 or later and the operating system is older than

Windows XP Service Pack 1 (most machines are using Service Pack 2) Microsoft Java

Virtual Machine (JVM) must be installed on the PC and to avoid complications Sun's

version of java should be uninstalled. Due to a court settlement, Microsoft JVM stopped

being distributed after 2004, and in 2007 was no longer supported, so versions must be

obtained by a third party site. After assuring all the software is installed correctly, the

default network security setting must changed before using the Blaxxun Contact to ensure

that the virtual scene is updated appropriately. Navigate the menu system of IE to enable

network access to all address by the steps below.

From the Tools--> Internet Options -4 Local Intranet -)Security -Custom Level-

Microsoft VM--> Java permissions -->Custom-->Java Custom Settings --> Edit

Permissions -Run Unsigned Content --> Access to all Network Addresses --> Enable -4

Click OK

These steps must be followed in order for the virtual world to be seen dynamically.

Other steps must be taken to assure correct stereoscopic display. The virtual reality

toolbox works in conjunction with Blaxxun, the computer's graphics card, monitor and

vision system (shutter glasses and sync) to produce a stereoscopic display. In order for

stereo to be displayed, the settings for bit depth, monitor size, resolution, and refresh

must be matching in the monitor properties menu, the stereo driver menu, and the

preferences menu for Blaxxun plug-in.

24

2.2.5 Robotics Toolbox

The robotics toolbox was developed by Peter Corke, the research director of the

Autonomous Systems laboratory in the CSIRO ICT Centre in Australia. The toolbox is

available to be downloaded for free from his website and contains numerous Matlab

functions to which source code is accessible and editable. The Toolbox provides many

functions that are useful in robotics (Corke, 1996). The functions implemented include

manipulator definition and modeling functions and the kinematic functions to model the

manipulators motion. Also, employed quite frequently are the homogeneous transform

functions provided due to the fact that both robotics and 3D graphics use the same linear

algebra theory to define positional relationships between different parts of their structure.

In robotics, the links are defined by its reference frame, or coordinate system whose z

axis is perpendicular to the surface to which the next link is attached. In VRML graphics,

the reference frame of a child object is the result of the translations and rotations of its

parent. So the final description of the child with respect to the VRML base frame is the

following product:

Similarly, in robotics the description of the second joint with respect to the base is:

The robotics toolbox provides functions for creating these transformation matrices which

has been a useful time saving too when dealing with different reference frames and going

between robotics and graphical domains.

CHAPTER 3

DESIGN ELEMENTS OF THE TRAINING ENVIRONMENT

3.1 World Building

Worlds should be built with care and should follow a few simple rules in order to make

the manipulation of the objects in that world by the robotic manipulator easier and

intuitive to the programmer. The first rule is to keep the fields (like geometry etc.) of

parent node of complex objects blank, especially rotation if possible. This is necessary to

simplify the location process for complex objects or complex worlds. When an object is

designed in the VRML hierarchal structure, each new transform added as a child of a

precedent node will have a coordinate system relative to its parent. So if the parent is

translated, the child's origin is the translation point of the parent. Likewise, if the parent

is rotated its children will have a base coordinate system that is rotated in the same

direction. This parental rotation therefore changes the axes in which the children are

translated, so locating them mathematically becomes less trivial than a simple node with

no children. For example, in Figure 3.1 the cylinder to the right is a child of the cylinder

to the left. The parent cylinder is rotated 90 degrees about its z axis and is translated 2

units in the positive y direction, sphere marking the origin. The parent cylinder, since it

does not have any parents itself, has the general coordinate system of VRML worlds

which is shown. The child cylinder (right) has a coordinate system that is rotated 90

degrees about its z axis of the general VRML coordinate system as shown.

25

-

2 I
Ii

y

)(

2 I
Ii

J
-y

/
.I

Figure 3.1 Coordinate Systems for Graphical Objects in Hierarchy

It is translated 2.5 in the negative y direction of its coordinate system which is the

26

positive x direction ofVRML. In order to find the object to interact with it, the object's

position must then be converted to some base frame, for convenience use the VRML

coordinate frame. In this simple example it is easily surmised that child cylinder was

shifted up 2 and to the right 2.5, which is [2:"5': , 2y, Oz] in VRML· coordin~tes.

Mathematically to arrive at this and more complex locations, translation matrix of the

parent multiplied by the rotation matrix of the parent multiplied by the translation matrix

of the child. The mathematical expression becomes:

27

These locations can only be found by knowing the hierarchal structure and knowing the

rotations and translations of all the objects that a parent to the object. The translations

and rotations can be found by accessing the fields of each of the objects which leads one

to believe that these equations can be automated but there is no simple way for accessing

the hierarchal structure. There are no values held in the "children" field of any node; it is

an empty array which acts as a place holder for the object's geometry, appearance, and

other node children. Since the structure can not be determined dynamically, the true

position of subordinate objects can not be determined either. This means that knowledge

of the structure of the world must be present and/or hard coded in order for the objects'

position to be obtained and altered. For ease of design, worlds should be created with

subordinate nodes only when the nodes contribute to the same object and will move and

be treated identically to the parent.

Another good practice when designing worlds is to separate objects into groups of

objects that will be interacted with, and those that are there for ambiance. By

categorizing the objects within the world that will be interacted with, you can eliminate

calculations and make the code more efficient. This is most useful when calculating the

collision detection for objects with the end effecter of the robot. To make use of this

advantage, a naming standard was created and used in the worlds so that the collision

detection algorithm could be used without edit in all worlds. All objects that are intended

to be moved by the robot's gripper should be named with the first letters of the name

28

being "move_" (or any convention useful) so that they could be detected, and put into an

array so that they can become a variable that can be dealt with as a whole. With the use

of built in Matlab functions (get, strncmp, find, etc.) the world as a whole vrnode data

type can be converted into and array of numbers with each row representing the position

in space of an individual object. The code to accomplish this task is shown below. This

is not a necessary piece of code but it can be made into a function that can used by all

programs instead of writing an individual program for each new world that is produces

and hard coding the objects that need to be moved into the separate program.

The final guideline to follow when creating a world is to name every node and field.

Neither a node nor the data that is contained within the node is accessible and its

properties are not editable, unless it is named. It is important to name all of the editable

properties to ensure that all properties can be changed dynamically. A naming

convention should also be used when naming the properties of the node. When using

VRealm Builder object nodes usually have a geometry and appearance as child nodes.

The particular naming convention adopted is up to the programmer but naming the

appearance and shape nodes "ParentNodeName_appearance" was found to be a

29

convenient practice. The names should be distinguishable because the simplest way of

accessing a particular field is through use of its handle. The handle notation is the same

for all nodes no matter where they fall in the hierarchy. Their fields are all accessed in

the same fashion which is: "MyWorldName.NodeName.FieldName". Since there is no

simple way of identifying the parent(s) and making dynamic decisions based on the

parent information of the nodes the naming should be unique, but also systematic so that

hard coding is avoidable and multifaceted function writing is simplified.

3.2 Control algorithms

There are a few algorithms that went into the functions for controlling the visual

representations of the dynamic virtual environments. Not all environments implemented

all of the functions but a comprehensive final environment would encompass all of these

and maybe more.

3.2.1 Collision Detection

A person familiar with graphic design might wonder why it would be necessary for

someone to write their own collision detection algorithm because the VRML standard

and others provide a collision detection system. In VRML this system is composed of the

Collision node, collideTime, bboxCenter and bboxSize. The collision node only handles

collisions between the user and the world; it does not detect collisions between arbitrary

objects in the world. General object-to-object collision detection is not specified in

VRML. The specified collision detection detects geometric collisions between the user's

avatar and the scene's geometry, and prevents the avatar from 'entering' the geometry or

the regions of the world that are not intended to be. An avatar is a computer user's

30

representation of himself or herself in the form of a three-dimensional model used in

games and other computer based graphic systems. The VRML viewers implemented

with the robotic manipulator have the option of viewing an avatar or just in a first person

view. The VRML default (if there are no Collision nodes specified in a world) collision

is detected with all objects during navigation. The bboxCenter and bboxSize fields

specify a bounding box that encloses the Collision node's children. Those fields are also

found in all transform geometries and can be used to the advantage of the programmer

attempting to implement their own object to object collision detection algorithm. Since

the robotic manipulator is an object in the world, and not an avatar, such an algorithm is

necessary. The default value of the bboxSize field is (-1, -1, -1) unless otherwise changed

when building the world. For complex objects this is a good tool to use to dynamically

find the area occupied by the object, although it must be determined and entered

manually while the world is being built. For simple, one-shape objects it is not necessary

to use this field, because a bounding box can be created from the dimensions of the

geometry which are stored in the fields: radius, for a sphere, radius and height for a

cylinder, and size for a box. Assuming that the center field of the transforms are set to

zero, a bounding box is formed by reading either the geometry fields of the object or the

bboxSize field, taking those read values, dividing them by two, and adding and

subtracting those values to the values read from the transform field of the object. Sample

code for a (named) box becomes:

31

This gives you the arrays j and k in [x y z] which define the maximum and minimum

values of x, y, and z which will define a collision with the object. The object that we are

concerned with colliding with movable objects is the gripper of the robotic manipulator.

To find the position of the end effecter of the robot we must calculate the transformation

matrix which describes the conversion from the gripper reference frame with respect to

the reference frame of the base of the robot. To mathematically achieve this, a series of

transformation matrices representing the transformations from one link to the next would

be multiplied in order to find the transformation from the end effecter frame to the base

frame. This fortunately is an unnecessary calculation with the use of the robotics

toolbox. Since a robot object is already created, and the end point is at which the gripper

is located (through the inverse jacobian calculation), these calculations can used to an

advantage. Using the already defined robot, and the calculated angles as input, calling

the function fkine from the robotics toolbox returns the [4x4] transformation matrix

necessary. This transformation matrix defines the gripper in the frame of the robot base,

which is the Matlab graphics coordinate system. In the coordinate system the first link of

the robot extends from the origin up the z axis the length of the link as shown in figure

3.2. The red line is not part of the robot, it just indicates the origin of the coordinate

system and the base of the robot.

Figure 3.2 Robotics Toolbox Robot and Coordinate System

The Matlab coordinate system differs from the VRML coordinate system. In order to

detect the collision between the robot and the graphical objects the coordinate system

from one must be converted into the other. These differing coordinate systems can be

thought of as different frames, similar to the different frames at each of the joints of the

robot. Converting between the two therefore uses the same concepts of homogeneous

transformation matrices. To transform the robot's coordinates into VRML coordinates,

the robot's coordinates must be rotated ninety degrees around the z axis and then rotated

again ninety degrees around the y axis. Figure 3.3 shows these rotations.

32

Matlab coordinate	 VRML coordinate

Figure 3.3 Transformation from VRML to Matlab Coordinates

The transformation matrices from these rotations can be made from some simple

functions in the robotics toolbox, roty and rotz. Using these functions and the

aforementioned inputs and functions, the code for converting the robot's position into

VRML coordinates becomes:

After obtaining the position of the robot in VRML coordinates, these coordinates can be

compared to the translations of all the movable objects, and their proximity can be

letected, either by the bboxSize field or the size fields of the geometry nodes as stated

previously. Also, an array of nodes of movable objects has been created, (section 3.1) so

hat array makes for the rest of the collision detection to be done by a simple loop.

34

This set of code finds the index of the object with which the robot arm has collided and

sets the variable called movepiece equal to it. If the robot has not collided with any of the

movable pieces, then the variable is set equal to zero. This variable is then used as a flag

to trigger another section of code which sets the translation of the object equal to that of

the robot end effecter and that code which is a simple if statement shown below.

In this way object identification, collision detection, and object movement can be done

with knowing very little about the world itself. These algorithms are useful when

programming solely with Matlab because the handle graphic commands and the graphic

refresh command, vrdrawnow, are ineffectual when calling a Matlab function from a

Simulink simulation. Interacting worlds were developed in Simulink because a

preexisting communication protocol with the Spaceball device was available with the

Virtual Reality toolbox when development of this project was first embarked. Since then

a Matlab based communication protocol has been made available with a new version of

the toolbox. The developed Simulink programs require a great deal of hard coding. Due

to the "sink" functionality of Simulink, values need to be outputted to the sink for every

calculation cycle of the simulation. For this reason, any field that might be edited at any

35

point, such as translation or color, needs to always have a value assigned to it. To

accomplish this, arrays were created of the editable variables, usually one row of the

array per variable. The value of the array from previous iteration is saved and any

variable that is edited in the present iteration is written over its row in the array. Then the

array is exported and split, and then sent to its matching sink port. A sample of such a

Simulink simulation is show in the figure below. As you can see each movable object, in

this case each chess piece needs its own sink port.

Figure 3.4 Simulink Code For Moving Many Objects

Object
Sinks

36

The code above controls the world shown below. The large sink block exists so that all

of the chess pieces are movable by the robot. For more virtual worlds see Appendix C.

Figure 3.5 Virtual World Where The Robot Can Move Chess Pieces

V

3.2.2 Object rotation

An object can be rotated with the changes in orientation of the robotic manipulator's end

effecter. This algorithm has not been implemented successfully due to some

inconsistencies in the end-effecter rotation. This algorithm when implemented is

executed alongside the collision detection and movement algorithm. When an object is

picked up its translation is set equal to the position of the robot's end effecter. This can

be done with rotation in the same fashion with a few exceptions. The rotation matrix

inside the transformation matrix has to be converted into a different sort of array that

VRML recognizes. Luckily there is a Matlab function and a Simulink function block in

the VRML toolbox to handle this conversion. The other difference is that the rotation of

37

the object can not be directly set to the rotation of the object. If this is done, as soon as

the object is detected it will jump from its original rotation to the present orientation of

the gripper. Instead the difference between the orientation of the gripper in the previous

iteration and the present iteration should be added to the present orientation of the object.

In this way the orientation is adjusted from its own orientation and does not just mirror

the robot's orientation.

3.2.3 Toggle control

An aspect that was important for functionality and realism was to create a working

gripper that toggled from open to close. It is a simple aspect but an important one

nonetheless. Creating a working gripper also adds to calculation efficiency. The

efficiency is improved by preventing unnecessary calculation from being executed. For

instance, collision detection only needs to be performed when the user intends to pick up

a movable object. This intention can be presumed when the gripper goes from open to

close. By creating a set of variables as flags and a system of nested if statements,

calculations will be performed only when necessary. The variables created represent the

state of the gripper in reference to the movable objects. The variables are "button" which

represents whether or not the button was pushed, "gripclose" which represents whether or

not the gripper is closed, and "holdobject" which represents whether or not an object is

held and its translation is being altered along with the position of the robot's end effecter.

These variables are boolean where a value of one/true indicates that the action indicated

by the name of the variable is true (ex. gripclose equal to one indicates that the robot

griper is closed). The toggle is enacted as a result of a boolean button on both of the

implemented user interfaces. The buttons read a value of one when the button is pressed

38

down and a value of zero when released. This is used as criteria for determining the state

of the environment. Depending on the state of the environment, different actions need to

happen. If the gripper is open and the button is pushed, the gripper should close. Also,

the collision detection algorithm should execute and if an object is collided its position

should be manipulated and the "holdobject" variable should be changed to true. If the

button is pushed and the gripper is closed, the only action that needs to be taken is to

open the gripper, which require no calculation only a handle set command. If the button

is not pushed, the variables are detected from the previous loop execution and an object is

moved or not moved based on the values of "holdobject" and "movepiece". The code for

this is shown below.

A toggle was also created to switch between a simulated wheelchair motion and

control of the robotic manipulator. This feature was only implemented with the

Spaceball interface. For this control a second boolean button was used and only one

more variable needed to be created, named "wcactive". When the wheelchair is active,

the robotic manipulation is turned off. This is a safe and convenient feature to have so

that the user can focus on one task and have only one interface to use when implementing

on a real wheelchair. There is pseudo code below to show this toggle.

39

3.2.4 Wheelchair movement

For the wheelchair movement effect, the user utilizes the fore/aft force direction to

navigate through the world and the torque about the y axis to turn the chair right or left.

None of the other degrees of freedom are available when the wheelchair is active because

movement in these degrees of freedom is not realistic. In this way the Spaceball is

converted into a two degree of freedom joystick similar to those employed on most

automatic wheelchair controllers. The algorithm for this is not overly simple. Since the

coordinate system for the virtual world and Spaceball are fixed, there has to be a way of

accounting for the rotation of the robot. Keeping the fore/aft (x) direction of the

Spaceball mapped to the forward movement of the virtual robot, which when rotated is in

terms of x and z in the VRML coordinates system, requires some calculation. The angle

of rotation about the y is taken from the Spaceball input and is used to calculate the

resulting x and z values, which are velocity vectors. Sine and cosine can be used for this

but using the roty function accomplishes the same goal and is available so it was

employed. After the new velocity vectors are found, they are integrated and sent back

into the function as positions. The rotation transformation has to be performed on the

velocities because if the positions are rotated, the coordinates of the base will be shifted

when a rotation is performed. The code which accomplishes this is shown below and is

executed when the toggle sets wcactive to true. Be aware that this function is nested

40

inside a Simulink simulation and that the variable newvel is integrated in Simulink and

sent back as newpos.

The chairorient and basepos variables are output to the sink of the robot's base rotation

and translation fields respectively. If this code were to be executed in a Matlab program,

the integration would have to be executed differently and some handle commands would

have to be used to set the robot's base rotation and translation fields.

Another component to the system is that the viewpoint of the user moves with the robot.

This is accomplished by making the Viewpoint node, a child of the base of the robot.

Doing this allows you to set the position of the robot base as a function of Spaceball input

and keep the viewpoint at a fixed distance from the base of the robot without altering any

of the fields of the viewpoint node. This makes the visual representation more realistic

and gives a first-person navigation through the virtual world as if the robot was attached

to a real chair (at a fixed position) and the chair is moving through space.

CHAPTER 4

IMPLEMENTATION

In order to quantify the quality of the virtual training environment or the potential for

useful implementation of the product, a series of experiments were completed. The goal

of the experiments were fourfold; 1) to determine how well an non-disabled subject can

control a virtual robot, 2) to evaluate how well (the discrepancies) an non-disabled

subject can learn to use two different types of input interfaces, 3) to compare the types of

movements made in real life (with actual human arm) to the types of movements made by

a virtual robot with two different interfaces, 4) and to determine the maximum amount of

function that can be provided to eventual users of the robot and one of the new interfaces,

or in other words create an able bodied baseline for future comparison with data from

disabled users. Upon receipt of statistically relevant data, further studies could be

undertaken to show increase in social (not physical) function in users whose physical

ability is too small to measure in most standard functional tests.

4.1 Experimental Design

To investigate these aims a series of experiments were planned and executed to achieve

the answers to these questions. Two types of experiments were done, a box of blocks

function test, and a Fitts' law paradigm test. Both of these tests were completed in a real

life environment and in a virtual reality environment. The virtual reality portions of each

of the experiments were performed by each subject 24 hours after a 15 minute training

session on each input device. This thirty minute training session was meant to introduce

41

42

the subjects to the interfaces and to give them a feel for the movement of the robot. The

end effecter of the robot moves in X,Y,Z planes according to the input from the user.

The orientation degrees of freedom of the robot were turned off for the testing so that the

motor task that needed to be learned could be simplified. These tactics were chosen

because the task of controlling the robot's three degrees of freedom was deemed difficult

enough to require learning. The training was meant to induce a fast learning stage in

which a vast amount of skill is acquired in a little time, which has been shown to happen

in the acquisition of motor skills (Ungerleider et al., 2002) and hopefully the results

would have implications for the ability of a person who has overlearned the task. Motor

training sessions have also been shown to have a greater impact when evaluation takes

place 24 hours after the session as opposed to immediate post training measurements

(Ungerleider et al., 2002), which explains the reasoning for the delay of testing.

The experiments were conducted on 6 subjects, 4 female, 2 male. Five of the

subjects were right handed, but all subjects used their dominant hand for all parts of the

experiments. The subjects were considered healthy with no known motor or neurological

disorder whose ages ranged from 23-31 with a mean age of 26.6. The subjects were

subjected to the same two day regiment with the only difference among the subjects

being which of the tests were performed first.

The first experiment day consisted of all of the real life experiments, and two

fifteen minute training sessions in virtual reality, one session per user interface (Stylus

and Spaceball). The real life experiments consisted of two Fitts' Law tapping paradigm

tests and a box and blocks test with three replicates. The Fitts' Law tapping tests

consisted of 3 Indexes of Difficulty and 4 orientations of motion, resulting in 12 trials per

43

subject per paradigm. The same 12 trials were executed by each subject using just their

finger and also using the stylus (the same stylus used as the VR interface) to tap the

targets. All subjects performed the 12 trials for each tapping interface in the same

random order created by a DOE design in the statistical software Minitab. Three subjects

performed the tapping tests first with their finger and the other three subjects performed

the tapping test first with the stylus. After the Fitts' Law real life trials, the subjects

performed the box and blocks test three times. After all the real life trials were run, the

subjects were taken to the VR station and instructed to play virtual reality chess with the

robot manipulator. They were given a short set of instructions on how the interfaces were

to be operated, and told to get accustomed to the way that the robot's end effecter moved.

The two fifteen minute training sessions for each of the input devices were performed

back to back in no particular order. The entirety of day one testing took about ninety

minutes per subject.

Twenty-four hours later the subjects were asked to perform a second session of

testing. The second session consisted of duplicates of the real life tests in virtual reality.

The subjects performed twelve trials of Fitts' Law tapping test with both of the interfaces,

stylus and Spaceball. The twelve trials were done in a different but random order for each

of the interfaces and again, half of the subjects performed the Fitts' Law tests with the

Spaceball first and the other half started with the stylus. The virtual Fitts' Law paradigm

consisted of tapping the tip of the gripper of the robotic manipulator to virtual boxes that

were sized and positioned inside the virtual world representing the same three ID's and

orientations that existed in real life.

44

The four orientations were chosen to see if there was a discrepancy in the learning

of movement in certain directions. The purpose of the multiple orientations was to

investigate whether a delay in movement time existed in real life and whether this delay

is proportional in the virtual world or whether certain planes of motion are more difficult

than others based on other factors. The stereoscopic vision is supposed to assist in the

acquisition of the targets placed in the depth of the field of view, but the robotic motion

might be more complex to control in certain positions in the field or in certain

orientations. In some orientations the VR blocks had to be strategically placed so that the

entirety of both blocks were inside the workspace of the robot and the stylus while also

maintaining the intended ID of the trial. Below is a figure of the general orientations. In

the real life experiments the subjects were centered between the targets.

Figure 4.1 Orientations for Fitts' Law Tapping Experiments

The Indexes of difficulty for the experiments were also designed for ease of use in

virtual reality then duplicated in real life. Making small targets in VR would make it

extremely difficult to achieve the position of the robotic manipulator, since the robot is

relatively bulky as compared to a person's finger. The dimensions of the robotic

manipulator in the VR worlds are 100 mm per unit. The target sizes in VR are 1 by 1 and

2 by 2 squares, which are stationed at distances of 4 and 9 units creating the following

ID's.

45

The ID's for the real life experiments used the same proportions, resulting in the same

values for ID but both dimensions, target width and amplitude, were decreased by a

factor of to for ease of reaching. The dimensions of the real life experiments then

become 50mm and 100mm for target width and 200mm and 450mm for distance between

targets. The targets were bright colored paper squares pasted at the necessary measured

distances on white paper. One piece of paper was made for each ID and orientation

combination, totaling twelve. At the beginning of the trial the paper with the targets was

centered in front of the subject and taped down to the table.

4.2 Data Collection

The data for all the real life experiments were gathered using a Nest of Birds device along

with a Matlab program that communicates with the PC by serial port. The Nest of Birds

device has an electromagnetic transmitter and a sensor, the transmitter reads the six

degrees of freedom, position and orientation, at a desired sampling rated. The program

collects the data, filters, plots and saves it to file. The program was written by Katharine

Swift, a member of the NJIT RERC. By attaching a sensor to the finger, stylus, and wrist

for the finger tapping test, the stylus tapping test, and the box and blocks test

respectively, the nest of birds tracks the trajectory of the hand moving through space

through the duration of the test. Each Fitts' Law tapping trial was run for 5 seconds and

timed by the program. The subject was instructed when to begin, tapped the targets as

46

fast as possible while maintaining accuracy, and was told when to stop. The time of each

of the taps, was calculated from the extrema of the trajectories and the sampling rate of

the nest of birds. The subjects were also instructed to start at the center of one of the

targets so that the trajectory data could be determined by using the beginning data as the

center of one target and the known values of the amplitude and width of the targets to

ensure that all the taps fell within the limits of the targets. The Box and Blocks test was

done in a similar fashion, where the duration was changed to sixty seconds and the

subjects were instructed to move one block at a time over the barrier as quickly as

possible.

The data from the virtual reality experiments were gathered from the programs

controlling the visual representations themselves. The collision detection algorithm

calculates the location of the end effecter of the robot for every iteration. That position is

used to detect a hit on the virtual target and turn it green, and is also saved to file along

with the CPU time. The saved files were processed using similar code to detect a hit and

the CPU times were subtracted to find the time between hits.

4.3 Results

On completion of the experiments the data was analyzed in several ways. One of the

main purposes of the experiment design was to evaluate the time for the Fitts' Law

tapping paradigm. The table below shows the Analysis of Variance for the times. The

significant sources of variance based on the P values were found to be task (a.k.a input

device), the index of difficulty (ID), the condition or orientation of the targets, and

interaction effects between task and ID, and task and condition. Based on the F values

47

the more significant sources are the Task, ID and the task/ID interaction. These

significances are not surprising because it was anticipated that there would be differences

between the input devices and Fitts' Law shows that the movement time is dependant on

ID. It should be noted that the R squared value is relatively low meaning that there are

other reasons besides the factors considered for the variance in the data.

Table 4.1 Analysis of Variance for MT for All Input Devices

The most significant source of variation is the input device as expected. The table below

shows the means of the data based on task and ID separately. There is more than a 28

fold increase in movement time between the finger task and the Spaceball, but there is

only a two fold increase in movement time between the smallest and largest ID. With

greater differences in ID these means would have been different but they still would not

have been as great a difference as with the tasks.

Table 4.2 Mean Times per Task and ID's

48

The Interval plot below shows the range of values based on the three factors. It is quite

obvious that the range of values for the real life experiments fall within the same region

and the effect of virtual reality is apparent in the difference between the real life (task 1

and 2) and the stylus experiments (3). The disparity between the fourth task and the third

can be attributed to the misunderstood and misinterpreted motion of the robotic end

effecter but also the disparity in the speed of movement.

Figure 4.2 Interval Plot for Fitts' Law of MT Over Condition, ID, and Task

A simpler interval plot is show on the next page, in figure 4.3, indicating the intervals

based solely on the input device.

49

Figure 4.3 Interval Plot for Fitts' Law of MT Over Task Only

The motion of the Spaceball is limited by the sensitivity setting in the Spaceball menu but

the motion of the stylus is only limited by the ability of the subject to move and interpret

the 3D screen. This sensitivity setting sets a maximum value that can be read by the

algorithms and interpreted as velocity. For all testing the value of the sensitivity was

arbitrarily set to 0.0001. Although this value has no particular interpretation it keeps the

visual scene seamless and looking realistic. It is not without its reasoning either. The

maximum velocity of the robot for which this model is created is approximately 9.9 cm

per second. Using this as a guide, the largest ID is virtually 90 cm apart. This means that

in real life the robot would only be able to reach the targets at a minimum of 10 seconds.

This suggests that for realism sake, the sensitivity should be decreased. But for

practicality sake, decreasing the speed of the movement of the robot by the Spaceball

would add to an already frustrating task of learning these counterintuitive motions.

50

To further understand the motions and how the subjects interpreted the different input

devices the trajectories of each of the Fitts' Law tapping tests were analyzed. Sample

trajectories for each of the tests from trials with the same ID and orientation can be found

in Appendix A and are labeled according to the device used. Take note that the Real life

dimensions are in inches and the VR simulations are in 100 mm. The trajectories are

shown in 3 different forms, a 3D plot, a 2D plot showing the plane of motion in which the

targets are situated, and a position versus time plot showing x, y, and z trajectories versus

time or sample number. Each plot shows something different about how the users use the

different devices. In the 3D plots, there are several observations to be made. The height

trajectory of the finger tapping reduces over time which indicates improvement a reduced

distance that the finger is traveling. No such improvement is present in the stylus

tapping. This indicates that the device itself or the act of transferring movement inhibits

this type of optimization of movement. Comparing the VR stylus plot to the finger and

stylus plots shows that the types of movements made by the robot's end effecter with the

stylus are similar to those naturally made by the human arm. This is an encouraging

result because robotic movement is only a mapping of the angles of the stylus device and

therefore the movement made by the human arm using this device should be similar. But

when comparing the movements made by the robotic arm when controlled by the

Spaceball to the other three devices there is an evident disparity in the movement. The

movements are not in the same arch form and it is difficult to determine where the targets

were placed. Also it is easy to see that the subject overshoots the target in all directions

and must correct the motion. It is also important to point out that the movements are

more boxy and less smooth which could indicate that the user interprets the trajectories

51

and/or the corrections that need to be made in one or two degrees of freedom at a time

instead of all three at once.

The planar movement also assists in understanding the movements and how they

are interpreted by the user. The planar real life movements are very similar, the only

difference being that the finger is a little more accurate in reaching the center of the target

which is not a surprising result. In the VR stylus planar movement there is more

deviation in the trajectories from the center line from target to target, meaning the

subjects do not follow an exact and efficient strait line movement which should be their

motor goal. The two dimensional plot of the Spaceball reveals the discrepancies of

movement in a more manageable manner than the 3D case. By studying this plot it can

be seen that the subject makes one sweeping movement in both degrees of freedom to

approach the target then a series of corrections and overshoots are made until the target is

reached. There are several possible explanations for this type of motion. One is that the

exact location is not perceived well in the virtual environment and a general trajectory is

planned and then corrected more significantly. This is supported by the fact that the

stylus trajectory is looser that the real life trajectories. Another explanation is that the

inertia of the Spaceball is not easily predictable, and so the user overshoots even when

they are trying to correct their motion. This inertia is an inherent property of the

Spaceball and cannot be changed without changing the device drivers. A further

explanation is that simply the movements of the robot from the forces on the Spaceball

were not fully understood by the subjects and the trajectories suffered from a sustained

lack of understanding.

52

These conclusions can also be reached by investigating the dimensions versus

time. In the real life trials, the maximum and minimum values of the x and y values (blue

and red) indicate the point of a target. The z value (green) is the vertical value and

reaches a maximum value in the middle of a motion and the same minimum value when

both targets are reached. These trajectories are smooth and show very little hesitation on

the target. The VR stylus is not as smooth as the real life trajectories but is most

significant in the vertical value (red). This value shows local extrema where the subject

is assumed to be hitting the targets, which indicates some significant overshoot

corrections in this direction in almost every target approach. This trend is present in all

three values of the Spaceball trajectories. These corrections are so significant in the

Spaceball trajectories that it is very difficult to even see a maximum and minimum

sinusoidal trend. It is this investigators personal opinion, through observations made

throughout testing and personal exposure to the use of the Spaceball to control the robotic

manipulator, that vast improvements can be made in timing and trajectory through more

training and exposure to the Spaceball and the virtual simulations. Over time this

exposure could lead to Spaceball values approaching those of the virtual reality stylus

trials.

The Box and Blocks Test (BBT) purpose was to investigate a more realistic type

movement which could restore social function. The virtual BBT incorporates complex

motion in three dimensions but also incorporates the use of a button to grasp and release

the blocks. The trajectories of these trials show similar results to the Fitts' Law except

that the motion is less predictable because in both real life and VR the blocks are located

in different places and the subject must move in a wider area to move the blocks. A

53

simple analysis of the means tells us a great deal of information. Below is an interval

plot of the three tasks. The variable measured is the number of blocks moved in one

minute.

Figure 4.4 Interval Plot for BBT of Task Only

What is noteworthy about this simple mean comparison is the difference between the

Fitts' Law test and BBT. The real life trials ended up moving on average seven and half

times more blocks than the VR stylus which in turn moved double the amount of blocks

as the Spaceball. In terms of time, it took on average 0.873 seconds to move one block in

real life while the VR stylus and Spaceball took 9.27 and 13.67 seconds respectively.

This translates into a seven and a half fold increase in time from real life to VR which is

approximately the same as the Fitts' tapping but the increase from real life to Spaceball

was cut from 28 fold to 15 fold or between VR stylus and space ball the increase was cut

from 4 fold to 2 fold. This can mean one of two things. Since the BBT tests were run

after all the Fitts' tapping tests, that learning occurred from the beginning of the sessions

to the end. The other option is that with more complex series of motions or tasks, that are

54

closer to real life activities, the awkward and less natural motion makes less of an impact.

Either option is encouraging result and gives reason to investigate an overlearned

condition on subjects with the Spaceball. The trajectories in Appendix B also support

this conclusion. Similar to the Fitts' Law finding, the trajectories from real life are very

similar to those from controlling the robot in VR with the stylus. The Spaceball

trajectories show improvement in the coordinated three dimensional motion, meaning the

subject trajectories are more curved and natural looking an move in all three directions at

once. Also, the ability to locate a specific position in space is improved. The spikes in

trajectory located near the zero point on the z axis indicate where the blocks are located.

There is very minimal searching and trajectory correction as there was in the Fitts' Law

studies. The lack of searching and improved the curvature affirm the belief that a user

can learn to use this interface and possible others to control the wheelchair mounted

robot.

CHAPTER 5

DISCUSSION AND FUTURE WORK

The NJIT RERC has many more things to do to help successfully deliver assistive

robotics to a wider range of users whose activities of daily living would be simplified and

whose self esteem would be increased by the realization of this technology into their

lives. One of the most significant contributions to the science and populations that seek

to develop this sort of technology, is to continue to produce new technologies and

creatively implement existing technologies to create a wide range of user interfaces to

control the robot. One of the most challenging aspects of rehabilitation engineering is

that there is not one answer that is right for everyone. It is the challenge of the scientific

and clinical communities to come up with new and innovative solutions to enhance the

lives of those who may be in need of some sort of assistance. By creating a variety of

options for control of the robot through different types of interfaces, the amount and

types of users that can be accommodated will be increased.

The results from the human motion studies on six healthy subjects gave some

encouraging feedback for the work done on assistive robotics. The Spaceball translates

isometric force and torque inputs into velocities. These velocities are then translated into

a visual representation of movement of a virtual model of a Manus ARM robot. This

type of isometric motion transfer is not found in many applications and is therefore not a

previously learned skill or a natural or intuitive skill. Continuing the research of this

paper by investigating subjects who have more training on the device and have time to

learn the skill sufficiently, would hopefully give a better idea of the value of the

maximum speed and functional ability of the ARM robot controlled by the Spaceball.

55

56

The conclusions drawn from observations made on experiments with subjects who have

an overlearned level of skill with the Spaceball will give credence to the work of

developing a wider range input devices for users with varied physical abilities.

After the confirmation of the belief that subjects can learn the skills involved with

new and counterintuitive devices, steps can be taken toward implementing these new

interface technologies with an actual physical Manus ARM. The implementation will not

be without its challenges but, after it is complete a training regiment can be designed for

real subjects whose physical ability would warrant a system of this nature. This regiment

would include an evaluation session which would ascertain which input device fits the

needs of the user. Followed by a series of training sessions within several entertaining

worlds in which the user would attain an expert level of control of the robotic

manipulator. Then the user would move to a series of distance sessions with the ARM

mounted a safe distance away from the user. The robot would also be mounted near a

simulated real life situation training environment such as a kitchen. After the subject can

perform tasks efficiently and safely in the simulated environment then steps can be taken

to provide a customized wheelchair mounted system.

The goals the NJIT RERC has set are realistic and attainable in the relatively near

future. The downfall of other assistive robotic technologies is that the technology is too

young in the development process and too advanced to be realistically implemented in

actual patients' lives. The steps proposed would improve the usability of an existing

technology and deliver a device system that can be used by patients in the near future and

not discarded for being inefficient or too difficult to use.

-----------------------~---~

APPENDIX A

SAMPLE TRAJECTORIES FROM FITTS' LAW TESTING

-3

-3.5

-4

-4.5

-5

-5.5
12

25

15

4 10

Figure A.1 X, Y, Z Plot of Finger Movement

8 -4

" 'r- '

:• ~ •••.••••....
3. · · · ··~1,~ "'.' -- _. ----: '-_ .- . .

-4
12

.. , ' -
.. .. .

10

Figure A.2 X, Y, Z Plo~ of Stylus

10

24

Figure A.3 X, Y, Z Plot ofVR Stylus Figure A.4 X, Y, Z Plot of Spaceball

57

58

12
12

11 11 .5

11

10
10.5

9 10

9.5
8

8.S

7.5

5 7
13 14 15 16 17 18 19 20 21 22 23 14 15 16 17 18 19 20 21 22 23

Figure A.5 X, Y Plot of Finger Figure A.6 X, Y Plot of Stylus

7.5,--------r----y-----,------,------,------, 6.5

6.5 5.5

5

4.5

3.5

3

3.5
2.5

2

-2 -1 1.5
-3 -2 -1 0 3 5

Figure A.7 X, Y Plot ofVR Stylus Figure A.8 X, Y Plot of Spaceball

59

Figure A.9 X, Y, Z vs. Time of Finger 	 Figure A.10 X, Y, Z vs. Time of Stylus

Figure A.11 X, Y, Z vs. Time of VR Stylus Figure A.12 X, Y, Z vs. Time of Spaceball

APPENDIXB

SAMPLE TRAJECTORIES FROM BOX AND BLOCKS TESTING

4.5

12

3.5

10
3

8 2.5

6 2

4
1.5

1
2 8
8

16 -2
Y inches

x inches

Figure B.I X, Y, Z Plot of Finger Movement Figure B.2 X, Y, Z Plot ofVR Stylus
/

3.5

3

2.5

2

. :

.... .. .

..
-1

-2

-3

,

. :

. . . . " , :'.

" .: " .

.. ' .. .' ... : ..

," ... ,

-4

"

. ' :

-0.5

Figure B.I X, Y, Z Plot of Spaceball

60

o 0.5

2

APPENDIXC

SCREEN SHOTS OF VR WORLDS

/

Figure C.l Virtual Kitchen with movable utensils and jell,-o cub~s.

Figure C.2 Virtual Office with computer, Desk, etc.

61

62

Figure C.3 Sample Fitts Law World used for Experiments

Figure C.4 Vi~ua~ Box and Blocks World used for Exp.eriments .

;suo

REFERENCES

1. Hillman, M. "Rehabilitation robotics fron1 past to present - a historical perspective. n

Proceedings of the ICORR 2003,
Rehabilitation Robotics, April 23-25, 2003.

2. M. Topping and l Smith. "The developn1ent of Handy 1: A robotic systen1 to assist
the severely disabled." Technology & Disability, 1999, Vol. 10 Issue p95.

3. M. Topping, H. Heck, G. Bolmsjo, D. Weightn1an. "The Developn1ent of RAIL
(Robotic Aid to Independent Living)" Proceedings of the Third TIDE Congress.
1998.

4. H.F.M. Van der Loos, J.1. Wagner, N. Smaby, K. Chang, O. Madrigal, L.1. Leifer, O.
Khatib. "Pro V AR Assistive Robot System Architecture." Proceedings from the
IEEE International Conference on Robotics and Automation. May, 1999.

5. Evans, lM.; "HelpMate: an Autonomous Mobile Robot Courier for Hospitals."
Proceedings of the IEEEIRSJIGIInternational Conference on Intelligent Robots
and Systems, 'Advanced Robotic Systems and the Real T¥orld.' September 12-16,
1994. Volun1e 3, Page(s):1695 - 1700.

6. Yoshiyuki Takahashi, Takashi Komeda, and Hiroyuki Koyan1a. "Developn1ent of the
Assistive Mobile Robot Systen1: AMOS - To Aid in the Daily Life of the
Physically Handicapped." Advanced Robotics. Novelnber, 2003.

7. Wi egner, A.W., Taylor, B., Sheredos, S.l "Clinical evaluation of the Helping Hand
Electron1echanical Am1." Engineering in Medicine and Biology Society, 1996.
Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual
International Conference of the IEEE. Oct 31 - Nov 3, 1996. Volmne: 2, On
page(s): 541-542

8. Farahn1and, F.; Pourazad, M.T.; Moussavi, Z.; "An Intelligent Assistive Robotic
ManipUlator." 27th Annual International Conference of the Engineering in
Medicine and Biology Society, 2005. Page(s):5028 - 5031

9. Driessen, B. J. F., Evers, H.G., Woerden, J.A. v, "MANUS - a wheelchair-Inounted
rehabilitation robot." Proc Instn Mech Engrs. 2001. Volun1e 215. Pali H.

10. Ellis, S.R. "What are Virtual Enviromnents." IEEE Computer Graphics and
Applications. January 1994. Volmne 14, Issue 1, Page(s):17 - 22.

11. Draper, J.V.; Handel, S.; Hood, C.C.; Kring, C.T. "Three Experiments With
Stereoscopic Television: When It Works And Why." IEEE International
Conference on Systems, Man, and Cybernetics. October 13-16, 1991. VoluI11e 2,
Page :1047 - 1052.

63

64

12. Drascic, D.; Milgram, P.; Grodski, J. "Learning effects in telemanipulation with
monoscopic versus stereoscopic remote viewing" IEEE International Conference
on Systems, Man and Cybernetics. Nov. 14-17, 1989. Volume 3, Page:1244 -
1249.

13. Wai-keung Fung; Wang-tai Lo; Yun-hui Liu; Ning Xi. "A Case Study of 3D
Stereoscopic vs. 2D Monoscopic Tele-Reality in Real-Time Dexterous
Teleoperation." IEEE/RSJ International Conference on Intelligent Robots and
Systems. Aug 2-6, 2005. Page 181 - 186.

14. Fitts, P. M., "The Information Capacity of the Human Motor System in Controlling
the Amplitude of Movement." Journal of Experimental Psychology. June, 1954.
Volume 47, No. 6. 381- 391.

15. Fitts, P. M., Peterson. "Information Capacity of Discrete Motor Responses." Journal
of Experimental Psychology. February, 1964.Volume 67, No. 2. Page 103 - 111.

16. MacKenzie, I. S. "Fitts' Law as a Research and Design Tool in Human-Computer
Interaction." Human-Computer Interaction. 1992. Volume 7, Page 91-139.

17. van Tuijl, J.H., Janssen-Potten, Y.J.M., Seelen, H.A.M. "Evaluation of Upper
Extremety Motor Function Tests in Tetraplegics." Spinal Cord January 29, 2002.
Volume 40, 51-64.

18. Mathiowetz, V. Volland, G. Kashman, N. Weber, K. "Adult Norms for the Box and
Block Test of manual dexterity." American Journal of Occupational Therapy.
1985. Volume 39, Page 386-391.

19. Immersion Probe™ and Personal Digitizer ™. "Programmer's Technical Reference
Manual: Immersion Probe and Personal Digitizer." Revision 2.0a. Immersion
Corporation, Santa Clara, CA.

20. Ramirez, Diego. "Multi-Degree of Freedom Telemanipulation in an Unstructured
Environment." Masters Thesis, NJIT. January, 2007.

21. Humusoft s.r.o. and The Math Works, Inc. "Virtual Reality Toolbox: For use with
Matlab® and Simulink®." User's Guide. August 2001.

22. Carey, R., Bell, G. "The Annotated VRML97 Reference Manual."
http://www.cs.vu.nl/~eliens/documents/vrml/reference/BOOK.HTM. Feb. 2008
Copyright © 1997 by Rikk Carey and Gavin Bell.

23. Corke, P. I. "A Robotics Toolbox for Matlab (Release 7)." IEEE Robotics and
Automation Magazine. March 1996.Volume. 3. Number 1. Page 24-32.

24. Ungerleider, Leslie G., Doyon, Julien, Karni, Avi. "Imaging Brain Plasticity during
Motor Skill Learning." Neurobiology of Learning and Memory. 2002. Volume
78, 553-564.

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract

	Title Page

	Approval Page

	Biographical Sketch

	Dedication Page

	Acknowledgment

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)

	Chapter 1: Background

	Chapter 2: Setup, Requirements, and Previous Work

	Chapter 3: Design Elements of the Training Environment

	Chapter 4: Implementation

	Chapter 5: Discussion and Future Work

	Appendix A: Sample Trajectories From Fitts' Law Testing

	Appendix B: Sample Trajectories From Box and Blocks Testing

	Appendix C: Screen Shots of VR Worlds

	References

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

