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ABSTRACT

PHOTOPLETHYSMOGRAPH-DERIVED RESPIRATION

by
Priyanka Pankaj Shah

Stress & Motivated Behavioral Institute (SMBI) has developed a research program to

provide an objective evaluation of the physiological and neurocognitive impact of human

electromuscular muscular interference (HEMI) devices in humans. The initial step is to

understand their physiological impact, which is characterized by vital signs. Volunteers

are recruited from HEMI training programs with the provision that data collection can not

interfere with training. Thus, an ambulatory system was assembled. There are two main

issues in the current ambulatory system, one of which is the reliability of the respiration

signal obtained using a strain gauge respiration band, mainly due to motion artifact.

The field of monitoring heart rate and respiratory rate using the

photoplethysmograph (PPG) signal is rapidly growing. The main objectives of the thesis

is to design a PPG hardware - an ear clip sensor and analog processing circuit — to

comprise respiration related information and build a software using autoregressive

modeling technique to extract respiratory rate from the PPG signal. The custom hardware

and software verification results are compared with that of off-the-shelf Nonin® pulse

oximetry module — Xpod®. The custom hardware PPG signal was affected more

significantly by motion artifact than the Xpod® hardware output. Discrepancies in

detecting 6 breaths per minute using custom PPG signal were noted. In conclusion, a few

changes in the custom hardware circuit are suggested to further improve the software

results in an ambulatory setting. In addition, a more controlled study is suggested.
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CHAPTER 1

INTRODUCTION

1.1 Objective

Human electromuscular interruption devices (HEMI) are increasingly popular

with law enforcement agencies, whose largest manufacturers are TASER International

((TI), Scottsdale, AZ). TASERs produce electrical discharge to depolarize muscle, induce

tetanus, and eliminate voluntary motor control. There are several controversies in the

general population related to TASER use by the law enforcement agencies. On one hand,

deaths have occurred to individuals while being exposed to TASER by law enforcement

in the field, which would question its safety. On the other hand, most law enforcement

agencies require or encourage their officers to experience TASER discharge during

training. In these cases - numbering as many as 100,000 discharges - no officer deaths

have been reported. To provide an objective evaluation of the physiological and

neurocognitive impact of TASING, and to infer the health risk in humans, the Stress &

Motivated Behavioral Institute (SMBI) at University of Medicine and Dentistry of New

Jersey have developed a research programs in humans.

The initial step of this program is to try to understand the physiological impact

(muscle, heart and cardiorespiratory alterations) in trainees during their occupational

exposure to TASERs. The physiological impact of TASERs can be characterized non-

invasively by studying changes in vital signs during and after tasing as compared to the

baseline.

HEMI training programs are conducted by local law enforcement agencies

throughout the United States, but not New Jersey. TI strongly recommends the trainees to

1
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experience the TASER discharge during the training. The volunteers for the SMBI study

are, thus, recruited from HEMI training programs with the provision that the data

collection can not interfere with training. The physiological data collection becomes

challenging as the volunteers are exposed to TASER sometime during the training

session. A further condition is that the physiological data must be collected pre-TASING,

during the TASING and post-TASING. Consequently, tethering volunteers to equipment

for the duration of the session, sometimes for several hours, is not feasible. Thus, a need

for an ambulatory system to be capable of monitoring vital signs such as: 3-lead

electrocardiogram (for heart rate and heart rate variability measurements), respiration,

body temperature, and oxygen saturation and body posture, was presented. While the

system has broad applicability to other non-tethered data collection applications, it was

explicitly assembled to be used for the HEMI study.

The system uses the wireless technology Bluetooth® for data transmission to a

central collection station. Custom analog processing units were built in the VA

engineering laboratory to apply proper amplification, filtering, and other signal

processing tools to the ECG, respiration and body temperature signals. These circuits

were designed explicitly to fulfill the input voltage requirements (0 — 5 V; no negative

voltages) of the Bluetooth® module used for this study. While the system is performing

well for the current experiments, there are a few issues with the ambulatory setup, parts

of which are tackled in this thesis.

With the current ambulatory setup, the ECG, respiration, body posture and body

temperature custom processing circuit provides an analog output. These signals are then

digitized and transmitted wirelessly to the receiver station using BlueSentryTM
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Bluetooth® module (Roving Networks, California USA) as seen in Figure 1.1. The

oxygen saturation measurements are done using off-the-shelf Xpod® evaluation kit pulse

oximetry module (Nonin, Inc.). Xpod® is a patented device providing four parameter

output: heart rate, oxygen saturation, pulse height, and photoplethysmography at 75 Hz. It

produces output in a serial format, which did not match the BlueSentry TM Bluetooth®

module analog to digital (ADC) channel input requirement. Thus, a separate Bluetooth®

module — BluePortTM (Roving Networks, California USA) was purchased to comply with

the Xpod® features. Consequently, an ambulatory pack used for data collection consists

of: 1) Custom analog circuits for ECG, body temperature, body posture and respiration,

2) BlueSentryTM module for data transmission, 3) Xpod® for oxygen saturation, heart

rate and photoplethysmography measurements and 4) BluePort TM module with a serial

input for Xpod® data transmission.

Thus, each ambulatory pack contains two Bluetooth® transmitters. A block

diagram of the current system is as shown in Figure 1.1. There are several issues with the

current ambulatory setup.

The first issue is the reliability of the respiration signal. The respiration signal,

currently, is obtained using a strain gauge band on the chest, which measures the volume

changes of the thoracic cavity with inspiration and expiration processes. Essentially, the

sensor detects the movement of the thoracic cavity with respiration. This method is prone

to motion artifacts. Motion artifacts are apparent prior to exposure and after exposure

inasmuch as subjects perform normal activities (e.g., walk, talk, laugh etc). However, the

largest source of artifact is during exposure. Subjects are held by spotters and are laid to

ground as they lose muscular control. The frequency rate of the artifacts masks
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respiration. Thus, from the first stage of data processing, it was clear that the respiratory

rate obtained using strain gauge was unreliable.

Bluetooth® technology along with its many attractive features has certain

limitations. The Bluetooth® receiver connected to a computer allows connection with

only eight Bluetooth® transmitters at once. Thus, with the current ambulatory system

setup, only four subjects (ambulatory packs) can be connected to the receiver end on the

computer (as seen in Figure 1.1) or eight subjects with two computers. If the number of

Bluetooth® transmitters per ambulatory pack is reduced to one then its capability can be

increased to have sixteen subjects with two computers at once. This is the second issue

with the current ambulatory system.

Figure 1.1 Block diagram of current ambulatory system transmitter packs.
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Considering all these factors, this thesis is a first step towards incorporating pulse

oximetry module with the other parameters on a single Bluetooth® transmitter and to

develop a more reliable respiratory rate monitoring unit.

The field of monitoring heart rate and respiratory rate using the

photoplethysmograph (PPG) signal is rapidly growing because of its many attractive

features including the possibility of undisturbed and long-term monitoring in a non-

invasive fashion (Johansson A. et al., 1999). PPG signal is one of the outputs of many

pulse oximetry modules. In fact, the oxygen saturation measurement is performed using

the PPG signal. The concepts of extracting heart rate and oxygen saturation parameters

from the PPG signal are well established (Nilsson et al., 2003). Thus, the main objectives

set forth for this thesis are as follows:

• Design software based processing algorithm in LabVIEW to extract respiratory
rate from the digitized PPG signal.

• Design a custom PPG module, which includes a sensor and an analog processing
unit,

o To make it compatible to the BlueSentry TM Bluetooth® module input
requirements

■ To reduce number Bluetooth® transmitters per pack
■ Reduce cost

o To match reliability and robustness of Xpod® module
o To enable a control over the sampling rate, filtering characteristics and

quantization/resolution levels of the PPG signal

• To compare the results of the LabVIEW based respiratory rate extraction
algorithm using the PPG obtained from the Xpod® and the custom hardware at a
known respiratory rate

Accomplishment of these objectives will ultimately serve the final goal, which is

to encompass the entire ambulatory system on one Bluetooth® transmitter per

ambulatory pack/subject to enhance data collection from eight subjects per computer
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instead of 4. This thesis focuses mainly on obtaining respiratory rate from the PPG signal,

as concepts of extracting heart rate and oxygen saturation are well established and can be

incorporated in the system at a later stage. The future development includes obtaining

heart rate and percentage oxygen saturation, along with respiratory rate from a single

PPG sensor to make the system even more compact.

A PPG custom hardware circuit and software for respiratory rate extraction were

designed in the VA engineering laboratory. Data during several activities and paced

breathing (Chapter 3) was collected for a purpose of proof of concept at NJIT from N=1

subject.

1.2 Background Information

1.2.1 Photoplethysmograph

Photoplethysmography (PPG) is a method of applying a light source and a light sensor on

the opposite or on the same side of peripheral body parts such as finger, ear lobe, or toe,

for measuring the alterations in light intensity that passes through the tissue. The

alterations in light intensity are mainly due to the change in the volume in the absorbing

materials and due to the scattering effects of light. It is a low cost, simple, portable, and

non-invasive technology, usually used for measuring percent oxygen saturation, blood

pressure, and cardiac output, and to understand autonomic nervous system function, and

peripheral vascular disease in clinical settings. If the light source and the sensor are both

placed on the same side of the body part, then the type of probe is called a reflectance

probe, while if they are placed on opposite sides then it is called a transmittance probe.
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Reflectance probe measures the intensity of light reflected by the tissue sample, while

transmittance probe measures the attenuation of incident light intensity after its passage

through the sample. According to Anderson and Parrish (1981) (as cited in Webster,

1997), the interaction of light with tissue sample is explained by several optical processes

such as scattering, absorption, reflection, transmission and florescence (Webster, 1997).

The attenuation of light is mainly caused by changes in blood volume and in the

orientation of blood vessels, and blood vessel wall movement. Thus, a typical PPG signal

is related to the circulation of blood through the body parts under study. This signal

comprises of two main components: AC and DC. AC is the pulsatile component as

detected by the light sensor, pertaining to the synchronous changes in the blood volume

with each heart beat. DC component, on the other hand, is related to the slowly changing

baseline depending on respiration, sympathetic nervous system activity and

thermoregulation (Webster, 1997).

This thesis is mainly concerned with the design of a circuit and a sensor to obtain

the PPG signal, and to understand its operation so that highly efficient software based

algorithm can be designed to derive the respiratory rate. To understand this procedure

more accurately, however, it is essential to comprehend the underlying physiological

systems participating in triggering changes in the volume of the peripheral body parts

(under study) depending on the blood flow. The circulatory system mainly involving the

heart, the blood vessels and the blood is discussed in more detail in the latter sections, to

better understand blood flow. Not only that, in order to link the two processes together

i.e., PPG and respiratory rate, it is essential to discuss the respiratory system, which is

mainly involved in oxygenation of blood through the process of gas exchange in the
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lungs. The respiratory system mainly consists of the airways, the lungs, the respiratory

muscles.

1.2.2 The Respiratory System

Oxygen plays a vital role in functioning of all the physiological systems in the human

body. It manages the process of energy metabolism in the body. Lack of oxygen will

cause many processes in the body to work adversely and may cause them irreversible

damages. Thus, a prolonged absence of oxygen affects the cells in the body to die.

1.2.2.1 Oxygen Delivery. Ventilation is the first step where the air moves in and out

of lungs and gas exchange takes place. Oxygen diffuses into the blood, while carbon

dioxide produced during cellular respiration diffuses into the lungs for removal. The

oxygenated blood circulates in the entire body until it reaches oxygen-depleted areas. The

oxygen is then diffused into the cells and the blood carries the residue gas (carbon

dioxide) back to the lungs (Webster, 1997).

Ventilation is defined as the involuntary and rhythmic process of moving air in

and out of the lungs. This process is controlled by respiratory neurons in the brain stem,

whose output is modulated by chemo-receptors and mechanoreceptors. The respiratory

neurons modulate the rate and depth of ventilation. These neurons excite motor neurons

in the spinal cord, which in turn causes the contraction of diaphragm, pectoral muscles,

and intercostal muscles (respiratory muscles).
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Figure 1.2 Inspiration and expiration (Britannica). 

The combined contraction of these muscles pulls the ribcage up and out to give 

some room for lung expansion - causing inspiration. There is a cyclic inhibition of the 

activity of respiratory neurons allowing the muscles to relax. This causes the ribcage to 

contract, which triggers expiration. 

1.2.2.2 Oxygen Transport in Blood. Gases are not soluble in blood. The 

compound hemoglobin provides a secondary method of oxygen transport in a human 
i 

body. Oxygen transport is also carried out by the oxygen dissolved in plasma. Thus, the 

total oxygen content in blood is the sum of hemoglobin bound oxygen and the dissolved 

oxygen. 

Hemoglobin is the iron-containing oxygen transport metalloprotein in the red 

blood cells. It is composed of heme units, which contain molecules of iron, and globin 
, . 

units, which are polypeptide chains. In essence, each subunit of hemoglobin is a globular 
: 

protein with an embedded heme group; each heme group contains an iron atom, and this 

is responsible for the binding of oxygen through ion-induced dipole forces. One 

hemoglobin molecule contains four heme and four globin units. Each heme and globin 

unit can carry one molecule of oxygen and thus one molecule of hemoglobin can carry 
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four molecules of oxygen (Weber, 2001). The theory of the working of pulse oximetry 

lies in the fact that the red blood cells change color depending on the binding state of 

hemoglobin. An oxygenated molecule is bright red, while deoxygenated is dark red. 

The affinity for the oxygen molecules increases as the neutral i.e. , completely 

deoxygenated hemoglobin molecule combines with its fust oxygen molecule; this 

converts a neutral hemoglobin molecule to a negatively charged ion. The affinity further 

increases with additional combinations. The reverse process is also true. Thus, more 

molecules bind as the oxygen partial pressure increases until the maximum number is 

reached. As this limit is approached, only a few additional bindings occur and the curve 

levels out as the hemoglobin becomes saturated. 
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Figure 1.3 Oxyhemoglobin dissociation curve {American Society Df Health-System 
Pharmacists, Inc.). 

The curve that shows the relationship between the partial pressure of oxygen in 

blood and the percentage of oxygen bound to hemoglobin as compared to the maximum 
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is called oxyhemoglobin dissociation curve. This relationship, as described above, IS 

certainly not linear, but sigmoidal (Webster, 1997). 

1.2.3 The Circulatory System 

The diffusion of oxygen to the blood occurs by the process of gas exchange in the alveoli 

of lungs where hemoglobin and plasma act as carriers of oxygen. The oxygenated blood 

is then returned to the heart for circulation to the rest of the body. The circulatory system 

is thus involved in transporting oxygenated blood to the cells in the body, where heart is 

the primary pumping mechanism. It mainly consists of the heart, the blood and the blood 

vessels. The circulatory system includes: the pulmonary circulation and the systemic 

circulation (Stem et aI. , 2001). 

Electrical System of the Heart 

Sinoatrial (SA) .... 
Anterior 
Internodal 
T~I 

Middle 
Internodal 
TOKt 

P01l lenor 
Internodal 
TOKt 

Alric!.venlriwlar (AV) Node 

Figure 1.4 The heart (UAB Health System). . ' 

ConouCl'lon 
Pathways 

Right Bundle Bra!lCh 

The heart has four chambers: right and left atria and right and left ventricles. The 

right atrium of the heart collects the deoxygenated blood from the body through vena 

cava and pumps it via the right ventricles in the lungs. As discussed in earlier sections, 

the process of gas exchange and oxygen delivery takes place in the lungs and the blood is 
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returned to the left atrium via pulmonary ventral capillaries to larger venules and

eventually pulmonary veins. This process is characterized as pulmonary circulation. From

the left atrium, the blood travels to the left ventricle and is pumped to the rest of the body

via systemic arteries. This is called the systemic circulation.

Blood pressure throughout the arteries varies depending on the activity of the

ventricles per heartbeat. It reaches its maximum at the systole, caused by the contraction

of the ventricles and at its minimum at the diastole, caused by the ventricular relaxation.

This is the basic theory behind the plethysmograph waveform. Plethysmograph is a non-

invasive measure of the pulsatile flow of blood in the arteries. The systemic arteries

branch into smaller arterioles and even smaller capillaries. Oxygen is then transferred to

the tissue in the oxygen-depleted regions. The deoxygenated blood then travels via vein

capillaries, venules to the superior vena cava and the inferior vena cava into the right

atrium of the heart and the process repeats.

The flow of blood inside the heart is controlled by rhythmic contraction and

relaxation of atria and ventricles in an ordered fashion. The electrocardiogram is the

measurement of the electrical activity in a single heartbeat modulating the activity of the

heart chambers. The rhythmic contraction of the heart is controlled by a series of

electrical impulse originating in the sinoatrial (SA) node (60-100 times per minute under

normal conditions), the physiological pacemaker. (Stern et al., 2001).

1.2.4 Blood Flow

The brainstem processes several stimuli from the chemoreceptors and baroreceptors to

provide a feedback to the SA for controlling the heart rate (i.e., the number times SA
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node fires in unit time) and the stroke volume respectively. This process is similar to the

respiratory feedback mechanism. The stroke volume is the amount of blood pumped by

the right and left ventricles in one contraction. The cardiac output is the product of the

stroke volume and the heart rate (Stern et al., 2001).

Vasoconstriction is defined as narrowing of the lumen of blood vessels restricting

the flow of blood, which cause an increase in blood pressure. The opening of blood

vessels is defined as vasodilation. Total peripheral resistance is the cumulative resistance

of all the vessels in the systemic circulation (Stern et al. 2001). At each contraction of the

heart, blood is forced through the peripheral blood vessels producing dilation or

constriction of the vessels. The vasomotor activity is controlled by the autonomic

nervous system (ANS). The sympathetic activity makes an important contribution to the

redistribution of blood flow when the body's needs change. The parasympathetic nervous

system (PNS) generally has a relatively minor effect on the blood vessels. Vasodilation

and vasoconstriction change the resistance to blood flow through the vessels. This change

in the resistance directly affects both blood flow and blood pressure (Stern et al., 2001)

An increase in PPG amplitude indicates sympathetic inhibition (vasodilation) and

parasympathetic activation. This implies a greater blood flow to the peripheral vessels.

The PPG can display these changes in sympathetic and parasympathetic activities. The

physics of photoplethysmography is discussed in more detail in Section 1.2.6.

1.2.5 Link between PPG and Respiration

Many advanced signal processing tools such as digital filtering, Time-Frequency analysis

such as Short Time Fourier Transform (STFT) and Wavelets, Time Series analysis using
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both parametric and non-paranletric modeling techniques, have been applied to establish 

PPG as a reliable measurement of respiratory rate along with heart rate and oxygen 

saturation (Nakajinla et al., 1995; Addison et aI., 2004; Leonard P. A. et aI. , 2006; 

Nilsson et al., 2006). Over the years monitoring of heart rate and arterial oxygen 

saturation and their physiological conditions are well established, while the physiological 

background for the respiratory rate component of the PPG signal is not fully understood 

(Nilsson et al., 2003). 

Many authors have described the low frequency (LF) variations in the PPG signal 

as the respiratory-induced intensity variations (RIIV). The PPG signal is also believed to 

encompass very low frequency (VLF) variations due to the Traube, Hering and Mayer 

waves in the blood pressure (THM waves) (Penaz, 1978; Traube, 1865; Hering, 1869; 

Mayer 1876). THM waves are associated with the baroflex loop and thermoregulation, 

mediated by the sympathetic nervous system (Nilsson et al., 2003). According to Ahmed 
; 

et al. (1982), THM waves, even though, have a slower frequency than normal respiration 

frequency, sometimes combine with the low respiratory frequency (as cited in Nilsson et 

al., 2003). 
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Figure 1.5 Fourier transform of raw PPG signal showing the VLF, LF and high 
frequency components corresponding to THM waves, RIIV signal and cardiac frequency 
respectively (Rusch, T. L. et aI., 1996). 



15 

This thesis is, however mainly concerned with the RIIV signaL RIIV occur 

because of the changes in the intrathoracic pressure with inspiration and expiration 

affecting the peripheraI venous return to heart, per respiration cycle (U gnell, 1995; 

Nilsson et aI., 2003; Brecher et aI., 1954; Johansson et aL, 2000). Brecher G. and Hubay 

C. (1954) have described a series of alterations taking place in the heart (superior vena 

cava) and lungs (pulmonary artery) with respiration. These aIterations are ultimately 

transmitted to the periphery and can be detected by the PPG sensors (Nilsson et aI., 

2003). 
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Figure 1,6 Demonstrating fluctuating venous return with each heart beat (Brecher et aI., 
1954). 

Brecher et aI . (1955) carried out an invasive experiment on dogs to measure a 

relationship among several parameters such as the heart beat, stroke volume, venous 
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return, respiration, and blood pressure. They used flow meters in various designated areas

in the body to derive an accurate relationship. The superior caval flow was taken as a

representative of venous return and the main pulmonary artery as the right heart output

into lungs. Figure 1.5 shows a segment to demonstrate the effect of spontaneous

respiration on venous return and cardiac output. The Figure 1.5 shows that pulmonary

artery flow increases significantly during spontaneous inspiration (from 36.0 ml during

expiration to 42 ml during inspiration and back to 32.2 ml), and that changes in venous

return (13.5 ml during expiration to 24.1 ml during inspiration and back to 12.8 ml) are

always reflected in the beat output of the following cycle. The greatest venous return

increase (24.1 ml.) took place during the third beat when inspiration had reached its

maximum. With the onset of expiration the return flow of blood was immediately

reduced (fourth heart beat, 12.3 ml.). From this sequence of events, the team concluded

that the inspiratory augmentation of venous return was responsible for the increase in the

pulmonary artery flow (Brecher et al., 1955). However, the lungs and right ventricle

buffer respiratory changes in the systemic venous return, and only minor changes are

transmitted to the left ventricle. According to Santanire and Amoore (1994), this

phenomenon results in a constant ejected volume (stroke volume) from the left ventricle

(as cited in Nilsson et al. 2003). The arterial compliance is more than ten times lower

than the venous compliance (Slutter et al., 1981) and make fluctuations in the volume of

blood less pronounced on the arterial side of the circulation (Nilsson et al., 2003). Thus,

venous variation in blood volume can be considered as a main contributor to the RIIV

signal. To prove this relationship, Nilsson et al. (2003) carried out a study to understand

the relationship between RIIV and peripheral venous pressure (PVP). They concluded
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that there is, in fact, a correlation in the amplitudes of the RIIV in the PPG signal and the

respiratory variations in the PVP with varying respiratory pattern.

Fleming et al. (2007) compared several digital filtering, wavelet decomposition

and autoregressive (AR) modeling methods currently used to extract respiratory rate from

the PPG signal. They concluded that autoregressive modeling method outperformed the

other methods and that this method could also be used for real-time tracking of breathing

rate using the PPG waveform (Fleming et al., 2007). Based on the results provided by this

study, autoregressive modeling method was used to extract respiratory rate information

from PPG in this thesis. This method and its application are discussed in detail in

Chapter 2.

1.2.6 Light Absorbance in Photoplethysmograph

Photoplethysmograph is a representation of changes in the absorption of light by

chromophores in the tissue by detecting changes in light transmission through the

vascular bed. The changes in absorption are caused because of changes in blood volume

in the blood vessels, especially arteries and arterioles, with each heart beat i.e.,

ventricular contraction. An absorption spectrum of an absorbing material is unique to the

absorbing atoms or molecules that form the material, and such spectrum provides a key

for recognizing specific compounds. This is accomplished by applying the Beer-

Lambert's law.

1.2.6.1 Beer-Lambert's Law. 	 Beer-Lambert's law quantifies the attenuation of

light traveling through a uniform medium containing an absorbing material.
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Figure 1.7 Beer Lambert's law.

If a monochromatic light of intensity to enters a medium, part of this light is transmitted

through the medium and the rest is absorbed. Beer's law does not take into account the

reflection of the light at the surface and scattering of light in the medium. The law

suggests that there is a linear relationship between the absorbance and concentration of

the absorbing material, which is represented using the units of molarity. Thus,

ε (λ) = extinction coefficient or absorptivity of the absorbing material at a specific
wavelength - λ (L mmol-1 cm-1)

c = concentration of the absorbing material, which is considered to be a constant (mmol
L-1 ), and

b = optical path length (cm) (distance travelled by the light through the medium)

The Beer-Lambert's law assumes that the medium is homogenous or uniform, the

incident light is collimated and reflection and scattering do not contribute to the loss of

incident light. By quantized modeling of passage of light through an absorbing but non-

scattering medium can be used to obtain Beer-Lambert's law.

The concepts of Beer-Lambert's law can be generalized for the case when more

than one material absorbs the incident light in the same medium i.e., the total absorbance

is a sum of individual absorbing processes for each material at the same wavelength of
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light. The resulting total absorbance of light A t in a medium consisting of n absorbing

materials is the sum of their n independent absorbencies (Webster 1997):

where ε1 (λ ) and c, represent the extinction coefficient and concentration of the

absorbing material i and birepresents the optical path length through each material i.e.,

this value differs from material to material in the same medium.

In experimental terms, the transmittance (T) of light measured by a light sensor on

the other end of the medium is defined as the ratio of transmitted light (I) to the incident

light (Io) (Webster, 1997):

1.2.6.2 Hemoglobin. Hemoglobin is the main absorber of light in human blood at

the wavelengths used in PPG. As mentioned in Section 1.2.2.3, the absorbing

characteristics of hemoglobin vary with its chemical binding properties and the

wavelength of the incident light (based on Beer-Lambert' s law). Oxygenated and reduced

oxygenated hemoglobin absorb most of the light passing through blood, however

presence of other variants of hemoglobin such as methemoglobin, carboxyhemoglobin,

sulfhemoglobin, and carboxysulfhemoglobin can alter its color and thus its absorption

characteristics.

When hemoglobin is fully saturated i.e., carrying four oxygen molecules, it is

called oxygenated. When it is not fully saturated it is called reduced. The hemoglobins

(oxygenated and reduced) that are able to bind reversibly with oxygen molecules are

called functional.
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Figure 1.8 Absorbance characteristics of variants of hemoglobin (Heekeren, 1998), 

The hemoglobin variants that do not support the transport of oxygen to the tissues, 

are referred to as dysfunctional hemoglobiris, Most of the hemoglobins in human blood 

are functional, In pulse oximetry and photoplethysmography, the changes due to 

dysfunctional hemoglobins are ignored (Webster, 1997), 

1.2,6,3 Selection of Wavelength of Incident Light for Photoplethysmography, 
I 

Different species of hemoglobin have different physical properties g'ecause of the 

variations in their chemical structure, Thus, the extinction coefficients of each of the 

functional and dysfunctional hemoglobin are different at different wavelengths of light 

For example, the absorbance of red light by reduced hemoglobin is much higher than 

oxyhemoglobin, whereas the absorbance of infrared light by reduced hemoglobin is much 

lower than oxyhemoglobin, The extinction coefficients of both hemoglobins are the same , 

at 805 urn wavelength of incident light, which' is called an isosbestic point as seen in 

Figure 1,8, 

Red and infrared region of the electromagnetic spectrum has been used in pulse 

oximetry and photoplethysmography for several reasons, The wavelength of incident 

light is selected to reflect changes in absorbance of functional hemoglobin with optimum 
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efficiency. The main constituent of tissue that forms the skin surface is water. Water

absorbs light with ultraviolet and long infrared wavelengths very strongly. The red skin

pigmentation (melanin) absorbs a large amount of red light with shorter wavelengths

(lower than 600 nm), which takes the emphasis off of oxyhemoglobin and reduced

oxyhemoglobin absorbance in the tissue. Therefore, it is not desirable to measure light

absorbance in that region. In the absorption spectra of water, there is a region that allows

red and near infrared light to pass more easily i.e., less absorbance. This facilitates the

measurement of blood flow at these wavelengths.

Large differences in extinction coefficients of reduced and oxy-hemoglobin are

desirable so that even a slight change in their arterial concentration will exhibit dramatic

changes in their absorbance quantity (Beer-Lambert's law). This enables improved light

sensing performance as the changes in the transmitted light are intensified. At 660 nm,

the difference in extinction coefficients for the reduced and oxy-hemoglobin is large

enough, thus it is a desirable wavelength. The flatness of the absorption spectra at chosen

wavelengths is one of the other issues that needs consideration.

A shift in the peak wavelength of the light source will result in a corresponding

shift in the extinction coefficient value, which in turn changes the transmitted light

intensity. This phenomenon induces large errors in the amplitude of PPG signals. The

absorbance spectra of reduced and oxy-hemoglobin are relatively flat at 660 nm and 940

nm (Moyle, 1994; Webster, 1997). Thus, 660 nm and 940 nm are the desirable

wavelengths for the incident light for pulse oximetry applications. For

photoplethsmography, 940 nm is more desirable because at this wavelength there is a

flatter response in absorption spectrum than at 660 nm. So the hardware to compensate
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for the alterations in the peak wavelength produced by the light source is not required

(Webster, 1997).

The different species of hemoglobin are the main absorbers in arterial and venous

blood. Most of the hemoglobin in human blood is either reduced or oxy-hemoglobin.

According to Beer-Lambert's law, the total absorbance A t of a solution containing only

reduced and oxy-hemoglobin as absorbing substances is as follows:

This equation holds that assumption that the optical path length b is the same for

both species of hemoglobin (bHbO2 = bHb). cHbO2and cHbrepresent the concentrations εHbO2

and εHb represent the extinction coefficients of reduced and oxy-hemoglobin respectively.

Values for εHbO2 and εHb at 940 nm have been measured by Zijlstra et al (1991) (as cited

in Webster, 1997):

Table 1.1 Extinction Coefficients of Oxy and Deoxyhemoglobin at 940 nm

Wavelength (nm) εHb εHbO2
940 0.18 0.29

1.2.6.4 Measurement of Pulsation of Blood. In PPG model, the primary light

absorbers in arteries - the reduced and oxy-hemoglobin are considered to be the only

absorbers of importance. A PPG sensor is designed such that light of a particular

wavelength (Infrared 940 nanometers — nm) is passed through peripheral body sites such

as finger, ear lobe, or toe. A photo detector (light sensor) is placed on the opposite side to

the light source with a finger or ear lobe (biological tissue) in the middle. Thus, the level

of changes detected reflects the change in absorption of light due to the tissue. The sensor
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is designed so that it compensates for the parameters affecting the detection of light other 

then the absorption process by the tissue. 

Light traveling through the tissue is absorbed by various absorbing substances 

such as skin pigmentation, bones and the arterial and venous blood. According to Beer-

Lambert's law, the amount of absorbed (and transmitted) light, in this case, is a function 

of extinction coefficients and concentrations of the primary absorbers, and the length of 

the optical path. 
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Figure 1.9 Optical path through the tissue bed (Webster, 1997). 
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The changes in the absorbance quantity occur due to vasoconstriction and 

vasodilation processes as explained in former sections. The arteries contain more blood 

during systole than during diastole as the ventricles contract to pressure blood into the 
. . 

rest of the body through the aorta. Vasodilation (increase in diameter) occurs due to the 

increased pressure in arteries to occupy extra blood from the ventricles before it can reach 

to the arterioles. This process occurs only in the arteries and arterioles because by the 

time blood reaches the rest of the peripheral blood vessels (capillaries and veins), the 

ventricles relax (diastole) and there is a decrease in the pressure exhibited by blood. The 
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absorbance of light in the tissues with arteries increases as the arteries dilate (greater

optical path length b) to occupy extra blood with larger amount of absorbing substances -

hemoglobin. During diastole, however the arteries return to their normal state with lesser

amount of absorbing substances as b decreases. The photo detector continuously

measures the amount of transmitted light to show the total absorbance; 1) the absorbance

due to venous blood, constant amount of arterial blood and other non-pulsatile

components such as skin pigmentation (non-changing dc component), and 2) the

absorbance due to the pulsatile component of the arterial blood (ac component). The

pulsatile component of the total absorbance is directly proportional to the amount of

absorbing substances present in the blood at that time. Thus, the PPG signal shows the

amount of transmitted light detected by the photo detector in a living tissue as a function

of time.

The only absorbers present during diastole are the DC components. All the DC

components except the non-pulsatile arterial blood are collectively expressed by

εDC (λ),cDC,bDC  to equate the intensity of transmitted light. At diastole, the diameter of

arterial vessels is at its minimum (bmin) and therefore the absorbance of light due to

arterial hemoglobin is minimal and the amount of transmitted light is high (IH).

While the amount of absorbed light reaches to its maximum during systole and

therefore the transmitted light reaches the low peak (IL). The optical path length in the

arteries increases during systole to bmax .
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From above equations it can be generalized that the transmitted light intensity I at the

photo detector is a function of diameter b of the arteries and arterioles. The diameter

changes from bmin to bmax during one cardiac cycle. Thus,

represents the part of the diameter that changes from 0 to bmax +bmin with time.

By substituting b with. Δb + bmin I can be expressed as a function of IH and

Δb (Webster, 1997, p. 48):

1.2.6.5 Light Scattering. Incident light passing through the tissue is not divided into

just absorbed light and transmitted light. Reflection and scattering of incident light takes

place, which changes the conclusions derived from Beer-Lambert's law. Unlike the

assumptions made under Beer-Lambert's law, blood is not homogeneous and the light

source does not produce monochromatic light. The absorbance of light is not simply

proportional to the concentration of hemoglobin or to the length of optical path.

According to Moyle, if change in the diameter was the only reason, the variation would

be much less. The main reasons for increased absorbance are scattering and multiple

scattering i.e., sub-scattering. Light scattering occurs when a beam of light is deviated

from its initial direction due to a change in index of refraction at the interface of the

medium. Thus, discontinuity in the index of refraction at the interface of plasma and of

red blood cells produce scattering. According to Steinke and Shepherd (1986), light that

is scattered once is likely be scattered again by cells and therefore multiple scattering

occurs, which ultimately increases the optical path length (as cited in Webster, 1997).
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Therefore, the absorbance increases as the optical path length is increased due to multiple

scattering effects.

The other theory that explains an increase in absorbance due to scattering is based

on a change in red blood cell axes. Red blood cells have a biconcave disk shape. During

diastole, the major axis of red blood cells is parallel to the blood flow, while during

systole it is perpendicular. Therefore the optical path length is longer during systole,

which increases absorbance (Moyle, 1994; Webster, 1997). Steinke and Shepherd in 1986

published that scattering effects of light passing through whole blood depend on the

wavelength of incident light and the oxygen saturation i.e., the presence of

oxyhemoglobin (Webster, 1997). The total absorbance has a larger slope than the slope

due to the absorbance of hemoglobin following Beer-Lambert's law. Thus, light

scattering tends to increase the sensitivity of the photoplethysmograph waveform for

detecting changes in absorbance.

1.2.7 Bluetooth®

Bluetooth® is a promising technology eliminating use of cables that connect various

personal computing devices and creating new types of smart wireless communications. It

is wireless standard and communications protocol primarily designed for low power

consumption over short distances (30 feet). Bluetooth® provides automatic

synchronization between multiple Bluetooth® devices. Bluetooth® radios use a radio

band - Industrial, Scientific, and Medical (ISM) band — between 2.4 and 2.48 gigahertz

(Miller).



CHAPTER 2

IMPLEMENTATION OF HARDWARE AND SOFTWARE

In Chapter 1, background research on photoplethysmograph and the underlying

physiological systems was discussed in detail. This chapter is dedicated entirely to the

discussion of the hardware built to obtain a clean analog PPG signal, and to the

discussion of the software for extracting respiratory rate from the digitized PPG signal.

Xpod® module used to obtain the PPG signal in the current ambulatory system is

an off-the-shelf patented device. The main objective of the Xpod® module is to provide

heart rate and oxygen saturation parameters using the PPG signal. It is difficult to obtain

the exact filtering and amplification characteristics of the Xpod® because of propriety

issues. The normal heart rate at rest in adults is 60 — 100 beats per minute and during

exercise it can reach as high as 200 beats per minute (depending on age)

(clevelandclinic.org). It is reasonable to assume that Xpod® might band-limit the PPG

signal in the 0.67 — 7 Hz (40 — 420 beats per minute) frequency range to account for both

normal and abnormal (tachycardia and bradycardia) heart rates. The normal spontaneous

respiratory rate at rest for adults is in the range of 10 — 16 breaths per minute (Chang,

2001), which corresponds to 0.15 — 0.27 Hz. If the Xpod® filter cut-off assumption is

held true, the respiratory rate frequencies fall in the stop band, thus, attenuating the

respiratory rate related information. Thus, to extract respiratory rate from the PPG signal

it is essential to know the exact filtering characteristics of the hardware.

In addition, from previous experiments it was noticed that the resolution of the

PPG signal from the Xpod® deteriorated at low blood perfusion levels. Thus, apart from

the limitation induced due to BlueSentry® module's input requirement, there are other

27
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issues with the Xpod® module, which can be resolved by constructing a custom PPG

hardware. A simplistic block diagram of the PPG hardware designed for this study is

provided in Figure 2.1. The filters of the custom PPG hardware were designed keeping

the frequencies related to the normal respiratory rate under perspective. 0.1 — 5 Hz was

used as cut offs for the filtering circuit. Ideally, the lowest respiratory rate that can be

extracted (in the software) is, thus, 6 breaths per minute.

Figure 2.1 Simplistic block diagram of PPG custom hardware and Xpod® Hardware.

National Instrument's LabVIEW® 8.0 software was used for the purpose of

applying highly sophisticated digital signal processing tools to obtain respiratory rate

from the PPG signal (Figure 2.1). The digitized PPG signal is analyzed using digital

elliptic filter in the time domain and power spectrum analysis in the frequency domain,

which ultimately defines the respiratory rate detection algorithm. In order to understand
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the algorithm accurately, a detailed discussion of the software. and its implementation in 

this thesis is provided in the sections below. 

2.1 Discussion of Hardware 

This section describes the custom PPG hardware in detail. The PPG sensor designed for 

this study consists of an infrared light emitting diode (LED) and a photo-detector. The 

sensor can be placed on any peripheral body parts such as toe, fmger, ear lobe or forehead 

to obtain the PPG signal. Ear and forehead sensors induce the least amount of motion 

artifact in the PPG signal. However, the blood perfusion in the forehand is less than the 

ear lobe. The PPG signal obtained from the ear lobe requires less amplification. 

Considering these factors, an ear lobe sensor was designed for this study. A Staples® 

paper clip provided as the ear clip sensor housing (Figure 2.2). The spring of the paper 

clip was replaced with a lesser tension one from one of the unused Nonin® ear clip 
~ 

sensor (Model: 8000Q). The LED and photo-detector were glued to the clip using Duco 

Cement® on opposite surfaces. Figure shows the ear clip sensor designed for this study: 

Figure 2.2 Custom ear clip sensor .. 

Figure 2.3 shows a complete block diagram of the analog processing circuit used 

for this study. Each of the stages presented in the diagram are discussed in more detail in 

later sections. The infrared LED, the photo-detector and the passive components such as 

resistors and capacitors were purchased from an extensive online electronic store 
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(mouser.com). The transimpedance amplifier, DC offset, inverting amplifier, low pass

filter, high pass filter, and notch filter circuits were built using an appropriate set of

passive components.

Figure 2.3 Block diagram of custom hardware.

2.1.1 Light Emitting Diode (LED)

As seen in Figure 2.3, the first two components: light emitting diode (LED) and photo-

detector form the building blocks of an ear lobe PPG sensor. An LED is a semiconductor

diode that allows the current to flow only in one direction while producing light.

Emission of light with a particular wavelength (i.e., color) depends on the semiconductor

material used to build the LED. LED emits light by a process called electroluminescence.

This phenomenon is a result of current flowing through a PN junction in a semiconductor

material used to emit light. The LED characteristics such as small packaging, wide range

of beam angles, off-the-shelf availability, higher intensity, narrow bandwidth output,

easy application, flexible operating temperature range and low cost, make them an ideal

choice as a light source for PPG applications.
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As mentioned in Chapter 1, infrared LED with 940 nm wavelength is chosen for

PPG applications. Features of the LED (Everlight IR91-21C) used for this study are as

follows (Everlight Technical Datasheet, 2005):

1) Small double-end Package 5) Spectral Bandwidth (Δλ): 45 nm
2) High reliability 6) Operating Temperature: -40 to 85 °C
3) Good Spectral Matching with Silicon
photo-detector (photodiode)

7) Beam (View) Angle: 25 Degrees

4) Peak Wavelength: 940 nm 8) Low Cost — $ 0.30 ea

2.1.2 Photo Detectors

A wide variety of photo detectors are available in the market today, such as photocells,

photodiodes, phototransistors, and integrated circuit chips with built-in detectors and

other necessary circuitry. For selecting an appropriate photo detector device specifically

for photoplethysmography applications, several factors have to be considered.

1. Linearity of the output signal i.e., Linear proportionality of the output signal
relative to the intensity of incident light is highly desirable

2. Sensitivity i.e., ratio of the electrical output signal to the incident light
3. Response time i.e., the time it takes in responding to a change in the input
4. Size and Cost (Webster, 1997)

A table comparing each of these factors for photocells, photodiodes and phototransistors

is described as follows:

Table 2.1 Electrical Characteristics of Photodiodes, Photocells and Phototransistors for
PPG Applications

Electrical
Characteristics

Photodiodes Photo Cells (CdS) Phototransistors

Available Wavelengths
(nano-meter)

200 — 2000 400 — 1100 400 — 700

Linearity Excellent Good Good
Sensitivity Very Good Very Good Very Good

Size Small Small Small
Cost Low Very Low Very Low

http://www.engLudayton.edu/faculty/jloomis/ece445/topics/egginc/tp4.html
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As seen from Table 2.1, the factors such as wavelength availability and linearity of a

photodiode make it more suitable for the PPG applications than other sensors. Thus, a

photodiode was used for this study.

2.1.2.1 Photodiodes. Photodiodes are semiconductor light detectors that produce

current or voltage output depending on the intensity of light incident on the p-n junction

in a semiconductor. There are several types of photodiodes available in the market today.

These include PN photodiodes, PIN photodiodes, Shottky photodiodes, metal-

semiconductor-metal (MSM) photo detectors, and avalanche photodiodes (APD).

However, P-I-N diodes have been found to be the most desirable for PPG applications. P-

I-N photodiodes have a faster response time than regular diodes. Shottky diodes are

primarily used for ultraviolet light detection applications and have response time faster

than required for PPG. MSM have lower sensitivity than PIN diodes and are not used.

APDs are used for detecting extremely low levels of light as they tend to amplify the

noise with the wanted signal. (Webster, 1997; Photodiode Technical Guide). They are not

used for PPG applications. The silicon based PIN photodiode with 7 mm 2 radiant

sensitive area in photoconductive mode is the most desirable choice for PPG applications.

Silicon PIN photodiode from Vishay Semiconductors (BPW24) was used for this

study. BPW24 is a high speed and high sensitive PIN diode in a miniature flat plastic

package. It has a waterclear epoxy making it more sensitive to visible and infrared

radiation. The large active area combined with a flat case gives a high sensitivity at a

wide viewing angle (Vishay Technical Data Sheet, 2006). BPW24 provides with

following features:
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1) Large radiant sensitive area: 7.5 mm 2 6) Wavelength of peak sensitivity: 900 nm
2) High photosensitivity 7) Range of spectral bandwidth: 600 —

1050 nm
3) Fast response times - Rise and Fall
times: 100 ns

8) Wide viewing angle: +/- 65 degrees

4) Small junction capacitance 9) Low Cost: $ 0.76 ea
5) Suitable for visible and near infrared
radiation

This photodiode provided the required radiant sensitive area, range of spectral

bandwidth and was suitable for near infrared radiation. These factors made it an ideal

choice for this application.

2.1.3 Amplifiers and DC Offset

As presented in Figure 2.3, the output from the sensor assembly is provided to an

amplifier and DC offset circuits for further processing. In this section, the architecture

and applications of transimpedance and inverting amplifiers, and DC offset circuits are

discussed.

The photodiode generates current output and has to be converted into voltage so

that filtering, amplification and data acquisition of the PPG signal can be carried out at a

later stage. Current-to-voltage amplifiers, also known as transimpedance amplifiers are

used for this purpose. The raw PPG signal obtained from any peripheral body site is very

low in amplitude. The signal has to be amplified for better resolution characteristics. The

raw PPG signal amplitude is in a few milli-volts (after current to voltage conversion)

depending on the blood perfusion and scattering characteristics of the ear lobe. In this

thesis, an inverting amplifier with a gain of 5 was built to amplify the raw PPG signal.

But before the signal can be amplified, a DC offset stage has to be added. The raw PPG

signal has the added component called the DC along with the AC component (as
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discussed in Chapter 1), which forces the signal to saturate with a gain (amplification) as

low as 5. The DC offset circuit is set to normalize the signal to zero, in other words, to

cancel out the DC component so that required amplification can be applied.

2.1.3.1 Inverting Amplifier. 	 An inverting amplifier is the most basic op-amp

circuitry. The current flowing into the op-amp is considered to be zero because of high

input impedance. The positive end of the op amp is connected to ground. So the current

flowing through R and R f is the same. Thus, Vout/Vin = Gain = -Rf/R.

Figure 2.4 Wiring diagram of inverting amplifier.

For this thesis, a potentiometer was used for R, so that the gain on the output

signal can be adjusted depending on the PPG amplitude, which changes in relation to the

blood perfusion of the site. The values used for R (max pot value = 100 kilo ohms) and Rf

are 20k and 100k ohms respectively, which provide a gain of 5. As seen from the

equation before, the output of an inverting amplifier is inverted, which was compensated

by the DC offset circuit.

2.1.3.2 Transimpedance Amplifier. 	 Transimpedance amplifiers, or current to

voltage converters, are amplifiers that convert an input current to an output voltage. The

standard transimpedance amplifier configuration is as shown in Figure 2.4.
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Figure 2.5 Wiring diagram of transimpedance amplifier.

The non-inverting input of the op-amp is connected to ground, which maintains a zero

voltage across the photodiode. Current flows through the feedback resistor (R1) and

creates a potential difference (voltage) at the output that is proportional to the light

intensity. The following equation shows a direct proportionality between the output

voltage and the output current of the photodiode related to the light intensity:

The feedback resistor (R1) is the proportionality constant in Equation 2.1. As the

value of R1 is increased, the output voltage increases. Thus, the transimpedance gain

depends on the value of the feedback resistor. This resistor value should be as high as

possible to minimize noise as it is a dominant source of noise in the circuit. The capacitor

in the feedback loop minimizes gain peaking and improves stability (Webster, 1997).

Graeme (1992) provided several simplified formulas for determining the feedback

capacitance (as cited in Webster, 1997):



fc = unity gain frequency of the op amp
CI = total input capacitance = photodiode junction capacitance + operational amplifier

input capacitance
Rf = feedback resistance

The feedback resistance and capacitance used for this study are as shown in Table:

Table 2.2 Transimpedance Amplifier Feedback Resistance and Capacitance

Rf (Feedback resistance) 66 kΩ
Cf (Feedback capacitance) 10 pF

The feedback capacitance as mentioned in Equation 2.2 was calculated using:

Photodiode junction capacitance = 40 pF
Operational amplifier input capacitance = 1.4 pF
Total capacitance CI = 41.4 pF

2.1.3.3 DC Offset. The DC offset circuit, as the name suggests, is used to adjust the

DC component of a signal to avoid saturation induced due to op-amp and data acquisition

card limitations. The raw PPG signal has a DC component (as discussed in Chapter 1),

which can force the signal out of the allowed range (NI DAQ 6024E: -10 V to +10V

limitation). An op-amp based active circuit was built as shown in Figure 2.6, which is a

basic differential amplifier circuit. It adds the two inputs, where a potentiometer at the

non-inverting input, is changed to adjust the DC value. The output of DC offset

adjustment circuit was inverted.

36
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Figure 2.6 Wiring diagram of DC offset adjustment circuit.

2.1.4 Filters

As seen from Figure 2.3, the output from the DC offset circuit was provided to a series of

filters in a sequential manner to enhance signal to noise ratio. The continuous raw PPG

signal acquired at a body site was contaminated by noise from many sources such as

electronic interference (60 Hz), motion artifacts and other unwanted low and high

frequency noises. A filter is a circuit that processes signals on a frequency dependent

basis i.e. it exhibits a frequency-dependent transfer function called the frequency

response. A filter affects not only the amplitude and the phase of an input signal. The

magnitude of the frequency response, |H| represents the how the amplitude of the input

signal is affected or attenuated by the filter; the angle of the frequency response,

LH represents the amount of phase shift experienced by the input signal (Franco, 1988).

The high frequencies that constitute a PPG signal is related to the heart rate, while

the low frequencies are related to respiration, sympathetic nervous system response and

thermoregulation characteristics of the body site under study (as discussed in Chapter 1).

As mentioned earlier, the normal respiratory rate in adults is in the range of 10 — 16
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breaths per minute. For this study active filters were designed only allowing frequencies

in 0.1 — 5 Hz range to pass (ideally), which comprises the 0.15 — 0.33 Hz respiratory rate

related frequencies. The higher frequencies (0.33 — 5 Hz) were also included so that heart

rate and oxygen saturation parameters could be obtained along with respiratory rate in the

future.

Filters, in general, are classified as low-pass, high-pass, band-pass and band-

reject. To obtain a clean PPG signal, a 4 th order low-pass Butterworth filter with a cutoff

at 5 Hz (maximum heart rate 300 beats/minute) and a 8 th order high-pass Butterworth

filter with cutoff at 0.1 Hz (minimum respiratory rate of 6 breaths/minute) was applied to

the raw PPG signal. The order of the high pass and low pass filters were chosen based on

previous experiments carried out by Nakajima et al. (1996) who successfully applied a

digital filtering technique for monitoring heart rate and respiratory rate from the PPG

signal.

A 60 Hz band reject or notch filter was applied to eliminate residual electronic

interference after the previous low and high pass filter stages.

Butterworth filter design was chosen mainly because of its simple design, which

helped to avoid any type of design related errors. In addition, they maximize the flatness

of the magnitude response within the pass band. The response is extremely flat near DC

and is somewhat rounded near the cutoff frequency, which was desirable. The attenuation

rate of -20n dB/dec is attained in the stopband, where n = the order of the filter. The

attenuation rate or transition rate from pass band to stop band of Butterworth filter is not

as steep (closer to ideal) as compared to other filters such as Chebyshev, Elliptic, and

Bessel (as seen in Figure 2.7). However, to derive respiratory rate from PPG signal, the
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flatness of the pass band and stop band was more important than the attenuation rate 

(Nakajima et a!., 1996). Thus, the order of the filters was increased to obtain steeper roll-

off. 
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Figure 2.7 Butterworth characteristics compared to Bessel and Chebyshev. 
http://www-k.ext.ti.comlSRVSlDataitilKnowledgeBases/analog/documentifags/bu.htm 

The analog low pass and high pass filters used in this study were unity gain 4th 

order and 8th order active filters respectively. The design of Butterworth aAalog filters is a 

special case of unity gain Sallen-Key filter design. 

2.1.4.1 Sallen Key Second Order Low-Pass Filter. The circuit diagram of active 

low pass Sallen-Key filter is as follows: 

c, 
ne 

V, 
mR t 

Figure 2.8 Sallen Key low pass filter. 

To simplify the circuit design and the algebra, the values of the first RC pair is 

expressed in terms of the second pair by means of multipliers m and n respectively. Let 
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R2 = R then R1 = mR and let C1 = C the C2 = nC. Let the voltage at the node expressed as

X in the Figure 2.8 be Vx. Based on the op-amp properties, Vp = Vn. In this case, Vp =

Vn = Vo and thus, VO = VX/(1+jωRC). By Kirchoff's current law at node X,

(VI- VX)/mR  = (VX- VO)/R + (VX- VO)/(1/jωnC). Simplifying this equation will give V I in terms of V

Xand Vo. But Vx term can be eliminated by pluggingVO(1+ jωRC) = VXin:

VI= (1 +m + jωmnRC)VX- (m + jωmnRC)VO=> VI=[1 -ω2mnR2C2+ jω(m +1)RC] V

ONow ω = 2πfsoω2mnR2C2can be written as [2πf√mnRC]2=

(f/fO)2, wherefO= 1/2π√mnRC. Similarly, in equation the third term can be written in terms of fO

peak at the cutoff frequency. Thus the transfer function of this filter can be expressed as:

If resistor and capacitor values in this filter design are selected such that Q =11 .N5 then

the Sallen-Key filter configuration provides Butterworth response. This can be obtained

by making m = 1 and n = 2 i.e., equal resistances and 2:1 capacitances (Franco, 1988). To

obtain this relationship, specific values for the passive components were picked. As

mentioned before the low pass filter cutoff value is 5 Hz. Thus,

fO = 5  = 1/2π√2RC, when m = 1 and n = 2 => RC= 1/2 π√2(5) =0.022508
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by making m = 2 and n = 1 i.e. equal capacitances and 2:1 resistances (Franco, 1988).

The high pass cutoff value was chosen to be 0.1 Hz. Thus,

fO = 0.1 = 1/2π√2RC, when m = 2 and n = 1 => RC = 1/2π√2(0.1) =1.1254

R =100KΩ  mR = 200KΩ and C =10μF fulfills the equation above.

The general Butterworth magnitude response is:

, where n = order of the filter and fC is the cutoff frequency, which represents the -3 dB

frequency.

2.1.4.3 Twin-T Notch Filter.	 Notch filter, which is band-reject type of filter, was

used to remove the electrical interference of 60 Hz from the PPG signal. The design of

this filter is called the Twin-T mainly because two filters are built in parallel, the upper

one is the low-pass type and the lower one is the high-pass type, with the stop bands

overlapping. When a low-pass and a high-pass filter are connected in series, a band-pass

filter is obtained if the corner frequency of the low-pass device is greater than that of the

high-pass device. When connected in parallel, notch filter is obtained if the corner

frequency of the low-pass filter is lower than that of the high-pass filter (Franco, 1988).
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2.1.5 National Instrument's Data Acquisition Card (DAQ)

National Instrument's PCI-6024E was used for converting PPG analog output from the

custom PPG hardware into digital. This card is ideal for applications ranging from

continuous high-speed data logging to control applications to high voltage signal or

sensor measurements when used with compatible software. 6024E DAQ card provides

two 12-bit analog outputs, 8 digital I/O lines, two 24 - bit counters, and 16 analog inputs

with 16 bit resolution. The maximum sampling rate provided is up to 200 kS/s. It is

highly compatible with NI's LabVIEW® software used for this study (NI's E Series

Multifunction DAQ Datasheet, 2006). One of the analog input channels was used to

digitize the analog PPG signal at 75 samples per second.

NI also offers many different high performance shielded cables that have been

specifically designed for NI DAQ devices (NI's DAQ Accessories Selection Guide,

2007). BNC-2090 rack-mounted BNC terminal block was used to facilitate connecting

the analog input channels to the output of the custom hardware.

2.2 Discussion of Software

National Instrument's Laboratory Virtual Instrument Engineering Workbench

(LabVIEW®) software provides an easy-to-use intuitive graphical programming

background used for varied engineering applications to automate measurement and

control systems (ni.com). LabVIEW® version 8.0 was chosen for this study because of

its easy access and availability at VA Engineering laboratory. It provides with an intuitive

and simple programming experience, especially for data acquisition and processing

applications as compared to other programming languages such as Mathwork's
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MATLAB, C, and C++. It has the same constructs as other traditional languages such as

variables, data types, objects, looping, and sequencing structures as well as error handling

(NI.com). The recent versions (8.0/8.2/8.5) of LabVIEW® provide advanced toolkit

functionality such as digital signal processing, time series analysis, time-frequency

analysis, and multi-rate signal processing. The LabVIEW® package comes with several

examples for varied applications that help minimize the learning time significantly.

LabVIEW® consists of two main windows: 1) the front panel and 2) the block

diagram. The front panel is a graphical user interface and the block diagram is a wiring

diagram, where algorithms are programmed using various LabVIEW® based and/or user

defined functions called Virtual Instruments (VIs). For this thesis, the VIs from the signal

processing, and serial and analog data acquisition tabs were used.

2.2.1 LabVIEW® Programs

Three separate LabVIEW® programs were developed for this thesis:

1) Data acquisition program
2) Paced breathing program
3) Breathing rate detection program

The data acquisition program was built to acquire the PPG data from both the Xpod® and

the custom hardware at the same time to facilitate comparison. Xpod® module outputs

data on a serial port of a computer, while the custom hardware outputs an analog signal,

which was then converted into digital by NI DAQ 6024E board as described in Section

2.l.5. The block diagram for this program is as follows:
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Figure 2.11 Block Diagram of data acquisition program.

The data acquisition program was set so that the sampling rate (75 Hz) of the

custom hardware signal matched the rate of the Xpod®. The program facilitated saving

the PPG signal obtained from custom and Xpod® hardware to two separate text files with

time stamps. The front panel of this program provided controls for inputting subject IDs

and to browse to an appropriate location for saving data files. The front panel displayed

real-time data from both the sources for visual inspection of data quality.

In the paced breathing program, a sine wave at a known frequencies

(corresponding to 6, 9, 12 and 15 breaths per minute) was generated and displayed on a

vertical process bar plot on the front panel as shown in Figure C.1. The subjects were

asked to follow the progress bar to pace inspiration and expiration, i.e. an entire cycle of

respiration at 6, 9, 12 and 15 breaths per minute. The subjects were provided with 80

seconds per activity: 20 seconds to practice, and data was recorded in the last 60 seconds.

The program displayed a counter that kept track of the number of seconds passed, for

subjects' convenience. When the counter reached 60 seconds, it informed the subjects

that recording has started by turning the Recording indicator red.
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Recording Trial Trial 

Figure 2.12 Front Panel indicators for subjects' convenience. 

The wiring diagram (block diagram) of the paced breathing program is provided 

in Figure C.2. The reasons for choosing this particular paced breathing rates and the 

experiment setup of the study are discussed in detail in Chapter 3. 

The breathing rate detection program implemented the algorithm for deriving 

respiratory rate from the PPG signal for 60 seconds data blocks. This program used 

predefined Lab VIEW® VIs for filtering the PPG signal using digital band-pass elliptic 

IIR filter in the time domain, and autoregressive (AR) modeling techniques (in the 

frequency domain) for determining the power spectrum ofthe filtered signa.!. 

This program consisted of mUltiple stages as shown in the block diagram in 

Figure 2.12, D.l, D.2, and D.3. The numbers 1,2, 4A, 48, 4C, 4D, 4E and 4F in Figure 

2.12 correspond to the sections in the breathing rate detection program presented in 

Appendix D. Each stage performed a different task such as opening the saved data files 

(Xpod® or Custom data), displaying the original data, application of IIR elliptic band-

pass filter, displaying the filtered data, and using the filtered data to obtain the power 
.. 

spectrum (as shown in Appendix D): 

1) Section 1: Open and display stored files (Xpod® and Custom data) 
2) Section 2: Application of Elliptic IIR filter 
3) Section 4A: Downsample filtered signal to get rid of high frequencies 
4) Section 48 - 4F: Applying AR modeling technique 
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A detailed view presenting the signal flow in the detection algorithm is as shown

in the Figure 2.13. Each of these sections is described in more detail in the following

sections.

Figure 2.13 Block diagram of breathing rate detection algorithm.

The power spectrum was generated by applying AR modeling technique using

Akaike information criterion for model estimation. The last stage was further divided into

sub-sections as the AR technique required multiple processing stages (Section 4 in

Appendix D).

As shown in the block diagram, the first step was to open stored data files. These

were opened using LabVIEW® based Open/Create/Replace File.vi and Read from Text

File.vi. Extra data points at the end were discarded if the detected size of the opened file

was more than 4500 samples (75 Samples/Seconds* 60 seconds), which corresponds to a
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section of 60 seconds. The data was then normalized using Normalize.vi function using

the detected mean and standard deviation values. The normalized data was then displayed

on a waveform on the front panel. The wiring diagram for this stage is presented in

Figure D.1 (Section 1). This step was followed by the application of digital elliptic filter

to the input PPG signal.

To understand the detection algorithm systematically, it is essential to first discuss

the properties of elliptic band-pass filter and AR modeling techniques in detail.

2.2.1.1 Digital Infinite Impulse Response Elliptic Filter. 	 A LabVIEW®-based

elliptic IIR band-pass filter is applied to the stored custom PPG signal for extracting

respiration signal. Elliptic filters offer steeper roll-off characteristics compared to the

Butterworth or Chebyshev filters, but are equiripple in both the pass and stopbands.

Based on trial and error method, elliptic filters consistently showed better performance

than Butterworth or Chebyshev with the lowest order. The better performance of elliptic

filters can be justified as it provides the sharpest transition between the passband and

stopband.

For this thesis, an elliptic filter with bandpass filter setting is used to eliminate the

effect due to DC offset and to obtain a low frequency signal corresponding to RIIV signal

(Nilsson et al., 2003). The specifications of the bandpass filter are: low cutoff = 0.075 Hz,

high cutoff = 0.45 Hz, passband ripple = 0.1 dB, stopband ripple = 80 dB and order = 12.

These specifications are selected based on trial and error method. The range 0.075 — 0.45

Hz corresponds to 4.5 — 27 breaths/minute. Stringent filter cut-offs are not applied

considering the non idealness of digital elliptic filter.
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2.2.1.2 Autoregressive Modeling (AR) Method. AR modeling has been used

in various applications including classification, data compression, feature extraction, and

pattern recognition of various biomedical signals such as ECG, electroencephalogram

(EEG), PPG, blood pressure waveform, heart rate etc. AR modeling has been extensively

used to model heart rate variability (HRV) and for power spectrum estimation of various

other biomedical signals. AR methods are the most widely used modeling methods for

power spectral estimation associated with biomedical signals (Akay, 1994). The main

advantage of AR modeling is in its simplicity. In addition, it is highly suitable for real-

time ambulatory monitoring (Acharya et al. 2007, p. 210).

	

A power spectrum defines the energy distribution of a time series in the frequency

domain, where energy being a real-valued quantity, does not contain phase information.

As time series may contain non-periodic signal components, the power spectrum of a

times series is considered to be a continuous function of frequency. A series of discrete

frequency bins quantifies the continuous characteristic of the frequencies in the power

spectrum proportional to the frequency interval (analogous to the time domain analog to

digital conversion feature). The power spectrum is divided by the size of the frequency

interval (non-periodic) to eliminate its dependence on the frequency interval. This

process is called normalization and the output is called the power spectral density (PSD)

function. The PSD measures the signal power per unit bandwidth for a time series in

Volts2/Hz, assuming an input signal in volts driving a 1 ohm load (NI Time Series

Analysis Tools User Manual).

	AR modeling is a parametric method for estimating the PSD of a time series i.e.,

model parameters from the time series have to be obtained before PSD estimation. The
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estimation of these parameters is a well established topic. They are computed by using

algorithms such as least squares, Burg, Geometric, Forward-Backward and Yule Walker

methods, which are based on solving linear equations of the system. In order to extract

features from the raw time-varying biomedical signals, a number of power spectral

estimation techniques, including the parametric methods, have been developed and

compared to the standard fast Fourier transform (FFT) methods (Ubeyli et al., 2007).

The main generic differences between the parametric and non-parametric

methods are the use of data windowing and difference in variances. Non-parametric (FFT

and Welch) methods require a use of windowing for a smooth truncation of the side

frequencies, which results in distortion of estimated PSDs due to window effects.

However, the estimated PSD obtained this way is not subjected to false frequency peaks

and spectral leakage effects. In contrast, parametric methods do not use windowing but

PSD obtained using these methods may contain false peaks, if the assumed model is

wrong. PSDs obtained using parametric methods are less biased and possess a lower

variance than PSDs estimated with non-parametric methods (LabVIEW® Manual).

According to Ubeyli et al. (2007), the FFT method is based a finite set of data, where the

frequency resolution is equal to the spectral width of the window length N, which is

approximately 1/N. The windowing effect smoothens the estimated spectrum and thus the

FFT method cannot resolve details in resultant spectrum that are separated by less than

1/N in cycles per sampling interval (spectral resolution limit). The model-based estimates

(parametric method) are not affected by any smoothening and spectral leakage effects and

thus provide a better frequency resolution (Ubeyli et al., 2007).
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Ubeyli et al. (2007) examined PSD estimates of several biomedical signals such

as PPG, ECG and EEG using FFT and the least squares AR methods. These PSD

methods were compared to quantify 1) frequency resolution and 2) the effectiveness in

feature extraction for the PPG, ECG and EEG signals (Ubeyli et al., 2007). Their study

concluded that the PSD obtained using classical methods had larger variance and that the

performance of the least squares AR method was superior to the FFT method. The FFT

method showed low spectral resolution and was not found appropriate to evaluate PSDs

of the PPG, ECG and EEG signals. The performance of the least squares AR method is

extremely valuable for extraction of the features. Thus, AR model was used for

estimating the PSD of the digitally filtered signal in this study.

2.2.1.3 Principle of Operation. AR modeling techniques enable to predict the

current values of a time series, xt based on the past values x t-1, xt-2,..., xt-n, plus a

prediction error, et. The value n is the number of past values used to predict the current

value, which is the AR model order. An AR model with order n is described in Equation:

1, a1,a2, ..., an are the AR coefficients and et is the prediction error, which is white

noise with a mean of zero. The z-transform of Equation provides a concise representation

as described in Equation:

A(z) is the AR transfer function, which is defined as follows:
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In AR modeling, the time series is considered to be the response of a linear system with a

white noise as input (mean = 0). In this case, an AR model represents the linear system

with the model prediction error et as the white noise input (Figure 2.14).

Figure 2.14 AR transfer function.

H(z) = (1/A(z)) represents the transfer function of a system that generates the time

series xt. The AR model is an all-pole model as it does not have zeroes as seen from

Equation 2.10. The poles of this model can be obtained by factorizing the denominator

polynomial.

Thus, in the AR method, data can be modeled as output of a causal, all-pole,

discrete filter (A(z)) whose input is white noise (error). The resultant AR coefficients can

be used to estimate the dynamic characteristics of the system that generates the time

series (Akay, 1994; NI Time Series Analysis Tools User Manual, 2005).

The selection of the model order in the AR spectral estimator is an important

subject. If the order is too low, there will be no specific peaks in the spectrum and the

frequency details of the signal can not be identified. If the order is too high, false peaks

may contaminate the frequency spectrum output (Ubeyli et al., 2007). The optimum AR

model order value is selected based on many well-established criteria such as Akaike

information, Phi criterion, Bayesian information, etc.
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For this study, Akaike information criterion (AIC) was selected as it was

suggested by Ubeyli et al. (2007) In addition, it was also found to be more efficient than

other criterion for PPG data based on trial and error method. This criterion is a weighted

estimation error based on the unexplained variation of a given time series with a penalty

term when exceeding the optimal number of parameters to represent the system. For the

AIC, an optimal model is the one that minimizes the following equation:

Where L = number of data points in a time series, n = model order and Vn =

prediction error. For this thesis, Forward-Backward predication method, which is based

on the least squares AR method was used for estimating the AR coefficients (ak).

2.2.1.4 Breathing Rate Detection Algorithm using the AR model. 	 As

mentioned before, the breathing rate detection algorithm was applied using LabVIEW®

8.0 platform using functions from Time Series Analysis (TSA) - Advanced Signal

Processing Toolkit. AR model with Akaike information criterion and Forward-Backward

method, variant of Least Squares method, was used to quantify the power spectral density

(PSD) function of the input signal. This program was designed in a sequential manner to

avoid any type of confusion, where analysis is based on shared variables. Figure 2.11

shows a simplified block diagram to elucidate the breathing rate algorithm.

An advanced signal processing function - TSA Resampling.vi - was used to

decimate or downsample the signal to enhance the frequency resolution. For a 60 seconds

block, the signal was resampled at 1 Hz. The signal was normalized to eradicate the DC

offset, which appears at the zero frequency in the power spectrum density waveform

(Figure D.2 Section 4A).
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The next section, as shown in Figure D.2 Section 4B, of the program uses the

toolkit based function (TSA AR Modeling Order.vi) to obtain an optimum AR model

order using Akaike information criterion and limiting the order in 1-15 range. TSA AR

Modeling.vi was used to estimate the AR model of the input time series using the

Forward-Backward method. TSA AR Spectrum.vi was used next to compute a single-

sided power spectral density (PSD) waveform of the input time series based on the output

of the TSA AR Modeling.vi function. The frequency value corresponding to the

maximum magnitude of PSD function was computed based on the frequency interval.

The next section, as shown in Figure D.2 Section 4C, factorized the pole

polynomial from the AR coefficients to obtain the magnitude and angular (frequency)

component. The poles occur in complex conjugate pairs and define spectral peaks in the

power spectrum of the signal, where higher magnitude poles correspond to higher

magnitude peaks. The frequency of each spectral peak is given by the phase angle of the

corresponding pole, such that the phase angle (theta) of a pole at frequency f is defined in

the Equation (T = sampling period, f is pole frequency (Fleming et al., 2007).

The Polynomial Roots.vi and Complex to Polar.vi were used to factorize the

polynomial and to convert complex roots into their subsequent components (magnitude

and angle (theta)) respectively. The unit of theta obtained this way was radian and had to

be converted into hertz (Figure D.3 Section 4F).

The next step, as shown in Figure D.3 Section 4D, was to find the respiration

group by setting the limit for the frequency component; this step was essential as it

facilitated in separating the high frequency components corresponding to the heart rate
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information, and the low frequency components corresponding to the respiratory rate

information. The limits used for this study were 5 as the minimum and 17 as the

maximum breaths per minute. The In Range and Coerce.vi was used to limit its output

based on the range provided (1.7804 and 0.5236 radian). A new array called Respiration

theta was created to store the values that appear in the required range. The analysis in the

following stages was based on 'Respiration theta' values only.

An elimination criterion had to be applied to the cases where the respiration group

contained more than one theta value (corresponding to the breathing rate frequency). This

criterion was based on the maximum value detected from the PSD waveform as shown in

Figure D.2 Section 4E. The estimated respiratory rate (final output) was provided by

converting the theta value, which was in radians, into breaths per minute using following

equation (T = sampling period = 1/75 = 0.0133 seconds) (Figure D.3 Section 4F):

This rate was displayed on the front panel as the final output of the algorithm. The

PPG signals obtained during the experiment (Chapter 3) for paced breathing were

inputted into the breathing rate program and the estimated respiratory rate values were

recorded for each subject. A detailed discussion of the experiment setup and protocol is

provided in Chapter 3.



CHAPTER 3

EXPERIMENT SETUP AND RESULTS

In Chapter 2, the hardware and software designed for this study were discussed in detail.

This chapter is divided into two sections where the first section discusses the setup of the

experiment and the protocol for acquiring data. The second section provides the results

obtained from the setup, and the statistical analyses of data, and the plots.

	

The protocol was developed by considering three important concerns related to 1)

the custom ear sensor reliability, and 2) the custom hardware analog processing, in an

ambulatory setting and 3) breathing rate detection program accuracy. As seen in Table

3.1, the first half of the protocol was designed to simulate various situations that can

induce motion artifacts such as head and body movements, in an ambulatory setup during

the HEMI study. The second half was designed to measure the accuracy of the breathing

rate detection algorithm. The individual was asked to pace breathing at 6, 9, 12 and 15

breaths per minute with a help of LabVIEW®-based paced breathing program (as

discussed in Chapter 2; Appendix C) three times in random order. The experiment setup

and the protocol are discussed in more detail in the following sections.

	

In order to understand the results in more detail, they are discussed in two sub-

sections. The first section will deal with the verification of filters used in the custom PPG

analog processing circuit. In addition, the PPG signal obtained from both the custom and

Xpod® hardware during different activities will be quantified for motion artifacts using

signal to noise ratio (SNR) and Pearson correlation coefficient (R) measurements. The

second section verifies the efficiency of the software in detecting the respiratory rate

using several statistical analyses.

57
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3.1 Experiment Setup and Protocol

The protocol for data collection is provided in Table 3.1. In order to check the

reliability of the custom ear clip sensor in an ambulatory setup, it was important to obtain

data by simulating certain situations that can present motion artifacts such as changes in

incident ambient light and movement itself. The Up/Down, and Left/Right head

movements are hypothesized to present artifacts because of a change in the ambient light

incident on the detector and also due to a slight change in the placement of the ear sensor

clip with movement. Talking also is hypothesized to induce slight changes in the ear clip

sensor placement. Head movements are believed to be a direct cause of motion artifacts,

while body movements such as walking and hopping are considered to be an indirect

cause. The body movements are hypothesized to cause motion artifacts because the wires

attached to the sensor change the ear clip sensor placement as the individuals walk or hop

with the wires hanging on their sides. Hopping activity was included in the protocol to

check the extremes of both the hardware. The paced breathing activities were included in

the protocol to check the reliability and accuracy of the breathing rate detection

algorithm.

System testing for the proof of concept was done on one individual at NJIT. The

custom ear sensor was placed on the left ear, and the Nonin® ear clip sensor on the right

ear, with LED on the top surface (Figure 3.1). The individual was seated on a chair as

close to the breadboard based analog processing circuit as possible and facing a laptop

computer with paced breathing program running. The data acquisition program was

placed on a separate computer to allow viewing the data real-time by the operator only.

The individual was asked to sit without movement for about a minute, while the operator
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checked for the signal quality and visibility. If there were any problems, the individual

was asked to remove the sensor and place it back on after a few seconds.

Table 3.1 Protocol

As described in Table 3.1, the paced breathing rates were repeated three times in a

different order each time, in order to reduce possible effects of fatigue etc. The individual

was asked to perform each task for 80 seconds: 20 seconds for practice and last 60
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seconds were recorded. During the body movements, the individual was asked to keep 

the head movements to the minimum. For the paced breathing part of the setup, 

individual was asked to keep as still as possible to obtain a clean PPG signal to check the 

reliability of the detection program in a controlled fashion. 

Figure 3.1 Experiment setup. 

3.2 Results 

A PPG module, which includes a sensor and '1in:analog processing' unit, designed for this 

study was required to match the characteristics of Xpod® module. Also it was designed 

to enable a control over the sampling rate, filtering characteristics and 

quantization/resolution levels of the PPG signal. 
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The custom PPG hardware developed for this study included an analog filtering

stage to obtain a clean PPG signal within 0.1 — 5 Hz frequency range. In the following

section, 1) Bode plots are presented to verify the cut offs of the custom filters. 2) In

addition, the PPG signals obtained from both the hardware (custom and Xpod®) are

compared. The verification of the custom PPG hardware was performed by comparing

the PPG signal obtained from both the hardware at the same time, for different types of

activities (as discussed in the protocol). 3) Lastly, the quantization levels of the PPG

signal (obtained from the both hardware) is compared.

The next section discusses the results obtained to verify the efficiency of the

breathing rate detection algorithm.

3.2.1 Hardware Verification Results

3.2.1.1 Verification of Filters.	 The filters designed for this study were tested by

developing a frequency response (Bode plot) profile using a known signal - a sine wave -

at varying but known frequencies as an input to the circuit. The frequency magnitude of

the input sine wave signal was compared to that of the output signal after each filter

stage. A ratio of output (Vout) and input magnitude in volts (Vin) was calculated and

converted into decibel units (20*log10(V out/Vin)) to quantify the change due to filtering.

The frequency response Bode plots for the Butterworth 8th order high pass filter and the

4th order low pass filter are provided in Figure 3.2, and that for the 60 Hz notch filter is

provided in Figure 3.3.
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Figure 3.2 8th order Butterworth high pass (top) and 4th order low pass filter Bode 
response (bottom). 
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1CpO 

The Butterworth 8111 order high pass filter and 4111 order low pass filter responses, 

as shown in Figure 3.2, confirmed that the response for Butterworth filter is flat near DC 

(zero frequency) and that it is rounded near the cut-off frequencies, which in this case are 

0.1 Hz and 5 Hi respectively. If was difficult to find a function generator that could 
. ' . 

produce frequencies less than 0..1 Hz. Therefore, the test was performed using the lowest 

frequency setting possible on the function generator (0.143 Hz). The input frequencies 

and the corresponding Vou,Nin magnitude ratios for both the filters are provided in the 

Tables 3.2 and 3.3 below: 
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Table 3.2 Sine Wave Frequencies used to Test 8th Order Butterworth High Pass Filter
Hardware and the Corresponding V out/Vin Magnitude Ratios

Dialed Frequency
(Hz)

Measured
Frequency (Hz)

Magnitude
Ratio Mag Ratio (dB)

0.143 0.1 0.608 -4.32
0.182 0.2 0.672 -3.45

0.4 0.4 0.909 -0.83
0.5 0.5 0.956 -0.39

0.714 0.7 0.985 -0.13
1.11 1.1 0.991 -0.08
1.4 1.4 0.992 -0.07

1.71 1.7 0.988 -0.10
2.33 2.3 0.989 -0.10
2.75 2.7 0.995 -0.04
4.67 4.7 0.996 -0.03
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Table 3.3 Sine Wave Frequencies used to Test 4 th Order Butterworth Low Pass Filter
Hardware and the Corresponding Magnitude V out/Vin Ratio

Dialed Freqeuncy
(Hz)

Measured
Frequency (Hz)

Magnitude
Ratio Mag Ratio (dB)

0.182 1.00 0.017 0.182
0.308 0.99 -0.061 0.308
0.727 0.98 -0.167 0.727
1.273 0.94 -0.510 1.273

1.7 0.91 -0.829 1.7
1.85 0.89 -0.963 1.85
3.3 0.74 -2.627 3.3
4.5 0.63 -3.944 4.5
5.5 0.56 -5.005 5.5
7.3 0.47 -6.576 7.3
8.7 0.42 -7.618 8.7
10 0.39 -8.223 10

14.7 0.29 -10.663 14.7
20.3 0.22 -12.995 20.3
25.1 0.18 -14.894 25.1
30 0.15 -16.654 30

35.7 0.12 -18.636 35.7
41 0.09 -20.445 41

45.6 0.08 -21.830 45.6
50.7 0.07 -23.223 50.7
55 0.06 -24.308 55
60 0.05 -25.63 60
70 0.04 -27.959 70
80 0.03 -30.061 80

90.4 0.02 -32.041 90.4
100.5 0.0205 -33.765 100.5
150 0.0097 -40.220 150
200 0.0055 -45.224 200
250 0.0033 -49.682 250

The band-reject filter used to remove the 60 Hz electrical noise from the PPG

signal was tested in a similar fashion. The frequency response curve in Figure 3.4 shows

that the ratio of the magnitude (Vout/Vin) reduced gradually in the range of 25 - 70 Hz.

Such a broad range demonstrated that the band-reject filter did not provide a sharp cut off

at 60 Hz, which confirmed that Q was, in fact, a high value. As mentioned in Chapter 2, a
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sharp notch filter (smaller Q) was not required because the frequencies higher than 5 Hz 

are considered meaningless for this application. 
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Figure 3.3 60 Hz notch filter bode plot. 

The Table 3.4 providing the input sme wave frequencies and the corresponding 

magnitude V outNin ratio is as follows: 

" 
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Table 3.4 Sine Wave Frequencies used to Test Twin-T Notch Filter Hardware and the
Corresponding Magnitude Vout/Vin Ratio

Measured Frequencies (Hz) Magnitude Ratio Mag Ratio (dB)
5 0.99 -0.09
10 0.96 -0.37

20.5 0.85 -1.38
29.8 0.73 -2.76
34.2 0.66 -3.57
40.4 0.58 -4.72
44.5 0.53 -5.56
50.1 0.46 -6.69
55.0 0.42 -7.56
59.3 0.39 -8.20
63.6 0.37 -8.71
69.9 0.35 -9.04
74.5 0.35 -9.07
79.7 0.36 -8.90
84.8 0.37 -8.57
89.2 0.39 -8.25
95.3 0.41 -7.70
97.6 0.42 -7.51
120.8 0.52 -5.76
140.4 0.58 -4.69
150.0 0.61 -4.26
200 0.721 -2.84
250 0.791 -2.04
300 0.838 -1.53
350 0.87 -1.21
400 0.894 -0.97

3.2.1.2 Verification of PPG Signal Quality During Activities. Verification of signal

quality was performed on the PPG signals obtained during different activities (in the

protocol). The data quality during activities was verified by comparing PPG signals with

the no movement ones. The activity: sitting was used as a standard (no movement case)

to compare the rest. Below, plots for the individual are shown for each of the six

activities (mentioned in the protocol). Data were collected on both sets of hardware
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simultaneously. Following these plots is an analysis of the signal to noise ratio and 

correlation coefficient between data collected on the two sets of hardware. 

On each plot below, blue represents PPG signals from the custom hardware and 

pink is from the Xpod® hardware. 
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Figure 3.4 Raw PPG output from custom and Xpod®: Sitting activity (Pink - Xpod®; 
blue - Custom). 
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Figure3.S Raw PPG output from custom and Xpod®: Up/down head movements (pink 
- Xpod®; blue - Custom). 
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Figure 3.6 Raw PPG output from custom and Xpod®: Left fright head movements. 

The head movement activities (Figure 3.5 and 3.6) induced low frequency noise, 

which was more pronounced in custom PPG case than the Xpod®. 
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Figure3.7 Raw PPG output from custom and Xpod®: Talking activity. . . . 
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Walking 
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Figure 3.8 Raw PPG output from custom and Xpod®: Walking activity. 

As seen from the Figure 3.7 and 3.8, talking and walking activities did not affect 

the custom PPG signal as much as the head movements did. 
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Figure 3.9 Raw PPG output from custom and Xpod®: Hopping activity. 

The PPG signals during the hopping activity obtained from both sets of hardware 

were affected significantly by the high frequency motion artifact noise (Figure 3.9). 
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These PPG signals were quantified for motion artifact using signal to noise ratio

(SNR) and Pearson correlation coefficient (R) measurements. These measurements were

selected to compare the signal quality of the output of the custom and the Xpod®

hardware. The SNR and R measured from the output signals are shown in Tables 3.5.

The signal to noise ratio was calculated by taking the ratio of the amplitude of the

PPG signal and the amplitude of the noise. This measurement was performed by visually

inspecting the amplitudes of signal and noise. A higher value of SNR signifies less noise

and vice versa. The Pearson correlation coefficient (R) was calculated using LabVIEW®

8.0 based Pearson Correlation Coefficient.vi. A whole set of 60 seconds was used to

calculate the R value. This coefficient represents the degree of association between two

inputs The value of R always fall between -1 and 1; 0 signifies no correlation between

the inputs (two inputs), +1 signifies that both the inputs are highly correlated, in fact, they

are the same and -1 signifies that both inputs are associated inversely.

Table 3.5 Signal to Noise Ratio and Linear Coefficient (R) During Different Activities

Tasks SNRxpod® SNRcustom R
Sitting 0.94 0.88 0.779

Up/Down 0.91 0.4 0.336
Left/Right 0.83 0.5 0.203

Talking 0.9 0.7 0.5
Walking 0.85 0.6 0.45
Hopping 0.3 0.1 0.4

The Pearson's linear coefficient (R) was used an initial estimate of the PPG signal

quality. As seen from Tables 3.5 and Figure 3.10, the linear correlation coefficient (R),

obtained from the PPG signals (custom and Xpod® hardware PPG), was the maximum

for the standard case — sitting - corresponding to no movement data and for other cases
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that involved movement it reduced. Each of the R values shows a positive association i.e. , 

no phase difference between the PPG signals (from Xpod® and custom hardware). 

However, the results proved that this method should not be used as the only 

measure of signal quality because if the outputs from the Xpod® and the custom 

hardware (PPG signals) demonstrate similar noise profiles due to similar motion artifact, 

then the R would be a high value. In such cases, R values could lead to misleading 

conclusions. For example, a correlation value as high as 0.4 for the hopping activity case 

was seen. Figure 3.9 shows that the PPG signals from both the custom and the Xpod® 

hardware were affected significantly by the motion artifact noise. As the noise profiles of 

the PPG signals (from custom and Xpod®) were the same, the R value ended up being 

0.4. In addition, a lower correlation value might not imply that the custom PPG is 

incorrect but that custom PPG is influenced more by motion artifact noise than the 

Xpod® PPG. Thus, proving that Xpod® includes a better motion artifact reduction 
( 

algorithm. SNR of the signals was measured as a more thorough method of comparing 

the signal quality (Table 3.5). 
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Figure 3.10 Correlation Coefficient plot for all the activities. 



72 

In the plots (Figure 3.11 ), the SNR calculated per activity is plotted for both the 

sets of hardware. The results in Figure 3.11 show that the SNR decreased during the 

activities as compared to the no activity case. 
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Figure3.11 SNR of the PPG signal obtained from both the hardware during different 
activities. 

Figures 3.4, 3.5 and 3.6 show the PPG output for the standard and h"ead movement 

cases from both the hardware. The % SNR reduction was more for the custom PPG case 

than the Xpod® case for each activity, which implied that motion artifact were more 

pronounced in custom PPG case. The talking and walking activities did not affect the 

SNR of the custom PPG signal as much as the head movements did. 

The hopping activity as seen in Figure 3.11 reduced the SNR of the PPG signals 
'. . 

obtained from both the hardware. This reduction: in SNR was due t9 the presence of high 

frequency motion artifact noise. The performance of the Xpod® and the custom, during 

hopping activity was similar (Figure 3.11). 

3.2.1.3 Comparing Quantization Levels. One of the problems with the Xpod® output 

(as described in Chapter 2) was that its quantization level changes with blood perfusion, 
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i.e., for low blood perfusion, the output resolution deteriorates. From Figure 3.12, it is 

clear that the custom hardware provided a better quantization resolution than the Xpod®. 
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Figure 3.12 Verifying quantization resolution. 

3.2.2 Software Verification Results 

The breathing rate detection algorithm was explained in detail in Chapter 2. This section 

presents the impulse response of the digital elliptic 1IR filter, which is the first stage of 

the detection algorithm. In addition, this section deals with verifying th~ efficiency of 

detection algorithm by comparing the output of the algorithm using the PPO signal from 

the custom and the Xpod® hardware, during paced breathing. 

3.2.2.1 Digital Elliptic Filter Verification. A band pass elliptic filter with a low 

cutoff = 0.075 Hz, a high cutoff = 0.45 Hz, passband ripple = 0.1 dB, stopband ripple = 

80 dB and order = , 12 was applied to the stored PPO signal. The impulse response of the 

filter is provided in the figure below. The plQt ~hows that the bandwidth of the filtered 

signal is restricted to approximately 4.5 - 27 breaths/minute. 
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Figure 3.13 Impulse response of Lab VIEW®-based digital elliptic filter. 

3.2.2.2 Breathing Rate Detection Algorithm Verification using Known Input. 

74 

In order to test the accuracy of the detection algorithm, a known signal (sine waves with 

varying but known frequencies of 6, 9, 12 andl5 Hz were used as an input. The program 

was tested for each of these frequencies as input. Results for 6 and 12 Hz are provided in 

the following section. 6 Hz was selected as one of the test frequencies to verify the 

algorithm's effic::iency at low frequencies. 12 Hz sine wave input was also selected as it is 

the average nonnal breathing rate in adults. 

The outcome of the detection algorithm is provided in the plots below for input 

frequencies of 6 and 12 Hz (Figures 3.14 - 3.16). The respiratory rate algorithm, as 

mentioned in Chapter 2, was based on the frequency with maximum magnitude in the 

power spectral density (PSD) wavefonn. Figure 3.14 shows the 6 Hz (left) and 12 Hz 

(right) sine wave inputs. 
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Figure3.14 6 Hz (left) and 12 Hz (right) sine wave input to verify breathing rate 
detection algorithm. 
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Figure 3.15 shows the PSD waveform output. PSD waveform for 6 and12 Hz case 

shows a peak at the respective input frequencies. As mentioned in Chapter 2, a limit of 5 

- 17 breaths per minute was applied to the frequencies (poles) detected using auto 

regressive (AR) coefficients. The frequencies in this range were separated as the 

respiratory rate candidates. The frequency with the maximum magnitude in the PSD was 

chosen from the candidates as the estimated breathing rate value. From the figure below 

(Figure 3.15), frequencies at 6 and 12 Hz have maximum magnitude, and thus were 

detected as the estimated breathing rate value as shown in Figure 3.16. 
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Figur~ 3.15 Power Spectral Density (PSD) response for 6 (left) and 12 (ri9ht) Hz sine 
wave mput. 

Figure 3.16 shows screen shots of the estimated breathing rate values after 

applying the algorithm. 
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Figure 3.16 Estimated respiration rate - output. of breathing rate detection algorithm. . . . 

3.2.2.3 Breathing Rate Detection Algorithm (Paced breathing). After 

verifying the results for the known sine wave input, the PPG signals collected from N= 1 

individual during paced breathing (6, 9, 12 and 15 breaths per minute - 3 times in a 
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random order) were used as input to the detection algorithm. The results are as shown in

the Tables 3.6 and 3.7 below:

Table 3.6 Results of Breathing Rate Detection Algorithm; Input: PPG from Custom
Hardware — Output = (Estimated Breathing Rate) Custom

Custom (Breaths per minute)
First Round Second Round Third Round

True Value Output  True Value Output True Value Output
6 6.1 12 12.l 9 9.l
9 9.0 9 9.0 15 15.0
12 11.9 15 15.0 12 11.9
15 14.9 6 6.l 6 11.9

Table 3.7 Results of Breathing Rate Detection Algorithm; Input: PPG from Xpod®
Hardware — Output = (Estimated Breathing Rate) xpod®

Xpod® (Breaths per minute)
First Round Second Round Third Round

True Value Output True Value Output True Value Output
9.16 6.1 12 12.0 9

9 9.0 9 9.0 15 15.0
12 11.9 15 15.l 12 11.9
15 14.9 6 6.0 6 6.1

To explore the AR methods in more detail, the results (screen shots) of the

breathing rate detection algorithm for the first round are presented. The respiratory

induced intensity variations (RIIV) signal obtained by filtering the digitized PPG signal

for each 6, 9, 12 and 15 breaths per minute case from both sets of hardware for the first

round are presented in Figures 3.17 — 3.20. The plots on the right were obtained using

PPG signals from the custom hardware and the ones on the left from the Xpod®

hardware.
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Figure 3.17 RIIV signal obtained by filtering the PPG signal from the Xpod® and the 
custom hardware using digital elliptic filter for 6 breaths per minute case. 
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Figure 3.18 RIIV signal obtained by filtering the PPG signal from the Xpod® and the 
custom hardware using digital elliptic filter for 9 breaths per minute case. 
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Figure 3.19 RIIV signal obtained by filtering the PPG signal from the Xpod® and the 
custom hardware ?sing digital elliptic filter for 12 breaths per minute case. 
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Figure 3_20 RIIV signal obtained by filtering the PPG signal from the Xpod® and the 
custom hardware using digital elIiptic filter for 15 breaths per minute case. 
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Figures 3.21 - 3.24 shows the PSD waveform obtained from the down-sampled (1 

Hz) and filtered PPG signal using AR modeling technique. There are several peaks in the 

5-17 breaths per minute respiratory rate candidate group (explained in Chapter 2). 

However, the one with maximum magnitude was chosen as the estimated breathing rate 

and displayed. Figure 3.25 shows the output - estimated breathing rate - of the detection 

algorithm. 
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Figure3.21 PSD of the filtered and downsampled PPG signal from the Xpod® (right) 
and the custom (left) hardware for 6 breaths per minute case. 
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Figure 3.22 PSD of the filtered and downsampled PPG signal from the Xpod® (right) 
and the custom (left) hardware for 9 breaths per minute case. 
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Figure3.23 PSD of the filtered and downsampled PPG signal from the Xpod® (right) 
and the custom (left) hardware for 12 breaths per minute case. 
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Figure 3.24 PSD ofthe filtered and downsampled PPG signal from the Xpod® (right) 
and the custom (left) hardware for 15 breaths/minute. 
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The screen shots of the estimated respiratory rates output, as spown in Figure 

3.25, were recorded for all the paced breathing rates. 
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Figure3.25 Estimated respiration rate - output of breathing rate detection algorithm for 
custom (left) and Xpod® (right) PPG (From top: 6, 9, 12, IS breaths per minute input). 

Table 3.8 Difference Between Estimated Breathing Rates (Custom - Xpod) Per Round 

True Value First Round Second Round Third Round 
6 0 0.1 5.8 
9 0 0 0 
12 , 0 0.1 0 
15 0 -0.1 0 

As seen in Tables 3.6 and 3.7, the detection algorithm was applied to the PPG 

data obtained from one individual from the two sets of hardware during paced breathing. 

Difference between the estimated respiratory rates obtained using the two sets of PPG 
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signals (Custom - Xpod®) during paced breathing, was calculated per round. The results 

in Table 3.8 show that for 9, 12 and 15 breaths per minute case, a nominal difference of 

0.1 breaths per minute was seen. The zeroes in this table signify that the estimated 

respiratory rates from the two sets of hardware were the same. The algorithm showed a 

discrepancy for 6 breaths per minute case with custom PPO signal as input during the 

third round. The plots for this case are presented in Section 3.2.2.3. 

The repeatability graph as shown in Figure 3.26 was obtained by plotting 

(Estimated Breathing Rate) Xpod® on the X -axis and (Estimated Breathing Rate) Custom on 

the Y-axis per breathing rate per round. Clusters (3 values per breathing rate) of 

estimated breathing rates can clearly be seen for 9, 12 and 15 breaths per minute cases. 

For the 6 breaths per minute case, one outlier (as marked in Figure 3.26) was obtained. 

The possible reasons for its occurrence are discussed in Chapter 4. 
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Figure 3.26 Repeatability graph for 6, 9, 12 and 15 breaths per minute case. 

3.2.2.4 Erroneous Results from the Breathing Rate Detection Algorithm. From 

the original results presented in Table 3.6 and 3.7, it can be seen that there was a 

discrepancy in detecting the lowest paced breathing rate (6 breaths per minute), where 
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custom hardware PPG signal input provided erroneous rates only during the third round. 

Raw waveforms and algorithm results for both are shown below. 
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Figure 3.27 RIIV signal obtained by filtering the PPG signal from the custom hardware 
and the Xpod® for 6 breaths per minute case; Double peaks for each breath are detected 
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Figure3.28 PSD of the filtered and downsampled PPG signal from the custom hardware 
and the Xpod®; Input PPG obtained during 6 breaths per minute paced breathing 
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Figure 3.29 Estimated respiration rate - output of breathing rate detection algorithm 
(custom and Xpod® hardware - Erroneous 6 bteiLths/minute). 

The possible reasons for these discrepancies are mentioned in further detail in 

Chapter 4. 



CHAPTER 4

DISCUSSION

4.1 Hardware Verification

The frequency responses of the hardware-based high, low and notch filters reveal that the

filters are able to filter out the unwanted frequencies quite efficiently in 0.1 — 5 Hz range.

A control over the sampling rate, filtering characteristics, and quantization resolution is

acquired pertaining to the custom design of the PPG hardware. This enables the

flexibility of the system as compared to the off-the-shelf Xpod® module.

As mentioned in Chapter 1, the Xpod® module outputs PPG data in a serial

format, which did not match the BlueSentryTM Bluetooth® module input requirement

(analog in; 0 — 5 V only; no negative voltages). The output of the PPG custom hardware

being analog can be adjusted to cast to the Bluetooth® module analog input requirements

(0 - 5 V). This will enable reducing the number of transmitters per ambulatory pack and

facilitate eight instead of four (with the current system) per computer (receiving station).

From the results shown in Chapter 3, it can be seen that the PPG signal obtained

from the custom hardware was more significantly affected by the motion artifact due to

the head and body movements as compared to the output of the Xpod® system. This is

likely due to two main sources: 1) the design of the ear sensor, and 2) the ambient light

incident on the photo diode 3) High pass filter cutoff. Due to propriety issues, it is

difficult to find out if the Xpod® system has already considered these issues in their

hardware design. To address these issues in the custom hardware design, the ear sensor

design can be improved using a light-weight plastic clip and a spring with sufficient

tension specifically designed for this application. In addition, a better mounting technique
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for the LED and the photodiode can enhance the sensor's performance. The changes due

to the ambient light can be reduced by adding a zeroing circuit, which subtracts out the

artifact due to the unwanted light. The custom PPG signal can be made less prone to DC-

drift or low frequency noise by adding AGC circuit to the hardware (Webster, 1997).

Addressing these issues will help reduce some of the unwanted low frequency noise that

can be falsely accounted as the RIIV signal.

The filters are designed to include respiratory rate derivation as a part of the PPG

signal analysis. As a consequence, low frequency noise due to motion artifact is included

in the output PPG signal. The low frequency noise spectrum overlaps the respiration

frequency spectrum and thus, it is difficult to avoid noise. Changing the high pass filter

cut off frequency value (0.1 Hz) to a higher value will cause exclusion of lower breathing

rates. However, the motion artifact noise will be reduced. The Xpod® module is

speculated to have a higher (more than 0.1 Hz) high pass cutoff than the custom

hardware. From the results in Chapter 3, Figures 3.27 — 3.29, the PPG obtained from

Xpod® successfully detected the low paced breathing rate (6 breaths per minute), while

the custom PPG data produced erroneous results. The double peaks were more

pronounced for custom PPG as compared to the Xpod® PPG, proving the higher high

pass cutoff assumption true.

A few authors have also suggested using a motion detector as a part of the PPG

sensor hardware. This enables detecting the motion of the sensor with head and body

movements. This detected motion can be cancelled out from the PPG signal to obtain a

motion artifact free output. Adding this functionality will enable differentiating between
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the induced low frequency motion artifacts and the respiration (RIIV) signal in the raw

PPG signals.

The Xpod® system used in the current ambulatory system costs $725 per

individual, which includes the cost of the ear sensor (Model 8000Q), the analog

processing module (Xpod®), the Blueport TM Bluetooth® module, and the receiver

Bluetoothe module. If the current Xpod® system is replaced by the custom hardware

system, the costs can be reduced to $80 per individual. This cost includes the passive and

active analog processing circuit components and ear sensor components. Thus, building a

custom hardware reduces the cost related to extra Bluetooth® transmitters and receivers.

In addition, a custom hardware will help to increase the number of individuals per site

(from four with the current system to eight) as number of transmitters can be reduced to

half per ambulatory pack, which in turn will help reduce travel costs (HEMI study always

outside of New Jersey).

4.2 Software Verification

This study was designed to use one of the best suggested methods for extracting

respiratory rate from the PPG signal was used for this study. Autoregressive Modeling

techniques are better in many respects than the classic Fourier Frequency Transform

techniques to obtain power spectrum. The detection algorithm showed consistent results

for the PPG signal obtained from both the custom and Xpod® hardware for most of the

normal breathing range. The PPG signals obtained during 9, 12 and 15 breaths per

minute, which fall in the normal respiratory rate range, produced a small difference

(Custom — Xpod®) of 0.1 breaths per minute.
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	Only the lowest breathing rate (6 breaths per minute) in the third round produced

a difference of 5.8 breaths per minute because the custom PPG signal input produced

erroneous results. This discrepancy can be explained by several reasons. From Figure

3.27, it can be seen that the RIIV signal (output of digital elliptic filter) has double peaks

resulting from one breath. This phenomenon causes over detection (6 detected as 12

breaths per minute) of the rate by the algorithm. Nilsson et al. (2000) provided two

possibilities as a cause of this phenomenon: 1) Detection of respiratory rate variation

from both the arterial and venous sides of the circulation, where a phase difference

indicates two breaths, and 2) Disturbances from lower frequency variations in the blood

pressure due to the THM waves as mentioned in Chapter 1, reflecting from the baroreflex

loop (Nilsson et al., 2000). Therefore, lower respiratory rates increased the occurrence of

false-positive breaths.

	

Another interesting phenomenon that can explain over detection is provided by

Johansson et al. (1999). As discussed in Chapter 1, the RIIV signal arises from the

changes in the venous return, which ultimately affects the peripheral venous pressure via

peripheral blood volume change, due to the inspiration and expiration processes.

According to Johansson et al. (1999), since thorax and abdomen plays an important role

in the breathing process, the RIIV signal amplitude varies depending on the thorax and

abdominal respiratory movements independently. A higher degree of thoracic respiration

and higher respiratory rate gave rise to greater RIIV amplitudes. In addition, variations in

posture and effects of body movements are assumed to affect the RIIV signal (Johansson

et al., 1999). This phenomenon induces unpredictable changes in the amplitude of the
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detected PPG signal at the periphery and might explain erroneous detection of the

breathing rate (Figures 3.27 — 3.29, Chapter 3).

4.3 Future Goals

In order to verify the detection algorithm results more efficiently, a more controlled study

using a pneumotachometer as a gold standard measurement of respiratory rate is

suggested. Using a gold standard will further validate the output of the respiratory rate

detection algorithm by eliminating the individual's compliance issues related to the paced

breathing method.



CHAPTER 5

CONCLUSION AND FUTURE DEVELOPMENT

The main objectives of this thesis were: 1) to design LabVIEW based respiratory rate

extraction algorithm from the PPG signals, 2) to build an analog PPG processing circuit

and ear clip sensor to enhance the throughput of the current ambulatory setup being used

for the HEMI study.

Several of the project goals were met, and other opportunities for improvement

and future enhancements have been identified.

The respiratory rate extraction algorithm designed in LabVIEW can successfully

extract respiratory rates from the PPG signal, although the effectiveness of the algorithm

depends on the quality of the input PPG signal. A PPG signal contaminated with motion

artifact noise will reduce the reliability of the algorithm. Thus, an input of artifact free

PPG signal is one of the primary goals for a consistent performance of the algorithm. In

addition, the PPG signal is sensitive to thoracic and abdomen respiratory movements and

posture, which induces variations in the RIIV signal. A controlled study is suggested to

account for the organ dependent variations in the RIIV signal. Understanding these

variations, with a signal processing perspective, will help design more thorough

extraction algorithm.

Building the custom PPG hardware does, in fact, increase the flexibility by

enabling control over the sampling rate, filtering characteristics, quantization level etc. as

compared to the off-the-shelf Xpod® module. The cost of the custom PPG hardware is

significantly less as compared to the current Xpod® module. However, before
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incorporating the custom PPG hardware in the current ambulatory setup a few obstacles

have to be overcome.

The performance tests of the custom PPG signal compared to the Xpod® PPG

signal revealed that motion artifact noise was more pronounced in the custom PPG signal.

To resolve this issue, stringent filter cutoffs need to be applied to reduce the THM wave

interference and the low frequency artifact noise, while still including the normal

respiratory frequencies. In addition, a better ear clip sensor design will significantly

reduce the motion artifact.

Due to apparently stringent filter cutoffs and better motion artifact handling

capability, Xpod® PPG signal is hypothesized to estimate respiratory rates more reliably

using the detection algorithm.

The future development for this project is to implement the changes suggested in

this thesis:

• Stringent filter cutoffs in the hardware design
• Better ear sensor design
• Designing a motion reduction algorithm for the custom PPG signals apart from

the filters
• Use a gold standard such as pneumotachometer to compare the respiratory rate

detection algorithm

Heart rate and oxygen saturation measurements can also be extracted from the

same raw data streams and be incorporated into the overall measurement system at a later

stage.



APPENDIX A 

OVERALL CIRCUIT 

Figure A.I shows the overall circuit of custom PPG hardware built for this study. 
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Figure A.I Wiring diagram of the overall custom PPG hardware circuit. 
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APPENDIXB 

DATA ACQUISITION PROGRAM 

Figure B.I shows the front panel of the data acquisition program built in LabVIEW 8.0. 

)(pod File Name 
lA_6 " .. , .... "" _.JCpod~--

Provide File Name 

)(pod 

t 
f 

'"" 

Figure B.1 Front panel of data acquisition program 
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APPENDIXC 

CONTROLLED RESPIRATION 

Figure C.I shows the front panel of the paced breathing Lab VIEW program. 

t10iP 

69 

Figure C.l Front Panel of the paced breathing program: 12 breaths/min. 
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Figure C.2 shows the block diagram of the paced breathing LabVIEW program. 

I 

Figure C.2 Wiring diagram ofthe paced breathing program. 



APPENDIXD 

BREATHING RATE DETECTION ALGORITHM 

Figure D.I shows the first part (Sections I , 2, and 3) of breathing rate detection 
program' s block diagram in LabVIEW. 

Figure D.l Wiring diagram of the breathing rate detection program (Sections I , 2 and 
3). 
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Figure D.2 shows the second part (Section 4 - 4A, 48 and 4C) of breathing rate 
detection algorithm in Lab VIEW. 

13 

Figure D.2 Wiring diagram of the breathing rate detection program (Sections 4 - 4A, 48 
and 4C). 
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Figure D.3 shows the last part (Section 4 - 4D, 4E, 4F and Final Output) of breathing 
rate detection algorithm in Lab VIEW. 
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Figure D.3 Wiring diagram of the breathing rate detection program (Sections 4 - 4D, 
4E, 4F and Final Output). 
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