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ABSTRACT

PRECIPITATION OF ULTRAFINE PARTICLES USING LIQUID
ANTISOLVENT WITH CONCENTRIC ULTRASONIC NOZZLE AND

SUBCRITICAL CO 2

by
Satya Chaitanya Kunchala

Nanotechnology has become more relevant in the pharmaceutical industry. Almost 40%

of the drugs developed by pharmaceutical industries are poorly soluble in water which

limits the bioavailability of these drugs in body fluids. Hence, it is necessary to reduce

the particle size, which increases the interfacial surface area. This work focuses on

micronization of class ii drug Griseofulvin which is poorly water soluble. Two processes

namely, liquid antisolvent precipitation using ultrasonic nozzle and other process using

subcritical CO2 have been used to produce ultrafine particles of this drug.

In liquid antisolvent precipitation, a combination of ultrasound, polymer and

surfactant is used to precipitate ultrafine particles. Ultrasound is used to increase the

nucleation rate by enhancing the micro mixing of solvent and antisolvent stream and

decrease the agglomeration. Surfactants and polymers are used to reduce the surface

tension and thereby increase the nucleation rate. Use of additives can inhibit the particle

growth and reduce the agglomeration. Particles in the range of 10 - 2 μm have been

precipitated in this process.

The process using subcritical CO 2 has also been used to increase the micro mixing

and to increase the nucleation rate. The depressurization of CO 2 expanded solutions of

Griseofulvin, causes large temperature drop and hence induce low supersaturation and



high nucleation rate. This results in precipitation of ultrafine particles. Particles in the

range of 15 - 1 [an have been precipitated in this process.
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CHAPTER 1

INTRODUCTION

1.1	 Nanotechnology

In recent years, particulate materials of sizes ranging from centimeters to nano meters

have received considerable attention from science and industries such as materials and

manufacturing, chemical and pharmaceutical, medicine and healthcare, environment and

energy, biotechnology and agriculture, electronics, computation and information

technology. As the particle size changes from centimeters to nano meters, material

properties also change. Nanoparticles exhibit many special chemical, mechanical,

optical, magnetic and electrical properties. Nanoparticles fall into three major groups E l l.

• Natural nanoparticles -- Naturally formed nano particles. Examples: volcanic
ash, ocean spray, magnetotactic bacteria, mineral 	 composites, and other
existing particles in the environment.

• Incidental nanoparticles -- By-products produced from industrial processes.

• Engineered nanoparticles — Specially designed particles to serve certain purpose.
Example: fullerene C60 - used for fuel cell applications.

The process and technology, which purposely produces the materials, by

manipulating their atoms, is called Nanotechnology. The main principle of

nanotechnology is to build chemically stable structures that do not violate existing

physical law Ill. It involves working with materials and devices that are at the nanoscale

level. A nanometer is one billionth of a meter. That is, about 1/80,000 of the diameter of

a human hair, or ten times the diameter of a hydrogen atom [21 . Scientists are very much

interested in producing nano materials because these materials will have either enhanced

or entirely new different properties from their parent particles. Nanoparticles drastically

1
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change the bulk properties of the materials. According to material science models,

composites made of particles of size smaller than 100nm, are much stronger than the

ordinary composites made of particles with sizes greater than 100nm. These drastic

changes stern from the weird world of quantum physics. Usually bulk properties of any

material can be calculated by averaging the quantum forces affecting the atoms. As the

size becomes smaller and smaller, there will be a point where the averaging does not

works [31 . The properties of materials can be different at the nanoscale for two main

reasons [31

• Nanomaterials have a relatively larger surface area when compared to the same
mass of material produced in a larger form. This can make materials more
chemically reactive (in some cases materials that are inert in their larger form
are reactive when produced in their nanoscale form), and affect their strength or
electrical properties.

• Quantum effects can begin to dominate the behavior of matter at the nanoscale
particularly at the lower end, affecting the optical, electrical and magnetic
behavior of materials. At nanoscale, materials can be produced in one dimension
such as, thin surface coatings, in two dimensions such as, nanowires and
nanotubes and in three dimensions such as, nanoparticles.
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1.2 Applications of Nanotechnology

Nanotechnology is the revolutionary science and art of manipulating the matter at atomic

or molecular scale that has cut across such disciplines as chemistry, physics, biology, and

engineering 141 . The products of advanced nanotechnology that will become available in

coming decades promise even more revolutionary applications than the products of

current and near-term nanotechnology. Applications in medicine and environment are

very important to discuss.

1.2.1 Applications in Medicine

Nanomaterials have received grater interest in the pharmaceutical field. Due to advances

in nano technology, effective delivery of pharmaceuticals is possible with nanoparticles.

In drug delivery pharmacokinetics and pharmacodynamics plays a vital role.

Pharmacokinetics deals with drug delivery inside the human body. When drug

administered intravenously, it goes through a number of stages such as absorption,

distribution, metabolism & elimination. Drug efficacy mainly depends on the

physiochemical properties of the drug (molecular weight, charge, and aqueous solubility)

and therefore on its chemical structure. Main purpose of many drug delivery systems is

targeted drug delivery. A successful drug delivery system should demonstrate the

properties like optimal drug loading and release, longer shelf life and lower toxicity.

Nanoparticles are desirable for drug delivery because of many important properties like

high drug solubility, lower toxicity, bioavailability and targeted drug delivery [5] .

Nanomachines can deliver drugs to targeted sites within a patient's body. Specific

nanomachines can remove obstacles in the circulatory system and used in identifying and

killing the tumor cells [2].



Table 1.1 Applications of Nanotechnology in Medicine [6]

4

Nanodevices, such as the respirocyte (artificial red blood cell) can replace

defective or improperly functioning cells. Applications of these respirocytes include

transfusable blood substitution, partial treatment of anemia, prenatal/neonatal problems,

and lung disorders [71 . Other applications of nanotechnology are nanorobots. In human

body, nanorobots can monitor the levels of different compounds and record the

information in the internal memory. In a given tissue, nanorobots in detail can examine

biochemical, biomechanical and histometrical features [21.



1.2.2 Environmental Applications

Nanotechnology offers new and improved environmental applications. However, this

technology has some problems, such as new toxins and related environmental hazards,

associated with it. Nanotechnology is playing an important role in pollution reduction.

Home lighting based on this technology could reduce energy consumption by 10% in the

United States, saving $100 billion annually and reducing carbon emissions by 200

million tons per year [8]  Nanostructured catalysts can make chemical manufacturing more

efficient by providing higher selectivity for desired reaction products Pi. Nanotechnology

applications can be helpful in creating the substances that replace currently used toxic

materials. For example, nontoxic, energy-efficient computer monitors are replacing those

made of cathode ray tubes (CRT), which contain many toxic materials [10] .

Nanotechnology plays an important role in remediation and end-of-pipe treatment

technologies. Varieties of nanoparticles are used for the treatment and remediation of

pollutants in the environment. Nanoparticles can also exhibit unique chemical reactivity

which is not observed in larger particles. Scientists are more interested in manipulating

the surface of nanoparticles with organic or inorganic dyes in order to extend their photo

response from UV to visible light, to make them more efficient as photo catalysts for the

transformation of environmental contaminants [111 . An example of environmental

treatment and remediation-related application of nanomaterials includes using

nanostructures for polymer-supported ultra filtration (PSUF) [12].

Rapid and precise sensors made of nanoparticles are capable of detecting

pollutants at the molecular level. These are greatly helpful to protect human health and

the environment. Nanotube sensors exhibit fast responses at room temperature to the
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gases and these are more sensitive than existing solid-state sensors [131 . Human health and

ecological diagnosis could also benefit from sensors. Nanobarcodes can greatly enhance

our ability to identify the source and strength of contaminants, determine the route and

mechanism of environmental fate and bioavailability, and assess the effectiveness of

treatment and remediation techniques [141 . Manufacturing process control, compliance,

ecosystem monitoring, and environmental decision-making would be significantly

improved - if more sensitive and less costly techniques for contaminant detection were

available [131 .

Nanotechnology is a revolutionary scientific and engineering venture that will

invariably impact the existing infrastructure of consumer goods, manufacturing methods,

and materials usage. Not surprisingly, the potential benefits have dominated scientific

and mass media coverage of nanotechnology. But any technology can be a double-edged

sword. We are already witnessing some precursors of nanotechnology-associated

pollution. Toxic gallium arsenide used in microchips enters landfills in increasing

quantities as millions of computers and cellular phones are disposed of every year.

Potentially harmful effects of nanotechnology might arise as a result of the nature of

nanomaterials themselves, the characteristics of the products made from them, or the

aspects of the manufacturing process involved .. The large surface area, crystalline

structure, and reactivity of some nanoparticles, for instance, may facilitate transport of

toxic materials in the environment, or the size and chemical composition of

nanostructures may lead to biological harm because of the way they interact with cellular

materials [151 . Because nanotechnology is unlikely to be an entirely benign technology



advance, there is an urgent need to evaluate the effectiveness of current water and air

treatment techniques for the removal and control of potential' nanoscale pollution.

However, people must remain mindful of the potential ramifications of this

technology, including the fact that nanoscale materials can enter the food chain and be

absorbed or transported by water and food. Bioavailability and toxicity of newly created

nanoscale materials are largely unknown. Nanotechnology is highly interdisciplinary and

may present further challenges for environmental scientists and engineers.

1.3 Problem Definition

From the reports of pharmaceutical industry, it is said that, around 40% of the drugs

being developed by the industries are not soluble in water [16 ' 171 . Hence, these drugs have

poor wetting properties and less ability to dissolve with gastrointestinal fluids. It is a

great challenge for the scientists to improve dissolution properties of the drug in older to

improve the bioavailability. According to the Noyes-Whitney equation, as the panicle

size decreases, its surface area increases and thus improves the dissolution properties [181 .

There are many commercially used methods to reduce the particle size such as

mechanical comminution (crushing, milling, grinding, and jet milling), thermal

recrystallization, spray drying, freeze drying and recrystallization using solvent

evaporation etc. Techniques described above are associated with many drawbacks.

Mechanical comminution is simple and economical, but it is not able to accomplish

desired amount of particle size reduction and it is not suitable for thermally sensitive

compounds. Thermal recrystallization, spray drying methods requires using lot of

solvents. In addition, all these methods requires relatively high-energy and yet suffer
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from poor control in maintaining particle size, PSD and morphology [191 . Though Liquid

Anti solvent method is simple and economical technique for pharmaceutical industry,

there are some drawbacks such as uncontrolled growth and agglomeration of nano

particles after the formation and particle growth by Ostwald ripening. These limitations

affect the quality and stability of the drug. Nanoparticles can provide required surface

area improvement. However, production of particles at nanoscale ranges remains

challenging [20, 21, 22].

1.4 Objectives

This research project focuses on production of ultrafine particles of Griseofulvin through

Liquid Anti solvent crystallization by using ultrasound nozzle and by using CO2.

Problems associated with Liquid Antisolvent process can easily overcome by using

ultrasound concentric nozzle. Ultrasound nozzle increases the nucleation rate and

decreases the particle agglomeration. Due to atomization created by the nozzle, both

solvent and antisolvent can be sprayed in the form of fine droplets. As a result, fine

particles can be precipitated. Use of surfactants and polymers can control the particle

size. Surfactants and polymers, reduce the surfacetension thereby increases the nucleation

rate. The process that uses CO2 can also produce ultrafine particles. When solution

containing CO2 is depressurized, CO2 evaporates from solution at normal atmospheric

pressure. Removal of latent heat from the solution reduces the solution temperature

causes supersaturation in solution. Supersaturation induces nucleation and initiates

precipitation process. Thus fine particles can be produced.
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1.5 Organization of Thesis

In this thesis after the Introduction, Chapter 2 presents a review on production of

Ultrafine particles. Chapter 3 focuses on the selected methods used to produce nano

particles and materials used. Chapter 4 presents results and brief discussion on the

experimental work done. Chapter 5 presents conclusions based on the research and

suggestions for future work. Chapter 6 includes references.



CHAPTER 2

PROCESS FOR PRODUCTION OF ULTRAFINE PARTICLES-AN OVERVIEW

Over the decades, many particle production processes have been developed for use in

pharmaceutical industries. To enhance the properties of poor water soluble drugs,

nanoparticle production processes such as, mechanical micronization techniques,

supercritical fluid techniques, cryogenic spray processes, and solvent evaporation

processes have been developed.

2.1 Mechanical Micronization Techniques

Grinding and high pressure homogenization techniques are commercially popular

methods for reducing particle size. Dry grinding with media mill and jet mill limits the

particle size to few microns. Hence, wet grinding with ball media mill and liquid jet mill

came in to picture in late 1990's. There is some equilibrium between the particle size and

grinding time. Once the particle reaches its minimum size, with the increase in grinding

time particle size starts increasing due to particle agglomeration [671 . Homogenization

process uses high pressure to break down the particles in the suspension.

2.1.1 Wet Grinding

Grinding is an attrition process. In this process, grinding media moves against one

another and against the walls of the mill. Grinding at lower speeds gives fine particles but

longer milling times are required. Finer particles can be produced by using wet milling

techniques [231 . In the wet milling process, the poor water-soluble drug is dispersed in an

aqueous-based surfactant solution, and then the resulting suspension is wet milled with

10
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the grinding media. The amount of grinding media, stabilizer and the raw material used

may vary with the type of mill. These are the main important factors affecting the

efficiency of the mill and particle fineness. Usually grinding media fills about 30% to

50% of the volume of the mill chamber 1231 . High-energy-generated shear forces and the

forces generated during impaction of the milling media with the solid drug provide the

energy to crush the drug particles into nanometer size [21, 24] Main limitation of the wet

milling process is contamination of the drug by grinding media used [251 . During the

milling process, due to erosion of grinding materials product is contaminated. In addition

to that, wet milling is a batch process. There is batch-to-batch variation detected in the

quality of dispersion, processing times, drug crystallinity and particle size distribution.

Due to these variations, drug particle stability, powder flow properties, and efficiency of

delivery system are affecting. In some cases, milling over the days brings the risk of

microbiological problems, especially when performing the milling at lower temperature

(temperatures below 30 °C) or having dispersion media providing nutrition to bacteria.

2.1.2 High Pressure Homogenization

High pressure homogenization is the other mechanical micronization process for reducing

the particle size of poor water soluble drugs present in liquid suspensions. With this

method it is possible to make more stable suspensions for enhanced clinical effectiveness.

As the active ingredients are homogeneously distributed in the suspension, bioavailability

of the drug increases. In this method drug is dispersed in an aqueous solution by high

speed stirring to get a suspension. Obtained suspension is then passed through a high

pressure homogenizer through 3 to 20 cycles at a pressure of 1500 bar [251 . Then at the

same pressure, suspension passes through a very small homogenization gap having a
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width of 25 Due to its small width, dynamic fluid pressure increases with increase in

streaming velocity of the suspension. As a result, water starts boiling at room temperature

and cavitation occurs when fluid leaves the homogenization gap 1251 . These cavitation

forces are strong enough to break the drug microparticles into drug nanoparticles [25, 26]

Particles produced from this process have an average size of 40 nm to 500 nm, and

particles greater than 5 pm are less than 0.1% in the total population [25, 261 . The particle

size depends on the hardness of the drug substance, processing pressure and number of

cycles applied. Size can be controlled by adjusting the operating parameters like pressure

and cycles applied. Application of high pressures tends to give more amorphous particles.

The stabilization against aggregation and coalescence is the main challenge while

forming nanosuspensions. Stability of nanosuspensions can be determined by the zeta

potential. In addition to that, Ostwald ripening also determines the stability of highly

dispersed systems [251 . The absence of Ostwald ripening indicates the long-term physical

stability of an aqueous suspension [In . It was observed that there was no Ostwald

ripening in the nanosuspensions produced by high-pressure homogenization process.

Nano suspensions produced from this processes have less concentration differences,

which is a main prerequisite for commercial large-scale production from this process.

High-pressure homogenizers are available with different capacities from a few hundreds

to a few thousands liters per hour [25, 26] . One disadvantage of this process is that,

application of high pressures used can change particle crystallinity and batch-to-batch

variation in crystallinity level might be an issue for quality control. Stability of partially

amorphous nanosuspensions is the main challenge in pharmaceutical industry

applications.
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2.2 Supercritical Fluid [SCF] Technology

Since there are many disadvantages with high energy milling such as contamination and

batch variation etc, another alternative method to produce nano particles is, Supercritical

fluid technology. Supercritical fluids have higher viscosities and diffusivity coefficients

and are good solvents. Physical properties of Supercritical fluids (SCF) such as liquid -

like density, gas like diffusivity, negligible surface tension and liquid like viscosity can

be manipulated over a wide range , by varying both temperature and pressure. There are

many advantages in selecting carbon dioxide from many Supercritical fluids as it has low

critical Temperature (Tc) = 31.1°C and moderate critical pressure (Pc) = 73.8 bar, and it

is nonflammable, nontoxic, and readily available in high purity. The basic principle of

Supercritical fluid technology is precipitation of micron and sub micron particles by rapid

depressurization of saturated solutions. Different SCF techniques such as Rapid

Expansion of Supercritical Solutions (RESS) [28 331 , Supercritical Antisolvent (SAS) [34,

35] and Depressurization of Expanded Liquid Organic Solutions (DELOS) [36 - 38] etc. are

being investigated.

2.2.1 Rapid Expansion of Supercritical Solutions (RESS)

In this process drug is dissolved in supercritical fluid which acts as a solvent. This

solution is depressurized through a nozzle, which has small orifice. The rapid expansion

of supercritical fluid solutions through the small orifice produces an abrupt decrease in

solubility of the solvent as it goes from a supercritical fluid state to a very low-density

gas phase after the expansion. This results in the nucleation of any low-vapor-pressure

solute species that were present in the solution prior to expansion. Controlled particle
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size distribution and morphology mainly depends on the solubility of drug in supercritical 

fluid, operating parameters (temperature and pressure), nozzle geometry and dimensions. 

Extraction unit 

Healing 

Figure 2.1 Schematic diagram of RESS process. [67) 

Precipitation 
chamber 

Vent 

A solid co·solvent can be added to increase the solubility of drug, which has low 
• 

solubility in supercritical fluid . This process can be called as RESS-SC (Rapid Expansion 

of Supercritical Solutions _. Solid Co-solvent). Later a solid co-solvent can be separated 

from the drug by using different techniques like lyophilization etc. The main advantage 

ofthis process is that it reduces the need for using harmful organic solvents. Though this 

process is simple and easy to develop, there are many limitations like poor solubility of 

many drugs in supercritical fluids, design of nozzle and scale-up problems involved in 

this method [28 - 33] 
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2.2.2 Supercritical Antisolvent (SAS) Precipitation 

In this process drug is dissolved in an organic solvent and this solution is sprayed through 

a nozzle in to a high-pressure chamber. This chamber is filled with supercritical CO2, 

which acts as antisolvent. When the sprayed solution comes in contact with supercritical 

CO2, nucleation occurs by two way diffusion between supercritical CO2 and the solution. 

Controlled particle size distribution and morphology depends on operating parameters 

(temperature and pressure) and nozzle dimensions. [34,35) 

Nozzle I""Tlfn 

High Pressure 
Chamber 

Vent 

Separat ion 
Tank 

Figure 2.2 Schematic diagram of SAS process. [67] 

I 1:-1 
L!.J 
. " Solution 

2.2.3 Depressurization of Expanded Liquid Organic Solutions (DELOS) 

In depressurization of Expanded Liquid Organic Solution (DELOS), super critical CO2 

acts as a co solvent for the formation of nano sized particles. The driving force behind 

DELOS process is a fast and large temperature drop. This occurs when the pressurized 
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solution is expanded from a working pressure (P

w

) to atmospheric pressure. This fast

drop in temperature causes the saturation limit to drop equally as fast causing the

crystallization of particles from the solution. In DELOS process, solute is dissolved in an

organic solvent in a pressure resistant chamber that is heated to a desired working

temperature. Once this is complete, SC CO2 is pumped to dissolve into the solution and

used to achieve the desired working pressure (P w). Sufficient time is provided for the

ternary solution to reach equilibrium and the working temperature (T w). Once

equilibrium is achieved, the solution is expanded through a one-way valve into a chamber

at atmospheric pressure. Pure nitrogen is pumped into the solution chamber to maintain

the working pressure during expansion. A filter at the bottom of the expansion chamber

collects the solute powder [37, 39].

It has been shown that the DELOS process is not dependent on the pressure

change from the working pressure to atmospheric pressure. Ventosa, et al. [39] have

shown that for a given system yield, particle size, and particle size distribution are

dependent on the temperature drop from the working temperature to the final

depressurization temperature (TF), therefore the main factors that control yield are the

working concentration of CF and the initial solubility ratio 139] . This allows the process

to be carried out at lower temperatures without any effects 1391 . Since crystallization

through the (DELOS) process is dependent on a large temperature drop, the yield can be

maximized by maximizing the amount of SC CO2 used.
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Figure2.3 Schematic diagram of DELOS processP9] 

The main advantage of (DELOS) is encapsulation. It is very cost effective and 

nano powders formed from this process are of highest quality. The disadvantage is, 

solubility is limited and reaches saturation very fast and the particles formed are not in 

spherical shape and needs to be treated by other techniques to produce spherical shapes, 

which are costly (37,39] 

2.3 Spray Process 

Another method to produce micro and nano particles is cryogenic spray process. Spray-

freezing into vapor processes have been developed under cryogenic spray process. 

Usually, in these processes, halocarbon refrigerants and liquid nitrogen have been used as 

cryogenic media (40· 51] Generally, in these processes, drug solution is atomized through 
. , ' 

the nozzle in a chamber that contains cryogenic media. Atomized droplets gradually 

solidify and then freeze while they pass through the cryogenic media. A spray .. freezing 

into vapor process has been developed by Gombotz el af and Gusman and Johnson [52-

55] In this process, atomization of drug solution takes place in nitrogen vapor. Solution 
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droplets gradually solidify while passing through nitrogen vapor and freeze when they

come in to contact with cryogenic liquid 120] . There are some drawbacks like broad

particle size distribution and presence of non-micronized particles in this process. To

overcome this, a new cryogenic spray process has been developed and patented by The

University of Texas at Austin in 2001 [56] and commercialized by The Dow Chemical

Company.

2.3.1 Spray Freezing into Liquid (SFL) Process

In this process, a solution that contains a drug is atomized through a nozzle in to a

compressed liquid. The compressed liquids used in this process are, compressed CO2,

helium, propane, ethane, or the cryogenic liquids including nitrogen, argon, or

hydrofluoroethers [56] . Nano particle formation is due to intense atomization of drug

solution and then rapid freezing in the cryogenic liquid medium. High degree of

atomization occurs by spraying drug solution directly in to cryogenic liquid and rapid

freezing is achieved by low temperature provided by cryogenic liquids and formation of

high surface area droplets. The high degree of atomization and rapid freezing rates led to

formation of amorphous nanostructured particles with high surface areas, enhanced

64 ]wetting and significantly enhanced dissolution rates [20, 57, 58 - 6 According to the need,

obtained nano particles in the liquid medium are dried in lyophilizer to get dry powder.

Powders produced from SFL process exhibits higher dissolution rates compared to the

micronized bulk drugs. Powders produced from this drug can be used for different

delivery systems such as respiratory delivery, oral delivery etc.
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2.4 Solvent Evaporation Process

Two solvent evaporation techniques used for production of nano particles are described

below. In both techniques, drug is dissolved in a solvent and then the solution is sprayed

through the nozzle into a chamber. Nanoparticles are formed by the evaporation of

solvent.

2.4.1 Spray Drying

Spray drying is a common method used in many pharmaceutical industries. In this

method, typically, drug solution is pumped through a nozzle and is atomized in a

chamber containing a hot gas. Production of Nano particles of sensitive materials requires

oxygen free drying and hence nitrogen gas is used instead of hot gas. Different types of

atomizers are used for spray drying such as, single fluid, two-fluid, and ultra-sonic

designs. These different styles have different advantages and disadvantages depending on

the application of the spray drying required.

Spray drying process is used by food and pharmaceutical industries as an

encapsulation technique. Dehydrated powders such as instant drink mixes are produced

by this technique. This technique is mainly used in food industries for the preparation of

dehydrated milk. As this process causes thermal degradation, other techniques are used

for the milk dehydration. Skim milk powder is still widely produced using spray drying

technology around the world, typically at high solid concentration for maximum drying

efficiency. Thermal degradation of products can be overcome by using lower operating

temperatures and larger chamber sizes for increased residence times.

Recent research is now suggesting that the use of spray-drying techniques may be

an alternative method for crystallization of amorphous powders during the drying process
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since the temperature effects on the amorphous powders may be significant depending on

drying residence times.

2.4.2 Evaporative Precipitation in to Aqueous Solution (EPAS)

This process was developed and patented by The University of Texas at Austin and

licensed to The Dow Chemical Company in 2001. In this process, drug is dissolved in an

organic solvent and is sprayed through a nozzle at high pressures and temperatures.

Usually temperatures maintained are above the boiling points of the organic solvent and

nozzle is placed in a heated aqueous solution. Nozzle is immersed in aqueous solution to

avoid the crystal growth. According to need, stabilizers are added to organic solution and

aqueous solution. Drug nano particle suspension is dried by using lyophilizer or spray

dryer. There are many advantages with EPAS process over spray drying process. In

EPAS Nanoparticles are formed due to rapid evaporation of the heated organic solution

and fast nucleation. Varieties of hydrophilic stabilizers are found in order to control the

particle size. These stabilizers work by diffusing to the surface of growing particles

rapidly enough in order to prevent the particle growth.

When hydrophilic surfactant is used, it migrates towards the drug-water interface

during particle formation, and the hydrophilic segment is oriented outwards towards the

aqueous continuous phase. The stabilizer inhibits crystallization of the growing particles

[65] In spray drying process, this type of hydrophilic surfactant coating is not possible

because of absence of water. Even after the solution is dried to form powder, hydrophilic

surfactant is surrounded by drug. As a result of this dissolution rate of the drug increases.

To prevent the agglomeration and particle growth, high surfactant adsorption levels on

the surface of the particle are required. Applications of EPA .S suspensions include, use in
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parenteral formulations to enhance the bioavailability and in oral dosage forms. The

ability to engineer stable particles with high potencies and high dissolution rates with

EPAS presents new opportunities in the development of commercial formulations for

poor water-soluble drugs.

2.5 Comments

In summary, recent advances in commercially or potentially commercially available

nanoparticle engineering processes have been discussed. These nanoparticle engineering

processes including wet milling, high pressure homogenization, RESS, SAS, DELOS,

SFL, Spray drying and EPAS techniques have successfully incorporated poorly water

soluble drugs alone, or with excipients into the microparticles or nanoparticles with

significantly improved dissolution rates and bioavailability. As the percentage of poor

water-soluble experimental compounds is increasing, nanoparticle-engineering processes

for enhancement of dissolution rates of poorly water-soluble drugs offer great promise for

pharmaceutical development and manufacturing to bring these experimental compounds

into the market.

Though there are many processes available in the literature, precipitation of

ultrafine fine particles of active pharmaceutical ingredients with low water solubility is

still a difficult task. Inspite of all the available processes, Liquid antisolvent (LAS) is still

a commercially viable and economically attractive process. In current research work,

Liquid antisolvent process is used to produce ultrafine particles.
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2.6 Liquid Antisolvent (LAS)

Liquid antisolvent techniques have been using in many industries to crystallize solid

compounds. As this technique eliminates the use of thermal energy which can lead to the

degradation of biological activity of drug particles, it has become one of the most

promising particle production techniques in the pharmaceutical industry. In the most

common procedures, a poor solvent of a particular drug is added to the drug solution in

order to precipitate the solute. Water is most commonly used as an antisolvent for

hydrophobic drug compounds, whereas organic solvents are used for hydrophilic

compounds. Drug is precipitated upon mixing of solution and antisolvent. The working

principle behind this technique is that during mixing, there is an increase in the molar

volume of the solution that results in decrease in solubility power of the drug and hence

the precipitation. Even though it has been widely used in industry, there is minimal

control over the crystal morphology and size distribution. A combination of surfactants

and ultrasound is used in order to control the particle size and distribution.



CHAPTER 3

MATERIALS AND METHODS

3.1 Materials

3.1.1 Drug

The drug Griseofulvin with molecular formula C 17H17O6  is an antifungal antibiotic. It is

derived from a species of Penicillium. It is used in the treatment of ringworm and other

fungal infections of the skin or nails.

Figure 3.1 Griseofulvin structure.

Some research shows that it can be used to treat cancer as it inhibits the cell

division in cancer cells. It does not interfere with cell division in healthy cells. ≥ 95%

(HPLC grade) is purchased from Sigma Aldrich and is used without any further

purification. Griseofulvin is poorly soluble in water but is soluble in many organic

solvents such as acetone, DCM, DMF, ethanol and Triacetin.

23
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3.1.2 Solvents

Solvents Acetone (CHROMASOLV®, for HPLC, ≥ 99.8%) and DCM

(CHROMASOLV®, for HPLC, ≥ 99.9%) were purchased from Sigma Aldrich and were

used without any further purification.

Figure 3.2 Acetone and DCM.

Acetone is an organic solvent with the formula CH 3 COCH3 and is miscible with

water. Dichloromethane (DCM) is the chemical compound with the formula CH 2C12. It is

a colorless, volatile liquid widely used as a solvent for many chemical processes. It is

miscible with most organic solvents and immiscible with water. Griseofulvin solubility in

acetone is 38 mg/ml and in DCM is 0.220 gm/ml.

3.1.3 Surfactants

Surfactants Tween 80 (viscous liquid with average molecular weight 1310 and the

composition of Oleic acid and ~70% (balance primarily linoleic, palmitic, and stearic

acids)), Sodium Dodecyl Sulphate (Sigma Ultra, ≥99.0% (GC)) and Poloxamer 188 (a

solid contains 100 ppm BHT with average molecular weight 8350) are purchased from

Sigma Aldrich and are used without any further purification.
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Figure 3.3 Tween-80, SDS, Poloxamer 188.

Tween 80 is a nonionic surfactant and emulsifier often used in ice cream to

prevent milk proteins from completely coating the fat droplets. It is also known as

Polysorbate 80. It is a viscous, water-soluble yellow liquid. Tween 80 can be used as an

emulsifier in the manufacture of medications for parenteral administration. Its CMC is

around 1.2* 10-5 Mat 25°C.

Sodium Dodecyl Sulphate is an anionic surfactant with molecular formula

C12H25SO4Na is used in household products such as toothpastes, shampoos, shaving

foams, some dissolvable aspirins, fiber therapy caplets etc. The molecule has a tail of 12

carbon atoms, attached to a sulfate group, giving the molecule the amphiphilic properties

required of a detergent. It is a smaller molecule as compared to Tween 80 and its CMC is

around 0.0082 M at 25°C.

Poloxamer is a triblock copolymer. It has two hydrophilic polyethylene oxide

ends and one hydrophobic polypropylene oxide segment in the middle. They can be used

to increase the water solubility of hydrophobic, oily substances or otherwise increase the
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miscibility of two substances with different hydrophobicities. For this reason, these are

commonly used in industrial applications, cosmetics, and pharmaceuticals. They have

also been used as model systems for drug delivery applications. Its CMC is 0.0004 M at

25°C.

3.1.4 Polymers

Figure 3.4 HPMC, PVP, Polymer JR.

Polymers HPMC, PVP (average mol wt 360,000) and Polymer JR are purchased from

Sigma Aldrich and are used without any further purification.

Hydroxy Propyl Methyl Cellulose (HPMC) is a semisynthetic, inert, viscoelastic

and non - ionic water-soluble polymer. It is used as an ophthalmic lubricant, excipient
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and controlled-delivery component in oral medicaments. In oral tablet and capsule

formulations, it is used to delay the release of a medicinal compound into the digestive

tract.

PVP is a non ionic polymer and is soluble in water as well as other polar solvents.

It is as an inhibitor of recrystallization and increases the solubility of drugs in liquid and

semi-liquid dosage forms (syrups, soft gelatin capsules etc). PVP in its pure form can be

edible by humans. Main applications include binder in many pharmaceutical tablets,

stabilizer in food additives, used in personal care products such as shampoos and

toothpastes, in paints, and adhesives like old-style postage stamps and envelopes etc.

PVP added to Iodine forms a complex (Povidone - iodine) that possesses disinfectant

properties. This complex is contained in various products like solutions, ointment, liquid

soaps and surgical scrubs.

3.2 Methods

3.2.1 Experimental Methods

Two methods, Liquid antisolvent precipitation by using ultrasonic nozzle and MDELOS,

are developed for the production of nano particles.

3.2.1.1 Liquid Antisolvent Precipitation using Ultrasonic Nozzle.	 In many

pharmaceutical industries, liquid antisolvent technique is used for the production of nano

particles. Since many of the drugs used in the pharmaceutical industry are thermally

sensitive and poorly water-soluble, this technique is more suitable for the production of

nano particles. In this technique typically, a poor solvent of a particular solute is added to

the solution in order to precipitate the solute. When the solution and antisolvent are



28

mixed together, precipitation occurs. The most common antisolvent used for this

technique is water when poorly water-soluble drugs are being precipitated. The working

principle behind this technique is that during mixing, there is an increase in the molar

volume of the solution that results in decrease in solubility power of the solute and hence

the precipitation. Though these techniques are widely used in industry, these are also

associated with some drawbacks such as, controlled particle size distribution and

morphology.

Liquid antisolvent precipitation using ultrasonic nozzle involves three steps for

the production of nano particles. Figure 3.5 schematically shows the steps involved.

Figure 3.5 Flow diagram of Liquid anti solvent process with ultrasonic nozzle.

Solution of a drug in the solvent is prepared. The power of ultrasound unit applied

to the nozzle is set in order to atomize the solution coming from pumps. Atomized

solution is directly collected in a chamber containing water with stabilizers. The

concentric ultrasonic nozzle consists of inner nozzle with ID of the nozzle is 0.5 mm and

the outer nozzle with OD of 1.00 mm. Nozzle length is 6.5cm. Maximum nozzle power is

20watts. Capacity of collection chamber is 250m1. Pumps can pump liquids up to
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200ml/min. Solvent pump's connection goes to inner nozzle and water pump's

connection goes to outer nozzle. Different stabilizers such as surfactants, polymers and

electrolytes are added either in solvent or in water or in both. The apparatus used at New

Jersey Institute of Technology is shown schematically in Figure 3.6.

Figure 3.6 Schematic diagram for Liquid Antisolvent method with ultrasonic nozzle.

3.2.1.2 Precipitation of Ultrafine Particles using Subcritical CO 2 .	 In this

process, CO2 acts as a co solvent for the formation of nano sized particles. Nano particles

are formed due to large temperature drop caused by CO2 expansion from working

pressure to atmospheric pressure. Due to large drop in temperatures, solubility of the drug

in the solution decreases and eventually drug particles are precipitated in the collection

chamber, which is at atmospheric pressure. This is very simple technique. There are only
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four steps involved for the production of nano particles. A simple flow diagram of the

process is shown below.

Figure 3.7 Flow diagram of precipitation of ultrafine particles using subcritical CO 2

Process

The first step in this process is the preparation of the supercritical solution. The

solution consists of supercritical solvent and a solute (drug / API). A liquefied solvent, at

conditions higher than Tc and Pc, is pumped from the cylinder to an extraction chamber.

The dissolution of solute in the supercritical solvent takes place in the extraction

chamber. The dissolution properties of the solute depend on the extraction conditions

(temperature and pressure) as well as the chemical characteristics of the solute.

Therefore, it is essential to determine the solute solubility in supercritical solution

through experiments or literature review. Required apparatus includes compressed CO 2

cylinder, extraction chamber, expansion chamber and nozzle. Both expansion and

extraction chambers should be high-pressure vessels. Detailed procedure of conducting

experiment is described below. The apparatus used at New Jersey Institute of Technology

is shown in Figure 3.8.
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Figure 3.8 Schematic diagram for process using subcritical CO2 for precipitation of
ultrafine particles.

Drug is dissolved in solvent and then fed to extraction chamber. Surfactant is

added to the solvent if required. Extraction chamber is closed and filled with supercritical

CO2 at desired pressure. Allow some time to achieve equilibrium between the CO2 and

solvent. Depressurize the solution by opening the valve. Expansion chamber is filled with

water. After depressurization, CO 2 evaporates from expansion chamber.

3.2.2 Characterization Techniques

Characterization of the particles precipitated using the above-described processes has

been performed using scanning electron microscopy and Light scattering technique.

3.2.2.1 Scanning Electron Microscopy (SEM). SEM is used to observe the

morphology of the particles. Scanning Electron Microscopy (SEM) is a very useful tool
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for characterization of ultrafine particles. Images were taken using a Scanning Electron

Microscopy (LEO 1530VP (FESEM-EDS) / Zyvex Nanomanipulator System) at an

accelerating voltage ranging from 5 to 10 KV. The sample was deposited on a silicon

chip fixed on aluminum stub. Liquid solution obtained from the experiment was

sonicated for 30 minutes and few drops from this solution are deposited on the stub to

analyze on SEM. The stub was then placed under vacuum in order to remove the

moisture from the sample. Stubs must be completely dry in order to analyze them under

SEM. SEM micrographs from different regions of the stubs were obtained.

Multiple images for each experiment were processed in order to get a proper

representation of the particles. Several results obtained using SEM was compared with

light scattering (where available) results and were found to be significantly similar.

3.2.2.2 Beckman Coulter - LS 230. 	 Light scattering (Beckman Coulter LS 230)

is the most sophisticated particle size analyzer with 132 optical detectors. The LS uses

reverse Fourier lens, which enables it to optimize light scattering across the widest

dynamic range in a single scan. It is used to measure hydrodynamic diameter of aqueous

solution of drug and milli-Q water. Polarization Intensity Differential Scattering (PIDS)

was also performed using Fraunhofer diffraction model. Range of particle size that can

be analyzed is 0.04 μm to 2000 lam. Samples were first sonicated for 30 minutes and then

used for analyzing.



CHAPTER 4

RESULTS AND DISCUSSION

Experiments were conducted to study the effect of operating parameters on the particle

size, particle size distribution and morphology for Liquid Antisolvent process by using

ultrasonic nozzle. Experiments are conducted by varying drug concentration, nozzle

power, solution and solvent flowrate. Surfactants and polymers are added to water to

stabilize and control the particle size. The following sections describe effects of varying

different parameters.

4.1 Initial Screening of Process Parameters

Table 4.1 Effect of Operating Parameters and Surfactant

Exp
Power
(wa(watts)

Water
Flowrate
(ml/min)

-80T-80
(CMC)

so Bath
nication

Mean
particle size

(lm)
SD 

1 0 0 0 No 23.18 9.85

2 0 0 5 No 14.88 7.89

3 10 0 5 No 13.26 5.27

4 10 0 5 Yes 11.47 4.32

5 10 2 5 Yes 11.09 2.14

Experiment 1, is a simple liquid antisolvent process in which solution of the drug and the

solvent is added to an antisolvent to precipitate the drug particles. Precipitated particles

are about 23 microns size. In order to study the effect of surfactant, experiment 2 was

33
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conducted by adding the Tween 80 (5 CMC) in the water used in collection chamber. At

these experimental conditions, mean particle size of precipitated particles was around

14.9 microns. Addition of surfactant reduces the surface tension, increases the nucleation

rate and also reduces the agglomeration. In order to study the effect of atomization,

experiment 3 was conducted by applying power to nozzle. When the atomized droplets of

solution came in contact with antisolvent, drug particles were precipitated. The particle

size obtained is 13.26 microns. Application of ultrasonic nozzle atomizes the droplets and

hence reduces the particle size.

The precipitated particles were collected in water in a collection chamber. As

Griseofulvin is hydrophobic, the precipitated particles agglomerate in water. Therefore,

in experiment 4 particles were collected in sonicated water using a bath sonicator.

Particles produced were smaller than the particles formed from previous experiments due

to the prevention of agglomeration. In experiment 5 both drug solution and water were

pumped through a concentric nozzle vibrating at the tip. Vibrations due to ultrasound

enhance the micro mixing of antisolvent and solution streams and increase the nucleation

rate. This further decreases the particle size.

As it is seen that the process parameters affect the particle size and its

distribution, it was therefore decided to generate DOE to identify important process

parameters. Next section describes the DOE for liquid antisolvent experiments with

ultrasonic concentric nozzle.
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Figure 4.1 SEM micrographs for the experiments shown in Table 4.1. 
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4.2 Full Factorial Experiment by using DOE

Full factorial experiments were designed by using Minitab software. For full factorial

design, three factors such as, concentration of the drug in the solvent, power applied to

the nozzle and flowrate of antisolvent were considered. In this design, three levels were

considered for each factor. Values for concentration were 0.01, 0.05 and 0.09, values of

power were, 0, 5 and 10 and values for flowrate were, 0, 5 and 10. By following the

DOE, total 27 experiments were conducted in a random order and the results are

tabulated in Table 4.3. Procedure followed for conducting these experiments is described

below.

The given amount of drug is dissolved in 10 ml of solvent. Power and water flow

rate were adjusted as required. 200 ml of water along with surfactant Tween-80 was

taken in the collection chamber. Concentration of Tween-80 was 5 CMC. For all these

experiments, flowrate of drug solution was fixed at 2 ml/min. After each experiment,

collected samples were analyzed using light scattering and SEM.

Table 4.2 Analysis Of Variance (ANOVA) Table

Source DF Seq SS Adj SS Adj MS F P

C 2 1111.118 1111.118 555.559 13.62 0.032

P 2 104.268 104.268 52.134 1.34 0.388

W 2 179.981 179.981 89.991 1.67 0.3

C*P 4 93.702 93.702 23.425 1.12 0.411

C*W 4 153.15 153.15 38.288 1.83 0.216

P*W 4 145.862 145.862 36.466 1.74 0.233

C*P*W 8 167.333 167.333 20.917 **

Error 0 * * *

Total 26 1955.415
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Table 4.3 Full Factorial Design to find out the Significant Factor

Exp
Drug weight

(g)

Power
(W)

Water flow
(ml/min)

10

Water
Collection

(ml)
 300

Size
(microns)

10.19
S.D. 
5.671 0.09 10

2 0.05 5 0 200 15.1 4.35

3 0.05 0 5 250 10.02 5.93

4 0.09 0 0 200 28.61 20.47

5 0.05 0 10 300 13.27 8.55

6 0.05 10 0 200 11.61 6.94

7 0.09 5 0 200 22.6 12.51

8 0.01 0 10 300 12.86 6.47

9 0.01 10 10 300 6.114 2.99

10 0.05 10 5 250 17.33 12.16

11 0.05 0 0 200 22.56 15.44

12 0.09 10 5 250 30.19 20.57

13 0.01 5 10 300 7.4 3.05

14 0.01 10 0 200 11.5 9.4

15 0.09 5 10 300 13.65 11.48

16 0.09 10 0 200 11.5 9.4

17 0.05 10 10 300 8.66 3.32

18 0.05 5 10 300 11.91 6.28

19 0.09 5 5 250 18.53 11.95

20 0.05 5 5 250 17.93 12.34

21 0.01 5 0 200 2.97 1.84

22 0.01 5 5 250 7.47 3.79

23 0.01 0 5 250 6.43 3.15

24 0.09 0 10 300 24.89 8.04

25 0.09 0 5 250 29.65 18.31

26 0.01 0 0 200 12.51 6.52

27 0.01 10 5 250 8.479 2.93
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For this full factorial design experiment, ANOVA is conducted for the mean

particle size. From the Table 4.2, it is clear that, concentration had significant effect on

the particle size. Therefore, experiments were conducted by varying the concentration of

Griseofulvin in acetone to study the concentration effect on the particle size, size

distribution and morphology.

4.3 Effect of Concentration on the Particle Size

Table 4.4 Effect of Concentration on the Particle Size

Exp
Conc.

(gm/ml)
Power
(watts)

Mean

(μm)
Median Mode S.D D10 D50 D90

1 0.005 10 10.2 8.8 10.3 5.7 4 8.8 19.2

2 0.01 10 7.6 6.2 7.8 5.5 2.2 6.2 15

3 0.015 10 8.08 7.15 9.37 5.01 2.57 7.15 14.7

4 0.02 10 8.29 7.02 9.37 5.76 2.29 7.02 15.7

5 0.025 10 9.03 7.53 9.89 6.45 2.34 7.53 17.6

6 0.03 10 9.64 7.98 10.3 7.01 2.51 7.98 18.7

7 0.035 10 12.1 9.88 11.3 8.52 3.45 9.88 24.3

8 0.04 10 13.9 11.5 12.4 9.28 4.38 11.5 27.1

Table 4.4 and Figure 4.2 show the effect of concentration on the particle sizes and size

distribution. It is observed that needle like bipyramidal particles were precipitated at all

concentrations.
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Figure 4.2 Effect of concentration on the particle size.

From experiments 2 to 8, particle size increased with increasing concentration of

the drug. At lower concentration like 0.005 gm/ml, particle size was smaller than at other

concentrations. The particle size goes through the minimum with change in

concentration. At higher concentrations, there will be higher driving force for particle

growth and increase in agglomeration increases the particle size. At lower concentration,

there will be low supersaturation and lower nucleation rate increases the particle size.



Figure 4.3 SEM micro graphs for the experiments 1, 4, 6 and 8 shown in Table 4.4. 
.... = 
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4.4 Effect of Surfactant on the Particle Size

Surfactants reduce the surface tension of solution and there by increase the nucleation

rate of precipitating solute. Surfactants stabilize the particle size by their specific

adsorption- on to the particle surface. Experiments have been carried out by adding

surfactant in antisolvent phase and in organic phase separately.

4.4.1 Surfactant in Antisolvent Phase

Table 4.5 Effect of Surfactant (0.7 CMC) on the Particle Size when Surfactant is added
in the Water

Exp. Conc.
(gm/ml)

Surfactant
Power
(watts)

Mean
(μm) SD D10 D50 D90

1 0.01 Tween 80 10 10.2 7.94 3.2 7.63 21.7

2 0.01 Poloxamer 188 10 8.67 5.96 3 7.05 16.4

3 0.01 SDS 10 6.37 4.64 2.2 5.07 12

Table 4.5 and Figure 4.5 show the effect of surfactant on particle size and particle size

distribution. It can be seen that anionic surfactant SDS can control particle size and

particle size distribution better than other surfactants. Adsorptions of anionic molecules

of SDS on the particle surface develop negative charge on the surface of the particles and

hence effectively control the agglomeration.
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Figure 4.6 SEM micrographs for the experiments 1 and 3 shown in Table 4.6. 

-
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Figure 4.5 Effect of surfactant on the particle size.

4.4.2 Surfactant in Organic Solution Phase

Table 4.6 Effect of Surfactant (0.7 CMC) on the Particle Size when Surfactant added in
the Solvent

Exp
Drug Conc.

(gm/ml)
Surfactant

Power
(watts)

Mean
(µm) SD D10 D50 D90

1 0.01 Tween 80 10 10.5 7.17 3.6 8.48 20.2

2 0.01 SDS 10 * * * * *

3 0.01
Poloxamer

188
10 9.14 6.67 3.4 7.23 16.9

SDS cannot be dissolved in acetone and hence the data is not reported for such a

condition. Comparison of Tables 4.5 and 4.6 shows that there is no much difference

between the particle size with change in location of the surfactant.
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4.5 Effect of Polymer on the Particle Size

Table 4.7 Effect of Polymer on the Particle Size

Exp
Polymer

weight. (gm)
Polymer

Power
(watts)

Mean
(μm) SD D10 D50 D90

1 0.01 HPMC 10 5.51 3.47 2.01 5.23 6.91

2 0.05 HPMC 10 9.47 7.95 3 6.84 I 	21.5

3 0.1 HPMC 10 10.6 7.68 3.5 8.38 20.6

4 0.01 PVP 10 7.5 5.66 3.72 6.51 12.92

5 0.05 PVP 10 14.63 11.1 3.59 11.2 33.15

6 0.1 PVP 10 15.07 9.68 7.56 17.15 32.5

7 0.01 Polymer JR 10 6.24 3.29 2.6 5.55 11

8 0.05 Polymer JR 10 6.37 4.08 2.4 5.29 11.8

9 0.1 Polymer JR 10 7.91 5.71 2.6 6.4 14.8

Table 4.7 and Figure 4.7 shows that Polymer JR can control the particle growth better

than HPMC and PVP. PVP has only one carboxyl group and can not form hydrogen

bonds with the functional groups on Griseofulvin and hence is a poor candidate for the

control of particle growth and hence the agglomeration and particle size. Cellulosic

Polymers like HPMC and Polymer JR perform better than PVP as they have lots of

hydroxyl group present in a molecule and can form hydrogen bonds.



Figure 4.7 Effect of polymer on the particle size.

4.6 Effect of Polymer and Surfactant Combination on the Particle Size

Table 4.8 Effect of Polymer and Surfactant Combination on the Particle Size

Exp
Drug

Conc.
(gm/ml)

Polymer +
Surfactant

Power

(watts)

Mean

(µm)
SD D10 D50 D90

1 0.01 Polymer JR+SDS 10 8.209 5.96 2.65 6.53 16

2 0.01 HPMC+SDS 10 7.91 6.85 2.69 6.56 13.71

3 0.01 PVP+SDS 10 6.89 5.78 3.78 6.01 14.8

In order to study the effect of polymer and surfactant combination, 0.01 gm of SDS was

added to 0.01gm of polymer and was used for conducting the experiments. Table 4.8 and

Figure 4.9, show the effect of polymer and surfactant combination on the particle size and

size distribution.

46



Figure 4.8 SEM micrographs for the experiments shown in Table 4.8. 
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Figure 4.9 Effect of polymer and surfactant.

If polymer alone was used, HPMC was giving smaller particles than PVP. But by

adding surfactant to the polymer, combination of PVP and SDS was giving better results

than the combination of HPMC and SDS. and Polymer JR and SDS. This is probably

because the interaction between PVP and SDS is stronger than the interaction between

SDS and HPMC or between SDS and Polymer JR. Because of this stronger interaction,

SDS adsorption on PVP chains is more as compared to HPMC and Polymer JR and hence

the PVP chains get straitened out more than HPMC or Polymer JR. Therefore PVP now

can control the particle growth better than Polymer JR or HPMC.
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4.7 Effect of Polymer, Surfactant and Electrolyte Combination on the Particle Size

Table 4.9 Effect of Polymer, Surfactant and Electrolyte Combination on the Particle
Size

Exp

Drug

Conc.

(gm/ml)

Polymer+ Power

(watts)

Mean

(μm) SD D10 D50 D90Surfactant+

Electrolyte

1 0.01 Polymer JR 4- SDS + NaCl 10 9.741 7.53 2.84 7.49 19.83

2 0.01 HPMC + SDS + NaCl 10 8.45 6.35 3.62 8.3 14.12

3 0,01 PVP+ SDS + NaCl 10 2.02 1.07 1.17 1.72 3.19

In order to study the effect of polymer, surfactant and electrolyte combination, 0.01 gm

of SDS and 0.01 gm of NaCl was added to 0.01gm of polymer and was used for

conducting the experiments. Table 4.9 and Figure 4.11 show the effect of polymer,

surfactant and electrolyte combination on the particle size and size distribution. If

polymer alone is used, HPMC is giving smaller particles than PVP. By adding surfactant

to the polymer, combination of PVP and SDS is giving better results than combination of

HPMC and SDS. By adding electrolyte to all polymer and surfactant combinations, PVP,

SDS and NaCl combination is giving smaller particle size than other combinations. By

adding NaCl, particle size is drastically reduced for the combination of PVP, SDS.



Figure 4.10 SEM micrographs for the experiments conducted in Table 4.9. 
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Figure 4.11 Effect of polymer, surfactant and electrolyte combination.

Addition of electrolyte NaCl to the solution enhances the interaction between

PVP and SDS. Na+ ions get adsorbed on the PVP chain and hence PVP behaves as a

pseudo — poly cation. The negatively charged head group of SDS gets easily adsorbed on

to the chain because of electrostatic interactions. This helps in straightening of an

entangled polymer chain which now can better control the particle growth and reduce the

particle size and size distribution.

Results tabulated in Table 4.10 were taken from Tables 4.7, 4.8 and 4.9, in order

to study the effect of additives on particle size and size distribution. Experiments are

conducted by adding polymer, combination of polymer and surfactant and combination of

polymer, surfactant and electrolyte in antisolvent separately.



Table 4.10 Effect of Additives on the Particle Size

Exp
Conc.

(gm/ml)
Additives

Power
(watts)

Mean
(p.m)

SD D10 D50 D90

1 0.01 HPMC 10 5.51 3.47 2.01 5.23 6.91

2 0.01 PVP 10 7.5 5.66 3.72 6.51 12.92

3 0.01 Polymer JR 10 6.24 3.29 2.6 5.55 11

4 0.01 HPMC+SDS 10 7.91 6.85 2.69 6.56 13.71

5 0.01 PVP+SDS 10 6.89 5.78 3.78 6.01 14.8

6 0.01 Polymer JR+SDS 10 8.209 5.96 2.65 6.53 16

7 0.01 HPMC+SDS+NaCl 10 8.45 6.35 3.62 8.3 14.12

8 0.01 PVP+SDS+NaCl 10 2.02 l.07 1.17 1.72 3.19

9 0.01
Polymer JR + SDS

+ NaCl
10 9.741 7.53 2.84 7.49 19.83

Table 4.10 and Figure 4.13 shows that, by adding SDS to HPMC, particle size

increasing. Further addition of NaCl to HPMC and SDS, particle size is even bigger. In

contrast, for PVP addition of SDS and NaCl reduces the particle size and distribution.
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Figure 4.12 SEM micrographs for the experiments I and 4 shown in Table 4.10. 



54

Figure 4.13 Graph showing effect of polymer, surfactant and electrolyte combinations.

The above experimental results show that if a polymer alone is added, HPMC is

giving better results than PVP. Experiments 1, 2 and 3 in the Table 4.10, clearly indicate

that HPMC is giving better results with no addition of surfactant and electrolyte.

However, experiments 4, 5 and 6 show that PVP is giving better results with the addition

of surfactant SDS and electrolyte NaCl. Comparing all the experimental results from

Table 4.10, it is clear that combination of PVP, SDS and NaCl gives the narrowest

particle size distribution.

From above experiments it was observed that, by using PVP it was possible to

obtain smaller particles. To find out the size range of particles at saturated concentration

of Griseofulvin in antisolvent, following experiments were conducted.
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Table 4.11 Effect of Polymer, Surfactant and Electrolyte at Concentration 0.04 gm/ml

Exp
Conc.
(G/ML)

Additives
Power
(watts)

Mean
(μm)

SD D10 D50 D90

1 0.04 PVP 10 10.3 7.2 2.93 8.61 19.81

2 0.04 PVP+SDS 10 4.15 2.96 1.61 3.34 7.86

3 0.04 PVP+SDS+NaCl 10 3.75 2.69 1.52 2.82 6.88

If experiments 4, 5 and 6 in Table 4.10 and experiments in Table 4.11 are

compared, with increase in drug concentration, particle size is increasing. In both tables

4.10 and 4.11, experiments done with PVP, SDS and NaCl, with increase in

concentration there is not much increment in particle size. To avoid using more solvent,

experiments can be conducted at higher concentrations if the obtained size is acceptable.

Figure 4.14 Effect of Polymer, Surfactant and Electrolyte at Concentration 0.04 gm/ml.



Figure 4.15 SEM micrographs for the experiments shown in Table 4.11. 



Table 4.12 Concentration of Components in Aqueous Suspension

Component gm  wt%

Drug 0.4_ 0.16

Solvent 7.85 3.05

water 249 96.77

HPMC 0.01 0.004

PVP 0.01 0.004

Polymer JR 0.01 0.004

Tween 80 0.01 0.004

SDS 0.01 0.004

Poloxamer 188 0.01 0.004

NaCl 0.01 0.004
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4.8 Precipitation of Ultrafine Particles using Subcritical CO2

In this method Griseofulvin is dissolved in organic solvent and the prepared organic

solution is pressurized with CO 2 . After allowing CO2  and organic solution to equilibrate

for 30 minutes, solution is depressurized through a valve in water containing stabilizers

such as Tween 80. Depressurization of solution containing dissolved CO

2

 causes

evaporation of CO

2

 from solution. Removal of latent heat of vaporization from the

solution, reduces the solution temperature. This generates super saturation in solution due

to reduction in equilibrium solid solubility in solvent induces nucleation and initiates the

precipitation process. Presence of surfactant in water controls the particle growth and

agglomeration by adsorbing on to the particle surface. Light scattering and SEM was

used to characterize the precipitated particles. Effect of process parameters such as initial

pressure, concentration and solvent characteristic have been studied on particle size and

distribution.

4.8.1 Effect of Concentration on the Particle Size

Following experiments were conducted in order to study the effect of concentration, with

different solvents, on the particle size. Experiments were conducted at different

concentrations by maintaining all other conditions constant. From the results shown in

Table 4.13 and figure 4.14, it was found that increasing drug concentration resulted in

larger particles and broader size distribution. Same trend was observed in the particle size

even with a different solvent.
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Table 4.13 Effect of Concentration on the Particle Size

Exp
Pressure

(bar)
Solvent

Temp
CC)

Conc.
(gm/ml)

Size
(μm) SD

1 55 Acetone 26 0.001 5.37 3.2

2 55 Acetone 26 0.005 8.18 3.68

3 55 Acetone 26 0.01 9.1 5.32

4 55 Acetone 26 0.02 15.07 9.66

5 55 DCM 26 0.001 3.68 0.9

6 55 DCM 26 0.005 5.87 5.53

7 55 DCM 26 0.01 7.24 1.75

8 55 DCM 26 0.02 8.49 2.21

Figure 4.16 Effect of concentration on the particle size.
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Figure 4.17 SEM micrographs for the expf'rirnenls shown in Table 4.13. 
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From the above results, it was clear that lower concentrations can make particles

with narrow size distribution. For this process, along with drug concentration, particle

size also depends on operating parameters like pressure and the solvent chosen.

4.8.2 Effect of Solvent on the Particle Size

Table 4.14 Effect of Solvent on the Particle Size

Exp
Conc.

(gm/ml)
Solvent Size

(μm)
SD

1 0.003 Acetone 7.62 5.05

2 0.003 DCM + Acetone 6.23 5.49

3 0.003 DCM 1.97 1.94

Solubility of Griseofulvin in DCM is higher than the Griseofulvin solubility in acetone.

Solubility of CO2 is higher in DCM than in acetone as DCM being non polar and acetone

being polar aprotic, higher CO2 dissolution causes more temperature drop and therefore

higher supersaturation is generated when DCM is used as solvent. Higher supersaturation

generates higher nucleation rate and hence particle size decreases.



Figure 4.18 SEM micrographs for the experiments conducted in Table 4.14. "" N 
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Figure 4.19 Effect of solvent on the particle size.

From the results shown in Table 4.14 and Figure 4.19, particles produced by

Acetone were bigger than the particles produced by DCM. Mixture of Acetone and DCM

also gave bigger particles compared to DCM. From the SEM micrographs shown in

Figure 4.16, shape of the particle varies with the solvent. Diamond shaped particles were

produced by using pure acetone and mixture of Acetone and DCM. Rectangular shaped

particles were formed by using DCM.

4.8.3 Effect of Pressure on the Particle Size

The effect of initial pressure (50 - 70 bars) was explored for this process while keeping

all the remaining parameters constant. Increase in pressure, increases the depressurization

time and hence increases the agglomeration of particles during precipitation and hence

increase the particle size.
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Table 4.15 Effect of Pressure on the Particle Size

Exp
Pressure

(bar)
Conc.

(gm/ml)
Solvent

Size
(μm)

SD 

1 70 0.015 DCM 8.64 6.35

2 65 0.015 DCM 7.45 4.05

3 60 0.015 DCM 5 4.61

4 55 0.015 DCM 4.44 4.26

5 50 0.015 DCM 2.43 1.85

Results shown in Table 4.15 and Figure 4.20 indicate that an increase in initial

pressure resulted in the increase in the particle size of Griseofulvin drug particles. The

particle size distribution was also found to be widened with an increase in pressure. For

this process smaller particles were produced by maintaining lower pressures.

Figure 4.20 Effect of pressure on the particle size.



Figu.·e 4.21 SEM micrographs for the experiments conducted in Table 4.15. 
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Table 4.16 Concentration of Components in Aqueous Suspension



CHAPTER 5

CONCLUSIONS AND RECOMMONDATIONS

This study focused on two processes for the production of fine particles namely Liquid

Anti solvent using concentric ultrasonic nozzle and the other using subcritical CO 2 .

Various process parameters on particle size and size distribution were studied.

Griseofulvin with size ranging from 10 - 2 microns was precipitated with a narrow

particle size distribution, It was observed that the morphology of particles was always

diamond shaped or tetragonal. Efforts were made to control the particle size using a

combination of ultrasound and additives such as polymer and surfactants for Liquid

antisolvent using ultrasonic nozzle. Use of ultrasound increases micromixing and

surfactant and polymers decrease surface tension of solution. Enhanced micromixing and

reduction in surface tension increases nucleation rate and reduces particle size. Further

adsorption of polymers/surfactants and their complexes on the particle surface control the

particle growth. Addition of electrolyte further enhances the interaction between

polymers and surfactants and further narrows down the particle size distribution. For the

process of particle precipitation using CO2 it is observed that lower pressure, lower the

initial solute concentration and non polar solvent decrease the particle size and

distribution. Generation of higher supersaturation with controlled growth can precipitate

ultrafine particles in this process,

It can be recommended that there should be a detailed study conducted on the

mechanism of particle formation so as to be able to tune the particle size and size

distribution by varying process parameters.
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