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ABSTRACT

A TWO DIMENSIONAL MODEL OF
MAGNETIC FIELD ASSISTED ASSEMBLY

by
Gaurav Devrani

A simplified model to simulate the magnetic field distribution for applications in

magnetic field assisted assembly of semiconductor device structures, using commercial

software (Vizimag), has been implemented. Solenoids have been utilized to serve as

electromagnets that are responsible for the assembly process. Magnetic shielding

techniques have been deployed to isolate the influence of one solenoid over another.

These solenoids are used to move the devices that need to be placed in recesses within

the substrate. The bottom of the devices and the recesses are coated with magnetic

materials to facilitate the movement and placement of devices within the recesses in the

substrate. The semiconductor devices may be made from a variety of materials such as

semiconductors, to perform various functionalities.
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CHAPTER 1

INTRODUCTION

This thesis presents a study of the fundamental mechanisms of magnetic field assisted

assembly using a two-dimensional model. The heterogeneous integration of various

devices on a single wafer is critical for performing a variety of functionalities such as lab

on a chip (LOC). This ability leads to an increase in the density of chips per unit area and

thus reduces the cost of the device assembly. Optoelectronic devices such as light

emitting diodes, optical sensors and semiconductor lasers are made from III-V compound

semiconductors which have direct band gap. This property makes them better suited for

applications in optoelectronics. Silicon suffers from an indirect band gap that makes it

`less suitable for applications in optoelectronics. The monolithic integration of

optoelectronic devices on silicon complimentary metal oxide semiconductor (CMOS) [1]

circuits is beneficial for ultra high frequency communication systems. The integration of

the devices is of utmost importance, but this integration has to be at the micron length

scale level because of the device dimensions. The fabrication sequences and the material

requirements have been hurdles in the manufacturing of such devices. The wafer—scale

assembly technique which combines materials with different properties on to a single

wafer can act as a better alternative for the device assembly.

Current integration strategies in the manufacturing sector are 'pick and place' [2] and

`assembly using external magnetic array' [3]. The former technique is a serial assembly,

which has cost and speed constraints. The other technique uses precise magnetic field in

the "magnetic arrays" along with the vibration on the substrate. Due to these

1
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disadvantages, a newer assembly technique called "magnetic field assisted assembly" [4]

was developed.

The various techniques for device integration and device bonding, being practiced

currently in the semiconductor industry are described, in brief, in the following sections.

1.1 Flip Chip

A flip chip bonding approach [5] is incorporated for mounting semiconductor devices on

to the final wafer. There are various flip chip bonding techniques such as Solder Bump

Flip chip bonding, Stud Bump Flip Chip, Polymer Bump Flip Chip, Anisotropic

Conductive Film (ACF) Flip Chip, Electroless Nickel-Gold Flip Chip, Thermosonic Flip

Chip Assembly, etc. These bonding techniques are utilized according to the applications.

The flip chip technique is also known as "Controlled Collapse Chip Connection".

1.1.1 Solder Bump

The solder bump [6] is a four step process: preparing the wafer for putting the solder

bump, placing the solder bump, attaching the die with the substrate, sticking the adhesive

on to the assembly.

1.1.2 Stud Bump

For stud bump flip chip assembly [7], gold is on the die bond pads, which is then

connected to the substrate with an adhesive. This does not require wafer processing, as
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they can be wire bonded. The layer of the adhesive has to be controlled and there has to

be linearity in all the bumps.

This bumping technique can de done on a wire bonder. This implies that it does

not require a full wafer; the die can be flipped without any processing. This makes bump

quick and supple for production.

1.1.3 Polymer Bump

The polymer bump process [8] is one in which isotropically conductive, silver filled

polymers are stencil printed through metal stencils to form polymer bumps on the wafer

which covers the aluminum bond pads of the devices.

The polymer flip chip process combines exactness and stencil printing techniques

with highly conductive and isotropic, conductive polymers. The polymers are either

thermo set, which does not deform with heat, or thermoplastic, which softens with heat.

These printing steps are performed through laser etched or electroformed metal stencils.

1.2 Fluidic Self Assembly

Fluidic self-assembly (FSA) [9] is a technique that integrates different devices of

dissimilar materials and processes. This integration is performed by fluidic transportation

of different sizes of blocks or devices on to similar holes that are made in the substrate

wafer.

An example of such a kind of process comprises placing GaAs devices on a

silicon wafer is shown in Figure 1.1. GaAs devices are grown on GaAs substrates using
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molecular beam epitaxy (MBE). A sacrificial layer of AlAs is grown on the device. The

device formed is then truncated into pyramidal shapes using ion-milling and

photolithography. These devices are then released from the substrate by etching the

sacrificial layer with hydrofluoric acid. These devices are now moved by ethanol to be

finally dispersed on to silicon receptor substrate, where they are placed into recesses

formed by potassium hydroxide (KOH) etching.
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Figure 1.1 Schematic of the fluid self-assembly process: (a) MBE_ grown structure with 1
µm AlAs etch-stop layer, (b) trapezoidal GaAs mesa definition, (e) bonding to
intermediate substrate with wax, (d) top-side ring contact metallization, (e) solution
containing the GaAs blocks dispensed over patterned Si substrate and Si substrate with
GaAs, light-emitting diodes integrated by fluidic self-assembly. [9]
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The efficiency of the FSA technique is determined by the ability of the assembly

process to place devices at the desired recesses in the wafer. There are several factors

which will affect how productively the devices can be made to fill recesses.

One important variable is the number of blocks (or devices) involved in the

process; the greater the number of blocks, the greater the fill ratio. A second important

factor is the liquid used to perform the fluidic transport. The liquid used in transportation

plays a vital role, as the forces between the wafer and the liquid and the devices and the

fluid have to be taken into consideration. The fluid also reduces the force between solid

objects, resulting in better block mobility across the surface of the substrate. The

viscosity of the liquid can affect how blocks move through it on their way to the

substrate. The first choice would be water; however, Si is hydrophobic, resulting in a

tendency of blocks to float on the surface of water. This effect was not significant in the

case of the large blocks which, because of their large mass, were observed to precipitate

through the water. For this reason, water was used to perform FSA experiments, but

methanol is also used as Si is not phobic to methanol. Finally, in the most ideal

conditions, not all blocks are able to fill a hole (recess) during a single pass across the

substrate surface. Moreover, not all of the holes in a substrate pattern are filled by a

single pass of blocks over it. The efficiency of the process would therefore be greatly

enhanced by continuous recirculation of blocks which have not filled a hole during a

given pass. Thus, there are ways in which we can reprocess those devices. For example,

this can be accomplished by using the "bubble pump" apparatus shown in Figure 1.2.
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Figure 1.2 A schematic of the bubble pump apparatus for block recirculation. The
substrate is placed beneath the output spout at the top of the apparatus. [10]

•

The principle of operation of this apparatus is quite simple: nitrogen gas bubbles

are introduced into the column on the right of the figure, causing an upward fluid flow

which carries blocks that are then collected at the bottom of the apparatus and brought

back up to the top. The rate of recirculation can be controlled by the nitrogen pressure.
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Each successive pass of blocks across the substrate surface is expected to increase the

percentage of filled holes.

1.3 Advantages of Fluidic Self Assembly

The fluidic self-assembly integration [11] has many advantages over other integration

techniques such as hetero epitaxial growth and wafer bonding. A large number of devices

(optical, optoelectronic etc.) can be placed on a single silicon wafer. However, with

techniques such as epitaxial lift-off, the entire GaAs wafer area must be used to fabricate

these devices. Since only a small fraction of the wafer area is used, much of the

expensive grown wafer is wasted.

Fluidic self-assembly allows the fabrication of GaAs devices, as densely packed

as possible, on the grown wafer to maximize the wafer area. Approximately 3 million

devices can be made from a two inch diameter GaAs wafer. Blocks can be dispensed over

many Si wafers, because the unused blocks may be recycled. This gives greater flexibility

to the integration process because the GaAs devices and Si circuitry can be processed

separately prior to self-assembly.

1.4 Magnetically Assisted Statistical Assembly (MASA)

Magnetic Assisted Statistical Assembly (MASA) [12] is the heterogeneous integration of

semiconductors, which can be used to integrate optoelectronic devices such as laser

diodes that are made from a variety of semiconductor materials on a silicon wafer.

This technique uses statistical self-assembly to locate compound semiconductor

device heterostructures in shallow recesses that are patterned into the surface of an
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integrated circuit wafer, and short-range magnetic attractive forces to retain them. When

all of the recesses on the wafer are filled with heterostructures, the wafer is processed

further to transform the heterostructures into devices that are monolithically integrated

with the underlying circuitry. The process is summarized in Figure 1.3.

Figure 1.3 The MASA process. (a) The processed IC wafer with prepared recesses. (b)
The p-side down VCSEL wafer with pillars etched in a close-packed array. (c) Statistical
assembly of freed nanopills into the recesses on the IC wafer. (d) After completion of
device processing and integration. [131

During statistical assembly, the surface of a wafer prepared with recesses will be

flooded with several orders of magnitude more nanopills than are needed to fill its

recesses. The large number of pills will mean that there are many pills in the vicinity of

each of the recesses, and the highly symmetric nature of the pills and recesses will result

in a high probability that a pill in the vicinity of a recess will fall into it. The strong short-

range magnetic attractive force which will come into play when a pill settles into a recess

will keep the pill from being removed from the recess by gravity or by another nanopill

or by the fluid used to flood the surface with nanopills. The process can be favorably
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compared to carrier trapping by deep levels in semiconductors, and the probability that a

given recess is filled will be one. Once the nanopills are assembled on the circuit wafer,

they will be fixed in position using a polymer which will also fill in any voids on the

surface surrounding the pills and planarize the surface. The complete process consists of

formation of heterostructures and integrating them with the underlying electronics by

standard monolithic photolithographic processes. The MASA process is an attempt to

combine the best features of the Epitaxy-On-Electronics (EoE) and Aligned Pillar

Bonding (APB) integration techniques, with the ability to monolithically integrate any

semiconductor device on any substrate.

1.5 Direct Epitaxy

This is a technique [14] in which monolithic layers of material are grown over silicon

substrate by using Molecular Beam Epitaxy (MBE). Due to the stress and strain between

layers of different materials, there is a mismatch between the lattices that results in poor

performance of the device. Using a thick buffer layer can alleviate the device

performance but there is still a need to maintain low growth rate temperature;

temperature of the subsequent processing steps is also limited to low values.

1.6 Assembly using External Field

This approach [15] is similar to all the other approaches; here also microcomponents are

assembled on the substrate. The method uses "master array" [15], a structure that is made

of an array of magnetic potential wells. The magnetic field applied to the receptor sites on

the substrate is external and is focused. This mechanism, shown in Fig. 1.4 (a), can place
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only one component at a time. Therefore, there has to be parallel processing for many

such units. The figure shows a magnetic assembly setup with one magnet and one chip.

The system consists of the following: a master array in which high aspect ratio

neodymium iron boron NdFeB magnets are embedded; Figure 1.4 (b) shows the

cumulative pattern of the same array. The target chips have a coating of soft magnetic

material CoNiP (µm), that is prepared using electrolysis plating method. This approach

consists of a vibration system which allows the distribution of the chips over the surface

of the substrate and discards misaligned chips during the assembly process.

During the process, there is a large number of chips that are randomly distributed

on the host substrate and when there is a vibration in the table on which they are placed,

each chip will move until they are stochastically placed in the cavity or the recess of the

substrate. They are trapped in the cavity because of the magnetic field generated by a

corresponding magnet underneath. The magnetic coating on each chip will get

magnetized by the corresponding magnetism due to the master array and, therefore, a

force of attraction is developed between the master array and the chip which results in

placing the chip in the recess, with magnetic coating facing inside the recess and the

circuit facing up. There has to be a match between the dimension of the recess and the

chip. After the assembly process is performed, the chip is attached by wire bonding or

flips chip bonding.
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Figure 1.4 (a) A cross-sectional view of the assembly setup; (b) magnet array of2500 
NdFeB magnets (l x 4 mm2

) embedded in acrylic substrate (8 inches in diameter). [15] 
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As the chips fluctuate on the substrate, they can land in four different ways on to

the recess. The analysis of these four positions is shown below in Figure 1.5:

Figure 1.5 Position of the chips on the host substrate: a) magnetic film down, b)
magnetic film up, c) perpendicular position, and d) chip-chip chaining. [15]

4-

Magnetic coating down - Figure1.5 (a): The position of the chip is in such a way

that the magnetic film is facing down in the recess. In this scenario, Fmag +Fg >Fr

condition is met, where Fmag is the magnetic force on the chip and the notation a refers to
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the magnetic force in this position, F g is the gravitational force, and F r is the rejection

force caused by the vibration of the table. The magnetic force on the chip in this

configuration will be a maximum because the chip is separated only by a distance ti

which is the thickness of the substrate.

Magnetic film up - Figure 1.5 (b): The chip is placed in such a way that the magnetic

strip is facing up. In this configuration, the magnetic force is less than that in the previous

scenario; the reason is, now, the chip has larger gap and that is equal to (t1+t2), which is

the total thickness of the substrate (t 1 ) and the chip itself (t2). In this case, the chip is

trapped for a very short time and is rejected, due to vibrations and this condition is met

when Fmag +Fg <F r. The amplitude of the vibration plays an important role, as it has to be

optimized in such a way that the attraction force F mag +Fg has to be greater than the

rejection force F r and the desired condition is achieved.

Perpendicular position - Figure 1.5(c): The position of the chip is now on its short axis. In

this position, the chip is mechanically unstable, and because of vibrations, it attains any

of the above two positions.

During chip-chip chaining, the dipole interaction between the chips causes the chip to

attract to one another as shown in Figure 1.5(d). The vibration of the substrate causes the

chips to knock and as they fly, they get demagnetized and detach from one another and

the chip will reside in any of the first two positions (Figure 1.5 (a) and 1.5 (b) ), and

finally in the first position.
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Figure 1.6 Hysteresis loop for CoNiP ternary alloy measured by vibrating sample 
ma!P1etometer. [15] 

In the above approach, in a soft ma!P1etic layer of CoNiP, with coercivity He of 

43.5 G and ma!P1etization ofMs of95.5 emu/g is used underneath the chip. The vibration 

on the table is 90 Hz which is sufficient for the chip to finally reside on the wafer as in . . . . . 

case 1. 

The 500f.lm thick chip is coated with 1 J.lm film of CoNiP. A finite element 

analysis software, VECTORFIELDS/TOSCA, is used to evaluate the magnetic force on 

the chip. The NdFeB ma!P1et and the CoNiP film coercivities are 11,000 and 8,100, 

respectively. The weight of a silicon chip with size of lxlxO.5 mm is 15.3 mN. Figure 
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1.6 shows the simulated magnetic force generated by a 1 mm thick NdFeB magnet. In

order to investigate the system capability to distinguish between the two positions, i.e.,

magnetic film up and magnetic film down, chips with different thicknesses ranging from

200 to 500 p.m were tested. It was observed that the system can distinguish the two

positions with chip thickness of 350 !um and random chip vertical alignment was

observed when the chip thickness was reduced to 200 p.m. Figure 1.7 (a) describes the

magnetic forces experienced by the chip at various positions of the chip. Figure 1.7 (b)

shows the magnetic flux density distribution along the lines described above. The

magnetic flux in between each pair of magnets decreases sharply which permits to release

the chips at the undesired location in the intercavity spacing by the vibration.

Figure 1.7 (a) Magnetic forces generated by the magnet on the chip having
a magnetic film. (b) The magnetic flux distribution. [15]



CHAPTER 2

MIT MODEL

For optimal performance of optoelectronic integrated circuits (OEICs), it is imperative

that silicon very large scale integration (VLSI) technology must be integrated with

optoelectronic devices and circuits. This integration can be achieved by several methods;

these include growth at the materials level, bonding at the device or the circuit level, etc.

The group at MIT proposed Magnetic Assisted Statistical Assembly (MASA) as an

approach for integration of a variety of devices and circuits. In the following section, the

mathematical approach to MASA is described.

2.1 Magnetic Assisted Statistical Assembly --- Simulation

The approach to modeling of MASA, at MIT, deploys a program called ATLAS [14].

The group at MIT has simulated electrical and optical properties of p-i-n diode. ATLAS

[16] is a two dimensional simulator for analyzing various device properties. The software

operates on a command language, such as C and C++, wherein a mesh is created with

horizontal and vertical lines and desired materials such as GaAs, InGaAs, etc., are filled

in between them; even the doping profile can be handled in these regions, and the last

step would be to specify the electrodes in the specific regions.

17
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2.2 Magnetic Assisted Field Assembly

The physical simulation domain of a p-i-n photodiode is defined in a two dimensional

mesh [12, 17]. For numerical accuracy, a finer mesh is made around the original mesh. In

order to obtain a faster simulation, the mesh is defined to be coarser in regions away from

the intrinsic region. The mesh is rectangular and the dimensions are 30 in length and

6.35µm in height. The width of the device is considered by a scaling factor, which is

multiplied with the current obtained from device simulation.

Figure 2.1 ATLAS [16] mesh structure of P-I-N photo detector.
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Every part of the mesh is filled with a particular type of material. If we consider a

p-i-n diode, as in Figure 2.1, the material would be InP or InGaAs. The doping

concentration is 5x10 ¹8 cm-³ for the saturated region and the 5x10¹5cm-³  for the intrinsic

region. The concentration has to be uniform throughout the specific regions. There are

two electrodes that have a ring structure that are placed on the top surface of the mesh.

These are actually joined together to form the photodiode. The contact resistance is

defined by the software (ATLAS).

In case of heterojunction materials, there is a difference between the band gap

energies of the two materials, which creates discontinuities in the valence and conduction

bands. The charge movement in the valance band and the conduction band is hindered

because of the discontinuities in the bands. The valence band discontinuities are taken

into account for the p-i-n heterojunction by specifying the part of the band gap difference

that would be shown in the conduction band discontinuity. As far as the simulation is

concerned, the conduction band gap offset is created by adjusting the electron affinity of

the material on one side of the junction [1]. This is shown in Figure 2.2.
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Figure 2.2 Energy band diagram of PN hetrojunction [29]

The material considered here is InGaAs or InP with the assumption that 43% band

gap is assigned to the conduction band discontinuity. A diagram of a p-i-n heterojunction

under zero basing condition is shown in Figure 2.3. On the left side of the diagram is the

n type region and on the right side is the p type region; the intrinsic region lies in the

middle of the two layers.
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Figure 2.3 Energy band diagram at thermal equilibrium of a p-i-n diode [19]

The diagram shown below in Figure 2.4 is an energy band diagram with reverse

bias of 1 volt. At the depletion layer, the charge is accumulated by a large electric field.

Thus the carrier generated would sweep into the buffer region and to the contacts. The

movement of quasi Fermi level due to concentration of the carriers from equilibrium is

distinct in the intrinsic region.



22

Figure 2.4 Energy Band diagram of a p-i-n photo diode under reverse bias [19]

2.3 Electrical Property

All these physical models run on ATLAS [16] (software) by employing mesh structure.

The material (InGaAs/InP) and the band structural parameters will remain the same as

described above. The basis of the simulation is the Poisson's equation, the continuity

equation and the transport equation. The device simulation [20] is performed by using all

of them at each point of the mesh, taking into consideration the boundary condition from

the adjacent mesh points. The figure shown below, in Figure -2.5, is the DC sweep

simulation of the photo diode. Device measurements yield dark current of 5x10 -1³ Amps

and turn—on voltage of 0.7V.
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Figure 2.5 Current voltage characteristic of a p-i-n photodiode [19]

9

In the p-i-n photodiode, the capacitance can be calculated by considering AC

small signal simulation. In the reverse bias condition, the charge is accumulated near the

depletion region; thus the dominant capacitance is expected to be high in that region and

is given by:

C=εA/d (2.1)

Where, d is the thickness of the intrinsic region, A is the area of the photo diode and c is

the dielectric constant. If the intrinsic region thickness is 1.111m, and the area is 90011m 2 ,

the photodiode capacitance is 108 fF. This result matches with the AC small signal

simulations. Thus the capacitance of the photodiode at 1 GHz can be extracted.
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2.4 Optical Property

ATLAS uses LUMINOUS, a ray-optics based program for optical analyses and

simulation [21]. The device simulator calculates optical intensity profiles in the

semiconductor and converts into photogeneration rates. Optical simulation, in general, is

divided into two parts - real and imaginary. The real component of the refractive index

within optical ray yields optical intensity profiles of the device. The imaginary part of the

refractive index calculates the carrier concentration at each point in the mesh.

The photogeneration rate at each grid of each mesh is calculated by the influence

of the properties of the optical ray and these properties are light absorption, light

reflection and light transmission. The photocurrent, optical frequency and transient

response can be extracted from this information.

A single ray of light of wavelength 1µm and above is termed as the light source.

The ray enters with a single wavelength (1550 nm) and optical intensity of 1W/cm 2 in the

entire width of the device. Reflection is considered only from the top of the device by

considering the real part of the refractive index to obtain the transmitted and the reflected

component of the incident ray.

From the current voltage measurements, a current of 7.5mA is considered for

reverse bias conditions. In Figure 2.6, the current voltage characteristics are shown for a

device under illumination. In reverse bias, the current increases due to the photo

generation in the depletion region.
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Figure 2.6 DC_ photo current for p-i-n diode [19]

The quantum efficiency is the ratio of the measured photocurrent to the source

photocurrent. ATLAS output would readily yield source photocurrent; for this

photodiode, it is 11.22µA, which yields a quantum efficiency of 66%. If we compare it

with silicon based photodiodes (4-5%), this quantum efficiency is very high.

As can be seen in Figure 2.7, the intrinsic cut-off frequency of the photodiode is

4.5GHz at 500 ohm load resistance. This frequency has been calculated by using an AC

optical source simulator.
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Figure 2.7 Optical frequency response of a p-i-n diode [19]

The last step is the transient characteristic of the photo diode. The optical square

wave input source will yield an output which shows rise and fall times of the current. The

optical transient response is shown in Figure 2.8. The simulated input light source has

50% duty cycle. It is shown in the upper half of the figure. In the lower half, the output is

shown when the input is applied across the 500 ohm resistor. The output of the

photodiode has a rise and fall times of 100ps.
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where, tr is the rise time and td has a value of 2.8 ns. This has been obtained by using

Fourier transform and it is in accord with 4/5 GHz cut off frequency and 100ps rise and

fall times.

Figure 2.8 Optical transient response of a p-i-n diode: the top plot shows the source
photo current and the bottom plot shows the output current of the photo diode in response
to the optical input. [19]



CHAPTER 3

FLUIDIC ASSEMBLY

3.1 Introduction

For the fabrication of high performance electronics devices, we utilize hetrojunction

integration [1] of microelectromechanical devices (MEMS) [18] and optoelectronic

devices [22] on to the same substrate. Optoelectronic devices such as light emitting

diodes and photo detectors are generally made of III-V compound semiconductors; they

have direct band gap. Unlike silicon which has an indirect bandgap, these materials have

direct bandgap which makes them suitable for optoelectronics.

Today, in semiconductor manufacturing, the device integration technology works

on "pick and place" [13] serial assembly technique, which is expensive and is a tedious

job, as the robot has to pick a large number of micron scale components and place it on to

the wafer at the desired location. This requires great precision and control. During the

process, it is required to take care of all the small adhesive and cohesive forces between

the devices and the devices and the tools. The pick and place technique requires a large

clean room; this combined with the need for the robot makes it expensive.

3.2 A Model for Field Assisted Fluidic Assembly

The location of the device relative to the recess in the substrate is important as we need to

manipulate the magnetic field in order to place the device at the desired location. The

model for magnetic field assisted fluidic assembly [23] describes such a situation and

yields quantitative results. The movement of the device is controlled by gravitational

28
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force in the vertical direction and by electromagnetic field in the horizontal and vertical

direction; the vertical fields are developed by permanent magnets. The model assumes

that the objects are small enough so that their size and orientation are unimportant and

that they have a controllable charge to mass ratio. The initial conditions for the objects

are:

(0, 0, z) for position,

(0, 0, 0) for velocity,

z is the initial height measured above the xy-plane of the substrate.

In this model, the velocity and position is governed by the resultant of the

electromagnetic, gravitational and drag forces.

Here, the electric field is confined to two dimensions, i.e., the xy-plane (E = Exi +

Eyj) and the magnetic field is confined to the z-axis (B = 13,10. This configuration has

been intentionally chosen so that the gravity and drag acts in z direction and the

horizontal motion (xy plane) is controlled by the electronic and the magnetic forces, as

these forces would not affect the fall of an object inside the wafer.

The time taken by the object to reach the recess, in the z direction, which is not

affected by the electromagnetic force, is:

The value of time (Tf ) can only change by the influence of drag. For this value of

Tf, a constant value of magnetic field could be developed and, therefore, a relationship

between the final position (x, y, 0) value and the electric field is derived. This can be

concluded from this that, if we know the initial position (0, 0, z) and under a constant
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magnetic field, the object can be placed at any final position (x, y, 0) by adjusting the

electric field according to the relation found below.

The model uses the Lorentz force that is acting on a charged particle to give the

equation of motion:

ma=mg+kv+eE + e(v x B) 	 (3.2)

Where, g =-gk, E = Exi + Eyj, B = B zk, k is the drag coefficient, and m and e are the

object's mass and electric charge, respectively.

The model uses the following parameterized variables:

r' = r/z the parameterized dynamical variables 	 (3.3)

v' = v / z (where z is the height in the initial position (0, 0, z)

a' = a / z and η is defined below)

a" = a7 1 111

G= (1/z)(g)(1/IηI), the augmented gravitational field 	 (3.4)

βx = (1/z)(e/m)(Ex/IηI) the augmented electric field in the x-direction

13y = (1/z)(e/m)(Ey/Iηl) the augmented electric field in the y-direction

η = (e/m)B z , the augmented magnetic field in the z-direction

C = η /Iηl, a parameter that preserves the sign of the magnetic field

T = (k/m) (Mil) the augmented drag-force constant

The parameterized differential equation, including the drag force, in component

form is:
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The parameterized differential equation without drag (T = 0) in component form

The initial conditions are r'(t=0) = (0, 0, 1) and v" (t=0) = (0, 0, 0).

The differential equations (3.5) can be solved analytically and expressions for the

fields that give a final position (x', y', 0) of the object at time Tf are:

Where, cp = I I Tf, A = 1 — cos φ and B = cp — sin (p. Note that the solutions for 13 x and 13y

are linear functions of x' and y'.

The solution of equations (3.4), which include the influence of drag, can also be

found, and the expressions for the fields as functions of x' and y' are formally the same as

(3.6), but now,

Here Tfn = Tf a, and a is the nth order correction of the time of flight modified to

include the drag-force.

The parameter (1:1 is proportional to 1-1, with Tf being a constant determined by the

initial height. For practical considerations, the applied fields should not be very strong,

and φ should therefore be small. Given that Tf is constant, this condition allows the
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magnetic field 13, to be selected to be small in magnitude. If φ << 1, the form of (3.7)

simplifies, because A — 1 and B 0 (i.e., negligible drag-force), and then,

•x = 1 1(x')

V Y = I η 1(y ')

To summarize: a) From the initial and final positions, the model determines the

strength of the magnetic field (q) = I η I Tfn << 1) ; b) From the initial and final positions

and the expression for the magnetic field, the model predicts the magnitude of the electric

field; c) By properly adjusting the fields, an object can be placed at any final location in

the xy-plane of the substrate.
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Figure 3.1a The above figure shows the solution for the x and y location of the object
versus time for different values of the drag coefficient T. With increasing drag, and all
other parameters fixed, the object's motion in the xy-plane is impeded. [23]
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Time [s]

T = 0
T -10000
T = -20000

Figure 3.1b The above figure shows the solution for the x and y location of the object
versus time for different values of the drag coefficient T. With increasing drag, and all
other parameters fixed, the object's motion in the xy-plane is impeded. [23]
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For a large drag force, stronger fields are required to bring the object to settle at a

desired location. In the Figures (3.1a) and (3.1 b), values of the position parameters are:

initial position = 0, 0, 0.01 (m)

final position = 0.004, 0.0065, 0 (m)

Ex, Ey = 0.1975, 0.3210 (N/C); 13, = 0.1 (mT); e/m = 20 (C/Kg);

g = 9.81 (m/s²)

For T = 0, Vterminal = infinite (no drag force) (Vterminal = mg/k)

For T = 10000, Vterminal = 0.4905 (m/s)

For T = 20000, Vterminal = 0.2453 (m/s) [21]

3.3 Magnetic Field Assisted Assembly

Magnetic field assisted assembly [1] is a technique that is capable of integration of

microstructures on to silicon or other semiconductor wafers [1]. This approach is reliable

and employs low cost approaches for manufacture. It is shown schematically in Figure

3.2. The approach has two different components - first is the micro components and

second is the substrate. The substrate is made from different components, depending on

the need, such as, silicon, glass, polymers etc. For optoelectronics device integration, the

substrate can be an insulator or a wafer that contains the embedded silicon integrated

circuitry.
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Figure 3.2 A representation of the magnetic field assisted assembly method of
integrating micro components and integrated circuits [1]

The recess, shown in Figure 3.2, has to match the dimension of the

microelectronic components, so that the components can be placed into desired recesses.

The substrate is deposited with ferromagnetic material such as cobalt, nickel or an alloy

of cobalt-palladium. This gives the device increased stability and adhesion to the recess

on the wafer.

The dimension of microelectronic components plays an important role in device

integration. As their sizes decrease, the complexity increases and, thereby, the integration

of these devices becomes challenging. The forces at this microscopic level become

dominant; for example, the adhesive forces between wafer surface and the object are

higher than the gravitational forces. The reasons for these adhesive forces are surface

tension, electrostatic forces and Van der waals forces [1] which are difficult to over

come.

Electrostatic force of attraction F el is due to the Coulomb force between

electrically charged objects. The force between the wafer and the device is:



Where, E and co are the dielectric constants of plane and of the air respectively, a is the

surface charge density of the sphere, and d is its diameter. [16]

The Van der Waals force Fvdw is an intermolecular force caused by momentary

movements of electrons. It is given by the approximate expression,

for the Van der Waals force between an object (sphere of diameter d) and a substrate at

distance z, where, H is the Hamaker constant, the irregularity in the surfaces increase the

net distance z and therefore reduce Fvdw•

The capillary force Fcap is due to a thin liquid film between any two objects,

which can originate from the air's humidity. For an object (hydrophilic sphere) with

diameter d close to a substrate, the relation can be written as,

The adhesion forces are surface forces and their magnitude is therefore

proportional to contact area. Figure 3.3 gives the magnitude of the different types of

adhesion force versus distance.
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Figure 3.3 The different components of adhesion forces versus distance [1]

There is another way in which the same approach can be used to integrate the

devices. This approach uses feed-back tape to assemble the devices. Multiple recesses are

made in the wafer that matches with micro components that have to reside on the recess.

The micro components are attached temporarily with the feed back tape. After

completion of magnetic self-assembly of micro components, individual micro

components are attached to the matching recesses on the substrate. The wheels guide the

feed back tape, and a magnet moves adjacent and parallel to the substrate. Therefore, the

wheels guide the wafer continuously along the chain. The feed tape portion that is

parallel to the substrate executes little or no relative motion in the direction parallel to the

substrate. The magnet executes either continuous or oscillatory movements in any
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direction with respect to the substrate. The micro components that are facing the feedback

tape are coated with high permeability ferromagnetic material such as cobalt, nickel or

alloy of cobalt-platinum. The coating becomes magnetized when placed in a magnetic

field. The magnetic field produced by the moving magnet magnetizes the coating, and the

ensuing attractive force pulls the micro components off the tape and into recesses in the

substrate. In this alternative method, micro components are pulled preferentially into

recesses by several physical characteristics of the magnetic and contact forces [24].

Figure 3.4 A schematic of the magnetic field assisted assembly process using feed tape.

The above method does not depend on statistical randomness [17]. This fact can

be analyzed by the behavior of micro components in the magnetic field. Its desirable

attribute, when compared to statistical assembly is the scalability to rapid assembly of a

plurality of micro components onto a host substrate and the avoidance of frustration

effects that lead to assembly errors. Frustration occurs when the path from one or more
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micro components to a matching site on the substrate is blocked, or when one or more

sites on the substrate remain unoccupied owing to the path being blocked. In addition,

magnetic field assisted assembly does not require a liquid carrier medium. It provides a

new technique for assembling and integrating micro components onto a silicon wafer or

an alternate substrate, and is carried out in such a manner so as to avoid damaging any

pre-existing electronics. The process can also take full advantage of very large diameter

silicon wafers [23].

3.4 Modeling of Magnetic Field Assisted Assembly

A model [12] that analyzes the force of attraction between the hard magnetic strip and the

soft magnetic layer, with air as a medium between them is analyzed in this section. A

schematic of the model is shown in the figure below.

Figure 3.5 A schematic of the model [23].
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The soft magnetic layer has a height of t3 , with permeability g. The height of hard

magnetic strip is magnetic t 1 , with width aL. The separation between the hard magnetic

strips are (1-a)L. Here, a is a parameter with 0<a <1. The vertical separation between soft

magnetic layer and hard magnetic strip is of height t2. There is air between the hard

magnetic strips with permeability go.

This model has been originally proposed by Fonstad [12] in the context of

MASA. This model is also related to magnetic field assisted assembly (MFAA), and the

consideration here is that the magnetized strips and air gaps may have unequal width.

In this model, for assembly, there is no electric field as there is no current source or

voltage source; the model has only magnetic forces and it follows Maxwell's laws:

Thus the equations are:

A xH=0 and • •B=0.	 (3.11)

The magnetostatic potential φ, is developed across the magnetic regions; so, H = -•φ

everywhere. Consider linear, isotropic constitutive relations between the macroscopic

magnetic field Hand the magnetic induction B, so that:

B = µ0H in air

B = [Win the soft magnetic layer

B=µ0(H+M0) in the permanent magnetic strips 	 (3.12)

Where, µ0 and II are the (constant) permeability of air and the soft magnetic material,

respectively, and Alo is the known permanent magnetization of the strips.

2
So, φ satisfies the Poisson equation,  φ = ♦ •M , with source term  •M 0. Here, the

magnetization M = M0j is considered to be constant, where j is a unit vector in the y-



direction normal to the substrate, so that the source term is zero, and the field equation

becomes Laplace's equation:

Boundary conditions at the interface between air and either the soft or permanently

magnetized material follow from equations (3.11), which imply that, at an interface, the

tangential component of H and the normal component of B are continuous. In terms of

the potential 9, using the constitutive relations (3.12), the boundary conditions are that 9

is continuous, and, at the interfaces, y = t 
1
 +t

2
 and y = t 

1
 +t

2
 +t

3
 , between the soft magnetic

material and air:

At the vertical sides, x = 0, x = αL and x = (1-α)L etc., of the magnetic strips:

at the horizontal sides, 0<x<αL, y = 0 and y = t1 , of the magnetic strips:

The subscripts A, P and S denote evaluation at the air, permanent or soft magnetic side of

an interface, respectively. The only forcing or inhomogeneity in the problem for 9

appears in this last boundary condition (3.16).

The problem is periodic, with period L in the x-direction, and can be solved by

constructing Fourier series in each of the six regions as shown in Figure 3.3, and then

applying the continuity and boundary conditions at the interfaces, with the further

condition that 9 is constant as y—>±00. This leads to a linear algebraic system for the
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Fourier coefficients, which can be found in closed form. Details of this part of the

analysis are omitted for brevity.

An expression for the force acting on the soft magnetic layer follows by

evaluating the integral of the Maxwell stress tensor over the layer's top and bottom

surfaces. The general expression for the force f is:

f =µ∫ H(H•n)–(1/2)(H•H)ndS 	 (3.17)
aΩ

where, an is a surface immediately outside the region of interest, n is its outward unit

normal and is the local permeability. Then, in terms of φ, the force per unit length, F, is

in the y-direction, i.e. normal to the substrate, and is given by:

where, the integrals over the top and bottom surfaces are evaluated as y--.(t 1 +t 2 +t3) and

as y—>(t1 + t2) , respectively, with 0<x< L. A partial check on the expression for the

Fourier coefficients is given by noting that the x-component of the force is zero.

When the constructed Fourier series are substituted in (3.18), the expression for the Force

per unit length F is:

(3.19)

The series converges rapidly as n increases. For a = 1/2, the strips and air gaps are

of equal width, and the series in equation (3.19) is well-approximated by its first term:
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(3.20)

This is in accord with the expression given by Fonstad [7, 8].

Expressions (3.19) and (3.20) show an exponential decrease of the attractive force acting

on the soft magnetic layer with dimensionless distance t2/L. This is shown in Figure 3.5,

which shows a scaled dimensionless force, given by F divided by the n-independent

factor on the right-hand side of equation (3.19), versus t2/L for different values of α with

t 
1 
/L = 0.5, t3/L = 0.1, and µ/µ

0 
= 50. We find that the force is maximized when the

parameter a = 0.5 and t1/L = 0.5, i.e., when the permanent magnets and air gaps have

equal and square cross-section. Also, from equations (3.19) and (3.20), we see that when

µ/µ0 is large, the attractive force is almost independent of the thickness of the soft

magnetic layer t3/L, unless t3/L is exceptionally small, like µ0/µ.

Figure 3.5 shows equipotentials φ = constant, with the same data for a = 0.5, t 1/L = 0.5,

t3/L = 0.1, and µ/µ0 = 50 as in Figure 3.4, for two different values of the vertical distance

or separation between the permanent magnets and the soft magnetic layer, i.e., t2/L = 0.5

in Figure 3.5(a) and t2/L = 0.2 in Figure 3.5(b). This agrees with the variation of the

attractive force with separation distance given in Figure 4. For t2/L = 0.5, the separation

is sufficiently large that the potential φs is nearly constant at the soft magnetic layer, so

that the magnetic field H and attractive force are relatively weak. However, for decreased
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separation t2/L = 0.2, the field at the soft magnetic layer is larger, particularly just below

the layer's top and bottom surfaces.



CHAPTER 4

Visualizing Magnetic Fields (VIZIMAG)

ViziMag is a program that has been designed by J. S. Beeteson [25] to give a rapid

visualization of magnetic circuit field lines and flux density. ViziMag has been created

with the objective of intuitive and rapid model creation, and equally rapid calculation and

display of field lines and flux density.

4.1 VIZIMAG - Application to two dimensional fields

ViziMag utilizes methods similar to finite element to evaluate magnetic forces, fields and

flux densities by considering point poles and their coordinates in three dimensions. For a

permanent magnet, its input parameters are the physical dimensions, permeability and

magnetic field strength; one needs to consider the current for solenoids. The output

parameters are: flux density, force, force versus distance, field distribution in two

dimensions.

ViziMag utilizes the principles of physics and mathematics to map the

distribution of magnetic field under various magnetic field sources such as permanent

magnets, solenoids, magnets of various shapes and sizes, current carrying conductors,

transformers etc. with user defined magnetic strength, permeability etc. The laws of

electricity and magnetism in the form of Gauss's law, Ampere's law, Biot-Savart's law,

Maxwell's equations and mathematical techniques in the form of Gaussian elimination

and related numerical techniques have been employed in ViziMag.

4.2 Gauss' law

Gauss' law [24] explains the relation between the net charges q en, enclosed by the closed

46



surface and the net flux (I) of an electric field through a closed surface. It is given by:

6.0 0 = ε0fE • dA = qenc (Gauss' law).	 (4.1)

The equation holds only when the net charge is located in a vacuum or in air. The net

charge qenc is the algebraic sum of all the enclosed positive and negative charges, and it

can be positive, negative, or zero. If g ene is positive, the net flux is outward; if gene is

negative, the flux is inward.

Charge outside the surface, no matter how large or how close it may be, is not included in

the term q enc in Gauss' law. The exact form or location of the charges inside the Gauss

surface is also of no concern; the only things that matter are the magnitude and sign of

the net enclosed charge.

The E on the left side, however, is the electric field resulting from all charges,

both those inside and those outside the Gaussian surface. [14]

4.3 Blot- Savart law

The magnetic field [26] produced by a short segment of wire ds, carrying current I is:

(4.2)

Here, the direction of current plays an important role; the current and the parameter d is

in the same direction which is determined by the direction of current and the vector r

points from the short segment of current to the observation point where we are to

compute the magnetic field. In order to find the total current in the circuit, integration
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needs to be performed to find the total magnetic field at any point. The constant µ0 is

chosen so that when the current is in amperes and the distances are in meters, the

magnetic field is correctly given in units of tesla. Its value in SI units is exactly:

Infinitely Long Wire: The magnetic field at a point a distance r from an infinitely long

wire carrying current I has magnitude:

and its direction is given by a right-hand rule: point the thumb of your right hand in the

direction of the current, and your fingers indicate the direction of the circular magnetic

field lines around the wire.

Circular Loop: The magnetic field at the center of a circular loop of current-carrying

wire of radius R has magnitude:

and its direction is given by another right-hand rule: curl the fingers of your right hand

in the direction of the current flow, and your thumb points in the direction of the

magnetic field inside the loop.

Long Thick Wire: Imagine a very long wire of radius a carrying current I distributed

symmetrically so that the current density, J, is only a function of distance r from the
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center of the wire. Ampere's law can be used to find the magnetic field at any radius r

outside the wire, where, we have:

just as if all the current were concentrated at the center of the wire. Inside the wire.

where, r > a

where, I(r) is the current flowing through the disk of radius r inside the wire; the current

outside this disk contributes nothing to the magnetic field at r.

Long Solenoid: For a long solenoid of length L with N turns of wire wrapped evenly

along its length, Ampere's law can be used to show that the magnetic field inside the

solenoid is uniform throughout the volume of the solenoid (except near the ends where

the magnetic field becomes weak) and is given by:

Toroid: A toroid consists of N evenly spaced turns of wire carrying current I. (Imagine

winding wire onto a bagel, with the wire coming up through the hole, around the outside,
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then up through the hole again, etc.). Ampere's law can be used to show that the magnetic

field within the volume enclosed by the toroid is given by [27]:

where, R is the distance from the z-axis in cylindrical coordinates, with the z-axis

pointing straight up through the hole in the center of the bagel.

4.4 The Maxwell Equations

The Maxwell equations [28, 291 can be written in the following ways:

Here, rot (or curl in English literature) is the so called vortex flux density, H is

the vector of the magnetic field strength, j is the current density vector, aD/at is the time

derivative of the electric displacement vector D, E is the electric field strength, aB/at is

the time derivative of the magnetic induction vector B, div is the so called source density

and p is the charge density.

The global or integral forms of the Maxwell equations are written in terms of

path, surface, and volume integrals and are:



where,

I is the electric current I

IDISP is the so called displacement

'B is the flux of the magnetic induction B,

The two variables that describe the electrical properties of the electromagnetic

fields are E and D, and also two variables for the magnetic properties of the field are H

and B. This is necessary when some materials are present with oriented electric and

magnetic dipoles. If the electric dipole density is denoted by P and the magnetic dipole

density by M, then we can use the following definitions for D and B:

Here, ε0 and are the permittivity and the permeability of the vacuum, respectively. For

vacuum (P = 0, M =0), the Maxwell equations can be written in the following form:
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Thus, we can see that, in this case, there is only one variable for the electric field

E, and another variable H for the magnetic field· In other words, the introduction of two

more variables, D and B (or P and M), is necessary if we have not only vacuum, but also

some other medium· In order to determine 1, P, and M for a certain material in the

medium, we use the so called material equations:

1=1(E, E'), P = P (E), and M = M (H) (4·24)

Here, E l includes all non electromagnetic forces. The various functions in the

material equations can be different for each material, but they are often linear· In this

case, the material equations are written in the following form:

1= σ·(E+ E l), P = χe•ε0•(E), andM=χm•µ0•(H), (4·25)

where, a is the electric conductivity, χe is the electric and χm is the magnetic

susceptibility,

Thus, the governing equations of electromagnetism include the four Maxwell

equations and the three material equations· Finally, one more equation is needed to

establish a connection with mechanics; for example,

f=ρ•E+jxB (4·26)

where, f is the mechanical force density (force acting on the unit volume)· Another

possibility to establish the connection to mechanic is·

ρEE=½( ED + H·B ) (4·27)

where, PEE is the electromagnetic energy density, that is the energy stored by the electric

and magnetic fields in unit volume· (The concept of force and energy were developed

already in mechanics·) [32]
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4.5 Axial Field of a Finite Solenoid

This formula [33] uses the equation for the field due to a thin shell solenoid, integrated

over a range of radii  to obtain the magnetic field at any point on the axis of a finite

solenoid [33].

Figure 4.1 Solenoid in cross section view [33].

General Case:

B is the magnetic field, in teslas, at any point on the axis of the solenoid. The direction of

the field is parallel to the solenoid axis.

Here, I-40 is the permeability constant, i is the current in the wire, in amperes, n is the

number of turns of wire per unit length in the solenoid, r1 is the inside radius of the

solenoid, r2 is the outside radius of the solenoid, x i and x2 are the distances, on axis, from

the ends of the solenoid to the magnetic field measurement point.
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(4·29)

(4·30)

(4·31)

where, G is the unit less geometry factor:

Special Case: x1=(-x2) The magnetic field measurement point is at the center of the

solenoid·

(4·32)

(4·33)

j is the current density in the coil cross section, in amps/(unit area)·

1 is the length of the coil·

N is the total number of turns of wire in the coil·

and the unit less geometry factor G is simply:

(4·34)
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4.6 Mathematical Techniques

Gaussian elimination:

This technique employs solving linear system of n equations with n unknowns xi, x²,

x³· • •xn:

(4.35)

(4·36)

4.6.1 Gaussian Elimination Algorithm: Forward Elimination and Triangular Form

(4·37)

Let U be the triangular upper matrix; we have,
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(4·38)

4.6.2 Gaussian Elimination Algorithm: Backward Elimination

Now, the matrix A is in triangular form U; we can solve:

(4·39)

with b(n) as the second member after the same operations as U·

We use a backward elimination for solving U(x) =b (n) [8]:

Equations Solved Numerically

One of the most popular techniques for solving simultaneous linear equations is the

Gaussian elimination method· The approach is designed to solve a general set of n

equations and n unknowns:
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(4.41)

Gaussian elimination consists of two steps:

1. Forward Elimination of Unknowns: In this step, the unknown is eliminated in each

equation starting with the first equation· This way, the equations are "reduced" to one

equation and to one unknown in each equation·

2. Back Substitution In this step, starting from the last equation, each of the unknowns

is found·

Forward Elimination of Unknowns:

In the first step of forward elimination, the first unknown, x1 is eliminated from all

rows below the first row· The first equation is selected as the pivot equation to eliminate

x1. Thus, to eliminate x1 in the second equation, one divides the first equation by all

(hence called the pivot element) and it is then multiplied by a21· This is the same as

multiplying the first equation by a2 j/ a 11 . This gives:

(4.42)

Now, this equation can be subtracted from the second equation to yield:

(4·43)
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(4·44)

This procedure of eliminating x 1 is now repeated for the third equation to the n th equation

to reduce the set of equations to:

(4·45)

This is the end of the first step of forward elimination· Now, for the second step of

forward elimination, we start with the second equation as the pivot equation and a' 22 as

the pivot element· Therefore, to eliminate x2 in the third equation, one divides the second

equation by a' 22 (the pivot element) and it is then multiplied by a' 32 , that is, the same as

multiplying the second equation by a' 32 i a' 22 and subtracting from the third equation·
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This makes the coefficient of .x2 to be zero in the third equation· The same procedure is

now repeated for the fourth equation till the nth equation to yield:

(4·46)

The next subsequent steps of forward elimination are performed by using the third

equation as a pivot equation and so on, That is, there will be a total of (n-1) steps of

forward elimination· At the end of (n-1) steps of forward elimination, we get a set of

equations that look like:
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(4·47)

Back Substitution:

Now, the equations are solved starting from the last equation as it has only one unknown·

(4·48)

Then, the second last equation, that is the (n-1) th equation, has two unknowns - xn and xn-

1, but xn is already known. This reduces the (n-1)th equation also to one unknown·

Hence, back substitution can be represented for all equations by the formula [311:

(4·49)

(4·50)



CHAPTER 5

VIZIMAG SIMULATIONS

In this chapter, the simulations of the magnetic field distributions and the forces

experienced by the devices, as a function a number of parameters including distance

between the two electromagnets in the form of solenoids, position of the device,

permeability of the magnetic layer in the recess and at the bottom of the device and the

core of the solenoid, is presented.

The proposed approach for the simulations is the following: A wafer of width 110 mm

containing a chosen number of recesses of desired width and desired spacing between

recesses is considered· In order to assist with the magnetic field assisted assembly

process, two programmable solenoids with desired dimensions and desired permeability

of the cores of the solenoids are considered and are located below the wafer· The

solenoids chosen for this simulation are 10mm in width and 50 mm in length. For

simplicity, the presence of only one device, on the wafer, that needs to be placed in the

desired recess, is considered. With the solenoids initially located at the extreme ends of

the wafer, the spacing between the solenoids is 90mm· The recesses contain hard

magnetic material; the bottom of the devices is coated with soft magnetic material·

Four case studies that consider the location of the recesses relative to the device for

optimal placement of the device in the recess have been investigated here· The criteria for

the choice of the four case studies have been determined by the width of the recesses and

the spacing between the recesses (medium) and the directionality of movement of the

magnetic field source·

61



62

Two programmable solenoids have been considered as sources of magnetic field

and are placed below and adjacent to the wafer· The programmable parameters of the

solenoids include the current, the number of turns, length and width of the solenoid,

diameter of the solenoid and the permeability of the core material inside the solenoid·

The details of the various parameters, utilized in the simulation are summarized in Figure

5·1a and Tables 5·1 — 5·4·

The details of the case studies, considered in the various simulations are as follows:

5.1 Case I

Case I — When the dimensions of air (spacing between the devices) and the width of

the hard magnetic material within the recess are different and the external magnetic

field sources (two solenoids) are moving towards each other in such a way that the

distance between the two solenoids is reduced in steps of 10mm.

The results of the simulation of the magnetic field, in Figure 5·1 (b), represent the

situation of Case 1 when the distance between the solenoids is reduced by 10mm· The

simulations show magnetic field lines and the force experienced by the device·

The software, ViziMag [32], has built-in capabilities for designing different

magnetic and non- magnetic materials of desired shapes and sizes·



Magnetic Film below Device
(Gray) (ft =100),
Area of Device =3.97x10.15

2 mm².

fir (Blue) µ =1, Area of Air:
5.85x20.20mm2 ;
Solenoid (orange),
II =125, 100 turns; current 1
micro ampere,
Area of solenoid: 9.93x46.93

2
mm².

Magnetic film inside recess in
wafer (Green), 10.15x3.97 mm2

Figure 5.1a Schematic of the conceptual approach for modeling of magnetic field
assisted assembly,
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Figure 5.1 b A simulation in which dimension of air and metal are different and external 
field source is moving; Case I; Bx = - 1.5x10 -lOT; By = -1.4x10 -lIT; B = 4.3x10 -lOT. 

In Figure· 5.1 (c), the results of a simulation, in whioh the dimension of air 

(spacing between recesses) and metal (hard magnetic material deposited in the bottom of 

the recess - i.e., the width of the recess) are different and the solenoids are moving 

towards each other, are presented. The distance between the solenoids is reduced by 

30mm from their initial positions. 



pc 

Figure S.le A simulation in which dimension of air and metal are different and external 
field source is moving; Case I; Bx = - 4.24xlO -lOT; By= 7.25xlO -llT; B = 4.3xlO -loT. 
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In Table 5·1, the details of the physical dimensions, permeability of the materials and the

magnetic strength of the solenoids are summarized. The distance between the solenoids,

in their initial positions, is 90 grid units (90mm)·

Mesh size 1 mm

Dimension Soft magnetic material below the device 10·15 mm by 3·97 mm

Permeability of the soft magnetic material 125

Dimension of the air between the magnetic material 5·85 mm by 20·20 mm

k
Permeability of air 1

Dimension of Hard magnetic material in the substrate 5.96 mm by 10.04 mm

Permeability of the hard magnetic material (between airs) 125

Dimensions of the magnet 10 mm by 50 mm

Permeability of the magnet 125

Number of turns 100

Current in solenoid 1 !lamp

Number of magnets

Table 5.1: Physical parameters considered when the solenoids are moved towards each
other; the width of magnetic layer (on the substrate) and the width of the air between the
magnetic materials (spacing between the recesses) is different·
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5.2 Case II 

Case II - When the dimensions of air (spacing between the devices) and the width of 

the hard magnetic material within the recess are different and the device is moved 

by 5 mm from its initial position towards the right (i.e., towards the solenoid on the 

right). 

The results of this simulation are presented in Figure 5.2 (a). From these simulations, the 

magnetic fields 'and the force experienced by the device can be calculated. 

Figure S.2a A simulation in which dimension of air and metal are different and 
device is moving; Case II; Bx = 1.77xlO-9T; By = 9.67xlO -lOT; B = 2.02xlO -9T. 

In Figure 5.2 (b), the results of magnetic field lines and force, in which the 

dimension of air (spacing between recesses) and metal (hard magnetic material deposited 

in the bottom of the recess -" width of the recess) are different and the device is moving 

towards the right solenoid by 45mm, are presented. 
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; 

/ 

, if 

Figure S.2b A simulation in which dimension of air and metal are different and device is 
moving; Case II; Bx = - 3.62xlO -lOT; By = 1.65xlO -lIT; B = 3.62xlO -lOT . 

. '- .... ; 



69

In Table 5·2, the details of the physical dimensions, permeability of the materials and the

magnetic strength of the solenoids are presented· The distance between the solenoids is

90 grid units·

Mesh size 1 mm

Dimension Soft magnetic material below the device 10·15 mm by 3·97 mm

Permeability of the soft magnetic material 125

Dimension of the air between the magnetic material 5·85 mm by 20.20 mm

Permeability of air 1

Dimension of Hard magnetic material in the substrate 5·85 mm by 20·20 mm

Permeability of the hard magnetic material (between airs) 125

Dimensions of the magnet 10 mm by 50 mm

Permeability of the magnet 125

Number of turns 100

Current in solenoid 1 µamp

Number of magnets

Table 5.2: Physical parameters considered when the device is moved on the substrate
towards the right; the width of the magnetic layer (in the recess on the substrate) and the
width of the air between the magnetic material is different· (Case 2)
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5.3 Case III 

Case III - When the dimensions of air (spacing between the devices) and the width 

of the hard magnetic material within the recess are same and the device is moving 

towards the right by 40 mm from its initial position (i.e., towards the solenoid on the 

right). 

In Figure 5.3 (a), the results of rnagnetic field lines and force, in which the dimension of 

air (spacing between recesses) and metal (hard magnetic material deposited in the bottom 

of the recess - width of the recess) are same and the device is moving towards the right 

solenoid by 40mm from its initial position, are presented. 

Figure S.3a A simulation in which dimensions of air and metal are same and device is 
moving; Case III; Bx = 1.33xlO -9T; By = -5.41xlO -lOT; B = 1.43xlO -9T. 
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The results in Figure 5.3 (b) represent the situation of case 3 with the device moving 
tow'ards the right by 25 mm from its initial position. 

Figure 53b A simulation in which dimensions of air and metal are same and device is 
moving; Case III; Bx ;=: 7.52xlO -lOT; By ;=: 4.82xl 0 -9T; B = 4.88xl 0 -9T. . 

/ 

" , ' , 
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In Table 5·3, the details of the physical dimensions, permeability of the materials and the

magnetic strength of the solenoids are presented· The distance between the solenoids is

90 grid units·

Mesh size 1 mm

Dimension Soft magnetic material below the device 9·93 mm by 4·75 mm

Permeability of the soft magnetic material 125

Dimension of the air between the magnetic material 4·97 mm by 20·20 mm

Permeability of air

Dimension of Hard magnetic material in the substrate 4·9 mm by 20·20 mm

Permeability of the hard magnetic material (between airs) 125

Dimensions of the magnet 10 mm by 50 mm

Permeability of the magnet 125

Number of turns 100

Current in solenoid 1 !lamp

Number of magnets 2

Table 5.3: Physical parameters considered when the device is moved towards the right;
the width of the magnetic layer (on the substrate) and the width of the air (spacing)
between the recesses is same· (Case III)
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5.4 Case IV 

Case IV - When the dimensions of air (spacing between the devices) and the width 

of the hard magnetic material within the recess are same and the field sources are 

moving towards each other; the distance between the solenoids is reduced by 10mm 

from their initial positions. 

In Figure 5.4(a), the results of the simulation of magnetic fields and the force experienced 

by the device (of case 4) are presented. 

Figure S.4a) A simulation in which dimensions of air and metal are same and external 
field sources are moved towards each other from their initial positions; Case IV; Bx = 
8.62xlO -9T; By = L65xlO -lOT; B = 8.62xlO -9T. 

In Figure 5 .4 (b), ~ simulation of magnetic fields and forces experienced by the 

device, in which the dimension. of air (spacing between recesses) and metal (hard 

magnetic material deposited in the bottom of the recess -- width of the recess) are same 

and the solenoids are moving towards each other, are presented. 
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Figure 5.4 b _~ simulation in which dimensions of air and metal are same and external 
field sources are moving towards each other; 
Case IV; Bx = 1.33xlO -9 T; By = -S.4lxIO-IoT; B = 1.43xlO -9T. 

/ 
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In Table 5·4, the details of the physical dimensions, permeability of the materials and the

magnetic strength of the solenoids are presented· The distance between the solenoids is

90 grid units·

Mesh size 1 mm

Dimension Soft magnetic material below the device 9·93 mm by 4·75 mm

Permeability of the soft magnetic material 125

Dimension of the air between the magnetic material 4·97 mm by 20.20 mm

Permeability of air 1

Dimension of Hard magnetic material in the substrate 4·9 mm by 20.20 mm

Permeability of the hard magnetic material (between airs) 125

Dimensions of the magnet 10 mm by 50 mm

Permeability of the magnet 125

Number of turns 100

Current in solenoid 1µamp

Number of magnets

Table 5.4: Physical parameters considered when the solenoids are moving towards each

other the length of magnetic layer (on the substrate) and the length of the air between the

magnetic materials is same· (Case IV)



CHAPTER 6

RESULTS AND DISCUSSION

The results of the simulation of the forces as function of distance, using ViziMag, are

summarized in the following section:

Figure 6.1 (a) Force on device in the vertical plane as function of position of magnet for
case I — (b) Force on device in the horizontal plane as function of position of magnet for
case I. Force (T) is in Newtons and the positions represent number of steps
(dimensionless); step size = 10 mm·

Figure 6.1(a) shows a graph between the magnetic force experienced in the y

direction on the hard magnetic layer (i·e· the device) and position of the magnet (along a

straight path)· Similarly, the other graph, Figure 6·1(b), shows a graph of the force

experienced in the x direction by the magnetic layer (i·e. the device) as a function of

various positions of the magnet. In this simulation, the different layers of the substrate

(the magnetic material and the air) are of unequal dimensions and the two solenoids

(magnets) move towards each other by 10 mm; i.e·, the distance between the solenoids is
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Position (dimensionless) 	 Position (dimensionless)

(a) (b)

Figure 6.2 (a) Net force on device as a function of position of device for case II, (a) step
size = 6 mm, (b) Net Force on device as a function of position of device for case III, (b)
step size = 15 mm. Force (T) is in Newtons and the positions represent number of steps
(dimensionless),

Figure 6·2 (a) shows a graph between the net magnetic force experienced by the

hard magnetic layer (i·e· the device) and various positions of the device. In this

simulation (Figure 6·2a), the width of the recess (magnetic layer) and the spacing

between the recesses are of unequal dimensions (case II, Figures 5.2a and 5.2b)·

Similarly, the other graph, 6·2 (b) shows the net force experienced by the hard magnetic

layer (i·e. the device) and different positions of the device (case III)· In this simulation

(Figure 6·2b), the different layers of the substrate (the magnetic material and the air) are

of equal dimensions and the two solenoids (magnets) move towards each other (Figures

5.3a and 5·3b)·
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(a) (b)

Figure 6.3 (a) Force on device in the y axis as a function of position of the solenoids
(magnets) for case IV; (b) Force on device in the x axis as a function of the position of
the solenoids (magnets) for case IV. The dimensions of the recesses (magnetic layer) and
the distance between the recesses (air) .are the same· Force (T) is in Newtons and the
positions represent number of steps (dimensionless); step size = 10 mm·

Figure 6·3 (a) shows a plot of the magnetic force experienced in the y direction on

the hard magnetic layer (i·e· the device) versus the various chosen locations of the magnet

in relation to its initial position. Similarly, the other graph, Figure 6·3(b), shows the force

experienced in the x direction by the magnetic layer (i·e. the device) as a function of

different positions of the magnet. In this simulation, the recess and the spacing between

the recesses (the magnetic material and the air) are of equal dimensions and the two

solenoids (magnets) are moved towards each other - Figures 5·4a and 5.4b (case IV).
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In all the above examples, two solenoids of width 10 mm, height 50 mm, and 100 turns

each, carrying 1 [tamp, with a core of permeability 125 (relative to air of permeability 1),

have been considered· The substrate of thickness 5·96 mm exists above the solenoids, and

it consists of alternating regions of hard magnetic material with permeability of 125 and

non-magnetic material with permeability 1 (air)· The horizontal dimensions of the

alternating hard magnetic and non-magnetic material are denoted by w m and wa mm, and

their values differ in the examples presented below. On top of the substrate is a single

"device" with soft magnetic layer of permeability 125, width 10·15 mm, and height 3·97

mm· (shown in Figure 5·1(a))

In the set-up for Figure 6·1, the width of the hard magnetic region is w m =10·04 mm and

the width of the non-magnetic region is w a = 20·20 mm (case I). The x-component of the

force acting on the device (right panel, Figure 6·1(b)) shows little variation, initially, with

change in distance between solenoids and gradually increases· This is due to the vectorial

addition of the force components from both the solenoids· It decreases rapidly and attains

a minimum value· This is because of the vectorial subtraction of the force components·

The y-component of the force in Figure 6.1(a) (left panel) exhibits a gradual increase

with decreasing distance between solenoids· It is to be noted that, in these simulations,

the solenoids are being moved towards each other in steps of 10 mm· The downward y-

component acting on the device decreases as the distance to the nearest solenoid

increases·

Figure 6·2a shows the results of a simulation in which the dimensions w m (width

of the magnetic material in the recess) and w a (width between the recess i·e· air) are equal

and are equal to 10·04 mm· The soft magnetic device stays fixed at an origin, which is
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such that the right-hand vertical edge of the device is aligned with the left-hand vertical

edge of the left-hand solenoid· See Figure 5.1(a), in which the device is displaced to the

right of this position by 6mm· Figure 6·2(a) shows the force acting on the device as it is

moved 6 mm towards the right. Similarly, in Figure 6·2(b) the width of the magnetic

material inside the recess, w m and the width between the recesses (air) w a are of different

dimensions and the device is moved to the right in steps of 15 mm· In Figure 6·2(a) (case

II), the net force experienced by the device fluctuates as the device is moved along the

substrate· As can be seen in Figure 6·2(b), the variation of the net force with position is

very similar to that in Figure 6·2(a), but the maximum force experienced by the device is

not at the same position because the dimension of w a and wm are not the same·

In the set-up for Figure 6·3 (case IV), the width of the hard magnetic region is w m

=20·20 mm and the width of the non-magnetic region is w a =20·20 mm, while the device

and solenoid locations are the same as in the simulation for Figure 6·1 ·The x-component

of the force acting on the device (right panel) shows a little variation with change in

solenoid distance and is consistently smaller than in Figure 6·1 (note the difference in

vertical scales of figures)· The trend in the y-component of the force in Figure 6·3 (left

panel) is opposite to that in Figure 6·1; in this case, the downward y-component acting on

the device decreases as the distance to the nearest solenoid increases· In both examples,

the y-component of the force is relatively small, of the order of 10-1² N, compared with

the maximum x-component of the force in Figure 6·3, of 10-11N·



CHAPTER 7

CONCLUSIONS

An overview of the various techniques for assembly of semiconductor devices and

structures has been presented· Magnetic field assisted assembly has been proposed as an

enabling technology for device integration· Vizimag-2-D, commercial simulation

software, has been employed to analyze the magnetic field as a function of position of the

device and an applied external field source· Vizimag is easily scalable to include multi

magnetic field sources for simultaneous placement of a large number of devices within

recesses in the substrate· The obtained resultant force of one device relative to one or two

electromagnets is consistent with those in the literature· The results of the simulation

show that, as the source of the magnetic field approaches the recess, the resultant

magnetic field is higher; the larger the number of magnets, the better is the control and

the ability to displace the device in the desired direction· All the simulations have been

performed with the assumption that, for a small device with low weight that is moving on

a smooth surface, frictional forces are negligible·

ViziMag is a two dimensional software and this limits its ability to estimate actual

magnetic fields or forces experienced by the device· The results of ViziMag simulations

are confined to situations when the device is stationary·

The results of the simulations in case I and case IV (Figures 6·1 and 6·3) suggest that

the forces in the y direction are opposite to each other, when the solenoids are moved

towards each other; even the forces in the x direction do not match and they differ by an

order of magnitude·
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A comparison of the results in Case II and case III, (Figures 6·2 a, 6·2 b) shows

similar trends in the variation of net force with distance but the maximum forces

experienced by the device are at different positions and the magnitude of the force has the

same exponent·
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