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ABSTRACT

PROCESS-STRUCTURE-PROPERTY RELATIONSHIPS OF RESORBABLE
DESAMINO TYROSINE DERIVED POLYMERS: EFFECT OF BACKBONE

CHEMISTRY AND ASSEMBLY ON DRUG DELIVERY

by
Pinar Nebol

The selection the correct biomaterial for a specific medical application plays an important

role for the success of both application and the device. Since different applications

require different properties, investigation and improvement of biomaterials with different

properties are very important. L-tyrosine derived polymers enable the manipulation of the

properties of the material by changing backbone or pendent chain structure. L-tyrosine

derived polyarylate is one of the class of these materials.

This study investigates the behavior of the tyrosine derived polyarylates under in

vitro conditions. The change of structure caused by incubation in phosphate buffer

solution and the effect on the release of p-nitroaniline (PNA) (model drug) has been

investigated, primarily with differential scanning calorimetry (DSC). In addition the

release profile of PNA has been investigated by UV/visible spectroscopy.

Two different polyarylates were used. poly[(desaminotyrosine dodecyl esterl)

dodecondioate] designated Poly(DT 12, 10) and, poly[(desaminotyrosine octyl ester)

sebacate] designated Poly(DT 8, 8).

The results obtained from this study indicates that incubation caused significant

changes in the solid state organization of the Poly(DT 8, 8). Tg is seen in dry polymers

but disappears after the beginning of the incubation, indicating a phase change in the

polymer. The enthalpy of phase change of the Poly(DT 8, 8) increases and lay off state in

about one half a day. However, in contrast of Poly(DT 8, 8), the enthalpy of Poly(DT 12,



10) doesn't change significantly. According to these results, it is concluded that a phase

change occurs in Poly(DT 8, 8) by incubation. The incubation in dry conditions also

indicates a phase change in Poly(DT 8, 8), and this is accelerated by the presence of

moisture. The incorporation of the model drug did not affect the observed enthalpy

change of either of the polymers investigated.
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CHAPTER 1

INTRODUCTION

Biodegradable polymers have gained great importance over the last few year. This is

basically caused by the advantages of the degradable polymers over non-degradable

polymers. The first advantage is relatively mild foreign body reaction caused by

biodegradable polymers since they gradually degrade in the body and do not release

harmful residues if they are biocompatible. The second advantage is the ability to

regenerate tissue which can be available for the use in tissue engineering. In addition,

the properties they possess make them available to use for many medical implants,

drug delivery material [1].

Many different biodegradable polymers have been investigated for different

applications. The most widely used biodegradable polymers are polyglycolic acid,

polylactic acid and their copolymer polyglycolic acid/ polylactic acid (PGA, PLA,

PGLA) (i.e. polyester based plymers), polycaprolactone (PCL), polyhydroxybutrate

(PHB), polyhydrocybutrate-co-valerate (PHBV), polyorthoester and

polyethyleneoxide (PEO) [2, 4].

The properties of the material used in biomedical applications play a vital role

in the success of the application. Hence it's important to choose a material having

appropriate properties for specific applications. Therefore to be able to customize the

properties of the material for a desired application is desirable. Homo-poly(amino

acids) show good biocompatibility since they are developed from natural amino acids.

However, they have many disadvantages like poor degradation, processing

difficulties, and insolubility in common organic solvents [4, 5]. To overcome these

1
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Figure 2.4 The overlap ofDSC and temperature dependent FT-IR results of poly (DT 
12, 10) [6). 

From the results of Figure 2.4, it can be concluded that hydrogen bonding is 

affected by temperature. Combining the DSC and FTIR results, it is re,llsonable to 

assume that organization in Poly(DT 8, 8) is associated with H bonding [6). 

In the previous studies of the Jaffe group, it is seen that as methylene groups R 

and Y are small, then the material is amorphous If the number of methylene groups at 

these two sites increased, the material shows some level of non-crystalline 

organization and loses its strict amorphous properties [6, 36, 39). 
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increases, the ability of the material to reorganize itself increases [36]. The other

important result that obtained is the effect of moisture on the reorganization of these

polymers [38]. Yoo et al., investigated the thermal property of Poly(DT 8, 8) under

various conditions. In order to see the effect of moisture on the structure of Poly(DT

8, 8), samples were treated under both wet and dry conditions [38]. When the samples

were kept under vacuum and the moisture content is held to between 0.2-0.02%, a

single glass transition point were obtained under dry conditions. When the samples

were kept in aqueous environment an endothermic peak develops, and becomes more

distinguishable with larger energy. The author concluded these finding as the

plasticizing effect of moisture on structure formation of polyarylates; the presence of

moisture makes the material more flexible and ease its reorganization [38].

The aim of this study is to examine the structural changes of several L-

Tyrosine derived polyarylates under in-vitro conditions and relate this behavior to

drug elution profiles.



CHAPTER 2

THEORY and PRINCIPLE

2.1 Biomedical Materials and Their Applications

With increased lifestyle (stress level, accidents and change in food habit) there is an

increase in the individuals' need for biomedical applications. This augmentation

allows scientists to focus on biomedical products such as artificial organs,

biocompatible devices and products designed to increase the effect of drug therapy

[47]. Biomaterials can be defined in several different ways but in general it is said to

be a synthetic material which is used to replace a part or a function of a living system

contacting with living tissues, blood or biological fluid. It can also be defined as a

substance (other than drugs) or combination of substances which substitutes for the

role of any organ or tissue [1].

Several examples can be given for biomaterials produced and used in the

medical market. Table 2.1 and Table 2.2 summarize common applications of

biomaterials in both organs and body systems [1].

Table 2.1 Biomaterials in Organs [1]

Organ Examples

Hearth Cardiac pacemaker, artificial heart valve, total artificial heart

Lung Oxygenator machine

Eye Contact lens, intraocular lens

Ear Artificial staps, cochlea implant

Bone Bone plate, intramedullary rod

Kidney Kidney dialysis machine

Bladder Catheter and stent

4
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Table 2.2 Biomaterials in Body Systems [1]

System Examples

Skeletal Bone plate, total joint replacement

Muscular Sutures, muscle stimulator

Circulatory Artificial heart valves, blood vessels

Respiratory Oxygenator machine

Integumentary Sutures, burn dressing, artificial skin

Urinary Catheters, stent, kidney dialysis machine

Nervous Hydrocephalus drain, cardiac pacemaker, nerve stimulator

Endocrine Microencapsulated pancreatic islet cells

Reproductive Augmentation mammoplasty, other cosmetic replacement

The target function and the in-vivo environment of the material in the body

play an essential role in the selection of the raw material. Considering these factors

the biomaterial to be utilized, might be produced from metals, polymers, ceramics and

composites [1]. The material selected should meet all of the requirements for the

particular application [33]. The biomaterial selection is an important issue because if

the selection is inappropriate the health of the patient could be affected quite

adversely. This selection will depend on the properties of the material, design of the

device and the biocompatibility of the material used. Biocompatibility is basically the

reaction of the body to the foreign material. If the biocompatibility of the device is

low it will irritate the tissues in the environment and provoke an abnormal

inflammatory response [1].

Biocompatibility is an essential factor for biomedical devices to be safe for the

use as medical device [16]. Since each medical device has different requirements

appropriate material should be chosen for the specific application. In recent years,

scientists focused on biomaterials and devices produced from them and tried to

improve their performance. Biodegradable polymers played important roles in these
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studies and contributed a lot to their improvement. Through the development of

devices lots of problems occurred, such as the incompatibility of the foreign material

irritation of degradation products and infections caused from the operation [47].

Those problems might be overcome by the selection of the appropriate raw material.

The mechanical properties and the degradation behavior of the polymers is the

main criteria to be considered for selection depending on the requirements of the

specific devices [17]

Medical applications of biopolymers can be categorized into three subgroups;

• Extracorporeal uses; catheters, artificial kidney membranes, wound dressing
and artificial skin etc...

• Permanently Implanted Devices; Sensory, cardiovascular, orthopaedic and
dental devices etc...

• Temporary Implants; Degradable sutures, implantable drug delivery systems
etc... [47].

In the literature there are 4 different terms used to describe the disintegration

of the material in a living organism. These are biodegradation, bioerosion,

bioabsorption and bioresorption. It is not always easy to distinguish exactly by which

process materials disintegrate in a living organism. Simply biodegradation can be

referred as chemical degradation of the material caused by biological agent (enzyme,

cell or microorganisms) [33]. However, bioerosion is defined as conversion of water-

insoluble materials to fragments under physiological conditions. The terms

bioresorption and bioabsorption are used when a polymeric material or its degradation

products are removed by cellular activity in a living organism [33].
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2.2 Drug Delivery Systems

The oral usage of the drug may not always be completely beneficial. However, the

local delivery of a drug provides advantages to the patient. Medicinal support is

always required for the patient after the application of the medical device. To increase

the efficiency of the drug, the studies on the targeted delivery of the drug have been

realized. The major advantage of the controlled local delivery of the drug is to

minimize the side effects [33]. Figure 2.1 illustrates the drug concentration in blood

plasma for the effectiveness of the drug.

Figure 2.1 Drug concentration following absorption of therapeutic agent as a function
of time. ( ) safe dose, unsafe dose (— — —), controlled release (— • — • —) [33].

Unsafe dosage exceeds the maximum tolerable drug concentration and reaches

a toxic over-dosing level. If a safe dose is used the concentration does not exceed the

max level. However, the effect continues for a short period of time and the drug is

ineffective because of under-dosing. Ideally, the controlled release of the drug

provides a constant release over the entire period of time (between overdose and

underdone concentrations, Figure 2.1). This provides a longer effect time in the

tolerable region where the drug is best utilized [33]. By the usage of the controlled

release, it is possible to avoid potential toxic over-dosing and periodic ineffective

under dosing [18].
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Degradable polymeric biomaterials can often enable the most effective use of

the drug, and sometimes its only effective use, by routes which include: providing

sustained effective systemic concentrations of the drug (i.e. avoiding the periodic

potentially toxic over-dosing that can occur at the beginning of a dosing period and

preventing the periodic ineffective under-dosing that can occur at the end of the

dosing period); providing high concentrations of the drug only in the local vicinity of

the drug-release depot, avoiding unwanted concentrations and effects of the drug at

locations far away from the disease treatment site; protecting the drug from the body's

metabolism and clearance mechanisms as the drug is being released; targeting the

drug to particular cells and sites within the body; and targeting the drug to particular

organelles and sites within individual cells [18].

2.2.1 Biodegradable Polymers in Drug Delivery

Biodegradable polymers are widely used in the drug releasing medical devices since

they have good biocompatibility and drug transport properties. Polyester based

polymers are the most frequently investigated degradable polymers for drug delivery

applications [19]. Local drug delivery systems are mainly used in the treatment of

cardiovascular disease, diabetes, orthopaedics, and cancer [20].

Basically the most widely used biodegradable polymers are; polyglycolic acid,

polylactic acid and their copolymer polyglycolic acid/ polylactic acid (PGA, PLA,

PGLA) (i.e. polyester based plymers), polycaprolactone (PCL), polyhydroxybutrate

(PHB), polyhydrocybutrate co valerate (PHBV), polyorthoester and

polyethyleneoxide (PEO). Although these biodegradable polymers show good

biocompatibility they might show significant inflammatory and proliferative response

in some studies [3]. They considerably increased the biocompatibility of the surface

of coated devices. However, they do not decrease noeintimal proliferation by
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themselves. Therefore drug loaded polymers have been used for a very long time [3].

Thus, polymeric materials can increase the surface biocompatibility of the devices

however; they will be more effective if they are used in accordance with a drug.

Biodegradable polymers in drug delivery have been used for different

purposes. Most frequently they are used for antibacterial purposes in medical implants

to prevent infections, in skeletal delivery systems, and in stent coating to prevent

restenosis and coagulation [21-23]. H. Gollwitzer et al., coated medical implants with

antibacterial poly D,L lactic acid. Kirschner-wires were coated by solvent casting.

The antibacterial effect was provided by Gentamicin & Teicoplain. The number of

viable bacteria was reduced in the antibiotics presence [21].

There are several studies with biodegradable polymers, which studies them as

a drug matrix for medical devices and implants [2, 3]. Five different biodegradable

synthetic polymers after implantation within porcine coronary artery are studied by

Van der Giessen et al. in the coating of stents. The polymers used were;

polycaprolactone (PCL), polyhydroxybutrate (PHB), polyhydrocybutrate-co-valerate

(PHBV), polyorthoester, polyethyleneoxide/polybutylene-terephtalate and

poly(glycolic acid) / poly(lactic acid). The results showed that all polymers induced a

significant inflammatory and proliferative response after 4 weeks and drug release is

achieved through disintegration of the polymer [42]. Lincoff et al. compared the drug

release from both low and high molecular weight Poly-L-lactic acid (PLLA).

According to the study, high molecular weight PLLA showed slower degradation and

consequently there was no evidence of acute or chronic inflammation [43].

In biomaterials the material properties are extremely important in order to

mimic the tissue that it will replace or in order to succeed in its specific application.

Some of the materials will require fast degradation some of them slow degradation,
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some of the products (like bone fixation devices) will require to bear load and some

systems (drug releasing systems) will require rubbery structures [7].

Kohn and Langer developed new biodegradable polymers that can be used in

vivo. The chemical structure of these polymers makes it possible to adjust the

properties of polymers according to the specific application [4]. One major type of

these polymers is L-Tyrosine derived polyarylates. The structure of these materials

allows for adjusting the properties of the materials by changing the length of the

backbone and pendent chain. The difference in these chains determines whether the

material is rubbery or glassy at a specific temperature, the mechanical properties and

degradation properties [4].

One important limitation for biodegradable polymers is the cytotoxicity of the

degradation products. For examples diphenols gives good mechanical strength to the

polymers when it is used in backbone However, polymers containing diphenol in their

backbone cannot be used in vivo since they are cytotoxic [5]. The widely utilized

biodegradable polymers derived from a—hydroxy acids (like poly-glycolic acid, poly-

lactic acids ) have similar limitation. Although they have approval for many

applications in the USA, their degradation products can still be limit their

applications. The acidic degradation product may cause the material to fail [8]. Kohn

and Langer used Tyrosine which is a major nutrient instead of diphenol in the

backbone of the polymer [5].

2.2.2 Chemical Structure of Polyarylates

Although some biodegradable polymers have FDA approval to be used in humans,

they still have disadvantages of irritation to the body because of the degradation

products. Since amino acids are naturally found in body, the idea of poly(amino acids)

as polymeric biomaterials have gained importance. Many of the poly(amino acid)
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have failed because of inappropriate physical and mechanical properties, in addition

they still had immunogenic problems [2].

Tyrosine is an amino acid containing an aromatic hydroxyl group [5, 9]. In the

formation of tyrosine derived polymers it is used as an alternative to diphenols [5].

Non-cytotoxic nature of tyrosine enabled to produce non-cytotoxic tyrosine based

pseudo poly(amino acid) [2].

Tyrosine derived polyarylates are formed by 2 structural elements. The first

allows the modification of the backbone structure and the second forms the pendent

chain of the polymer [2]. It is seen in previous studies that variation in the size of the

backbone and side chain causes dramatic changes in structure and properties of the

polymers [ 1 0] .

The nomenclature of the desaminotyrosyle-tyrosine derived polyarylates has

been determined depending on the backbone and pendent structure of the polymer.

According to the number of methylene group in the backbone and side chain, the

name of the polyarylates can be determined. Poly(Desaminotyrosyl-tyrosine octyl

sebacate) have octyl group at the side chain and octyl ester component on side chain

derived from sebatic acid [6]. In order to facilitate to use of the name simple

abbreviations are used as Poly(DT R, Y) where DT stands for desaminotyrosyl-

tyrosine, R stands for number of hydrocarbons at the side chain and Y stands for

number of hydrocarbons in the backbone chain [6].

In this study three types of polyarylates are used: Poly(DTD dodecondioate),

Poly(DTO sebacate) and Poly(DTE succinate), designated Poly(12, 10), Poly(DT 8,

8) and Poly(2, 2), respectively. DTD stands for desaminotyrosine dodecyl ester, DTO

stands for desaminotyrosine octyl ester and DTE stands for desaminotyrosine ethyl

ester [6].
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Figure 2.2 Tyrosine derived Polyarylate [5].

Figure 2.2 shows the chemical structure of the Desamino tyrosyl polyarylates

[5]. Change in polymer backbone is created by the change in diacid structure in

backbone and change in the diphenol component creates change in pendent chain.

That's how a large number of polymer types created possessing various properties [5].

2.2.3 Morphology of Polymers

Polymers can typically have two different types of phases in solid state. These are

amorphous and crystalline. However, polymers can not be completely crystalline and

they will posses unordered amorphous regions thus they are called semi-crystalline

[33, 34]. Figure 2.3 compares the behavior of the amorphous polymer and semi-

crystalline polymer. It also shows the morphology of semi-crystalline polymer; the

amorphous region in the crystalline region [34].
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Figure 2.3 Comparison of amorphous and semi-crystalline polymer behavior [34]. 
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The morphology of polymers is important criteria for determining the 

properties of the material to be used in medicine [33] . The degradation and drug 

release will be affected whether it is amorphous or semi-crystalline and also percent 

crystallinity of the material. Amorphous polymers will degrade faster compare to 

crystalline polymers because of faster erosion and the release of the drug will also be 

faster if release is dominated by degradation [35]. 

The morphology of the polymer can be complex and may have mofe than one 

phase in its structure. The material either crystalline or amorphous can have more 

than one distinct phase in its structure If a crystalline materials has more than one 

distinct phase it is called polymorphic materials. I an amorphous material has more 

than one distinct phase it is called polyamorphic material [40, 41]. Polymorphs are the 

materials possessing multiple crystalline phases with a phase boundary represented by 

phase equilibrium diagram. Therefore, there is a certain temperature and pressure that, 

free energies of two phases ·are equal and on one side one phase is more stable. 

Although this phenomenon is rarer for amorphous materials, there are examples that 

can be considered as polyamorphous materials [41]. Water is an example of 

polyamorphous materials and it is still under investigation by scientists [41]. If a 

----------------------~/ 
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polyamorphic material is used in any application to produce a medical device, how

the phases of the material changes should be considered in order to predict the

properties of the device. Form the previous studies poly(DT 8, 8) showed different

phase properties when it is exposed to different conditions [6, 24, 27, 36, 38, 39].

2.2.4 Drug Release Studies of L-Tyrsosine Derived Polyarylates and

Polycarbonates

Since L-tyrosine derived polyarylates are relatively new polymers, there are limited

resources in the literature on drug delivery. The majority of the existing studies are

published by J. Kohn and his research group.

Yu and Kohn used two model drugs to investigate the release behavior of

microspheres formed from Poly(DTB carbonate) and Poly(DTB carbonate)

polyethylene glycol (PEG) copolymer. Fluorescein isothiocyonate-dextran (FITC-

dextran) is used as high molecular weight hydrophilic model drug and p-nitroaniline

as low molecular weight hydrophobic model drug. According to the results, FITC-

dextran released with a small burst effect in the first hour then experienced a lag

period having very slow release during 14 days. For the case of p-nitroaniline the

release was much faster and presence of PEG accelerated the release of PNA [8].

In the literature there are studies with both L-tyrosine derived polyarylates and

polycarbonates testing the hemocompatible coating by incorporation of anticoagulant

into the coating. Huridin and prostacyclin were used as anticoagulant materials.

Carbon fibers coated with drug incorporated polymer coating and blank polymer

coating. Both showed decrease in coagulation compare to uncoated control fibers in

addition drug incorporated ones prevented formation of thrombin at the surface [5].

Another remarkable study is the intracranial delivery of dopamine with long

term controlled-release device which is made from Poly(DTH carbonate) [5]. Because
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of the drug-polymer relationship Poly(DTH carbonate) showed prolonged release.

The polymer matrix appeared to protect dopamine enabling prolonged release [5].

2.2.5 P-Nitroaniline as a Model Drug

In many studies in the literature p-nitroaniline (PNA) is used to model the drug

behavior [8, 12, 14, 15]. There are a couple of advantages in using a model drug

instead of using actual drugs. First it is cheaper compared to commercially available

drug and can also behave like drugs having similar chemical structure.

Cheng and his coworkers used PNA to investigate the release behavior of

cross-linked amino-acid containing poly-(anhydride-co-imide)s [14]. In another study

PNA served again as a model drug with poly(sebacic anhydride-co-ethylene glycol).

PNA was encapsulated into the polymer and release behavior was investigated under

pH 7.4 and 4.0 [15].

The other advantage of PNA is its yellow color which makes it easy to

monitor by simple UV/Visible sepectroscopy. This is one of the reason Kohn and

Fiordeliso chose PNA as a model drug to investigate the release profile from tyrosine

derived polyarylates [12]. PNA is also used in the study of Yu and Kohn. In the

release studies of tyrosine-PEG-derived poly(ether carbonate)s microspheres. PNA

served as low molecular weight hydrophobic model drug in this study [5, 8].

2.3 Thermal Analysis of Polymers

Differential scanning calorimetry is a technique widely used for thermal analysis of

materials. It applies constant heat on both sample and reference and measures the

change in temperature in both sample and reference [26]. For a material the change in

temperature will be the same with reference unless there is no endothermic or

exothermic reaction. If there is an exothermic reaction then the system uses the energy
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released as a result of this reaction. Thus the increase in temperature of the sample is

higher compare to the reference. If there is an endothermic reaction, then the change

in temperature in sample is less compared to the reference since the system uses more

energy to achieve the reaction [26].

Amorphous polymers or amorphous regions in polymers do not have enthalpy

of melting since amorphous structures experience a smooth transition from a glassy

state to a true liquid phase [31].

The structural behavior of various Desaminotyrosyle-Tyrosine derived

Polyarylates has been studied widely by the Jaffe group. Figure 2.4 shows the

behavior of Poly(DT 12, 10) with increasing temperature. It shows the overlap of

FTIR and DSC results. From the FTIR results at low temperatures at wavelength of

1648 cm-1 , strong hydrogen bonding can be seen. As the temperature increases, this

strong hydrogen bonding transforms to weak hydrogen bonding, and this is also seen

in the DSC results as two endothermic peaks. When the temperature increases further,

neither strong nor weak hydrogen bonding is distinguishable any more. Only free

amide carbonyl bond was dominant [6].



Figure 2.4 The overlap of DSC and temperature dependent FT-IR results of poly (DT
12,10) [6].

From the results of Figure 2.4, it can be concluded that hydrogen bonding is

affected by temperature. Combining the DSC and FTIR results, it is reasonable to

assume that organization in Poly(DT 8, 8) is associated with H bonding [6].

In the previous studies of the Jaffe group, it is seen that as methylene groups R

and Y are small, then the material is amorphous If the number of methylene groups at

these two sites increased, the material shows some level of non-crystalline

organization and loses its strict amorphous properties [6, 36, 39].

17
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, .... , ... 
(a) (b) 

Figure 2.5 X-Ray scattering data of (a) Poly (DT 2, 2) (b) Poly (DT 12, 10) [36]. 

Collins et aI., studied the thermal characterization ofpolyarylates Poly(DT 12, 

10) and Poly(DT 2, 2). Figure 2.5 shows the X-ray scattering data for Poly(DT 2, 2) 

and Poly(DT 12, 10). It is seen that both of the polymers showed a high angle peak 

around 20° of their 28 angle. This peak is considered as a van der Waals peak and 

indicates amorphous properties. However, Poly(DT 12, 10) showed also a low angle 

I 
peak unlike Poly(DT 2, 2). This peak is considered to be caused by long aliphatic 

, . 
chain in Poly(DT 12, 10), and considered to be a sign of some level of organization on 

the polymer, although it does not appear to have 3D periodic,ity"Iijce , .. C!),$tlllline 

structures [36] . This behavior is concluded with the existence of the complex 

amorphous structure formed by different types of phases [36]. 

This study revealed that, there are two modes of organization in the structure 

of Poly(DT 12, 10); Mode A and mode B. The polymer exists in mode A. at room 

temperature having a specific H bonding arrangement. As the temperature increases 

than it reorganize itself and transforms to mode B [36]. 

There are several thermal event happens during heating of Poly(DT 12, 10) 

displayed by Collins et aI., [36]. These events can be seen in Figure 2.6 which exhibit 
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the DSC result for POly(DT 12, 10) and Figure 2.7 which explains the events occur 

during heating ofthe polymer in the DSC. 
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Figure 2.6 Overlay of optical pattern and DSC Poly(DT 12, 10) [36]. 

During heating of Poly(DT 12, 10), four thermal events occur. The first one is 

the rotational relaxation occur in mode A at around 40°C, and is given as event I in 

Collins' study. As the temperature increases mode A transforms to mode B at around 

55°C and stated as event 2. If Poly(DT 12, 10) is continued to be heated a rotational 

relaxation occurs in mode B at. around 67°C in which is stated as event 3, If it is 

heated further, mode B transforms to an unorganized mode of aggregation which is 

called as mode U by Collins and his coworkers. This last event is called as event 4 

and occurs at around 85°C [36] . These series of events are displayed in Figure 2.7. 
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Figure 2.7 Free energy diagram for Poly(DT 12, 10) [36].

Considering these events occur during heating of Poly(DT 12, 10), in the study

it is concluded that Poly(DT 12, 10) has two modes of hydrogen bonding in it

structures and this modes depends on the temperature affecting the physical behavior

of the polymer [36]. The change in temperature causes the polymer changes its phase

from one mode to another and the change on these modes will affect the physical

behavior of the polymers [36]. Therefore it's important to be able to predict the mode

and the behavior of the change in mode of the polymer in order to predict the

properties of the material to be used in the production of a medical device. This

change in mode of organization the Poly(DT 12, 10) which is non-crystalline,

supported the idea of polyamorphism for this material having different modes of

amorphous aggregation [36].

Jaffe and his coworkers studied several different types of Polyarylates in

Medical Device Concept Laboratory (MDCL). In one of their studies they

investigated the dependence of the mesogenic order on the hydrogen bonding in the

structure of the polymers. The hydrogen bonding through the backbone amide linkage
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affects the organization of the internal aggregation of the polymer. According to their

IR results, they concluded that the polymer re-organize itself. This reorganization is

caused by the formation of hydrogen bonding of the esters through backbone of the

polymer [24]. They concluded that the presence of the different phases in the polymer

and the phase change between them will affect the performance of the polymer in-

vivo conditions [24]. Therefore, it's important to predict the behavior of these

polymers under in-vitro and in-vivo conditions.



CHAPTER 3

MATERIALS and METHODS

3.1 Materials

In this study two different L-tyrosine derived polymers were used: Poly(DTE

dodecondioate), Poly(DT 12, 10) and Poly(DTO sebacate), Poly(DT 8, 8) were kindly

purchased from New Jersey Center for Biomaterials and Medical Devices.

Tetrahydofuran (THF) from Sigma is used as polymer solvent for Poly(DT 12, 10)

and Poly(DT 8, 8). Soduim hydroxide from (NaOH) and potassium phosphate

monobasic from Fisher-Scientific are used to prepare phosphate buffer (PBS) solution

at pH 7.4. p-nitroaniline (PNA) purchased from Acros was used as model drug in drug

release analysis.

3.2 Methods

The methods used in this study can be grouped in to three subgroups. Thermal

analysis, degradation analysis of polyarylates and p-nitroaniline release analysis from

polyarylates.

Based on previous trials a fifteen percent polymer wt/v ratio is used to prepare

homogeneous polymer solutions. Five and 10% ratios had been used in preliminary

trials and it is seen that the viscosity was low. Fifteen percent have appropriate

viscosity to obtain suitable films. Glass plates were coated with Teflon sheets (with

adhesive one side). After obtaining homogeneous polymer solutions, polymers films

casted on these plates. The reason to use Teflon at coating surface is to be able to peel

off the films easily. A twenty mill stainless steel doctor blade was used for casting

each sample. Figure 3.1 shows the casted Poly(DT 8, 8) film with 10% PNA loading

and doctor blade.

22



Figure 3.1 10% PNA loaded casted Poly(DT 8, 8) film on Teflon coated glass and 
stainless steel doctor blade. 
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Films are subjected to air drying for 24 hours and vacuum drying at 40°C in 

vacuum oven for additional 24 hrs. Dried films are than cut into 0.5 inch x 0.5 inch 

pieces to incubate phosphate buffer solutions. 

3.2.1 Incubation of Polymer Films 

Square polymer films were incubated in phosphate buffer solutions (PBS). PBS is 

prepared according to United States of Pharmacopedia (USP) standards at pH 7.4 

[25]. 0.2 M sodium hydroxide and 0.2 M potassium phosphate monobasic is used and 

mixed according to USP standards. The polymer films are incubated at 37°C in 25 ml 
, . 

of PBS solutions. The films are removed at specified times, rinsed with deionized 

water and stored at 37°C for three more hours and prepared for DSC analysis. 
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3.2.2 Differential Scanning Calorimetry

"Differential scanning calorimetry" is used in thermal analysis of the polymers. In

these experiment it is used to determine the enthalpy change of the material as a result

of the incubation of the polymer films. Q100 Differential scanning calorimetry (TA

Intrument) was used in the study. In the analysis, conventional DSC in heat-cool-heat

mode was used for scanning in dry N2 environment. Samples were encapsulated in

standard aluminum pans between 5-8 mg. The first heating cycle gives information

related to the effect of polymer processing [6]. The parameters used in DSC are

summarized in Table 3.1.

Table 3.1 DSC Parameters for Thermal Analysis of L-tyrosine Derived Polyarylates

Parameters Temperature

Start Temperature (°C) -20

Heating Rate (°C) 10

Maximum Temperature (°C) 130

Cooling Rate (°C) 10

Minimum Temperature (°C) -20

For each analysis, three repetitions have been performed to be able to see

repeatability and precision. For each time point, results has been investigated with

95% confidence interval and shown by error bars in each figures.
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3.2.3 Release of P-nitroaniline

The release profile of p-nitroaniline was monitored by uv/visible spectrophotometer.

Standard curve has been prepared using the absorbance values at 382 nm for different

PNA concentrations. The wavelength has been determined by scanning the solution

having highest concentration in the range of 200-700 nm and the maximum peak has

been found at 382 nm which is consistent with literature [14, 44-46]. The calibration

curve and concentration equation was given in Results and Discussion Chapter. Three

readings were performed for each sample and collection time points and absorbance

values were recorded for each polymer type and drug ratios.

3.2.4 Gel Permeation Chromatography Analysis

In order to analyze the molecular weight of the polymers and thus the release

mechanism of the drug, gel permeation chromatography (GPC) was used. GPC

analysis were performed in THF (1 mL/min) using a Waters Breeze system equipped

with a 717plus autosampler, a binary HPLC pump, a 2487 dual 1 absorbance detector,

and a 2414 refractive index detector. A series of styragel columns which were kept in

a column heater at 35 °C, were used for separation. The columns were calibrated with

PS standards.

Polymer films were dissolved in THF (which is an appropriate solvent for

these polymers for GPC analysis) and clear solution was obtained before GPC

analysis. The weight of the polymer films were between 5-8 mg each time. In order to

see the repeatability of the results random incubation times were selected and the test

was repeated for each polymer type having different drug ratio.



CHAPTER 4 

RESULTS and DISCUSSION 

4.1 Effects of Incubation on Assembly of L-tyrosine Derived Polyarylates 

4.1.1 Effects ofIncubation on Assembly 

The effects of incubation on assembly were investigated by DSC. The films collected 

at specific incubation times were run in DSC and their enthalpies were determined 

from endothermic peaks obtained during melting. 
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Figure 4.1 PSC Results of 1'01y(DT 8, 8) (0% PNA) with 0, 24 and 48 hrs of 
incubation. 

Figure 4.1 shows the DSC results for the first heating cycle for Poly(DT 8, 8) 

with zero PNA concentration. As shown, the endothermic peak of the films changes 

for different incubation times indicating change of the enthalpy. At 0 hrs incubation a 

small endothermic peak was seen at around 60°C; after 24 hrs of incubation the 

26 
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endothennic peak became much sharper at around 63°C. The Tg almost disappears 

after incubation although it is apparent with the 0 hrs data point, consistent with 

results of Yoo [6]. The endothennic peak shows that the heat flow increases 

significantly for 24 and 48 hrs of incubation compared to zero hrs incubation. 

However, for Poly(DT 12, 10) the endothennic peaks do not change significantly as it 

can be seen in Figure 4.2. A sharp endothennic peak was seen at around 63°C and a 

very small shallow peak was seen at around 85°C. 
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Figure 4.2 DSC Results of Poly(DT 12, 10) (0% PNA) with 0, 23 and 45 hrs of 
incubation. 

Figures 4.3 and 4.4 show the enthalpy:.change of Poly(D~ 8, 8) and Poly(DT 

12, 10) respectively. The enthalpy values were calculated using linear baseline 

integration with TAU niversal Analysis. 

Incubation changes the enthalpy of Poly(DT 8, 8). In Figure 4.3 the 

exponential change in enthalpy of Poly(DT 8, 8) during the early stages of incubation 
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can be seen. It is also seen that the enthalpy increases and levels off after 

approximately 6 hrs. The change of the enthalpy with the incubation in a simulated 

aqueous body environment suggests the phase change of the polymer, reorganization 

in internal molecular aggregation, will occur in the first few hours of in-vivo use. 

Enthalpy Change of Poly(DT 8, 8) 0% PNA with Incubation 
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Figure 4.3 Enthalpy change ofPoly(DT 8, 8) with incubation with 0% PN'A. 
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Figure 4.4 Enthalpy change ofPoly(DT 12, 10) with incubation with 0% PNA. 
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Unlike Poly(DT 8, 8), the enthalpy values of Poly(DT 12, 10) do not change 

significantly with incubation. Figure 4.4 displays that; they follow a relatively 

constant pattern. 

In Figure 4.5 the enthalpy values for these two polymers without PNA content 

was compared. As seen, the enthalpy does not change significantly in Poly(DT 12, 

10), but Poly(DT 12, 10) has higher level off enthalpy value which is 30.5-31 Jig 

compare to Poly(DT 8, 8) which is approximately 19.5-20 Jig. 
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Figure 4.5 Enthalpy change comparison of Poly(DT 8, 8) and Poly (12, 10). 

To be able to see the effect of incubation in the PBS for Poly(DT 8, 8), the 

polymer films also were tested under vacuum environment at 37°C. Figure 4.6 

exhibit the enthalpy change of the samples under vacuum. According tC\l the results, 

Poly(DT 8, 8) also has an increase in enthalpy under vacuum but it is seen that the 

increase in enthalpy in PBS is faster compared to increase in enthalpy under vacuum. 

Under vacuum Poly(DT 8, 8) reveals a delay in the increase ofthe enthalpy. 
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Figure 4.6 Enthalpy change of Poly(DT 8, 8) with 0% PNA under vacuum. 
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Figure 4.7 Comparison of thermal behavior ofPoly(DT 8, 8) after 24 hrs of vacuum 
and incubated conditions. 
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In Figure 4.7 the comparison of thermal behavior of Poly(DT 8, 8) can be seen

after 24 hrs of incubation at different conditions. The green line shows the behavior of

the polymer film kept for 24 hrs at 37°C under vacuum. The black line shows the

behavior of the polymer films incubated for 24 hrs in the PBS at 37°C. The Figure

displays the difference on thermal behavior of Poly(DT 8, 8) treated differently. The

film incubated in the PBS shows a sharp enthalpic peak at around 63.87 °C whereas

polymer film kept under vacuum shows smaller enthalpic peak around 60°C. The

glass transition point for Poly(DT 8, 8) under vacuum is more distinguishable. This

difference can be a result of faster appearance of the phase change in Poly(DT 8, 8)'

for the samples incubated in PBS. One can conclude that moisture increases the rate

of the phase change of Poly(DT 8, 8) and causes reorganization in its structure. In
t

Appendix D the DSC results for Poly(DT 8,8) with 0% PNA under dry conditions for

each incubation time point were given for the first repetition.

It is also know that the increase in phase change enthalopy of Poly(DT 8, 8)

occurs in any conditions. It also occurs when it is kept in room conditions. Although,

It is not investigated in terms of kinetics in the study it is seen that if the polymer is

kept in room conditions, this enthalpy change also occurs. The storage conditions of

the polymers only affects how fast this change occurs.

In this study Poly(DT 8, 8) exhibited phase changing behavior having different

rate, depending on environmental conditions. Consistent with the previous studies of

Jaffe and his group, Initially Poly(DT 8, 8) has similar structure with Poly(DT 2, 2)

showing amorphous properties. After incubation Poly(DT 8, 8) reorganizes itself and

gain similar characteristic to Poly(DT 12, 10) [24, 27, 36, 38 ,39].
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4.1.2 Effect of Drug Loading Combined witb Incubation on Assembly 

The effect of drug loading on polymer assembly has been investigated by 

incorporation of model low molecular weight hydrophobic drug p-nitroaniline for 

both Poly(DT 8, 8) and Poly(DT 12, 10). Two different polymer-to-drug (wt\wt) 

ratios were used; 5% and 10%. 

Enthalpy Change of Poly(DT 8, 8) with 5% PNA Loading 
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Figure 4.8 Enthalpy change ofPoly(DT 8, 8) with incubation with 5% PNA . 
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Enthaply Change of Poly(DT 8, 8) with 10% PNA Loading 
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Figure 4.9 Enthalpy change ofPoly(OT 8, 8) with incubation with 10% PNA. 

Figures 4.8 and 4.9 exhibit the enthalpy change of the 5% and 10% drug 

loaded Poly(OT 8, 8) by incubation respectively. As can be seen, they follow similar 

pattern. Similar to 0% drug loaded poly(OT 8, 8) films, enthalpy incre~es gradually 
• 

and reaches a constant value after incubation of approximately half a day. 

Figure 4.10 shows the comparison of the enthalpy change of Poly(DT 8, 8) 

films having different drug loading ratios. It is seen that the enthalpy of the drug 

incorporated films tends to have higher values compared to blank samples, especially 

for 10% PNA loaded samples. In terms of the patterns that follow, the drug loaded 

samples and blank samples do ·not differ significantly, which shows that the rate and 

the behavior of the phase change ofthe Poly(DT 8, 8) films has not been affected by 

drug incorporation. In Appendix A, Band C the OSC results for Poly(OT 8,8) with 

0%, 5% and 10% PNA for each incubation time point were given for the first 

repetition respectively. 
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Enhtalpy Change of Poly(DT 8, 8) with Different PNA 
Concentrations 

25 

. .... • ~i 
I • • • 20 

'If'! i ~I ~ if • i 

• Ci 
:i 15 . 0% PNA ,., 

. 5%PNA a. 
n; 

': I .<: . 10% PNA -0:: 
III 

o I , , , , , 
0 2 4 6 8 10 

Time (day) 

Figure 4.10 Enthalpy change of Poly(DT 8, 8) with incubation with 0% 5% and 10% 
PNA. 

Figures 4.11 and 4.12 shows the enthalpy change of the 5% and 10% drug 

loaded Poly(DT 12, 10) by incubation respectively. Similar to Poly(DT 8, 8) the drug 
I 

loaded samples for Poly(DT 12, 10) as well shows similar behavior with bfank films. 

Enthaply Change of Poly(DT 12,10) with 5% PNa Loading 
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Figure 4.11 Enthalpy change of Poly(DT 12, 10) with incubation with 5% PNA. 
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Enthalpy Change of Poly(DT 12,10) with 10% PNA Loading 
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Figure 4.12 Enthalpy change ofPoly(DT 12,10) with incubation with 10% PNA. 
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Figure 4.13 Enthalpy change of Poly(DT 12, 10) with incubation with 0% 5% and 
10%PNA. 
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Figure 4.13 shows the comparison of enthalpy change between drug 

incorporated samples and blank Poly(DT 12, 10) samples. Consistent with the result 

of Poly(DT 8, 8); drug incorporated samples also experience the similar behavior in 

terms of rate and pattern of the enthalpy change by incubation but the drug 

incorporated samples tends to have slightly higher enthalpy especially for 10 % PNA 

containing films. In Appendix E, F and G the DSC results for Poly(DT 12, 10) with 

0%, 5% and 10% PNA for each incubation time point were given for the first 

repetition respectively. 

In order to understand better the effect of PNA incorporation into the both 

Poly(DT 8, 8) and Poly(DT 12, 10), PNA has also been tested with DSC. The DSC 

parameters used were the same for DSC run except the highest temperature which is 

selected as 165°C to make sure that is slightly above the melting temperature of the 

p-nitroaniline. The melting temperature of PNA is 149°C. Figure 4.14 shows the 

DCS result for PNA powder. 
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Figure 4.14 DSC Result for p-nitroaniline in powder form. 
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DSC result for PNA shows a single endothermic peak at the melting

temperature of the model drug. There is no peak at the temperature that both Poly(DT

12, 10) and Poly(DT 8, 8) has endothermic peak. According to this result, one can

conclude that the slight increase in the enthalpy of the drug incorporated polymers

was not caused by the drug itself but the effect of the drug addition on the structure of

the resulting polymeric films.

4.2 Gel Permeation Chromatography Results

Gel permeation chromatography is a chromatographic technique that separates the

molecules depending on their size. It does not separate them directly depending on

their molecular weight but their hydrodynamic volume. Then molecular weight of the

samples can be determined using different standards. In this study polystyrene

standards were used. The larger the molecular weights the faster it came out from the

column since smaller molecules are retarded in the column. In order to see change in

molecular weight of the polymers Gel Permeation Chromatographic analysis was

performed.

The results showed that the molecular weight distribution range is quite broad

since the peak obtained for each sample was not sharp which indicates large

molecular weight distribution. This is an expected result for complex structures like

polymers. It is reasonable to consider that 5-10% change in molecular weight can not

be considered as change in molecular weight and conclude that there is no change and

there is no degradation during incubation.
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Figure 4.15 Molecular weight of incubated Poly(DT 8, 8) with 0% p-nitroaniline. 
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Figure 4.16 Molecular weight of incubated Poly(DT 8, 8) with 5% p-nitroaniline. 
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Molecular Weight of Poly(OT 8, 8) with 10% PNA Incubated in 
PBS 

80000 

70000 • • • • • • • 
60000 

:r! 50000 
.s il 40000 

~ 30000 
:I; 

20000 

10000 

0 
0 2 4 6 8 10 12 14 

Time (days) 

16 

Figure 4.17 Molecular weight of incubated Poly(DT 8, 8) with 10% p-nitroaniline. 
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Figures 4.15, 4.16 and 4.17 show the change in molecular weight of the 

Poly(DT 8, 8) with 0%, 5% and 10% PNA respectively by incubation in PBS. All 

three figures indicate that the change in molecular weight is negligible during 
;' 

incubation time. Therefore one can conclude that the release of the p-nitroaniline 

occurs with diffusion controlled manner rather that degradation controlled manner . 

. -



Molecular Weight of Poly(DT 12, 10) with 0% PNA Incubated in 
PBS 

60000 

50000 

~ 40000 
.9 
~ 30000 

~ 20000 

• 
• • • • • • • • • • 

10000 I. Poly(DT 12, 10) 0% PNA 1 
o +-----------~----------_.----------~ 

o 5 10 15 

Time (days) 

41 

Figure 4.18 Molecular weight of incubated Poly(DT 12, 10) with 0% p-nitroaniline. 
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Figure 4.19 Molecular weight of incubated Poly(DT 12, 10) with 5% p-nitroaniline. 
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Moloecular Weight of Poly(DT 12, 10) with 10% PNA Loading 
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Figure 4.20 Molecular weight of incubated Poly(DT 12, 10) with 10% p-nitroaniline. 

Figures 4.18, 4.19 and 4.20 show the molecular weight change during 

incubation of the Poly(DT 12, 10) with 0%, 5% and 10% PNA respectively. From 
;' 

each figure it can be concluded that the molecular weight of the polymer films stays 

constant during the incubation since the change is smaller than 10% for Poly(DT 12, 

10) similar to Poly(DT 8, 8). Since the molecular weight of Poly(DT 12, 10) stays 

constant it can be concluded that the release from Poly(DT 12, 10) is also controlled 

by diffusion. 

4.3 P-nitroaniline .~~lease Results 

The release of PNA was monitored by UVIVis spectrophotometer. The calibration 

curve has been constituted with different concentrations and the amount of PNA 

released to the incubation solution was calculated using the equation obtained from 
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that cal ibration curve. The equation obtained is given below in Equation 1 and the 

calibration curve is given in Figure 4.21. 

C[PNA 1 = 0.0099 * Absorbance Equation (1) 

The concentration of p-nitroaniline has been calculated using the Equation I. 

The weight of PNA has been calculated as mg in the PBS, and the weight percentage 

of the PNA released from the film has been calculated. For this calculation it is 

assumed that the drug has been uniformly dissolved in the polymer film and polymer 

to drug ratio (wtlwt) is same in every part of the films. 
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Figure 4.21 Concentration absorbance relatiori~hips for model drug P-nitroaniline. 

The release profile of PNA from 10% (polymer/drug wtlwt) drug containing 

Poly(DT 8,8) and Poly(DT 12, 10) is shown in Figure 4.22 and Figure 4.23 

respectively. As seen from the both Figure, p-nitroaniline releases quite quickly. The 
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time length requires for Poly(DT 12, 10) to reach equilibrium is shorter compare to 

Poly(DT 8, 8). Poly(DT 12, 10) reaches its equilibrium concentration at about 360 

min whereas, Poly(DT 8, 8) reaches its equilibrium concentration approximately in 

400 min (6-7 hrs). Figure 4.24 displays the comparison of the release profile of PNA 

from both Poly(DT 12, 10) and Poly(DT 8, 8). The difference in time length required 

to reach the equilibrium can be seen well in Figure 4.24. It's remarkable that the 

length of time that the release reaches equilibrium from the polymer is close to the 

length of time that the change in enthalpy in the Poly(DT 8, 8) films reaches steady 

state. Approximately 85.5% of PNA released from 10% PNA loaded Poly(DT 8, 8) 

and 92% of PNA released from 10% PNA loaded Poly(DT 12, 10). Poly(DT 12, 10) 

has slightly higher total release compared to Poly(DT 8, 8). 

Release of PNA from 10% PNA loaded Poly(OT 8, 8) 
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Figure 4.22 Release profile of p-nitroaniline from 10% drug containing Poly(DT 8, 
8). 
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PNA Release From 10% PNA loaded Poly(OT 12, 10) 
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Figure 4.23 Release profile ofp-nitroaniline from 10% drug containing Poly(DT 12, 
10). 
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Figure 4.24 Comparison of the release profile of p-nitroaniline from 10% drug 
containing Poly(DT 8, 8) and Poly(DT 12, 10). 
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The release profile of PNA from 5% (polymer/drug wtlwt) drug containing 

Poly(DT 8,8) and Poly(DT 12, 10) is shown in Figure 4.25 and Figure 4.26 

respectively. Similar to 10% PNA loaded samples the release is very quick and PNA 

concentration reaches equilibrium in a very short period of time. In addition similar to 

10% loaded samples the time length requires for Poly(DT 12, 10) to reach equilibrium 

is shorter compare to Poly(DT 8, 8). Poly(DT 12, 10) reaches its equilibrium 

concentration at about 400 min whereas, Poly(DT 8, 8) reaches its equilibrium 

concentration approximately in 600 min (6-7 hrs). Figure 4.27 displays the 

comparison of the release profile of PNA from both Poly(DT 12, 10) and Poly(DT 8, 

8). Approximately 81% of PNA released from 5% PNA loaded Poly(DT 8, 8) and 

89% of PNA released from 5% PNA loaded Poly(DT 12, 10). Although total percent 

releases are very close to each other, Poly(DT 12, 10) has slightly higher release 

compared to Poly(DT 8, 8) as in the case of 10% drug loaded samples. 

P-nitroaniline Release from 5% PNA Containing Poly(DT 8, 8) 
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Figure 4.25 Release profile ofp-nitroaniline from 5% drug containing Poly(DT 8, 8). 
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P-nitroaniline Release from 5% PNA loaded Poly(DT 12, 10) 
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Figure 4.26 Release profile of p-nitroaniline from 5% drug containing Poly(DT 12, 
10). 
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Figure 4.27 Comparison of the release profile of p-nitroaniline from 5% drug 
containing Poly(DT 8, 8) and Poly(DT 12, 10). 
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4.4 Discussion

According to the DSC results, Poly(DT 12, 10) showed an endothermic peak upon

heating and an exothermic peak upon cooling; Poly(DT 8, 8) on the other hand

showed only an endothermic peak consistent with previous work [24, 36]. Consistent

with the previous study of Collins et al., Poly(DT 12, 10) doesn't show a change in

heat capacity upon heating that could be considered as a glass transition point [36],

although Poly(DT 8, 8) showed a change in heat capacity around 15°C that can be

considered as glass transition temperature. Yoo et al. investigated the effect of the

water treatment for different molded polyarylates of varying backbone chain lengths,

including the Poly(DT 8, 8) composition. Similar to this study, the glass transition

point is observed in the second DSC heating while only a sharp endothermic peak is

observed in the first heating cycle [27]. The disappearance of the Tg point with the

increase in the endothermic melting peak upon heating indicates reorganization in

Poly(DT 8, 8) during incubation in the PBS.

A number of desaminotyrosil derived polymers have been studied by Jaffe's

group. Unordered Poly(DT 2, 2) and Poly(DT 2, 4) will behave as amorphous

polymers and Poly(DT 12, 10) as ordered will behave as an organized. Therefore

Poly(DT 12, 10) should have a slower elution time compared to amorphous polymers.

Poly(DT 8, 8) on the other hand, will first behave as an amorphous polymer; then

depending on the application and storage conditions it will reorganize itself and it will

have a structure similar to Poly(DT 12,10), and the release should change. Thus it will

show changing elution profile which should be considered upon producing a medical

device requiring specific properties. Depending on these facts, it was expected that

Poly(DT 12, 10) would show slower elution profile compared to Poly((DT 8, 8).
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However, on the contrary it showed a faster elution profile and reached equilibrium

faster than Poly(DT 8, 8).

The rate of reorganization in Poly(DT 8, 8) has been investigated and the

results showed that it experiences very fast exponential ordering in PBS at 37°C and

reaches steady state value in almost half a day. Initially it has an fully amorphous

structure and with incubation it reorganizes itself in a half a day. However, when is

kept under vacuum at 37°C, it showed much slower reorganization; and it experienced

slow reorganization after approximately one and a half day. The change in polymer

also shows that the storage conditions of a device produced from Poly(DT 8, 8) are

also extremely important in terms of internal aggregation of the polymer and this

should play important role for the elution profile of a drug and the degradation rate of

the polymer. The effects of temperature and moisture on the ordering of Poly(DT 8, 8)

have already been studied by Yoo et al. [6]. It has been seen that the moisture content

of the polymer is directly related to the structural change and the endothermic peak

formation in Poly(DT 8, 8) and also that with moisture, Poly(DT 8, 8) experiences

easier structural reorganization [6]. The previous results are consistent with the

current study indicating that the incubation of the Poly(DT 8, 8) increases the speed of

the phase change.

In this study the effect of the drug incorporation on the structural behavior of

both polymers has also been investigated. The results indicate that the incorporation

of a low molecular weight model drug has not been significantly affected the

structural behavior (the shape of the enthalpy change), but the drug containing films

tends to have slightly higher enthalpy compared to blank samples for both polymers

especially for 10% loading.
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The DSC result for PNA powder showed an endothermic peak at about 149-

150 °C which is the melting temperature of p-nitroaniline. The results suggest that the

increase in enthalpy of the poly(DT 8, 8) and Poly(DT 12, 10) casted films is not

caused by the drug itself. It might be the result of the effect of the drug loading on the

structure of the material. However, this hypothesis needs further analysis.

According to the results obtained from the GPC analysis, the change in

molecular weight of the polymer films during 10-15 days of incubation is negligible

as expected for both Poly(DT 8, 8) and Poly(DT 12,10). Therefore it is clear that the

release of the model drug, p-nitroaniline, is controlled by diffusion for both

polyarylate types. This result is consistent with the previous studies of the Kohn

group.

The release of the model drug is quite fast and reaches constant concentration

in almost 6-7 hours in both cases. However, Poly(DT 12, 10) releases faster compare

to Poly(DT 8, 8) which was not an expected result. It was expected that the initial

amorphous structure of Poly(DT 8, 8) would cause faster release in the beginning.

However since the reorganization of the Poly(DT 8, 8) is fast, one can conclude that it

is not an effect for the release of a material. In other words reorganization is too fast

to be a significant effect in the release profile. Then the release should be a result of

internal molecular structure. From previous studies it is known that the reorganization

in polyarylates is associated with hydrogen bonding [6]. It is also clear that Poly(DT

12, 10) is a larger monomer compared to Poly(DT 8, 8) since there are more

methylene group in both backbone and side chain structure [6]. Hence when hydrogen

bonding occurs the space between molecules will be larger in Poly(DT 12, 10)

compared to Poly(DT 8, 8) which will create more space for drug to move. As

indicated before it is also clear that the elution occur by diffusion. Then It is
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reasonable for Poly(DT 12, 10) to have faster since PNA molecules can move easier.

As mentioned before from the previous studies it is known that Poly(DT 2, 2) and

Poly(DT 2, 4) does not show any hydrogen bonding associated reorganization. They

remain amorphous. The reason for this might be that the shorter the molecule the less

flexible it is and the more difficult to make hydrogen bonding. As chains length

increases Polyarylates starts to form hydrogen bonding in their internal structure.

Figure 4.28 displays the 5% model drug remaining in the polymer films after

incubation in PBS. The elution stops at approximately 400 min for 5% drug loaded

samples of Poly(DT 12, 10) and 600 min for Poly(DT 8, 8).

Figure 4.28 %Drug Remaining in 5% PNA loaded Poly(DT 12, 10) and Poly(DT 8,
8).
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Figure 4.29 %Drug Remaining in 10% PNA loaded Poly(DT 12, 10) and Poly(DT 8,
8).

Figure 4.29 displays the 10% model drug remaining in the polymer films after

incubation in PBS. The elution stops at approximately 360 min for 10% drug loaded

samples of Poly(DT 12, 10) and 400 min for Poly(DT 8, 8).

Figure 4.30 shows the release profile from 5% PNA loaded Poly(DT 8, 8), as

seen it shows almost constant release through the release time. In Figure 4.31 the

release profile of 5% PNA loaded Poly(DT 12, 10) can be seen. Unlike Poly(DT 8, 8),

Poly(DT 12, 10) showed almost instant release of PNA. It showed a release profile

like a burst effect.



Figure 4.30 Drug Release from 5% PNA loaded Poly(DT 8, 8).
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Figure 4.31 Drug Release from 5% PNA loaded Poly(DT 12, 10).
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Figure 4.32 and 4.33 displays the release profile of 10% PNA loaded Poly(DT 8, 8)

and Poly(DT 12 10), respectively. Both of the polymers showed an instantaneous

release when they are loaded with 10% PNA; with 10% loading Poly(DT 8, 8)

showed a difference in release behavior. It released the drug similar to Poly(DT 12,

10) like burst effect. From this result one can conclude that drug loading percentage is

important in terms of release behavior. 10% loading can be too much for Poly(DT 8,

8) and that might be the reason for the fast release.

Figure 4.32 Drug Release from 10% PNA loaded Poly(DT 8, 8).



Figure 4.33 Drug Release from 10% PNA loaded Poly(DT 12, 10).
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CHAPTER 5

CONCLUSION

In this study the effect of incubation on Poly(DT 8, 8) and Poly(DT 12, 10) was

investigated and the results associated with the drug release properties of both

materials. In addition the degradation behavior of the polymers has been investigated.

DSC results showed that Poly(DT8, 8) has amorphous structure and reorganize

during incubation and gain a non-crystalline ordered structure. Unlike Poly(DT 8, 8),

Poly(DT 12, 10) has an ordered structure similar to steady state structure of Poly(DT

8, 8). This result is consistent with the previous studies carried out by MDCL lab.

In order to investigate the effect of structure on the release properties on the

polymers, model drug p-nitroaniline (PNA) was used. The release of the drug is a

diffusional phenomenon which was shown by Gel Permeation Chromatography

analysis. The change in molecular weight during the release time of was negligible,

which will reveal that the release is not a result of degradation of the polymers.

The elution profile has been monitored by using Uv/Visible

spectrophotometer. The elution of the PNA is very fast as it was expected according

to the previous studies in the literature. The release is even faster from Poly(DT 12,

10) for both 5% and 10% drug ratios, which was an unexpected result in this study.

The percent release from 5% loaded samples was 81% and 89% for Poly(DT 8, 8) and

Poly(DT 12, 10) respectively and from 10% loaded samples it was 85.5% and 92 %

for Poly(DT 8, 8) and Poly(DT 12, 10) respectively.
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APPENDIX A 

RAW DATA OF DSC RESULTS OF POLY(DT 8, 8) WITHOUT DRUG 
LOADING 

DSC results of 0% p-nitroaniline loaded Poly(DT 8, 8) and measured enthalpy of 
phase change. 
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Figure A.l De S result for 0 hours mcuated Poly(DT 8, 8) wIth 0% PNA. 

57 



58 

02 

0.0 

0; .(J.2 

~ 4904'C 

~ 13i3J19 
u: 

" ~ .(J.4 J: 

.(J6 

.(J.a 
·0 0 20 40 60 60 '00 ,20 ' 40 

"" u, TemperalUre rC) Unlven.al I/ • . DC TA In5Irumon:S 

FIgure A.2 De S result for I hour mcuated Poly(DT 8, 8) wIth 0% PNA. 

02 

0.0 

/ , 

[ .(J2 

&U57'C 

§ 1 •. 82J/g 

u: 

\l ( " • .(J.4 J: 

-0.6 

56\1,.C 

.(J.a 
· 0 0 20 40 60 80 , 00 ,io '40 

.... u, T emp~~tu~.e (-C) Unlvtr.llll V4 .eM: T t., Inslrumen:. 

FIgure A.3 De S result for 2 ·hours mcuated Poly(DT 8, 8) wIth 0% PNA. 



59 

0.2 

0.0 

~ 
-02 

~ 53.7S·C .. 16.8Wfg 

10 

Y\ r • -0.4 1: 

·0. 

58 .~.C 
-0.8 

0 .00 .io ·0 20 40 60 80 140 

EwUp Temperature ("C) Un .... ffSIII '.'4.OC TA IIIWu!NII\UI 

FIgure A.4 DeS result for 4 hours mcuated Poly(DT 8, 8) wIth 0% PNA. 

02 

0.0 

, 

r -0.2 

~ 54.12"C .. IT.5OJtg 

10 V\ • -0.4 1: 

-0 .6 

-0.8 
, " ,·c 

·0 0 20 40 60 80 .00 .io • 0 

.... "' Temper~ tjJ r~ {eG} Un ........ 1 V4.OC TA InH"umenIII 

FIgure A.5 DeS result for 6 hours mcuated Poly(DT 8, 8) with 0% PNA. 



60 

0.2 

0.0 

-0.2 

~ 
56.14'C 
17.81Jf9 

~ .0.4 \r'\ Ii: 
101 
~ 
:I: 

-0.6 

-0.8 
61.40'C 

-1.0 
·0 0 20 40 60 8() ,00 ,lo 140 

"'" '" Temp~ratufe (·C) UnlvelHl V4.OC flo. InaIr\ImeIU 

Figure A.6 DeS result for 17 hours mcuated Poly(DT 8, 8) with 0% PNA. 

0.2 

0.0 

I 

if 

~ 
.0.2 

55.~·C 

~ 
16·84.119 

Ii: 'v\ 101 
~ .04 J: 

.0.6 

61.5S'C 

.0.8 
. 

• 0 0 20 ' 0 60 80 '00 .20 • 0 
~U!) Tempe~lur~·(·C) UnlYefHl V4.OC T4 Inlt,,"nentl 

Figure A.7 DeS result for 21 ·hours mcuated Poly(DT 8, 8) with 0% PNA. 



61 

02 

0.0 

.(J.2 

57.91·C 

~ 17.96.//0 

~ .(J" '-\ ( 
CL 

" ~ :I: 

.(J.S 

.(J.a 

52.87'C 

-1.0 
·0 0 20 40 60 80 100 Ii<> 140 

"" V, Temperature ("C) Unlvel$tll V4.OC TA 1nH'um1lfl~ 

FIgure A.S DeS result for 24 hours mcuated Poly(DT 8, 8) with 0% PNA. 

0.2 

00 

I 

·0.2 if 

0; 
5O.we 

~ 
19 ,34J(g 

~ ·0 .4 (\ u: 

" ~ :I: 

.(J.S 

.(J.a 

62.3!5'C 

.'LO , 
·0 0 20 40 60 80 100 120 I 0 

EIIO UD Temperil~4fe. ( oC) Univ~ V-HlC T .1mIn.omefl~ 

FIgure A.9 DeS result for 29 ·hours 9 mm mcuated Poly(DT 8, 8) with 0% PNA. 



62 

0.2 

0.0 

-0.2 

~ 
57.SO'C 
18.51JJI:I 

\0( ~ -0.4 
u: 

" • :I: 

-0.6 

-0.8 

52.79·e 

., 0 
· 0 0 20 40 60 80 '00 ,lo , 0 

"'U, Temperature (*C) Un ..... rnl V4.OC TA lmINmeow 

Figure A.10 DeS result for 42 hours mcuated Poly(DT 8, 8) with 0% PNA. 

0.2 

0.0 

I 

-0.2 • 
58.14'C 

~ 
18.31J/9 

'v\ ( 
~ -OA 
u: 

" • :I: 

-06 

-0." 

6-3.05'C 

·1.0 • 
b 20 40 60 so ' 00 ,lo , 0 

EwU, T empera.t~l r~.( ·C) UnlveIWI V4.OC TA JI\Mumen\$ 

Figure A.ll De S result for 48 hours mcuated Poly(DT 8, 8) with 0% PNA. 



63 

0.2 -,--------------------------------, 

0.0 

·0.6 

-o.S 

62."S'C 

Figure A.12 DeS result for 53 hours incuated Poly(DT 8, 8) with 0% PNA. 

0.2 

0.0 
/ 

<I 

-0.' 

58_64'C 

~ 
19.0SJIg 

~ -0.< 
.~ 

u: 

" • :J: 

-06 

-O.B 

, 

-1 .0 
63.19'C 

- a 0 " 40 60 60 100 lio 1 a 
""' u, Temperature (eC) UnivelSal V4.OC TA tnalrumentt 

FIgure A.13 DeS result for 67 hours mcuated Poly(DT 8, 8) wIth 0% PNA. 



64 

0.2 

00 

~ 
-0.2 

59.17'C 
17 6 1JJg 

~ '" u: 
10 • -0.4 :I: 

-06 

-0.8 
64.1S"C 

- 0 0 20 40 60 80 100 ,lo 1 0 

~o Up Temperature (·C) Unlver$aI VoH'C Til. I~ 

Figure A.I4 De S result for 78 hours mcuated Poly(DT 8, 8) with 0% PNA. 

0.2 

0.0 

I 

·o~ 
<I 

~ 
59.3S'C 
19.15J1g 

~ -0.4 ~ 7 
u: 
10 • :I: 

·06 

-0.8 

-1.0 
, 6J.a1 'C 

• 0 0 20 40 60 80 ' 00 ,lO- 1 0 
,,", v, Temper~tur.e (Oe) Unlvemll V4.OC Til. Iror.Irum«lta 

Figure A.IS DeS result for 89 hours mcuated Poly(DT 8, 8) with 0% PNA. 



65 

0.2 

0.0 

rn .(11 
SJ.68'C 

~ 2Q.24J10 

~ .(14 

\! 
(\ 

LL 
~ ro 
<l> 

I .(I·G 

.(I.B 

64.80' C 

-1 .0 
0 .00 .lo - 0 20 40 SO 80 • 0 

'""u, Temperature (oG) Urri..-~ v •. oc TA ImIrumeI\UI 

FIgure A.16 DeS result for 170.5 hours mcuated Poly(DT 8, 8) wIth 0% PNA. 

02 

00 I 

if 

rn -0.2 
5O.S3'e 

~ 20.15JJg 

3 -0.4 \1(\ 
0 
LL 
~ 

ro 
<l> 

I .(I·6 

.(IB 

, 

-1.0 " . " ' 0 

- 0 0 20 40 SO' BO ' 00 • • lo 140 
,""u, 

Temperature (oG) Universal "'4 .DC TA InsIruntefltt 

FIgure A.17 DeS result for 193 hours mcuated Poly(DT 8, 8) wIth 0% PNA. 



APPENDIXB 

RAW DATA OF Dse RESULTS OF POLY(DT 8, 8) WITH 5% DRUG 
LOADING 

DSC results of 5% p-nitroaniline loaded Poly(DT 8, 8) and measured enthalpy of 
phase change. 
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APPENDIXC 

RAW DATA OF DSC RESULTS OFPOLY(DT 8, 8) WITH 10% DRUG 
LOADING 

Dse results of 10% p-nitroaniline loaded Poly(DT 8, 8) and measured enthalpy of 
phase change. 
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APPENDIXD 

RAW DATA OF DSC RESULTS OF POLY(DT 8, 8) WITH 0% DRUG 
LOADING UNDER VACUUM CONDITIONS 

Dse results of 0% p-nitroaniline loaded Poly(DT 8, 8) under vacuum conditions and 
measured enthalpy of phase change. 
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conditions. 
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APPENDIXE 

RAW DATA OF DSC RESULTS OF POLY(DT 12, 10) WiTH 0% DRUG 
LOADING 

Dse results of 0% p-nitroaniline loaded Poly(DT 12, 10) and measured enthalpy of 
phase change. 
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Figure E.9 DeS result for 44 hours 59 mm mcuated Poly(DT 12, 10) with 0% PNA. 
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Figure E.12 DCS result for 69 hours mcuated Poly(DT 12, 10) with 0% PNA. 
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Figure E.13 DCS result for 75 hours mcuated Poly(DT 12, 10) with 0% PNA. 
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APPENDIXF 

RAW DATA OF DSC RESULTS OF POLY(DT 12, 10) WITH 5% DRUG 
LOADING 

Dse results of 5% p-nitroaniline loaded Poly(DT 12, 10) and measured enthalpy of 
phase change. 
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Figure F.6 DCS result for 6 hours mcuated Poly(DT 12, 10) with 5% PNA. 
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Figure F.9 DCS result for 72 hours mcuated Poly(DT 12, 10) with 5% PNA. 
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APPENDIXG 

RAW DATA OFDSC RESULTS OFPOLY(DT 12, 10) WITH 10% DRUG 
LOADING 

DSC results of 10% p-nitroaniline loaded Poly(DT 12, 10) and measured enthalpy of 
phase change. 
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Figure G.6 DeS result for 6 hours mcuated Poly(DT 12, 10) with 10% PNA. 
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Figure G.7 DeS result for 19 hours mcuated Poly(DT 12, 10) with 10% PNA. 



lOS 

02 

0.0 

·02 66.00'C 
~ 30.09J1g 
0> 

~ ~4 ~ ( 

:;; 
0 

1L. .0.6 -ro 
Q) 

I 
-0.8 

·1 .0 

·12 '''''0 
. a 6 20 40 60 80 100 110 I a 

EIlO Up Temperature (0C) 
LSnlverui V4.oc Til l!'4lr\Imen~ 

Figure G.S DCS result for 24 hours mcuated Poly(DT 12, 10) with 10% PNA, 

0.5 

I 

0.0 , 
~ 

0> '-
~ 

65.07'C 
32 .46J~ 

~ ~5 "\' ( 
u. -ro 
Q) 

I 
-1.0 

, 58.84'C 

·1 .5 
·20 ; 20 40 6~ . .- 80 100 110 I a 

:xo Up Temperature (OC) 
UnIYflaol v •. oc T A Im.tn;mentll 

Figure G.9 DCS result for 72 hours mcuated Poly(DT 12, 10) with 10% PNA. 



109 

0.5 

0.0 

~ "- 66.61'C 

~ 32.12JJO 

~ ~ ( 
~ '{L5 

LL -ro 
Q) 

I 
·1.0 

69.85'C 

-1.5 
· 0 0 20 40 60 80 ,00 ,lo , 0 

1:110 Uo Temperature (OC ) Unlvtn.al V4.OC TA II!6tr'U_ta 

FIgure G.I0 DCS result for 96 hours mcuated Poly(DT 12, 10) wIth 10% PNA. 

0.5 

0.0 I 

66.77"C 
, 

32.03Jfg 
~ 

'\ ( .!2l 
~ ·0.5 

:;: 
0 

LL co ·1.0 

Q) 

I 

-1.5 69.91'C 

, 

-2.0 
. 0 0 20 " 60,. 60 ' 00 .lo • 0 

"" u, TemDeratu ~e (OC) UnNel$$l V4-OC TA Il1$Ir'umet'ltt 

Figure G.ll DCS result for 120 hours mcuated Poly(DT 12, 10) wIth 10% PNA. 



110 

0.5 

0.0 

66.19'C 
32.44JJg 

~ 

~ ( !2l S .05 
~ 

:;: 
0 

LL ro -1.0 

(\) 

I 

-1.5 69. 1S'C 

.20 ~ 6 20 40 60 80 100 lio 140 

ElIQ Uc Temperature (0C) Unt/tl"$Cll V4.OC TA In$lrumetl',$ 

Figure G.12 Des result for 144 hours meuated Poly(DT 12, 10) wIth 10% PNA. 

I 

.. 



REFERENCES

1. "Biomedical Engineering Handbook", Editor-in-chief Joseph D. Bronzino, 2nd
eddition, CRC and IEEE Press

2. Gupta A. S., and Lopina S. T. (2004). Sy.nthesis and characterization of L-
tyrosine based novel polyphosphates for potential biomaterial applications.
Polymer, 45, 4653-4662.

3. Karoussos I. A., Wieneke H., Sawitowski T., Wnendt S., Fischer A., Dirsch 0.,
Dahmen U., and Erbel R. (2002). Inorganic Materials as Drug Delivery in
Coronary artery Stenting. Inorganic Materials, 33, 738-746.

4. Gupta A. S., and Lopina S. T. (2005). Properties of L-tyrosine based
polyphosphates pertinent to potential biomaterial applications. Polymer, 46,2133-
2140.

5. Bourke S L., and Kohn J. (2003). Polymers derived from the amino acid L-
tyrosine: polycarbonate, polyarylates and copolymers with polyethylene gylcol).
Advanced Drug Delivery Reviews, 55,  447-466.

6. Yoo S. U., "Structure-Property Relationship of Biodegradable Polyarylates: Study
of the Complex Solid State Behavior", Dissertation, Department of Materials
Science and Engineering, New Jersey Institute of Technology.

7. Tangpasuthadol V., Shefer A., Yu C., Zhou J., and J. Kohn. (1997). Thermal
properties and enthalpy relaxation of tyrosine-derived polyarylates. Journal of
Applied Science, 63, 1441-1448.

8. Yu C., and Kohn J. (1999). Tyrosine-PEG-derived poly(ether carbonate)s as new
biomaterials Part I: synthesis and evaluation. Biomaterials, 20, 253-264.

9. Definition of tyrosine. [Posted on Web site Wikipedia]. Retrieved February 6,
2008 from the World Wide Web:

http://en.wikipedia.org/wiki/Tyrosine

10. Recber A., Jaffe M., and Collins G. (2004). Thermal Analysis of Poly(desamino
arylates). IEEE, 128-129

11. Brocchini S., James K., Tangpasuthadol V., and J. Kohn. (1998). Structure-
property correlations in a combinatorial library of degradable biomaterials.
Journal of Biomedical Material Research, 42,  66-75.

12. Kohn J. B., and Fiordeliso J. J. (1994). Poyarylates containing derivatives if the
natural amino acid L-tyrosine. United States Patent No. 5317077.

13.	 Kopecek J. (1984). Controlled biodegradability of polymers - a key to drug
delivery systems. Biomaterials, 5, 19-25.

111



112

14. Cheng G., Aponte M. A., and Ramirez C. A. (2004). Cross-linked amino acid-
containing polyanhydrides for controlled drug release applications. Polymer, 45,
3157-3162.

15. Cheng K. C., and Chu I. M. (2005). In vitro release if incorporated compounds in
poly(sebacic anhydride-co-ethylene glycol). European Polymer Journal, 41, 1403-
1409.

16. Kejlova K., Labsky J., Jirova D., and Bendova H. (2005). Hydrophilic polymers-
biocompatibility testing in vitro. Toxicology in Vitro, 19, 957-962.

17. Middleton J. C., and Tipton A. J. (2000). Synthetic biodegradable polymers as
orthopedic devices. Biomaterials, 21, 2335-2346.

18. Hubbell J. A. (1998). Synthetic biodegradable polymers for tissue engineering and
drug delivery. Current Opinion in Solid State and Materials Science, 3, 246-251.

19. Pillai 0., and Panchagnula R., (2001). Polymers in drug delivery. Current Opinion
in Chemical Biology, 5, 447-451.

20. Wu P., and Grainer D. W. (2006). Drug/device combinations for local drug
therapies and infection prophylaxis. Biomaterials, 27, 2450-2467.

21. Gollwitzer H., Ibrahim K., Meyer H., Mittelmeier W., Busch R., and Stemberger
A. (2003). Antibacterial poly(D,L-lactic acid) coating of medical implants using a
biodegradable drug delivery technology. Journal of Antimicrobial Chemotherapy, 
51, 585-591.

22. Jain A. K., and Panchagnula R. (2000). Skeletal drug delivery systems.
International Journal of Pharmaceutics, 206, 1-12.

23. Bertrand 0. F., Sipehia R., Mongrain R., Rode's J., Tardif J. C., Bilodeau L., and
Bourassa M. G. (1998). Biocompatibility aspects of new stent technology. Journal 
of American College Cardiology, 32, No:3, 562-571.

24. Jaffe M., Ophir Z., Collins G., Recber A., Yoo S. U., and Rafalko J. J. (2003).
Process-structure-property relationships of erodable polymeric biomaterials: II-
long range order in poly(desaminotyrosil arylates). Polymer, 44, 6033-6042.

25. Committee of Revision and Published by the Board of Trustees. (1990). The
United States of Pharmacopedia 22 National Formula 17.

26. Anderson J. C., Leaver K. D., Leevers P., and Rawlings R. D. (2003). Material
science for engineers. Nelson Thormes 5 th edition.

27. Yoo S. U., Collins G., Jaffe M. (in preparation) Complex solid state behavior of
tyrosine derived polyarylates: III - The systematic observation of the
poly(Desaminotyrosil-Tyrosine arylate), the relationship between the chemical
structure and the behavior in biorelevant conditions.



113

28. Miyagawa E., Tokumitsu K., Tanaka A., Nitta K. H. (2007). Mechanical property
and molecular weight distribution changes with photo and chemical-degradation
on LDPE films. Polymer Degradation and Stability, 92, 1948-1956.

29. Costa H. M., Ramos V. D., Oliveira M. G. (2007). Degradation of polypropylene
(PP) during multiple extrusions: Thermal analysis, mechanical properties and
analysis of variance. Polymer Testing, 26, 676-684.

30. Ott R. L., Longnecker M. (2001). An introduction to statistical methods and data
analysis. Duxbury Thomson Learning 5 th edition.

31. Harper C. A., and Petrie E. M. (2003). Plastic materials and processes: A concise
encyclopedia. John Wiley and Sons.

32. Definition of Heat of fusion. [Posted on Web site Wikipedia]. Retrieved February
28, 2008 from the World Wide Web:

http://en.wikipedia.org/wiki/Enthalpy_of fusion.

33. Ratner B. D., Hoffman A. S., Schoen F. J., and Lemons J. E. (2004). Biomaterial
Science: An Introduction to Materials in Medicine. Elsevier Academic Press 2nd

edition.

34. Amorphous Polymers. [Posted on Web site Britannica Online Encyclopedia].
Retrieved March 04, 2008 from World Wide Web:

http://www.britannica.com/bps/topic/21318/amorphous-
polymerlitab=active~checked%2Citems~checked%3E%2Fbps%2Ftopic%2F2
1318%2Famorphous-polymer&title=amorphous%20polymer%20--
%20Britannica%200nline%20Encyclopedia .

35. Gopferich A. (1996). Mechanism of polymer degradation and erosion.
Biomaterials, 17, 103-114.

36. Collins G., Yoo S. U., Recber A., Jaffe M. (2007). Thermal analysis of complex
relaxation processes in poly(desaminotyrosyl-tyrosine arylates). Polymer, 48, 975-
988.

37. Jaffe M., Ophir Z., and Pai V. (2003). Biorelevant characterization if biopolymers.
Thermochimica Acta, 396, 141-152.

38. Yoo S. U., Collins G., Jaffe M. (in preparation) Complex solid state behavior of
tyrosine derived polyarylates: II - The study of the driving force for the non-
crytalline structure formation and the correlation between the formability and the
structural feature of poly (Desaminotyrosyl-Tyrosine dodecyl dodecandioate).

39. Yoo S. U., Collins G., Jaffe M. (in preparation) Complex solid state behavior of
tyrosine derived polyarylates: I - The study of ht ecomplex structural formation
and the relaxation of poly (Desaminotyrosyl-Tyrosinedodecyl dodecancioate)
using DSC and FT-IR.



114

40. Polyamorphism. [[Posted on Web site Wikipedia]. Retrieved February 26, 2008
from the World Wide Web:

http://en.wikipedia.org/wiki/Polyamorphism

41. Angell C. A. (2003). Amorphous Water. Annual Review of Physical Chemistry, 
55, 559-583

42. Giessen V. D. W. J, Lincoff A. M, Schwartz R. S, Beusekom V. H. M, Serruys P.
W, Holmes DR Jr, Ellis S. G, Topol E. J. (1996). Marked inflammatory sequelae
to implantation of biodegradable and nonbiodegradable polymers in porcine
coronary arteries. Circulation, 94, 1690-1697.

43. Lincoff A. M., Furst J. G, Ellis S. G, Tuch R. J, and Topol E. J. (1997). Sustained
local delivery of dexamethasone by a novel intravascular eluting stent to prevent
restenosis in the porcine coronary injury model. Journal of American Collegue
Cardiology, 29, 808-816.

44. Chan C. K., and Chu I. M. (2005). In vitro release of incorporated model
compounds in poly(sebacic anhydride-co-ethylene glycol. European Polymer
Journal, 41, 1403-1409.

45. Berkland C., Kipper M. J., Narasimhan B., Kim K. K., Pack D. W. (2004).
Microsphere size, precipitation kinetics and drug distribution control release from
biodegradable polyanhydride microspheres. Journal of Controlled Release, 94,
129-141.

46. Tomas L.A.L., Ordonez J. A., Fernando D. G. G. (2006). The p-nitroaniline test to
asses the bacterial microbiota of raw ground meat aerobically stored. Meat
Science, 72, 222-228.

47. Dumitriu S. (2002). Polymeric Biomaterials. Marcel Decker, 2 nd edition.


	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Theory and Principle
	Chapter 3: Materials and Methods
	Chapter 4: Results and Discussion
	Chapter 5: Conclusion
	Appendix A: Raw Data of DSC Results of Poly(DT 8, 8) Without Drug Loading
	Appendix B: Raw Data of DSC Results of Poly(DT 8, 8) With 5% Drug Loading
	Appendix C: Raw Data of DSC Results of Poly(DT 8, 8) With 10% Drug Loading
	Appendix D: Raw Data of DSC Results of Poly(DT 8, 8) With 0% Drug Loading Under Vaccum Conditions
	Appendix E: Raw Data of DSC Results of Poly(DT 12, 10) With 0% Drug Loading
	Appendix F: Raw Data of DSC Results of Poly(DT 12, 10) With 5% Drug Loading
	Appendix G: Raw Data of DSC Results of Poly(DT 12, 10) With 10% Drug Loading
	References

	List of Tables
	List of Figures (1 of 3)
	List of Figures (2 of 3)
	List of Figures (3 of 3)




