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ABSTRACT

DYNAMICS OF ONLINE CHAT

by
Mihai Moldovan

Millions of people use online synchronous chat networks on a daily basis for work, play

and education. Despite their widespread use, little is known about their user dynamics.

For example, one does not know how many users are typically co-present and actively

engaged in public interaction in the individual chat rooms of any of the numerous public

Internet Relay Chat (IRC) networks found on the Internet; or what are the factors that

constrain the boundaries of user activity inside those chat rooms. Failure to collect and

present such data means there is a lack of a good understanding of the range of user

interaction dynamics that large-scale chat technologies support.

This dissertation addresses this gap in the research literature through a year-long

field study of the user-dynamics of Austnet, a medium-sized IRC network (103 million

messages sent to 7,180 publicly active chat-channels by 489,562 unique nicknames over

a one-year period). Key results include: 1) the first rich quantitative description of a

medium-sized chat network; 2) empirical evidence for user information-processing

constraints to patterns of chat-channel engagement (maximum 40 posters and 600 public

messages per chat-channel per 20-minute interval); 3) a short-term channel engagement

model which highlights the extent to which immediate channel activity can be reliably

predicted, and identifies the best predictor variables; 4) a model for the identification of

factors that can be used to distinguish highly predictable channels from unpredictable

channels; and 5) the first empirical study of how the Critical Mass theory can help in



predicting the channels' long-term chances of survival by looking at their initial starting

conditions.

Collectively, the results highlight how the knowledge of chat network dynamics

can be used in making accurate predictions about the chat-channels' levels of short-term

activity, and long-term survivability. This is important because it can lead to improved

designs of future synchronous chat technologies. Such designs would benefit both the

users of the systems, by providing them real-time recommendations about where to find

successful group discourse, and the managers of the systems, by providing them vital

information about the health of their communities.
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CHAPTER 1

INTRODUCTION

Millions of people use synchronous online chat systems, such as Internet Relay Chat

(IRC), on a daily basis. Such systems often contain thousands of chat-channels (group

interaction spaces), populated by even larger numbers of users, providing individuals

with the opportunity to discuss a wide variety of topics. Despite their widespread use,

little is known about their user dynamics. For example, one does not know how many

users are typically co-present and actively engaged in public interaction in the individual

chat spaces of any of the numerous IRC networks found on the Internet; or what are the

factors that constrain the boundaries of user activity inside those chat rooms.

Unfortunately, the navigation of large-scale chat systems is difficult. In part, this is

because only relatively impoverished mechanisms exist for user navigation of such large-

scale, highly dynamic synchronous chat systems. These navigation mechanisms are

through (1) users selecting channels based on the presentation of the names, topics, and

number of users (people or software agents) in either the full or a subset of the thousands

of channels available; (2) users searching for known conversational partners and joining

channels in which they are present; and (3) users learning through personal experience

the online places and times where a population of potential interaction partners is likely

to be present. Each of these mechanisms presents users with as many irrelevant as

relevant channels, or relies on extensive user knowledge of the system in question.

1
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In theory, the navigational difficulties associated with large-scale chat systems

could be alleviated by the development of tools that identify and recommend in near real

time a smaller subset of channels that are likely to be of value. The value of a channel to

a user can be assessed in multiple ways. Three basic assessment questions are the

following: (1) Is a sustained group of users likely to be present in a chat-channel for

engaged interaction? (2) Is the topic of discussion likely to be of interest? and (3) Are

suitable interaction partners likely to be present? However, at present it is not known

how to effectively identify any of these features in large-scale chat systems, each of

which could form the basis of a synchronous chat recommendation system.

To research this gap in the literature, this dissertation will explore the first of

these factors, namely, when is a sustained group of users likely to be present in a chat-

channel for engaged interaction? This question can be divided into two topics that

complement each other. The first one addresses the short-term group activity of chat-

channels, i.e., the potential of a group to engage in lively public interactions for short

periods of time, and the ability to predict such intervals of high activity or low activity.

The second one addresses the long-term group sustainability, i.e., the likelihood of a

group to survive over longer periods of time.

Regarding the short-term activity of chat-channels, currently one does not know

the extent to which reliable short-term predictions about this activity can be made. First,

while it is known that generally large-scale synchronous systems do not limit the number

of users or postings in a channel, little is understood about the boundaries imposed by the

users' capabilities. The Information-processing constraints theory (Jones 1997; Jones

and Rafaeli 1999) argues that one of the main influences on a user's participation in
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computer mediated communication (CMC) is the level of information overload to which

the user is exposed when using the system. Prior research on asynchronous CMC

systems has shown that the level of activity within such a system can only rise up to a

certain level. After this level is reached, due to the effects of information overload, the

activity either remains constant or decreases. This theory can guide empirical research

aimed at identifying the boundaries to short-term activity imposed by user information

processing constraints in synchronous chat systems. Second, to date no empirical work

has investigated the extent to which short-term measures of chat-channel activity can be

reliably predicted; or the factors that differentiate highly predictable chat-spaces from

unpredictable chat-spaces. In theory, linear, nonlinear, and logistic regression modeling

can address these shortfalls. Provided enough information about the activity of groups

can be collected and analyzed, the regression models may predict the short-term level of

activity of chat-channels as well as their overall degree of predictability, based on sets of

various independent variables computed using the collected group-dynamics data.

Regarding the long-term sustainability of chat-channels, there are also empirical

and theoretical gaps in the literature. The Critical Mass theory of sociologists Oliver,

Marwell, and Teixeira (1985) provides the only well-known theoretical model of group

interaction trajectories. It postulates that various production functions, or the relationship

between resources contributed and collective output over time, together with a group's

level of heterogeneity can be used to distinguish between the likelihood of longer-term

group success. Although this theory was adapted to electronic media (Markus 1987), its

modeling aspect has not been fully applied to CMC systems. Only a small number of its

hypotheses were tested using asynchronous CMC systems (Thorn and Connolly 1987;
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Rafaeli and LaRose 1993) and the researchers failed to observe the theory's predictions.

In theory, the Critical Mass theory could help predict the long-term sustainability of

groups in synchronous spaces.

The aim of this research is to explore, empirically and theoretically, whether it is

possible to predict the likelihood of sustained short-term and long-term group interaction

inside a large-scale synchronous CMC system. This is important because such prediction

algorithms may be used to design systems to benefit both individual users, by providing

them real-time recommendations about where to find successful group discourse, and

managers of group spaces, by providing them vital information about the health of their

communities. Understanding the short-term channel activity predictability would help in

providing instant recommendations. Understanding long-term sustainability would help

in recommending channels that have a good chance of survival, and in determining when

recommendations would lead to a more functional group in the long run.

In what follows, the content of the remaining chapters of this document will be

described briefly.

First, a basic decision needs to be made about the type of synchronous chat

system to analyze. Therefore, Chapter 2 is dedicated to an overview of the literature on

the most common classes of synchronous CMC systems. This will lead to an

understanding of the main characteristics of such systems, how are they used, and which

type would be the best match for this research, in terms of relevance to the other existing

systems, popularity among users, and data-collection capabilities.

Second, it is necessary to understand the current methods that are used for

providing social recommendations, as well as their limitations. Such methods include
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social visualizations, which allow users of CMC systems to be aware of the activities

inside the spaces they inhabit, and social matching systems. The relevant literature shall

be reviewed in Chapter 3.

Third, one needs to be aware of the work that attempted to identify the rhythms of

various synchronous and asynchronous CMC systems. Accordingly, Chapter 4 will be

dedicated to a review of the research in this area.

Fourth, the work that has been done on identifying group interaction trajectories

in CMC systems must be considered. Chapter 5 will start with a review of the literature

on CMC interaction dynamics analysis. It will continue with theoretical considerations

about the Critical Mass theory and conclude with an overview of previous works that

used this theory to research interactive CMC media.

The research questions and hypotheses, and the associated research methods will

be presented in Chapter 6.

The results of the research will be presented in Chapters 7 through 11. Chapter 7

will report various descriptive statistics of the analyzed IRC network. Chapter 8 will

identify the information-processing limits that constrain the community interaction

dynamics seen in IRC channels. Chapter 9 will investigate the extent to which short term

measures of activity can be reliability predicted for IRC channels. Chapter 10 will

identify the factors that can be used to distinguish highly predictable channels from

unpredictable channels. Chapter 11 will describe the factors that contribute to the long

term survivability of IRC channels. Chapter 12 will discuss the contributions of this

work and will present several topics of interest for future research.



CHAPTER 2

TYPES OF TEXT-BASED SYNCHRONOUS CMC SYSTEMS

This chapter provides an overview of the most common types of synchronous computer

mediated communication (CMC) systems and reviews various alternative candidate

systems for the empirical research intended to be conducted. The overview of the

literature on the most common classes of synchronous CMC systems will allow a better

understanding of the main characteristics of such systems. These characteristics include

how they are typically used and which type would be the best match for this research, in

terms of relevance to the other existing systems, popularity among users, and data-

collection capabilities. In this research the focus is strictly on text-based synchronous

computer mediated communication systems, because they are the most common type.

Technologies such as Push-To-Talk, a method of conversing over half-duplex

communication lines, and VoIP (Voice over Internet Protocol) applications such as Skype

are omitted from this review. The work that has been done on Short Message Services

(SMS), which is asynchronous in its nature, was excluded from the literature review.

Hiltz and Turoff (1993) and Kerr and Hiltz (1982) defined CMC as the "use of

computer to structure, store and process written communication among a group of

persons." This definition could be enhanced by noting that a computer mediated

communication system is any software or hardware system that allows people and/or

groups of people to interact using written, video, or audio communication methods.

6
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Traditionally, the starting point for categorizing a CMC system has been in terms

of whether it supports synchronous or asynchronous communication (Newhagen and

Rafaeli 1996).

While this categorization can be applied to many systems, it should be noted that

such categorical distinctions are not clear-cut. Communications created using

synchronous technologies can be stored and made persistent and searchable, thus

enabling asynchronous use of the medium. Further, synchronous communication is often

"near" real-time, meaning that users must hit the carriage return key before the

information they have typed is shared. On the other hand, asynchronous communication

tools such as email can be used for quick message exchanges that make the interactions

near synchronous. These issues highlight both the elasticity of synchronicity and the

importance of understanding the significance of making interactions persistent (Erickson

and Laff 2001). In this research, systems that support either near real-time or true real-

time communication shall be referred to as synchronous systems. The evolution of such

systems started with operating system commands, which initially allowed synchronous

text communication between two users of a system. These were later enhanced to

accommodate more than two users. The next step was the emergence of smaller

synchronous group chat systems organized around spatial metaphors (early 1980s).

Those systems were followed by large-scale mass interaction chat systems (late 1980s),

after which instant messaging systems arrived (mid-1990s). The research associated with

various systems will be addressed in five sections:
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1. Early dyadic (in pairs)/group synchronous communication systems (talk, ytalk) —
the precursors to synchronous group CMC

2. Multi-User Domains/Multi-User Domains Object Oriented (MUDs/MOOs)

3. Internet Relay Chat (IRC)

4. Instant Messaging (IM)

5. Other chat systems and emerging trends

2.1 Early Dyadic/Group Synchronous CMC

Operating system commands, such as UNIX's talk and ytalk (and similar commands on

other operating systems) — are among the oldest forms of synchronous CMC (Hiltz and

Turoff 1993). The talk command was originally used for synchronous text

communication between users of a multi-user computer, running the UNIX operating

system; but it eventually started to accommodate users from different computers as well.

It allowed two people using different machines (or different terminals of a single

computer) to establish a real-time text communication channel. The dyadic nature of the

talk command user interface made it impossible for more than two users to interact

synchronously.
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Figure 2.1 The UNIX ytalk command interface.

This inconvenience led to improved commands such as ntalk or ytalk (Figure 2.1),

which allowed several participants to exchange text messages in real-time. In all these

cases the communication happened in true real-time. Each character typed by one of the

users was immediately displayed on the screens of the other users. The user interfaces

were simple and did not convey information other than the text typed by the users.

The "true" synchronous nature of these early computer mediated communication

tools distinguishes them from most of today's systems. The current synchronous chat

software interfaces are often referred to as being near-synchronous or quasi-synchronous

(Garcia and Jacobs 1999). The argument in favor of this term was that "although posted

messages are available synchronously to participants, the message production process is

available only to the person composing the message." In other words, the messages are



10

sent to the interaction partners only after they are fully composed, giving the sender a

certain degree of control in the creation and distribution of messages.

Although systems such as talk and ytalk are interesting technologies, they are not

relevant for this research for several reasons: They are rarely used for large group

interaction; they are not very common anymore; they cannot offer multiple interaction

spaces; and the features they provide can be found in today's large-scale synchronous

chat systems.

2.2 MUD/MOO Research

2.2.1 MUDs and MOOs Overview and History

MUDs/MOOs were the first generation of applications dedicated to synchronous group

interaction over computer networks. The distinctive feature of the MUDs/MOOs was

their representation of computer mediated interaction spaces through a spatial metaphor

(Figure 2.2). The interaction spaces inside these systems were organized as rooms, often

mimicking the geographical structure of some real-world buildings or various other

places. To understand the structure of the system and to meet new people, the users had

to navigate through these rooms sequentially, without the possibility of being in multiple

places at the same time. This geographical metaphor made the MUDs/MOOs

fundamentally different from other synchronous CMC systems that will be reviewed later

in this chapter.

In August 1978, Roy Trubshaw, a student at University of Essex, England, started

to write a text-based adventure game on a DECsystem-10 machine. His initial aim was

twofold: to create a true multi-player adventure game and to write an interpreter for a
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database definition language. Soon he was joined in his efforts by Richard Bartle, also an

Essex student at that time. Together, they created and wrote Multi-User Dungeon (MUD)

in 1979. Initially, only students at the University of Essex used the game, but players

from other universities soon joined, and the game became very popular in England. With

the authors' permission, the source code was used for other projects such as Frog, BLVD,

UNI, and MIST. Additionally, some copies of the code were sent to USA, Norway,

Sweden, and Australia; after that it continued to spread and evolve.

Initially, the term MUD referred to one particular game — Multi-User Dungeon —

the first game of this type, created by Roy Trubshaw and Richard Bartle. However, the

term became widely spread, and soon it started to be used to refer to this entire class of

games, not only the initial Multi-User Dungeon game, a practice that is still common

today. However, there are some variations to what the letter "D" represents. Some

authors (Mehlenbacher et al. 1994; Sempsey 1995; Garbis and Waern 1997) use the term

Multi-User Domains, while others (Curtis 1996) prefer the term Multi-User Dimension.

However, the majority of the authors continue to use the initial meaning of MUD (Multi-

User Dungeon). As MUDs became more and more popular, some of the users were not

satisfied with the features and attributes of the available MUD applications and enhanced

the software. One of the most important MUD spin-offs, created to diversify the realm of

interactive text-based gaming, was MUD Object Oriented (MOO). MOO was created by

Stephen White in 1990 at University of Waterloo, and then adopted and extended by

Pavel Curtis at Xerox PARC (Dourish 1998). It differed from the traditional MUD in

that it allowed the users to extend the existing environment using the object-oriented

programming paradigm. LambdaMOO, (Curtis 1996) and MediaMOO (Bruckman 1993)
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were perhaps the largest environments implemented on the MOO platform. Other

variations of MUD systems include Multi-User Simulation Environments (MUSEs) and

Multi-User Shared Hallucinations (MUSHs) (Bruckman 1992).

All these terms however, refer to one single type of computer application, "a

software program that accepts connections from multiple users across some kind of

network (e.g., telephone lines or the Internet) and provides to each user access to a shared

database of 'rooms," exits,' and other objects" (Curtis and Nichols 1993).

Figure 2.2 An example of MUD user interface.
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A more pertinent definition of the term MUD would be "a text-based virtual

environment" (Churchill and Bly 1999) or a "text-based virtual reality" (Cherny 1994)

that may support interpersonal communications, community building, game-playing, or

other social or educational activities. For the remainder of this chapter, the term MUD

will be used to refer to any of the above-mentioned variations of this type of applications.

MUDs are of interest because they were among the first, if not the first, online

synchronous group communication spaces. Chatting (group or in pairs) is typically either

the most or second most important activity in a MUD (Curtis 1996).

2.2.2 MUDs Classification

MUDs can be categorized according to the main ways in which they are used. Bartle

(1992) was the first one to observe two different patterns of MUD usage: (a) the

predominant, traditional, adventure-game style, where users compete for achieving higher

status within the game; and (b) a more social-oriented style, where interacting and

socializing with other people tends to be the primary purpose of the entire MUD

experience. Another author who mentioned two different styles of MUD usage was

Bruckman (1992). She described two types of MUDs, "those which are like adventure

games and those which are not." Garbis and Waern ( 1997) conducted a workshop in

November 1996 that had the "design and use of MUDs for serious purposes" as the main

theme. Within the workshop, three main areas of use were identified: education and

teaching, crisis action management, and general communication environment. Finally,

another potential area of application for MUDs is in the general workplace. Evard (1993)

had the idea of using MUDs as system tools, to enhance the communication among a

team of system administrators. Churchill and Bly (1999) conducted research over longer



14

periods of time (three years) on the use of MUDs to support ongoing collaborations in the

workplace. Considering all of the above, MUDs can be classified into the following four

categories:

• Purely gaming MUDs

• Social-oriented MUDs

• Education-oriented MUDs

• Workplace-oriented MUDs

Obviously, there may be cases where some degree of overlapping between these

categories can be found. However, this taxonomy provides a framework in which any

existing MUD could be integrated.

2.2.2.1 Gaming MUDs. The game-playing-oriented MUDs are probably the most

widely used type of MUD application. For the first ten years after the birth of MUDs,

their sole purpose was for use in gaming. However, very little research has been done on

gaming MUDs. Bartle (1992) provided a very thorough review of Multi-User Adventure

(MUA) games. He found evidence of two groups of users that were mostly unaware of

each other, one in the UK and one in the US. Also, he provided an interesting genealogy

of the evolution and the status quo of MUAs up to 1992.

Muramatsu and Ackerman (1998) looked at gaming MUDs from a social

perspective. Although playing the game was the central activity in the researched MUD

(called Illusion), social involvement and collaboration were also important. They found

the MUD was deeply socially stratified, both formally (mortals, immortals, and various

degrees of power to control the game) and informally (levels of the game) and that

comparable levels of conflict and cooperation were observed among the users.
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2.2.2.2 Social-oriented MUDs. One of the most cited papers in the MUD literature is

Pavel Curtis's paper (1996). He was probably the first author who analyzed a social

MUD. His work served as an important foundation for subsequent research. Curtis

observed certain rhythms in the system's usage, including higher levels of activity and a

larger number of users during certain time intervals. Anonymity seemed to be the most

significant social factor, having both positive (less social risk, lower inhibitions) and

negative (sexual harassment, offensiveness) effects. Small groups of users tended to

spend most of the time in conversations and social gravity — defined as the assumption

that the more players inside a certain interaction space, the more interesting the

interactions — was common. Looking at the community as a whole, the author observed

that communities tended to be large in comparison to the number of active users at any

given time (there was a large number of inactive users at any time).

One researcher who was deeply involved in the study of MUDs was Amy

Bruckman, from MIT Media Labs. In one of her first papers (1992), she looked at the

various social and psychological phenomena that appear in "text-based virtual realities,"

as she called the MUDs. She identified two types of MUDs — adventure-based and non-

adventure-based. All the observed MUDs had well-defined hierarchical structures.

Although initially social hierarchies were not present, in order to impose equality among

players, they were gradually introduced in the MUDs. Her findings showed that identity

play, i.e., pretending to be different in the virtual world than in real life; gender swapping,

i.e., pretending to be of the opposite sex; and addiction phenomena were quite common.

Also, she noted that many MUD users had poor social skills in real life, but they were

really different in the virtual worlds.



16

This gender-swapping phenomenon was later analyzed by Bruckman in more

detail (1993). According to her, "gender swapping is one example of how the Internet

has the potential to change not just work practice but also culture and values." MUD

experiences can help people understand how gender structures human interactions and

how easily these phenomena can be understood by experiencing them directly. Her

findings showed several interesting facts. Men were often surprised by how they were

treated when they posed as women. Female characters were usually overwhelmed with

attention. Unwanted attention and sexual advances created an uncomfortable atmosphere

for women. Male players often logged on as female characters. Unsolicited offers of

assistance were very common, and male characters usually expected some kind of favors

from the female characters in return for their assistance.

Cherny (1994) looked at user behavior in a MUD and tried to observe differences

in this behavior, based on the gender of the users. The MUD that she examined was

JaysHouseMOO (JHM) — a MUD with a population of approximately three fourths men

and one fourth women. They found that such differences indeed existed. Men were

more likely to use physically violent imagery during conversations, while women were

predisposed to more affectionate imagery toward other characters.

Sempsey (1995) reviewed the literature relevant to the psychological and social

aspects of MUDs in an attempt to ascertain the current state of knowledge in this area

and, if possible, to provide some future directions for the researchers. He suggested that

disinhibition (reduction of inhibition) was common in any MUD, as people generally

tend to be more relaxed in a virtual environment than in real life. However, disinhibition

should not be confounded with uninhibition (complete lack of inhibition) — as MUDs
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should be neither chaotic nor anarchic. He noted that most of the literature

acknowledged gender-based differences in users' behavior as well as gender-swapping

and multiple-identities phenomena. He stated that the most evident conclusion was that

more research was needed as too little had been done up to that point, and noted the

general bias toward non-experimental research designs. Also, in the author's opinion, it

would be difficult to provide a general theoretical research framework for the study of

MUDs because of the many possible differences among them.

Schiano and White (1998) conducted online surveys, personal interviews, and

studied various logs in order to understand the social aspects of MUD usage. They

determined four categories of factors that would be of interest in such an analysis: user

and use characteristics; identity; sociality; and spatiality. In general, their findings were

in line with those of previous researchers: The proportion of males versus females was

consistent with previous estimates (78 percent versus. 22 percent); MUDs could be fairly

intimidating to novices; interaction was the primary goal and experience was associated

with more time spent socializing and less time exploring. However role-playing and

gender swapping occurred only casually. As a whole, the analyzed MUD (LambdaMOO)

did not seem to qualify as "a good great place," as defined by Oldenburg (1991) because

most of the socializing tended to be done in small groups or in pairs (although this is

what typically happens in the good places such as the bars described by Oldenburg).

Some features were, however, encountered and the predominant opinion was that 'the

great goodness' appeared earlier in the history of the MUD." Finally, LambdaMOO did

provide a sense of space and place to its members, even if it was only a text-based

environment.
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Mynat and O'Day (1998) introduced the concept of network communities as a

new genre of collaboration. They were "robust and persistent communities based on a

sense of locality that spans both the virtual and physical worlds of their users." They

categorized MUDs as a type of network community. They studied Pueblo, a cross-

generation, school-centered, text-based MUD; and Jupiter, a hybrid MUD/media space (it

provided audio/video links between participants). Their research approach was also non-

experimental and consisted of participation and use, ethnographic observations,

interviews, and participant observation. They identified several affordances of network

communities: persistence (durability across time); periodicity (defined by rhythms and

patterns); boundaries; engagement (ways to participate, not only technological but also

social); and authoring (the ability to change the medium - creation of objects, rooms, etc).

The authors stated that the amount of synchronous communication was an important

measure of the activity level of the MUD and that multimodal communication occurred

very frequently. Also, each communication modality had its own rhythm, and users

moved easily between various types of interaction. Rhythm dynamics were considered

fundamental to network communities; one final conclusion was that routines, or

intelligible rhythms for individuals and for the community as a whole, were likely to

emerge in the future inside network communities.

2.2.2.3 Education-oriented MUDs. The potential of MUDs for supporting education,

at various levels, quickly attracted researchers' attention. Bruckman (1994) presented a

case study with the experiences of a 43-year-old building contractor in learning to

program in a MUD. She used MediaMOO for this case study, and several people who

had never programmed before learned to do so in this MUD. Although this was a small
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first step in analyzing the impact MUDs can have on a person's education, the author

identified possible future directions toward creating MUDs as learning environments for

children.

Masinter and Ostrom (1993) imagined a system that would combine two of the

most common Internet uses, as they were in 1993: information retrieval and interpersonal

communication. Their paper described a system that combined an information retrieval

tool (Gopher) with a text-based virtual reality tool (MUD). The Gopher system was

implemented in the form of Gopher rooms, Gopher notes, Gopher lists, Gopher slates,

and Gopher notebooks. People in the MUD could use those rooms or objects just like

any other object in the MUD. The only difference was that they could access Gopher

information through them. Overall, this was an interesting idea toward application

integration.

Bruckman and Resnick (1993) researched the MediaMOO system - a text-based,

networked VR environment designed to enhance professional community among media

researchers. They analyzed experiences with the system and highlighted the value of

constructionist principles to virtual reality design. The authors argued that text-based

virtual environments provide both a shared place and a shared set of activities. They

noted that the best interactions typically occurred when people participated in a shared

activity and not just a shared context.

Bruckman and Resnick continued to extend their ideas (1995). They argued that

"serious exchange of ideas often takes place because of, not in spite of, more informal

social interaction." The constructionist philosophy - "learning by doing is better than

learning by being told" - was central to the design of MediaMOO. Their goal was to
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create a basic skeleton that users could enhance indefinitely by creating new meaningful

objects and places - a world built by its inhabitants that was a representation of various

places in the real world. The authors also introduced MOOSE Crossing, a MUD for kids

that was based on their findings from MediaMOO.

Mehlenbacher et al. (1994) attempted to build a tool that would increase

collaboration among professional technical communicators. TechComm-VC was a MOO

environment built at North Carolina State University for use in composition and technical

writing courses. It used a real world / virtual world metaphor, as the MOO was based on

the real campus. The main components of the MOO were: the Library, with the main

purpose or providing access to information such as online dictionaries, search engines

and various hypertext documents; the Lecture Hall, a room designed for formal talks and

discussions with various implemented features, such as the conch — a token that

controlled the room, the slide projector, the tape recorder and the tape dispensing

machine; and Harrelson Hall, a room designed for informal communication and group

work. Building communities and redefining professional productivity were recognized as

the top two opportunities offered by the system.

Fanderclai (1995) described the potential of MUDs for use in the educational

process. The immediacy of information exchange, the lack of a need for collocation and

the blending of work with play were features that, according to the author, could help

MUDs "disrupt the hierarchy of the traditional classroom, giving students more power

and responsibility." Results of MUD use showed, besides the above-mentioned

attributes, the presence of a great deal of incidental learning. The author argued against

the use of traditional educational methods, such as on-line lectures, control over the flow
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of conversation or over the access to a particular room, etc., because such methods would

not be suited to MUD environments. The author also argued that MUDs were not

environments that could be controlled, and teachers should not try to control them as

most of the potential of this new educational environment would be lost.

Bruckman (1998) described MOOSE Crossing — a MUD designed to be a

constructionist learning environment for children ages eight to thirteen. The author stated

that the Internet could be used as a context for learning through community-supported

collaborative construction. The paper examined several ways in which the MOOSE

Crossing community motivated and supported its members' learning experiences. Some

of the factors that contributed to the learning experience were role models and the

importance of learning from them; situated, ubiquitous project models; emotional and

technical support; appreciative audience; and the combination of the local community

with the virtual community. Among the factors influencing learning in online

communities, the author included online engaging, teaching others, invisibility of some

social factors, and spontaneous and scheduled interactions. The paper concluded that, in

general, constructionist educational technologies have not yet lived up to their great

promise. A certain culture has emerged from within the MOOSE community where the

users learned from each other as they were the ones conveying the information.

O'Day et al. (1998) looked at design considerations in moving educational

practices from physical to virtual places. They argued that the affordances of virtual and

real places could be very different. Among the affordances of the virtual worlds, they

identified multi-threaded activities and conversations, ability to keep records of

interactions, a sense of place in the virtual world, and the long-term persistence of
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artifacts. The authors suggested four design dimensions for virtual classrooms:

establishing permeable boundaries of interaction; taking advantage of the persistence;

finding and maintaining focus; and learning from experience. They argued that MOOs

were a suitable medium to use as virtual classrooms, but design of the educational

practice should always be aligned with the affordances of the medium.

2.2.2.4 Workplace-oriented MUDs. Curtis and Nichols (1993) were among the first

researchers who looked at MUDs as potential tools to enhance the workplace. Their

intention was to extend MUD technology such that it could be used in non-recreational

settings. They tried to overcome some of the drawbacks of text-only MUDs in the

workplace by providing several new features. These features included support for

graphical user interfaces that allowed users to interact with the MUD environment

through windows on their screens; shared access for certain window-based applications;

audio features that allowed users to hear sounds from the room they were in; video that

could enrich the perceived quality of the CMC process, monitor remote places, and allow

participation in remote meetings. Of these features, audio was considered to be the most

productive addition, as it eased the communication process and was not as ambiguous as

text. LambdaMOO was the starting point for the Astro-VR and Jupiter systems. Astro-

VR was a social virtual reality system intended for use in the astronomy community and

supported real-time multi-user communication, a self-contained email system, links to

online astronomical images, editor/viewer for short presentations, collaborative access to

various programs and window-based shared editors. The Jupiter system was used at

Xerox PARC, and it supported casual interaction, telecommuting, convolving the real and

virtual worlds, and administrative support. One of its goals was to tie together not only
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the researchers at PARC, but all Xerox employees over the world. The architecture of

these two systems was further described in Curtis et al. (1995) — system infrastructure,

security/trust model, clients, server, networking, user interface, media coordination

system - and Nichols et al.(1995) — the concurrency-control algorithm used to maintain

common values for all instances of the shared widgets.

Evard (1993) presented the experiences of a network administration group in

using a MUD as a tool for communication (regular means of communication included

email, face to face meetings, and newsgroups). The MUD seemed to solve the existing

communication problems; was an effective way to hold pre-arranged meetings for

remotely located people; was an effective coordination, brain-storming, and problem-

solving mechanism; created a social environment that did not exist before; and allowed

work to be done more effectively from remote locations. There were also some inherent

problems. The MUD had the potential to be a big distraction. It required some time to

learn; and the conversation could easily become confused and intertwined.

Guzdial (1997) wanted to offer the power of a command line embedded in a

virtual community, and therefore he extended a text-based virtual environment through a

small command server. The result was WorkingMan, a MOO through which the users

could interact with and control their workstation. It was based on POO (a MOO written

in Python programming language), and it was a good example of how new metaphors for

user interaction could be developed.

A workshop on the "Design and Use of MUDs for Serious Purposes" was held

during the 1996 Computer Supported Cooperative Work (CSCW) conference (Garbis and

Waern 1997). The aim of the workshop was to examine a number of questions related to
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the design and use of MUDs for serious purposes. There were two main lines of

discussion: current use and functions of MUDs; and potential new features that could be

added. Three areas of use were identified: education and teaching, crisis action

management, and general communication. A consensus was reached, suggesting that no

standard body of methods existed for the analysis and evaluation of data gathered in a

MUD and that evaluation should be grounded in the practice of the users and not in

theoretical speculations. The participants also tried to suggest a name change to CVE -

Collaborative Virtual Environments.

Churchill and Bly (1999 1) examined how the use of MUDs could support

ongoing, medium-term collaboration in the workplace. A very simple, text-only MUD

was used, and the findings showed that all users found it to be of potential benefit for

their work collaboration. There were two main purposes for which the MUD was used.

Firstly, it was intended to maintain relationships across distance, supporting collaboration

between people in different locations; across time, supporting collaboration between

people who were not online at the same time; and for people who were inside larger

groups as the MUD was predicted to be more efficient than email for group interactions.

Secondly, it was intended to provide lightweight conversations for coordination, enabling

in this way chance encounters that would not have taken place otherwise. The authors

also identified two types of barriers to MUD usage: social barriers and technical barriers.

The social barriers included removal of the social cues gained from physical interaction,

anonymity issues, fear of managerial perceptions, and feelings of not belonging to the

group. The technical barriers were relatively easy to remediate, but there were trade-offs

between functionality and lightweightness. Their conclusion was that there were four
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interrelated factors central to the success of the MUD in this instance: communication

and coordination affordance; technological and usage lightweightness; the existing work

practices of the group; and the organizational willingness to accept this type of

interactions in the workplace, as part of the daily routine.

Churchill and Bly continued their research on MUDs in the workplace and further

studied the use of a text-based virtual environment to support work collaborations (1999

2). They believed interactions could be facilitated by structuring the virtual work

space/environment to create a shared "landscape of work artifacts" and that the creation

of a feeling of co-presence between non-collocated collaborators was crucial if CMC was

to be successful. They identified the representational simplicity (simple activity

awareness cues, simple asynchronous messaging) and the ongoing support of work

collaborations as two factors that made MUDs useful in the workplace. The authors

concluded by saying that MUDs presented a greater potential than realized and that MUD

usage had changed in subtle ways but not substantially. Additionally, people felt

connected, despite the simplicity of its representation; and MUDs supported sufficient co-

presence to enable complex collaborative problem solving in difficult circumstances.

The work of Schafer, Bowman, and Carroll (2002) stands among the latest MUD

research. The authors combined a text-based interface with a graphical map representing

the environment of a MOO. Their system, called MOOsburg, was based on a real place:

Blacksburg, Virginia. The target was the town population, and the overall objective was

to support community development within the town. The structure of MOOsburg was

based on spaces and landmarks; and the interaction was based on text, clicking, dragging

and zooming. Their findings showed that maps allowed users to browse and visit places
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while maintaining awareness. They also provided a good interface for place-based

navigation.

MUD/MOO systems are not particularly suited for this research, mainly because

the navigation issue inside such systems is partly addressed by the geographical

metaphors they represent. Users cannot be in more than one place at a single time, and

they need to exhaustively explore the entire space in order to get familiar with it. While

this may seem reasonable to some people, an approach of this kind can only be successful

for small-scale systems; and even in such cases, learning through navigation can be

difficult.

2.3 Internet Relay Chat Research

Internet Relay Chat (IRC) is a near-synchronous CMC architecture which allows a

certain degree of rehearsability for the sender of the message — the message is sent only

when the user hits the carriage return key. IRC systems provide virtual environments

where people from all over the world can meet and chat, and create personal and

community places. One can find a great diversity of human interests, ideas and issues in

the various IRC spaces or chat-channels. There are tens of thousands of IRC channels on

thousands of IRC networks at present.

Jarkko Oikarinen is considered to be "the father" of IRC. While at University of

Oulu, Finland, in 1988, he started developing a communication program to increase the

usability of OuluBox (a public access Bulletin Board System used at University of Oulu).

Things evolved into what is known today as IRC, a client-server service for conducting

multi-user, real-time chat sessions over the Internet. According to http://www.irc.org , the
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birth of IRC occurred in August 1988. Since then, it has grown consistently and has

proved to be one of the most popular online chat environments. During the middle of

1989, there were about 40 servers worldwide; in September 1990 this number grew to

117; and in March 1991 there were 135 servers (69 US, 66 non-US) up and running. In

1996, due to various circumstances, such as the high growth rate of the Internet, technical

difficulties, and also personal differences, the initial IRC network split into two different

networks. Today, there are hundreds, if not thousands, of IRC networks; and millions of

people use them on a daily basis (Hinner 2000). The four largest networks, based on the

number of connected servers and on the number of users, are EFNet, IRCNet, Undernet,

and Dalnet (Gelhausen 2004). Some of the features offered by IRC include: nickname-

based services, which provide a high level of anonymity; thousands of interaction spaces

(channels) to join; the ability for users to create and register their own channels; private

and public channels; moderated and non-moderated channels; group discussions; private

discussions (only text-based); and direct file exchanges between users. As mentioned

before, IRC is based on a client-server model. Most of the existing server programs run

on a Unix-like operating system. However, there exist a variety of different client

programs that allow users to connect to IRC servers. Some of them are Unix-based,

some are Windows-based or MacOS-based, but the Windows-based clients are

predominant. IRC uses a unique protocol that makes it possible to use the same client

software to connect easily to different IRC networks.

Although one could find IRC references in areas such as education, distance

education (e-learning), or general collaboration among geographically distributed teams

(Pilgrim and Leung 1996; Thomas et al. 1996; Neal 1997; Last et al. 2002; Mock 2002),
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such work will be excluded from the literature review. The reason is that in those cases 

IRC was used simply as a communication tool instead of as the main focus of the 

research. 
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Figure 2.3 A typical IRC client software. 
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Most studies of IRC have used an approach that can be labeled as cyber-ethnography 

(Pacagnella 1997) and looked at IRC from a socio-cultural perspective. They highlighted 

activities and behq.viors that chara~terize IRC users (Reid 1991) af!d the speGifics of IRC 

culture (December 1993;, Bechar-Israeli 1996;. Danet et al. 1996;.Danet et al. 1997): Reid 

(1991 ) was probably the first to conduct a deep analysis of IRC from a social point of 

VIew. While she agreed that the users of IRC In 1991 were not the regular, every-day 

people one would meet in the streets (mostly because of technology-access issues), her 

work still provided important insight about the new synchronous CMC system that IRC 
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represented at that time. Her central thesis was that IRC users "do not shape themselves

in conformity with the conventions of social contexts external to the medium, but learn to

play their cultural game with them." In her opinion, by simply using the system, IRC

users deconstructed the traditional boundaries of social interaction and built communities

of their own. These new emergent communities were characterized by heterogeneity and

were created "through symbolic strategies and collective beliefs." The author also

identified some social issues associated with IRC. On the one hand, IRC offered

anonymity, opportunities for gender-switching, reduced self-regulation, disinhibition, and

flaming. On the other hand, the IRC community placed social sanctions that counter-

balanced the effects of possible user misconducts. The author concluded that to fully

understand IRC, researchers must analyze it from an interdisciplinary perspective that

takes into account linguistics, sociology, communication theory, anthropology, and

history.

Byrne (1994) explored the formation of relationships on IRC. Using surveys,

face-to-face (FTF) interviews and log analysis, the author came to the conclusion that

relationships formed on IRC had many similarities to FTF relationships, users managed

to adapt to both the weaknesses and the strengths of the medium and also found novel

ways to convey information and emotional meaning to other users. This socio-

communication-oriented study of IRC was limited in size as only one channel was

examined. This limitation is common to most of the work that has been done on large-

scale CMC systems in general, and on IRC in particular.

Bechar-Israeli (1996) looked at the use of nicknames on IRC. A field study was

conducted, and the author was a participant observer. Logs of conversations were



30

recorded for a period of two weeks and then further analyzed. An important fact that was

presented in this study was that, generally, users did not change their nicknames over

long periods of time. Nickname play (changing the nicknames) did occur sometimes, but

in the long term, people tended to keep their nicknames, because they felt them to be an

extension of themselves, a symbol of who they were. The author also mentioned the

nicksery service offered by some IRC networks. This service allowed a user to register

his or her nickname so that only he or she would be able to use it; the service also dealt

with some related issues (such as intellectual property and nicknames).

Danet et al. (1996) conducted a study focused on a group of people who

performed parodies of well-known theater plays on IRC (by William Shakespeare and

Tennessee Williams). They examined the first production of that group — "Hamnet," a

parody of Hamlet. They analyzed "the substantive and stylistic features of the `Hamnet'

script, the logistics of virtual production, [...the] improvisational play with the

Shakespearean canon, the theater game, language itself, the IRC software, and the

situation of typed online interaction" following an ethnographic method and drawing on

sociolinguistics and discourse analysis.

Danet, Ruedenberg-Wright, and Rosenbaum-Tamari (1997) continued the

analysis of "writing, play and performance on IRC." Using content and discourse

analysis, they analyzed the text log of a virtual party that occurred inside a particular IRC

channel and identified and examined three types of play: identity play, play with frames

of interaction, and play with typographic symbols. An important aspect that is worth

noticing and considering for future IRC research is the authors' argument that studying

public IRC logs should not be ethically problematic for researchers.
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December (1993) used IRC as a means to prove "the existence of an emerging

discourse culture, based in computer-mediated communication (CMC) systems existing

on global computer networks." Later studies focused on the language used in IRC — what

did language reveal about the users (Rodino 1997), how did language affect the

relationships among users (Paolilo 1999), and how did language help people overcome

the limitations of synchronous computer mediated communication systems (Herring

1999).

Rodino (1997) researched interactions on IRC in order to determine the extent to

which "research on face-to-face talk and computer-mediated communication can describe

gender and its relationship to language". This was yet another study based on qualitative

analysis of logged text over a relatively short period of time (40 minutes) in only one

channel, although several were monitored. The author also used silent participant

observation by lurking inside the channels. No interviews or surveys were used as part of

the research.

Rintel, Mulholland, and Pittam (2001) examined how IRC users opened dyadic

personal interactions. While previous research determined that IRC was an interpersonal

medium, the authors argued that there was a need to understand how interpersonal

relationships were formed and developed on IRC. In order to do so, they started with the

analysis of openings, i.e., the start of conversations. In accordance with the previous

research, the method used was log analysis using qualitative conversation analysis

techniques. The authors mentioned the technical (data-collection) and ethical

(private/public conversation) problems that occurred when trying to research IRC. They

acknowledged that "gathering a 'complete' record of all the interactions undertaken by
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IRC users would be virtually impossible." Most analysis done in relation to IRC was

qualitative and ethno-methodological. Overall, this is another example of case study of

the IRC, which also recognized the difficulties associated with the large-scale analysis of

an entire IRC network.

2.3.2 Quantitative Studies of IRC

Paolilo (1999) developed "a social network approach to online language variation and

change through qualitative and quantitative analysis of log files of Internet Relay Chat

interaction." His analysis revealed "a highly structured relationship between participants'

social positions on a channel and the linguistic variants they use." It seemed that a

certain subset of all the members in the channel, containing a large proportion of

privileged users (channel operators), was sought out for interaction by the rest of the

participants. The author captured the entire activity in one channel on an IRC network

for a period of 24 hours and then performed quantitative and qualitative analysis on the

log. This paper followed the traditional case study IRC research pattern, which measures

the activity of a small fraction of an IRC network, in this case, one channel over a

relatively short time interval.

Herring (1999) examined a paradox of CMC systems: despite the limitations of

such systems, such as lack of coherence due to multiple threads, turn taking, topic

changing, lack of simultaneous feedback, and disrupted turn adjacency; their popularity

continues to grow. While the author's analysis of IRC showed that indeed "high degree

of disrupted adjacency, overlapping exchanges, and topic decay" existed; she suggested

that the users' ability to adapt to this medium, together with the advantages presented by

loose coherence relative to interactivity and language play were two explanations for the
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growth in popularity of CMC systems. The author looked not only at logs from IRC

channels, but also at Usenet groups and Listsery email lists. Results from other studies

did not find any evidence for incoherence in synchronous chat, but that may be due to the

small size of the groups that were studied.

In the past years there has been an increase in statistical analyses of IRC; several

Web sites offer statistics of various parameters of many IRC networks (Gelhausen 2004;

Hamilton 2004; Hinner 2004). Some of these results have led to published research. For

example, Hinner (2000) described a method to collect basic statistics for IRC networks.

He also presented those statistics (number of users, channels, and servers) in graphical

format (charts). The data was collected at fixed intervals of time (typically 5 minutes)

over 21 months from November 1998 until July 2000. The author used a program,

commonly known as a "bot," which was permanently connected to the networks and

automatically collected the required data.

Haveliwala (2002) stated that most of the Internet's major information sources

have been archived and indexed, but IRC was the "glaring exception." He recognized

some of the indexing challenges associated with IRC: dynamic channels, flat channel

organization, high level of informality, and multiplexed threads of discussion. His goal

was to archive some of the more useful technical support-oriented channels on one IRC

network and to generate and index useful extracts.

Van Dyke, Lieberman, and Maes (1999) stated a general problem specific to IRC:

Since there were thousands of loosely defined groups in which users could participate,

finding the groups of most interest was generally problematic. There were no hierarchies

for organizing channels, and there were many IRC networks. Their proposed solution
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was to augment the user interface with a software agent that would alleviate the

information overload problem. They developed "Butterfly" - an agent that sampled the

content of IRC channels and made recommendations to the users using a keyword-based

model of interest. The channels' content and the user interests were represented through

a term vector with positive and negative weights. Channel sampling was done using a

scheduled visiting behavior. Due to the constraints of IRC, a user could visit a limited

number of channels at the same time — usually between 10 and 20. While present in a

channel, the agent built the vector of keywords occurring in the conversation. A main

limitation of this approach was that it took a very long time for the agent to build the

content vector. Also, the agent was unable to find secret channels or to join private

channels. This research showed one more time that IRC users' day-to-day activities are

hampered by difficulties in finding appropriate channels. This supports the assertion that

users' overall experience with IRC could be greatly improved by the development of

better channel selection mechanisms.

Several key points may be extracted from the review of the IRC literature. IRC

communities are extremely dynamic, but certain rhythms can be observed. This

dynamicity, together with the large numbers of both users and chat-channels, often causes

users fundamental problems in navigating and learning the interaction spaces. IRC chat-

channels do not have an organized structure; users can be situated in several spaces at the

same time and can often feel overloaded or lost. The previous attempts to improve users'

navigation failed to provide significant improvements due to various factors such as short

sampling time period, small number of analyzed channels, focus on the content of the

discourse rather than its dynamics, or lack of attention paid to the rhythms of the IRC
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activities. All of the above suggest the importance and the need for a large-scale,

comprehensive analysis of the rhythms and group interaction dynamics of an entire IRC

network over a long period of time.

2.4 Instant Messaging Research

2.4.1 Instant Messaging Overview and History

Instant Messaging (IM) is a near-synchronous computer-based communication process,

which allows people to see if one or several chosen friends, co-workers, or associates are

connected to the Internet, and to exchange real-time messages with them. In 1996,

Mirablis released the ICQ (I Seek You) software and introduced the "Buddy List"

concept — a list of people, friends, family, co-workers, etc., that someone would be

interested in and linked to by means of synchronous dyadic chat and/or group chat. Such

software later became known as Instant Messaging. In 1997 AOL introduced AIM (AOL

Instant Messenger). In 1998 AOL bought Mirablis (the creator of ICQ) and became the

dominant player in the instant messaging market. Soon, other players appeared such as

MSN Messenger and Yahoo Messenger. The features of instant messaging software also

evolved over time. Today, most of them allow video and audio communication,

encryption, or some forms of asynchronous communication (mostly in the form of

"offline messages" — messages that can be sent anytime and would be seen by the

recipient next time he or she logs in to the system).

The features that distinguish IM systems from other synchronous CMC systems

are the "buddy list" and the "awareness" information, i.e., the ability to track the current

status of people on one's buddy list. Dyadic conversations are predominant in IM
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systems, but group interactions are also typically supported. Other features usually

offered include finding partners of discussion based on various criteria; file sharing; and

stealth/invisible mode, where one is able to see other people who are online, but is not

seen by them.

Figure 2.4 A typical IM client software.

IM systems are different from other forms of online chat in the following ways:

They do not allow nickname changes unless users create a new account with the provider

of the IM system; the list of potential conversation partners is much smaller than in

regular synchronous chat systems, limited to either the persons in one's "buddy list" or to

the users found by various search methods; and finally, various IM systems follow
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different protocols, making cross-application communication difficult. Despite the

predominant dyadic nature of most of the conversations that occur in an IM system,

group chat is also present. Nearly all of the current IM software typically offers their

users two options: (1) to start their own chat-room, which is usually ephemeral, i.e., it

will not exist if there are no users inside; or (2) to join an existing chat-room. Generally,

the chat-rooms follow the design of IRC chat-channels in that they provide a list of all the

connected users, a public discussion space, and the opportunity to start a private

conversation with any of the other users. Although the video and audio features are

appealing, IM systems' group chat features are rather limited in terms of management of

the chat rooms. Typically the number of users allowed inside a particular chat-room is

limited. Also, although the names of the rooms are supposed to give a broad idea about

the topics of conversations inside them, this is almost never the case. The requirement

for users to have an account with the specific IM system in question reduces the number

of potential users for the group chat features offered by that particular system. All these

factors, together with the outsider's lack of knowledge about what is happening inside the

chat-rooms, contribute to the rather low level of group chat usage inside IM systems.
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The current IM research follows two distinct directions. Some researchers are

interested in how IM systems are deployed and used in the workplace, while others are

focused on the notion of awareness and how IM systems support it. The literature review

will be structured based on these two categories.

2.4.2 Instant Messaging in the Workplace

One of the first studies of IM in the workplace identified the communication tasks

afforded by such systems (Nardi, Whittaker, and Bradner 2000). The ethnographic study

singled out two types of usage for IM systems: interaction and outeraction. Interaction

included all the communication processes that involve information exchange, while

outeraction was defined as "a set of communicative processes outside of the information

exchange, in which people reach out to others in patently social ways to enable

information exchange." Relative to the "interaction" mode, the authors found four main

functions of instant messaging. These were support quick questions and clarifications

related to ongoing work tasks; support coordination and scheduling; coordinate

impromptu social meetings; and keep in touch with friends and family. They also

observed that instant messaging proved to be very flexible in terms of the work that it

supported and also expressive, allowing affective, even intimate, communication.

Relative to the "outeraction" mode, the authors determined that instant messaging was

used a lot to negotiate conversational ability and establish social connections. They also

observed that the concept of "awareness" — the ability of the sender of a message to have

an idea about the receiver's status — was strongly related to a successful communication

process. Nardi and her colleagues identified the potential of instant messaging for

reducing the difficulties usually met in informal communication. Besides rapid
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exchanges of information, the authors observed that instant messaging was used to hold

intermittent conversations over longer periods of time. This study, widely cited by many

IM researchers, provided very interesting and unique (at that time) information.

However, like the majority of IM studies, it was limited in the sense that it examined only

dyadic interaction, without focusing at all on group interaction.

Herbsleb et al. (2002) examined the introduction of instant messaging in the

workplace, but they added to their study the analysis of group conversations (chat in the

workplace). They developed their own systems, called Rear View Mirror (RVM), which

provided three types of functionality: presence awareness, instant messaging, and group

chat. The results showed that group chat was the most used feature, but instant

messaging was also used a fair amount. The authors also examined the concept of critical

mass and its relation to their systems. They defined critical mass as a group of people

who were highly interested in a particular technology and led the way to adopting it.

Although their intention was to quickly achieve critical mass for their system, they ended

up losing about 90 percent of their potential users. This failure led to a more detailed

examination of the factors that influenced the achievement of critical mass. The authors

argued, "What constitutes an effective critical mass is subtle and can vary dramatically

depending on different definitions of community of interest."

A follow-up study by Handel and Herbsleb (2002) built upon the foundation of

their previous research on the RVM systems. They studied the experience of six globally

distributed work groups that used the RVM software for a period of 17 months. The

focus was on four main research questions: To what extent did the users create groups,

join groups, and use group chat? What did the users talk about and to what extent did
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they use flaming? Was chat used in different ways, for different purposes, at different

times of day? Did different groups use the system in different ways? Hence, they were

interested in both group dynamics and discourse content. Their findings showed that

users tended to join groups, other than those to which they were initially assigned.

Patterns of group chat use were found with succeeding periods of inactivity (usually

longer) and high activity (usually shorter). The authors also observed temporal rhythms

in the overall use of the systems (the active period was between 9 am and 4 pm, with

peaks between 2 pm and 4 pm) for the work-related communication. Finally, the authors

observed that all the groups were remarkably similar in their patterns.

Isaacs et al. (2002) examined the "character, function and styles of instant

messaging in the workplace." The authors of this study wanted to examine whether the

current knowledge about IM usage still held in the context of larger numbers of users

(previous studies did not have many subjects). The most important finding was that most

of the time people were using instant messaging for work-related tasks, contradicting in

this way the perception that IM was commonly used for social interaction in the

workplace. The authors also defined two very different styles of use for instant

messaging: working together (multi-purpose communications that covered a range of

complex activities, were intense, of short duration, and sometimes threaded) and

coordinating (short, single purpose communications, minimum threading, and slow-

paced).

Another study by the same researchers (Isaacs et al. 2002) determined that

"frequent IMers have longer, fast-paced interactions with shorter terms, more threading,

and more multitasking relative to infrequent users. Pairs who IM each other often also
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have longer interactions than do pairs who interact rarely." The authors argued that "IM

integration with voice or video connections may be less important than previously

thought."

Hansen and Damm (2002) researched instant messaging in the context of session

management in distributed collaboration tools. They examined how people who were

using Knight, a tool that supported co-located, collaborative object-oriented modeling,

were also using instant messaging software during their interactions. After on-site

observations and transcript analysis and interviews, they identified the need for an instant

messaging component to be integrated into the initial system, instead of using other

software for the purpose of synchronous communication.

Muller et al. (2003) provided the first study of IM based on large samples of user

reports as opposed to the previous studies that were based on the analysis of small

samples of server logs or on ethnographical methods. The method used was a "survey-

based self-report research into people's use of Sametime," an instant messaging software

provided by Lotus. The results showed significant decreases in the use of other

communication channels. Regarding the use of IM, the results were contradictory to

previous IM studies, but the authors' opinion was that in the two-year interval since the

first IM studies, the users of IM systems have found additional value in IM.

2.4.3 Awareness and Instant Messaging

Awareness of other people's presence in distributed work groups has been a frequent

research topic in the past years. In order for such groups to be efficient and effective,

there is a strong need for good coordination. Coordination of a process can be achieved

only when every person involved in that process is aware of the status of his or her co-
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workers. The early research done in this area focused mostly on audio and video

technologies for determining people's status. However, researchers had limited success

mostly because of technology issues. More recently, systems that used alternative

approaches such as pictorial representations (Isaacs, Tang, and Morris 1996) or line

drawings (Greenberg 1996) have been developed.

A more sophisticated system that provided awareness of presence information

was ActiveMap (McCarthy and Meidal 1999). The users wore "active badges" — small

electronic devices that transmitted the wearer's location to a central server. The position

of every active badge could be displayed on the screen of a computer running an

application designed especially for this purpose.

Instant messaging systems were the next step in providing awareness information.

As the importance of this concept grew, more research has been done in order to find

ways to improve others' awareness of an individual without invading the individual's

privacy.

Ljungstrand and Hard (2000) described a system called WebWho — a Web-based

awareness system that kept track of people's presence. In this case, the location was a

computer lab at the university where the system was developed. The users of the system

were able to find out the exact location of a particular person, a friend, a colleague, or a

co-worker, and also to find unoccupied computers in the lab. It also provided the

function of sending anonymous or non-anonymous instant messages to other users.

According to the authors, the main difference between WebWho and other awareness

systems was that WebWho was "primarily place-centered and only secondary person-

centered." The aim of this study was to determine if and how the awareness of presence
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affected the content of the instant messages sent among users. They correctly

hypothesized that the awareness information would influence the content of the instant

messages, but they did not specify in what way.

Tang, Yankelovitch, and Begole (2000) prototyped an instant messaging system

called ConNexus (from Contact Nexus) that was designed for use in the workplace.

Based on research observations, own experience, and conversations with various people;

they decided to focus on three design implications for 1M in the workplace: (1) provide

various awareness tools; (2) integrate 1M with other communication media; and

(3) design a more natural method for the user interface to support starting, maintaining,

and ending conversations. They argued that the awareness cues should be extended in

the sense that they should provide information about the activities the users were engaged

in, not only about their current location or status. Early results from user experience

showed awareness information to be a critical factor in IM.

Tang et al. (2001) continued the work on ConNexus. They developed a series of

prototypes intended to facilitate communication by using awareness information. The

first prototype of ConNexus was desktop oriented and provided features such as contact

lists similar to buddy lists found in most instant messengers, contact toolbars containing

detailed information about a particular contact in the contact list, and a tailored set of

communication tools appropriate to each member of the contact list. The awareness

information provided by this system for a person included online presence of the person,

idle time of input devices (mouse and keyboard), and current level of engagement in

computer mediated communication activities. Considering the proliferation of mobile

devices, the authors extended the system to suit the needs of mobile users and built a
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prototype called Awarenex. At the time of publication, several studies were being

conducted. However, the authors clearly stated that only longitudinal field studies would

give them the answers to the many research questions raised by such a prototype.

Tang and Begole (2003) stated that "IM features and uses are still evolving" and

"effective communication requires richer awareness information of current and future

reachability, context and availability." They argued that "awareness services" would be a

must in the future design of IM systems and presented three research prototypes as

solutions for these awareness services: (1) Awarenex, a system that integrated real-time

awareness information in order to provide cues about the opportune time to initiate,

maintain and end contact; (2) Rhythm Awareness, a prototype that predicted a person's

presence and use patterns based on that person's history with the system; and (3) Lilsys, a

system that provided awareness information taken from various sensors (sound, phone

usage, and computer activity).

Hubbub (Isaacs, Walendowski, and Ranganthan 2002) was a "sound-enhanced

mobile instant messenger that supported awareness and opportunistic interactions. The

authors examined some of the limitations of the traditional instant messaging systems

such as limited awareness information, impossibility of sending messages to persons who

were offline, and impossibility of logging on from different locations at the same time.

They decided to build a tool that would "provide awareness information among

distributed groups, encourage opportunistic conversations, allow people to stay connected

as they move among multiple fixed locations [...] and be readily available and easily

installed." They developed Hubbub for both desktop computers and mobile devices. The

studies they conducted revealed that various sound features of the system improved
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people's awareness about other users and increased the number of opportunistic

interactions.

Results from another experiment involving the Hubbub system were presented in

the work of Isaacs, Walendowski, and Ranganthan (2002). As mentioned above, their

goal was "to create a system that would encourage opportunistic interactions and support

background information while recognizing the fluidity of people's movement throughout

the day." There were 25 participants, and 300 conversations were logged over a 5-month

interval. The results showed that Hubbub's features helped people feel more connected

with the rest of the group, even to people with whom they would not have normally

interacted, and gave them a big sense of being a part of the community.

2.4.4 Other IM Research

While most of the research focused on IM's use in the workplace and on the awareness

cues it could provide, there were a few studies that looked at some pure social aspects.

Voida, Newstetter, and Mynatt (2002) discussed some findings they obtained

from observations, interviews, and textual analysis of IM log files. They considered IM

to be a hybrid genre — a combination between written and verbal communication. They

identified five types of tensions that are usually associated with instant messaging:

persistence and articulateness tensions, synchronicity tensions, turn-taking and syntax

tensions, attention and context tensions, and availability and context tensions.

Grinter and Palen (2002) explored IM as "an emerging feature of the teen life,"

paying attention to the everyday use of IM and its support for interpersonal

communication. The distinctive characteristic of their research was the age of the

subjects. While most of the studies were oriented toward adult participants, only
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teenagers participated in this experiment. The authors argued that IM communication

occurred between "real space friends," that peer pressure was an important factor that

affected the embracement of the technology, and that choosing IM over other media was

not only an effect predicted by the media richness but was also influenced by other

constraints. Domestic rhythms and schedules, as well as privacy issues, were important

determinants for teenagers' usage of IM.

In a somewhat related study, Grinter and Eldridge (2003) looked at how teenagers

were using Short Message Services (SMS) text messages with their mobile phones.

While a comparison between IM and SMS would not be appropriate here, it is worth

noting that sending text messages via mobile phones has become a common practice in

many countries. This study showed that two of the three primary activities that

characterize teenage IM use (Grinter and Palen 2002) also hold in the case of mobile

phone text messaging (social chatting and coordinating activities). A third activity

discovered here was coordinating communications.

Alvestrand (2002) provided a brief but comprehensive description of today's IM

concepts and identified community building to be the most important benefit of such

systems.

Chuah (2003) argued that today's IM systems are not anchored enough into the

real world. He suggested that a combination between IM software and live streaming of

news or sports events would provide a better context that would improve the IM users'

experience.

The literature review of IM research highlights several aspects relevant to this

research. First, the patterns of dyadic IM conversations differ from those of group
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conversations mostly because dyadic interactions occur much more frequently than group

interactions inside instant messaging systems. Second, IM interactions are often

characterized by certain rhythms, with distinctive periods of activity and inactivity and

the rhythms of group interactions seem to be better defined than the rhythms of dyadic

interactions. Third, the users of these systems generally appreciate awareness

information about the status of their conversation partners.

IM systems are not suited for this research for several reasons. IM conversations,

whether dyadic or in groups, are conducted almost exclusively with friends, co-workers,

or other acquaintances. Although some systems offer people search capabilities, finding

new interaction partners is more difficult when compared, for example, to a system like

IRC. Thus, the limited number of potential interaction partners, the inability to easily

look for new people with whom to communicate, and the lack of pre-defined interaction

spaces for mass interaction make IM systems an unsuitable candidate for this work. The

group chat features offered by some IM systems are used to a certain extent and, since

their structure is very similar to that of IRC, could represent an alternative. However, the

limited chat-room openness and management capabilities, together with the potential

data-collection problems associated with proprietary implementation specifications, make

IRC a more attractive medium.
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2.5 Research on Various Other Chat Systems

Vronay, Smith, and Drucker (1999) identified several main factors that influenced chat

efficiency. These factors included the lack of all of the following: recognition, intention

indicators, status information; and context. Additional factors were the high signal to

noise ratio, typing inefficiency, and the general uselessness of the chat history. While

acknowledging the usefulness of thread management research, they focused on the

problem of eliminating the conditions that actually led to overlapping threads. They

designed and tested two prototypes of new chat user interfaces, but the initial results were

disappointing — the users clearly preferred the traditional chat interfaces and resisted the

new ones.

Smith, Cadiz, and Burkhalter (2000) described a chat client prototype, Threaded

Chat, as a solution to the current chat systems' problems including deficiencies in

managing interruptions, managing turn-taking, and conveying comprehension. The

system supported a synchronous form of the turn-taking structure characteristic of

asynchronous systems such as Usenet newsgroups. The conversations were organized

into structures called threads. Each thread started with a "turn" and continued with

several "responses." The system was used in an experiment along with a regular,

traditional chat system and another experimental prototype. The users rated it

significantly lower than the regular chat system. However, the level of task performance

was about the same for both systems. Overall, the subjective user ratings for Threaded

Chat were very low, but people were able to adapt to the interface and complete the tasks.
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Figure 2.7 The Threaded Chat prototype. 
(Source: Smith, Cadiz, and Burkhalter 2000) 
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Smith, Farnham, and Drucker (2000) performed log file analysis of ~ser behavior 

in order to illustrate the dynamical structure of social cyberspaces. The paper provided a 

quantitative analysis of the social dynamics of three chat rooms in the Microsoft V -Chat 

graphical chat s¥.stem, a syste~ relying on IR~ infrastructur.e for corpmunication 

transport, but providing sOJ?1e additional graphi~al features suc4 as avatars, gestures and · 

positioning relative to the other users. Data on usage patterns and online social 

interactions were collected using surveys and data logs. The authors clearly stated that 

very little was known about the social interactions occurring within chat spaces. Log 
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analysis was seen as a useful complement to ethnographical studies, providing a wide 

range of measures related to the social structures and the dynamics of the interactions in 

the medium. The initial findings showed the noisiness of log data, a common problem 

when dealing with large amounts of data, but they also showed that chat rooms had well-

defined rhythms, (which were active mostly in the afternoon). 

Figure 2.8 Microsoft's V -Chat system. 
(Source: Smith, Farnham, and Drucker 2000) 

~ 

Ribak, Jacovi, and Soroka (2002) developed ReachOut, a "chat-based t601 for . 
\ . , ) .. 

peer support and community building," trying to improve the distribution of knowledge 

within business organizations. In doing so, they drew from many other types of CMC 

systems: newsgroups, Listserv, email lists, and instant messaging. By adding persistency 

features to a synchronous environment, the authors considered that their system actually 
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bridged the gap between asynchronous and synchronous systems. Their main design

philosophy was that users should turn to peers, instead of looking to acquire some

specific information from external sources such as the Internet or a company's Intranet.

The users would ask questions; each question would have dedicated a chat-room, and the

content of all the ongoing discussion in the chat-room would be made persistent and

accessible in the future. In this way, the authors argued that not only would people find

the necessary information, but their personal social networks would also expand and the

entire community would grow. Early results from pilot testing showed encouraging

results and ReachOut continued to be extended and further tested.

Jacovi, Soroka, and Ur (2003) presented results drawn from the use of ReachOut

in the workplace. They defined six prospective functions that a semi-synchronous chat

tool should perform: provide peer support; accelerate decision-making; announce events;

facilitate socializing; coordinate teams; and contact colleagues, friends, and family. The

authors found supporting evidence for these functions in the evaluation of ReachOut

usage over a two-month period at the IBM Haifa Labs. The results proved that all the six

functions were fulfilled. Furthermore, two additional functions of the ReachOut system

were discovered: It alerted management about an existing problem and raised

consciousness for a large group of people about an issue concerning them. Overall, the

authors considered ReachOut to be a tool that could be successfully used in the

workplace in multiple ways.

Persson (2003) argued that despite the research on avatar-based systems, most

synchronous communication was done through text. After enumerating some of the

potential causes to support his contention, he proposed a shift from synchronous to
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asynchronous use of avatars and presented a messaging system called ExMS that made 

extensive use of avatars. 

Figure 2.9 The ExMS prototype. 
(Source: Persson 2003) 

Avatars were used mostly to repres~nt expressiveness such as feelings, reactions, 

and moods, rather than spatial movement. The system was tested on a very small number 

of subjects (10 subjects). The conclusion was that a rich, well-designed avatar system 

could be a useful tool for "quick and dirty" messaging among people. 
,,' 

Kurlander, Skelly, and Salesin (1996) described a system that represented online 

communications in the form of comics, called Comic Chat. They argued about the 

importance of improving the text-based chat rooms with graphical features and presented 

a few of the problems of current avatar-based chat systems. In order to develop their 

system, they collected and examined numerous chat transcripts, annotated them, 

presented them to a comic book artist, who then provided them with an ill:ustration. They 

identified three design elements categories that required automation: characters, balloons, 

and panels. The paper described in details all the algorithms they used for building the 

comics. They used the IRC protocol as the foundation of their application as Comic Chat 

connected to existing IRC servers on the Internet. Overall, the authors were pleased with 
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the results, and people enjoyed using the system, but they agreed it still needed many

improvements.

Dewes, Wichmann, and Feldman (Feldman 2003) developed a methodology to

identify the network traffic generated by various synchronous chat systems and to

determine the statistical properties of such traffic. They did their analysis by monitoring

all the TCP packets sent through their university's network and by extracting the packets

that were identified as chat traffic based on various strategies and algorithms. The results

showed their methodology was quite successful. Less than 8.3 percent of the existing

chat connections were lost during the analyzed period (one week).

None of the systems described above represents a good match for the analysis of

mass interaction because they are mostly prototypes and used by a limited number of

users.

2.6 Summary

The literature review of the three main types of synchronous CMC systems reveals

several important facts that need to be considered. Firstly, it suggests that synchronous

CMC systems are sometimes characterized by rhythms and patterns. The work that has

been done on rhythms and patterns identification shall be further review in Chapter 4, as

these two notions are of highest importance in analyzing the interaction dynamics and

determining the group interaction trajectories of large-scale synchronous chat-systems.

IRC's uniqueness, when compared to IM systems or to MUD/MOO systems, stems from

its dynamicity and its openness relative to the opportunities to meet new people.
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Secondly, it can be inferred from previous research that MUD systems and IM

systems are not well suited for large-scale research of group interaction dynamics.

MUDs seem to have lost researchers' attention, which might suggest they do not

represent a major choice for users looking for online synchronous group interactions.

Also, since MUDs typically use a spatial metaphor, users cannot be in two or more places

at the same time. Additionally, users have to learn the space through navigation, one step

at a time, which is a constraint to the research of mass interaction. IM systems typically

seem to be used for dyadic conversations with friends or with other known persons.

Although group chat features exist and are used to a certain extent, the implementation

protocols and the limited chat-room management capabilities would make the

identification of group chat dynamics and trajectories problematic from a technical point

of view as well as from the perspective of relevancy and generalizability of the results.

Furthermore, the number of potential interaction partners in IM systems is limited

compared to IRC, and large-scale data-collection is problematic due to the

implementation specifications and protocols used by IM systems.

By a process of elimination, the above discussion suggests that IRC is an ideal

choice for the proposed research. It is one of the oldest synchronous CMC systems; and

despite its simplicity, it is still extremely popular, being used by millions of people on a

daily basis. Many of the current chat systems, including the group-chat features of IM

systems, were designed using IRC as a model. Finally, previous researchers have

emphasized the difficulty of collecting large amounts of data from IRC. Although this is

typically true, a method that makes the data-collection process more convenient has been

identified and will be applied.
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A better design for large-scale synchronous chat systems can only be achieved by

acknowledging the current problems the users are facing and then working to solve these

problems. Current IRC research presents proof of user problems, such as information

overload or inability to find meaningful interaction spaces and/or partners. To start

addressing these problems, a detailed analysis of rich, large-scale synchronous chat

systems interaction dynamics data sets would be required. The review of the literature

clearly identified the lack of such rich data sets. The sampling periods of data sets were

typically short; small numbers of channels were observed; the analysis was based mostly

on discourse content; and almost no attention was paid to the rhythms of the chat spaces.



CHAPTER 3

SOCIAL RECOMMENDER SYSTEMS

3.1 An Introduction to Recommender Systems

This chapter reviews various tools that help people find their way inside large-scale

spaces. Currently, the navigational issues associated with such spaces have been

addressed through two main types of tools: social recommender systems and social

visualizations. Social recommender systems can be further divided into social matching

systems and expertise recommender systems. Social visualizations, although they don't

provide recommendations per se, help the users to get a better understanding of the

activities that characterize the chat spaces and provide support for the users' decision-

making processes relative to future interactions inside the chat spaces.

Recommender systems are software tools that attempt to help users satisfy their

needs when choosing among various products, services, or other items by providing

recommendations based on various algorithms. They represent one approach in dealing

with the abundance of or the absence of information. Terveen and Hill (2001) provide a

review of the domain, identifying four types of recommender systems: content-based

systems, recommendation support systems, social data mining systems, and collaborative

filtering systems.

Content-based recommender systems attempt to recommend items that are

similar, to some degree, to items previously preferred by the users. They typically use

the preferences of the information seeker and attempt to recommend items similar to

other items that the user liked in the past. They focus mostly on "algorithms for

57
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learning user preferences and filtering a stream of new items for those that most closely

match user preferences."

Recommendation support systems do not provide recommendations by

themselves. Instead, they only offer the means for people to share recommendations.

They "serve as tools to support people in sharing recommendations, helping both those

who produce recommendations and those who look for recommendation."

Social data mining systems try to make recommendations based on the history of

users' social activity. By mining various records of social activities such as Usenet

postings, emails, hyperlinks, system usage logs, etc., these systems are able to provide

useful information to their users and help them find interesting material or interesting

people, improving in this way the social navigation.

Collaborative filtering systems attempt to recommend user items that were

previously liked by other people with similar tastes or preferences. They "require

recommendation seekers to express preferences by rating a dozen or two items, thus

merging the roles of recommendation seeker and preference provider." The focus of such

systems is "on algorithms for matching people based on their preferences and weighting

the interests of people with similar taste to produce a recommendation for the information

seeker."

Out of these four types, content-based and collaborative filtering recommender

systems are the most widely used. They are sometimes combined into hybrid

recommender systems. Such systems typically employ the users/items/ratings model

where a rating function is mapped from each user/item pair to some rating value (Terveen

and Hill 2001). Lately it has been argued that the users/items/ratings model might not
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suffice when dealing with complex and/or dynamic domains. As a result, a

multidimensional approach to recommender systems was suggested, where multiple

variables are taken into account when building the recommendation algorithm

(Adomavicius and Tuzhilin 2001).

3.2 Social Recommendations

In recent years there has been an emergence of recommender systems that focused

specifically on social recommendations. As opposed to the traditional recommender

systems that were used to recommend and/or sell various products or services such as

books, movies, Usenet news, vacation packages, etc. (O'Connor et al. 2001; Schafer,

Bowman, and Carroll 2002; Miller et al. 2003), social recommendations focus on

different social aspects characteristic to online communities. Social recommendations

could be aimed at the individual, trying, for example, to find a match or to increase the

size and the strength of a person's social network; or could be aimed at the community,

trying, for example, to increase its size and stability over time. There have been two

main approaches to provide users of CMC systems with social recommendations: a more

direct approach through the use of social matching systems, and an indirect approach

through the use of social visualizations.

Social matching systems are a type of recommender systems that "[partially]

automate the process of bringing people together" (Terveen and McDonald 2005). In

other words, social matching systems attempt to recommend people to people. Terveen

and MacDonald argued that such systems "have the potential to increase social

interaction and foster collaboration among users within organizational intranets and on
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the Internet as a whole." However, despite these potential benefits, they recognized a

lack of research in this domain. They tried to precisely define the scope of social

matching systems, and, at the same time, describe how they were different from other

types of recommender systems. The authors provided a review of the research on social

matching and other related systems, identifying a variety of approaches. Social

recommenders for information needs attempted to match people "based on their social

relationship and an information need." The "Expertise Recommender" (ER) (McDonald

and Ackerman 2000; McDonald 2001) was an example of this class of systems. Its

authors acknowledged that "locating the expertise necessary to solve difficult problems is

a nuanced social and collaborative problem" and finding a person with this expertise

could be difficult especially inside an organizational setting. They developed the ER

system to facilitate the identification of individuals who possessed the expertise required

to solve a particular problem. They conducted fieldwork and discovered sets of heuristics

that they further implemented in the algorithms of their system. Expertise recommender

systems could be tailored to different recommendation situations (such as different

organizations), but they would rely mostly on "profiling techniques that are not common

to other recommendation systems." Specifically, great amounts of fieldwork in

organizational settings would be required in order to generate the people profiles needed

for expertise recommender systems to work.

Terveen and McDonald continued their review with a description of information

systems with implicit social mining, which focused on "navigating information spaces

with the goal of finding desired facts." They also provided users with pointers to other

users who could help when the needed information could not be extracted through the
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social mining rules. Opportunistic social matching systems (Svensson et al. 2001; Cohen

et al. 2002) are a class of systems in which matching is "based on shared interests, where

users' interests are inferred by the system from their current activity or record of past

activity." Other approaches related to social matching systems include user modeling

systems (Rich 1979), group recommenders (O'Connor et al. 2001), online communities

(Preece 1999), awareness systems (Erickson et al. 1999), social visualization (Donath,

Karahalios, and Viegas 1999; Smith 1999), and social navigation (Whittaker et al. 1998).

After reviewing the social sciences literature relevant to the design of social matching

systems, the authors presented a research agenda for this area in the form of a set of

claims, and argued that testing those claims should provide vast research opportunities in

the future.

"Claim 1: Social matching systems need to use — and users will be willing to
supply — relatively sensitive personal information.

Claim 2: Social matching algorithms necessarily embody a model of what
makes a good match; making that model explicit leads to better matches.

Claim 3: Social networks are a useful tool for social matching. While whole
(population-based) networks are problematic, egocentric (user-centered) networks
offer several promising uses and raise interesting research challenges.

Claim 4: Creating effective introductions between users is crucial, but requires
balancing the effectiveness of the introduction and the disclosure of personal data.

Claim 5: Size does matter for a social matching system, but not as much as you
might think.

Claim 6: Designers must consider possible contexts of interaction between
matched users.

6a: Properties of online spaces constrain the possibility for developing
interpersonal relationships and group ties.

6b: Interacting physically offers greater rewards and risks than
interacting in a virtual space; when this is an option, systems must
support users in exercising this option safely.

Claim 7: User feedback for a social match must be relative to a specific role or
context; obtaining feedback is much harder than getting user ratings for books,
movies, music, etc.
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Claim 8: Evaluations of social matching systems should focus on users and their
goals."

Although, according to Terveen and McDonald, the main focus of social

matching systems is to recommend people to people, one can easily envision the

enhancement of such systems to include recommendations about particular interaction

spaces to people as a distinct step in the process of bringing people together. Such an

approach to social recommender systems was taken by Van Dyke, Lieberman, and Maes

(1999). They stated a problem that was common to many large-scale CMC systems, i.e.,

the existence of thousands of loosely defined groups in which users could participate over

the Internet and cited the problems that typically occurred when looking for the most

interesting groups. Since no hierarchies for organizing the spaces where these groups

typically meet existed, they proposed as a solution the augmentation of the user interface

with software agents that would alleviate the information overload problem. Specifically

focusing on IRC, they developed "Butterfly" — a software agent that sampled the content

of IRC channels and made recommendations to the users using a keyword-based model

of interest. The channels' content and the user interests were represented through a term

vector with positive and negative weights. Channel sampling was done using a scheduled

visiting behavior (due to the limitations of IRC, a user could visit a limited number of

channels at the same time — usually between 10 and 20). While present in a channel, the

agent built the vector of keywords occurring in the conversation. A main limitation of

this approach was that it took a very long time for the agent to build the content vector.

Also, the agent was unable to find secret channels or to join private channels. The

Butterfly system was oriented toward recommending spaces (chat-channels) to people, as
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opposed to the expertise recommender systems or the social-matching systems, which

attempted to recommend people to people.

3.3 Social Visualizations

Social visualizations are types of information visualizations that focus on analysis and

display of social behavior, typically online social behavior. Such visualizations can offer

a glimpse of the underlying social structures associated with online spaces (Donath,

Karahalios, and Viegas 1999) and typically display the patterns of user activity (bursts,

idles, evolution of the topic, evolution of the users) (Erickson et al. 2002). They can be

produced around a "social proxy," i.e., "a minimalist visualization of people and their

activities" or at a more aggregate level displaying social network structures (Mutton

2004). By informing the user, such visualizations act as an indirect social

recommendation interface.

Social visualizations have been used to map the activities occurring inside various

synchronous and asynchronous CMC systems. Viegas and Smith (2004) presented two

tools for visualizing activities in Usenet groups: Newsgroup Crowds and Author Lines.

Newsgroup Crowds was more group-oriented and represented graphically the population

of posters (active users) in a particular newsgroup. Author Lines was oriented toward the

individual users and depicted graphically a particular poster's activity across all the

newsgroups in which he or she was active. As opposed to the rest of research in this

domain, this was a large-scale study in terms of both time and size. It was conducted

over a period of one year, and it sampled a large number of Usenet groups. Both these

tools helped reveal well-defined temporal patterns of activity. Specifically, relative to the
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group activity, the author measured the number of posters inside groups and the overall 

activity of these posters within each of the analyzed U senet groups. Relative to the 

individual activity for each user, the authors computed the number of threads of 

conversation started by that user, as well as the number of threads to which that user 

responded across the entire sample of analyzed groups. The authors suggested that such 

visualizations could be used for future interfaces that would better convey information 

about the history of the social dynamics inside U senet groups, leading to better selection 

and evaluation of content inside newsgroups. 

Figure 3.1 Newsgroup Crowds visualization of two newsgroups~ 
(Source: Viegas and Smith 2004) 

Fiore and Smith (2002) used treemaps (Shneiderman 1992) to visualize Usenet 

news groups and concluded that interfaces that implement treemaps would help in the 

exploration of large-scale social dynamics of CMC systems. 



Figure 3.2 TreeMap of all Usenet, March 2000. 
(Source: Fiore and Smith 2002) 

Figure 3.3 AuthorLines visualization of started/responded to threads. 
(Source: Viegas and Smith 2004) 
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Donath, Karahalios, and Viegas (1999) discussed the design of graphical user

interfaces that made visible the social structure of the interaction within chat spaces by

displaying the patterns of activity such as bursts, idles, evolution of the topic, and

evolution of users. They identified the users' need to access such information in a chat

room. They took some steps into this direction, by providing visual information about

the dynamics of the interactions. They focused on creating representations for

highlighting the social information that people needed in order to figure out what was

happening in the chat space. They actually built two tools: Chat Circles, which was a

graphical user interface for synchronous communication; and Conversation Landscape

which was a tool for visualizing the history of the interactions. The authors also referred

to Loom, a tool used for visualizing asynchronous systems (Usenet groups). Whether

visualizing the activity of synchronous or asynchronous mediums, it is worth noticing

that the authors identified the people's need to actually see what was happening in the

interaction space in order to improve their experience with the system.

Viegas and Donath (1999) continued their research in designing a "chat system

that uses abstract graphics to create a richer, more nuanced communicative environment."

They tried to display the dynamics of the conversation and the patterns of interaction and

activity that emerged in synchronous conversations. A distinctive feature of their tool

was that the users were able to visualize the overall picture of the system, i.e., they were

able to see all the other participants. There were no multiple chat-rooms, just one single

interaction space. The users were represented as colored circles whose sizes changed

according to their activity (amount of participation).



Figure 3.4 Screenshot from a Chat Circles session.
(Source: Donath, Karahalios and Viegas 1999)
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Figure 3.5 ConversationLandscape, the graphical interface to the Chat Circles archives.
Vertical lines show the activity of one participant. Horizontal lines represent postings.
(Source: Donath, Karahalios and Viegas 1999)
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The users were aware of the total number of users and of the amount of activity in

each cluster of conversation, but they were not able to "hear" (see) the discussions going

on in a particular place on the screen if their graphical representation (circle) was not

close enough to that cluster. The system provided an archive feature with the possibility

of recording chats for future reference. The authors also developed an interface for

visualizing archives of previous chats. It was called Conversation Landscape and was

able to provide graphical information about the patterns of the users. These patterns

included periods with high activity versus periods of "lurking." One of the most

important aspects of the Chat Circles system was its ability to reveal interaction patterns

that occurred over time.

Erickson et al. (1999) started their research from the premise that it would be

possible and desirable to design systems that supported social processes. "Socially

translucent systems" were defined as systems that provided various social cues that could

be perceived by the users, and that afforded awareness and accountability for them. The

authors considered translucence to be a fundamental requirement for supporting

communication and collaboration interaction among users of CMC systems. Their initial

project was called Loops at first and aimed to support "smooth, reflective, and productive

conversations through synchronous and asynchronous CMC." The "Babble" system was

the first implementation of the basic Loops concepts. The three characteristics that stood

at the base of its design were to provide cues from content, to provide social cues, and to

support small groups. They also defined the "social proxy" as "a minimalist graphical

representation of users which depicts their presence and their activities vis-a-vis the

conversation." The social proxy provided basic information about the context of the
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conversation such as number of participants, amount of conversational activity and cues 

about the users' dynamics (for example, how many were leaving or joining the 

conversation). Results showed that Babble supported opportunistic interactions, group 

awareness, informality, and sociability and gave its users a feeling of "place." While it 

merged elements of many types of systems (MUDs, chat, email lists, news groups, 

bulletin boards), Babble wasn't actually any of them; it was unique in its own way. 

,....-------------- Social Proxy 
~=o=J~""" 

[Amy) 

• cals Commons Area 

• Dan@lotus · Am using Wendy 

• Jason [Sorry. 
• John in the I 

• ANNOUNCEMENTS 
· Auto-Gone discussi 
· Babble And Worldl 

• Tom at Minne 
• Wendy i~ the 

· Babble and XML 
· Babble Chat Featu 
· Babble Design Issu 
· Babble Drawin s 

-Commons Area-

conflict with design that is beautiful. It just takes more work 
[of course). 
======Thursday 27 Aug98 2:28:38 PM EDT From: Wendy in the lab 
Anyone know what the thing on the side of the monitor is on the 
iMac? (Itls a kind of rectangle with another piece of plastic 
with a teal-lined hole cominQ over the rectanQle. kind of like a 
tab)?? 

======Thursday 27 AUQ98 2:39:00 PM EDT From: John in the lab 
It is the cable P.ort. 

Figure 3.6 The Babble interface. 
(Source: Bradner, Kellogg and Erickson 1999) 

Topic List 

Current Topic 

The Babble system was further researched by Bradner, Kdlog, and E~ickson 

(1999). They identified some df the features that distinguished this system from regular 

chat systems. Babble provided persistent conversations, a social proxy, and it lacked a 

behavior-enforcing mechanism. The authors found four communicative practices for 

which Babble was used: waylay, which meant wait for people to be around and then start 
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a conversation; unobtrusive broadcast, which meant ask a question and wait for

somebody to answer, within view of everyone else; staying "in the loop" where one felt

connected and aware of what was going on inside the group; and discussion sanctuaries

where no outsiders were allowed to use the system, thereby making Babble a safe place

to talk. Babble adoption or lack thereof was observed only after four weeks of use. The

authors concluded that the relationship between adoption and the communicative

practices employed by the group of users was a complex one.

Erickson and Kellogg (2000) argued that people usually make decisions based on

other people's activities. They also admitted that generally systems are opaque to any

kind of social information and suggested that systems should be designed with an

emphasis on making social information available to the users. A system that provided

social information to the users could help them be aware of what was going on and help

them to be accountable for their actions. Visibility, awareness, and accountability were

seen as the key properties of translucent systems. Translucent systems were defined as

systems that provided various social cues that could be perceived by the users, and that

afforded awareness and accountability for them. Translucence was preferred to

transparence because of the tensions between privacy and visibility. They also suggested

three approaches in implementing translucent systems: realist systems (teleconferencing,

media spaces); mimetic systems (graphical MUDs, Virtual Reality) or VRML (Virtual

Reality Modeling Language) worlds; and abstract systems (using some representations of

the real world that were not necessarily closely tied to their physical analogs). While

they preferred the abstract approach, they also considered the other two to be promising.

The Babble prototype represented an instantiation of the abstract approach.
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In accordance with the idea that people typically make decisions based on other

people's activities, and one's own activities provide information to others; Erickson and

his colleagues (Erickson et al. 2002) continued to work on designing systems that

allowed their users to perceive social cues about the other participants in the discussion.

Although Babble resembled a chat system, it was more than that. Babble also provided

persistent conversations and a social proxy. The authors mentioned some other systems

that could use social proxies such as online lectures or online auctions. Of course, the

issues with socially translucent systems could not be omitted. Trustworthiness and

privacy were two major concerns, since making the activities and presence of users

available to others could be a sensitive topic. Although Babble was considered a "safe"

place because no outsiders had access to it, this situation could change in other

circumstances.

Timeline was a system related to Babble (Erickson and Laff 2001). It was a

social proxy that allowed visualization of cues about the presence and activity of

participants in the Babble system, focusing only on asynchronous participation. The

users were able to see and understand the patterns of the community. The authors argued

that cues about the users' activities and rhythms of the conversation would be easier to

provide in synchronous environments. Timeline was focused only on the asynchronous

communications occurring within Babble. Some preliminary results showed that the

users were not happy with the implementation but recognized the potential of such a tool

in the future.
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Figure 3.7 The Timeline social proxy. 
(Source: Erickson and Laff 200 1) 
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- _ - III 

Mutton (2004) described a method for determining the social networks of the 

users present in an IRC channel and displaying them in a graphical form. He presented 

the process of inferring the relationships among the users of IRC from a technical point 

of view, detailing the algorithm for building the users' social networks from tp.e analysis 

of the text-based interactions occurring inside a chat channel. 

3.4 Summary 
. \ 

Social visualizations have been applied to both synchronous and asy,llchronous CMC 

systems (Erickson 2003). All of the reviewed studies showed the users' interest in the 

ongoing activities of their conversation partners and in the current state of the system. 

They also suggested that the dynamics of a chat system have an important role in the 
\ ., 

actual system usage and that social visualizations could help users select online 'spaces . .. , .. 

for interaction. The methods used today to provide social recommendations are limited. 

Social matching systems are still in their infancy, and more research is needed to fully 

understand the design implications of such systems. Furthermore, while social matching 

systems typically focus on relationships between people, social recommendations could 



73

be extended to include recommending particular interaction spaces to people as a distinct

step in the process of bringing people together. Social visualizations techniques have

been applied mainly to small groups over small time intervals. The exception is

represented by the work of Viegas and Smith on the visualization of large-scale Usenet

group activities (2004). However, their research was done on asynchronous CMC

systems. The content of group interactions was persistent, and therefore the access to it

was not as problematic as it would be in the case of dynamic media such as synchronous

chat systems. Social visualizations require a thorough understanding of what is going on

inside such systems. This research, through the analysis of the group interaction inside

synchronous interaction spaces, will provide the necessary knowledge to build better

social visualizations, representing in this way another step forward toward the

improvement of social recommendations for synchronous CMC systems.



CHAPTER 4

IDENTIFICATION OF RHYTHMS IN CMC SYSTEMS

4.1 Foundations of Rhythm Identification in CMC Systems

Identification of rhythms is important if people want to know the most appropriate time

to find something of interest in a particular CMC system. In the real world, one knows

when it is time to go to school or go to work. Currently, the online world does not

provide any information to users in the matter of timeliness to join a chat space. This is

why there is a need to explore the rhythms of computer mediated communication

systems.

The exploration of CMC systems rhythms has expanded in the past few years. It

went from simple observations of the presence of rhythms in the users' activities (Curtis

1996; Smith, Farnham, and Drucker 2000; Grinter and Palen 2002) to acknowledging the

importance of these rhythms ( Mynatt et al. 1998) and addressing them as specific

research interests (Smith 1999; Begole et al. 2002; Handel and Herbsleb 2002;

Halverson, Erickson, and Sussman 2003; Tyler and Tang 2003; Fisher and Dourish

2004).

One of the first authors who mentioned the rhythms of a CMC system was Curtis

(1996). He observed certain rhythms in a MUD system's usage, with higher levels of

activity and larger numbers of users during certain time intervals of the day. He looked at

the pattern of MUD usage in terms of the number of users versus the time of the day. He

observed that the maximum values were recorded between noon and eight in the evening

and that the number of users tended to be constant within that time interval. The values

dropped for the rest of the day but there were always at least twelve people connected.

74
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Mynat and her colleagues ( Mynatt et al. 1998) studied Pueblo, a cross-generation

school-centered, text-based MUD; and Jupiter, a hybrid MUD/media space, which

provided audio/video links between participants. The authors introduced the concept of

network communities, which were defined as "robust and persistent communities based

on a sense of locality that spans both the virtual and physical worlds of their users" and

identified periodicity as one of the affordances of these network communities.

Periodicity was defined by combinations of rhythms and patterns in the users' system

usage. They noticed that each communication modality (text, video, audio, etc.) had its

own rhythm. They also argued that rhythm dynamics were fundamental to network

communities and further predicted that routines, intelligible rhythms for individuals and

for the community as a whole, were likely to emerge in the future.

Smith, Farnham, and Drucker (2000) performed log file analysis of user behavior

inside chat spaces in order to illustrate the dynamical structure of social cyberspaces.

Among other findings, they determined that chat rooms had well-defined daily rhythms,

in terms of number of people and amount of conversations, with higher activity in the

afternoons.

Grinter and Palen (2002) explored IM as "an emerging feature of the teen life,"

paying attention to the teenagers' everyday use of IM and its support for interpersonal

communication. Domestic rhythms and schedules, as well as privacy issues, were found

to be important determinants for teenagers' usage of IM. In other words, the participants

knew when to expect to find someone online based on the patterns of their usage history

of the system.
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Tyler and Tang (2003) conducted a study of email responsiveness to "understand

how the timing of email responses conveys important information." They found that

depending on the time intervals passed between sending and receiving email, people

tended to identify the rhythms of their respondents, and therefore began to predict the

time frames in which they should expect responses or the time intervals that were best for

contacting someone. They suggested that taking into consideration the rhythms of email

interaction could lead to better designs for email systems with "better support for mutual

negotiation between senders and receivers."

Fisher and Dourish (2004) analyzed the social structures, defined as patterns of

collaboration among people (co-workers); and the temporal structures, defined as the

ways in which patterns of interaction (among co-workers) changed over time. In doing

so, they tried to "uncover usable temporal and social structures from traces of electronic

activities." Their initial results showed it was possible to gather information about

recurrent patterns of contact from the use of electronic tools. Furthermore, people were

likely to recognize those patterns and actually considered them meaningful. One

conclusion from this research was that both the social and the temporal rhythms and

patterns could be further used to build or enhance CMC systems by providing various

awareness tools.

Halverson, Erickson, and Sussman (2003) discovered unique patterns of activity

that occurred within a group using a synchronous chat system. Those patterns were

"punctuated" by long periods of inactivity followed by bursts of activity. They presented

a case study of a geographically distributed group's use of a system (Loops) that was

derived from Babble. The observed rhythm was different than the rhythms of all of the
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other places where the system (or its predecessor) had been previously deployed. The

authors used several methods including a survey of users before deployment of the

system; log capture and quantitative activity analysis; content analysis; and semi-

structured interviews. The system was considered a success even if it was not used

continuously.

Smith (1999) reported the results of Netscan, "a software tool [...] that gathers an

ongoing stream of Usenet messages and maintains a database of information drawn from

the header of each message." He stated that "an overview of activity in the Usenet has

been difficult to assemble. Many basic questions about its size, shape, structure and

dynamics have gone unanswered." Netscan helped to find the answer to some of these

questions. The results of a 10-week data-collection period showed well defined weekly

and daily cycles in Usenet postings. At a weekly level, most of the activity occurred

during the working days, with lower levels of activities during the weekend. At a daily

level, there were significant differences in the activity of the newsgroups depending on

the time of day. The groups were never completely inactive.

Handel and Herbsleb (2002) focused on four main research questions: To what

extent did the users of an IM-like application create groups, join groups and use group

chat? What did the users talk about, and to what extent did they use flaming? Was chat

used in different ways, for different purposes at different times of the day? Did different

groups use the system in different ways? The authors were interested in both group

dynamics and discourse content. Their findings showed that users tended to join groups

other than those to which they were initially assigned. The system's history of use

showed patterns of group chat, with succeeding periods of inactivity (usually longer) and
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high activity (usually shorter). The authors also observed temporal rhythms in the overall

use of the system for the work-related communication. The active period was between

9:00 a.m. and 4:00 p.m., with peaks between 2:00 p.m. and 4:00 p.m., and all the groups

were remarkably similar in their patterns.

Begole et al. (2002) were interested in determining the work rhythms of

distributed groups. They analyzed visualizations of the awareness histories of several

distributed work groups in order to understand meaningful patterns in the users'

activities. Using the Awarenex prototype (Tang et al. 2001), they logged all computer

interaction activities including keyboard strokes, mouse movements and clicks, location

data about where the activities occurred, online calendar appointments, and email

activities for 20 users for a period of up to 10 months. The visualizations were produced

in the form of actograms displaying the users' daily and weekly activities. The

actograms clearly showed the patterns of the users' rhythms, and their analysis revealed

several important things. Firstly, the users' work rhythms seemed to be different

according to the day of the week. Secondly, the rhythms seemed to be strongly

dependent on the location of the users (for example office, home, or mobile location).

Thirdly, the patterns tended to vary depending on the users' role within the organization —

managers seemed to be more active during the beginning and the end of the workdays

and more open to interruptions during the midday. Finally, such visualizations were able

to predict, to some extent, the end of users' inactive periods. The authors concluded their

paper with some design implications for future systems. Knowing the work rhythms of

people could lead to better group coordination applications. Such applications could be

improved by providing suggestions about the best times to make contact, predicting



79

returns from periods of inactivity, augmenting online calendar accuracy, identifying

email reading patterns, and restoring cues to negotiate the initiation of contact. The

authors mentioned the privacy issues that were inherent to the type of information they

collected and suggested careful approaches in the future.

4.2 Summary

To date, there is not a great body of knowledge addressing the rhythms of computer

mediated communication systems. Furthermore, the vast majority of the work that has

been done so far analyzed the rhythms of small groups over limited time intervals. The

exceptions are represented by the works of Smith, who researched the entire Usenet, and

of Begole et al., who performed their analysis over a time interval of 10 months. Nothing

has been done so far on large-scale synchronous CMC systems. Considering the

importance attributed to the rhythms of CMC systems by many authors, by analyzing the

rhythms of an entire IRC network this research will provide the foundation for improved

navigation inside large synchronous chat spaces, and lead to improved overall designs of

such systems.



CHAPTER 5

INTERACTION DYNAMICS OF GROUP TEXT-BASED CMC SYSTEMS

Interaction dynamics can be defined as a description of the activities that are going on

inside computer mediated communication spaces. Understanding the interaction

dynamics is important from the perspective of social visualizations and social

recommendations. There is also a need to determine which of the interaction dynamics of

a CMC system are the most relevant, and to understand how they can be used in

predicting the activity of synchronous chat spaces.

As it has been shown in the previous chapters, CMC users are generally interested

in the activities of their interaction partners. These activities are a part of the interaction

dynamics of any CMC system. The term "interaction dynamics" is used to describe

general patterns of user interactions in interactive CMC systems. Interaction dynamics

have been examined mostly for asynchronous CMC systems (Whittaker et al. 1998;

Butler 2001; Jones, Ravid, and Rafaeli 2004), with smaller efforts oriented toward the

analysis of interaction dynamics inside synchronous CMC systems (Liu 1999).

80
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5.1 Mass Interaction in Asynchronous CMC Systems

Whittaker et al. (1998) defined the term "mass interaction" as "conversations between

hundreds or even thousands of participants." They focused their mass interaction

research on Usenet newsgroups, arguing that very little was known about Usenet, which

could have been regarded as the world's largest conversation application in 1998. They

stated that previous research had been done in the form of small qualitative studies of

specific newsgroups, so general questions about mass interaction had not been answered

at that time. The authors tried to determine the variables for the demographics, the

conversational strategies, and the levels of interactivity of Usenet newsgroups and then to

find out the relationships among those variables. Demographics included size of the

newsgroup population, familiarity of the participants (how often did they post in a group)

and moderation. Conversational strategies included presence of frequently asked

questions (FAQ) within the newsgroup, length of messages, and cross-posting, i.e.,

posting the same message to several groups. Interactivity was defined as the extent of

conversational threading. In performing their research, they chose a random sample

approach, selecting several hundred Usenet groups. The results showed several things: A

significant proportion of users were unfamiliar and posted very rarely; a small proportion

of users were responsible for most of the conversation; cross posting was prevalent;

initiating messages was common, but it was hard to actually start a conversation; and

once a conversation was started, it was likely to attract multiple contributions. The

authors concluded that Usenet groups were characterized by moderate and not large

amounts of interactivity. They also observed that many attempts to start new interactions

did not succeed. Hence, starting mass interaction was problematic. Usenet groups were
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characterized by massive participation inequalities; small groups of users were dominant

in the discussion. The authors acknowledged that this type of analysis must be

complemented by content analysis and user surveys in order to better understand the

mass interaction over Usenet groups. An important implication for future research was

that conversational overload must be taken into account by the model of mass interaction.

Butler (2001) proposed a theory about the roles of size and communication

activities of a community in sustaining online social structures. He stated that previous

research showed that simply providing infrastructures for online communication was not

enough to guarantee the emergence of social activity. He presented a "resource-based

model of the internal dynamics of sustainable social structures." The core premise was

that there was a need for a pool of resources to be maintained and social processes to be

supported in order to transform the resources into benefits valued by the members of

various online or traditional communities. Butler argued that the size of a social structure

was an important measure of both source resources and audience resources. Previous

research showed that larger groups were likely to provide more valuable benefits to their

members and, hence be sustainable over time. However, size could also have a negative

effect in terms of an individual's perceptions and attitudes. Earlier research demonstrated

that "the undersupply of resources [...] in larger structures is reflected in the general

finding that individuals in larger structures tend to be less committed, less satisfied and

hence less likely to join or remain members." Two general approaches to manage the

effects of size were: to develop internal structures or to use alternative communication

technologies. Communication activity was the method through which the benefits were

provided; the absence of such activity led to the failure of the social structure.
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Communication activity had both positive and negative effects (higher costs - time,

attention, energy, knowledge). Similarly, with regard to the case of the group size, there

were two general approaches to manage its effects: develop internal structures or use

alternative communication technologies. The goal of the model presented by the author

was "to describe the dynamics of a wide variety of social structures in a way that allows

us to better understand the general impact of information technology." Butler saw the

benefit provision as "a necessary condition for sustainability in a wide variety of

structures." The method used for data-collection was random sampling of various

Listsery email lists. Different measures of size, communication activity and membership

change were used for examining the model. The size was defined as the number of users

receiving the messages sent to a listserv. The messages sent to the list represented the

communication activity, and the number of users who joined or left the list defined the

membership change. Results of the data analysis showed that size had both positive and

negative effects on the development of social structures, as opposed to previous research

which highlighted only single, positive effects. Also, the implications for increasing size

seemed to be more complex than initially posited. The positive and negative effects of

size on membership might prove that losing members is not necessarily a bad sign

overall. The communication activity also had both negative and positive effects on the

sustainability of the social structure. Butler concluded that "developing and maintaining

sustainable social structures requires that the fundamental problem of balancing the

positive and negative impacts of size and communication activity be solved in order to

maintain a resource pool for the future while providing benefits for the members in the

present."
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After stating that claims about the usefulness of the Internet in developing social

relationships were still controversial, Cummings, Butler, and Kraut (2002) raised the

question of whether online social relationships were better, the same, or worse than

relationships sustained be other means. They compared communication over different

media, such as face-to-face, email, and phone; and compared the relationships with

Internet and non-Internet partners. They also performed an analysis of online social

groups, after they collected data from 204 Internet Listsery email lists. The authors

argued that previous studies of electronic groups focused solely on the social activities

occurring inside the groups, while what really happened in such groups was still under

researched and, hence, unknown. They did a sampling of the Listsery email lists and

classified them as purely electronic and hybrid. In the case of hybrid email lists the

members also met in other settings, not only online. They collected data about

membership size in terms of number of members of the list; and data about

communication activity in terms of volume (number of messages) and interactivity

(length of discussion threads). The results showed that Listsery email lists exhibited little

communication; conversations were generally not interactive and a small number of users

generated most of the discussion. The results were similar for both types of lists. The

authors concluded that Listsery email lists did not appear to be intimate social groups and

previous research on online social activity was biased. Highly interactive online social

groups were usually the exception and not the rule. However, the authors agreed that

things might be different in the case of other technologies, especially synchronous ones

(MUDs, IRC). Overall, they concluded that "social places on the internet where close

personal relationships are formed and maintained are rare."
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Jones and Rafaeli (2000) described a structured approach for understanding the

use of collaborative technologies. They defined virtual publics as "symbolically

delineated computer mediated spaces, whose existence is relatively transparent and open,

that allow groups of individuals to attend and contribute to a similar set of computer-

mediated interpersonal interactions."

Jones, Ravid, and Rafaeli (2002) presented results from the analysis of Usenet

data, showing the effects of information overload coping strategies over the mass

interaction discourse dynamics. Since mass interaction was likely to occur in virtual

publics, the authors argued that by modeling the mass interaction, one could achieve a

better understanding of the online discourse and the differences between various CMC

technologies.

Jones (2003) examined the impact of online public interpersonal interaction

spaces on the users' behavior within those spaces. The author argued that the field study

was the most appropriate method for such research. He also tried to identify how the user

behavior in online spaces affected the interaction dynamics and to identify the

technology-associated constraints. He compared two CMC systems - Usenet newsgroups

and Listsery email lists - using a method based on the "mass interaction" observations.

The empirical findings showed that information overload coping strategies had an impact

on the discourse dynamics and that email lists clearly supported a higher level of poster

stability than Usenet groups.

Jones, Ravid, and Rafaeli (2004) argued that researchers should examine the type

of relationships between the public spaces used for online communication and the

interactions that occurred in those spaces, and that the used methodologies must not be
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culture-specific or time-specific. They stated that "the particular way in which a

technology is used is not determined by the technology itself, but rather is dependent on

its social context." The authors recommended performing large-scale field studies when

examining the impact of information overload coping strategies over the dynamics of the

public discourse in the public spaces, and assumed that any CMC technology could

support and enable only a limited range of social interactions.

The review of the literature revealed several categories of variables that were

computed to describe the interaction dynamics of asynchronous computer mediated

communication systems. These included the proportion of messages that were replied to

(Whittaker et al. 1998); the size of user populations over time (Jones, Ravid, and Rafaeli

2004); or the message complexity (Butler 2001). The broad patterns of the interaction

dynamics appeared to vary between types of CMC technologies (e.g., email, Usenet, etc.)

(Jones 2003).

5.2 Mass Interaction in Synchronous CMC Systems

Very limited work has addressed the interaction dynamics of synchronous chat spaces.

Liu (1999) considered IRC to be an environment that would potentially sustain the

existence of virtual communities. Based on the Jones's "virtual settlement" theory

(1997), Liu hypothesized and then tried to prove that IRC channels had the attributes that

would qualify them as virtual communities. His results showed that in theory it would be

possible to empirically test for the presence of virtual communities on IRC and not just

assume their existence by default. However, some very well-defined parameters would

be needed in order to define what a virtual community really represented since the terms
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"community" and "virtual community" were among the most controversial terms used in

yesterday's and today's research.

5.3 Theoretical Considerations — the Critical Mass Theory

In physics, the critical mass represents the amount of radioactive material needed in order

to obtain a nuclear fission explosion. However, the term was successfully adopted in the

computer science and information systems literature. In 1968, Licklider and Taylor

(1968) saw the critical mass as a small number of people who could effectively contribute

toward solving any particular problem online. In 1978, Hiltz and Turoff (1993) observed

that computer conferencing systems needed a critical mass of users (usually 8-12) if they

were to be successful. However, it was not until 1985 that a fully developed theory of the

critical mass was developed (Oliver, Marwell, and Teixeira 1985). Based on Olson's

work on various theories of collective action (1965), the authors tried to predict the

effects that production functions (relationships between the contributions of the members

of a group toward the achievement of the common good) and the group's interest and

resource heterogeneity would have on "the probability, the extent and effectiveness of

group actions in pursuit of collective good." The critical mass of a group was defined as

"getting enough people organized to contribute that some or much of the collective good

could be provided." They tested their theory using formal analysis and simulations and

concluded that the shape of the production function was the strongest predictor for

successful group action. Further, they showed that group success was more likely to

occur when heterogeneity of both interests and resources existed among the members of

the group.
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Oliver and Marwell (2001) reviewed the literature to assess what had happened to

the Critical Mass theory since it was first introduced. They identified more than 200

citations, but they characterized most of them (about 66 percent) as "gratuitous at best."

Importantly, the majority of the authors who cited this theory saw it as "a species of

threshold model," which, by getting enough contributors, would allow a certain tipping

point to be passed and lead to unanimous cooperation.

More recently, HCI researchers have shown that critical mass is highly context

dependent. Examples include the work of Halverson, Erickson, and Sussman (2003) on

persistent chat systems and Grinter and Palen's (2002) exploration of the usage of online

calendar systems.

5.4 The Critical Mass Theory and Interactive Media

Markus (1987) used the critical mass theory to explain the diffusion and adoption of

interactive media. Arguing that usage of interactive media can have only two states, "all

or nothing," she proposed several hypotheses about the relationship between the shape of

the production function and the heterogeneity of resources and interests on the one hand,

and the achievement of universal media access on the other. Thorn and Connolly (1987),

relying on the Critical Mass theory and on some other literature on collective action,

studied the contribution of information to "databases," which were essentially archives of

computer mediated communication. Seeing the "databases" as interactive media that

provided public goods, they tried to determine the factors that influenced users' level of

contributions. They produced a conceptual framework, which proposed that reduced

contributions occurred because of greater contribution costs; larger groups of
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participants; lower value of information to participants; and greater asymmetries in

information value and benefits across participants. Rafaeli and LaRose (1993) drew from

both Markus' and Thorn and Connolly's work and made several predictions about the

success of electronic bulletin boards. Overall, only slight support for the Critical Mass

theory was found, but the authors offered a few possible explanations for this situation.

Their conclusion was that "the study of interactive technologies needs to proceed beyond

the case study level" if one is to better discern the factors that lead to the success or

failure of computerized collaborative media.

Although Markus (1987) proposed a critical mass theory that would be applicable

to all types of interactive media, most of the recent research has tested this theory

focusing exclusively on asynchronous CMC systems (Thorn and Connolly 1987; Rafaeli

and LaRose 1993). The results of the existing studies showed that using a "public goods"

approach such as the Critical Mass theory in the domain of electronic communication

media may be more complex then initially predicted by the theory itself. Thorn and

Connolly admitted that both more empirical laboratory work and more theoretical

extensions are needed in order to fully demonstrate "the power of 'public goods' thinking

for the analysis of organizational communication issues." Rafaeli and LaRose also

acknowledged that the picture emerging from the results of their data analysis was that

"of a more complex world than predicted by public goods theories." They suggested that

further refinements were needed when applying such theories, the Critical Mass theory in

particular, to collaborative media.

These authors' findings and suggestions for further research led to the conclusion

that the Critical Mass theory lacks a very important component: the time factor (including
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here rhythms, patterns, seasonality, etc.). Time can be a crucial variable that should be

taken into account when predicting the success or failure of any collective action or

achievement of a public good. The Critical Mass theory did not suggest any time frame

for measuring the achievement of successful collective action. Instead, it simply stated

that given enough resource and interest heterogeneity among the users of a collaborative

media, as well as an accelerating shape for the production function, collective action is

likely to be obtained. Depending on the size of the community, the type of desired

collective action, and many other possible contextual factors; it could take hours, days,

weeks, months, or even years for the public goods to be produced and their presence

observed.

In the case of computer mediated communication systems, the type of the system,

synchronous or asynchronous, is another important variable that may have a significant

impact on how time can affect the predictions of the Critical Mass theory. While there

are several differences between these two well-known categories of CMC systems, one of

the most important is the persistence of the information, in the case of asynchronous

CMC, or the volatility of the information, in the case of synchronous CMC. By

definition, an asynchronous CMC system does not require the co-presence of users for

successful interactions to take place. The pace of interaction is rather slow, and the

messages exchanged among the users are stored for long periods of time, being accessible

at anyone's convenience. This suggests that the public goods produced within such

systems, typically measured in terms of their success, are usually achieved over longer

time intervals.
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In contrast, information exchanged within synchronous CMC systems is

extremely volatile. Users need to be in the right place at the right time in order to

successfully interact with each other. Good timing is essential for successful public

interactions to occur, since none of the public discourse is stored for future access. It is

clear that the success of a chat-room, as a surrogate measure of the public good produced

inside it, depends heavily on the time at which interactions typically occur inside it and

on the rhythms and patterns of use for that chat-room.

If the contribution rates are considered a measure of the success of CMC systems,

as it has been done before, it is clear that different time frames are needed for Usenet

groups or email lists on the one hand, and IRC chat-channels on the other. It is

reasonable to assume that, with regard to the Critical Mass theory applied to collaborative

media, longer time intervals are best suited for research on asynchronous CMC systems,

where interactions typically go on for days; and that, as an addition to these longer

intervals, shorter, well-defined time periods are necessary when researching synchronous

CMC systems.

Previous research has emphasized the importance of the time factor in analyzing

the interactions occurring in various types of CMC systems. Rafaeli and LaRose

specifically addressed the issue of time as a possible reason for their inability to note the

effect of the Critical Mass theory. Nonnecke and Preece (2000) and Halverson, Erickson,

and Sussman (2003) showed that the public discourse is often characterized by patterns,

where periods of silence and activity alternate. The time factor should be carefully

considered in using the Critical Mass theory to predict the success or failure of any

synchronous chat system; and therefore it will be addressed in this research.
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5.5 Summary

Presently, only limited work has looked at the issue of synchronous chat interaction

dynamics. There is a lack of understanding of how the activities conducted inside online

chat spaces look. For example, one does not know the meaning of a crowded channel, or

an active channel or when channels are overloaded with information or whether they lack

critical mass or not. Previous research showed that rhythms and patterns of group

interaction were important for the users of CMC systems from at least two perspectives —

to find interesting people or to find interesting interaction spaces. Understanding the

availability of others, knowing when interaction spaces are active, and knowing the

interaction spaces that are preferred by various people are examples of how the

identification of the trajectories of group interaction dynamics could help toward these

goals. This implies the need for future large-scale research on the dynamics of

synchronous CMC interaction spaces.

The review of the critical mass literature showed a consensus regarding the

importance of production functions and heterogeneity of resources in the collective action

that leads to the public goods. There was also a consensus that online public discourse

such as posting to discussion groups can be considered a public good. However, little is

known about the shape of the production functions inside synchronous computer

mediated communication systems. Presently, nobody has explored and tested the

hypothesis presented by the Critical Mass theory related to the effect of the shape of the

production functions, and the heterogeneity of resources on the amount of collective

action achieved within CMC interaction spaces. To further complicate matters, the

theory itself does not incorporate any temporal aspects such as weekly, daily, and/or
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hourly weekly patterns or rhythms of engagement, which need to be systematically

accounted for in any empirical investigation of production functions and synchronous

group interaction trajectories.

This lack of consideration for the time factor makes the application of the Critical

Mass theory problematic when it comes to the identification of collective action

trajectories. In predicting the likelihood of successful group interaction, it highlights the

need to distinguish short-term trajectories from long-term trajectories, as well as the

difficulty in determining the most relevant time intervals for both these types of

trajectories. The identification of short-term trajectories of group interaction inside chat

spaces should provide information about the likelihood of sustained discussions for the

very near future. The identification of long-term trajectories should determine whether

the interaction spaces are likely to survive or die over longer time intervals. To be able to

make the distinction between the short-term and the long-term trajectories and to

understand the time intervals that can be considered relevant for both these types of

trajectories (i.e., how long does one need to look at a particular group to determine its

sustainability over time, or what is the nearest time interval for which one can predict the

likelihood of sustained group interaction), empirical examinations of these issues in the

context of large-scale synchronous chat systems need to be conducted. This will create

better understanding for adapting the Critical Mass theory to such computer mediated

communication environments.

There is a need for more efficient navigation through online social spaces,

especially through synchronous ones. Providing users with recommendations about

where to go could be a possible solution to this navigation problem. However, to make
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such recommendations, one should first be able to predict where successful, sustained

group interactions are likely to occur. Therefore, one needs to understand whether the

Critical Mass theory can offer information about identifying the group interaction

trajectories of online synchronous spaces.



CHAPTER 6

RESEARCH QUESTIONS, ASSOCIATED HYPOTHESES
AND PROPOSED METHODS

The aim of this dissertation is to explore, empirically and theoretically, whether it is

possible to predict the likelihood of sustained group interaction inside a large-scale

synchronous CMC system, particularly inside an IRC network. This is important because

such prediction algorithms may be used to design systems to benefit both individual

users, by providing them real-time recommendations about where to find successful

group discourse, and managers of group spaces, by providing them vital information

about the health of their communities.

The literature review revealed that the very first step in attempting to make such

predictions is to explore and understand the general dynamics of the CMC system. These

dynamics encompass all the main characteristics of the system and their variation over

time. For IRC, they include factors like the total number of chat-channels and the

different types of chat-channels, the total number of users, the total number of publicly

active users (posters) or the total number of messages, as well as various other measures

that describe the general activity of the IRC network.

The analysis of the dynamics of the IRC system provides insight for predicting

future group interaction occurring inside the IRC network. There are two types of

predictions that are of interest: short-term predictions and long-term predictions. Short-

term predictions target the immediate level of activity of IRC channels, while long-term

predictions focus on the survival of the IRC channels over longer intervals of time.

95
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Considering all the above, four main research questions were addressed in this

dissertation. Each research question and its associated hypotheses are presented in Table

6.1 and will be detailed in the following sections.

Table 6.1 Research Questions and Hypotheses

Research Question Hypotheses
What does mass interaction
on an IRC network look
like?
What are the boundaries to
chat-channel interaction
dynamics?

Message density, defined as the number of messages per
poster in an IRC channel, will vary with the user
population up to a limited user pool. Beyond that point,
the message density will remain constant.

The cap on message density will constrain the number of
posters co-present in an IRC channel.

Considering the dynamic
nature of chat networks,
when and to what extent is it
possible to predict short-
term channel activity?

For any publicly active channel and for any short-term
time interval for which it is intended to predict the level of
channel activity, there will be three main categories of
factors that will have an impact on the accuracy of the
predictions: (1) the trajectories of channel activity during
various previous time periods; (2) the trajectories of
network activity during various time periods; and (3) the
seasonality of the channels, i.e., rhythms information
about each individual channel.

The level of predictability of a publicly active channel for
any particular week can be estimated as high, low, or
perfect by using various descriptive statistics of that
channel, computed for the one-month period preceding the
week for which predictions are attempted.

What are the early
predictors of channel
survival?

The long-term survivability of any newly born publicly
active channel can be predicted using four categories of
factors: (1) the level of channel activity during various
time intervals; (2) the trajectories of channel activity
during various time intervals; and (3) the heterogeneity of
the channel's population during various time intervals;
and d) the type of production functions for various time
intervals.
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6.1 Research Question 1: What Does Mass Interaction

on an IRC Network Look Like?

To answer this question, a series of descriptive statistics about the IRC network will be

provided. Specifically, detailed descriptions of various aspects of the mass interaction

that typically occurs on a medium-sized IRC network will be presented. One year's worth

of detailed descriptive statistics data about the IRC network as a whole, the users of the

IRC network, and the individual channels of the IRC network will be reported. The

following subsections describe the reason that IRC was chosen as the synchronous CMC

system to be researched, the selection process of the particular IRC network that was

analyzed in this dissertation, the data-collection mechanisms that were employed, and the

variables included in each category of descriptive statistics.

6.1.1 Method

6.1.1.1 Selection of the IRC Network.	 The literature review of the current research

on synchronous chat systems revealed several important aspects of IRC. IRC is one of the

oldest synchronous CMC systems, and despite its simplicity, is still extremely popular. It

is being used by millions of people on a daily basis. Many of the current chat systems,

including the group chat features of IM systems, were designed using IRC as a model.

Even though such systems do not follow the original IRC protocol, and some provide

better graphics and audio and video capabilities, the basic functionality and architecture

of the interaction spaces are still based on those of IRC in that they provide a list of

current participants, a public area for group discussion, and the opportunity for starting

private discussions among their users. Finally, IRC is the most easily accessible medium

in terms of opportunities for large-scale data-collection. Although previous researchers
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have emphasized the difficulty of collecting large amounts of data from IRC, which is

typically true, there exists a method that makes the data-collection process more

convenient. This method consists of linking a server to an existing IRC network — not a

trivial task — and was the method used in this research.

While thousands of IRC networks exist all over the world, many factors needed to

be carefully considered before starting the application process for getting linked to one of

them: the size of the network (number of users and channels); the amount of activity on

the network; the predominant language spoken on the network; the geographical

distribution of the network (where are the other servers located); the reliability of the

network; the bandwidth requirements; the possibility of having to deal with distributed

denial of services (DDoS) attacks; and the hardware and software requirements for data-

collection, storage and analysis. The search for an IRC network that would best suit this

research began in the spring of 2003. It took 18 months, a lot of effort, and many failures

to finally find a match. The Austnet IRC network was chosen for the following reasons:

(1) it had a medium size (an average of 4,000 users and 2,500 channels at any time),

which made it easier to analyze (from a technical point of view) compared to large

networks (with tens of thousands of users and channels); (2) it was a distributed network,

consisting of servers located in the US, Europe, Asia, and Australia; (3) English was the

predominant language; and (4) its management committee agreed to link a new server to

the network.

6.1.1.2 Data Collection. As shown by the literature review, research on synchronous

communication systems has been done using various approaches: virtual ethnography

(Reid 1991; Bruckman 1992; Danet et al. 1996; Nardi et al. 2000), participant
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observations (Bruckman 1992; Bechar-Israeli 1996), log analysis (Danet et al. 1997;

Herring 1999; Isaacs et al. 2002), questionnaires (Muller et al. 2003), interviews (Hansen

and Damm 2002; Voida et al. 2002), and case studies (Paolillo 1999). Most of the

previous IRC studies have looked only at a very small fraction (one or, at most, several

channels) of the total size of a typical IRC network, (which can range from hundreds to

tens of thousands of channels and/or users). Also, the time frame for these studies was

extremely limited, ranging from one hour to one day. There were studies that spanned

longer periods of time, but these studies were still small scale and dealt only with IM

systems, MUD systems, or Usenet newsgroups.

Millions of people interact on hundreds of thousands of IRC channels on a daily

basis (Hinner 2000), hence the activities conducted here can be categorized as mass

interaction (Whittaker et al. 1998). However, small-scale studies are not able to clearly

identify the broad patterns of user interactions necessary for a complete understanding of

the overall dynamics of the system. To address such issues in mass interaction, large-

scale field studies are needed (Whittaker et al. 1998; Butler 2001; Jones, Ravid, and

Rafaeli 2004). Accordingly, this dissertation used the approach in favor of collecting data

about the entire IRC network as opposed to selecting a random sample of channels and

users. There are several reasons for this rationale. First, IRC channels usually have

punctuated patterns of evolution in that the number of users and the amount of channel

activity change over time. These patterns may be very different between one channel and

another, and are impossible to determine without long-term observations. Also, the rates

of growth and decay for IRC channels, in other words the lifetime of a channel, usually

vary from case to case. The constraints on the boundaries and the stability of channels
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can also be very different from case to case. In some situations three users may be

sufficient for long-term channel stability, while in other cases, channels may eventually

die even with fifteen users at any given time. On any IRC network, the social contexts

may differ among channels because of the particularities of the groups of people using

them. For example, the social context of a Linux help channel is not likely to be very

similar to the social context of a flirt-oriented channel. The same is true for the activities

conducted inside channels; the dynamics of file-sharing channels are far different from

those of game-playing channels or conversation-oriented channels. The point that needs

to be made is that every channel may have some features that make it unique. Even if

channels share some similarities, their differences may be much more important. The

dynamic nature of synchronous chat-channels makes it impossible to use even a stratified

random sample. To build such a sample, one would have to categorize the channels

according to some criteria, but those criteria are only obtained from a large-scale analysis

of an IRC System. Therefore, the random sample approach is simply not feasible for

understanding the dynamics of an IRC network.

Collecting large amounts of IRC data has always been difficult. Especially when

dealing with large IRC networks, the data-collection process can be truly cumbersome,

and this may be one of the reasons that mass interaction on IRC has never been

researched. The biggest technical difficulty encountered by previous researchers was the

inability of regular users to log activities on a large number of channels (due to the

architecture and the implementation of IRC). Other impediments included the inability to

get various statistical information about the network without special administrative rights,

connectivity problems (delays between users, network splits, DDoS attacks, etc.), and
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channel access issues (users can get "kicked" out or "banned" from a channel, sometimes

without any noticeable reason). Linking a server to the Austnet IRC network presents two

main advantages: it allows overcoming many of the problems encountered by previous

IRC researchers; and it enables the collection of large amounts of data that would have

been virtually impossible to obtain otherwise.

The data will be collected using two approaches. The first is through the use of

custom-written IRC bots that will continuously monitor the channel spaces and will

collect data at specific time intervals. A bot, which is short for "robot," is defined as any

program that, once started by a human person, can connect to the IRC network and

perform various tasks such as (but not limited to) joining channels, posting messages

independently and automatically, or collecting data without the need of further human

action. IRC bots will acquire information about the total number of channels and the total

number of users of the network. The second approach will be a combination of open-

source Transmission Control Protocol (TCP) traffic-monitoring software and custom-

written programs that will parse the data collected by the traffic monitoring software and

will extract the information relevant to the number of publicly active users and the

number of messages exchanged in the public interaction spaces of the chat-channels.

6.1.1.3 Data Analysis.

6.1.1.3.1 Global System Dynamics.	 The monthly and the yearly values for each of

the following variables will be reported for the time interval, February 1, 2005 — January

31, 2006.
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• Total number of channels

• Total number of active channels

• Total number of publicly active channels

• Total number of new channels per month

• Total number of users

• Total number of posters

• Total number of messages

• Proportional monthly stability of active channels. For each month, this value is
given by the percentage of previous month's active channels that continue to be
active during the current month

• Proportional monthly stability of publicly active channels. For each month, this
value is given by the percentage of the previous month's publicly active
channels that continue to be active during the current month

• Proportional monthly stability of active channels. For each month, this value is
given by the percentage of the previous month's active channels that continue to
be active during the current month

• Proportional user stability. For each month, this value is given by the percentage
of the previous month's users that return during the current month

• Proportional poster stability. For each month, this value is given by the
percentage of the previous month's posters that return during the current month

6.1.1.3.2 User-related Descriptive Statistics.	 The dynamics of the users of the IRC

network will be examined in two different ways. First, user activity will be explored at

the level of the entire network over a period of one year, with monthly breakdowns. The

following key measures will be computed:

• Total number of months users visited the IRC network

• Total number of months users were publicly active inside the IRC network

• Total number of channels visited by users
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• Total number of channels in which users were publicly active

• Total number of public messages posted by users to the IRC channels

Second, a smaller sample of users that were engaged in public discussions during

an interval of one month will be examined, and the following variables will be computed:

• Average number of channels visited by a user during a session

• Average number of channels a user was publicly active in during a session

• Average time spent by a user during a session

• Average time spent by a user until the first posted public message

• Average number of days a user connected to the network

• Average number of days a user was publicly active

6.1.1.3.3 Channel-related Descriptive Statistics. 	 The dynamics of the channels of

the IRC network will be examined in two different ways. First, channel activity will be

explored at the level of the entire network over a period of one year, with monthly

breakdowns. The following key measures will be computed:

• Total number of months channels were visited

• Total number of months in which channels supported public discussions

• Total number of users that visited the channels

• Total number of posters that visited the channels

• Total number of public messages posted to the channels

Second, a smaller sample of channels that were engaged in public discussions

during an interval of one month will be examined, and the following variables will be

computed:
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• Average number of days a channel existed

• Average number of users per channel

• Average number of daily users per channel

• Average number of posters per channel

• Average number of daily posters per channel

• Average number of messages per channel

• Average number of daily messages per channel

• Average user return time (after how long do users typically return to a channel)

• Average channel user diversity

• Average channel poster diversity

• Average daily user diversity

• Average daily poster diversity

The diversity variables measure the heterogeneity of channels' user and poster

populations. Specifically, the user or poster diversity for a particular time interval

represents the percentage of users or posters that are present or active in a channel during

that interval, with respect to a larger time period. For example, if during a particular hour

a channel has 5 unique posters present, and during the day the channel has 15 unique

posters; the "diversity" for that hour is equal to 5 / 15 = 0.33. Two types of diversity will

be computed: the average diversity for any hour with respect to that day; and the average

diversity for any day (daily diversity) with respect to that larger week.
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6.2 Research Question 2: What Are the Boundaries

to Chat-channel Interaction Dynamics?

IRC channels are highly dynamic with levels of activity, number of users, and topics that

are constantly changing. As a result, navigation of IRC networks can be a challenge.

Ideally recommendation tools may be developed to help users find channels of relevance;

however, this would require that the level of short-term activity of thousands of highly

dynamic social environments could be predicted with some degree of reliability.

Currently one does not know the extent to which reliable short-term predictions

about channel activity can be made. The research described in this section is aimed at

addressing this situation. While it is known that IRC does not limit the number of users or

postings in a channel, little is understood about the boundaries imposed by the users'

capabilities. This section outlines how empirical research will address the boundaries

imposed by user information processing constraints.

The information-processing constraints theory (Jones 1997, Jones and Rafaeli

1999) argues that one influence on a user's participation in computer mediated

communication is the level of information overload to which the user is exposed when

using the system. Prior research on asynchronous CMC systems has shown that the level

of activity within such a system can only rise to a certain level. After this level is reached,

due to the effects of information overload, the activity either remains constant or

decreases. This research question will aim to identify the maximum level of activity that

can be reached inside a synchronous CMC system such as IRC.
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6.2.1 Hypotheses

The following hypotheses were formulated using the information-processing constraints

theory:

• Message density, defined as the number of messages per poster in an IRC
channel, will vary with the user population up to a limited user pool. Beyond
that point, the message density will remain constant.

• The cap on message density will constrain the number of posters co-present in
an IRC channel.

6.2.2 Method

6.2.2.1 Data Collection.	 The descriptive statistics of the IRC network presented in the

previous chapter revealed the existence of a large number of publicly active channels

during each month over the one-year data-collection period. The analysis of all these

channels would have been virtually impossible, because of both time constraints and

processing power constraints. Therefore, a more manageable dataset will be selected for

the identification of channel activity boundaries. This dataset will be selected through a

stratified random sampling of all the channels that were publicly active during August

2005. The month of August will be analyzed because it was in the middle of the data-

collection period. A detailed description of the sampling procedure will be detailed in

Chapter 8, subsection 8.2.1.

6.2.2.2 Data Analysis. 	 The variables and measures to be used in the analysis of the

sample of channels are briefly presented in Table 6.2 and will be detailed in Chapter 8,

subsection 8.2.2. The IRC system will be sampled three times per hour and for each of

these intervals the number of users, messages, and posters will be recorded.
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Table 6.2 Variables Used to Measure the Boundaries of Channel Activity

Variable Description
Observed Users All the people logged into a channel and using it for either private or public

conversations
Observed Users Max The maximum number of users as the representative value of the three hourly

measurements
Observed Messages All the public postings sent to the IRC channels in the sample
Observed Messages
Max

The maximum number of messages as the representative value of the three
hourly measurements

Observed Posters Those users who posted messages in public to the entire group of channel users
Observed Posters Max The maximum number of posters as the representative value of the three hourly

measurements
OMperOU_max The mean of the maximum number of messages per user within an hour of

activity
OMperOP_max The mean of the maximum number of messages per poster within an hour of

activity
OPperOU_max The ratio of participants who posted messages in public within an hour of activity

6.3 Research Question 3: Considering The Dynamic Nature Of Chat Networks,

When And To What Extent Is It Possible To Predict Short-term Channel Activity?

To date, no empirical work has investigated the extent to which short-term measures of

activity can be reliably predicted for synchronous spaces such as IRC channels.

Regression modeling, both linear and nonlinear, can be used to address this shortfall.

Specifically, this section will examine which factors, extracted from the analysis of IRC

channel interaction dynamics, can be used to predict short-term chat-channel activity

reliably, accurately, and effectively.

6.3.1 Short-term Channel Activity Predictability

6.3.1.1 Hypothesis. It is hypothesized that for any publicly active channel and for any

short-term time interval for which it is intended to predict the level of channel activity,

there will be three main categories of factors that will have an impact on the accuracy of

the predictions: (1) the trajectories of channel activity during various previous time
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periods; (2) the trajectories of network activity during various time periods; and (3) the

seasonality of the channels, i.e., rhythms information about each individual channel.

6.3.1.2 Method

6.3.1.2.1 Data Collection. 	 The analysis will be performed on the same stratified

random sample of channels initially described in subsection 6.2.1, whose selection will

be detailed in Chapter 8, subsection 8.2.1.

6.3.1.2.2 Data Analysis. Regression analysis will be used to understand the general

short-term predictability of the channels' levels of activity. Regression analysis is a

technique used for the modeling and analysis of numerical data consisting of values of a

dependent variable and of independent variables: it examines the relation of the

dependent variable to one or more specified independent variables.

For this research, the number of posters will considered a measure of the overall

activity of chat-channels and therefore will be used as the dependent variable in the

regression models. The independent variables in the regression analyses are briefly

presented in Table 6.3 and will be detailed in Chapter 9, subsection 9.2.2.

In this research, the notion of "short-term interval" will be equivalent to a "20-

minute interval"; and, consequently, for any given time in any 20-minute interval, short-

term predictions will be defined as predictions for the immediate 20-minute interval. The

reasons for selecting this particular interval will be described in more details in Chapter

9, subsection 9.2.1.

Guided by the results of the regression models, a new variable that will maximize

the overall predictability, referred to as the BestPredictor variable will be computed. The

accuracy of the models will be determined by exploring the correlations between the
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BestPredictor and the actual values of the dependent variable — in this case the actual

number of posters.

Table 6.3 Independent Variables for the Linear and Nonlinear Regression Models

Variable Description
AvgOP_Prev3_20 The average of the observed number of posters during the previous three 20-

minute time intervals for each channel in the sample
AvgOP_PrevHr_Nwrk The average number of observed posters per channel for the entire network

for the previous hour
AvgOP_Prev3_20_Nwrk The average number of observed posters per channel for the entire network

during the previous three 20-minute time intervals
AvgOP_Prev3wks The average number of observed posters for the closest three 20-minutes

intervals (just before, current and just after) at the same time during the
previous three weeks

AvgOP_Prev12wks_Nwrk The average number of observed posters per channel for the entire network
for the closest three 20-minutes intervals (just before, current and just after) at
the same time during the previous 12 weeks

Slope The slope of the line determined by the observed values for the previous three
20-minute time intervals for each channel

SP (Seasonality Predictor) The value predicted by a time series analysis of the observed values per
channel

TC (Trajectory
Coefficient)

A correlation coefficient between "time" and the observed number of posters
during the last hour

6.3.2 Identification of Factors that Influence Channel Predictability

It is reasonable to assume that some channels will be easier to predict than others. This

research question attempts to identify some of the characteristics that separate highly

predictable channels from unpredictable channels.

6.3.2.1 Hypothesis

It is hypothesized that the level of predictability of a publicly active channel for any

particular week can be estimated as high, low, or perfect by using various descriptive

statistics of that channel, computed for the one-month period preceding the week for

which predictions are attempted.
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6.3.2.2 Method

6.3.2.2.1 Data Collection. 	 The analysis will be performed on the same stratified

random sample of channels initially described in subsection 6.2.1; selection will be

detailed in Chapter 8, subsection 8.2.1.

6.3.2.2.2 Data Analysis. 	 Logistic regression will be used to explore the characteristics

that separate channels into three main categories: channels with high predictability,

channels with low predictability, and channels with perfect predictability. A channel's

degree of predictability will be given by the correlation coefficients computed between

the best predictor produced by the linear or nonlinear regression model and the observed

values of the dependent variable — the higher the value of the correlation coefficient, the

higher the predictability of the channel.

Logistic regression is a model used to predict the probability of an event's

occurrence and is useful for situations where there is a need to predict the presence or

absence of a characteristic or outcome, based on values of a set of predictor variables.

The predictors that will be entered in the logistic regression are presented in Table 6.4.
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Table 6.4 Predictor Variables for the Logistic Regression Model

Variable Description
SurvivalTime Total number of days the channel existed in August 2005
AvgUserRetTime Average number of minutes between two user sessions
AvgUsers Average number of users per any 20-minute interval
AvgDailyUsers Average number of users per day
AvgPosters Average number of posters per any 20-minute interval
AvgDailyPosters Average number of posters per day
AvgMessages Average number of messages per any 20-minute interval
AvgDailyMessages Average number of messages per day
AvgUserDiv Average user diversity computed for any 20-minute interval with respect to

the day
AvgDailyUserDiv Average user diversity computed for any day, with respect to the month of

August 2005
AvgPosterDiv Average poster diversity computed for any 20-minute interval with respect

to the day
AvgDailyPosterDiv Average poster diversity computed for any day, with respect to the month

of August 2005
Users Total number of users in August 2005
Posters Total number of posters in August 2005
Messages Total number of messages in August 2005
AvgDailyMessagesPerPoster Daily average number of messages per poster
MessagesPerPoster Average number of messages per poster for August 2005
DaysVisited Number of days the channel was visited in August 2005
DaysActive Number of days public discussions occurred in the channel in August 2005
AvgDailyUserStability Average daily user stability for August 2005
AvgDailyPosterStability Average daily poster stability for August 2005

6.4 Research Question 4: What are the Early Predictors of Channel Survival?

Presently, no empirical work has investigated the extent to which the long-term

survivability of synchronous spaces such as IRC channels can be reliably predicted. In

theory, survival analysis methods could be used to address this shortfall. Specifically, this

section will examine which factors, extracted from the analysis of IRC channel

interaction dynamics, can be used to predict the long-term survivability of chat-channels

reliably, accurately and effectively.

6.4.1 Hypothesis

It is hypothesized that the long-term survivability of any newly born publicly active

channel can be predicted using four categories of factors: (1) the level of channel activity
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during various time intervals; (2) the trajectories of channel activity during various time

intervals; and (3) the heterogeneity of the channel's population during various time

intervals; and d) the type of production functions for various time intervals.

6.4.2 Method

6.4.2.1 Data Collection. 	 The analysis will be performed on the set of IRC channels

that were "born" during the month of July 2005.

6.4.2.2 Data Analysis. 	 Two important notions need to be considered before analyzing

the data: the birth of a channel and the death of a channel.

A channel will be considered "born" the first day when that channel hosts at least

three posters exchanging at least four public messages during one 20-minute interval. A

channel will be considered "dead" if four weeks of non activity have passed since the last

day that channel hosted at least three posters who exchanged at least four public

messages during any 20-minute interval. A channel will be considered to be non-active

during a particular day if less than three posters are publicly active in that channel during

all the 20-minute intervals of that day.

Cox regression analysis will be used to identify the factors that may predict the

long-term survivability of chat-channels. Cox regression is a survival analysis method for

modeling time-to-event data in the presence of censored cases, which also allows

including predictor variables (covariates) in the models. The predictors that will be

entered in the Cox regression are briefly presented in Table 6.5 and will be detailed in

Chapter 11. For each channel, these predictors will be computed for four intervals: the

first two hours of life, the first day of life, the first week of life, and the first month of

life.



Table 6.5 Predictor Variables for the Cox Regression Models

Variable Description
Users Number of users
Posters Number of posters
Lurkers Number of lurkers (users who are not posters)
Messages Number of messages
PosterDiv Poster diversity
PosterTrajectory Posters trajectory
MessageTrajectory Messages trajectory
PFM Type of production function for messages
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CHAPTER 7

DESCRIPTIVE STATISTICS

This chapter presents a variety of descriptive statistics that provide a broad summary of

the dataset and the relationships between several variables of interest. The next section

describes the Austnet IRC network and the data-collection process. The results section is

divided into three subsections: (1) Austnet System Dynamics; (2) User-related

Descriptive Statistics; (3) Channel-related Descriptive Statistics. System dynamics focus

on the main characteristics of the entire IRC network and their variation over time. Such

characteristics include the total number of channels, the total number of users, the total

number of messages, and the total number of posters, as well as various other measures

related to them such as their stability over time. User dynamics focus on the main

characteristics of the individual users of the IRC network such as the number of channels

they visited or the amount of time they spent on IRC. The channel dynamics focus on the

main characteristics of the individual channels existing in the IRC network such as the

number of people that visited them, the number of days they were visited or the number

of messages that were posted inside them.

114
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7.1 Method

7.1.1 The Austnet IRC Network and Data Collection

At any time during the data-collection period, provided there were no network

connectivity issues, the IRC network that was researched had, on average, approximately

2,500 channels and 4,000 users. Compared to other existing IRC networks, Austnet was a

medium-size IRC network. Data was collected for one year, from February 1, 2005, to

January 31, 2006. During this period, the network consisted of ten servers distributed as

follows: three servers in Australia; two servers in Asia; four servers in the United States;

and one server in Europe (this particular server was disconnected at a point close to the

middle of the study period and was not linked back to the network). The servers were

linked together in various configurations, depending on factors such as the status of the

internet connections in the area where the servers were located or the number of users

coming from different regions of the globe. While most of the time all of the servers were

online, there were occasions when connectivity problems caused one or several servers to

be split from the rest of the IRC network. The server used in this research did not elude

such problems, which are quite common in any IRC network. The status of the data-

collection process for the 365 days is summarized in what follows:

• For 12 days no data was collected at all. This was caused by severe Distributed
Denial of Services (DDoS) attacks on the server, which brought down the entire
university network for brief periods, and forced the telecommunications
department to take the server completely off the network until the attacks
subsided;

• For 41 days only partial data was collected. There were three main reasons for
this: (1) the server was disconnected from the rest of the IRC network due to
communication issues with the two servers that were the regular links to the
network; (2) some of the other exiting servers were disconnected from the IRC
network due to various technical problems (mainly DDoS attacks), reducing in
this way the size of the IRC network. Typically the periods of time the network
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was not whole did not last for too long, but over the course of one year they
added up to a significant amount; and (3) the traffic monitoring programs and/or
the data-collecting bots were partially disabled and/or disconnected, due to
various other reasons (memory leaks, software bugs, code revisions, and code
maintenance);

• Complete data was collected for 312 days.

The data was collected using two approaches. The first was through the use of

custom-written IRC bots that continuously monitored the channel spaces and collected

data at specific time intervals. A bot, which is short for "robot", is defined as any

program that, once started by a human person, can connect to the IRC network and

perform various tasks such as (but not limited to) joining channels, posting messages

independently and automatically or collecting data, without the need of further human

action. This resulted in information about the total number of channels and the total

number of users of the network. The second approach was a combination of open-source

TCP traffic monitoring software and custom-written programs that parsed the data

collected by the traffic monitoring software and extracted the information relevant to the

number of active users (posters) and the number of messages exchanged in the public

interaction spaces of the chat-channels. In addition, a keyword-based algorithm was

developed for the identification of postings and other actions that were taken by various

IRC bots or other automated scripts.

The data was collected by the custom-written programs in text format and

occupied an amount of approximately 4.3 GB of hard disk space. The data collected by

the traffic monitoring software occupied approximately 34.27 GB of hard disk space.

However, this data was collected and archived in zip files. The total amount of raw text

data that was collected in this manner occupied approximately 171.35 GB of hard disk
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space. As mentioned above the entire collected data, i.e., both the data collected by the

bots and the data collected by the traffic monitoring software, was further processed to

extract the information relevant to this research. This information was stored into a MS

SQL Server 2000 database. At the end, the database contained 159 tables, which were all

used in one way or another in the analysis. The MS SQL database occupied 56.40 GB of

hard disk space.

7.1.2 Data Analysis

The data was analyzed using the SPSS statistical software. The most common methods

used were descriptive statistics, frequency analysis, histograms and other various types of

graphs.

7.2 Results

7.2.1 Austnet System Dynamics

This section uses tables and plots to summarize the breakdown of the most important

variables related to the system dynamics of the IRC network. First, a detailed description

of the monthly and yearly values for seven variables is provided: the number of channels,

the number of active channels, the number of publicly active channels, the number of

new channels per month, the number of users, the number of posters, and the number of

public user messages.

Table 7.1 shows the monthly values for the number of channels, active channels,

publicly active channels, new channels, users, posters, and messages. Active channels are

defined as channels that were visited by users, but public interactions did not occur.

Publicly active channels are defined as channels that were visited by users, and public
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interactions did occur inside them. Public interaction only includes messages that are sent

to the public space of a chat channel. New channels are defined as channels that did not

exist during the previous month. Users are defined as any nicknames that joined at least

one channel of the IRC network. Posters are defined as any nicknames that were not

identified as bots and that posted at least one message to the public interaction space of at

least one channel. The first monthly average was computed taking the outliers for May

and December into consideration, while for the second monthly average these months

were disregarded. Figure 7.1 a) shows the variation of the total number of channels, the

total number of active channels, the total number of publicly active channels, and the

total number of new channels across the entire study period. One can observe a constant

decrease of all of these four variables. Figure 7.1 b) shows the variation of the daily

average values for the number of channels, active channels, and publicly active channels.

The daily averages were computed using only the days for which complete data was

collected. A constant decline in all three variables can be observed over the year.

Figure 7.1 a) Variation of the number
of IRC channels between February
2005 — January 2006.

Figure 7.1 b) Variation of the average
daily number of IRC channels between
February 2005 — January 2006.



Table 7.1 Global System Descriptive Statistics Expressed as Numbers
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One explanation for this descending trend, especially in the case of the total

number of channels and the total number of active channels, could be the effect of

security measures that were employed by the administrators of the IRC network in April

2005. At that time the network suffered numerous attacks from "botnets." A botnet is

basically a network of malicious bots, installed through means such as viruses or Trojan

horses on the computers of unprotected Internet users. Botnets could include hundreds or

even thousands of infected computers and are usually, but not always, controlled by

spammers or people interested in conducting DDoS attacks. The person in control of such

a botnet could interact with the bots through IRC. For example, all the bots would join a

channel on an IRC network, and the person controlling them would then give them

instructions by communicating with them via private messages or public messages sent to

that channel. The Austnet IRC network was confronted with such problems especially in

1 The rather low values (compared to the rest of the months) for the all the variables during the months of
May and December were caused by some technical difficulties that made it impossible to collect data for 21
days in May and 10 days in December
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February and March of 2005. Therefore, in April 2005 a range of security measures were

implemented that eventually prevented malicious bots from connecting to the servers of

the IRC network and maintaining the channels they were programmed to join and use.

Another explanation for the decrease in the total number of channels over time

may relate to the mechanisms through which IRC channels come into existence and/or

disappear. From Table 7.1 it may be observed that during each month of the analyzed

period, a significant proportion of the total number of channels that existed in the IRC

network were not visited by users. An IRC channel is created when a user decides to join

it. Provided that there is no other channel with the same name, the new channel is

created, and it will exist while there is at least one user present inside it. Once the last

user leaves, the channel disappears. However, there are two scenarios in which a channel

will not disappear even when no users are present. One is when a user-controlled bot (a

bot that is run by a user of the IRC network from his computer or from a remote

computer) remains inside the channel at all times, preventing in this way the

disappearance of the channel. However, this is not a dependable method because various

factors could cause the bot to disconnect from the network, leading to the channel's

disappearance. A more reliable approach is to register a channel with the IRC network. In

this way, that channel will continue to exist even if no users and no user-controlled bots

are present. Usually, the IRC servers provide a service that keeps track of all the

registered channels by permanently keeping a server-controlled bot inside them. This is

how it is possible to have channels on the network that are never visited by users and this

is the explanation for the difference between the total number of channels and the total

number of active channels. However, there are limitations to how long a channel can be
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registered. Depending on the settings of the registration service, a channel can be

automatically unregistered if a certain amount of time has passed, and no users have

visited the channel during that period. Therefore, one could presume that the registration

of many channels - registered before the start of the data-collection period - expired at

some point after February 2005, leading to the decrease in the number of total channels.

Figure 7.1 also shows that the number of publicly active channels seemed to decrease at a

lower rate, staying almost constant throughout the entire year (if the months of May and

December are disregarded due to the technical difficulties encountered in the data-

collection process).

Figure 7.2 a) plots the monthly variation of the total number of users and posters

during the entire study period. Figure 7.2 b) plots the monthly variation of the daily

average number of users and posters computed using only the days for which complete

data was collected. A decline can be observed for both variables, especially in the case of

the daily averages.

Figure 7.2 a) Users and posters by	 Figure 7.2 b) Average daily users and
month.	 posters by month.
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It would be reasonable to assume that many of the variables presented in Table

7.1 are highly correlated with each other; and the plots presented above tend to confirm

this assumption. Correlations are typically explained by either the Pearson correlation

coefficient or by the Spearman correlation coefficient. Pearson's correlation coefficient is

a measure of linear association. Two variables can be perfectly related; however, if the

relationship is not linear, Pearson's correlation coefficient is not an appropriate statistic

for measuring their association. One way to reduce the likelihood of this problem is to

examine the relationship via the Spearman correlation coefficient, which examines the

ranks of ordinal data rather than the values themselves. Spearman's correlation will be

used in this research, as it is generally the preferred approach with this sort of data:

assumptions about the normality of distributions are not required.

Table 7.2 presents the correlations between the system variables described in

Table 7.1. High positive correlation values such as those between the number of new

channels and the total number of channels; between the number of posters and the

number of publicly active channels; or between the number of users and the number of

active channels are to be expected as an increase or a decrease in either of the variables

from the aforementioned pairs should be related to an increase or a decrease in the other

variable. Medium-high correlation values such as those between the number of messages

and the number of publicly active channels; between the total number of channels and the

number of active channels; between the total number of channels and the number of

publicly active channels; or between the number of messages and the number of posters

could indicate some interesting characteristics of the IRC network and lead to further

research topics.



Table 7.2 Spearman Correlations Coefficients between System Variables

Total no. of
channels

Total no. of
active

channels

Total no. of
publicly active

channels

Total no. of
new

channels
Total no.
of users

Total no.
of posters

Total no of
messages

Spearman's 	 Total no of 	 Correlation
rho 	 channels 	 Coefficient 1.000 .692(*) .692(*) .955(**) .517 .671(*) -.133

Sig. (2-tailed) .013 .013 .000 .085 .017 .681
N 12 12 12 11 12 12 12

Total no. of 	 Correlation
active channels 	 Coefficient .692(*) 1.000 .986(**) .582 .839(**) .951(**) .259

Sig. (2-tailed) .013 .000 .060 .001 .000 .417
N 12 12 12 11 12 12 12

Total no. of 	 Correlation
publicly active 	 Coefficient
channels 	 Sig. (2-tailed)

.692(*)

.013

.986(**)

.000

1.000 .564

.071

.888(**)

.000

.951(**)

.000

.294

.354
N 12 12 12 11 12 12 12

Total no. of new 	 Correlation
channels 	 Coefficient .955(**) .582 .564 1.000 .391 .573 -.227

Sig. (2-tailed) .000 .060 .071 .235 .066 .502
N 11 11 11 11 11 11 11

Total no of users 	 Correlation
Coefficient .517 .839(**) .888(**) .391 1.000 .853(**) .280
Sig. (2-tailed) .085 .001 .000 .235 .000 .379
N 12 12 12 11 12 12 12

Total no. of 	 Correlation
posters 	 Coefficient .671(*) .951(**) .951(**) .573 .853(**) 1.000 .371

Sig. (2-tailed) .017 .000 .000 .066 .000 .236
N 12 12 12 11 12 12 12

Total no of 	 Correlation
messages 	 Coefficient -.133 .259 .294 -.227 .280 .371 1.000

Sig. (2-tailed) .681 .417 .354 .502 .379 .236
	 N 12 12 12 11 12 12 12

* Correlation is significant at the 0.05 level (2-tailed).
"* Correlation is significant at the 0.01 level (2-tailed).
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For example since an increase in the number of messages was not very highly

correlated with the number of users or the number of posters, one could hypothesize that

information overload may be the reason for this behavior. The issue of information

overload in chat-channels will be addressed in more detail in Chapter 9. Medium

correlation values such as those between the number of new channels and the number of

active channels or between the number of new channels and the number of publicly

active channels indicate that only in about half the time of the analyzed period, an

increase in the number of new channels was related to an increase in overall channel

activity (active channels or publicly active channels). This could mean that many of the

new channels that appeared in the IRC network were not visited by users and died over

time. The survival capabilities of new channels will be addressed in more detail in

Chapter 10.

Table 7.3 Global System Descriptive Statistics Expressed as Percentages

Month

% of
users
who
are

posters

% of
active

channels
from
total

channels

% of
publicly
active

channels
from
active

channels

Active
channels
monthly

proportional
stability

Publicly
active

channels
monthly

proportional
stability

Users
monthly

proportional
stability

-

Posters
monthly

proportional
stability

February 48.41 71.48 24.67 N/A N/A N/A N/A
March 49.36 74.02 24.04 53.87% 70.69% 35.04% 32.70%
April 49.36 63.83 27.05 45.94% 66.94% 31.74% 29.71%
May 37.67 18.61 36.89 19.82% 31.00% 19.00% 15.00%
June 40.40 64.96 31.39 72.28% 83.54% 40.89% 41.28%
July 44.63 60.61 32.55 53.39% 70.96% 29.15% 32.64%
August 42.77 58.19 32.24 52.96% 65.87% 28.13% 28.69%
September 43.99 62.06 32.19 56.94% 72.87% 30.63% 31.80%
October 36.35 64.15 32.71 55.86% 72.58% 28.64% 30.34%
November 47.11 64.14 31.75 53.48% 70.12% 24.36% 30.99%
December 44.39 53.03 33.03 46.00% 61.54% 24.83% 23.00%
January 48.77 60.80 30.38 62.74% 77.90% 39.29% 38.51%
MonthlyAvg' 44.43 59.65 30.74 52.12% 67.64% 30.16% 30.42%1
MonthlyAvg2 48.77 64.81 29.89 53.20% 74.71% 29.67% 30.98%2

' Computed for all the months
2 Computed only for the months during which complete data was collected
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Table 7.3 reports the number of posters, the number of active channels, and the

number of publicly active channels as percentages of the total number of users, the total

number of channels, and the total number of active channels, as well as the monthly

proportional stability values for active channels, publicly active channels, users, and

posters. To get a better image of how these percentages varied over the course of one

year, they are also presented in graphical form in Figures 7.3 (a - d).

Figure 7.3 a) Number of posters 	 Figure 7.3 b) Number of active
expressed as a percentage of the total 	 channels and publicly active channels
number of users. 	 expressed as percentages.

From Figure 7.3 a) it may be observed that during every month of the analyzed

period, the number of posters varied between 36 and 49 percent of the total number of

users of the network, with a monthly average value of 44 or 48 percent, depending on

whether the two problematic months were taken into account. Figure 7.3 b) plots the

number of active channels expressed as a percentage of the total number of channels and

the number of publicly active channels expressed as a percentage of the number of active

channels. If the outliers corresponding to the months of May 2005 and December 2005

are disregarded, it may be observed that the number of active channels, i.e., the number

of channels that were visited by users, represented a relatively high percentage of the



126

total number of channels. The lowest value was recorded during August, while the

highest values occurred in February and March. The monthly average, disregarding May

and December was approximately 65 percent, while the monthly average for the entire

year was approximately 60 percent. In other words, during any month about 60 to 65

percent of the total number of channels existing on the IRC network were visited by

users, while the rest were completely inactive.

The number of publicly active channels also remained constant throughout the

year. The lowest values were recorded in February and March, when approximately 24

percent of the active channels hosted public discussions. During the following months

this percentage grew slightly just above 30 percent and remained close to this value for

the rest of the year. The monthly averages that were computed (one disregarding May

and December and one taking all months into account) were very close to each other:

30.74 percent and 29.89 percent. In conclusion, during any month of the analyzed period,

approximately 30 percent of the channels that were visited by users actually hosted public

conversations.

Figure 7.3 c) describes the variation of the proportional monthly stability of the

users and posters, while Figure 7.3 d) describes the variation of the proportional monthly

stability of the active and publicly active channels of the IRC network.



127

Figure 7.3 c) Users and posters	 Figure 7.3 d) Active channels and
monthly proportional stability. 	 publicly active channels monthly

proportional stability.

The proportional monthly stability is a measure that gives an understanding of the

rate at which the network maintains some of its characteristics from month to month. In

the case of users and posters, the proportional monthly stability shows how many of the

users and posters that were active on the network during a particular month would also

return during the next month. Both monthly averages that were computed for the users

and the posters had similar values, approximately 30 percent. This means that only 30

percent of the users from one month would visit the network during the next month and

that only 30 percent of the posters from one month would be involved in public

interactions during the next month. The average monthly proportional stability of active

channels was just above 50 percent, meaning that about half the channels that were

visited during a month would be likely to be visited the following month. The publicly

active channels had the highest stability values, averaging 67 percent or 74 percent,

depending on whether or not the outlier months were taken into consideration. This high

stability value suggests that many of the publicly active channels are well-established,
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well-known to the users of the IRC network, and tend to sustain public interactions over

longer periods of time.

7.2.2 User-Related Descriptive Statistics

This section examines via tables, graphs, plots and correlations various characteristics of

IRC users. In Subsection 7.2.2.1 the focus is at the level of the entire network and the

time span is the entire year, with monthly breakdowns. This subsection looks at some key

measures of the activity throughout the year such as the total number of months users

were active, the total number of channels that were visited by users, or the total number

of public messages posted by users to the IRC channels. Subsection 7.2.2.2 focuses on

the month of August and on the subset of users that were engaged in public discussions

during that interval.

7.2.2.1 General Characteristics of the Users of the IRC Network.	 This subsection

describes the general characteristics of the human users of the IRC network. The users of

any IRC network can be broadly categorized into human users — regular people using the

network — and non-human users — various bots or other programs that connect to the

network. The behavior of the bots can influence the network both positively and

negatively. Friendly bots are programs that help users in the management of the channels,

preventing misbehavior and enforcing the rules for decent public interaction. Other

friendly bots are used in game playing. Trivia bots are the most popular example, but

there are other game-playing bots as well, such as IRC horse racing bots. Other tasks

usually performed by friendly bots may include (but are not limited to) the following:

network management, security management, and statistical data-collection. Unfriendly

bots are usually responsible for spam, virus distribution, DDoS attacks, etc. Such bots can
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cause significant problems, which, if not taken seriously and addressed in time, can have

an extremely negative impact on both the users of the network and the organizations

hosting the IRC servers.

Since this research focuses specifically on the behavior of human users, the need

for a mechanism that has the ability to separate the messages sent to the public interaction

spaces by bots from the messages sent by humans becomes very important. To this end,

an algorithm was developed that performed this separation. The algorithm parsed all the

collected message data and attempted to distinguish real users from bots based on various

patterns of keywords, phrases, and special characters that were identified as typically

used by bots. To refine the algorithm, several iterations were performed. To improve the

selection mechanism, random samples of messages attributed to both real users and bots

were examined between iterations. Since the review of messages might raise some ethical

questions, it should be mentioned that absolutely no connection was made between any

identifier (nickname or Internet Protocol [IP] address) of the authors of the messages and

the content of the messages. The analysis was performed simply to determine various

patterns that would enable a better distinction between the messages generated by bots

and by humans.

In the end, an expert's review revealed that the algorithm correctly identified over

99 percent of all the messages. Less than 1 percent of the messages attributed by the

algorithm to bots were actually originated by human users, while less than 1 percent of

the messages attributed by the algorithm to human users were actually originated by bots.
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Figure 7.4 a) Histogram of number 	 Figure 7.4 b) Histogram of number of
of visited months per user. 	 visited months per lurker.

Figure 7.4 c) Histogram of number 	 Figure 7.4 d) Histogram of number of
of visited months per poster. 	 active months per user.

The histograms in Figures 7 (a - d) reveal that over the course of one year the vast

majority of users who visited the IRC during any month did not return during the next

month. The users of the IRC network were divided into two main categories: lurkers and

posters. Lurkers were defined as those users who did not participate in public

conversations in the IRC channels; posters were those users who were publicly active and

sent at least one message to the public interaction space of at least one channel of the IRC
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network. While attempts were made to discard all the data that was related to IRC bots

from this analysis, it was not possible to completely eliminate it. As more information is

available, it is easier to differentiate between bots and humans. The public messages sent

by users were the most important pieces of information in determining whether the

source of those messages was a bot or a human. Therefore, separating bot posters from

human posters was easier than separating bot lurkers from human lurkers.

The histograms show that most of the lurkers and posters tended to visit the IRC

network for short periods of time. Table 7.4 presents some interesting descriptive

statistics for users, lurkers, and posters. The mean, median, and mode values for the

number of visited months per user, the number of visited months per lurker, and the

number of visited/active months per posters confirm what the histograms suggested, i.e.,

the typical IRC users did not visit the network for more than one month. The percentile

distributions show very clearly that 75 percent of all the users visited the network for

only one month, while only 1 percent of the population remained stable during the course

of the entire year. The lurker population and the poster population followed similar

patterns with 75 percent of the lurkers not visiting for more than one month and 75

percent of the posters not visiting for more than two months. However, a significant

difference between lurkers and posters can be observed in the case of the smaller, more

stable segments of the populations: while approximately 5 percent of the poster

population visited the network for at least eight months, only 1 percent of the lurker

population visited the network for more than five months. Another interesting finding is

that the 10 percent of the poster population that visited the network for five or more

months was not active during the entire visited periods. Only 5 percent of the poster
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population was actively engaged in public interactions for five or more months. This

suggests that in order to obtain a stable poster population for IRC channels, a leading

period of several months is needed. During such periods, small percentages of the total

number of lurkers may become interested in public interaction and become posters.

Table 7.4 Descriptive Statistics — Number of Months Users Visited the IRC Network

Mean Median Mode StDev
Percentiles

N25% 50% 75% 90% 95% 99%
Number of
months users
visited the
network

1.60 1 1 1.726 1 1 1 3 5 11 1,115,141

Number of
months
lurkers
visited the
network

1.23 1 1 0.973 1 1 1 2 2 5 736,078

Number of
months
posters
visited the
network

2.10 1 1 2.294 1 1 2 5 8 12 489,561

Number of
months
posters were
active in the
network

1.63 1 1 1.699 1 1 1 3 5 11 489,561

In what follows, the relationships between users and the channels they visited are

examined in more detail. Figures 7.5 (a - 1) display the monthly distributions of the

number of channels visited by users during the study period. In all the cases the

distribution is highly skewed, showing that most of the users visited very few channels

during any given month.
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Figure 7.5 a) Histogram of channels	 Figure 7.5 b) Histogram of channels
visited by users in 02/2005.	 visited by users in 03/2005.

Figure 7.5 c) Histogram of channels 	 Figure 7.5 d) Histogram of channels
visited by users in 04/2005.	 visited by users in 05/2005.

Figure 7.5 e) Histogram of channels	 Figure 7.5 f) Histogram of channels
visited by users in 06/2005. visited by users in 07/2005.
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Figure 7.5 g) Histogram of channels	 Figure 7.5 h) Histogram of channels
visited by users in 08/2005.	 visited by users in 09/2005.

Figure 7.5 i) Histogram of channels	 Figure 7.5 j) Histogram of channels
visited by users in 10/2005.	 visited by users in 11/2005.

Figure 7.5 k) Histogram of channels	 Figure 7.51) Histogram of channels
visited by users in 12/2005.	 visited by users in 01/2006.



Table 7.5 displays the most important descriptive statistics of this variable.

Table 7.5 Descriptive Statistics — Channels Visited by Users per Month

135

Figure 7.6 Percentile categories for the number of channels visited by users.

Figure 7.6 plots the values of the six percentile categories found in Table 7.5. It

may be noted that these values remained relatively constant throughout the year. Overall,

50 percent of the users visited two channels at the most; and 90 percent of the users

visited eight channels at the most.



136

Figure 7.7 a) Histogram of channels 	 Figure 7.7 b) Histogram of channels
visited by lurkers in 02/2005.	 visited by lurkers in 03/2005.

Figure 7.7 c) Histogram of channels	 Figure 7.7 d) Histogram of channels
visited by lurkers in 04/2005.	 visited by lurkers in 05/2005.

Figure 7.7 e) Histogram of channels 	 Figure 7.7 f) Histogram of channels
visited by lurkers in 06/2005. visited by lurkers in 07/2005.
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Figure 7.7 g) Histogram of channels	 Figure 7.7 h) Histogram of channels
visited by lurkers in 08/2005.	 visited by lurkers in 09/2005.

Figure 7.7 i) Histogram of channels	 Figure 7.7 j) Histogram of channels
visited by lurkers in 10/2005.	 visited by lurkers in 11/2005.

Figure 7.7 k) Histogram of channels	 Figure 7.7 1) Histogram of channels
visited by lurkers in 12/2005.	 visited by lurkers in 01/2006.
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Figures 7.7 (a - 1) display the monthly distributions of the number of channels

visited by lurkers during the study period. As in the case of channels visited by users, the

distribution is highly skewed, showing that most of the lurkers visited very few channels

during any given month. Table 7.6 displays the most important descriptive statistics of

this variable. Figure 7.8 plots the values of the six percentile categories found in Table

7.6 and shows, among other things, that for the entire year 50 percent of the lurkers

visited a single channel, and 90 percent of the lurkers visited at most five channels.

Table 7.6 Descriptive Statistics — Channels Visited by Lurkers per Month

Figure 7.8 Percentile categories for the number of channels visited by lurkers.
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Figure 7.9 a) Histogram of channels	 Figure 7.9 b) Histogram of channels
visited by posters in 02/2005.	 visited by posters in 03/2005.

Figure 7.9 c) Histogram of channels	 Figure 7.9 d) Histogram of channels
visited by posters in 04/2005.	 visited by posters in 05/2005.

Figure 7.9 e) Histogram of channels	 Figure 7.9 1) Histogram of channels
visited by posters in 06/2005. visited by posters in 07/2005.
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Figure 7.9 g) Histogram of channels 	 Figure 7.9 h) Histogram of channels
visited by posters in 08/2005.	 visited by posters in 09/2005.

Figure 7.9 i) Histogram of channels	 Figure 7.9 j) Histogram of channels
visited by posters in 10/2005.	 visited by posters in 11/2005.

Figure 7.9 k) Histogram of channels	 Figure 7.9 1) Histogram of channels
visited by posters in 12/2005.	 visited by posters in 01/2006.
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Figures 7.9 (a - 1) display the monthly distributions of the number of channels

visited by posters during the study period. As in the previous cases of channels visited by

users and lurkers, the distribution is highly skewed, showing that most of the posters

visited very few channels during any given month. Table 7.7 displays the most important

descriptive statistics of this variable. Figure 7.10 plots the values of the six percentile

categories in Table 7.7 and shows that over the year, 50 percent of the posters visited at

most three channels, and 90 percent of the posters visited at most twelve channels.

Table 7.7 Descriptive Statistics — Channels Visited by Posters per Month

Figure 7.10 Percentile categories for the number of channels visited by posters.
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Figure 7.11 a) Histogram of active	 Figure 7.11 b) Histogram of active
channels per poster in 02/2005.	 channels per poster in 03/2005.

Figure 7.11 c) Histogram of active	 Figure 7.11 d) Histogram of active
channels per poster in 04/2005.	 channels per poster in 05/2005.

Figure 7.11 e) Histogram of active	 Figure 7.11 0 Histogram of active
channels per poster in 06/2005.	 channels per poster in 07/2005.
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Figure 7.11 g) Histogram of active	 Figure 7.11 h) Histogram of active
channels per poster in 08/2005.	 channels per poster in 09/2005.

Figure 7.11 i) Histogram of active	 Figure 7.11 j) Histogram of active
channels per poster in 10/2005. 	 channels per poster in 11/2005.

Figure 7.11 k) Histogram of active	 Figure 7.11 1) Histogram of active
channels per poster in 12/2005.	 channels per poster in 01/2006.
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Figures 7.11 (a - 1) display the monthly distributions of the number of channels in

which posters were active during the study period. As in the previous cases, the

distribution is highly skewed, showing that most of the posters were active in very few

channels during any given month. Table 7.8 displays the most important descriptive

statistics of this variable. Figure 7.12 plots the values of the six percentile categories

found in Table 7.8, and shows that over the year, 50 percent of the posters were active in

a single channel, and 90 percent of the posters were active in four channels at the most.

Table 7.8 Descriptive Statistics — Channels in which Posters Were Active per Month

Figure 7.12 Percentile categories for the no. of channels in which posters were active.
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Figure 7.13 a) Histogram of messages	 Figure 7.13 b) Histogram of messages
per poster in 02/2005. 	 per poster in 03/2005.

Figure 7.13 c) Histogram of messages	 Figure 7.13 d) Histogram of messages
per poster in 04/2005. 	 per poster in 05/2005.

Figure 7.13 e) Histogram of messages	 Figure 7.13 1) Histogram of messages
per poster in 06/2005.	 per poster in 07/2005.
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Figure 7.13 g) Histogram of messages	 Figure 7.13 h) Histogram of messages
per poster in 08/2005. 	 per poster in 09/2005.

Figure 7.13 i) Histogram of messages	 Figure 7.13 j) Histogram of messages
per poster in 10/2005.	 per poster in 11/2005.

Figure 7.13 k) Histogram of messages	 Figure 7.13 1) Histogram of messages
per poster in 12/2005. per poster in 01/2006.
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Figures 7.13 (a - 1) display the monthly distributions of the number of public

messages sent by posters during the study period. As in the previous cases of visited

channels and publicly active channels, the distribution is highly skewed, showing that

most of the posters were responsible for small numbers of public messages during any

given month. Table 7.9 displays the most important descriptive statistics of this variable.

Table 7.9 Descriptive Statistics — Public Messages Sent by Posters per Month

Figure 7.14 plots the values of the six percentile categories found in Table 7.9.

The values remained relatively constant throughout the year. For the entire year, 50

percent of the posters sent at most eight messages, and 90 percent of the posters sent at

most 156 messages.



Figure 7.14 Percentile categories for the number of messages sent by posters.

Table 7.9 as well as Figures 7.13 and 7.14 show that the distribution of messages

per poster in an IRC network is similar to the distributions found in asynchronous CMC

systems such as Usenet groups, in that a small number of users are responsible for most

of the mass interaction (Whitaker et al. 1998). Table 7.10 summarizes the number of

messages sent by the most active posters, expressed as percentages of the total number of

monthly or yearly messages.

Table 7.10 Top Posters and Messages Percentages
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Figure 7.15 plots the values of the four most active poster categories found in

Table 7.10. The values remained relatively constant throughout the year if the outliers for

the months of May 2005 and December 2005 are not considered.

Figure 7.15 Percentage of total messages originated by most active posters.

It may be noted that during any given month, the most active 10 percent of the

posters were responsible for approximately 80 percent of the total number of monthly

public messages. The most active 5 percent of the posters were responsible for

approximately 70 percent of the total number of monthly public messages. The most

active 3 percent of the posters were responsible for approximately 59 percent of the total

number of monthly public messages; and the most active 1 percent of the posters were

responsible for approximately 36 percent of the total number of monthly public

messages. The percentage of messages for the most active poster categories increases

significantly if the entire year is considered. The most active 10 percent of the posters

were responsible for approximately 91 percent of the total number of public messages.

The most active 5 percent of the posters were responsible for approximately 86 percent of

the total number of public messages. The most active 3 percent of the posters were
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responsible for approximately 80 percent of the total number of public messages; and the

most active 1 percent of the posters were responsible for approximately 63 percent of the

total number of public messages.

Figures 7.16 (a - c) describe the relationships among several user-related variables

over the entire study period. Specifically, the number of messages, the number of

channels a user visited, the number of channels a user was active in, the number of

months a user visited the network, and the number of months a user was publicly active

are examined. For each pair of variables the Spearman's correlation coefficient was also

computed. As mentioned in Section 7.2, both the Pearson and Spearman correlation

coefficients can be used to measure the correlation between two variables. However,

since the Spearman correlation coefficient examines the ranks of ordinal data rather than

the values themselves, it is the one preferred in this analysis. The highest observed

correlation was between the number of channels a user visited (active channels) and the

number of channels a user was active in (publicly active channels). In this case

Spearman's rho was 0.675, suggesting that as users visited more channels, they also

tended to be publicly active in those channels. However, since the correlation is not very

high, there were still a significant number of users who preferred to be publicly active in

only a few of the channels they visited. A medium correlation was observed between the

number of messages and the number of publicly active channels: Spearman's rho =

0.591. Only in about half the cases, an increase in the number of messages was correlated

with an increase in the number of channels in which users were publicly active. The

lowest observed correlation was between the number of messages and the number of

visited channels: Spearman's rho = 0.392. For all three cases, n=489,561, p < .001.
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Figure 7.16 c) Active channels by publicly active channels per poster.

7.2.2.2 Dynamics of a Sample of Posters.	 This section describes the behavior of IRC

posters. Several variables of interest were computed: the average time spent by posters in

an IRC session; the average time spent by posters before starting to publicly interact after

connecting to the network; the average number of days posters visited the network during

a month; the average number of days posters were publicly active during a month; the

average number of channels posters visited during an IRC session; and the average

number of channels in which posters were publicly active during an IRC session. Table

7.11 presents the descriptive statistics of all these variables. The sample of posters was
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selected from the month of August 2005 because it was in the middle of the data-

collection period. Some of the variables described in Table 7.11 were computed for the

entire month of August 2005, while other variables were computed only for the first week

of August 2005. A smaller time interval was chosen because of the large amounts of both

time and computing power required to compute some of these variables, given the size of

the dataset.

Table 7.11 Poster Dynamics Data

Measure Mean Median Mode StDev

Percentiles

Sample
size25% 50% 75% 90% 95% 99%

Average number of
channels visited by a
poster during a
session

2.33 2 1 2.08199 1 2 3 5 6 11 13,043

Average number of
channels in which a
poster was publicly
active during a
session 1

1.2 1 1 0.87839 1 1 1 2 3 5 10,648

Average time per
session spent by a
poster on IRC (in
minutes)2

263.8 39 10 556.782 12 39 141 916 1,619 2,704 57,098

Average time until
the first posted public
message (in
minutes)2

21.01 20 20 57.907 20 20 20 20 20 20 33,019

Average number of
days a poster
connected to the
network2

4.36 2 1 5.955 1 2 5 13 19 27 64,063

Average number of
days a poster was
publicly active2

2.94 1 1 4.577 1 1 2 7 13 25 64,063

The trend that was visible in the general user data (described in subsection

7.2.2.1) can also be observed for this sample of posters. Most of them visited and were

publicly active in very few channels during an IRC session. Approximately 75 percent of

the August posters visited three or fewer channels and were publicly active in only one

I Computed for the first week of August 2005
2 Computed for the entire month of August 2005
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channel per session. Only 1 percent of the August posters visited eleven or more channels

and were publicly active in five or more channels during a session. Posters seemed to be

publicly active in approximately half of the channels they visited during a session during

this month. Also, 75 percent of the August posters visited the network for five or fewer

days and were publicly active for at most two days. Only 1 percent of the August posters

were active for most of the month: they visited the network for 27 days or more and they

were publicly active for at least 25 days. An expected high correlation was observed

between the number of days posters connected to the network and the number of days

posters were actually publicly active: Spearman's rho = 0.814, n=64,063, p < .01. This

suggests that posters tend to be publicly active in most of the days they connect to the

network. The correlation between the average number of channels posters visited during

a session and the average number of channels in which posters were publicly active

during a session was rather low: Spearman's rho = 0.378, n=10,648, p < .01. The

histograms in Figures 7.17 (a — f) display the distributions of the variables presented in

Table 7.11.
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Figure 7.17 a) Histogram of number 	 Figure 7.17 b) Histogram of number of
of visited days per poster in 08/2005. 	 publicly active days per poster in 08/2005.

Figure 7.17 c) Histogram of visited	 Figure 7.17 d) Histogram of publicly
channels per session in 08/2005. 	 active channels per session in 08/2005.

Figure 7.17 e) Histogram of average time	 Figure 7.17 f) Histogram of average time
per session in 08/2005. to first posting in 08/2005.
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7.2.3 Channel-related Descriptive Statistics

This section looks at various characteristics of the IRC chat-channels by examining

tables, graphs, plots, and correlations. In Subsection 7.2.3.1 the focus is at the level of the

entire network, and the time span is the entire year with monthly breakdowns. Some key

measures of the channel activity throughout the year are presented such as the total

number of months the channels were visited, the total number of users and posters that

visited the channels, or the total number of public messages posted to the IRC channels.

In Subsection 7.2.3.2 the focus is on the month of August and on the subset of channels

that were publicly active during that interval.

7.2.3.1 General Characteristics of the IRC Chat-channels. This subsection

describes the general characteristics of the channels of the IRC network. Two main

categories of channels were considered: active channels (channels that were visited by

users, but no public interaction occurred), and publicly active channels (channels where

public messages were exchanged among users). The channels that simply existed but

were not visited by users were excluded from the analysis since they presented no

interest. The monthly breakdowns demonstrate if the dynamics of the channels changed

over the course of one year.

Figures 7.18 (a — c) show the histograms for the number of months active

channels and publicly active channels were visited, and for the number of months

publicly active channels sustained public interactions.
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Figure 7.18 a) Histogram of number 	 Figure 7.18 b) Histogram of number of
of visited months per active channel. 	 visited months per publicly active channel.

Figure 7.18 c) Histogram of number
of publicly active months per publicly
active channel

It may be noted that the vast majority of the active channels kept their active

status for short periods of time, and very few were able to maintain their user population

for more than three months. The situation was very different for publicly active channels.

While there was still a large number of publicly active channels that were visited for only

a month or two, there was a comparable number of channels that were visited for the

entire year, as well as many other channels that were visited anywhere between three and

eleven months. With respect to the number of months publicly active channels actually
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hosted public interactions, one can again observe that most of them did so for short

periods of time. However, there were some channels that remained publicly active for the

entire year, as well as others that were publicly active for several months. This

distribution suggests that channels where public discussions occur are more likely to

attract users than channels that lack such interactions.

Table 7.12 Descriptive Statistics — Number of Months IRC Channels Were Active

I

Mean Median Mode StDev

Percentiles
channels

Total

25% 50% 75% 90% 95% 99%

Number of months active
channels were visited

1.67 1 1 1.575 1 1 2 3 5 9 27,987

Number of months publicly
active channels were visited

5.92 5 1 4.124 2 5 10 12 12 12 7,180

Number of months publicly
active channels hosted public

3.69 2 1 3.574 1 2 5 11 12 12 7,180

Table 7.12 presents some descriptive statistics for active and publicly active

channels: the mean, median, and mode values for the number of months channels were

visited or sustained public interactions. These values confirm what the histograms

suggested. The typical active channels did not attract users for more than a few months as

opposed to the typical publicly active channels, which were more successful at

maintaining a user base for longer periods of time. The percentile distributions show very

clearly that 75 percent of all the active channels were visited for two months at the most,

while only 1 percent of the channel base remained active for nine or more months. It may

also be observed that 10 percent of the publicly active channels were visited and

sustained public interactions during (almost) the entire study period. Also, 25 percent of

the publicly active channels were visited for at least 10 months and hosted public

discussions for at least half the time of this interval.
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Figure 7.19 a) Histogram of users	 Figure 7.19 b) Histogram of users per
per active channel in 02/2005.	 active channel in 03/2005.

Figure 7.19 c) Histogram of users 	 Figure 7.19 d) Histogram of users per
per active channel in 04/2005. 	 active channel in 05/2005.

Figure 7.19 e) Histogram of users	 Figure 7.19 f) Histogram of users per
per active channel 06/2005. 	 active channel in 07/2005.
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Figure 7.19 g) Histogram of users	 Figure 7.19 h) Histogram of users per
per active channel in 08/2005. 	 active channel in 09/2005.

Figure 7.19 i) Histogram of users	 Figure 7.19 j) Histogram of users per
per active channel in 10/2005.	 active channel in 11/2005.

Figure 7.19 k) Histogram of users	 Figure 7.19 1) Histogram of users per
per active channel in 12/2005. 	 active channel in 01/2006.
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Figures 7.19 (a - 1) display the monthly distributions of the number of users who

visited active channels during the study period. In all the cases the distribution is highly

skewed, showing that most of the channels were visited by low numbers of users during

any given month. Table 7.13 displays the most important descriptive statistics of this

variable. Figure 7.20 plots the values of the six percentile categories found in Table 7.13.

It is apparent that over the year 50 percent of the channels were visited by only one user,

and 90 percent of the channels were visited by five or fewer users.

Table 7.13 Descriptive Statistics — Number of Users Who Visited Active Channels

Mean Median Mode StDev Min Max Range
Percentiles Total

channels25% 50% 75% 90% 95% 99%

Feb 3.44 1 1 14.383 1 412 411 1 1 3 6 10 29 7,886

Mar 3.16 1 1 13.609 I 828 827 1 1 2 5 9 25 8,870

Apr 2.78 1 1 7.363 1 243 242 1 1 2 5 9 26 7,221

May 2.61 1 1 5.134 1 118 117 1 1 2 5 9 20 1,547

Jun 3.27 1 1 30.896 1 2113 2112 1 1 2 5 8 24 5,430

Jul 4.82 1 1 35.278 1 968 967 1 1 3 6 9 29 5,053

Aug 3.26 1 1 19.323 1 812 811 1 1 2 5 9 25 4,595

Sep 4.83 1 1 40.999 1 1471 1470 1 1 3 5 9 39 4,823

Oct 4.31 1 1 53.282 1 3269 3268 1 1 2 5 8 24 4,771

Nov 3.47 1 1 29.452 1 1714 1713 1 1 2 5 8 25 4,713

Dec 3.24 1 1 11.434 1 366 365 1 1 2 9 27 3,339

Jan 3.31 1 1 13.859 1 416 415 1 1 8 39 4,491

Total 3.57 1 1 24.995 1 1522 1521 1 1 2 5 9 30 27,987

Figure 7.20 Percentile categories for the number of users per active channel.
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Figure 7.21 a) Histogram of users per	 Figure 7.21 b) Histogram of users per
publicly active channel in 02/2005.	 publicly active channel in 03/2005.

Figure 7.21 c) Histogram of users per	 Figure 7.21 d) Histogram of users per
publicly active channel in 04/2005.	 publicly active channel in 05/2005.

Figure 7.21 e) Histogram of users per	 Figure 7.21 f) Histogram of users per
publicly active channel 06/2005.	 publicly active channel in 07/2005.
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Figure 7.21 g) Histogram of users per	 Figure 7.21 h) Histogram of users per
publicly active channel in 08/2005.	 publicly active channel in 09/2005.

Figure 7.21 i) Histogram of users per	 Figure 7.21 j) Histogram of users per
publicly active channel in 10/2005.	 publicly active channel in 11/2005.

Figure 7.21 k) Histogram of users per	 Figure 7.21 1) Histogram of users per
publicly active channel in 12/2005.	 publicly active channel in 01/2006.
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Figures 7.21 (a - 1) display the monthly distributions of the number of users per

publicly active channels during the study period. In all the cases the distribution is highly

skewed, showing that most of the channels were visited by low numbers of users during

any given month. Table 7.14 displays the most important descriptive statistics of this

variable. Figure 7.22 plots the values of the six percentile categories found in Table 7.14.

Among other things, it shows that over the year 50 percent of the channels were visited

by at most 29 users, and 90 percent of the channels were visited by 450 or fewer users.

Table 7.14 Descriptive Statistics - No. of Users Who Visited Publicly Active Channels

Mean Median Mode StDev Min Max

Percentiles
Total chans25% 50% 75% 90% 95% 99%

Feb 210.91 22 2 1221.103 1 31,207 9 22 73 234 565 4,490 2,583

Mar 232.79 23 4 1359.757 1 34,775 9 23 73 264 628 4,802 2,807

Apr 223.92 22 2 1306.225 1 34,648 8 22 75 271 629 4,405 2,678

May 166.02 21 4 781.276 1 13,882 8 21 63 213 614 3,232 905

Jun 213.41 23 3 1352.606 1 47,201 9 23 72 250 611 4,459 2,482

Jul 211.54 23 3 1392.069 1 44,169 9 23 69 233 566 4,000 2,438

Aug 206.07 22 4 1291.301 1 35,866 8 22 62 224 519 3,964 2,185

Sep 219.68 23 4 1313.519 1 34,872 9 23 70 238 602 4,520 2,290

Oct 226.64 23 3 1523.267 1 39,040 9 23 69 235 508 4,329 2,318

Nov 207.30 24 2 1223.446 1 34,855 9 24 71 245 562 4,450 2,191

Dec 170.52 21 6 929.291 1 22,840 9 21 58 207 491 4,011 1,647

Jan 228.26 23 6 1299.260 1 33,591 8 23 68 241 657 5,228 1,959

Total 529.06 29 2 5268.428 1 269,696 9 29 110 450 1,098 8,275 7,180

Figure 7.22 Percentile categories for the number of users per publicly active channel.
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Figure 7.23 a) Histogram of posters per	 Figure 7.23 b) Histogram of posters per
publicly active channel in 02/2005.	 publicly active channel in 03/2005.

Figure 7.23 c) Histogram of posters per	 Figure 7.23 d) Histogram of posters per
publicly active channel in 04/2005.	 publicly active channel in 05/2005.

Figure 7.23 e) Histogram of posters per	 Figure 7.23 f) Histogram of posters per
per publicly active channel 06/2005.	 publicly active channel in 07/2005.
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Figure 7.23 g) Histogram of posters per	 Figure 7.23 h) Histogram of posters per
publicly active channel in 08/2005.	 publicly active channel in 09/2005.

Figure 7.23 i) Histogram of posters per	 Figure 7.23 j) Histogram of posters per
publicly active channel in 10/2005.	 publicly active channel in 11/2005.

Figure 7.23 k) Histogram of posters per	 Figure 7.23 1) Histogram of posters per
publicly active channel in 12/2005.	 publicly active channel in 01/2006.
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Figures 7.23 (a - 1) display the monthly distributions of the number of posters per

publicly active channels during the study period. The distributions are highly skewed,

showing that most of the channels were visited by low numbers of posters during any

given month. Table 7.15 displays the most important descriptive statistics of this variable.

Figure 7.24 plots the values of the six percentile categories found in Table 7.15. Among

other things, it may be noted that over the year 50 percent of the channels had at most

eight posters and, 90 percent of the channels had at most 171 posters.

Table 7.15 Descriptive Statistics - Number of Posters per Publicly Active Channel

Mean Median Mode StDev Min Max Range
Percentiles Total

ch an s25% 50% 75% 90% 95% 99c1/0

Feb 63.21 7 1 341.619 1 9,151 9,150 2 7 28 101 222 998 2,583

Mar 67.33 7 1 378,714 1 10,381 10,380 2 7 30 105 227 1,018 2,807

Apr 65.90 8 1 352.882 1 9,288 9,287 2 8 31 114 218 946 2,678

May 45.12 8 1 184.221 1 3,001 3,000 3 8 26 79 167 762 905

Jun 56.86 8 1 290.307 1 7,072 7,071 2 8 29 95 195 827 2,482

Jul 61.36 8 1 332.312 1 8,349 8,348 2 8 29 98 190 1,013 2,438

Aug 57.82 8 1 310.447 1 7,472 7,471 2 8 27 95 186 857 2,185

Sep 63.24 8 1 325.059 1 7,630 7,629 2 8 30 101 225 882 2,290

Oct 61.47 7 1 321.770 1 7,640 7,639 2 7 29 96 228 988 2,318

Nov 65.13 8 1 306.353 1 7,736 7,735 2 8 31 110 254 1,071 2,191

Dec 48.34 7 1 233.671 1 5,579 5,578 2 7 23 78 166 802 1,647

Jan 67.11 7 1 333.641 1 8,206 8,205 2 7 30 102 222 1,073 1,959

Total 161.98 8 1 1476.191 1 64,670 64,669 2 8 38 171 434 2,623 7,180

Figure 7.24 Percentile categories for the number of posters per publicly active channel.



167

Figure 7.25 a) Histogram of messages per	 Figure 7.25 b) Histogram of messages per
publicly active channel in 02/2005. 	 publicly active channel in 03/2005.

Figure 7.25 c) Histogram of messages per	 Figure 7.25 d) Histogram of messages per
publicly active channel in 04/2005.	 publicly active channel in 05/2005.

Figure 7.25 e) Histogram of messages per	 Figure 7.25 f) Histogram of messages per
publicly active channel 06/2005.	 publicly active channel in 07/2005.
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Figure 7.25 g) Histogram of messages per	 Figure 7.25 h) Histogram of messages per
publicly active channel in 08/2005.	 publicly active channel in 09/2005.

Figure 7.25 i) Histogram of messages per	 Figure 7.25 j) Histogram of messages per
publicly active channel in 10/2005.	 publicly active channel in 11/2005.

Figure 7.25 k) Histogram of messages per	 Figure 7.25 1) Histogram of messages per
publicly active channel in 12/2005.	 publicly active channel in 01/2006.
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Figures 7.25 (a - 1) display the monthly distributions of the number of messages

per publicly active channels during the study period. The distributions are highly skewed,

showing that most of the channels had low amounts of public interaction during any

given month. Table 7.16 displays the most important descriptive statistics of this variable.

Figure 7.26 plots the values of the six percentile categories found in Table 7.16. Among

other things, it may be noted that over the year 50 percent of the channels had 160

messages at the most, and 90 percent of the channels had 11,491 messages at the most.

Table 7.16 Descriptive Statistics - Number of Messages per Publicly Active Channel

Mean Median Mode Min Max

Percentiles
Chans25% 50% 75% 90% 95% 99%

Feb 3601.64 134 1 1 615,738 15 134 962 5,066 13,187 66,052 2,583

Mar 3950.78 133 1 1 696,968 14 133 976 5,569 13,701 68,076 2,807

Apr 3852.29 137 1 1 515,197 14 137 1,006 6,241 15,249 69,172 2,678

May 1659.27 111 1 1 107,165 17 111 696 2,933 6,453 34,106 905

Jun 3537.06  152 1 1 383,705 15 152 1,194 6,198 14,707 69,717 2,482

Jul 3974.15 145 1 1 452,846 13 145 1,217 6,486 15,859 74,776 2,438

Aug 3595.13 140 1 1 427,404 16 140 1,033 5,912 14,140 74,427 2,185

Sep 4361.50 151 1 1 531,192 14 151 1,199 6,924 19,065 86,492 2,290

Oct 4399.23 147 1 1 545,708 14 147 1,270 6,837 17,209 91,945 2,318

Nov 4961.15 176 1 1 504,191 15 176 1,437 8,965 18,978 124,247 2,191

Dec 2776.66 109 1 1 286,088 11 109 793 4,157 10,232 64,010 1,647

Jan 4745.73 163 1 1 479,567 13 163 1,234 7,585 17,600 96,409 1,959

Total 14409.39 160 1 1 5,545,769  17 160 1,495  11,491 36,619 273,948 7,180

Figure 7.26 Percentiles for the number of messages per publicly active channel.
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Table 7.16 as well as Figures 7.25 and 7.26 shows that over the study period a

small number of publicly active IRC channels hosted most of the public group

interaction, in the same way as a small number of posters were responsible for most of

the mass interaction. Table 7.17 summarizes the number of messages sent to the most

publicly active channels; there are expressed as percentages of the total number of

monthly or yearly messages.

Table 7.17 Top Channels and Messages Percentages

Top 10% channels Top 5% channels Top 3% channels Top 1% channels
February 87.37 76.07 66.38 45.95
March 87.53 76.56 67.42 46.37
April 86.10 73.50 63.36 41.52
May 80.39 67.56 57.82 36.68
June 83.92 70.54 59.83 38.69
July 85.46 73.56 63.14 40.70
August 85.81 73.30 63.21 40.67
September	 - 85.92 73.24 62.40 40.81
October 86.43 74.53 64.74 42.92
November 85.33 72.58 62.73 41.60
December 86.12 75.11 64.98 39.01
January 86.39 74.48 63.56 38.85
Monthly average 85.56 73.41 63.29 41.14
Yearly 94.17 86.68 79.22 60.77

Figure 7.27 Percentage of total messages sent to the most publicly active channels.
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Figure 7.27 plots the values of the four most active publicly active channels

categories found in Table 7.17. The values remained relatively constant throughout the

year, if the outliers for the months of May 2005 and December 2005 are not considered.

It may be noticed that during any given month, the top 10 percent of the publicly active

channels hosted approximately 85 percent of the total number of monthly public

messages; the top 5 percent of the publicly active channels hosted approximately 73

percent of the total number of monthly public messages; the top 3 percent of the publicly

active channels hosted approximately 63 percent of the total number of monthly public

messages; and the top 1 percent of the publicly active channels hosted approximately 41

percent of the total number of monthly public messages. Throughout the entire year, the

percentage of messages per top most publicly active channel categories increases

significantly: the top 10 percent of the publicly active channels hosted approximately 94

percent of the total number of public messages; the top 5 percent of the publicly active

channels hosted approximately 86 percent of the total number of public messages; the top

3 percent of the publicly active channels hosted approximately 79 percent of the total

number of public messages; and the top 1 percent of the publicly active channels hosted

approximately 60 percent of the total number of public messages.

Figures 7.28 (a - c) describe the relationships between various channel-related

variables such as the number of messages, the number of users, and the number of posters

over the entire study period. Common sense suggests that an increase in the number of

users of an IRC channel would typically be correlated with increases in both the number

of posters and the number of messages. The Spearman correlation coefficients computed

for each pair of variables confirm these assumptions. The highest observed correlation
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was between the number of messages and the number of posters in an IRC channel. In

this case, Spearman's rho was 0.907. Another obvious high correlation was observed

between the number of users and the number of posters of IRC channels: Spearman's rho

= 0.861. The lowest correlation was observed between the number of messages and the

number of users: Spearman's rho = 0.727. For all three cases, n=7,180, p < .001.

Figure 7.28 a) Messages by users per 	 Figure 7.28 b) Messages by posters per
publicly active channel. 	 publicly active channel.

Figure 7.28 c) Users by posters per publicly active channel.
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7.2.3.2 Dynamics of a Sample of Channels. The subsection describes the dynamics

of publicly active IRC chat-channels. Several measures were computed; these are

presented in Table 7.18 along with some of their descriptive statistics. The sample of

channels was drawn from August 2005, for the same reason as in the case of the sample

of posters — it was in the middle of the data-collection period. All of the variables

described in Table 7.18 were computed for the entire month of August 2005. The

smallest time interval for which it was possible to collect and/or compute the values of

measures like the number of users, the number of posters, the number of messages, the

user diversity, or the poster diversity in a reliable fashion was one third of an hour or 20

minutes. Two types of averages were computed: the average value for any 20-minute

time interval during August, and the average value for any day of the month (daily

average value).

User diversity and poster diversity measured the heterogeneity of the channels'

user and poster populations. Specifically, the user or poster diversity for a particular time

interval represented the percentage of users or posters that were present or active in a

channel during that interval with respect to the larger time period. For example, if during

a particular hour a channel had five unique posters present, and during that day the

channel had 15 unique posters, the "diversity" for that hour was 5 / 15 = 0.33. Two types

of diversity were computed: the average diversity for any hour, with respect to that

particular day; and the average diversity for any day (daily diversity) with respect to that

particular week.
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Table 7.18 Channel Dynamics Data

Measure Mean Median Mode

Percentiles

Sample
size25% 50% 75% 90% 95% 99%

No. of days in
existence 8.58 2.00 1.00 1 2 13 31 31 31 2,186

Average no. of users
per channel 3.02 1.00 1.00 1 1 2 3 7 27 2,1862

Average no. of daily
users per channel 4.39 1.00 1.00 1 1 2 5 10 42 2,186

Average no. of
posters per channel 6.05 3.00 1.00 2 3 5 11 18 57 2,186

Average no. of daily
posters per channel 7.36 3.00 1.00 2 3 6 14 21 71 2,186

Average no. of
messages per
channel

72.47 18.00 1.00 5 18 48 136 270 1,054 2,186

Average no. of daily
messages per
channel

170.52 36.00 1.00 8 36 123 352 595 2,477 2,186

Average channel
user diversity 0.8113 0.9003 1.00 0.4375 0.7033 1 1 1 1 2,186

Average daily
channel user
diversity

0.5302 0.4286 1.00 0.2143 0.4286 1 1 1 1 2,186

Average channel
poster diversity 0.8547 0.9375 1.00 0.7500 0.9375 1 1 1 1 2,186

Average daily
channel poster
diversity

0.4962 0.3750 1.00 0.2000 0.3750 1 1 1 1 2,186

Average user return
time (in minutes) 3063.96 2816.00 4135.0 1,989 2,816 3,817 5,020 6,963 8,473 113
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7.3 Summary of Descriptive Statistics

The descriptive statistics presented in this chapter showed the following:

• Over the course of one year, only 57 percent of the total number of channels
were visited by users;

• Over the course of one year, 20 percent of the channels that were visited by
users hosted public interactions;

• Approximately half of the channels that were active during any given month
were likely to be active during the following month;

• Approximately 75 percent of the channels that were publicly active during any
given month were likely to be publicly active during the following month;

• Approximately 30 percent of the users who visited the network during any given
month were likely to visit the network during the following month;

• Approximately 30 percent of the posters who were publicly active during any
given month were likely to be publicly active during the following month;

• Most of the users (both lurkers and posters) visited the IRC network for short
periods of time;

• Most of the users (both lurkers and posters) visited a small number of channels
(both over the entire year and during any given session);

• Overall, posters visited more channels than lurkers;

• Most of the posters were publicly active in a small number of channels (both
over the entire year and during any given session);

• A small proportion of posters generated the vast majority of messages: over the
year, 10 percent of the posters were responsible for 91 percent of the messages;

• Publicly active channels were visited significantly more often than active
channels in terms of both size of the population (number of users) and length of
time (number of months);

• Approximately half of the publicly active channels were visited for at least five
months while approximately 25 percent of the publicly active channels hosted
public interactions for at least 5 months;
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• A small number of channels were host to the vast majority of public
interactions: over the year, 94 percent of the public messages were sent to 10
percent of the publicly active channels.

In sum, the descriptive statistics presented in this chapter demonstrated that the

analyzed IRC network was a dynamic, constantly changing environment with a great deal

of constant turnover in users and channels. Thus, it was interesting to see if the

apparently "chaotic" behavior could in fact be better understood and even predicted. The

next chapters address this issue by describing various models that focus on predicting the

activity of IRC chat-channels.



CHAPTER 8

EFFECTS OF INFORMATION PROCESSING CONSTRAINTS ON THE
BOUNDARIES OF CHANNEL ACTIVITY

While IRC does not limit the number of users, posters, or messages in a channel; little is

known about the boundaries imposed on these variables by the users' information

processing capabilities. This chapter attempts to identify empirically the upper

information-processing limits that constrain the community interaction dynamics seen in

chat-channels. The information-processing constraints theory (Jones 1997; Jones and

Rafaeli 1999) argues that one of the main influences on a user's participation in computer

mediated communication is the level of information overload to which the user is

exposed when using the system. Prior research on asynchronous CMC systems has

shown that the level of activity within such a system can only rise up to a certain level.

After this level is reached, due to the effects of information overload, the activity either

remains constant or decreases.

This chapter identifies the maximum level of activity measured in users, posters,

and messages that can be reached inside a synchronous CMC system such as IRC.

177
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8.1 Hypotheses

The following hypotheses were formulated using the information-processing constraints

theory (Jones 1997; Jones and Rafaeli 1999):

• Message density, defined as the number of messages per poster in an IRC
channel, will vary with the user population up to a limited user pool. Beyond
that point, the message density will remain constant.

• The cap on message density will constrain the number of posters co-present in
an IRC channel.

8.2 Method

8.2.1 Data Collection

The descriptive statistics of the IRC network presented in the previous chapter revealed

the existence of a large number of publicly active channels during each month over the

one-year data-collection period. The analysis of all these channels would have been

virtually impossible due to both time constraints and processing power constraints.

Therefore, it was necessary to select a more manageable dataset to use for the

identification of channel activity boundaries. This dataset was selected through a

stratified random sampling of all the channels that were publicly active during August

2005. The month of August was chosen because it was in the middle of the data-

collection period. From an experienced IRC observer perspective, it made sense to

stratify the random sample of channels based on their size (the number of users that

visited them) and their intensity (how often the channels were visited during a particular

time interval). While there are other possible approaches for the stratification of channels,

the lack of previous research in this area made it necessary to select these two particular

variables as a starting point.
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During the selected month, there were a total of 2,186 channels with public user

postings. The channels that were not visited by at least a minimal group of posters (this

minimal group was defined as at least three posters) were eliminated, leaving 1,124

channels that had three or more posters. The stratified random sample was selected from

this set of 1,124 channels. Two variables were computed for each channel in this set: the

total number of users that visited the channel during the interval February 1 to August 31,

2005, and the total number of days the channel was visited by users during the same

interval. Afterwards, a frequencies analysis was performed, which led to the formation of

subgroups of small, medium, and large channels characterized by low, medium, or high

intensity. Nine categories of channels were obtained: small channels with low intensity;

small channels with medium intensity; small channels with high intensity; medium

channels with low intensity; medium channels with medium intensity; medium channels

with high intensity; large channels with low intensity; large channels with medium

intensity; and large channels with high intensity. The frequencies analysis resulted in the

following delimiters for the nine subgroups of channels: small channels had between 4

and 98 users; medium channels had between 99 and 444 users; large channels had

between 445 and 175,141 users; low intensity channels were visited for less than 45 days

between February 1 and August 31 (less than a month and a half); medium intensity

channels were visited between 45 and 90 days (between a month and a half and three

months); and high intensity channels were visited more than 90 visited days between

February 1 and August 31 (more than three months). Ten channels were randomly

selected from each of the nine categories, resulting in a stratified random sample of 90
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channels. Table 8.1 shows the mean values of various descriptive statistics for all the

channels in these subgroups.

Table 8.1 Descriptive Statistics of Sample Channels for the Month of August 2005

Size Small Medium Large
Intensity Low Med. High Low Med. High Low Med. High

Total users 30.3 29.2 22.8 153.4 110.2 63.6 541.2 330.8 3922.0
Total posters 13.0 18.0 15.1 54.0 61.0 39.1 149.5 120.1 1021.0
Total messages 623.9 2298.0 2267.4 3711.0 2472.1 2787.3 5978.2 4873.4 46871.3
Number of days
visited

8 16 22 16 17 22 18 24 29

Number of active
days

5 11 16 10 12 17 13 19 26

Year-to-date
number of visited
days

20 70 110 29 70 121 31 72 180

Avg. user return
time (minutes)

2499.8 2886.5 3394.5 3219.1 3016.19 2717.3 3539.3 2378.0 3173.2

Avg. no. of users 4.3 4.6 4.1 11.0 8.5 7.1 20.3 18.2 160.2
Avg. no. of
posters

4.0 5.1 4.2 7.1 7.4 6.7 14.19 11.2 56.1

Avg. no. of daily
posters

6.1 5.4 3.9 11.6 9.7 7.8 22.5 12.2 71.2

Avg. no. of
messages

45.2 57.4 67.7 85.8 67.6 64.1 131.9 111.2 671.6

Avg. no. of daily
messages

157.3 175.0 130.9 253.1 158.8 160.6 323.8 197.7 1535.8

Avg. daily user
diversity

0.2839 0.2234 0.2136 0.1581 0.1578 0.1709 0.1500 0.10322 0.0963

Avg. daily poster
diversity

0.4214 0.3013 0.2514 0.2465 0.2056 0.2057 0.2520 0.1208 0.1089

Avg. daily poster
stability

0.2715 0.4414 0.4985 0.3118 0.2711 0.4015 0.2108 0.2911 0.3053
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8.2.2 Data Analysis

The sample of channels was analyzed using the following variables and measures:

• Observed Users (OU) - all the people logged into a channel and using it for
either private or public conversations;

• Observed Users Max (OU_max) - the IRC system was sampled three times per
hour (three 20-minute intervals), and the number of users in each of these
intervals (as well as messages and posters defined below) was recorded. Then
the data was aggregated on an hourly basis, and this new variable was created by
taking the maximum number of users of the three measurements as the
representative value for that hour;

• Observed Messages (OM) - all the public postings sent to the IRC channels in
the sample. It should be stressed that the message data analyzed only pertained
to messages sent in public to the chat-channel group interface. Messages sent
privately among users were not analyzed;

• Observed Messages Max (OM_max) - a new variable obtained by taking the
maximum number of messages as the representative value of the three hourly
measurements;

• Observed Posters (OP) - those users who posted messages in public to the entire
group of channel users;

• Observed Posters Max (OP_max) - a new variable obtained by taking the
maximum number of posters as the representative value of the three hourly
measurements;

• OMperOU_max - a ratio of OM_max to OU_max. This is a measure of message
density since it describes the mean of the maximum number of messages per
user within an hour of activity;

• OMperOP_max - a ratio of OM_max to OP_max. This is a measure of message
density since it describes the mean of the maximum number of messages per
poster within an hour of activity;

• OPperOU_max - a ratio of OP_max to OU_max. This measure indicates the
ratio of participants who posted messages in public within an hour of activity.

The entire dataset collected over one month for the 90 channels consisted of

200,880 observations (3 observations per hour x 24 hours x 31 days x 90 channels). This

data was aggregated to 66,960 observations of hourly maximum points for each variable.
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The maximum was preferred over other statistics because it represented the potential of

the system and because it was the recommended value for analysis of information

overload according to Jones et al. (2004). The size and complexity of the data, and the

interdependence within the data (repeated measures over time and within channels)

prevented the use of standard inferential statistical tests such as correlation and

regression. The wealth of data allowed the observation of phenomena based on

exploration of the distributions of the variables and their descriptive statistics.

8.3 Results

This study used information on individual behavior to learn about constraints on

community activity that result from information overload. Therefore, a general

understanding of the system was required. With respect to this, a comprehensive set of

system-related, user-related, and channel-related descriptive statistics of the IRC network

was provided in the previous chapter. This section continues with the presentation of

various indicators of information overload.

In exploring the raw user data, it was evident that the values of message density

could be divided into several intervals and averaged. This would provide a clear picture

of overload. Table 8.2 reports the mean of maximum message density for ranges of users

and suggests that something happens to the message density when the number of users

reaches about 30. Figure 8.1 provides a plot of users' hourly communication density

(OMperOU_max) versus population size.



Table 8.2 Mean Message Density for Ranges of Users

Range of Users Mean Message Density
2-9 52.99

10-19 21.67
20-29 12.63
30-39 4.51
40-49 4.77
50-59 3.72

60-100 2.69
110-160 2.91
170-220 1.30

220< 0.64

183

Figure 8.1 Users' public message density versus number of users.

After exploring the raw poster data, it was also evident that the values of message

density could be divided into several intervals and averaged. Table 8.3 reports the mean

message density for ranges of posters and shows that the limit of active public posters in
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the system is 39. Figure 8.2 provides a higher resolution of a similar situation depicting

the hourly message density based on the posters.

Table 8.3 Mean Message Density for Ranges of Posters

Range of Posters Mean Message Density
2-9 65.97

10-19 29.59
20-29 19.33
30-39 11.73
39< 0

Figure 8.2 Posters' public message density versus number of posters.

Plotting the maximum values of messages versus the posters (Figure 8.3) showed

that communication activity increases up to a certain point. Figure 8.3 complements

Figure 8.2 in revealing that the maximum message communication load is reached when

the posters range between 15 and 30. The data points in the above plots represent every

hour of activity during August 2005, for all 90 channels in the sample.
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Figure 8.3 Maximum public messages 	 Figure 8.4 Maximum posters versus
versus maximum posters.	 maximum users.

Finally, the chart of the maximum number of posters versus the maximum

number of users is very telling. Figure 8.4 shows a linear increase in the number of

posters up to a certain, fairly small, number of users. Then the rate of increase diminishes

and levels off at about 30 posters for the range of 150-220 users. Beyond that number,

users refrain from posting public messages.

In Figures 8.3 and 8.4 each data point represents a number of channels (different

number for each point) that had the same set of data. These figures show the maximum

system potential to answer the question "what is the upper limit to activity in IRC

channels?" For example, when the maximum number of posters in a channel is 2, then

the maximum number of messages that was observed is 187. This means there could have

been channels with 2 posters and less than 187 messages, but not more than that. When

the maximum number of posters in a channel was 3, then the maximum number of

messages that was observed was 306.
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8.4 Summary

This chapter identified the social constraints that emerge naturally in synchronous CMC.

While the IRC system did not pose restrictions on the number of users, posters, or

messages; constraints on all dimensions emerged as a result of information overload.

High message density was possible when the number of users and posters was

small (as seen in Tables 8.3 and 8.4). As the number of participants, either users or

posters, increased; the message density declined until community boundaries were

reached.

Figures 8.1 and 8.4 suggest that the limit of the user community was less than 300

concurrent users in one chat-channel, while the limit of the channel poster community

was less than 40 posters (Figures 8.2 and 8.3).

Figure 8.3 suggests that the upper limit to the message volume was reached even

before the upper limit of posters. A maximum of about 600 public messages per chat-

channel per 20-minute interval was observed. Roughly, this means that when the poster

population was about 30, posters could not absorb more than 20 messages per poster

within 20 minutes, or 30 messages per minute for the entire channel group.

As predicted by the information-processing model, the boundaries to the rate of

posting identified for IRC public channel communication were much lower than those

found in Usenet (see appendix of Jones, Ravid and Rafaeli 2004 for details).

Community size was much smaller in synchronous CMC than in asynchronous

CMC. High message density was possible only at low values of observed users. Beyond a

certain number of users, about 30 according to Figure 8.1 and Table 8.2, message density

remained low and declined until the community stopped growing altogether.



CHAPTER 9

SHORT TERM ACTIVITY PREDICTABILITY

To date, no empirical work has investigated the extent to which short-term measures of

activity can be reliably predicted for synchronous spaces such as IRC channels. This

chapter addresses this shortfall through regression modeling, both linear and nonlinear,

and describes the best prediction models that can be obtained for various types of IRC

channels.

Specifically, the research question that is discussed in this section examines which

factors, extracted from the analysis of IRC channel interaction dynamics, can be used to

predict short-term chat-channel activity as reliably, accurately and effectively as possible.

Channel activity is a surrogate measure for the group interactions occurring inside IRC

chat-channels. Channel activity can easily be operationalized in terms of many distinct

measures such as the overall number of potential contributors (e.g., number of users per

channel); the overall number of actual contributors (e.g., number of posters per channel);

the overall number of public messages; the rates of contribution per user (e.g., number of

messages per user); the rates of contribution per poster (e.g., number of messages per

poster); the complexity of the contributions (e.g., the number of words per message); the

proportion of messages that receive replies; or the number of distinct threads of

conversation. While all these variables represent the level of group interaction as they

clearly indicate the amount and the intensity of the public activity of any IRC chat-

channel, none were addressed in any previous work. Therefore, a starting point was

needed. This research focuses on one variable, specifically the number of

187
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actual contributors, and tries to make short-term predictions about the number of posters

that would be active in an IRC chat-channel during a particular time interval.

9.1 Hypothesis

Considering the above, it is hypothesized that for any publicly active channel and for any

short-term time interval for which the level of channel activity is predicted, there will be

three main categories of factors that will have an impact on the accuracy of the

predictions: (1) the trajectories of channel activity during various previous time periods;

(2) the trajectories of network activity during various time periods; and (3) the

seasonality of the channels, i.e., rhythms information about each individual channel.

9.2 Method

9.2.1 Data Considerations

The analysis was performed on the same stratified random sample of channels that was

used in the previous chapter. The selection process was described in details in Chapter 8,

subsection 8.2.1.

A very important issue that needed to be addressed was the notion of "short

term." This notion is dependent on the medium as, for example, asynchronous

communication such as emails or Usenet newsgroups are different from synchronous

communication such as IRC. For IRC, "short-term" is relative to the length of the

conversations occurring inside chat-channels as well as to the time spent by users in a

chat session. Public conversations are exchanges of messages between people who are

co-present in an IRC channel. Ideally, the duration of the co-presence of any two users
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engaged in a public conversation would be a great indicator for the definition of "short-

term" interaction. Unfortunately, it was impossible to compute the values of such a co-

presence variable. Therefore, the next best indicator for the value of "short-term"

interactions was the time spent during an IRC session by the users of the IRC network.

The user-related descriptive statistics presented in the previous chapter showed that the

most common (modal) value of the average time spent by a user in a session was 10

minutes, and that 50 percent of the users spent 40 minutes or less during an IRC session.

Thus, considering the dynamic nature of chat as well as the constraints of the

data-collection method, which allowed the collection of only three measurements per

hour, for the rest of this research the notion of "short-term interval" will be equivalent to

"20-minute interval." Every hour is divided into exactly three 20-minute time intervals

(the first 20 minutes of the hour, the middle 20 minutes of the hour, and the last 20

minutes of the hour). For any given time, in any 20-minute interval, short-term

predictions are defined as predictions for the immediate 20-minute interval.

9.2.2 Variables and Measures

Currently there is a lack of research in the area of predicting activity in synchronous

systems. Therefore, no well-known predictor variables exist that could be used to predict

the activity of IRC channels. Consequently, there is a need to choose a starting point from

which to make such predictions. Considering the above discussion and the knowledge

about IRC, gained from examining the descriptive statistics presented in the previous

chapter; several predicting variables were defined:
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• AvgOP_Prev3_20 - the average of the observed number of posters during the
previous three 20-minute time intervals for each channel in the sample;

• AvgOP_PrevHr_Nwrk - the average number of observed posters per channel for
the entire network for the previous hour, i.e., the total number of posters divided
by the total number of publicly active channels;

• AvgOP_Prev3_20_Nwrk - the average number of observed posters per channel
for the entire network during the previous three 20-minute time intervals. This
differs from the second predictor in that it was computed after taking the three
20-minute intervals that formed the previous hour into account, i.e. the predicted
value was the average of the previous three intervals rather than the average of
the previous hour;

• AvgOP_Prev3wks - the average number of observed posters for the closest three
20-minutes intervals (just before, current, and just after) at the same time during
the previous three weeks for each channel in the sample. For example, for the
interval 5:01 p.m. — 5:20 p.m. of Monday, September 5, 2005; this predictor was
computed as the average of the intervals 4:41 p.m. — 5.00 p.m., 5:01 p.m. — 5:20
p.m. and 5:21p.m. — 5:40 p.m. for August 29, 2005, August 22, 2005, and
August 15, 2005, which were the previous three Mondays;

• AvgOP_Prev12wks_Nwrk - the average number of observed posters per channel
for the entire network for the closest three 20-minutes intervals (just before,
current, and just after) at the same time during the previous 12 weeks;

• Slope - the slope of the line determined by the observed values for the previous
three 20-minute time intervals for each channel; it is a basic indicator of the
amount by which the number of posters varied during the previous hour;

• SP (Seasonality Predictor) - the value predicted by a time series analysis of the
observed values per channel during the interval August 1, 2005 to August 31,
2005;

• TC (Trajectory Coefficient) - a correlation coefficient between "time" and the
observed number of posters during the last hour, which gives a general idea
about the direction of the conversation (up, down, or constant).

With respect to the hypothesis presented in Section 9.1, AvgOP_Prev3_20, Slope,

and TC provide information about the trajectories of channels activity;

AvgOP_PrevHr_Nwrk, AvgOP_Prev3_20_Nwrk, and AvgOP_Prev12wks_Nwrk provide
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information about the trajectories of network activity; and AvgOP_Prev3wks and SP

provide information about the rhythms of the channels.

9.2.3 Data Analysis

To explore the short-term predictability of channel engagement, the number of posters

was selected as the surrogate measure for the overall activity of chat-channels. Then, the

aim was to understand the general predictability of the number of posters for each

channel in the selected sample during the interval September 1, 2005 to September 7,

2005. Since the sample of channels was selected from the month of August 2005, and

many descriptive statistics for these channels were computed for this month; it made

sense to choose an interval that immediately followed to make predictions. This is why

the first week of September was selected. Regression Analysis was the method chosen to

make short-term predictions about the number of posters present in a channel.

Regression analysis is a technique used for the modeling and analysis of

numerical data consisting of values of a dependent variable and of independent variables:

it examines the relation of the dependent variable to one or more specified independent

variables. In this research, the dependent variable was called ObservedPosters and

represented the observed number of posters for each 20-minute interval, i.e., the actual

number of posters that were recorded during each 20-minute interval during the first

week of September 2005. The independent variables were the eight predictors described

is section 9.3.1. Regression analysis was used to examine the utility of these independent

variables with respect to predicting the value of the dependent variable.

Linear regression is a form of regression analysis in which observational data are

modeled by a function that is a linear combination of the model parameters and depends
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on one or more independent variables. In simple linear regression the model function

represents a straight line.

Nonlinear regression is a form of regression analysis in which observational data

are modeled by a function that is a nonlinear combination of the model parameters and

depends on one or more independent variables.

Both linear and nonlinear regression analysis were used to predict the values of

the dependent variable based on the set of eight independent variables.

While for six of the eight predicting variables there was only one straightforward

method of computation (AvgOP_Prev3_20, AvgOP_PrevHr_Nwrk,

AvgOP_Prev3_20_Nwrk, AvgOP_Prev3wks, AvgOP_Prevl2wks_Nwrk, and Slope); for

the other two (SP and TC), there were multiple possibilities of computation.

The seasonality predictor (SP) was a variable derived from the seasonality

analysis of the ObservedPosters variable for each channel during the month of August

2005. For each channel in the sample, a seasonal decomposition was performed in he

SPSS software for August 2005. The seasonal decomposition produced four variables:

• SAF: seasonal adjustment factors, representing seasonal variation. Seasonal
factors could be used as input to an exponential smoothing model;

• SAS: seasonally adjusted series, representing the original series with seasonal
variations removed;

• STC: smoothed trend-cycle component, a smoothed version of the seasonally
adjusted series that showed both trend and cyclic components;

• ERR: the residual component of the series for a particular observation.

To predict the ObservedPosters values for the first week of September, an

exponential smoothing of the ObservedPosters variable was performed, taking into

account the SAF variable as the seasonal factor. This led to the SP variable, which
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basically represents the predicted number of posters as produced by the exponential

smoothing of the seasonal adjusted series. There are two types of seasonal

decomposition: multiplicative and additive. In a multiplicative seasonal decomposition

the seasonal component is a factor by which the seasonally adjusted series is multiplied to

yield the original series. In an additive seasonal decomposition the seasonal adjustments

are added to the seasonally adjusted series to obtain the observed values.

Both these types of seasonal decomposition were used to compute the seasonality

predictor, resulting in two distinct possible values for the SP variable. Furthermore, there

were three days in August that were problematic in terms of data-collection. During these

three days, the values of the ObservedPosters variable were lower than normal because of

various connectivity issues of the IRC server. Therefore, two different approaches were

used to compute the SP variables. First, the missing values were replaced using the

"mean of nearby points" method, and then the seasonal decomposition and exponential

smoothing were performed on the data. Second, the problematic days were completely

excluded from the analysis; and the seasonal decomposition and the exponential

smoothing were performed on the reduced dataset.

In conclusion, there were four possible instances of the SP variable: one resulted

from the multiplicative seasonal decomposition on the full data set (SP1); one resulted

from the additive seasonal decomposition on the full data set (SP2); one resulted from the

multiplicative seasonal decomposition on the reduced data set (SP3); and one resulted

from the additive seasonal decomposition on the reduced data set (SP4).

The trajectory coefficient (TC) variable was computed for each 20-minute interval

in the first week of September 2005 as the correlation coefficient between time and the
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ObservedPosters variable during the previous three 20-minute intervals. The starting time

of each interval was expressed as the number of seconds that had elapsed since midnight

Coordinated Universal Time of January 1, 1970, not counting leap seconds — a

representation of time widely used in many operating systems. TC's values ranged from

-1 to 1; it was used as an indicator of the general trajectory of the observed number of

posters during the previous hour. There were two possible instances for this variable, one

given by the Pearson correlation coefficient (TC 1) and one given by the Spearman

correlation coefficient (TC2).

Of the eight independent variables, four of them had at least one negative value

and/or one zero value (AvgOP_Prev3_20, AvgOP_Prev3wks, Slope, and both instances

of TC) while the dependent variable (ObservedPosters) also had a significant number of

zero values. To avoid potential problems caused by the non-positive values,

transformations were performed on these variables, making all of them positive. The

modified variables were named AvgOP_Prev3_20Mod, AvgOP_Prev3wksMod,

SlopeMod, TCxMod (where x was 1 or 2 depending on the type of computation), and

ObservedPostersMod.

Finally, considering all of the above, two regression models were produced for

both the linear regression analysis and for the non-linear regression analysis. The first

model included all the initial, non-transformed independent and dependent variables; the

second model included the initial independent variables that had only positive values,

together with the dependent and independent variables that needed to be transformed.
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Guided by the results of the regression models described above, a new variable

that maximized overall predictability, referred to as the BestPredictor (BP) variable, was

computed.

To avoid multicollinearity problems, only one of the four possible SP instances

and only one of the two possible TC instances were entered into the regression models at

a time, together with the other six independent variables (AvgOP_Prev3_20,

AvgOP_PrevHr_Nwrk, AvgOP_Prev3_20_Nwrk, AvgOP_Prev3wks,

AvgOP_Prevl2wks_Nwrk, and Slope). These combinations resulted in a total of eight

values for BestPredictor variable for each model, for both the linear regression analysis

and the non-linear regression analysis.

Table 9.1 summarizes the variables used in each regression model.



Table 9.1 Summary of the Regression Models
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9.3 Results

9.3.1 Linear Regression

9.3.1.1 First Regression Model. To explore channel predictability, the correlations

between the various BestPredictor variables and the ObservedPosters variable were

examined for both regression models described in subsection 9.2.3, using the Spearman

correlation coefficient. To compare the results of general predictions, obtained from

regression equations created for the entire sample of channels, to results of more specific

predictions, obtained from regression equations that targeted particular subgroups of

channels; the linear regression analysis was carried out at three main levels. There were:

for all the channels in the sample; for all three subgroups of channels based on size (small

channels, medium channels, and large channels); and for all three subgroups of channels

based on intensity (low-intensity channels, medium-intensity channels, and high-intensity

channels).

Table 9.2 describes the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the channels in the sample. It may be

observed that four regression equations produced an R 2 value of 0.785, while the other

four regression equations produced an R2 value of 0.790. Theoretically, the BestPredictor

variable produced by any of these latter four regression equations could be used as the

single best predicting variable for the number of posters present inside a channel.

However, to make the prediction model as simple as possible, one single variation of the

linear regression model was selected as the final prediction model. This was variation

number 6, which included seasonality predictor SP3 and trajectory coefficient TC2 and

produced BP6 as the best predictor. The SP3 predictor was chosen because it produced
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the highest R2 value when entered as the only independent variable in a linear regression

equation with the ObservedPosters as the dependent variable. Given that using either TC1

or TC2 with the best prediction model yielded the same R 2 value, the decision to use TC2

was randomly taken.

Table 9.2 Regression Equations for Best Predictors

The results obtained from the best linear regression model are described in Tables

9.3 through 9.6. Both the stepwise forward and the backward forward methods were,

used, and they produced exactly the same results.
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Table 9.3 Summary of Best Linear Regression Prediction Model for All Channels

Table 9.4 ANOVA for Best Linear Regression Prediction Model for All Channels

Table 9.5 Coefficients for Best Linear Regression Prediction Model for All Channels

Table 9.6 Variables Excluded from Best Linear Regression Prediction Model for All
Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP6 produced by the best model and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.
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The Pearson correlation coefficient computed between BP6 and ObservedPosters

had the highest value among all the eight best predictors (r = 0.884). The Spearman

correlation coefficient computed between BP6 and ObservedPosters was slightly lower

than the coefficients computed between some of the other best predictor variables (rho =

0.662).

However, the differences between the Spearman correlation coefficient obtained

from the best prediction model and the Spearman correlation coefficients obtained from

the other seven models were quite low, never larger than 0.015.

Table 9.7 breaks down the results of the best linear regression prediction model

by subgroups, and presents the Spearman correlation coefficients for each of the nine

types of channels.

Table 9.7 Best Model Correlation Coefficients for All Channels Grouped by Type

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.8 breaks down the results based on the size of the channels in the sample,

while Table 9.9 breaks down the results based on the intensity of the channels in the

sample.

Table 9.8 Best Model Correlation Coefficients for All Channels Grouped by Size

Table 9.9 Best Model Correlation Coefficients for All Channels Grouped by Intensity

For all these cases BP6 was computed using the same regression equation, i.e.,

there were no specific regression equations for different types or subgroups of channels.

The values for different types of channels ranged from a minimum of 0.370 (type 6) to a

maximum of 0.838 (type 9). For subgroups of channels, correlation coefficients were

higher for large channels compared to medium and small channels; and higher for high-

intensity channels compared to medium- and low-intensity channels. The tables that

report the correlation coefficients between the observed posters and the rest of the

computed best predictors can be found in the Appendix.

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.10 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the small channels.

Table 9.10 Regression Equations and R 2 Values for Small Channels

The best prediction models, which produced the highest R 2 value (0.369), were

obtained from variation numbers 7 and 8, which used the seasonality predictor SP4.

Given that using either TC1 or TC2 yielded the same R 2 value, the decision to use TC2

was randomly taken. Hence, BP8 was selected in this case as the best predictor.

The results obtained from the best linear regression model are described in Tables

9.11 through 9.14. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.

Table 9.11 Summary of Best Linear Regression Prediction Model for Small Channels
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Table 9.12 ANOVA for Best Linear Regression Prediction Model for Small Channels

Table 9.13 Coefficients for Best Linear Regression Prediction Model for Small Channels

Table 9.14 Variables Excluded from Best Linear Regression Prediction Model for Small
Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP8 produced by the best model and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP8 and ObservedPosters

had the highest value among all the eight best predictors (r = 0.561). The Spearman

correlation coefficient computed between BP8 and ObservedPosters was slightly lower

than some of the coefficients computed between the other seven BP variables and the

ObservedPosters (rho = 0.517). However, the differences between the Spearman



204

correlation coefficient obtained from the best prediction model and the Spearman

correlation coefficients obtained from the other seven models were almost negligible,

never larger than 0.003.

Table 9.15 breaks down the results of the best linear regression prediction model

and presents the Spearman correlation coefficients for each of the three types of channels

corresponding to the subgroup of small channels. The tables that report the correlation

coefficients between the observed posters and the rest of the computed best predictors

can be found in the Appendix.

Table 9.15 Best Model Correlation Coefficients for All Small Channels, Grouped by
Type

Table 9.16 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the medium channels.

Table 9.16 Regression Equations and R 2 Values for Medium Channels

** Correlation is significant at the 0.01 level (2-tailed).
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The best prediction models, which produced the highest R 2 value (0.369), were

obtained from variation numbers 7 and 8, which used the seasonality predictor SP4.

Given that using either TC1 or TC2 yielded the same R 2 value, the decision to use TC2

was randomly taken. Hence, BP8 was selected in this case as the best predictor.

The results obtained from the best linear regression model are described in Tables

9.17 through 9.20. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.

Table 9.17 Summary of Best Linear Regression Prediction Model for Medium Channels

Table 9.18 ANOVA for Best Linear Regression Prediction Model for Medium Channels

Table 9.19 Coefficients for Best Linear Regression Prediction Model for Medium
Channels

Table 9.20 Variables Excluded from Best Model for Medium Channels

** Correlation is significant at the 0.01 level (2-tailed).
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Overall channel predictability was measured by the correlation coefficients

between the best predictor BP8, produced by the best model, and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP8 and ObservedPosters

had the highest value among all the eight best predictors (r = 0.642). The Spearman

correlation coefficient computed between BP8 and ObservedPosters was slightly lower

than some of the coefficients computed between the other seven BP variables and the

ObservedPosters (rho = 0.575). However, the differences between the Spearman

correlation coefficient obtained from the best prediction model and the Spearman

correlation coefficients obtained from the other seven models were quite low, never

larger than 0.033.

Table 9.21 breaks down the results of the best linear regression prediction model

and presents the Spearman correlation coefficients for each of the three types of channels

corresponding to the subgroup of medium channels.

Table 9.21 Best Model Correlation. Coefficients for All Medium Channels, Grouped by
Type

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.22 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the large channels.

Table 9.22 Regression Equations and R 2 Values for Large Channels

The best prediction models, which produced the highest R 2 value (0.819), were

obtained from variation numbers 5 and 6, which used the seasonality predictor SP3.

Given that using either TC1 or TC2 yielded the same R 2 value, the decision to use TC2

was randomly taken. Hence, BP6 was selected in this case as the best predictor.

The results obtained from the best linear regression model are described in Tables

9.23 through 9.26. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.



Table 9.23 Summary of Best Linear Regression Prediction Model for Large Channels

Table 9.24 ANOVA for Best Linear Regression Prediction Model for Large Channels

Table 9.25 Coefficients for Best Linear Regression Prediction Model for Large Channels
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Table 9.26 Variables Excluded from Best Linear Regression Model for Large Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP6, produced by the best model, and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP6 and ObservedPosters had the

highest value among all the eight best predictors (r = 0.901).
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The Spearman correlation coefficient computed between BP6 and

ObservedPosters was also higher than all of the coefficients computed between the other

seven BP variables and the ObservedPosters (rho = 0.734). However, the differences

between the Spearman correlation coefficient obtained from the best prediction model

and the Spearman correlation coefficients obtained from the other seven models were

negligible, never larger than 0.009. Table 9.27 breaks down the results of the best linear

regression prediction model and presents the Spearman correlation coefficients for each

of the three types of channels corresponding to the subgroup of large channels. The tables

that report the correlation coefficients between the observed posters and the rest of the

computed best predictors can be found in the Appendix.

Table 9.27 Best Model Correlation Coefficients for All Large Channels, Grouped by
Type

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.28 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the low-intensity channels.

Table 9.28 Regression Equations and R 2 Values for Low-Intensity Channels

The best prediction models, which produced the highest R 2 value (0.384), were

obtained from variation numbers 7 and 8, which used the seasonality predictor SP4.

Given that using either TC1 or TC2 yielded the same R 2 value, the decision to use TC1

was randomly taken. Hence, BP7 was selected in this case as the best predictor.

The results obtained from the best linear regression model are described in Tables

9.29 through 9.32. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.

Table 9.29 Summary of Best Linear Regression Prediction Model for Low-Intensity
Channels
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Table 9.30 ANOVA for Best Linear Regression Prediction Model for Low-Intensity
Channels

Table 9.31 Coefficients for Best Linear Regression Prediction Model for Low-Intensity
Channels

Table 9.32 Variables Excluded from Best Linear Regression Model for Low-Intensity
Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP7, produced by the best model, and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP7 and ObservedPosters had the

highest value among all the eight best predictors (r = 0.613). The Spearman correlation

coefficient computed between BP7 and ObservedPosters was also higher than all of the

coefficients computed between the other seven BP variables and the ObservedPosters

(rho = 0.600). However, the differences between the Spearman correlation coefficient

obtained from the best prediction model and the Spearman correlation coefficients
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obtained from the other seven models were quite low, never larger than 0.020. Table 9.33

breaks down the results of the best linear regression prediction model and presents the

Spearman correlation coefficients for each of the three types of channels corresponding to

the subgroup of low-intensity channels. The tables that report the correlation coefficients

between the observed posters and the rest of the computed best predictors can be found in

the Appendix.

Table 9.33 Best Model Correlation. Coefficients for All Low-Intensity Channels,
Grouped by Type

Table 9.34 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the medium-intensity channels.

Table 9.34 Regression Equations and R 2 Values for Medium-Intensity Channels

** Correlation is significant at the 0.01 level (2-tailed).
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The best prediction models, which produced the highest R 2 value (0.517), were

obtained from variation numbers 7 and 8, which used the seasonality predictor SP4.

Given that using either TC1 or TC2 yielded the same R 2 value, the decision to use TC I

was randomly taken. Hence, BP7 was selected in this case as the best predictor.

The results obtained from the best linear regression model are described in Tables

9.35 through 9.38. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.

Table 9.35 Summary of Best Linear Regression Prediction Model for Medium-Intensity

Channels

Table 9.36 ANOVA for Best Linear Regression Prediction Model for Medium-Intensity
Channels

Table 9.37 Coefficients for Best Linear Regression Prediction Model for Medium-
Intensity Channels
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Table 9.38 Variables Excluded from Best Linear Regression Model for Medium-
Intensity Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP7, produced by the best model, and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP7 and ObservedPosters had the

highest value among all the eight best predictors (r = 0.706). The Spearman correlation

coefficient computed between BP7 and ObservedPosters was slightly lower than some of

the coefficients computed between the other seven BP variables and the ObservedPosters

(rho = 0.569). However, the differences between the Spearman correlation coefficient

obtained from the best prediction model and the Spearman correlation coefficients

obtained from the other seven models were negligible, never larger than 0.008. Table

9.39 breaks down the results of the best linear regression prediction model and presents

the Spearman correlation coefficients for each of the three types of channels

corresponding to the subgroup of low-intensity channels. The tables that report the

correlation coefficients between the observed posters and the rest of the computed best

predictors can be found in the Appendix.
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Table 9.39 Best Model Correlation. Coefficients for All Medium-Intensity Channels,
Grouped by Type

Table 9.40 presents the regression equations for each BestPredictor variable and

the corresponding R2 values, computed for all the high-intensity channels.

Table 9.40 Regression Equations and R 2 Values for High-Intensity Channels

** Correlation is significant at the 0.01 level (2-tailed).
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The best prediction models, which produced the highest R 2 value (0.829), were

obtained from variation numbers 5 and 6, which used the seasonality predictor SP3. BP6

was selected in this case as the best predictor because its regression equation had a

smaller number of independent variables than the regression equation for BPS.

The results obtained from the best linear regression model are described in Tables

9.41 through 9.44. Both the stepwise forward and the backward forward methods were

used, and they produced exactly the same results.

Table 9.41 Summary of Best Linear Regression Prediction Model for High-Intensity
Channels

Table 9.42 ANOVA for Best Linear Regression Prediction Model for High-Intensity
Channels

Table 9.43 Coefficients for Best Linear Regression Prediction Model for High-Intensity
Channels
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Table 9.44 Variables Excluded from Best Linear Regression Model for High-Intensity
Channels

Overall channel predictability was measured by the correlation coefficients

between the best predictor BP6 produced by the best model and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP6 and ObservedPosters had the

highest value among all the eight best predictors (r = 0.908). The Spearman correlation

coefficient computed between BP6 and ObservedPosters was slightly lower than some of

the coefficients computed between the other seven BP variables and the ObservedPosters

(rho = 0.718). However, the differences between the Spearman correlation coefficient

obtained from the best prediction model and the Spearman correlation coefficients

obtained from the other seven models were quite low, never larger than 0.022. Table 9.45

breaks down the results of the best linear regression prediction model and presents the

Spearman correlation coefficients for each of the three types of channels corresponding to

the subgroup of low-intensity channels. The tables that report the correlation coefficients

between the observed posters and the rest of the computed best predictors can be found in

the Appendix.
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Table 9.45 Best Model Correlation. Coefficients for All High-Intensity Channels,
Grouped by Type

Table 9.46 summarizes the correlations obtained from the best linear regression

model for each of the nine categories of channels in the sample. For some types of

channels the predictions produced by the best model for all the channels were better than

the predictions produced by the best models for subgroups of channels (types 3, 8, and 9);

while for other types of channels the reverse was true (types 1, 2, 4, 5, 6, and 7). Overall,

the easiest channels to predict were the large, highly intensive channels.

Table 9.46 Summary of Best Model Correlations Obtained for Each Type of Channel

** Correlation is significant at the 0.01 level (2-tailed).
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9.3.1.2 Second Regression Model. As mentioned in subsection 9.2.3, four of the

independent variables used in the regression analysis had at least one negative value

and/or one zero value (AvgOP_Prev3_20, AvgOP_Prev3wks, Slope, and both instances

of TC), while the dependent variable (ObservedPosters) also had a significant number of

zero values. To understand whether these non-positive values would have an impact on

the results of the regression analysis; transformations were performed on these variables,

making all of them positive before entering them into the regression model. The end

result showed that the transformations did not have any impact on the resulting

correlations between the computed best predictors and the actual observed posters. The

exact same operations from the first regression model were performed on the new set of

independent variables, and the resulting correlation coefficients were exactly the same for

each type of channel and for each sub-group of channels.
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9.3.2 Nonlinear Regression

Nonlinear regression attempts to find a nonlinear model of the relationship between the

dependent variable and a set of independent variables. Unlike traditional linear

regression, which is restricted to estimating linear models, nonlinear regression can

estimate models with arbitrary relationships between independent and dependent

variables. The SPSS software provides 11 curve estimation regression models: Linear,

Logarithmic, Inverse, Quadratic, Cubic, Power, Compound, S-curve, Logistic, Growth,

and Exponential. Of these, the Inverse and S models cannot be calculated if the

independent variables contain values of zero, while the Logarithmic and Power models

cannot be calculated if the independent variables contain negative values. Also, the

Compound, Power, S, Growth, Exponential, Logarithmic, and Logistic models cannot be

calculated when the dependent variable contains non-positive values. Considering these

restrictions, the nonlinear regression analysis was conducted using the transformed set of

variables described in subsection 9.2.3. To determine the best fit between the set of

independent variables and the dependent variable, curve estimation procedures were run

for each of the eight independent variables; then regression equations were created

combining the best fit models produced for each independent variable. Tables 9.47

through 9.58 present the curve fit models computed for each independent variable for all

the channels in the sample; while Table 9.59 summarizes the best fit model for each

independent variable.



Table 9.47 Curve Fit Models for AvgOP_Prev3_20Mod
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Table 9.48 Curve Fit Models for AvgOP_PrevHr_Nwrk

Table 9.49 Curve Fit Models for AvgOP_Prev3_20_Nwrk



Table 9.50 Curve Fit Models for AvgOP_Prev3wksMod
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Table 9.51 Curve Fit Models for AvgOP_Prev12wks_Nwrk

Table 9.52 Curve Fit Models for SlopeMod



Table 9.53 Curve Fit Models for TC 1 Mod
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Table 9.54 Curve Fit Models for TC2Mod

Table 9.55 Curve Fit Models for SP1



Table 9.56 Curve Fit Models for SP2
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Table 9.57 Curve Fit Models for SP3

Table 9.58 Curve Fit Models for SP4



Table 9.59 Best Models and Corresponding R 2 Values for All Channels

225

Based on the best models reported in Table 9.59, a nonlinear regression equation

was created for each independent variable. As in the linear regression analysis, to avoid

multicollinearity problems only one of the four possible instances of the seasonality

predictor variable and only one of the two possible instances of the trajectory coefficient

variable were entered into the regression models at a time, together with the other six

independent variables (AvgOP_Prev3_20Mod, AvgOP_PrevHr_Nwrk,

AvgOP_Prev3_20_Nwrk, AvgOP_Prev3wksMod, AvgOP_Prev12wks_Nwrk, and

SlopeMod). The best nonlinear regression prediction model included seasonality

predictor SP3 and trajectory coefficient TC1, as their best fit models had the highest R 2

values. The results of this best nonlinear regression prediction model are presented in

Tables 9.60 and 9.61.



Table 9.60 Parameter Estimates for Best Nonlinear Prediction Model
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The Parameter Estimates table summarizes the model-estimated value of each

parameter. The small standard errors with respect to the value of the estimates suggest

that one can be confident in the computed estimates.

Table 9.61 ANOVA for Best Nonlinear Prediction Model

The ANOVA Table provides a breakdown of the sum of squares, a measure of

variability in the dependent variable, for this model. The Regression row displays

information about the variation accounted for by the model, while the Residual row

displays information about the variation that is not accounted for by the model. The

Uncorrected Total represents the entire variability in the dependent variable, while the

Corrected Total is adjusted to reflect only the variability about average values of the

dependent variable. The Residual Sum of Squares and Corrected Total are used to

compute R2 . The obtained R2 value (0.791) shows that the model accounts for

approximately 79.1 percent of the variability in the dependent variable.
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Overall channel predictability was measured by the correlation coefficients

between the best predictor (BP) produced by the model and the ObservedPosters

dependent variable. Both Pearson and Spearman correlation coefficients were computed.

The Pearson correlation coefficient computed between BP and ObservedPosters was

r = 0.886, while the Spearman correlation coefficient computed between BP and

ObservedPosters was rho = 0.667.

Table 9.62 breaks down the results of the best nonlinear regression prediction

model and presents the Spearman correlation coefficients for each of the nine types of

channels.

Table 9.62 Best Model Correlation Coefficients for All Channels Grouped by Type

Type BP
1 Spearman's rho ObservedPostersMod Correlation Coefficient .513(**)

Sig. (2-tailed) .000
N 5040

2 Spearman's rho ObservedPostersMod Correlation Coefficient .575(**)
Sig. (2-tailed) .000
N 5040

3 Spearman's rho ObservedPostersMod Correlation Coefficient .427(**)
Sig. (2-tailed) .000
N 5040

4 Spearman's rho ObservedPostersMod Correlation Coefficient .619(**)
Sig. (2-tailed) .000
N 5040

5 Spearman's rho ObservedPostersMod Correlation Coefficient .596(**)
Sig. (2-tailed) .000
N 5040

6 Spearman's rho ObservedPostersMod Correlation Coefficient .368(**)
Sig. (2-tailed) .000
N 5040

7 Spearman's rho ObservedPostersMod Correlation Coefficient .553(**)
Sig. (2-tailed) .000
N 5040

8 Spearman's rho ObservedPostersMod Correlation Coefficient .514(**)
Sig. (2-tailed) .000
N 5040

9 Spearman's rho ObservedPostersMod Correlation Coefficient .839(**)
Sig. (2-tailed) .000
N 5040

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.63 breaks down the results based on the size of the channels in the

sample, while Table 9.64 breaks down the results based on the intensity of the channels

in the sample.

Table 9.63 Best Model Correlation Coefficients for All Channels Grouped by Size

Size BP
large Spearman's rho ObservedPostersMod Correlation Coefficient .757(**)

Sig. (2-tailed) .000
N 15120

medium Spearman's rho ObservedPostersMod Correlation Coefficient .522(**)
Sig. (2-tailed) .000
N 15120

small Spearman's rho ObservedPostersMod Correlation Coefficient .521(**)
Sig. (2-tailed) .000
N 15120

Table 9.64 Best Model Correlation Coefficients for All Channels Grouped by Intensity

Intensity BP
high Spearman's rho ObservedPostersMod Correlation Coefficient .737(**)

Sig. (2-tailed) .000
N 15120

low Spearman's rho ObservedPostersMod Correlation Coefficient .589(**)
Sig. (2-tailed) .000
N 15120

medium Spearman's rho ObservedPostersMod Correlation Coefficient .565(**)
Sig. (2-tailed) .000
N 15120

The values for different types of channels ranged from a minimum of 0.368 (type

6) to a maximum of 0.839 (type 9). For subgroups of channels, correlation coefficients

were higher for large channels compared to medium and small channels; and higher for

high-intensity channels compared to medium- and low-intensity channels.

For comparison purposes, seven other predictor variables were computed using all

the possible combinations of independent variables, as was done in the linear regression

analysis described in the previous section. The tables that report the correlation

coefficients between the observed posters and the rest of the computed predictors can be

found in the Appendix.

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.59 revealed that the best curve fit models for three of the independent

variables had very low values, smaller than 0.1. Consequently, those independent

variables were eliminated from the regression model and a new BestPredictor variable

was computed. The model used the following independent variables:

AvgOP_Prev3_20Mod, AvgOP_Prev3wksMod, SlopeMod, SP3, and TC1Mod. The

results of this best nonlinear regression prediction model are presented in Tables 9.65 and

9.66.

Table 9.65 Parameter Estimates for the Reduced Best Nonlinear Prediction Model

Parameter Estimate Std. Error
95% Confidence Interval

Lower Bound Upper Bound
a .607 .005 .597 .617
b .049 .005 .039 .059
c -.001 .000 -.002 -.001
d -3.368 .022 -3.410 -3.326
e 1.560 .102 1.360 1.760
f -.354 .026 -.404 -.303
g .318 .004 .310 .326

The Parameter Estimates Table summarizes the model-estimated value of each

parameter. The small standard errors with respect to the value of the estimates suggest

that one can be confident in the computed estimates.

Table 9.66 ANOVA for Reduced Best Nonlinear Prediction Model

Source Sum of Squares df Mean Squares
Regression
Residual
Uncorrected Total
Corrected Total

250032.819
41254.181

291287.000
197071.190

10
45350
45360
45359

25003.282
.910

Dependent variable: ObservedPostersMod
a R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .791.

The obtained R2 value (0.791) shows that the model accounts for approximately

79.1 percent of the variability in the dependent variable. It may be observed that the R 2

value produced by the reduced model is the same as the one produced by the full model.
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Overall channel predictability was measured by the correlation coefficients

between the best predictor produced by the model and the ObservedPosters dependent

variable. Both Pearson and Spearman correlation coefficients were computed. The

Pearson correlation coefficient computed between BP and ObservedPosters was

r = 0.886, while the Spearman correlation coefficient computed between BP and

ObservedPosters was rho = 0.660.

Table 9.67 breaks down the results of the best nonlinear regression prediction

model and presents the Spearman correlation coefficients for each of the nine types of

channels.

Table 9.67 Reduced Best Model Correlation Coefficients for All Channels Grouped by
Type

Type BP
1 Spearman's rho ObservedPostersMod Correlation Coefficient .524(**)

Sig. (2-tailed) .000
N 5040

2 Spearman's rho ObservedPostersMod Correlation Coefficient .575(**)
Sig. (2-tailed) .000
N 5040

3 Spearman's rho ObservedPostersMod Correlation Coefficient .430(**)
Sig. (2-tailed) .000
N 5040

4 Spearman's rho ObservedPostersMod Correlation Coefficient .615(**)
Sig. (2-tailed) .000
N 5040

5 Spearman's rho ObservedPostersMod Correlation Coefficient .597(**)
Sig. (2-tailed) .000
N 5040

6 Spearman's rho ObservedPostersMod Correlation Coefficient .334(**)
Sig. (2-tailed) .000
N 5040

7 Spearman's rho ObservedPostersMod Correlation Coefficient .551(**)
Sig. (2-tailed) .000
N 5040

8 Spearman's rho ObservedPostersMod Correlation Coefficient .517(**)
Sig. (2-tailed) .000
N 5040

9 Spearman's rho ObservedPostersMod Correlation Coefficient .839(**)
Sig. (2-tailed) .000
N 5040

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.68 breaks down the results based on the size of the channels in the

sample, while Table 9.69 breaks down the results based on the intensity of the channels

in the sample.

Table 9.68 Reduced Best Model Correlation Coefficients for All Channels Grouped by
Size

Size BP
large Spearman's rho ObservedPostersMod Correlation Coefficient .758(**)

Sig. (2-tailed) .000
N 15120

medium Spearman's rho ObservedPostersMod Correlation Coefficient .501(**)
Sig. (2-tailed) .000
N 15120

small Spearman's rho ObservedPostersMod Correlation Coefficient .523(**)
Sig. (2-tailed) .000
N 15120

Table 9.69 Reduced Best Model Correlation Coefficients for All Channels Grouped by
Intensity

Intensity BP
high Spearman's rho ObservedPostersMod Correlation Coefficient .725(**)

Sig. (2-tailed) .000
N 15120

low Spearman's rho ObservedPostersMod Correlation Coefficient .587(**)
Sig. (2-tailed) .000
N 15120

medium Spearman's rho ObservedPostersMod Correlation Coefficient .567(**)
Sig. (2-tailed) .000
N 15120

The values for different types of channels ranged from a minimum of 0.334 (type

6) to a maximum of 0.839 (type 9). For subgroups of channels, correlation coefficients

were higher for large channels compared to medium and small channels; and higher for

high-intensity channels compared to medium- and low-intensity channels.

For comparison purposes, seven other predictor variables were computed using all

the possible combinations of independent variables, as was done in the linear regression

analysis described in the previous section. The tables that report the correlation

coefficients between the observed posters and the rest of the computed predictors can be

found in the Appendix.

** Correlation is significant at the 0.01 level (2-tailed).
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The last nonlinear regression model that was built used an even smaller set of

independent variables including the following:

• AvgOP_Prev3_20Mod - the average of the observed number of posters during
the previous three 20-minute time intervals for each channel in the sample;

• SlopeMod - the slope of the line determined by the observed values for the
previous three 20-minute time intervals for each channel; it is a basic indicator
of the amount by which the number of posters varied during the previous hour;

• TC1Mod - a correlation coefficient between "time" and the observed number of
posters during the last hour, which gave a general idea about the direction of the
conversation (up, down, or constant).

These particular variables were considered because all of them were

representative for the channel activity that occurred during the hour preceding the interval

for which the predictions were made. Making predictions based on the most recent

activity makes sense in the context of a system such as an IRC network, whose scale and

dynamicity make long-term data-collection, as well as the associated processing of the

data, problematic. The results of this minimal nonlinear regression prediction model are

presented in Tables 9.70 and 9.71.

Table 9.70 Parameter Estimates for the Minimal Best Nonlinear Prediction Model

Parameter Estimate Std. Error
95% Confidence Interval

Lower Bound Upper Bound
a
b
c
d

.968
-3.504
2.717
-.639

.003

.023

.108

.027

.963
-3.548
2.505
-.693

.974
-3.459
2.928
-.586

The Parameter Estimates Table summarizes the model-estimated value of each

parameter. The small standard errors with respect to the value of the estimates suggest

that one can be confident in the computed estimates.
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Table 9.71 ANOVA for Minimal Best Nonlinear Prediction Model

Source Sum of Squares df Mean Squares
Regression
Residual
Uncorrected Total
Corrected Total

243649.737
47637.263

291287.000
197071.190

4
45356
45360
45359

60912.434
1.050

Dependent variable: ObservedPostersMod
a R squared = 1 - (Residual Sum of Squares) / (Corrected Sum of Squares) = .758.

The obtained R2 value (0.758) shows that the model accounts for approximately

75.8 percent of the variability in the dependent variable. It may be observed that the R 2

value produced by the reduced model is very close to the ones produced by the full model

and the reduced model. This suggests that the independent variables that describe the

recent activity of chat-channels are the most important predictors for future short-term

activity.

Overall channel predictability was measured by the correlation coefficients

between the best predictor produced by the model and the ObservedPosters dependent

variable. Both Pearson and Spearman correlation coefficients were computed. The

Pearson correlation coefficient computed between BP and ObservedPosters was

r = 0.869, while the Spearman correlation coefficient computed between BP and

ObservedPosters was rho = 0.694. Table 9.72 breaks down the results of the best

nonlinear regression prediction model and presents the Spearman correlation coefficients

for each of the nine types of channels.
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Table 9.72 Minimal Best Model Correlation Coefficients for All Channels Grouped by
Type

Type BP
1 Spearman's rho ObservedPostersMod Correlation Coefficient .484(**)

Sig. (2-tailed) .000
N 5040

2 Spearman's rho ObservedPostersMod Correlation Coefficient .582(**)
Sig. (2-tailed) .000
N 5040

3 Spearman's rho ObservedPostersMod Correlation Coefficient .457(**)
Sig. (2-tailed) .000
N 5040

4 Spearman's rho ObservedPostersMod Correlation Coefficient .597(**)
Sig. (2-tailed) .000
N 5040

5 Spearman's rho ObservedPostersMod Correlation Coefficient .609(**)
Sig. (2-tailed) .000
N 5040

6 Spearman's rho ObservedPostersMod Correlation Coefficient .554(**)
Sig. (2-tailed) .000
N 5040

7 Spearman's rho ObservedPostersMod Correlation Coefficient .572(**)
Sig. (2-tailed) .000
N 5040

8 Spearman's rho ObservedPostersMod Correlation Coefficient .505(**)
Sig. (2-tailed) .000
N 5040

9 Spearman's rho ObservedPostersMod Correlation Coefficient .842(**)
Sig. (2-tailed) .000
N _ 	 5040

Table 9.73 breaks down the results based on the size of the channels in the

sample, while Table 9.74 breaks down the results based on the intensity of the channels

in the sample.

Table 9.73 Minimal Best Model Correlation Coefficients for All Channels Grouped by
Size

Size BP
large Spearman's rho ObservedPostersMod Correlation Coefficient

Sig. (2-tailed)
N

.762(**)
.000

15120
medium Spearman's rho ObservedPostersMod Correlation Coefficient

Sig. (2-tailed)
N

.590(**)
.000

15120
small Spearman's rho ObservedPostersMod Correlation Coefficient

Sig. (2-tailed)
N 	 _

.534(**)
.000

15120

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.74 Minimal Best Model Correlation Coefficients for All Channels Grouped by
Intensity

Intensity BP
high Spearman's rho ObservedPostersMod Correlation Coefficient .783(**)

Sig. (2-tailed) .000
N 15120

low Spearman's rho ObservedPostersMod Correlation Coefficient .589(**)
Sig. (2-tailed) .000
N 15120

medium Spearman's rho ObservedPostersMod Correlation Coefficient .569(**)
Sig. (2-tailed) .000
N 15120

The values for different types of channels ranged from a minimum of 0.457 (type

3) to a maximum of 0.842 (type 9). For subgroups of channels, correlation coefficients

were higher for large channels compared to medium and small channels; and higher for

high-intensity channels compared to medium- and low-intensity channels.

Tables 9.75, 9.76 and 9.77 summarize the best predictions produced by the

nonlinear regression models.

** Correlation is significant at the 0.01 level (2-tailed).
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Table 9.75 Best Overall Predictions for All Channels

Overall correlation coefficients obtained from the best nonlinear regression models created
for all channels

All predictors Reduced set of predictors Minimal set of predictors
0.667 0.660 .694

Table 9.76 Nonlinear Regression Best Predictions Summary by Channel Type

Best correlation coefficients obtained from nonlinear regression equations
created for all channels

Channel
Type

All predictors Reduced set of predictors Minimal set of predictors

1 0.513 0.524 0.484
2 0.575 0.575 0.582
3 0.427 0.430 0.457
4 0.619 0.615 0.597
5 0.596 0.597 0.609
6 0.368 0.334 0.554
7 0.553 0.551 0.572
8 0.514 0.517 0.505
9 0.839 0.839 0.842

Table 9.77 Nonlinear Regression Best Predictions Summary by Channel Subgroup

Best correlation coefficients obtained from nonlinear regression equations
created for all channels

Channel Size All predictors Reduced set of predictors Minimal set of predictors
Large 0.757 0.758 0.762

Medium 0.522 0.501 0.590
Small 0.521 0.523 0.534

Channel
Intensity

High 0.737 0.725 0.783
Low 0.589 0.587 0.589

Medium 0.565 0.567 0.569
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9.4 Summary

This chapter presented the results of several linear and nonlinear regression models,

which were conducted to assess whether it is possible to make short-term predictions

about the activity of IRC chat-channels.

Both the linear and the nonlinear regression models used various combinations of

the independent variables to produce a best predictor variable. The accuracy of the

predictions was measured using Spearman correlation coefficients between the best

predictor computed by the regression models and the actual values of observed posters

for each channel in the sample.

For the best linear regression model the overall correlation coefficient between

the best predictor and the observed posters was 0.662. The results of the best linear

regression model are shown again in Table 9.78.

Table 9.78 Coefficients for Best Linear Regression Prediction Model for All Channels

Model
Unstandardized Coefficients Standardized Coefficients t Sig.

B Std. Error Beta
(Constant) -.458 .026 -17.494 .000
AvgOP_Prev3_20 .592 .005 .512 117.267 .000
AvgOP_Prev3_20_Nwrk .039 .008 .011 4.943 .000
AvgOP_Prev3wks .010 .001 .018 7.621 .000
SP3 .331 .004 .345 81.676 .000
Slope -.563 .013 -.120 -43.141 .000
TC2 .187 .019 .025 9.835 .000

For the best nonlinear regression model the overall correlation coefficient

between the best predictor and the observed posters was 0.694. Also, it must be noted that

the best nonlinear regression model used a minimal set of predictors. The best predictor

in this case was computed using the following equation:
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Table 9.79 reports the parameter estimates for the best nonlinear regression model

described in the equation above.

Table 9.79 Parameter Estimates for the Minimal Best Nonlinear Prediction Model

Parameter Estimate Std. Error
95% Confidence Interval

Lower Bound Upper Bound
a
b
c
d

.968
-3.504
2.717
-.639

.003

.023

.108

.027

.963
-3.548
2.505
-.693

.974
-3.459
2.928
-.586

The best nonlinear regression model only included predictors related to the

previous hour of channel activity. This suggests that in a very dynamic synchronous

medium such as IRC, accurate predictions about future activity may be made by only

taking into account information pertinent to the channels' activity during the most recent

hour rather than looking at historic data over longer periods of time.



CHAPTER 10

IDENTIFICATION OF FACTORS THAT INFLUENCE CHANNEL
PREDICTABILITY

This chapter uses logistic regression to identify the factors that can distinguish highly

predictable channels from unpredictable channels.

The linear and the nonlinear regression analyses described in the previous chapter

revealed that the activity of large, highly intensive channels was the easiest to predict;

while the rest of the channel categories had very similar overall degrees of predictability.

This suggests that although the categorization of channels based on the total number of

users (computed from the beginning of the data-collection period); and on the intensity of

channel activity measured by the total number of days a channel was visited (also

computed from the beginning of the data-collection period) was suited for selecting a

random sample of channels; a channel's predictability level cannot be determined simply

by observing the category to which that channel belongs.

Also, categorizing channels in the above manner may present scalability problems

when addressing the entire IRC network versus a small subset of channels; and therefore

may not be suited for larger-scale predictions. Thus, there is a need to identify other

characteristics of chat-channels that would improve the short-term predictions, while also

reducing the costs involved in making them.

239
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10.1 Hypothesis

In light of this discussion, it is hypothesized that the level of predictability of a publicly

active channel for any particular week can be estimated as high, low, or perfect by using

various descriptive statistics of that channel computed for the one-month period

preceding the week for which predictions are attempted.

10.2 Method

10.2.1 Data Considerations

The analysis was performed on the same stratified random sample of channels that was

used in the previous chapter. The selection process was described in detail in Chapter 8,

subsection 8.2.1. The descriptive statistics used as predictors for a channel's

predictability level were described in Chapter 7, subsection 7.2.3.2.

10.2.2 Data Analysis

There are two methods that are suitable for this type of research: discriminant analysis

and logistic regression.

Discriminant analysis is useful for situations where a predictive model of group

membership needs to be built, based on the observed characteristics of each case. The

procedure generates discriminant functions based on linear combinations of the predictor

variables that provide the best discriminations between the groups.

Logistic regression is a model used for predicting the probability of an event's

occurrence. It is useful for situations where there is a need to predict the presence or

absence of a characteristic or outcome, based on values of a set of predictor variables. It

is similar to a linear regression model, but it is suited to models where the dependent
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variable is dichotomous. According to the documentation of the SPSS statistical software

package, logistic regression is applicable to a broader range of research situations than

discriminant analysis. Some authors prefer logistic regression to discriminant analysis

because they consider it more flexible in its assumptions and in the types of data that can

be analyzed. Also, as opposed to discriminant analysis, logistic regression can handle

both categorical and continuous variables; and the predictors do not have to be normally

distributed, linearly related, or of equal variance within each group (Tabachnick and

Fide11 1996).

Considering the above, logistic regression was used to further explore the

characteristics that separate channels into three main categories: channels with high

predictability, channels with low predictability, and channels with perfect predictability.

Table 10.1 Predictor Variables for the Logistic Regression Model

Variable Description Acronym
SurvivalTime Total number of days the channel existed in August 2005 ST
AvgUserRetTime Average number of minutes between two user sessions AURT
AvgUsers Average number of users per any 20-minute interval AU
AvgDailyUsers Average number of users per day ADU
AvgPosters Average number of posters per any 20-minute interval AP
AvgDailyPosters Average number of posters per day ADP
AvgMessages Average number of messages per any 20-minute interval AM
AvgDailyMessages Average number of messages per day ADM
AvgUserDiv Average user diversity computed for any 20-minute interval

with respect to the day
AUD

AvgDailyUserDiv Average user diversity computed for any day, with respect to
the month of August 2005

ADUD

AvgPosterDiv Average poster diversity computed for any 20-minute
interval with respect to the day

APD

AvgDailyPosterDiv Average poster diversity computed for any day, with respect
to the month of August 2005

ADPD

Users Total number of users in August 2005 USR
Posters Total number of posters in August 2005 POS
Messages Total number of messages in August 2005 MSG
AvgDailyMessagesPerPoster Daily average number of messages per poster ADMP
MessagesPerPoster Average number of messages per poster for August 2005 MPP
DaysVisited Number of days the channel was visited in August 2005 DV
DaysActive Number of days public conversations occurred in the channel

in August 2005
DA

AvgDailyUserStability Average daily user stability for August 2005 ADUS
AvgDailyPosterStability Average daily poster stability for August 2005 ADPS
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There were 90 channels selected in the sample. For these 90 channels various

descriptive statistics were computed for the month of August 2005. These descriptive

statistics, presented in Table 10.1, were used as predictor variables in the logistic

regression model.

Of the 90 channels in the sample, 20 channels did not sustain public interactions

at all during the first week of September 2005 (the time interval for which predictions

were made). Both the linear and the nonlinear regression models successfully predicted

the value zero for the BestPredictor variable for all the cases when the number of

observed posters was actually zero. Therefore, these 20 channels, which were perfectly

predictable in the sense that no activity was predicted by the models in 100 percent of the

cases, were included in the "perfect predictability" category. Individual correlation

coefficients between the BestPredictor variables produced by the best nonlinear

regression model and the ObservedPosters were computed for all the other 70 channels.

After sorting them based on these coefficients, the top 20 channels (rho >.615) were

included in the "high predictability" category, while the bottom 20 channels (rho < .325)

were included in the "low predictability" category (Table 10.2).
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10.3 Results

The logistic regression attempted to find the variables that could distinguish channels

with a high degree of predictability from channels with a low degree of predictability

(subsection 10.3.2); channels with a low degree of predictability from channels that were

perfectly predictable (subsection 10.3.3); and channels with a high degree of

predictability from channels that were perfectly predictable (subsection 10.3.4).

The SPSS software reports the results of a logistic regression in table format.

Specifically, eight tables are produced when running a logistic regression.

The first table reports the omnibus tests of model coefficients and provides a test

of the joint predictive ability of all the covariates in the model.

The second table reports the model summary and includes various pseudo R 2

statistics such as the Cox and Snell R2 statistic and the Nagelkerke R2 statistic. The R2
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statistic, which measures the variability in the dependent variable explained by a linear

regression model, cannot be computed for logistic regression models. The pseudo R 2

statistics are designed to have similar properties to the true R2 statistic and are based on a

comparison of the likelihood of the current model to the -null" model (one without any

predictors). Larger pseudo R2 statistics indicate that more of the variation is explained by

the model from a minimum of 0 to a maximum of 1.

The third table reports the Hosmer-Lemeshow goodness-of-fit statistic. Goodness-

of-fit statistics help determine whether the model adequately describes the data. The

Hosmer-Lemeshow statistic indicates a poor fit if the significance value is smaller than

0.05.

The fourth table reports the contingency for the Hosmer-Lemeshow statistic. This

statistic is the most reliable test of model fit for SPSS binary logistic regression because it

aggregates the observations into groups of "similar" cases. The statistic is then computed

based upon these groups.

The fifth table, called the classification table, reports the practical results of using

the logistic regression model. From step to step, the improvement in classification

indicates how well the model performed. A better model should correctly identify a

higher percentage of the cases.

The sixth table is the parameter estimates table, and it summarizes the effect of

each predictor. It includes the Wald statistic, which is computed as the ratio of the

coefficient to its standard error, squared. If the significance level of the Wald statistic is

small (less than 0.05), then the parameter is useful to the model. The predictors and
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coefficient values shown in the last row of the table are used by the procedure to make

predictions.

The seventh table reports the potential effects of removing the variables chosen by

the regression method from the model. The most important thing to note from this table is

the significance value of the -2 log-likelihood ratio. All the variables that were chosen

should have significant changes in -2 log-likelihood. This indicates that the removal of

the variables from the model influences its ability to make accurate predictions. The

change in -2 log-likelihood is generally more reliable than the Wald statistic.

The eighth table reports the variables that were removed from the model.



Table 10.3 Spearman Correlation Coefficients for All Predictor Variables

ST AURT AU ADU AP ADP AM ADM AUD ADUD APD ADPD USR POS MSG ADMP MPP DV DA ADUS ADPS

ST 1.00 -.550 .375 .314 .291 .238 .172 .042 .095 -.417 .186 -.332 .344 .289 .141 -.168 -.169 .435 .360  .160 -.223
AURT -.550 1.00 -.239 -.168 -.232 -.197 -.242 -.183 -.236 .189 -.209 .248 -.159 -.223 -.214 -.119 -.095 -.260 -.248 -.204 .041
AU .375 -.239 1.00 .942 .824 .838 .544 .443 .053 -.808 -.014 -.828 .956 .918 .557 -.089 -.103 .846 .768 -.244  -.122
ADU .314 -.168 .942 1.00 .786 .840 .459 .403 -.185 -.736 -.126 -.763 .965 .899 .486 -.171 -.196 .746 .666 -.269 -.135
AP .291 -.232 .824 .786 1.00 .957 .827 .768 .043 -.727 .104 -.714 .807 .932 .814 .282 .270 .817 .789 -.231  .114
ADP .238 -.197 .838 .840 .957 1.00 .762 .738 -.063 -.676 -.112 -.671 .835 .952 .770 .210 .208 .739 .722 -.263 .115
AM .172 -.242 .544 .459 .827 .762 1.00 .960 .236 -.451 .079 -.542 .489 .698 .974 .712 .691 .648 .793 -.047 .403
ADM .042 -.183 .443 .403 .768 .738 .960 1.00 .153 -.295 -.062 -.430 .398 .643 .970 .767 .747 .500 .696 -.021 .493
AUD .095 -.236 .053 -.185 .043 -.063 .236 .153 1.00 -.136 .198 -.131 -.082 -.015 .216 .318 .350 .259 .277 .074 .121
ADUD -.417 .189 -.808 -.736 -.727 -.676 -.451 -.295 -.136 1.00 -.185 .867 -.875 -.809 -.407 .153 .201 -.817 -.639 .550 .284
APD .186 -.209 -.014 -.126 .104 -.112 .079 -.062 .198 -.185 1.00 -.085 -.059 -.040 .020 .119 .097 .227 .127 .013 -.032
ADPD -.332 .248 -.828 -.763 -.714 -.671 -.542 -.430 -.131 .867 -.085 1.00 -.864 -.848 -.561 .012 .068 -.804 -.816 .306 .159
USR .344 -.159 .956 .965 .807 .835 .489 .398 -.082 -.875 -.059 -.864 1.00 .929 .495 -.166 -.202 .807 .701 -.398 - -.198
POS .289 -.223 .918 .899 .932 .952 .698 .643 -.015 -.809 -.040 -.848 .929 1.00 ' .716 .096 .073 .811 .794 -.321 .008
MSG .141 -.214 .557 .486 .814 .770 .974 .970 .216 -.407 .020 -.561 .495 .716 1.00 .710 .699 .625 .835 -.001 .473
ADMP -.168 -.119 -.089 -.171 .282 .210 .712 .767 .318 .153 .119 .012 -.166 .096 .710 1.00 .964 .085 .341 .157 .668
MPP -.169 -.095 -.103 -.196 .270 .208 .691 .747 .350 .201 .097 .068 -.202 .073 .699 .964 1.00 .100 .356 .215 .754
DV .435 -.260 .846 .746 .817 .739 .648 .500 .259 -.817 .227 -.804 .807 .811 .625 .085 .100 1.00 .556 -.164 -.026
DA .360 -.248 .768 .666 .789 .722 .793 .696 .277 -.639 .127 -.816 .701 .794 .835 .341 .356 .556 1.00 -.011 .221
ADUS .160 -.204 -.244 -.269 -.231 -.263 -.047 -.021 .074 .550 .013 .306 -.398 -.321 -.001 .157 .215 -.164 -.011 1.00 .280
ADPS -.223 .041 -.122 -.135 .114 .115 .403 .493 .121 .284 -.032 .159 -.198 .008 .473 .668 .754 -.026 .221  .280 1.00-
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Table 10.3 presents the Spearman correlation coefficients among all the predictor

variables. Examining these correlations is important to determine the existence of

multicollinearity and to avoid the effects caused by it. In logistic regression models,

multicollinearity is a result of strong correlations between independent variables. The

existence of multicollinearity inflates the variances of the parameter estimates. That may

result, particularly for small and moderate sample sizes, in the lack of statistical

significance of individual independent variables, while the overall model may be strongly

significant. Multicollinearity may also result in wrong signs and magnitudes of regression

coefficient estimates, and consequently in incorrect conclusions about relationships

between independent and dependent variables.

Table 10.3 reveals many strong correlations between several of the independent

variables. This was to be expected considering that many of the independent variables

were various measures related to the number of users, posters, and messages that

characterized IRC channels and were likely to be highly correlated.

Two main methods of logistic regression were used in this analysis: the backward

stepwise method and the forward stepwise method. A backward stepwise method starts

with a model that includes all the predictors. At each step, the predictor that contributes

the least is removed from the model until all of the predictors in the model are significant.

A forward stepwise method starts with a model that does not include any of the

predictors. At each step, the predictor with the largest score statistic whose significance

value is less than a specified value (by default 0.05) is added to the model. The variables

left out of the analysis at the last step all have significance values larger than 0.05, so no
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more are added. If both methods choose the same variables, one can be fairly confident

that the chosen model is a good one.

10.3.1 Effects of Multicollinearity

Simply to illustrate the potential effects of multicollinearity, a backward stepwise logistic

regression was conducted using all the independent variables with the goal of identifying

the best predictors that can separate channels with "high" predictability from channels

with "low" predictability. The dependent variable was the predictability of channels,

particularly the "high predictability/low predictability" dichotomy. The results of this

backward stepwise logistic regression are presented in Tables 10.4 through 10.6.

The Hosmer-Lemeshow statistic indicates that it took six steps to produce the

final model, and the model adequately fitted the data at each step.

Table 10.4 Hosmer-Lemeshow Goodness-of-Fit Statistic

Step Chi-square df Sig.
1 .000 7 1.000
2 .000 7 1.000
3 .000 7 1.000
4 .000 7 1.000
5 .000 7 1.000
6 .000 7 1.000

The classification table (Table 10.5) shows the practical results of using the

logistic regression model. For each case, the predicted response is high or low, based on

each case's model-predicted probability being greater than the cutoff value specified

(default value is 0.5). In this case, the model's predictions were 100 percent correct in all

six steps.
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Table 10.5 Classification Table

Observed

Predicted
Predictability

Percentage Correcthigh low
Step 1 	 Predictability 	 high 20 0 100.0

low 0 20 100.0
Overall Percentage 100.0

Step 2 	 Predictability 	 high 20 0 100.0
low 0 20 100.0

Overall Percentage 100.0
Step 3 	 Predictability 	 high 20 0 100.0

low 0 20 100.0
Overall Percentage 100.0

Step 4 	 Predictability 	 high 20 0 100.0
low 0 20 100.0

Overall Percentage 100.0
Step 5 	 Predictability 	 high 20 0 100.0

low 0 20 100.0
Overall Percentage 100.0

Step 6 	 Predictability 	 high 20 0 100.0
low 0 20 100.0

Overall Percentage 100.0

The parameter estimates table (Table 10.6) summarizes the effect of each

predictor. If the significance level of the Wald statistic is small (less than 0.05), then the

parameter is useful to the model.

Table 10.6 Parameter Estimates Table

B S.E. Wald df Sig. Exp(B)
Step 6 	 AvgDailyPosters -10.969 3015.526 .000 1 .997 .000

Avg Messages .322 486.194 .000 1 .999 1.380
AvgDailyMessages -.225 591.416 .000 1 1.000 .798
AvgUserDiv -38.382 53526.056 .000 1 .999 .000
AvgDailyUserDiv -263.449 972145.285 .000 1 1.000 .000
AvgPosterDiv -355.086 114089.696 .000 1 .998 .000
AvgDailyPosterDiv 110.294 508355.358 .000 1 1.000 7.946E+047
Users .080 81.124 .000 1 .999 1.083
Posters .313 370.278 .000 1 .999 1.368
Messages .003 22.973 .000 1 1.000 1.003
AvgDailyMessagesPerPoster .984 3626.286 .000 1 1.000 2.674
MessagesPerPoster -.031 496.944 .000 1 1.000 .969
DaysVisited 7.191 2379.325 .000 1 .998 1327.525
DaysActive -5.888 3878.580 .000 1 .999 .003
AvgDailyUserStability 53.380 149441.389 .000 1 1.000 152316.000
AvgDailyPosterStability -8.110 73762.110 .000 1 1.000 .000
Constant 344.284 143004.480 .000 1 .998 3.315E+149
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Table 10.6 reports only the predictors and coefficient values from the last step of

the logistic regression. It may be noted that although the predictions were 100 percent

accurate, all the independent variables lacked statistical significance — a result of their

multicollinearity.

Such problems can and must be avoided by selecting a set of independent

variables that are not highly correlated with each other. Table 10.3 helps identify suitable

combinations of independent variables to be used in the logistic regression models.

10.3.2 High Predictability/Low Predictability Channel Differentiation

Both a forward stepwise logistic regression and a backward stepwise logistic regression

were conducted to identify the best predictors for distinguishing channels with a high

degree of predictability from channels with a low degree of predictability. Multiple

combinations of independent variables were attempted for both regressions. The tables

below report the results of the best models, i.e., the models that produced the highest

percentage of correct predictions. Tables 10.7 through 10.14 present the results of the

forward stepwise logistic regression.

Table 10.7 Omnibus Tests of Model Coefficients for the Forward Stepwise Logistic
Regression

- Chi-square df Sig.
Step 1 	 Step 11.290 1 .001

Block 11.290 1 .001
Model 11.290 1 .001

Step 2 	 Step 11.518 1 .001
Block 22.808 2 .000
Model 22.808 2 .000

Table 10.8 Model Summary for the Forward Stepwise Logistic Regression

Step
-2 Log

likelihood
Cox & Snell
R Square

Nagelkerke
R Square

1
2

44.162
32.644

.246

.435
.328
.579
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Table 10.9 Hosmer-Lemeshow Statistic for the Forward Stepwise Logistic Regression

Step Chi-square df Sig.
1
2

7.506
4.234

7
7

.378

.752

Table 10.10 Contingency Table for the Hosmer-Lemeshow Statistic for the Forward
Stepwise Logistic Regression

Predictability of the
channel = high

Predictability of the
channel = low

TotalObserved Expected Observed Expected
Step 1 	 1 5 4.410 0 .590 5

2 3 4.003 2 .997 5
3 4 3.402 1 1.598 5
4 2 2.185 2 1.815 4
5 2 2.120 3 2.880 5
6 1 1.713 4 3.287 5
7 1 1.041 3 2.959 4
8 2 .595 1 2.405 3
9 0 .530 4 3.470 4

Step 2 	 1 5 4.855 0 .145 5
2 4 3.612 0 .388 4
3 3 3.179 1 .821 4
4 2 2.749 2 1.251 4
5 3 2.777 2 2.223 5
6 1 1.546 3 2.454 4
7 2 .809 3 4.191 5
8 0 .331 4 3.669 4
9 0 .143 5 4.857 5

Table 10.11 Classification Table for the Forward Stepwise Logistic Regression

Observed

Predicted
Predictability

Percentage Correct high low
Step 1 	 Predictability 	 high 14 6 70.0

low 4 16 80.0
Overall Percentage 75.0

Step 2 	 Predictability 	 high 16 4 80.0
low 4 16 80.0

Overall Percentage 80.0

Table 10.12 Parameter Estimates for the Forward Stepwise Logistic Regression

B S.E. Wald df Sig. Exp(B)
Step 1 	 DaysActive -.145 .050 8.354 1 .004 .865

Constant 2.424 .903 7.213 1 .007 11.290
Step 2 	 DaysActive -.627 .204 9.433 1 .002 .534

DaysVisited .503 .189 7.110 1 .008 1.653
Constant .043 1.147 .001 1 .970 1.044
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Table 10.13 Model if Term Removed for the Forward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood

1

df
Sig. of the
Change

.001

.000

.001

Step 1 	 DaysActive
Step 2 	 DaysActive

DaysVisited

-27.726
-26.520
-22.081

11.290
20.396
11.518

1
1
1

Table 10.14 Variables Excluded from the Model in the Forward Stepwise Logistic
Regression

Score df Sig.
Step 1 	 Variables 	 SurvivalTime 4.638 1 .031

Avg U serRetTime .093 1 .761
AvgDailyMessagesPerPoster 3.575 1 .059
DaysVisited 7.185 1 .007
AvgUserDiv .073 1 .787
AvgPosterDiv .028 1 .867
AvgDailyUserStability .208 1 .648
AvgDailyPosterStability 3.420 1 .064

Overall Statistics 11.668 8 .167
Step 2 	 Variables 	 SurvivalTime .786 1 .375

Avg UserRetTi me .012 1 .912
AvgDailyMessagesPerPoster 1.546 1 .214
AvgUserDiv 1.360 1 .243
AvgPosterDiv 2.150 1 .143
AvgDailyUserStability .025 1 .875
AvgDailyPosterStability .858 1 .354

Overall Statistics 4.782 7 .687

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table

indicates that predictions were successful in 80 percent of the cases. The model correctly

predicted that 16 out of 20 channels belonged to the correct category (either "high

predictability" or "low predictability"). The model identified the independent variables

DaysActive and DaysVisited as the best predictors; and the parameter estimates table

shows that they were statistically significant (.002 and .008). Both variables chosen by

the model had significant changes in -2 log-likelihood; and the significance level of the

Wald statistic was small enough to indicate that the parameters were useful to the model.
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Tables 10.15 - 10.22 present the results of the backward stepwise logistic

regression, which was completed in eight steps. Due to space considerations, some of the

tables below report only the results produced by the final step of the model.

Table 10.15 Omnibus Tests of Model Coefficients for the Backward Stepwise Logistic
Regression

Chi-square Df, Sig.
Step 1 	 Step 29.050 9 .001

Block 29.050 9 .001
Model 29.050 9 .001

Step 2 	 Step -.030 1 .863
Block 29.020 8 .000
Model 29.020 8 .000

Step 3 	 Step -.068 1 .795
Block 28.953 7 .000
Model 28.953 7 .000

Step 4 	 Step -.901 1 .343
Block 28.052 6 .000
Model 28.052 6 .000

Step 5 	 Step -.426 1 .514
Block 27.626 5 .000
Model 27.626 5 .000

Step 6 	 Step -1.184 1 .277
Block 26.442 4 .000
Model 26.442 4 .000

Step 7 	 Step -1.279 1 .258
Block 25.164 3 .000
Model 25.164 3 .000

Step 8 	 Step -2.356 1 .125
Block 22.808 2 .000
Model 22.808 2 .000

Table 10.16 Model Summary for the Backward Stepwise Logistic Regression

Step
-2 Log

likelihood
Cox & Snell
R Square

Nagelkerke R
Square

1 26.402 .516 .688
2 26.431 .516 .688
3 26.499 .515 .687
4 27.400 .504 .672
5 27.826 .499 .665
6 29.010 .484 .645
7 30.288 .467 .623
8 32.644 .435 .579
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Table 10.17 Hosmer-Lemeshow Statistic for the Backward Stepwise Logistic Regression

Step Chi-square df Sig.
1 6.371 8 .606
2 4.630 8 .796
3 5.326 8 .722
4 5.334 8 .721
5 8.598 8 .377
6 3.917 8 .864
7 5.846 8 .665
8 4.234 7 .752

Table 10.18 Contingency Table for the Hosmer-Lemeshow Statistic for the Backward
Stepwise Logistic Regression

Predictability of the
channel = high

Predictability of the
channel = low

TotalObserved Expected Observed Expected
Step 8 	 1 4 3.513 0 .487 4

2 3 3.343 1 .657 4
3 2 2.992 2 1.008 4
4 3 2.548 1 1.452 4
5 3 2.067 1 1.933 4
6 1 1.701 3 2.299 4
7 1 1.394 3 2.606 4
8 1 1.102 3 2.898 4
9 2 .822 2 3.178 4
	  10 0 .518 4 3.482 4

Table 10.19 Classification Table for the Backward Stepwise Logistic Regression

Observed

Predicted
Predictability

 low Percentage Correcthigh
Step 1 	 Predictability 	 high 17 3 85.0

low 6 14 70.0
Overall Percentage 77.5

Step 2 	 Predictability 	 high 17 3 85.0
low 6 14 70.0

Overall Percentage 77.5
Step 3 	 Predictability 	 high 17 3 85.0

low 6 14 70.0
Overall Percentage 77.5

Step 4 	 Predictability 	 high 17 3 85.0
low 4 16 80.0

Overall Percentage 82.5
Step 5 	 Predictability 	 high 16 4 80.0

low 5 15 75.0
Overall Percentage 77.5

Step 6 	 Predictability 	 high 17 3 85.0
low 5 15 75.0

Overall Percentage 80.0
Step 7 	 Predictability 	 high 16 4 80.0

low 5 15 75.0
Overall Percentage 77.5

Step 8 	 Predictability 	 high 16 4 80.0
low 4 16 80.0

	  Overall Percentage 80.0



Table 10.20 Parameter Estimates for the Backward Stepwise Logistic Regression

B 1	S.E. Wald df Sig. Exp(B)
Step 1 	 SurvivalTime .131 .114 1.318 1 .251 1.139

AvgUserRetTime .000 .001 .062 1 .803 1.000
AvgDailyMessagesPerPoster -.007 .042 .030 1 .863 .993
DaysActive -.824 .326 6.403 1 .011 .439
DaysVisited .711 .316 5.064 1 .024 2.036
AvgUserDiv -5.606 5.628 .992 1 .319 .004
AvgPosterDiv -5.936 4.617 1.653 1 .199 .003
AvgDailyUserStability 6.495 6.470 1.008 1 .315 661.535
AvgDailyPosterStability -3.375 5.036 .449 1 .503 .034
Constant 3.017 6.292 .230 1 .632 20.437

Step 2 	 SurvivalTime .133 .114 1.349 1 .245 1.142
AvgUserRetTime .000 .001 .067 1 .796 1.000
DaysActive -.835 .323 6.694 1 .010 .434
DaysVisited .721 .313 5.314 1 .021 2.056
AvgUserDiv -5.934 5.339 1.235 1 .266 .003
AvgPosterDiv -6.118 4.508 1.841 1 .175 .002
AvgDailyUserStability 6.613 6.463 1.047 1 .306 744.965
AvgDailyPosterStability -3.866 4.184 .854 1 .355 .021
Constant 3.251 6.124 .282 1 .596 25.805

Step 3 	 SurvivalTime .121 .104 1.356 1 .244 1.128
DaysActive -.847 .321 6.957 1 .008 .429
DaysVisited .733 .310 5.585 1 .018 2.082
AvgUserDiv -6.246 5.189 1.449 1 .229 .002
AvgPosterDiv -6.329 4.448 2.024 1 .155 .002
AvgDailyUserStability 6.017 5.980 1.012 1 .314 410.336
AvgDailyPosterStability -3.545 3.888 .831 1 .362 .029
Constant 4.562 3.521 1.679 1 .195 95.809

Step 4 	 SurvivalTime .131 .094 1.930 1 .165 1.140
DaysActive -.828 .292 8.022 1 .005 .437
DaysVisited .713 .288 6.121 1 .013 2.041
AvgUserDiv -5.096 4.530 1.266 1 .261 .006
AvgPosterDiv -6.029 4.315 1.953 1 .162 .002
AvgDailyUserStability 2.556 3.951 .418 1 .518 12.884
Constant 3.141 2.995 1.099 1 .294 23.120

Step 5 	 SurvivalTime .119 .089 1.809 1 .179 1.127
DaysActive -.781 .270 8.348 1 .004 .458
DaysVisited .673 .274 6.021 1 .014 1.959
AvgUserDiv -4.704 4.419 1.134 1 .287 .009
AvgPosterDiv -5.356 4.107 1.701 1 .192 .005
Constant 3.393 2.979 1.297 1 .255 29.758

Step 6 	 SurvivalTime .085 .078 1.179 1 .278 1.089
DaysActive -.704 .241 8.551 1 .003 .495
DaysVisited .593 .247 5.783 1 .016 1.809
AvgPosterDiv -6.152 3.918 2.466 1 .116 .002
Constant 2.487 2.784 .798 1 .372 12.023

Step 7 	 DaysActive -.734 .245 9.016 1 .003 .480
DaysVisited .655 .248 6.996 1 .008 1.926
AvgPosterDiv -5.401 3.795 2.026 1 .155 .005
Constant 3.342 2.576 1.684 1 .194 28.279

Step 8 	 DaysActive -.627 .204 9.433 1 .002 .534
DaysVisited .503 .189 7.110 1 .008 1.653
Constant .043 1.147 .001 1 .970 1.044

255
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Table 10.21 Model if Term Removed for the Backward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood df
Sig. of the
Change

Step 8 	 DaysActive
	  DaysVisited

-26.520
-22.081

20.396
11.518

1
1

.000

.001

Table 10.22 Variables Excluded from the Model in the Backward Stepwise Logistic
Regression

Score df Sig.
Step 2 	 Variables 	 AvgDailyMessagesPerPoster .030 1 .863

Overall Statistics .030 1 .863
Step 3 	 Variables 	 AvgUserRetTime .067 1 .796

AvgDailyMessagesPerPoster .035 1 .853
Overall Statistics .096 2 .953

Step 4 	 Variables 	 Avg UserRetTime .001 1 .977
AvgDailyMessagesPerPoster .501 1 .479
AvgDailyPosterStability .846 1 .358

Overall Statistics .921 3 .820
Step 5 	 Variables 	 AvgUserRetTime .028 1 .866

AvgDailyMessagesPerPoster .171 1 .679
AvgDailyUserStability .429 1 .513
AvgDailyPosterStability .128 1 .720

Overall Statistics 1.253 4 .869
Step 6 	 Variables 	 AvgUserRetTime .046 1 .830

AvgDailyMessagesPerPoster .455 1 .500
AvgUserDiv 1.194 1 .274
AvgDailyUserStability .265 1 .607
AvgDailyPosterStability .152 1 .697

Overall Statistics 2.294 5 .807
Step 7 	 Variables 	 SurvivalTime 1.237 1 .266

AvgUserRetTime .299 1 .584
AvgDailyMessagesPerPoster .708 1 .400
AvgUserDiv .429 1 .513
AvgDailyUserStability .223 1 .637
AvgDailyPosterStability .693 1 .405

Overall Statistics 3.022 6 .806
Step 8 	 Variables 	 SurvivalTime .786 1 .375

AvgUserRetTime .012 1 .912
AvgDailyMessagesPerPoster 1.546 1 .214
AvgUserDiv 1.360 1 .243
AvgPosterDiv 2.150 1 .143
AvgDailyUserStability .025 1 .875
AvgDailyPosterStability .858 1 .354

	  Overall Statistics 4.782 7 .687

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table

indicates that predictions were successful in 80 percent of the cases. The model correctly

predicted that 16 out of 20 channels belonged to the correct category (either "high
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predictability", or "low predictability"). The model identified the independent variables

DaysActive and Days Visited as the best predictors, and the parameter estimates table

shows that they were statistically significant (.002 and .008). Both variables chosen by

the model had significant changes in -2 log-likelihood and the significance level of the

Wald statistic was small enough to indicate that the parameters were useful to the model.

Since both the forward and the backward methods produced the same results, one

can be fairly confident that the model was a good one. The independent variables

DaysActive and Days Visited successfully categorized channels into "high predictability"

and "low predictability" categories in 80 percent of the cases.

10.3.3 Low Predictability/Perfect Predictability Channel Differentiation

Both a forward and a backward stepwise logistic regression were conducted to identify

the best predictors for distinguishing channels with a low degree of predictability from

channels with a perfect degree of predictability. Multiple combinations of independent

variables were attempted for both regressions. Tables 10.23 — 10.30 below present the

results of the best forward stepwise logistic regression model.

Table 10.23 Omnibus Tests of Model Coefficients for the Forward Stepwise Logistic
Regression

- Chi-square df Sig.
Step 1 	 Step 7.932 1 .005

Block 7.932 1 .005
	  Model 7.932 1 .005

Table 10.24 Model Summary for the Forward Stepwise Logistic Regression

Step
-2 Log

 likelihood
Cox & Snell
R Square

Nagelkerke R
Square

1 47.520 .180 .240
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Table 10.25 Hosmer-Lemeshow Statistic for the Forward Stepwise Logistic Regression

Step  Chi-square df Sig.
1 12.654 7 .081

Table 10.26 Contingency Table for the Hosmer-Lemeshow Statistic for the Forward
Stepwise Logistic Regression

Predictability of the
channel = low

Predictability of the
channel = full

TotalObserved Expected Observed Expected
Step 1 	 1 3 3.599 1 .401 4

2 4 4.386 2 1.614 6
3 5 3.073 0 1.927 5
4 2 1.569 1 1.431 3
5 1 1.934 3 2.066 4
6 0 1.917 5 3.083 5
7 4 1.859 2 4.141 6
8 1 1.243 4 3.757 5
9 0 .419 2 1.581 2

Table 10.27 Classification Table for the Forward Stepwise Logistic Regression

Observed

Predicted
Predictability

Percentage Correctlow perfect
Step 1 	 Predictability 	 low

perfect
Overall Percentage

14
4

6
16

70.0
80.0
75.0

Table 10.28 Parameter Estimates for the Forward Stepwise Logistic Regression

B S.E. Wald df Sig. Exp(B)
Step 1 	 DaysActive

Constant
-.158
1.486

.065

.677
5.946
4.821

1
1

.015

.028
.854

4.419

Table 10.29 Model if Term Removed for the Forward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood df
Sig. of the
Change

Step 1 	 DaysActive -27.726 7.932 1 .005
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Table 10.30 Variables Excluded from the Model in the Forward Stepwise Logistic
Regression

Score df Sig.
Step 1 Variables SurvivalTime 1.395 1 .238

AvgUserRetTime 1.819 1 .177
AvgDailyMessagesPerPoster .030 1 .862
AvgUserDiv .558 1 .455
AvgPosterDiv 1.588 1 .208
AvgDailyUserStability .054 1 .817
AvgDailyPosterStability .786 1 .375

DaysVisited .011 1 .916

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table shows

that predictions were successful in 75 percent of the cases. The model correctly predicted

that 14 out of 20 channels belonged to the "low predictability" category and 16 out of 20

channels belonged to the "perfect predictability" category. Only one independent variable

was identified as the best predictor: DaysActive. The parameter estimates table shows that

it was statistically significant (.015). The variable chosen by the model had significant

changes in -2 log-likelihood; and the significance level of the Wald statistic was small

enough to indicate that the parameter was useful to the model.

Tables 10.31 — 10.38 present the results of the backward stepwise logistic

regression. Due to space considerations, some of the tables below report only the results

produced by the final step of the model.
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Table 10.31 Omnibus Tests of Model Coefficients for the Backward Stepwise Logistic
Regression

Chi-square ' df Sig.
Step 1 	 Step 17.513 9 .041

Block 17.513 9 .041
Model 17.513 9 .041

Step 2 	 Step -.157 1 .692
Block 17.356 8 .027
Model 17.356 8 .027

Step 3 	 Step -.686 1 .408
Block 16.671 7 .020
Model 16.671 7 .020

Step 4 	 Step -.767 1 .381
Block 15.903 6 .014
Model 15.903 6 .014

Step 5 	 Step -1.012 1 .314
Block 14.892 5 .011
Model 14.892 5 .011

Step 6 	 Step -1.972 1 .160
Block 12.919 4 .012
Model 12.919 4 .012

Step 7 	 Step -1.074 1 .300
Block 11.845 3 .008
Model 11.845 3 .008

Step 8 	 Step -2.396 1 .122
Block 9.449 2 .009
Model 9.449 2 .009

Step 9 	 Step -1.517 1 .218
Block 7.932 1 .005
Model 7.932 1 .005

Table 10.32 Model Summary for the Backward Stepwise Logistic Regression

Step
-2 Log

likelihood
Cox & Snell

R Square
Nagelkerke R

Square
1 37.939 .355 .473
2 38.095 .352 .469
3 38.781 .341 .454
4 39.548 .328 .437
5 40.560 .311 .414
6 42.533 .276 .368
7 43.606 .256 .342
8 46.002 .210 .281
9 47.520 .180 .240

Table 10.33 Hosmer-Lemeshow Statistic for the Backward Stepwise Logistic Regression

Step Chi-square df Sig.
1 15.381 8 .052
2 5.828 8 .666
3 13.193 8 .105
4 12.682 8 .123
5 20.165 8 .010
6 10.600 8 .225
7 15.147 8 .056
8 10.694 8 .220
9 5.002 4 .287
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Table 10.34 Contingency Table for the Hosmer-Lemeshow Statistic for the Backward
Stepwise Logistic Regression

Predictability of the
channel = low

Predictability of the
channel = full

TotalObserved Expected Observed Expected
Step 9 	 1 13 12.159 7 7.841 20

2 1 2.277 3 1.723 4
3 2 2.004 2 1.996 4
4 3 2.032 2 2.968 5
5 0 1.101 4 2.899 4
6 1 .427 2 2.573 3

Table 10.35 Classification Table for the Backward Stepwise Logistic Regression

Observed

Predicted
Predictability

Percentage Correctlow perfect
Step 1 	 Predictability 	 low 15 5 75.0

perfect 3 17 85.0
Overall Percentage 80.0

Step 2 	 Predictability 	 low 15 5 75.0
perfect 3 17 85.0

Overall Percentage 80.0
Step 3 	 Predictability 	 low 16 4 80.0

perfect 4 16 80.0
Overall Percentage 80.0

Step 4 	 Predictability 	 low 16 4 80.0
perfect 5 15 75.0

Overall Percentage 77.5
Step 5 	 Predictability 	 Low 16 4 80.0

perfect 4 16 80.0
Overall Percentage 80.0

Step 6 	 Predictability 	 low 14 6 70.0
perfect 5 15 75.0

Overall Percentage 72.5
Step 7 	 Predictability 	 low 14 6 70.0

perfect 8 12 60.0
Overall Percentage 65.0

Step 8 	 Predictability 	 low 12 8 60.0
perfect 6 14 70.0

Overall Percentage 65.0
Step 9 	 Predictability 	 low 14 6 70.0

perfect 4 16 80.0
Overall Percentage 75.0



Table 10.36 Parameter Estimates for the Backward Stepwise Logistic Regression

B S.E. Wald df Sig. Exp(B)
Step 1 	 SurvivalTime -.124 .085 2.102 1 .147 .884

AvgUserRetTime .000 .000 1.025 1 .311 1.000
AvgDailyMessagesPerPoster -.047 .046 1.053 1 .305 .954
AvgUserDiv 5.133 3.186 2.595 1 .107 169.519
AvgPosterDiv -3.773 2.978 1.606 1 .205 .023
AvgDailyUserStability 3.322 3.674 .818 1 .366 27.709
AvgDailyPosterStability 3.256 3.166 1.058 1 .304 25.947
DaysVisited .042 .106 .158 1 .691 1.043
DaysActive -.256 .171 2.229 1 .135 .774
Constant 2.513 2.269 1.226 1 .268 12.343

Step 2 	 SurvivalTime -.118 .085 1.946 1 .163 .889
AvgUserRetTime .000 .000 .905 1 .342 1.000
AvgDailyMessagesPerPoster -.050 .046 1.192 1 .275 .951
AvgUserDiv 5.495 3.092 3.158 1 .076 243.350
AvgPosterDiv -3.501 2.915 1.442 1 .230 .030
AvgDailyUserStability 2.823 3.479 .659 1 .417 16.825
AvgDailyPosterStability 3.093 3.070 1.015 1 .314 22.048
DaysActive -.206 .110 3.524 1 .060 .814
Constant 2.514 2.288 1.207 1 .272 12.357

Step 3 	 SurvivalTime -.109 .086 1.603 1 .206 .897
AvgUserRetTime .000 .000 .750 1 .387 1.000
AvgDailyMessagesPerPoster -.051 .047 1.158 1 .282 .950
AvgUserDiv 5.362 2.979 3.238 1 .072 213.052
AvgPosterDiv -2.968 2.708 1.201 1 .273 .051
AvgDailyPosterStability 3.407 2.995 1.294 1 .255 30.183
DaysActive -.194 .105 3.440 1 .064 .823
Constant 2.674 2.332 1.315 1 .252 14.502

Step 4 	 SurvivalTime -.131 .083 2.460 1 .117 .877
AvgDailyMessagesPerPoster -.054 .046 1.360 1 .244 .948
AvgUserDiv 5.827 3.014 3.738 1 .053 339.278
AvgPosterDiv -2.596 2.629 .975 1 .323 .075
AvgDailyPosterStability 3.167 2.876 1.212 1 .271 23.729
DaysActive -.180 .098 3.373 1 .066 .835
Constant 3.600 2.106 2.923 1 .087 36.608

Step 5 	 SurvivalTime -.158 .081 3.802 1 .051 .854
AvgDailyMessagesPerPoster -.065 .044 2.154 1 .142 .937
AvgUserDiv 4.876 2.746 3.153 1 .076 131.079
AvgDailyPosterStability 3.690 2.768 1.777 1 .183 40.052
DaysActive -.216 .092 5.452 1 .020 .806
Constant 3.283 2.077 2.498 1 .114 26.650

Step 6 	 SurvivalTime -.141 .075 3.523 1 .061 .868
AvgDailyMessagesPerPoster -.035 .036 .944 1 .331 .966
AvgUserDiv 4.493 2.695 2.779 1 .096 89.415
DaysActive -.159 .071 4.957 1 .026 .853
Constant 3.051 1.962 2.418 1 .120 21.129

Step 7 	 SurvivalTime -.112 .066 2.870 1 .090 .894
AvgUserDiv 3.594 2.444 2.162 1 .142 36.375
DaysActive -.160 .071 5.103 1 .024 .852
Constant 2.319 1.707 1.846 1 .174 10.165

Step 8 	 SurvivalTime -.067 .059 1.318 1 .251 .935
DaysActive -.141 .067 4.472 1 .034 .868
Constant 3.116 1.676 3.457 1 .063 22.546

Step 9 	 DaysActive -.158 .065 5.946 1 .015 .854
	  Constant 1.486 .677 4.821 1 .028 4.419
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Table 10.37 Model if Term Removed for the Backward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood df
Sig. of the
Change

Step 9 	 DaysActive -27.726 7.932 1 .005

Table 10.38 Variables Excluded from the Model in the Backward Stepwise Logistic
Regression

Score df Sig.
Step 2 	 Variables 	 DaysVisited .159 1 .690

Overall Statistics .159 1 .690
Step 3 	 Variables 	 AvgDailyUserStability .673 1 .412

DaysVisited .004 1 .952
Overall Statistics .848 2 .654

Step 4 	 Variables 	 AvgUserRetTime .789 1 .375
AvgDailyUserStability .494 1 .482
DaysVisited .017 1 .898

Step 5 	 Variables 	 AvgUserRetTime .526 1 .468
AvgPosterDiv 1.006 1 .316
AvgDailyUserStability .264 1 .608
DaysVisited .089 1 .765

Step 6 	 Variables 	 AvgUserRetTime .382 1 .536
AvgPosterDiv 1.693 1 .193
AvgDailyUserStability .512 1 .474
AvgDailyPosterStability 1.880 1 .170
DaysVisited .168 1 .682

Step 7 	 Variables 	 AvgUserRetTime .634 1 .426
AvgDailyMessagesPerPoster .978 1 .323
AvgPosterDiv 2.214 1 .137
AvgDailyUserStability .244 1 .622
AvgDailyPosterStability .423 1 .516
DaysVisited .005 1 .944

Step 8 	 Variables 	 AvgUserRetTime 1.299 1 .254
AvgDailyMessagesPerPoster .231 1 .630
AvgUserDiv 2.332 1 .127
AvgPosterDiv .665 1 .415
AvgDailyUserStability .382 1 .536
AvgDailyPosterStability .613 1 .434
DaysVisited .163 1 .687

Overall Statistics 6.989 7 .430
Step 9 	 Variables 	 SurvivalTime 1.395 1 .238

AvgUserRetTime 1.819 1 .177
AvgDailyMessagesPerPoster .030 1 .862
AvgUserDiv .558 1 .455
AvgPosterDiv 1.588 1 .208
AvgDailyUserStability .054 1 .817
AvgDailyPosterStability .786 1 .375

DaysVisited .011 1 .916

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table shows

that predictions were successful in 75 percent of the cases. The model correctly predicted
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that 14 out of 20 channels belonged to the "low predictability" category and 16 out of 20

channels belonged to the "perfect predictability" category. Only one independent variable

was identified as the best predictor: DaysActive. The parameter estimates table shows that

it was statistically significant (.015). The variable chosen by the model had significant

changes in -2 log-likelihood; and the significance level of the Wald statistic was small

enough to indicate that the parameter was useful to the model.

Since both the forward and the backward methods produced the same results, one

can be fairly confident that the chosen model was a good one. The independent variable

DaysActive can be used to successfully categorize channels into "low predictability" and

"perfect predictability" categories in 75 percent of the cases.

10.3.4 High Predictability/Perfect Predictability Channel Differentiation

Both a forward and a backward stepwise logistic regression were conducted to identify

the best predictors for differentiating channels with a high degree of predictability from

channels with a perfect degree of predictability. Multiple combinations of independent

variables were attempted for both regressions. Tables 10.39 — 10.46 below present the

results of the best forward stepwise logistic regression model.

Table 10.39 Omnibus Tests of Model Coefficients for the Forward Stepwise Logistic
Regression

Chi-square df Sig.
Step 1 	 Step 28.026 1 .000

Block 28.026 1 .000
Model 28.026 1 .000

Table 10.40 Model Summary for the Forward Stepwise Logistic Regression

Step
-2 Log

likelihood
Cox & Snell

R Square
Nagelkerke R

Square
1 27.426 .504 .672
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Table 10.41 Hosmer-Lemeshow Statistic for the Forward Stepwise Logistic Regression

Step  Chi-square df Sig.
1 5.616 8 .690

Table 10.42 Contingency Table for the Hosmer-Lemeshow Statistic for the Forward
Stepwise Logistic Regression

Predictability of the
channel = high

I 	Predictability of the
channel = full

TotalObserved Expected Observed Expected
Step 1 	 1 5 4.967 0 .033 5

2 4 3.895 0 .105 4
3 3 3.598 1 .402 4
4 3 3.607 2 1.393 5
5 2 1.400 1 1.600 3
6 1 1.005 3 2.995 4
7 2 .723 2 3.277 4
8 0 .473 4 3.527 4
9 0 .265 5 4.735 5
10 0 .067 2 1.933 2

Table 10.43 Classification Table for the Forward Stepwise Logistic Regression

Observed

Predicted
Predictability

Percentage Correcthigh full
Step 1 	 Predictability 	 high

full
Overall Percentage

17
3

3
17

85.0
85.0
85.0

Table 10.44 Parameter Estimates for the Forward Stepwise Logistic Regression

B S.E. Wald df Sig. Exp(B)
Step 1 	 DaysActive

Constant
-.284
3.645

.085
1.104

11.154
10.891

1
1

.001

.001
.753

38.270

Table 10.45 Model if Term Removed for the Forward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood df
Sig. of the
Change

Step 1 	 DaysActive -27.726 28.026 1 .000
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Table 10.46 Variables Excluded from the Model in the Forward Stepwise Logistic
Regression

Score df Sig.
Step 1 Variables SurvivalTime 3.103 1 .078

AvgUserRetTime .604 1 .437
AvgDAilyMessagesPerPoster 2.789 1 .095
AvgUserDiv .210 1 .647
AvgPosterDiv .645 1 .422
AvgDailyUserStability .000 1 .985
AvgDailyPosterStability 2.456 1 .117

I: .:laysVisited 3.109 1 .078

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table shows

that predictions were successful in 85 percent of the cases. The model correctly predicted

that 17 out of 20 channels belonged to the "high predictability" category and 17 out of 20

channels belonged to the "perfect predictability" category. Only one independent variable

was identified as the best predictor: DaysActive. The parameter estimates table shows that

it was statistically significant (.001). The variable chosen by the model had significant

changes in -2 log-likelihood; and the significance level of the Wald statistic was small

enough to indicate that the parameter was useful to the model.

Tables 10.47 — 10.54 present the results of the backward stepwise logistic

regression. Due to space considerations, some of the tables below report only the results

produced by the final step of the model.
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Table 10.47 Omnibus Tests of Model Coefficients for the Backward Stepwise Logistic
Regression

Chi-square df Sig.
Step 1 	 Step 41.403 8 .000

Block 41.403 8 .000
Model 41.403 8 .000

Step 2 	 Step -.587 1 .444
Block 40.816 7 .000
Model 40.816 7 .000

Step 3 	 Step -.690 1 .406
Block 40.127 6 .000
Model 40.127 6 .000

Step 4 	 Step -.485 1 .486
Block 39.642 5 .000
Model 39.642 5 .000

Step 5 	 Step -2.425 1 .119
Block 37.217 4 .000
Model 37.217 4 .000

Step 6 	 Step -2.894 1 .089
Block 34.323 3 .000
Model 34.323 3 .000

Step 7 	 Step -3.276 1 .070
Block 31.048 2 .000
Model 31.048 2 .000

Step 8 	 Step -3.022 1 .082
Block 28.026 1 .000
Model 28.026 1 .000

Table 10.48 Model Summary for the Backward Stepwise Logistic Regression

Step
-2 Log

likelihood
Cox & Snell
R Square

Nagelkerke R
Square

1 14.049(a) .645 .860
2 14.636(a) .640 .853
3 15.325(a) .633 .844
4 15.810(a) .629 .838
5 18.234(b) .606 .807
6 21.128(b) .576 .768
7 24.404(c) .540 .720
8 27.426(c) .504 .672

Table 10.49 Hosmer-Lemeshow Statistic for the Backward Stepwise Logistic Regression

Step Chi-square df Sig.
1 1.067 8 .998
2 12.736 8 .121
3 8.124 8 .421
4 11.802 8 .160
5 10.174 8 .253
6 9.017 8 .341
7 11.682 8 .166
8 8.794 3 .132
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Table 10.50 Contingency Table for the Hosmer-Lemeshow Statistic for the Backward
Stepwise Logistic Regression

Predictability of the
channel = high

i 	 Predictability of the
channel = full

Observed Expected Observed Expected Total
Step 8 	 1 14 12.068 7 8.932 21

2 0 2.675 5 2.325 5
3 3 1.874 1 2.126 4
4 1 1.938 4 3.062 5
5 2 1.445 3 3.555 5

Table 10.51 Classification Table for the Backward Stepwise Logistic Regression

Observed

Predicted
Predictability

Percentage Correcthigh full
Step 1 Predictability of the channel high 17 3 85.0

full 1 19 95.0
Overall Percentage 90.0

Step 2 Predictability of the channel high 18 2 90.0
full 1 19 95.0

Overall Percentage 92.5
Step 3 Predictability of the channel high 17 3 85.0

full 1 19 95.0
Overall Percentage 90.0

Step 4 Predictability of the channel high 17 3 85.0
full 1 19 95.0

Overall Percentage 90.0
Step 5 Predictability of the channel high 19 1 95.0

full 2 18 90.0
Overall Percentage 92.5

Step 6 Predictability of the channel high 17 3 85.0
full 2 18 90.0

Overall Percentage 87.5
Step 7 Predictability of the channel high 17 3 85.0

full 3 17 85.0
Overall Percentage 85.0

Step 8 Predictability of the channel high 17 3 85.0
full 3 17 85.0

Overall Percentage 85.0



Table 10.52 Parameter Estimates for the Backward Stepwise Logistic Regression

B S.E. 	 I Wald df Sig. Exp(B)
Step 1 	 SurvivalTime .342 .203 2.842 1 .092 1.408

AvgUserRetTime .001 .001 1.557 1 .212 1.001
AvgDailyMessagesPerPoster -.070 .095 .550 1 .458 .932
AvgUserDiv -4.524 5.731 .623 1 .430 .011
AvgPosterDiv -7.570 6.520 1.348 1 .246 .001
AvgDailyUserStability 11.701 13.089 .799 1 .371 120670.932
AvgDailyPosterStability -8.386 6.855 1.496 1 .221 .000
DaysActive -.454 .197 5.289 1 .021 .635
Constant 4.955 4.271 1.346 1 .246 141.903

Step 2 	 SurvivalTime .345 .188 3.351 1 .067 1.412
AvgUserRetTime .001 .001 2.734 1 .098 1.001
AvgUserDiv -4.469 5.646 .627 1 .429 .011
AvgPosterDiv -8.664 6.152 1.983 1 .159 .000
AvgDailyUserStability 12.842 14.233 .814 1 .367 377899.192
AvgDailyPosterStability -10.881 7.268 2.241 1 .134 .000
DaysActive -.473 .209 5.123 1 .024 .623
Constant 4.779 4.328 1.220 1 .269 118.999

Step 3 	 SurvivalTime .287 .167 2.945 1 .086 1.333
AvgUserRetTime .001 .001 2.576 1 .109 1.001
AvgPosterDiv -8.833 5.738 2.370 1 .124 .000
AvgDailyUserStability 6.686 9.921 .454 1 .500 801.266
AvgDailyPosterStability -8.827 5.878 2.255 1 .133 .000
DaysActive -.407 .163 6.243 1 .012 .665
Constant 3.996 4.089 .955 1 .329 54.362

Step 4 	 SurvivalTime .326 .171 3.652 1 .056 1.385
AvgUserRetTime .001 .001 3.326 1 .068 1.001
AvgPosterDiv -8.593 5.823 2.178 1 .140 .000
AvgDailyPosterStability -6.885 5.102 1.821 1 .177 .001
DaysActive -.406 .160 6.464 1 .011 .666
Constant 3.861 4.275 .816 1 .366 47.533

Step 5 	 SurvivalTime .301 .146 4.245 1 .039 1.352
AvgUserRetTime .001 .000 3.517 1 .061 1.001
AvgPosterDiv -6.302 4.395 2.057 1 .152 .002
DaysActive -.423 .169 6.270 1 .012 .655
Constant 1.094 2.881 .144 1 .704 2.986

Step 6 	 SurvivalTime .208 .101 4.224 1 .040 1.232
AvgUserRetTime .001 .000 3.006 1 .083 1.001
DaysActive -.437 .147 8.899 1 .003 .646
Constant -1.405 2.178 .416 1 .519 .245

Step 7 	 SurvivalTime .120 .073 2.708 1 .100 1.127
DaysActive -.363 .111 10.636 1 .001 .695
Constant 1.686 1.424 1.403 1 .236 5.400

Step 8 	 DaysActive -.284 .085 11.154 1 .001 .753
Constant 3.645 1.104 10.891 1 .001 38.270

Table 10.53 Model if Term Removed for the Backward Stepwise Logistic Regression

Variable
Model Log
Likelihood

Change in -
2 Log

Likelihood df
Sig. of the
Change

Step 8 	 DaysActive -27.726 28.026 1 .000
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Table 10.54 Variables Excluded from the Model in the Backward Stepwise Logistic
Regression

Score df Sig.
Step 2 	 Variables 	 AvgDailyMessagesPerPoster .568 1 .451

Overall Statistics .568 1 .451
Step 3 	 Variables 	 AvgDailyMessagesPerPoster .597 1 .440

AvgUserDiv .672 1 .412
Overall Statistics 1.126 2 .569

Step 4 	 Variables 	 AvgDailyMessagesPerPoster .540 1 .462
AvgUserDiv .125 1 	 1 .723
AvgDailyUserStability .470 1 .493

Overall Statistics 1.661 3 .646
Step 5 	 Variables 	 AvgDailyMessagesPerPoster 1.453 1 .228

AvgUserDiv .115 1 .735
AvgDailyUserStability .096 1 .756
AvgDailyPosterStability 2.232 1 .135

Overall Statistics 4.123 4 .390
Step 6 	 Variables 	 AvgDailyMessagesPerPoster 2.103 1 .147

AvgUserDiv .965 1 .326
AvgPosterDiv 2.526 1 .112
AvgDailyUserStability .161 1 .688
AvgDailyPosterStability 1.480 1 .224

Overall Statistics 5.885 5 .318
Step 7 	 Variables 	 AvgUserRetTime 3.958 1 .047

AvgDailyMessagesPerPoster 3.516 1 .061
AvgUserDiv .507 1 .476
AvgPosterDiv 2.177 1 .140
AvgDailyUserStability .099 1 .753
AvgDailyPosterStability 1.464 1 .226

Step 8 	 Variables 	 SurvivalTime 3.103 1 .078
AvgUserRetTime .604 1 .437
AvgDailyMessagesPerPoster 3.405 1 .065
AvgUserDiv .210 1 .647
AvgPosterDiv .645 1 .422
AvgDailyUserStability .000 1 .985
AvgDailyPosterStability 2.456 1 .117

The value of the Hosmer-Lemeshow goodness-of-fit statistic in the final step

(>.05) indicates that the model adequately fitted the data. The classification table shows

that predictions were successful in 85 percent of the cases. The model correctly predicted

that 17 out of 20 channels belonged to the "high predictability" and 17 out of 20 channels

belonged to the "perfect predictability" category. Only one independent variable was

identified as the best predictor: DaysActive. The parameter estimates table shows that it

was statistically significant (.001). The variable chosen by the model had significant

changes in -2 log-likelihood; and the significance level of the Wald statistic was small

enough to indicate that the parameter was useful to the model.
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Since both the forward and backward methods produced the same results, one can

be fairly confident that the chosen model was a good one. The independent variable

DaysActive can be used to successfully categorize channels into "high predictability" and

"perfect predictability" categories in 85 percent of the cases.

10.4 Summary

The aim of this chapter was to find the factors that can be used to distinguish highly

predictable channels from unpredictable channels. Three categories of predictability were

considered: high predictability, low predictability, and perfect predictability.

Of the 90 channels in the sample, 20 channels did not sustain public interactions

at all during the first week of September 2005 (the time interval for which predictions

were made). Both the linear and the nonlinear regression models described in Chapter 9

successfully predicted the value zero for the BestPredictor variable for all the cases when

the number of observed posters was actually zero. Therefore, these 20 channels, which

were perfectly predictable in the sense that no activity was predicted by the models in

100 percent of the cases, were included into the "perfect predictability" category.

Individual correlation coefficients between the BestPredictor variables produced by the

best nonlinear regression model and the ObservedPosters were computed for all the other

70 channels. After sorting them based on this coefficient, the top 20 channels were

included in the "high predictability" category, while the bottom 20 channels were

included in the "low predictability" category

Several descriptive statistics were computed for all the channels and were then

entered as independent variables into three logistic regression models. These models
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attempted to find which of the descriptive statistics would best differentiate high

predictability channels from low-predictability channels, low-predictability channels

from perfect predictability channels, and perfect-predictability channels from high-

predictability channels. The logistic regression models revealed the following:

• When trying to determine whether the activity of a chat-channel during a
particular week would have a high degree or a low degree of predictability, the
best indicators were the number of days the channel was visited and the number
of days the channel sustained public interactions during the previous month. The
predictions were successful in 80 percent of the cases;

• When trying to determine whether the activity of a chat-channel during a
particular week would have a low degree of predictability or would be perfectly
predictable, the best indicator was the number of days the channel sustained
public interactions during the previous month. The predictions were successful
in 75 percent of the cases;

• When trying to determine whether the activity of a chat-channel during a
particular week would have a high degree of predictability or would be perfectly
predictable, the best indicator was the number of days the channel sustained
public interactions during the previous month. The predictions were successful
in 85 percent of the cases.



CHAPTER 11

IDENTIFICATION OF FACTORS THAT INFLUENCE CHANNEL
SURVIVABILITY

To date, little is known about the initial conditions that lead to the formation of groups in

synchronous spaces such as IRC channels, as well as about the subsequent conditions

necessary for those groups to evolve and be sustained over longer periods of time. The

notion of critical mass if often used when discussing the long-term sustainability of

groups and the general consensus is that a group needs in its early stages a certain critical

mass of members in order to become and remain successful over longer periods of time.

While researchers have argued recently that critical mass is highly context dependent

(Halverson, Erickson, and Sussman 2003; Grinter and Palen's 2002), very little empirical

work has been done to explore this issue and its implications for long-term group

survival.

Many authors consider critical mass a species of threshold model, in which a

minimum number of contributors is necessary for a certain tipping point to be passed,

leading thus to unanimous cooperation (Oliver and Marwell 2001). Others describe it

simply as a group of people highly interested in a particular technology, leading the way

to adopting it (Herbsleb et al. 2002). The Critical Mass theory (Oliver, Marwell, and

Teixeira 1985) provides a more complex theoretical model. The definition of the term

"critical mass" — a small segment of a group's population that behaves differently from

the typical group members by making big contributions to the group's collective action

while the majority of the group remains inactive — is not very different from previous

ones. However, one of the theory's most important contributions is the argument that a

273
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group's level of heterogeneity, together with the shapes of various production functions,

defined as relationships between resources contributed by the group and the collective

output of that group, can be used to distinguish between the likelihood of longer-term

success of the group.

The driving research question for this chapter explores the Critical Mass theory's

ability to help in predicting the long-term sustainability of groups in synchronous spaces.

Specifically, it asks whether it is possible to predict IRC channels' chances of survival by

looking at some of the initial starting conditions that characterize the overall activity of

the channels, at the trajectories of the channel activity occurring inside over various time

intervals in the initial stages of the channels' lives, at the population's level of

heterogeneity during various time intervals and at the channels' production functions

computed for the same time intervals.

In theory, survival analysis methods could be used to address this question. This

chapter will examine whether it is possible to distinguish between the likelihood of IRC

channels' survival over time based on variables extracted from the analysis of IRC

channel interaction dynamics, on their heterogeneity of population, on their trajectories of

activity, and on their production functions, all computed for four different time intervals.
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11.1 Hypothesis

Considering the above, it is hypothesized that the long term survivability of any newly

born publicly active channel can be predicted using four categories of factors: (1) the

level of channel activity during various time intervals; (2) the trajectories of channel

activity during various time intervals; (3) the heterogeneity of the channel's population

during various time intervals; and (4) the type of production functions for various time

intervals.

11.2 Method

11.2.1 Data Considerations

The analysis was performed on the set of IRC channels that were "born" during the

month of July 2005. Two important notions needed to be considered beforehand: the birth

of a channel and the death of a channel.

Because of the current lack of research in this area, no well-known definitions

pertaining to these terms currently exist. Consequently, there was a need to clearly define

them, from the perspective of this work. Therefore, a channel was considered "born" the

first day when that channel hosted at least three posters who exchanged at least four

public messages during the same 20-minute interval; and a channel was considered

"dead" if four weeks of non activity have passed since the last day that channel hosted at

least three posters who exchanged at least four public messages during the same 20-

minute interval. A channel was considered to be non-active during a particular day if less

than three posters were publicly active in that channel during all 20-minute intervals of

that day. The main reason for defining the birth and death of chat-channels in terms of the
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supported level of activity was because of the interest presented by this level of activity.

Chapter 7 revealed that channels can easily be created and can exist for long periods of

time after their creation without being visited at all before they would eventually

disappear. Therefore, a channel's creation day and disappearance day may not be relevant

indicators for the actual life of the channel. The definitions provided above are better

suited for this research because they examine the life and death of a channel based on the

presence or absence of public activity inside that channel, and not based simply on the

presence or the absence of the channel itself on the IRC network.

11.2.2 Data Analysis

In order to explore the long term survivability of IRC channels, all the channels that were

born during July 2005 were identified. Then, the lifetime of each channel was computed

as the number of days between the birth and the death of that channel. A total of 282

channels were born during that month. Out of those channels, only 8 were still alive,

according to the above definition, at the end of the data-collection period (January 31,

2006); the other 274 died at some point during the second half of the year for which data

was collected.

Then, the aim was to understand how to distinguish the channels that survived

from the channels that did not survive. To do so, Cox regression analysis was used.

Cox regression (sometimes called proportional hazards regression) is a method for

investigating the effect of several variables upon the time a specified event takes to

happen. In the context of an outcome such as death this is known as Cox regression for

survival analysis. The method does not assume any particular "survival model" but it is
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not truly non-parametric because it does assume that the effects of the predictor variables

upon survival are constant over time and are additive in one scale.

Cox regression is used for modeling time-to-event data in the presence of

censored cases (censored cases are cases for which the event of interest has not been

recorded). However, as opposed to other time-to-event modeling methods such as the

Kaplan-Meier survival analysis, it allows the inclusion of predictor variables (covariates)

in the models. Cox regression will handle the censored cases correctly, and it will provide

estimated coefficients for each of the covariates, allowing the assessment of the impact of

multiple covariates in the same model.

In this research, the event of interest was the death of the channels, which was

observed for 274 cases. Eight cases were censored — the ones corresponding to the

channels that continued to be active after the end of the data-collection period.

Four Cox regression models were created, corresponding to four different time

intervals for which the predictors of survivability were computed. These time intervals

were (1) the first two hours of life; (2) the first day of life; (3) the first week of life; and

(4) the first two weeks of life.

The objective was to determine whether the survival of channels can be predicted

by looking at the initial starting conditions that characterized the overall activity of the

channels; at the trajectories of the channel activity occurring inside them; at the level of

heterogeneity of the channels' populations; and at the channels' production functions,

computed for each of the four time intervals mentioned above.

Table 11.1 describes the variables entered into each Cox regression model. The

number of users, posters, lurkers and messages measured the overall channel activity; the
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posters trajectory (PT) and messages trajectory (MT) variables measured the trajectories

of channel activity; and the poster diversity (PosterDiv) variable measured the

heterogeneity of the channel poster population. The dependent variable was the lifespan

of the channels, computed as the number of days between the birth and the death.

The possible values of the PT and message trajectory MT variables ranged from

-1 to 1 and they indicated how the number of posters and the number of messages varied

over time, during the various time intervals for which they were computed. For example,

a value of 1 in a channel's poster trajectory measure for its first two hours of life would

indicate that the number of posters for that channel continuously increased with every 20-

minute interval since the channel's birth. As another example, a value of -1 in a channel's

MT variable for its first day of life would indicate that the number of messages for that

channel continuously decreased with every hour that passed since the channel's birth.

The PT and MT variables were computed for each channel as the Spearman correlation

coefficients between time and the number of posters or messages observed in that

channel for each of the four time intervals. Each interval had a different number of data

points that were used in computing the correlation coefficients. The first two hours of a

channel's life had six data points for which the number of posters and messages were

computed, each corresponding to a 20-minute interval. The first day of a channel's life

had 24 data points, each corresponding to an hour; the first week of a channel's life had 7

data points; and the first two weeks of a channel's life had 14 data points, each

corresponding to a day. The time was expressed as the number of seconds that have

elapsed since midnight Coordinated Universal Time of January 1, 1970 until the starting

time of the data point interval.
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The possible values for the PosterDiv variables ranged from 1 to 100 and they

indicated how heterogeneous or homogeneous the poster population of a channel was

during a particular time interval, with respect to a larger time interval. A channel was

considered more homogeneous if its poster population stayed relatively constant as time

passed, and more heterogeneous if its poster population changed significantly over time.

The maximum value of 100 indicates a fully homogeneous population, while the

minimum value of 1 indicates a population with the highest level of heterogeneity.

The poster diversity for the first two hours of life was computed as the percentage

value represented by the number of posters present in the channel during this interval

reported to the total number of posters that visited the channel during its first day of life.

The poster diversity for the first day of life was computed as the percentage value

represented by the number of posters present in the channel during this interval, reported

to the total number of posters that visited the channel during its first week of life. The

poster diversity for the first week and the first two weeks of life was computed as the

percentage value represented by the number of posters present in the channel during

those intervals, reported to the total number of posters that visited the channel during its

first month of life. For example, consider a channel that had 3 posters during its first two

hours, 10 posters during its first day, 20 posters in its first week, 25 posters during its first

two weeks and 30 posters during its first month. In this case, PosterDiv2Hrs = 3/10 =

30%, PosterDivFirstDay = 10/20 = 50%, PosterDivFirstWeek = 20/30 = 66% and

PosterDivFirstTwoWeeks = 25/30 = 83%. Here, the values of the computed diversity

variables show that initially the population was more heterogeneous, but with the passage

of time it became more homogeneous.
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Table 11.1 Predictor Variables for the Cox Regression Models

Model Variables Description
1

First two hours
of life

UsersFirst2Hrs Total number of users during the first two hours of life
PostersFirst2Hrs Total number of posters during the first two hours of life
LurkersFirst2Hrs Total number of lurkers (non-posters) during the first two

hours of life
MessagesFirst2Hrs Total number of messages during the first two hours of life
PosterDivFirst2Hrs Poster diversity during the first two hours of life, computed

with respect to the first day of life
PTFirst2Hrs Posters trajectory during the first two hours of life
MTFirst2Hrs Messages trajectory during the first two hours of life
PFFirst2Hrs Type of production function during the first two hours of life

2
First day of life

UsersFirstDay Total number of users during the first day of life
PostersFirstDay Total number of posters during the first day of life
LurkersFirstDay Total number of lurkers (non-posters) during the first day of

life
MessagesFirstDay Total number of messages during the first day of life
PosterDivFirstDay Poster diversity during the first day of life, computed with

respect to the first week of life
PTFirstDay Posters trajectory during the first day of life
MTFirstDay Messages trajectory during the first day of life
PFFirstDay Type of production function during the first day of life

3
First week of

life

UsersFirstWeek Total number of users during the first week of life
PostersFirstWeek Total number of posters during the first week of life
LurkersFirstWeek Total number of lurkers (non-posters) during the first week of

life
MessagesFirstWeek Total number of messages during the first week of life
PosterDivFirstWeek Poster diversity during the first week of life, computed with

respect to the first month of life
PTFirstWeek Posters trajectory during the first week of life
MTFirstWeek Messages trajectory during the first week of life
PFFirstWeek Type of production function during the first week of life

4
First two weeks

of life

UsersFirst2 Weeks Total number of users during the first two weeks of life
PostersFirst2Weeks Total number of posters during the first two weeks of life
LurkersFirst2Weeks Total number of lurkers (non-posters) during the first two

weeks of life
MessagesFirst2Weeks Total number of messages during the first two weeks of life
PosterDivFirst2Weeks Poster diversity during the first two weeks of life, compute

with respect to the first month of life
PTFirst2Weeks Posters trajectory during the first two weeks of life
MTFirst2Weeks Messages trajectory during the first two weeks of life
PFFirst2Weeks Type of production function during the first two weeks of life

The production functions were computed based on the definition provided by the

Critical Mass theory. The theory defined production functions as the relationships

between resources contributed by a group and the collective output of that group, and

argued that they can be used to distinguish among the likelihood of longer-term group
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success. Based on the shape of the graphs obtained by plotting the number of resources

by the amount of group success, the Critical Mass theory described two types of

production functions: accelerating and decelerating.

In the case of IRC chat-channels, the number of users present in the channel was

considered a surrogate measure for the group resources, while the number of messages

was considered a surrogate measure for the amount of group success achieved. Twelve

categories of production functions were identified after plotting the number of users by

the number of messages, for each of the 282 channels. These twelve categories are

presented in Table 11.2 and their corresponding shapes are described in Figures 11.1 (a —

D.

Table 11.2 Categories of Production Functions

Category Shape of the production function
0 Constant
1 Linear ascending
2 Linear descending
3 Accelerating ascending
4 Decelerating ascending
5 S-shaped ascending
6 Accelerating descending
7 Decelerating descending
8 S-shaped descending
9 Parabola
10 Inverse parabola
11 Variable/Unidentified

For each channel, the shape of the production functions for all the four intervals

was determined by plotting the number of users by the number of messages for that

channel, using the same data points that were used to compute the trajectory measures

described above.
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Figure 11.1 c) Linear descending	 Figure 11.1 d) Accelerating ascending
production function — Category 2. 	 production function — Category 3.

Figure 11.1 e) Decelerating ascending	 Figure 11.1 f) S-shaped ascending
production function — Category 4. 	 production function — Category 5.
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Figure 11.1 g) Accelerating descending	 Figure 11.1 h) Decelerating descending
production function — Category 6. 	 production function — Category 7.

Figure 11.1 i) S-shaped descending	 Figure 11.1 j) Parabola production
production function — Category 8. 	 function — Category 9.

Figure 11.1 k) Inverse parabola	 Figure 11.1 1) Variable/unidentified
production function — Category 10. 	 production function — Category 11.
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Table 11.3 reports the number of channels whose production functions had one of

the corresponding twelve shapes described in Figure 11.1, for each time interval.

Table 11.3 Number of Channels per Categories of Production Functions

Interval CatO Cat1 Cat2 Cat3 Cat4 Cat5 Cat6 Cat? Cat8 Cat9 Cat10 Catll
First two
hours

39 64 42 46 16 10 10 4 2 8 17 24

First day 26 55 7 84 11 14 4 3 0 4 15 59
First week 48 63 15 99 1 8 1 0 1 2 8 36
First two
weeks

38 44 11 108 3 11 2 0 0 1 4 60

It can be observed that some of the production function categories identified in

the manner described above were not very common. In order to make the analysis easier

and more relevant, the twelve categories of production functions were grouped into four

broader types: constant, ascending, descending, and variable. Table 11.4 describes these

four types in terms of the categories they included, while Table 11.5 reports the number

of channels characterized by each type of production function during each of the

analyzed time intervals.

Table 11.4 Broader Types of Production Functions

Type Included categories
Constant Constant
Ascending Linear ascending, accelerating ascending, decelerating ascending, S-shaped ascending
Descending Linear descending, accelerating descending, decelerating descending, S-shaped descending
Variable . Parabola, inverse parabola, variable/unidentified

Table 11.5 Number of Channels per Types of Production Functions

Interval Constant Ascending Descending Variable
First two hours 39 136 58 49
First day 26 164 14 78
First week 48 171 17 46
First two weeks 38 166 13 65
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11.3 Results

The model-building process took place in two blocks. In the first block, a forward

stepwise algorithm was employed and the following variables were entered: the number

of users, the number of posters, the number of lurkers, the number of messages, the

poster diversity, the posters trajectory, and the messages trajectory. In the second block,

the categorical variable used to represent the type of production function was added to the

model (see Table 11.1 for the exact names of the variables used in the four regression

models corresponding to each time interval).

The basic model offered by the Cox regression procedure is the proportional

hazards model, which assumes that the time to event and the covariates are related

through a particular equation. The hazard function is a measure of the potential for the

event to occur at a particular time t, given that the event did not yet occur. Larger values

of the hazard function indicate greater potential for the event to occur. The baseline

hazard function measures this potential independently of the covariates. The shape of the

hazard function over time is defined by the baseline hazard, for all cases. The covariates

simply help to determine the overall magnitude of the function

First, some descriptive statistics of the variables used by the survival analysis are

reported. Then, the following results produced by the Cox regression procedure available

in the SPSS software are presented, for each of the analyzed intervals:

• The omnibus tests of model coefficients table — measures of how well the model
performed (for both blocks)

• The final variables that were used in the regression equation

• The final variables that were not used in the regression equation

• The covariate means and pattern values
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• The plot of the basic survival curve — a visual display of the cumulated model-
predicted time to death for the "average" channel

• The plot of the basic hazard curve — a visual display of the cumulative model-
predicted potential to die for the "average" channel

• The plot of the survival curves for each covariate pattern — a visual
representation of the effect of the production function type categorical variable
on the channels' survival

• The plot of the hazard curves for each covariate pattern — a visual representation
of the effect of the production function type categorical variable on the
channels' potential to die

Table 11.6 reports the case processing summary for all four regression models

and it shows that 8 cases of the total of 282 were censored. These cases represented the

channels that did not die. They were not used in the computation of the regression

coefficients, but were used in the computation of the baseline hazard.

Table 11.6 Case Processing Summary

N Percent
Cases available in 	 Event(a) 274 97.2%
analysis 	 Censored 8 2.8%

Total 282 100.0%
Cases dropped 	 Cases with missing values 0 .0%

Cases with negative time 0 .0%
Censored cases before
the earliest event in a
stratum

0 .0%

Total 0 .0%
Total 282 100.0%

a Dependent Variable: Lifespan
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11.3.1 Descriptive Statistics

Table 11.7 reports descriptive statistics for most of the variable entered into the four Cox

regression models.

Table 11.7 Descriptive Statistics for the Variables in the Cox Regression Models

Mean Median Mode Min Max Percentiles

25% 50% 75%
Lifespan 17 1 1 1 203 1 1 15
UsersFirst2Hrs 9 5 3 3 113 3 5 8
PostersFirst2Hrs 6 4 3 3 36 3 4 7
MessagesFirst2Hrs 123 66 4 4 1001 22 66 140
LurkersFirst2Hrs 4 1 0 0 81 0 1 3
PosterDivFirst2Hrs 86 100 100 8 100 75 100 100
UsersFirstDay 15 6 3 3 293 4 6 12
PostersFirstDay 8 4 3 3 87 3 4 8
MessagesFirstDay 217 96 4 4 2202 28 96 234
LurkersFirstday 8 2 0 0 206 0 2 5
PosterDivFirstDay 82 100 100 8 100 67 100 100
UsersFirstWeek 27 10 4 3 683 5 10 23
PostersFirstWeek 13 6 4 3 184 4 6 13
MessagesFirstWeek 410 132 4 4 6249 43 132 413
LurkersFirstWeek 15 3 0 0 499 1 3 9
PosterDivFirstWeek 93 100 100 18 100 94 100 100
UsersFirst2Weeks 33 11 3 3 799 6 11 29
PostersFirst2Weeks 15 6 3 3 217 3 6 18
MessagesF irst2 Weeks 539 135 4 4 8145 46 135 474
LurkersFirst2Weeks 19 5 0 0 582 1 5 12
PosterDivFirst2Weeks 92 100 100 25 100 88 100 100

It can easily be observed that half of the new channels that appeared in July 2005

did not last more than a day and had very few users, posters, lurkers, and messages. It is

likely that such channels were created by very small groups of users who decided to get

together for short periods of time to discuss something in a more private environment,

rather than in the open spaces of other already existing channels. The channels

disappeared after those discussions were resolved and the users left. It may also be noted

that a vast number of channels had more homogeneous populations, rather than



288

heterogeneous, for all four intervals. In part this was to be expected, considering that half

the new channels lasted for only one day, but it might also suggest that a newly born

channel has difficulties in diversifying its population during the first month of life.

Tables 11.8 — 11.11 report the Spearman correlation coefficients among the

variables used in each Cox regression model. Interestingly, the Lifespan variable, which

was the dependent variable, was negatively correlated with the PosterDiversity during all

the four intervals, and the correlation coefficients were quite high. This shows that

channels that survived longer were likely to be more heterogeneous than channels that

survived for shorter periods. Although correlation does not imply causation, this

relationship is worth exploring further.

The correlation coefficients between the lifespan of channels and the number of

users, posters, and messages were less than 0.5 during the first two hours and the first

day, and grew above this value for the first week and the first two weeks.

High correlations were observed in each time interval between the number of

users and the number of posters, and between the number of posters and the number of

messages. This was to be expected as it makes sense to assume that the more users visit a

channel, the more likely to have more posters in that channel, or that the more posters

become active in a channel, the more messages they will send to the public interaction

space.



Table 11.8 Correlation Coefficients for the First Two Hours**

 Correlation is significant at the 0.01 level (2-tailed).
* Correlation is significant at the 0.05 level (2-tailed).



Table 11.9 Correlation Coefficients for the First Day

** Correlation is significant at the 0.01 level (2-tailed).



Table 11.10 Correlation Coefficients for the First Week

** Correlation is significant at the 0.01 level (2-tailed).



Table 11.11 Correlation Coefficients for the First Two Weeks

** Correlation is significant at the 0.01 level (2-tailed).
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11.3.2 Cox Regression Results for the First Two Hours of Life

Table 11.12 Omnibus Tests of Model Coefficients for the First Block

Change From Previous Change From Previous
Overall (score) Step Block

-2 Log Chi-
Step Likelihood square df Sig. Chi-square  df Sig. Chi-square df Sig.
1 2680.694 21.886 1 .000 24.172 1 .000 24.172 1 .000

Variable(s) Entered at Step Number 1: PosterDivFirst2Hrs1

Table 11.13 Omnibus Tests of Model Coefficients for the Second Block

-2 Log Likelihood
Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square  df Sig. Chi-square , df Sig.
2678.354 24.279 4 .000 2.340 3 .505 2.340 3 .505

Table 11.14 Variables in the Equation

B SE Wald df Sig. Exp(B)
PosterDivFirst2Hrs .013 .003 18.403 1 .000 1.013
PFFirst2Hrs 2.273 3 .518
PFFirst2Hrs1) -.093 .184 .256 1 .613 .911
PFFirst2Hrs(2) -.130 .211 .382 1 .537 .878
PFFirst2Hrs(3) -.316 .224 1.983 1 .159 .729

Table 11.15 Variables not in the Equation

Score df Sig.
PostersFirst2Hrs .352 1 .553
UsersFirst2Hrs .603 1 .438
LurkersFirst2Hrs .614 1 .433
MessagesFirst2Hrs .980 1 .322
PTFirst2Hrs 1.211 1 .271
MTFirst2Hrs 1.723 1 .189

Table 11.16 Covariate Means and Pattern Values

Mean
I 	 Pattern

1 2 3 4
PostersFirst2Hrs 5.773 5.773 5.773 5.773 5.773
UsersFirst2Hrs 11.227 11.227 11.227 11.227 11.227
LurkersFirst2Hrs 6.394 6.394 6.394 6.394 6.394
MessagesFirst2Hrs 122.752 122.752 122.752 122.752 122.752
PosterDivFirst2Hrs 86.060 86.060 86.060 86.060 86.060
PTFirst2Hrs -.500 -.500 -.500 -.500 -.500
MTFirst2Hrs -.440 -.440 -.440 -.440 -.440
PFFirst2Hrs(1) .482 .000 1.000 .000 .000
PFFirst2Hrs(2) .206 .000 .000 1.000 .000
PFFirst2Hrs(3) .174 .000 .000 .000 1.000
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Figure 11.2 a) Survival curve for the first 	 Figure 11.2 b) Hazard curve for the first
two hours of life. 	 two hours of life.

Figure 11.2 c) Survival curves for types of
production functions during the first two
hours of life.

Figure 11.2 d) Hazard curves for types of
production functions during the first two
hours of life.

Table 11.12 shows that from all the variables entered into the first block of the

regression model, only the poster diversity contributed significantly to it (significance of

change less than 0.05). Table 11.13 shows that the addition of the type of production

function to the model as a categorical variable did not contribute to the model

(significance of change larger than 0.05). Table 11.14 shows the regression coefficients

for the variables used in the final step of the model. Exp(B) represents the predicted

change in the hazard for a unit increase in the predictor. In this case, the value of Exp(B)
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for PosterDivFirst2Hrs means that the channels' death hazard increases by (100% *

1.013) — 100% = 1.3% for each increase of 1% in the diversity of the channel poster

population. The death hazard for a channel whose diversity measure witnesses a raise of

10% is increased by (100% * (1.013^10)) — 100% = 13.78%. In other words, the larger

the value of the poster diversity measure, the higher the risk of death (remember that a

diversity value of 100 signifies a fully homogenous channel while lower values imply

greater heterogeneity).

The regression coefficients for the first three levels of PFFirst2Hrs were relative

to the reference category, which corresponded to the Constant production function type.

The regression coefficient for the first category, corresponding to channels with

Ascending production functions, suggests that the hazard for this type of channels is

0.911 times that of channels characterized by Constant production functions. Similarly,

the hazard for channels with Descending production functions is 0.878 times the hazard

of channels with Constant production functions, and the hazard for channels with

Variable production functions is 0.729 times the hazard of channels with Constant

production functions. However, the significance values for all these coefficients are

greater than 0.10, so any observed differences between these channels categories could be

due to chance. Table 11.15 shows that the variables left out of the model all had score

statistics with significance values greater than 0.05.

Table 11.16 describes the four covariate patterns that correspond to the types of

production functions, each with otherwise "average" covariates. This table is a useful

reference when looking at the survival plots, which are constructed for the mean values

and each covariate pattern. Note, however, that the "average" channel doesn't actually
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exist when looking at the means of indicator variables for categorical predictors. Even

with all scale predictors, it is unlikely to find a channel whose covariate values are all

close to the mean.

The basic survival curve shown in Figure 11.2 a) is a visual display of the model-

predicted time to death for the "average" channel. The horizontal axis shows the time to

event (the lifespan of the channel), while the vertical axis shows the probability of

survival. Thus, any point on the survival curve shows the probability that the "average"

channel will stay alive past that time. Past 65 days, the survival curve becomes less

smooth. There are fewer channels who have survived for that long, so there is less

information available, and thus the curve is blocky. The plot of the survival curves for

each covariate pattern shown in Figure 11.2 c) shows the effect of the "production

function type" category. Although not statistically significant, as explained above, the

channels with Variable and Descending production functions seemed to have been likely

to survive longer than channels with Ascending production functions, while channels with

Constant production functions seemed to have had the lowest chance of survival.

The basic hazard curve shown in Figure 11.2 b) is a visual display of the

cumulative model-predicted potential to die for the "average" channel. The vertical axis

shows the cumulative hazard, equal to the negative log of the survival probability. Past 65

days, the hazard curve, like the survival curve, becomes less smooth, for the same reason.

The plot of the hazard curves for each covariate pattern described in Figure 11.2 d) shows

the effect of the "production function type" category. Channels with Constant and

Ascending production functions had higher hazard curve because they had a greater

potential to not survive.
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11.3.3 Cox Regression Results for the First Day of Life

Table 11.17 Omnibus Tests of Model Coefficients for the First Block

I 	 Change From Previous Change From Previous
Overall (score) Ste Block

-2 Log Chi-
Step Likelihood square df Sig. Chi-square df Sig. Chi-square df Sig.
1 2663.338 37.266 1 .000 41.528 1 .000 41.528 1 .000
2 2653.221 46.898 2 .000 10.117 1 .001 51.645 2 .000

Variable(s) Entered at Step Number 1: PosterDivFirstDay
Variable(s) Entered at Step Number 2: MessagesFirstDay

Table 11.18 Omnibus Tests of Model Coefficients for the Second Block

-2 Log Likelihood
Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
2648.997 52.013 5 .000 4.224 3 .238 4.224 3 .238

Table 11.19 Variables in the Equation

B SE Wald df Sig. Exp(B)
MessagesFirstDay -.001 .000 7.421 1 .006 .999
PosterDivFirstDay .015 .003 27.601 1 .000 1.015
PFFirstDay 4.310 3 .230
PFFirstDay(1) -.275 .218 1.583 1 .208 .760
PFFirstDay(2) -.516 .341 2.297 1 .130 .597
PFFirstDay(3) -.450 .240 3.508 1 .061 .638

Table 11.20 Variables not in the Equation

Score df Sig.
PostersFirstDay .101 1 .751
UsersFirstDay .322 1 .571
LurkersFirstDay .430 1 .512
PTFirstDay 1.482 1 .223
MTFirstDay 2.294 1 .130

Table 11.21 Covariate Means and Pattern Values

Mean
Pattern

1 2 3 4
PostersFirstDay 8.209 8.209 8.209 8.209 8.209
UsersFirstDay 17.876 17.876 17.876 17.876 17.876
LurkersFirstDay 10.280 10.280 10.280 10.280 10.280
FirstDay 216.975 216.975 216.975 216.975 216.975
PosterDivFirstDay 82.954 82.954 82.954 82.954 82.954
PTFirstDay -.369 -.369 -.369 -.369 -.369
MTFirstDay -.353 -.353 -.353 -.353 -.353
PFFirstDay(1) .582 .000 1.000 .000 .000
PFFirstDay(2) .050 .000 .000 1.000 .000
PFFirstDay(3) .277 .000 .000 .000 1.000



298

Figure 11.3 a) Survival curve for the first	 Figure 11.3 b) Hazard curve for the first
day of life.	 day of life.

Figure 11.3 c) Survival curves for types of Figure 11.3 d) Hazard curves for types of
production functions during the first day	 production functions during the first day
of life.	 of life.

Table 11.17 shows that from all the variables entered into the first block of the

regression model, only the poster diversity and the number of messages contributed

significantly to it (significance of change less:than 0.05). Table- 11.18 shows that the

addition of the type of production function to the model as a categorical variable did not

contribute to the model (significance of change larger than 0.05). Table 11.19 shows the

regression coefficients for the variables used in the final step of the model. Exp(B)

represents the predicted change in the hazard for a unit increase in the predictor. The
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value of Exp(B) for PosterDivFirstDay means that the channels' death hazard increases

by (100% * 1.015) — 100% = 1.5% for each increase of 1% in the diversity of the channel

poster population. The value of Exp(B) for MessagesFirstDay means that the channels'

death hazard decreases by 100% - (100% * .999) = 0.1% for every new message. The

death hazard for a channel which would have 100 more messages in its first day of life

would decrease by 100% - (100% * (0.999'1 00)) = 9.5%. In other words, the larger the

value of the poster diversity measure, the higher the risk of death, and the more messages,

the lower the risk of death.

The regression coefficients for the first three levels of PFFirstDay were relative

to the reference category, which corresponded to the Constant production function type.

The regression coefficients suggest that the hazard for channels with Ascending

production functions is 0.760 times the hazard of channels characterized by Constant

production functions, the hazard for channels with Descending production functions is

0.597 times the hazard of channels with Constant production functions, and the hazard

for channels with Variable production functions is 0.638 times the hazard of channels

with Constant production functions. However, the significance values for all these

coefficients are greater than 0.10, so any observed differences between these channels

categories could be due to chance. Table 11.20 shows that the variables left out of the

model all had score statistics with significance values greater than 0.05.

Table 11.21 describes the four covariate patterns that correspond to the types of

production functions, each with otherwise "average" covariates. This table is a useful

reference when looking at the survival plots, which are constructed for the mean values

and each covariate pattern. As before, note that the "average" channel doesn't actually
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exist when looking at the means of indicator variables for categorical predictors. Even

with all scale predictors, it is unlikely to find a channel whose covariate values are all

close to the mean.

The basic survival curve shown in Figure 11.3 a) is a visual display of the model-

predicted time to death for the "average" channel. The vertical axis shows the probability

of survival. Thus, any point on the survival curve shows the probability that the

"average" channel will stay alive past that time. Past 65 days, the survival curve becomes

less smooth because of the fewer channels that have survived for that long. The plot of

the survival curves for each covariate pattern shown in Figure 11.3 c) gives a visual

representation of the effect of the "production function type" category. Although not

statistically significant, just as before, it is worth noticing that channels with Descending

and Variable production functions seemed to have been more likely to survive than

channels with Ascending production functions, while channels with Constant production

functions seemed to have had the lowest chance of survival.

The basic hazard curve shown in Figure 11.3 b) is a visual display of the

cumulative model-predicted potential to die for the "average" channel. The vertical axis

shows the cumulative hazard, equal to the negative log of the survival probability. Past 65

days, the hazard curve, like the survival curve, becomes less smooth, for the same reason.

The plot of the hazard curves for each covariate pattern shown in Figure 11.3 d) gives a

visual representation of the effect of the "production function type" category. Channels

with Constant and Ascending production functions had higher hazard curves because they

had a greater potential to not survive.
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11.3.4 Cox Regression Results for the First Week of Life

Table 11.22 Omnibus Tests of Model Coefficients for the First Block

Change From Previous Change From Previous
Overall (score) Step Block

-2 Log Chi-
Step Likelihood square df Sig. Chi-square df Sig. Chi-square df Sig.
1 2660.736 34.146 1 .000 44.130 1 .000 44.130 1 .000
2 2624.757 63.915 2 .000 35.979 1 .000 80.109 2 .000

Variable(s) Entered at Step Number 1: PosterDivFirstWeek
Variable(s) Entered at Step Number 2: MessagesFirstWeek

Table 11.23 Omnibus Tests of Model Coefficients for the Second Block

-2 Log Likelihood
Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
2622.231 67.983 5 .000 2.526 3 .471 2.526 3 .471

Table 11.24 Variables in the Equation

B SE Wald  df Sig. Exp(B)
MessagesFirstWeek -.001 .000 22.376 1 .000 .999
PosterDivFirstWeek .026 .005 26.225 1 .000 1.026
PFFirstWeek 2.526 3 .471
PFFirstWeek(1) -.169 .171 .978 1 .323 .845
PFFirstWeek(2) -.335 .285 1.382 1 .240 .716
PFFirstWeek(3) -.316 .224 1.977 1 .160 .729

Table 11.25 Variables not in the Equation

Score df Sig.
PostersFirstWeek .044 1 .834
UsersFirstWeek .021 1 .884
LurkersFirstWeek .025 1 .873
PTFirstWeek .867 1 .352
MTFirstWeek .366 1 .545

Table 11.26 Covariate Means and Pattern Values

Mean
Pattern

1 2 3 4
PostersFirstWeek 12.684 12.684 12.684 12.684 12.684
UsersFirstWeek 29.543 29.543 29.543 29.543 29.543
LurkersFirstWeek 17.379 17.379 17.379 17.379 17.379
MessagesFirstWeek 409.060 409.060 409.060 409.060 409.060
PosterDivFirstWeek 92.816 92.816 92.816 92.816 92.816
PTFirstWeek -.568 -.568 -.568 -.568 -.568
MTFirstWeek -.557 -.557 -.557 -.557 -.557
PFFirstWeek(1) .606 .000 1.000 .000 .000
PFFirstWeek(2) .060 .000 .000 1.000 .000
PFFirstWeek(3) .163 .000 .000 .000 1.000
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Figure 11.4 a) Survival curve for the first	 Figure 11.4 b) Hazard curve for the first
week of life.	 week of life.

Figure 11.4 c) Survival curves for types of Figure 11.4 d) Hazard curves for types of
production functions during the first week	 production functions during the first week
of life.	 of life.

Table 11.22 shows that from all the variables entered into the first block of the

regression model, only the poster diversity and the number of messages contributed

significantly to it (significance of change less than 0.05). Table 11.23 shows that the

addition of the type of production function to the model as a categorical variable did not

contribute to the model (significance of change larger than 0.05). Table 11.24 shows the

regression coefficients for the variables used in the final step of the model. Exp(B)

represents the predicted change in the hazard for a unit increase in the predictor. The
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value of Exp(B) for PosterDivFirstWeek means that the channels' death hazard increases

by (100% * 1.026) — 100% = 2.6% for each increase of 1% in the diversity of the channel

poster population. The value of Exp(B) for MessagesFirstWeek means that the channels'

death hazard decreases by 100% - (100% * .999) = 0.1% for every new message. Same as

before, the larger the value of the poster diversity measure, the higher the risk of death,

and the more messages, the lower the risk of death.

The regression coefficients for the first three levels of PFFirstWeek were relative

to the reference category, which corresponded to the Constant production function type.

The regression coefficients suggest that the hazard for channels with Ascending

production functions is 0.845 times the hazard of channels characterized by Constant

production functions, the hazard for channels with Descending production functions is

0.716 times the hazard of channels with Constant production functions, and the hazard

for channels with Variable production functions is 0.729 times the hazard of channels

with Constant production functions. However, the significance values for all these

coefficients are greater than 0.10, so any observed differences between these channels

categories could be due to chance. Table 11.25 shows that the variables left out of the

model all had score statistics with significance values greater than 0.05.

Table 11.26 describes the four covariate patterns that correspond to the types of

production functions, each with otherwise "average" covariates. This table is a useful

reference when looking at the survival plots, which are constructed for the mean values

and each covariate pattern. As before, note that the "average" channel doesn't actually

exist when looking at the means of indicator variables for categorical predictors. Even
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with all scale predictors, it is unlikely to find a channel whose covariate values are all

close to the mean.

The basic survival curve shown in Figure 11.4 a) is a visual display of the model-

predicted time to death for the "average" channel. The vertical axis shows the probability

of survival. Thus, any point on the survival curve shows the probability that the

"average" channel will stay alive past that time. Past 65 days, the survival curve becomes

less smooth because of the fewer channels that have survived for that long. The plot of

the survival curves for each covariate pattern shown in Figure 11.4 c) gives a visual

representation of the effect of the "production function type" category. Although not

statistically significant, just as before, it is worth noticing that channels with Descending

and Variable production functions seemed to have been more likely to survive than

channels with Ascending production functions, while channels with Constant production

functions seemed to have had the lowest chance of survival.

The basic hazard curve shown in Figure 11.4 b) is a visual display of the

cumulative model-predicted potential to die for the "average" channel. The vertical axis

shows the cumulative hazard, equal to the negative log of the survival probability. Past 65

days, the hazard curve, like the survival curve, becomes less smooth, for the same reason.

The plot of the hazard curves for each covariate pattern shown in Figure 11.4 d) gives a

visual representation of the effect of the "production function type" category. Channels

with Constant and Ascending production functions had higher hazard curves because they

had a greater potential to not survive.
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11.3.5 Cox Regression Results for the First Two Weeks of Life

Table 11.27 Omnibus Tests of Model Coefficients for the First Block

Change From Previous Change From Previous
Overall score) Ste') Block

-2 Log Chi-
Step Likelihood square df Sig. Chi-square df Sig. Chi-square df Sig.
1 2642.968 48.466 1 .000 61.899 1 .000 61.899 1 .000
2 2588.838 82.193 2 1 .000 54.130 1 .000 116.029 2 .000

Variable(s) Entered at Step Number 1: PosterDivFirst2Weeks
Variable(s) Entered at Step Number 2: MessagesFirst2Weeks

Table 11.28 Omnibus Tests of Model Coefficients for the Second Block

-2 Log Likelihood
Overall (score) Change From Previous Step Change From Previous Block

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig.
2583.742 88.726 5 .000 5.096 3 .050 5.096j 3 .050

Table 11.29 Variables in the Equation

B SE Wald df Sig. Exp(B)
MessagesFirst2Weeks -.001 .000 30.331 1 .000 .999
PosterDivFirst2Weeks .033 .005 42.651 1 .000 1.034
PFFirst2Weeks 5.397 3 .045
PFFirst2Weeks(1) -.367 .189 3.777 1 .050 .692
PFFirst2Weeks(2) -.530 .328 2.609 1 .106 .589
PFFirst2Weeks(3) -.473 .220 4.638 I 	 1 .031 .623

Table 11.30 Variables not in the Equation

Score df Sig.
PostersFirst2Weeks .998 1 .318
UsersFirst2Weeks 1.175 1 .278
LurkersFirst2Weeks 1.042 1 .307
PTFirst2Weeks 1.679 1 .195
MTFirst2Weeks 1.742 1 .187

Table 11.31 Covariate Means and Pattern Values

Mean
Pattern

1 2 3 4
PostersFirst2Weeks 14.727 14.727 14.727 14.727 14.727
UsersFirst2Weeks 35.511 35.511 35.511 35.511 35.511
LurkersFirst2Weeks 21.230 21.230 21.230 21.230 21.230
MessagesFirst2Weeks 537.624 537.624 537.624 537.624 537.624
PosterDivFirst2Weeks 91.876 91.876 91.876 91.876 91.876
PTFirst2Weeks -.434 -.434 -.434 -.434 -.434
MTFirst2Weeks -.414 -.414 -.414 -.414 -.414
PFFirst2Weeks(1) .589 .000 1.000 .000 .000
PFFirst2Weeks(2) .046 .000 .000 1.000 .000
PFFirst2Weeks(3) .230 .000 .000 .000 1.000
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Figure 11.5 a) Survival curve for the first 	 Figure 11.5 b) Hazard curve for the first
two weeks of life. 	 two weeks of life.

Figure 11.5 c) Survival curves for types
of production functions during the first
two weeks of life.

Figure 11.5 d) Hazard curves for types
of production functions during the first
two weeks of life.

Table 11.27 shows that from all the variables entered into the first block of the

regression model, only the poster diversity and the number of messages contributed

significantly to it (significance of change less than 0.05). Table 11.28 shows that in this

case the addition of the type of production function to the model as a categorical variable

contributed to the model (significance of change less than 0.05). Table 11.29 shows the

regression coefficients for the variables used in the final step of the model. Exp(B)

represents the predicted change in the hazard for a unit increase in the predictor. The
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value of Exp(B) for PosterDivFirst2 Weeks means that the channels' death hazard

increases by (100% * 1.034) — 100% = 3.4% for each increase of 1% in the diversity of

the channel poster population. The value of Exp(B) for MessagesFirst2Weeks means that

the channels' death hazard decreases by 100% - (100% * .999) = 0.1% for every new

message. Same as before, the larger the value of the poster diversity measure, the higher

the risk of death, and the more messages, the lower the risk of death.

The regression coefficients for the first three levels of PFFirst2Weeks were

relative to the reference category, which corresponded to the Constant production

function type. The regression coefficients suggest that the hazard for channels with

Ascending production functions is 0.692 times the hazard of channels characterized by

Constant production functions, the hazard for channels with Descending production

functions is 0.589 times the hazard of channels with Constant production functions, and

the hazard for channels with Variable production functions is 0.623 times the hazard of

channels with Constant production functions.

The significance value of the regression coefficient for channels with Descending

production functions was slightly larger than 0.10, so any observed differences between

this category and the reference category could be due to chance. However, the other two

regression coefficients had significance values smaller than 0.05, indicating that channels

with Ascending and Variable productions functions were statistically different from

channels with Constant production functions.

Table 11.30 shows that the variables left out of the model all had score statistics

with significance values greater than 0.05.
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Table 11.31 describes the four covariate patterns that correspond to the types of

production functions, each with otherwise "average" covariates. This table is a useful

reference when looking at the survival plots, which are constructed for the mean values

and each covariate pattern. As before, note that the "average" channel doesn't actually

exist when looking at the means of indicator variables for categorical predictors. Even

with all scale predictors, it is unlikely to find a channel whose covariate values are all

close to the mean.

The basic survival curve shown in Figure 11.5 a) is a visual display of the model-

predicted time to death for the "average" channel. The vertical axis shows the probability

of survival. Thus, any point on the survival curve shows the probability that the

"average" channel will stay alive past that time. Past 65 days, the survival curve becomes

less smooth because of the fewer channels that have survived for that long. The plot of

the survival curves for each covariate pattern shown in Figure 11.5 c) gives a visual

representation of the effect of the "production function type" category.

In this case the channels with Ascending and Variable production functions were

statistically different from channels with Constant production functions. Channels with

Variable production functions were the most likely to survive, followed by channels with

Ascending production functions, while channels with Constant production functions were

the less likely to survive.

The basic hazard curve shown in Figure 11.5 b) is a visual display of the

cumulative model-predicted potential to die for the "average" channel. The vertical axis

shows the cumulative hazard, equal to the negative log of the survival probability. Past 65

days, the hazard curve, like the survival curve, becomes less smooth, for the same reason.
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The plot of the hazard curves for each covariate pattern shown in Figure 11.5 d) gives a

visual representation of the effect of the "production function type" category. Channels

with Constant and Ascending production functions had higher hazard curves because they

had a greater potential to not survive.

Figures 11.6 a) and b) show scatter plots of poster diversity and number of

messages (the only survival predictors identified by the model) by lifespan (the

dependent variable), with the channels grouped by the type of production function.

Figure 11.6 a) Poster diversity by lifespan 	 Figure 11.6 b) Number of messages by
for the first two weeks of life.	 lifespan for the first two weeks of life.
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11.4 Summary

The aim of this chapter was to assess whether it is possible to predict an IRC channel's

chances of survival by looking at some of the initial starting conditions that characterize

the overall activity of that channel, at the trajectories of the channel activity occurring

inside the channel over various time intervals in the initial stages of its life, at the level of

heterogeneity of the channel's user population, and at the channel's production functions

computed for the same time intervals.

To predict the survivability of IRC channels, Cox regression models were created

for four time intervals in the initial stages of the channels' lives: the first two hours, the

first day, the first week, and the first two weeks.

The trajectories of channel activity did not predict the likelihood of channels'

survival at all for any of the four intervals analyzed.

The heterogeneity of the channels' user populations (measured by the PosterDiv

variable) was found to be a strong indicator for the channels' likelihood of survival by all

the four models. Channels with heterogeneous populations were more likely to survive

than channels with homogeneous populations. An increase of 1 percent in the PosterDiv

variable in the first two hours of life implied a decrease of 1.3 percent in a channel's

chance of survival. An increase of 1 percent in the PosterDiv variable in the first day of

life implied a decrease of 1.5 percent in a channel's chance of survival. An increase of 1

percent in the PosterDiv variable in the first week of life implied a decrease of 2.6

percent in a channel's chance of survival. An increase of 1 percent in the PosterDiv

variable in the first two weeks of life implied a decrease of 3.4 percent in a channel's

chance of survival. This clearly indicates that the longer a channel's population stayed
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homogeneous, the less likely was for that channel to survive. Lower heterogeneity may

be an indication of higher poster turnover. Higher poster turnover may indicate persistent

interest in the specific channel by more and more new posters. For example, a PosterDiv

value of 100 percent for a channel during any of the analyzed time intervals suggests that

the channel had constant/stable group of posters throughout that interval. An explanation

could be a small group of people who resolved some chat among them and then didn't

meet again. The opposite of this case was when a channel had a lower value for the

PosterDiv variable. Such cases could be explained by more turnover of posters, therefore

a persistent interest in the channel, hence the longer lifespan.

The number of messages was found to be a good indicator of the channels'

likelihood of survival in three of the four cases. While the number of messages in the first

two hours of life was not significant enough, the number of messages sent to a channel

during its first day of life, first week of life and first two weeks of life were identified as

good predictors by the Cox regression models. In all three cases, an increase of 1

message implied an increase of 0.1 percent in a channel's chance of survival, while 100

more messages sent to the channel implied an increase of 9.5 percent in the channel's

chance of survival.

The shape of the channels' production functions was identified as a good predict

only for the longest analyzed interval. Four types of production functions were used:

constant, ascending, descending, and variable. The results of Cox regression model for

the first two weeks of life indicated that channels with constant production functions

were the most likely to die, while channels with variable production functions were the

most likely to survive. The likelihood of survival of channels with ascending production
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functions was slightly lower than that of channels with variable production functions. The

model failed to produce statistically significant results for the channels with descending

production functions, but this might have been due to the fact that there were only a few

channels characterized by this type of production function, compared to the rest of the

channels.

Overall, the Cox regression procedure produced a suitable model for predicting

IRC channels' survivability. The use of separate blocks for fitting the model allowed

guaranteeing that the production function categorical variable would be added to the final

model, while still taking advantage of the stepwise techniques for choosing the other

predictors. The best results were obtained when the regression model used the predictors

that were computed for the immediate two-week period that followed a channel's

creation.



CHAPTER 12

SUMMARY, CONTRIBUTIONS AND FUTURE RESEARCH

This chapter highlights the key findings of this dissertation, presents its contributions to

the information systems research community, and outlines how each of the contributions

could be extended and used by researchers in the future. These contributions encompass

four broad areas: 1) Fundamental knowledge about Internet Relay Chat dynamics; 2)

Methodologies for the capture and analysis of synchronous computer mediated

communication dynamics; 3) Information systems theory; and 4) Fundamentals for

synchronous social interaction space recommendation systems.

The presentation of these key findings, in the context of the four areas of

contributions mentioned above, is structured as follows: Section 12.1 describes

innovative methodologies developed to enable large-scale data-collection of synchronous

CMC; Section 12.2 presents fundamental knowledge about Internet Relay Chat

dynamics; Section 12.3 discusses how the empirical findings extend the Information-

processing constraints model and the Critical Mass theory; Section 12.4 outlines how all

these findings can be used as baseline data for the construction of synchronous social

interaction space recommendation systems. Finally, Section 12.5 addresses the

limitations of this work and Section 12.6 discusses potential topics for future research.

313
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12.1 Data Capture and Analysis

Collecting large amounts of synchronous chat data has always been difficult. Especially

when dealing with large IRC networks, the data-collection process can be truly

cumbersome and this may be one of the reasons why mass interaction on IRC has never

been researched. The most important technical difficulty encountered by previous

researchers was the impossibility for regular users to log the activities of a large number

of channels for longer time intervals (due to the architecture and the implementation of

IRC). Other impediments included the inability to get various statistical information

about the network without special administrative rights; connectivity problems (delays

between users, network splits, DDoS attacks etc.); and channel access issues (users being

"kicked" out or "banned" from channels, sometimes without any noticeable reason).

The solution to such problems was to setup an IRC server and link it to the

Austnet IRC network. This allowed the collection of large amounts of data that would

have been virtually impossible to obtain otherwise. A key issue was the linking of the

server to the IRC network. While it would be relatively easy to simply set up a stand-

alone IRC server, it is practically impossible to attract the tens of thousands of users

required for the analysis of IRC mass interaction. The linking of a server to a well-

established IRC network provided access to an already existing user base, which made

the analysis of mass interaction easier. Having unrestricted access to an IRC server linked

to an IRC network allowed capturing virtually all the data that passed through the

network during the entire one-year data-collection period, with the exception of the

intervals when the server was separated from the rest of the network due to various

connectivity problems.
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The data was collected using two approaches. The first was through the use of

custom-written IRC bots that continuously monitored the channel spaces and collected

data at specific time intervals. A bot, which is short for "robot", is defined as any

program that, once started by a human person, can connect to the IRC network and

perform various tasks such as (but not limited to) joining channels, posting messages

independently and automatically, or collecting data, without the need of further human

action. This resulted in information about the total number of channels and the total

number of users of the network. The bots ran as background processes on the same

machine on which the IRC server was installed.

The second approach was a combination of open-source TCP traffic monitoring

software (Ethereal) and custom-written programs. The traffic monitoring software ran in

the background on the same machine on which the IRC server software was installed and

continuously collected all the TCP packets that flowed through the server and contained

IRC-related data. The custom-written programs also ran as background processes on the

IRC server machine; they parsed the data collected by the traffic monitoring software and

extracted the information relevant to the total number of active channels, publicly active

channels, publicly active users (posters), and messages exchanged in the public

interaction spaces of the chat-channels.

Finally, a keyword-based algorithm was developed for the identification of

postings and other actions that were taken by various IRC bots or other automated scripts.

Since this research focused specifically on the behavior of human users, the need for a

mechanism to separate the messages sent by bots from the messages sent by humans was

very important. Hence, an algorithm was developed to perform this separation. The
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algorithm parsed all the collected message data and attempted to distinguish real users

from bots based on various patterns of keywords, phrases, and special characters that

were identified as typically being used by bots. To refine the algorithm, several iterations

were performed and random samples of messages attributed to both real users and bots

were examined between iterations. To avoid any ethical issues, absolutely no connection

was made between any identifier (nickname or Internet Protocol address) of the authors

of the messages and the content of the messages. The analysis was performed simply to

determine various patterns that would enable a better distinction between the messages

generated by bots and the messages generated by humans. In the end, an expert's review

revealed that the algorithm correctly identified over 99 percent of all the messages. Less

than 1 percent of the messages attributed by the algorithm to bots were actually

originated by human users, while less than 1 percent of the messages attributed by the

algorithm to human users were actually originated by bots. This algorithm was run on a

separate machine, using a copy of the dataset that was captured.

In the end, the data collected by the custom-written programs (in text format)

occupied an amount of approximately 4.3 GB of hard disk space. The data collected by

the traffic monitoring software occupied approximately 34.27 GB of hard disk space.

However, this data was collected and archived in zip files. The total amount of raw text

data that was collected in this manner occupied approximately 171.35 GB of hard disk

space. As mentioned above, the entire collected data, i.e., both the data collected by the

bots and the data collected by the traffic monitoring software was further processed to

extract the information relevant to this research. This information was stored into a MS

SQL Server 2000 database. At the completion of the research, the database contained 159
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tables, which were all used in one way or another in the analysis, and occupied

approximately 56 GB of hard disk space.

The first major contribution of this dissertation is the rich, large corpus of IRC

data collected over a period of one year, which will be anonymized and made available

online for future IRC research. Prior to this work, no such repository existed, as most of

the previous research on synchronous CMC systems was conducted over small time

intervals and looked at very limited numbers of synchronous interaction spaces. In the

same way the Netscan system (Smith 1999) provided detailed reports about the activity

of Usenet newsgroups, this corpus will be able to provide detailed reports about all the

IRC channels that were present on the Austnet IRC network between February 1, 2005

and January 31, 2006; and about the users who joined the network during this interval.

Furthermore, it will also be able to offer rich data for visualizing group interaction

dynamics in synchronous chat, and compare them to the group interaction dynamics

observed in Usenet newsgroups (Viegas and Smith 2004); across a number of different

communication modalities, such as email or instant messaging (Cowell et al. 2006); or in

face-to-face meetings (DiMicco, Hollenbach, and Bender 2006).

12.2 IRC Interaction Dynamics

Detailed descriptive statistics about IRC interaction dynamics were presented in Chapter

7. In what follows, the major findings are highlighted.

Over the course of one year, 43 percent of the total number of channels were

visited by users, and of these channels only 20 percent hosted public interactions.
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Approximately half of the channels that were active during any given month were

likely to be active during the following month, while approximately 75 percent of the

channels that were publicly active during any given month were likely to be publicly

active during the following month.

Approximately 30 percent of the users who visited the network during any given

month were likely to return during the following month, and likewise approximately 30

percent of the posters who were publicly active during any given month were likely to be

publicly active during the following month.

Most of the users visited the IRC network for short periods of time and joined a

small number of channels (both over the entire year, and during any given session).

Similarly, most of the posters were publicly active in a small number of channels (both

over the entire year, and during any given session).

A small proportion of posters generated the vast majority of public messages;

over the year 10 percent of the posters were responsible for 91 percent of the public

messages, while during any particular month 10 percent of that month's posters generated

80 — 85 percent of the public messages.

Publicly active channels were significantly more visited than active channels, in

terms of both size of the population (number of users) and length of time (number of

months). Approximately half of the publicly active channels were visited for five months

at the least, while approximately 25 percent of the publicly active channels hosted public

interactions for five months at the least.

A small number of channels were host to the vast majority of public interactions;

over the year 94 percent of the public messages were sent to 10 percent of the channels
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that have been publicly active throughout the year, while during any particular month, 80

— 87 percent of the public messages were sent to 10 percent of the channels that were

publicly active over that month.

Until this work, researchers did not have a good understanding about mass

interaction occurring inside large-scale synchronous CMC systems over long periods of

time. The descriptive statistics data reported in this dissertation closes this research gap

by presenting new, unique knowledge about the dynamics of such systems. The second

major contribution of this thesis consists in the description of the overall ecology of an

entire IRC network over a period of one year. This includes individual user behavior data,

individual channel activity data, and general system evolution data. In sum, the

descriptive statistics demonstrated that the analyzed IRC network was a dynamic,

constantly changing environment with great turnover in users and channels. They also

demonstrated that a small number of users were responsible for the vast majority of

public interaction inside the IRC network, and that only a small subset of the channels

existing in the IRC network were actually constantly visited and publicly active. These

results support the findings obtained for Usenet newsgroups (Whittaker et al. 1998) or

Internet forums (Soroka and Rafaeli 2006). Consequently, it is clear now that the

asymmetry of user activity is common in both synchronous and asynchronous CMC

systems.
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12.3 Extending Information Systems Theory

This dissertation addressed and extended two theories: the Information-processing

constraints theory (Jones and Rafaeli 1999) and the Critical Mass theory (Oliver,

Marwell, and Teixeira 1985).

The Information-processing constraints theory conjectures that the level of

information overload to which people are exposed when using a system influences their

participation in computer mediated communication, and that the level of activity within

an asynchronous CMC system can only rise up to a certain level. After that level is

reached, due to the effects of information overload, the activity either remains constant or

decreases. The Information-processing constraints theory has been used and cited mostly

in relation to asynchronous CMC systems (Jones, Ravid, and Rafaeli 2004; Raban and

Rafaeli 2007; Lampe, Johnston, and Resnick 2007). This research extended this theory to

synchronous CMC systems, as it empirically identified the upper information-processing

limits that constrain the community interaction dynamics seen in IRC chat-channels.

The Critical Mass theory seeks to predict the probability, extent and effectiveness

of group action in pursuit of a public good. This research extended this social theory by

providing a method to adapt two of its independent variables (production functions and

group heterogeneity), and its dependent variable (achievement of a public good) to

synchronous CMC systems; and a method to test whether its hypotheses hold in the case

of groups using synchronous interaction spaces.
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12.3.1 Information-processing Constraints Theory and IRC

While the IRC system did not pose itself restrictions on the number of users, posters, or

messages, constraints on all three dimensions emerged as a result of information

overload.

High message density was possible when the number of users and posters was

small. As the number of participants, either users or posters, increased, the message

density declined until community boundaries were reached.

The limit of the user community was identified to be less than 300 concurrent

users in one chat-channel, while the limit of the channel poster community was identified

to be less than 40 posters.

The upper limit to the message volume was reached even before the upper limit of

posters. A maximum of approximately 600 public messages per chat-channel per 20-

minute interval was observed. Roughly, this means that when the poster population was

about 30, posters could not absorb more than 20 messages per poster within 20 minutes,

or 30 messages per minute for the entire channel group.

Figures 12.1 and 12.2 illustrate these findings.

Figure 12.1 Maximum public messages versus maximum posters
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Figure 12.2 Maximum posters versus maximum users.

In the above figures each data point represents a number of channels (different

number for each point) that had the same set of data. These figures show the maximum

system potential to answer the question "what is the upper limit to activity in IRC

channels?" For example, when the maximum number of posters in a channel is 2, then

the maximum number of messages that was observed is 187. This means there could have

been channels with 2 posters and less than 187 messages, but not more than that.

High message density was possible only at low values of observed users. Beyond

a certain number of users, about 30 according to the findings, message density remained

low and declined until the community stopped growing altogether.

As predicted by the Information-processing constraints theory, the boundaries to

the rate of posting identified for IRC public channel communication were much lower

than those found in Usenet (see Appendix of Jones, Ravid, and Rafaeli 2004 for details).

Butler's work on email lists (2001) shows a mean community size of 168, which

indicates that the maximum size is much higher. This provides support for the prediction

that the number of interactive users in community spaces supported by synchronous

CMC will be much smaller than the number of interactive users in community spaces
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supported by asynchronous CMC. While in some context co-presence may be an

explanation for this, the number of individuals participating in the Austnet IRC network

implies that availability of potential participants is not likely to be the major problem.

This suggests that information processing constraints, together with the information

overload issues they give rise to, are significant factors in shaping the interaction

structures present in this otherwise relatively unconstrained communication environment.

There are several possible explanations for the clear community boundaries that

were identified. First, there is probably a human cognitive and practical limit to reading,

absorbing, and reacting to messages in a given time frame. In addition, it is possible to

have witnessed a form of diffusion of responsibility (or social loafing); when many

people are in a chat-channel, specific individuals may feel less inclined to provide

responses in the public interaction space because they know someone else is likely to

respond. In a small group people may feel more responsible and may also get more credit

and appreciation for their participation. All of these factors contribute to the interplay

between individual limitations, technology features, and emergent interaction structures.

Prior to this research, the Information-processing constraints theory was only used

in relation to asynchronous CMC systems (Jones, Ravid, and Rafaeli 2004; Raban and

Rafaeli 2007; Lampe, Johnston, and Resnick 2007); and it demonstrated that typically the

level of information overload to which people are exposed when using such a system

influences their participation in computer mediated communication. Previous research

has also shown that a group's sustainability is influenced by the publicly active members,

as well as by the publicly inactive members of the group (Koh et al. 2007), but

continuous increases in membership size and communication activity may affect both
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positively and negatively the sustainability of groups in asynchronous CMC systems

(Butler 2001). However, very little was known about these issues with respect to

synchronous CMC systems. The third main contribution of this research is the testing of

the Information-processing constraints theory in the context of an IRC network. This

work was the first endeavor of this kind, and it showed clearly that the model is a solid

one, and that its predictions are easily observable in the case of dynamic synchronous

interaction spaces such as IRC channels.

12.3.2 Critical Mass Theory and IRC

To date, little is known about the initial conditions that lead to the formation of groups in

synchronous spaces such as IRC channels, as well as about the subsequent conditions

necessary for those groups to evolve and be sustained over longer periods of time. The

notion of critical mass if often used when discussing the long-term sustainability of

groups and the general consensus is that a group needs in its early stages a certain critical

mass of members in order to become and remain successful over longer periods of time.

The Critical Mass theory of sociologists Oliver, Marwell, and Teixeira (1985)

provides a theoretical model for predicting a group's success over time. Based on Olson's

work on various theories of collective action (1965), this theory tries to predict the effects

that production functions and the group's interest and resource heterogeneity would have

on "the probability, the extent and effectiveness of group actions in pursuit of collective

good." One of the theory's most important conjectures is that a group's level of

heterogeneity, together with the shapes of various production functions, defined as

relationships between resources contributed by the group and the collective output of that
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group, can be used to distinguish between the likelihood of longer-term success of the

group. This social theory was used in relation to CMC systems by several researchers.

Markus (1987) used it to explain the diffusion and adoption of interactive media.

Arguing that usage of interactive media can have only two states, "all or nothing," she

proposed several hypotheses about the relationship between the shape of the production

functions and the heterogeneity of resources and interests on the one hand, and the

achievement of universal media access on the other. Thorn and Connolly (1987), relying

on the Critical Mass theory and on some other literature on collective action, studied the

contribution of information to "databases," which were essentially archives of computer

mediated communication. Seeing the "databases" as interactive media that provided

public goods, they tried to determine the factors that influenced users' level of

contributions. They produced a conceptual framework, which proposed that reduced

contributions occurred because of greater contribution costs; larger groups of

participants; lower value of information to participants; and greater asymmetries in

information value and benefits across participants. Rafaeli and LaRose (1993) drew from

both Markus' and Thorn and Connolly's work and made several predictions about the

success of electronic bulletin boards. Overall, only slight support for the Critical Mass

theory was found, but the authors offered a few possible explanations for this situation.

Their conclusion was that "the study of interactive technologies needs to proceed beyond

the case study level" if one is to better discern the factors that lead to the success or

failure of computerized collaborative media.

Although Markus (1987) proposed a critical mass theory that would be applicable

to all types of interactive media, most, if not all, of the recent research has used this
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theory focusing exclusively on asynchronous CMC systems (Thorn and Connolly 1987;

Rafaeli and LaRose 1993, Fulk et al. 2004). The results of the existing studies showed

that using a "public goods" approach such as the Critical Mass theory in the domain of

electronic communication media may be more complex then initially predicted by the

theory itself. Thorn and Connolly admitted that both more empirical laboratory work and

more theoretical extensions are needed in order to fully demonstrate "the power of

`public goods' thinking for the analysis of organizational communication issues." Rafaeli

and LaRose acknowledged that the picture emerging from the results of their data

analysis was that "of a more complex world than predicted by public goods theories."

They suggested that further refinements were needed when applying such theories, the

Critical Mass theory in particular, to collaborative media.

Fulk et al. (1996) looked at connectivity (defined as the capability to link people

together both socially and physically), and communality (defined as a group's joint

holding of a single body of information) as specific forms of public goods in interactive

systems. Monge et al. (1998) developed a public-goods based theory that described the

production of collective action in alliance-based inter-organizational communication and

information systems. Fulk et al. (2004) developed and tested a model of how "individual-

level factors interact with perceptions of collective action in influencing individuals'

motivations to contribute privately controlled information to a collective repository."

The general consensus among researchers is that in the case of CMC systems the

public goods produced by a group as a result of collective action are the communication

and the information functions the systems provide, rather than the systems themselves.
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This dissertation adapted the Critical Mass theory to synchronous CMC systems

and tested its ability to help predict the long-term sustainability of group interaction in

synchronous interaction spaces. Specifically, it proved that it is possible to predict IRC

channels' chances of survival by looking at the channels' level of heterogeneity and at the

channels' production functions during their initial stages of life.

The degree of homogeneity or heterogeneity for an IRC channel was measured by

"poster diversity" variables, whose values ranged from 1 to 100. A channel was

considered more homogeneous if its poster population stayed relatively constant as time

passed (i.e., every time the channel was active the same users were present); and more

heterogeneous if its poster population changed significantly over time (i.e., every time the

channel was active, different users were present). A maximum value of 100 for the poster

diversity variable would indicate a fully homogeneous population, while a minimum

value of 1 would indicate a population with the highest level of heterogeneity.

The production functions were computed based on the definition provided by the

Critical Mass theory. The theory defined production functions as the relationships

between resources contributed by a group and the collective output of that group. In the

case of IRC channels, the number of users present in the channel was considered a

measure for the available group resources, while the number of public messages

exchanged was considered a measure for the amount of group success achieved as a

result of the collective action of the group.

To predict the long-term survivability of IRC channels, Cox regression models

were created for four time intervals in the initial stages of the channels' lives: the first

two hours, the first day, the first week and the first two weeks. These models used as
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predictors various variables that measured the channels' overall activity, the trajectories

of the channels' activity, the level of heterogeneity of the channels' user populations, and

the channels' types of production functions.

Both of the independent variables drawn from the Critical Mass theory were

helpful in the predictions. The heterogeneity of the channels' user populations was found

to be a strong indicator for the channels' likelihood of survival by all the four models.

Channels with heterogeneous populations were more likely to survive than channels with

homogeneous populations.

The shape of the channels' production functions was identified as a good

predictor only for the longest analyzed interval. Four types of production functions were

used: constant, ascending, descending, and variable. The results of the Cox regression

model for the first two weeks of life indicated that channels with constant production

functions were the most likely to die, while channels with variable production functions

were the most likely to survive. The likelihood of survival of channels with ascending

production functions was slightly lower than that of channels with variable production

functions. The model failed to produce statistically significant results for the channels

with descending production functions, but this might have been due to the fact that there

were only a few channels characterized by this type of production function, compared to

the rest of the channels.

In addition, the number of messages was found to be a good indicator of the

channels' likelihood of survival in three of the four cases. While the number of messages

in the first two hours of life was not significant, the number of messages sent to a channel

during its first day of life, first week of life and first two weeks of life were identified as
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good predictors by the Cox regression models. The more messages that were exchanged

in a channel, the higher the chances of survival were for that channel. The trajectories of

channel activity did not predict the likelihood of channels' survival at all for any of the

four intervals analyzed.

Figures 12.3 and 12.4 show scatter plots of poster diversity and number of

messages, which were the survival predictors identified by the best model, by lifespan,

the dependent variable, with the channels grouped by the type of production function.

Figure 12.3 Poster diversity by lifespan 	 Figure 12.4 Number of messages by
for the first 2 weeks of life.	 lifespan for the first 2 weeks of life.

Overall, the Cox regression procedure that used the predictors computed for the

first two weeks of a channel's life produced the best model for predicting IRC channels'

survivability. This suggests that various channel characteristics and activity measures for

the immediate two-week period following 4, channel's creation can be used as strong

predictors of its long-term sustainability. Also, the results showed that the Critical Mass

theory can be successfully applied to predict the long-term sustainability of synchronous

interaction spaces. The shape of the productions functions and the heterogeneity of the
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channels' user populations during the channels' first two weeks of life were strong

indicators of the channels' likelihood of survival.

To date, the use of the Critical Mass theory in the context of interactive media has

been limited, both in terms of the types of systems used to test the theory, and in terms of

relevance of the findings. The general consensus of previous studies was that using a

"public goods" approach such as the Critical Mass theory in the domain of electronic

communication media may be more complex then initially predicted by the theory itself;

and that further refinements would be needed when applying such theories to CMC

systems. The formation of groups in online spaces, and the necessary initial conditions

that may lead to their long-term sustainability have always been topics of interest for

researchers. However, very limited work actually addressed the formation of groups and

their sustainability over time in large-scale CMC systems. Particularly in the case of

synchronous CMC systems, this kind of knowledge was virtually nonexistent. This

dissertation is the first endeavor to address this research gap, by successfully adapting the

Critical Mass theory to synchronous CMC media, and proving that its predictions can

hold in the case of IRC channels. Using two of its sets of independent variables — the

group heterogeneity and the shape of the production functions — computed for the initial

stages of IRC channels' lives, the hypotheses of the Critical Mass theory were proven to

be correct.
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12.4 Baseline Data for Synchronous CMC Recommendation Systems

Traditionally, recommendation systems have been categorized into four broad types:

content-based systems, recommendation support systems, social data mining systems,

and collaborative filtering systems (Terveen and Hill 2001). Of these, the content-based

systems and the collaborative filtering systems are the most common, and they are

sometimes combined into hybrid recommendation systems (Adomavicius and Tuzhilin

2005; Degemmis, Lops, and Semeraro 2007). Such systems typically employ the

users/items/ratings model where a rating function is mapped from each user/item pair to

some rating value (Terveen and Hill 2001). It has been argued recently that the

users/items/ratings model might not suffice when dealing with complex and/or dynamic

domains. As a result, a multidimensional approach to recommendation systems was

suggested, where multiple variables should be taken into account when building the

recommendation algorithm (Adomavicius and Tuzhilin 2001; Adomavicius et al. 2005).

Lately, there has been an emergence of recommendation systems that focus specifically

on social recommendations. As opposed to the traditional recommender systems that

were used to recommend and/or sell various products or services such as books, movies,

Usenet news, vacation packages, etc. (O'Connor et al. 2001; Schafer, Bowman, and

Carroll 2002; Miller et al. 2003), social recommendations focus on different social

aspects characteristic to online communities. These systems can be divided into two main

categories: social matching systems, which attempt to "(partially) automate the process of

bringing people together" (Terveen and McDonald 2005); and social space

recommendation systems, which attempt to match people with interaction spaces (Van

Dyke, Lieberman, and Maes 1999).
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A recommendation system for synchronous CMC would fall into this latter

category, as it would attempt to recommend chat spaces to users. To build such a system,

there is a need for extensive baseline profile data on both user behavior and interaction

space activity. This baseline data would serve as input for accurate prediction algorithms

for the short-term activity and the long-term sustainability of the spaces. Understanding

the short-term activity predictability of interaction spaces would help in providing instant

recommendations. Understanding the long-term sustainability of interaction spaces would

help in recommending only spaces that have a good chance of survival, and in

determining when recommendations would lead to a more functional group in the long

run.

The results of the analysis of the IRC interaction dynamics provided a large

amount of baseline data about the users and the channels of the researched IRC network.

The extension of the Information-processing constraints theory showed that constraints

on the number of users, posters, and messages emerged as a result of information

overload in IRC chat-channels, and determined the actual upper boundaries of these

variables. The extension of the Critical Mass theory proved that it is possible to predict

IRC channels' long-term sustainability by looking at the channels' level of heterogeneity

and at the channels' production functions during their initial stages of life.

To understand whether it is possible to make short-term predictions (i.e.,

predictions for the next 20-minute interval) about the activity of IRC chat-channels,

several linear and nonlinear regression models were created for a sample of channels.

Both the linear and the nonlinear regression models used various combinations of

independent variables to produce a best predictor variable. The accuracy of the
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predictions was measured using Spearman correlation coefficients between the best

predictor computed by the regression models and the actual values of observed posters,

for each channel in the sample.

For the best linear regression model the overall correlation coefficient between

the best predictor and the observed posters was 0.662. The results of the best linear

regression model are reviewed in Table 12.1.

Table 12.1 Coefficients for Best Linear Regression Prediction Model for All Channels

AvgOP_Prev3_20 represents the average of the observed number of posters

during the previous three 20-minute time intervals for each channel in the sample;

AvgOP_Prev3_20_Nwrk represents the average number of observed posters per channel

for the entire network during the previous three 20-minute time intervals;

AvgOP_Prev3wks represents the average number of observed posters for the closest three

20-minutes intervals (just before, current and just after) at the same time during the

previous three weeks, for each channel in the sample; Slope represents the slope of the

line determined by the observed values for the previous three 20-minute time intervals for

each channel and it is a basic indicator of the amount by which the number of posters

varied during the previous hour; SP3 represents a seasonality predictor whose value was

predicted by a multiplicative decomposition of a time series analysis of the observed

values per channel during the interval August 1 2005 — August 31 2005; TC2 represents a
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Spearman correlation coefficient between "time" and the observed number of posters

during the last hour, offering a general idea about the direction of the conversation (up,

down or constant).

For the best nonlinear regression model the overall correlation coefficient

between the best predictor and the observed posters was 0.694. Also, very important to

notice, the best nonlinear regression model used a minimal set of predictors. The best

predictor in this case was computed using the following equation:

AvgOP_Prev3_20Mod represents the modified value of AvgOP_Prev3_20 and

SlopeMod represents the modified value of Slope. Transformations were necessary in

order to eliminate the non-positive values that would have cause potential problems for

the nonlinear regression model.

Table 12.2 reviews the parameter estimates for the best nonlinear regression

model described in the equation above.

Table 12.2 Parameter Estimates for the Minimal Best Nonlinear Prediction Model

Parameter Estimate Std. Error
95% Confidence Interval

Lower Bound Upper Bound
a
b
c
d

.968
-3.504
2.717

 -.639

.003

.023

.108

.027

.963
-3.548
2.505
-.693

.974
-3.459
2.928
-.586

Overall, both regression models were found to be useful in the prediction of short-

term channel activity. However, the nonlinear regression model produced slightly better

predictions using a smaller set of predictors. The best nonlinear regression model

included only predictors related to the previous hour of channel activity. This suggests

that in a very dynamic synchronous medium such as IRC, accurate predictions about
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future activity can be made taking into account only information pertinent to the

channels' activity during the most recent hour, rather than looking at historic data over

longer periods of time.

To further improve the short-term predictions of channel activity, while also

reducing the costs involved in making such predictions, there was a need to identify the

factors that can be used to distinguish highly predictable channels from unpredictable

channels. Based on the results of the best nonlinear regression model three categories of

predictability were considered: high predictability, low predictability, and perfect

predictability. Several descriptive statistics were computed for all the channels and were

then entered as independent variables into three logistic regression models. These models

attempted to find which of the descriptive statistics would best differentiate high-

predictability channels from low-predictability channels, low-predictability channels

from perfect-predictability channels, and perfect-predictability channels from high-

predictability channels.

The first logistic regression model revealed that when trying to determine whether

the activity of a chat-channel during a particular week would have a high degree or a low

degree of predictability, the best indicators were the number of days the channel was

visited and the number of days the channel sustained public interactions during the

previous month. The predictions were successful in 80 percent of the cases.

The second logistic regression model revealed that when trying to determine

whether the activity of a chat-channel during a particular week would have a low degree

of predictability or would be perfectly predictable, the best indicator was the number of
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days the channel sustained public interactions during the previous month. The predictions

were successful in 75 percent of the cases.

The third logistic regression model revealed that when trying to determine

whether the activity of a chat-channel during a particular week would have a high degree

or predictability or would be perfectly predictable, the best indicator was the number of

days the channel sustained public interactions during the previous month. The predictions

were successful in 85 percent of the cases.

The combination of all these results — the IRC network dynamics, the information

overload data related to IRC channels, together with the algorithms for predicting the

short-term activity and the long-term sustainability of IRC channels, can be considered

baseline data for the construction of synchronous social interaction space

recommendation systems.

This dissertation contributed to future efforts toward building real-time

recommendation systems for synchronous CMC systems in several ways. First, it

identified the upper boundaries to group interaction inside the synchronous interaction

spaces of an IRC network. The understanding of such boundaries is important in order to

avoid recommending chat spaces that are approaching, or have already reached the

maximum level of activity with which their users can cope. Second, it showed how to

differentiate predictable IRC channels from unpredictable IRC channels, and it

determined the best metrics for predicting short-term activity inside IRC channels. Third,

it offered insight into how to automatically profile both the users and the interaction

spaces of a large-scale synchronous CMC system.
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12.5 Limitations

The first limitation that needs to be addressed is the relevance of the findings with respect

to other IRC networks or other large-scale synchronous chat systems. Thousands of IRC

networks exist worldwide and their sizes vary greatly. Some host tens of thousands of

channels and are visited by hundreds of thousands of users on a daily basis, while others

have much lower numbers, ranging from tens to hundreds, of both channels and users.

The network analyzed in this research had, at any time during the data-collection period

provided there were no network connectivity issues, on average, approximately 2,500

channels and 4,000 users. Compared to other existing IRC networks these numbers

qualified it as medium-sized. While common characteristics can certainly be found in

many of the existing networks, it is likely that differences among them also exist. Ideally,

similar research should be conducted both on large and small networks, as well as on

other medium-sized networks and other types of large-scale synchronous chat systems in

order to validate the findings reported in this dissertation.

The second limitation relates to the noise of the data, with respect to data

generated by bot users versus data generated by human users. While it was possible to

create an algorithm that correctly distinguished bot posters from human posters in over

99 percent of the cases, identifying bot lurkers from human lurkers was impossible. This

was because in the absence of any publicly posted messages, the collected data did not

provide any indicators about the nature of the users of the network. While the impact of

this was not likely to be a major one, it should however be mentioned that the variables

that described the total number of users may have included a small proportion of hots,

and not only human users.
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The third possible limitation of this research relates to the variable used as a

measure of channel activity, to the variables chosen as predictors for all the regression

models, and to the definitions used to describe the birth and death of channels.

Channel activity is a surrogate measure for the group interactions occurring inside

IRC chat-channels. Channel activity can easily be operationalized in terms of many

distinct measures, such as the overall number of potential contributors (e.g., number of

users per channel); the overall number of actual contributors (e.g., number of posters per

channel); the overall number of public messages; the rates of contribution per user (e.g.,

number of messages per user); the rates of contribution per poster (e.g., number of

messages per poster); the complexity of the contributions (e.g., the number of words per

message); the proportion of messages that receive replies; or the number of distinct

threads of conversation. While all these variables represent the level of group interaction,

as they clearly indicate the amount and the intensity of the public activity of any IRC

chat-channel, none of them were addressed by any previous work. Therefore, a starting

point needed to be chosen. This research focused on one variable, specifically the number

of actual contributors, but further studies should be conducted using other measures of

channel activity in order to validate the findings reported in this dissertation.

The current lack of research in the area of predicting activity in synchronous

systems, both short-term and long-term, implied that there were no well-known variables

that could be used to predict the activity of IRC channels. Consequently, there was a need

to choose a point from which to start working toward making such predictions. Overall,

the chosen predictors were successful in accomplishing the tasks they were intended to

perform. However, the set of predictors can certainly be further improved.
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Similarly, because of the same lack of research, the "birth" and "death" of

channels needed to be defined based only on empirical observations and common sense.

The main reason for defining the birth and death of chat-channels in terms of the level of

activity supported was because of the interest presented by this level of activity. A

channel's creation day and disappearance day were considered less relevant mostly

because channels could easily be created and could exist for long periods of time after

their creation without being visited at all, before they would eventually disappear.

The last limitation relates to the procedure used to create the dataset that was used

for most of this research. This dataset was selected through a stratified random sampling

of all the channels that were publicly active during August 2005. The stratification was

based on the channels' number of visitors and number of visited days. While there are

other possible approaches for the stratification of channels, the lack of previous research

in this area made it necessary to select these two particular variables as a starting point. In

the absence of time constraints and processing power constraints, a larger set of channels

should be analyzed to maximize the relevance of the findings. This larger set should

include either several stratified random samples, based on different stratification

methods, or, in the ideal case, all the channels that were publicly active during a

particular month.
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12.6 Future Research

The rich, large corpus of information containing the one-year data will be made available

to other researchers as it offers a plenitude of future research opportunities related to

synchronous chat. Among these opportunities, one could mention: social networks

research; introduction management research; analyzing the formation of relationships on

IRC; analyzing the use of language on IRC; analyzing the use of nicknames on IRC;

analyzing the differences between bot users activity and human users activity; analyzing

the private interactions among IRC users.

The profiling of both users and chat-channels could further be extended. Detailed

profile data could be created for various subsets of users and channels (for example the

characteristics of the most active users and channels could be compared to the

characteristics of less active users and channels) in order to better understand the

dynamics of IRC networks.

The Information-processing constraints theory could further be extended by a

more direct comparison between various types of synchronous and asynchronous CMC

systems (such as IRC channels, Usenet newsgroups, or Listsery email lists). Furthermore,

the collected data could permit the testing of Butler's resource-based theory of

sustainable online social structures (2001) — which proved that membership size and

communication activity influence positively and negatively the sustainability of groups in

asynchronous CMC systems — in the context of large-scale synchronous chat systems.

Social visualizations of both group activity and individual activity in synchronous

CMC systems represent another potential area of future research. Using the collected
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data, tools such as those described by Viegas and Smith (2004) for visualizing activity in

Usenet newsgroups could be created for visualizing activity inside IRC channels.

The use of the Critical Mass theory in the context of synchronous interaction

spaces can also be further explored. Originally, the theory offered hypotheses about only

two types of production functions: accelerating and decelerating. This dissertation

identified twelve categories of production functions for IRC channels, which were

grouped into four broader types. Examining each of these twelve categories and their

effect on the group sustainability more deeply, for both new and already established

channels, would be an interesting endeavor. Also, using other variables as measures of

the public goods produced as a result of collective action in IRC channels could offer

interesting insight into how the Critical Mass theory can be applied to large-scale

synchronous CMC systems.

Finally, building a recommender system for IRC chat-channels would be the most

natural continuation of this research. Since IRC networks often contain thousands of

chat-channels, populated by even larger numbers of users, navigating through them is

difficult. In part, this is because only relatively impoverished mechanisms exist for user

navigation. This research could easily represent the foundation for various types of real-

time recommender algorithms. The data-collection method described in this dissertation

could provide information relevant for both automated user profiling (what channels do

users visit, how many channels do users visit, how much time do users spend during a

session, how often do users visit the network etc.) and automated space profiling (when

are channels most active, how many users visit them, how often are channels visited etc.).

Real-time recommendations could be provided to a user either implicitly, based on
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mining the profile data and identifying channels with similar characteristics to those that

were previously visited by the user; or explicitly, based on various parameter-based

requests. Knowing the boundaries of channel activity would help avoid recommending

channels that are approaching or have already reached the maximum level of activity that

can be supported by users. An accurate mechanism for making short-term predictions

would provide significant insight about when to recommend and when not to recommend

a particular channel, while an accurate mechanism for making long-term predictions

would help in recommending only spaces that have a good chance of survival, and in

determining when recommendations would actually lead to more functional groups in the

long run.



APPENDIX

CORRELATION COEFFICIENTS TABLES

This appendix contains all the tables that report the correlation coefficients obtained

between the observed posters and the eight computed best predictors, for the linear and

non linear regression models described in Chapter 9.
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Table A.1 Linear Regression Correlation Coefficients for All Channels

BP1 BP2 BP3 BP4  BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .663(**) .662(**) .675(**) .674(**) .664(**) .662(**) .677(**) .676(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 45360 45360 45360 45360 45360 45360 45360 45360

Table A.2 Linear Regression Correlation Coefficients for All Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .467(**) .492(**) .503(**) .503(**) .492(**) .492(**) .503(**) .493(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

2 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .573(**) .573(**) .562(**) .559(**) .573(**) .570(**) .561(**) .559(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

3 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .428(**) .427(**) .434(**) .433(**) .428(**) .427(**) .435(**) .433(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

4 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .611(**) .609(**) .578(**) .576(**) .610(**) .607(**) .582(**) .581(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040  5040  5040 5040 5040

5 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .591(**) .590(**) .603(**) .601(**) .590(**) .589(**) .601(**) .596(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .358(**) .364(**) .535(**) .534(**) .372(**) .370(**) .541(**) .539(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

7 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .573(**) .574(**) .568(**) .567(**) .575(**) .572(**) .568(**) .567(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .521(**) .521(**) .476(**) .478(**) .522(**) .520(**) .478(**) .477(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .838(**) .837(**) .830(**) .830(**) .838(**) .838(**) .832(**) .832(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

** Correlation is significant at the 0.01 level (2-tailed).



Table A.3 Linear Regression Correlation Coefficients for All Channels Grouped by Size

Size BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
large Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .758(**) .757(**) .742(**) .742(**) .758(**) .757(**) .744(**) .743(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .510(**) .511(**) .575(**) .573(**) .515(**) .513(**) .578(**) .575(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

small Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .518(**) .518(**) .516(**) .514(**) .518(**) .516(**) .515(**) .513(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 . 15120 15120 15120

Table A.4 Linear Regression Correlation Coefficients for All Channels Grouped by Intensity

Intensity BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
high Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .728(**) .728(**) .766(**) .765(**) .730(**) .729(**) .768(**) .767(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

low Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .346(**) .346(**) .351(*") .351(**) .345(**) .345(**) .349(**) .349(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .339(**) .339(*") .336(**) .336(**) .338(**) .338(**) .334(**) .334(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120. 15120 15120 15120 15120 15120 15120 15120

** Correlation is significant at the 0.01 level (2-tailed).



Table A.5 Linear Regression Correlation Coefficients for All Small Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .520(**) .519(**) .516(**) .518(**) .520(**) .518(**) .516(**) .517(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 . 15120 15120 15120 15120

Table A.6 Linear Regression Correlation Coefficients for All Small Channels, Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .536(**) .536(**) .536(**) .536(**) .536(**) .536(**) .536(**) .536(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

2 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .581(**) .581(**) .579(**) .581(**) .581(**) .579(**) .579(**) .580(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

3 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .409(**) .408(**) .407(**) .407(**) .409(**) .409(**) .407(**) .407(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040_ 5040_ 5040 5040 5040 5040

Table A.7 Correlation Coefficients for All Medium Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .598(**) .599(**) .574(**) .574(**) .599(**) .598(**) .576(**) .576(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

** Correlation is significant at the 0.01 level (2-tailed).



Table A.8 Linear Regression Correlation Coefficients for All Medium Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
4 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .606(**) .605(**) .572(**) .572(**) .608(**) .606(**) .575(**) .575(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

5 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .618(**) .617(**) .603(**) .603(**) .618(**) .617(**) .600(**) .600(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .561(**) .564(**) .540(**) .540(**) .562(**) .562(**) .545(**) .545(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

Table A.9 Linear Regression Correlation Coefficients for All Large Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho ObservedPosters Correlation Coefficient .732(**) .732(**) .726(**) .725(**) .733(**) .734(**) .727(**) .727(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N _ 	 15120 15120 15120 15120  15120 15120 15120 15120

Table A.10 Linear Regression Correlation Coefficients for All Large Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
7 Spearman's rho ObservedPosters Correlation Coefficient .530(**) .532(**) .541(**) .539(**) .532(**) .531(**) .541(**) .541(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 \ 	 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho ObservedPosters Correlation Coefficient .460 (**) .461(**) .443(**) .446(**) .466(**) .465(**) .443(**) .446(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040  5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho ObservedPosters Correlation Coefficient .832 (**) .831(**) .827(**) .827(**) .832(**) .833(**) .829(**) .829(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040  5040 5040 5040 5040 5040 5040

** Correlation is significant at the 0.01 level (2-tailed).



Table A.11 Linear Regression Correlation Coefficients for All Low-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .581(**) .582(**) .595(**) .595(**) .581(**) .580(**) .600(**) .599(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

Table A.12 Linear Regression Correlation Coefficients for All Low-Intensity Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .475(**) .475(**) .503(**) .503(**) .475(**) .475(**) .513(**) .503(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

4 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .603(**) .604(**) .614(**) .612(**) .605(**) .604(**) .615(**) .614(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

7 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .553(**) .554(**) .568(**) .569(**) .552(**) .551(**) .575(**) .575(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

Table A.13 Linear Regression Correlation Coefficients for All Medium-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho ObservedPosters Correlation Coefficient .577(**) .576(**) .564(**) .564(**) .577(**) .575(**) .595(**) .567(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 	 15120 15120 15120 15120 15120 15120  15120 15120

** Correlation is significant at the 0.01 level (2-tailed).



Table A.14 Linear Regression Correlation Coefficients for All Medium-Intensity Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
2 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .583(**) .582(**) .580(**) .579(**) .583(**) .578(**) .580(**) .581(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

5 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .616(**) .616(**) .608(**) .608(**) .617(**) .616(**) .613(**) .611(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .518(**) .518(**) .493(**) .493(**) .518(**) .517(**) .501(**) .498(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

Table A.15 Linear Regression Correlation Coefficients for All High-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPosters 	 Correlation Coefficient .717(**) .717(**) .738(**) .738(**) .717(**) .718(**) .740(**) .739(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

Table A.16 Linear Regression Correlation Coefficients for All High-Intensity Channels Grouped by Type

Type BP1 BP2  BP3 BP4 BP5 BP6 BP7 BP8
3 Spearman's rho ObservedPosters Correlation Coefficient .386(**) .386(**) .359(**) .361(**) .382(**) .382(**) .358(**) .359(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho ObservedPosters Correlation Coefficient .369(**) .369(**) .480(**) .479(**) .370(**) .370(**) .483(**) .482(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho ObservedPosters Correlation Coefficient .831(**) .831(**) .825(**) .825(**) .832(**) .833(**) .827(**) .827(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

** Correlation is significant at the 0.01 level (2-tailed).



Table A.17 Nonlinear Regression Correlation Coefficients for All Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPostersPlusl 	 Correlation Coefficient .664(**) .664(**) .676(**) .676(**) .667(**) .668(**) .677(**) .677(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 45360 45360 45360 45360 45360 45360 45360 45360

Table A.18 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPostersPlusl 	 Correlation Coefficient .513(**) .513(**) .524(**) .524(**) .513(**) .513(**) .536(**) .536(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

2 Spearman's rho 	 ObservedPostersPlusl 	 Correlation Coefficient .577(**) .576(**) .572(**) .570(**) .575(**) .580(**) .573(**) .571(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

3 Spearman's rho 	 ObservedPostersPlusl 	 Correlation Coefficient .428(**) .425(**) .421(**) .421(**) .427(**) .428(**) .422(**) .421(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

4 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .615(**) .614(**) .573(**) .574(**) .619(**) .616(**) .578(**) .579(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040  5040 5040 5040 5040

5 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .590(**) .591(**) .604(**) .602(**) .596(**) .598(**) .599(**) .599(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .356(**) .357(**) .537(**) .538(**) .368(**) .367(**) .543(**) .543(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

7 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .553(**) .553(**) .561(**) .561(**) .553(**) .557(**) .564(**) .563(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .512(**) .515(**) .462(**) .461(**) .514(**) .519(**) .463(**) .462(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .839(**) .839(**) .832(**) .832(**) .839(**) .840(**) .833(**) .833(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 _	 5040

** Correlation is significant at the 0.01 level (2-tailed).



Table A.19 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Size

Size BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
large Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .757(**) .757(**) .742(**) .742(**) .757(**) .758(**) .743(**) .743(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .513(**) .513(**) .574(**) .574(**) .522(**) .522(**) .576(**) .576(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

small Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .523(**) .521(**) .518(**) .517(**) .521(**) .524(**) .519(**) .518(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120. 15120 15120 15120 15120 15120 15120 15120

Table A.20 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Intensity

Intensity BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
high Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .733(**) .733(**) .768(**) .769(**) .737(**) .737(**) .770(**) .770(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

low Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .588(**) .587(**) .575(**) .575(**) .589(**) .590(**) .578(**) .578(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .563(**) .564(**) .549(**) .547(**) .565(**) .569(**) .548(**) .547(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120. 15120 15120 15120 15120 15120 15120 15120

** Correlation is significant at the 0.01 level (2-tailed).



Table A.21 Nonlinear Regression Correlation Coefficients for All Channels Obtained Using a Reduced Set of Independent Variables

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .659(**) .660(**) .677(**) .677(**) .660(**) .661(**) .678(**) .678(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N _ 	 45360 45360_ 45360 45360 45360_ 45360 45360 45360

Table A.22 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Size Obtained Using a Reduced Set
of Independent Variables

Size BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
large Spearman's rho ObservedPostersPlus1 Correlation Coefficient .757(**) .757(**) .743(**) .743(**) .758(**) .758(**) .743(**) .743(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho ObservedPostersPlus1 Correlation Coefficient .500(**) .502(**) .576(**) .577(**) .501(**) .502(**) .577(**) .577(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

small Spearman's rho ObservedPostersPlus1 Correlation Coefficient .520(**) .520(**) .522(**) .520(**) .523(**) .524(**) .522(**) .520(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N	 _ 15120 15120 15120 15120 15120 15120 15120 15120

Table A.23 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Intensity Obtained Using a Reduced Set of
Independent Variables

Intensity BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
high Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .725(**) .725(**) .769(**) .769(**) .725(**) .725(**) .770(**) .770(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

low Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .588(**) .590(**) .576(**) .577(**) .587(**) .589(**) .580(**) .580(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

medium Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .560(**) .563(**) .550(**) .549(**) .567(**) .568(**) .548(**) .547(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 . 15120 15120 15120

** Correlation is significant at the 0.01 level (2-tailed).



Table A.24 Nonlinear Regression Correlation Coefficients for All Channels Grouped by Type, Obtained Using a Reduced Set of
Independent Variables

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .536(**) .524(**) .536(**) .536(**) .524(**) .524(**) .536(**) .536(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

2 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .571(**) .571(**) .576(**) .573(**) .575(**) .577(**) .576(**) .573(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

3 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .427(**) .430(**) .425(**) .424(**) .430(**) .428(**) .425(**) .425(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

4 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .619(**) .620(**) .575(**) .578(**) .615(**) .616(**) .578(**) .580(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

5 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .590(**) .593(**) .602(**) .603(**) .597(**) .600(**) .599(**) .598(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .333(**) .334(**) .542(**) .543(**) .334(**) .334(**) .547(**) .547(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

7 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .550(**) .552(**) .562(**) .561(**) .551(**) .554(**) .566(**) .565(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .506(**) .515(**) .463(**) .463(**) .517(**) .516(**) .460(**) .461(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .839(**) .839(**) .831(**) .832(**) .839(**) .840(**) .833(**) .833(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

** Correlation is significant at the 0.01 level (2-tailed).
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Table A.25 Nonlinear Regression Correlation Coefficients for All Channels Obtained
Using Only Independent Variables Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .694 .694

Sig. (2-tailed) .000 .000
N 45360 45360

Table A.26 Nonlinear Regression Correlation Coefficients for All Channels Grouped by
Type Obtained Using Only Independent Variables Relative to the Previous Hour of
Channel Activity

Type BP1 BP2
1 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .484(**) .475(**)

Sig. (2-tailed) .000 .000
N 5040 5040

2 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .582(**) .580(**)
Sig. (2-tailed) .000 .000
N 5040 5040

3 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .457(**) .456(**)
Sig. (2-tailed) .000 .000
N 5040 5040

4 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .597(**) .599(**)
Sig. (2-tailed) .000 .000
N 5040 5040

5 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .609(**) .608(**)
Sig. (2-tailed) .000 .000
N 5040 5040

6 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .554(**) .554(**)
Sig. (2-tailed) .000 .000
N 5040 5040

7 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .572(**) .572(**)
Sig. (2-tailed) .000 .000
N 5040 5040

8 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .505(**) .506(**)
Sig. (2-tailed) .000 .000
N 5040 5040

9 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .842(**) .841(**)
Sig. (2-tailed) .000 .000
N 5040 5040

Table A.27 Nonlinear Regression Correlation Coefficients for All Channels Grouped by
Size Obtained Using Only Independent Variables Relative to the Previous Hour of
Channel Activity

Size BP1 BP2
large Spearman's rho ObservedPostersPlus1 Correlation Coefficient .762(**) .762(**)

Sig. (2-tailed) .000 .000
N 15120 15120

medium Spearman's rho ObservedPostersPlus1 Correlation Coefficient .590(**) .590(**)
Sig. (2-tailed) .000 .000
N 15120 15120

small Spearman's rho ObservedPostersPlus1 Correlation Coefficient .534(**) .532(**)
Sig. (2-tailed) .000 .000
N 15120 15120
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Table A.28 Nonlinear Regression Correlation Coefficients for All Channels Grouped by
Intensity Obtained Using Only Independent Variables Relative to the Previous Hour of
Channel Activity

Intensity BP1 BP2
high Spearman's rho ObservedPostersPlus1 Correlation Coefficient .783(**) .783(**)

Sig. (2-tailed) .000 .000
N 15120 15120

low Spearman's rho ObservedPostersPlus1 Correlation Coefficient .589(**) .589(**)
Sig. (2-tailed) .000 .000
N 15120 15120

medium Spearman's rho ObservedPostersPlus1 Correlation Coefficient .569(**) .569(**)
Sig. (2-tailed) .000 .000
N 15120 15120



Table A.29 Nonlinear Regression Correlation Coefficients for All Small Channels

BPI 	 , BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .533(**) .534(**) .532(**) .531(**) .533(**) .534(**) .529(**) .529(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

Table A.30 Nonlinear Regression Correlation Coefficients for All Small Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .524(**) .524(**) .524(**) .524(**) .524(**) .524(**) .524(**) .536(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040  5040 5040 5040

2 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .587(**) .587(**) .585(**) .584(**) .587(**) .587(**) .582(**) .582(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

3 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .441(**) .441(**) .441(**) .437(**) .441(**) .441(**) .437(**) .434(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

Table A.31 Nonlinear Regression Correlation Coefficients for All Small Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .532(**) .532(**)

Sig. (2-tailed) .000 .000
N 15120 15120



Table A.32 Nonlinear Regression Correlation Coefficients for All Small Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity and Grouped by Type

Type BP1 BP2
1 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .524(**) .524(**)

Sig. (2-tailed) .000 .000
N 	 _ 5040 5040

2 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .582(**) .582(**)
Sig. (2-tailed) .000 .000
N 5040 5040

3 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .444(**) .444(**)
Sig. (2-tailed) .000 .000
N 5040 5040

Table A.33 Nonlinear Regression Correlation Coefficients for All Medium Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .525(**) .525(**) .576(**) .576(**) .514(**) .513(**) .575(**) .576(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

Table A.34 Nonlinear Regression Correlation Coefficients for All Medium Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
4 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .540(**) .541(**) .609(**) .608(**) .530(**) .529(**) .605(**) .604(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

5 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .567(**) .568(**) .578(**) .579(**) .559(**) .558(**) .580(**) .582(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .459(**) .458(**) .526(**) .527(**) .442(**) .442(**) .529(**) .530(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 _ 	 5040 5040 5040



Table A.35 Nonlinear Regression Correlation Coefficients for All Medium Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .572(**) .572(**)

Sig. (2-tailed) .000 .000
N _ 	 15120 15120

Table A.36 Nonlinear Regression Correlation Coefficients for All Medium Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity and Grouped by Type

Type BP1 BP2
4 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .600(**) .601(**)

Sig. (2-tailed) .000 .000
N 5040 5040

5 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .577(**) .577(**)
Sig. (2-tailed) .000 .000
N 5040 5040

6 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .527(**) .527(**)
Sig. (2-tailed) .000 .000
N 5040 5040

Table A.37 Nonlinear Regression Correlation Coefficients for All Large Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .704(**) .719(**) .684(**) .687(**) .710(**) .723(**) .682(**) .687(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120  15120 15120 15120



Table A.38 Nonlinear Regression Correlation Coefficients for All Large Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
7 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .438(**) .482(**) .439(**) .444(**) .450(**) .485(**) .433(**) .442(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .394(**) .426(**) .331(**) .343(**) .410(**) .439(**) .332(**) .338(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .814(**) .818(**) .805(**) .806(**) .817(**) .819(**) .805(**) .808(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 _ 	 5040 5040 5040 5040 5040 5040

Table A.39 Nonlinear Regression Correlation Coefficients for All Large Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .707(**) .693(**)

Sig. (2-tailed) .000 .000
N 15120 15120

Table A.40 Nonlinear Regression Correlation Coefficients for All Large Channels Obtained Using Only Independent Variables
Relative to the Previous Hour of Channel Activity and Grouped by Type

Type BP1 BP2
7 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .431(**) .440(**)

Sig. (2-tailed) .000 .000
N 5040 5040

8 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .372(**) .368(**)
Sig. (2-tailed) .000 .000
N 5040 5040

9 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .814(**) .804(**)
Sig. (2-tailed) .000 .000
N 5040 5040



Table A.41 Nonlinear Regression Correlation Coefficients for All Low-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .559(**) .558(**) .576(**) .577(**) .553(**) .553(**) .576(**) .577(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 . 15120 15120 15120 15120 15120 15120

Table A.42 Nonlinear Regression Correlation Coefficients for All Low-Intensity Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
1 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .306(**) .306(**) .351(**) .351(**) .287(**) .287(**) .351(**) .351(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

4 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .582(**) .582(**) .594(**) .594(**) .577(**) .577(**) .594(**) .594(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

7 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .536(**) .535(**) .555(**) .556(**) .532(**) .533(**) .555(**) .556(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N _ 	 5040 5040 5040 5040_ 5040 5040 5040 5040

Table A.43 Nonlinear Regression Correlation Coefficients for All Low-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .577(**) .577(**)

Sig. (2-tailed) .000 .000
N 15120 15120



Table A.44 Nonlinear Regression Correlation Coefficients for All Low-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous Hour of Channel Activity and Grouped by Type

Type BP1 BP2
1 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .470(**) .470(**)

Sig. (2-tailed) .000 .000
N 5040 5040

4 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .597(**) .597(**)
Sig. (2-tailed) .000 .000
N 5040 5040

7 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .545(**) .546(**)
Sig. (2-tailed) .000 .000
N _ 	 5040 5040

Table A.45 Nonlinear Regression Correlation Coefficients for All Medium-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .571(**) .572(**) .560(**) .559(**) .570(**) .571(**) .565(**) .563(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 15120 15120 15120 15120 15120 15120 15120 15120

Table A.46 Nonlinear Regression Correlation Coefficients for All Medium-Intensity Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
2 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .594(**) .594(**) .586(**) .590(**) .593(**) .592(**) .587(**) .588(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N  5040 5040 5040  5040 5040 5040 5040 5040

5 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .597(**) .601(**) .612(**) .606(**) .599(**) .599(**) .610(**) .604(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

8 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .511(**) .511(**) .471(**) .473(**) .506(**) .511(**) .488(**) .488(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N  5040 5040 _ 	 5040 5040 5040 5040 _ 	 5040 5040



Table A.47 Nonlinear Regression Correlation Coefficients for All Medium-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .572(**) .572(**)

Sig. (2-tailed) .000 .000
N 15120 15120

Table A.48 Nonlinear Regression Correlation Coefficients for All Medium-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous Hour of Channel Activity and Grouped by Type

Type BP1  BP2
2 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .586(**) .586(**)

Sig. (2-tailed) .000 .000
N 5040 5040

5 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .611(**) .611(**)
Sig. (2-tailed) .000 .000
N 5040 5040

8 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .508(**) .508(**)
Sig. (2-tailed) .000 .000
N 5040 5040

Table A.49 Nonlinear Regression Correlation Coefficients for All High-Intensity Channels

BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .699(**) .710(**) .678(**) .687(**) .698(**) .711(**) .678(**) .687(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 	 _ 15120 15120 15120 15120 15120 15120 15120 15120



Table A.50 Nonlinear Regression Correlation Coefficients for All High-Intensity Channels Grouped by Type

Type BP1 BP2 BP3 BP4 BP5 BP6 BP7 BP8
3 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .208(**) .238(**) .145(**) .156(**) .207(**) .250(**) .148(**) .156(**)

Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

6 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .354(**) .369(**) .312(**) .335(**) .353(**) .371(**) .310(**) .336(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

9 Spearman's rho 	 ObservedPostersPlus1 	 Correlation Coefficient .799(**) .805(**) .791(**) .796(**) .799(**) .805(**) .792(**) .796(**)
Sig. (2-tailed) .000 .000 .000 .000 .000 .000 .000 .000
N 5040 5040 5040 5040 5040 5040 5040 5040

Table A.51 Nonlinear Regression Correlation Coefficients for All High-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous Hour of Channel Activity

BP1 BP2
Spearman's rho ObservedPostersPlus1 Correlation Coefficient .707(**) .718(**)

Sig. (2-tailed) .000 .000
N 15120 15120

Table A.52 Nonlinear Regression Correlation Coefficients for All High-Intensity Channels Obtained Using Only Independent
Variables Relative to the Previous hour of Channel Activity and Grouped by Type

Type BP1 BP2
3 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .227(**) .282(**)

Sig. (2-tailed) .000 .000
N 5040 5040

6 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .389(**) .434(**)
Sig. (2-tailed) .000 .000
N 5040 5040

9 Spearman's rho ObservedPostersPlus1 Correlation Coefficient .801(**) .806(**)
Sig. (2-tailed) .000 .000
N 5040 5040
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