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ABSTRACT

DENSITY RELAXATION OF GRANULAR MATTER THROUGH
MONTE CARLO AND GRANULAR DYNAMICS SIMULATIONS

by
Oleksandr M. Dybenko

Granular materials are the principal ingredients of the industrial complex involved with

the handling and processing of bulk solids including pharmaceuticals, chemicals,

agricultural and mining materials. Despite the enormous importance of these materials in

society, their behavior is not well-understood; in fact, there is no known model available

that is capable of predicting the wide range of phenomenon that have been observed. One

of the most important of these is known as density relaxation. Here, a granular material

undergoes an increase in solids fraction as a result of the application of discrete taps or

continuous vibrations.

In this dissertation, the density relaxation phenomenon is promoted by the

application of discrete taps to a periodic system of monodisperse spheres. Both stochastic

(Monte Carlo) and deterministic (granular dynamics) simulations are employed in this

work. The granular microstructure of the system particles was analyzed via radial

distribution function, coordination number, and the distribution of sphere centers in the

vertical direction.

In the MC simulations, the effect of a tap applied to the system is modeled using

two different approaches: (1) vertical position-dependent expansion of the particles, and

(2) uniformly lifting the entire ensemble on a small displacement above the supporting

floor. Both methods resulted in an increase in the system density after numerous



thousands of taps. However, method (1) exhibited a strong dependence of the final

system density on the fill height, which has not been experimentally reported in the

literature. On the other hand, this dependency was not seen when the expansion of type

(2) was used. The MC evolution of the bulk solids fraction was found to be in qualitative

agreement with an inverse log form that has been reported in the experimental literature.

The simulated results illustrated that the bulk density is related to amount of the lift in

method (2), with a critical value producing the most favorable results. Most striking is the

finding that as the taps evolve, the particles self-organize into quasi-crystalline layers,

initiated by the planar floor.

The granular dynamics approach makes use of uniform, inelastic, and frictional

spheres that interact via laws from well-founded collision-mechanics principles. The

equations of motion are numerically integrated to obtain the positions and velocities of

the particles. The tapping disturbance consisted of a harmonic intermittent oscillation of

the floor. The same type of self-organization into quasi-crystalline layers first identified

in the MC simulations was also found here, strongly supporting the conjecture that this is

a universal mechanism of the density relaxation process.
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CHAPTER 1

INTRODUCTION AND LITERATURE SURVEY

1.1 Overview

The compaction and densification of granular matter is an issue of importance in the

industrial sector in that an increase in packing efficiency in the processing of bulk solids

is often desirable in reducing costs and in meeting consumer demands. However, in

some situations, the compaction resulting from tapping or vibrations in handling

operations and long term transport may be detrimental to the quality of the end product.

Beyond these practical matters, the ability of a bulk solid to undergo a change in its bulk

density due to external disturbances is a fundamental attribute of granular materials that

is not well-understood. Indeed, the factors that have a bearing on the phenomenon (e.g.,

particle properties, containment geometry, environmental conditions, and the nature of

the imposed disturbances) are rather broad and consequently the relationship between

them requires further study.

The increase in bulk density experienced by contained granular materials

subjected to taps and/or continuous vibrations (often referred to as 'density relaxation')

has been well-documented in the early literature. From a broader perspective, research on

this phenomenon has its foundations in the many fundamental studies on the packing of

particles (for example, see [2-15]). In recognition of the importance of developing a

better understanding of the nature of the granular state, and motivated in part by recent

experiments, density relaxation has received renewed interest as evidenced by the recent

1
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upsurge in both modeling and computational studies, such as in Monte Carlo and Discrete

Element Modeling Simulations.

In this dissertation, the effect of discrete taps applied to a vessel of granular

material is modeled using a Monte Carlo approach in three-dimensions. This

methodology does not consider the detailed dynamical interactions between particles, as

would be the case with dissipative molecular dynamics simulations. Rather, the effect of

the intensity of the taps on the equilibrium bulk solids fraction is examined. In this

regard, the intensities that were selected roughly correspond to relatively large

accelerations of the vessel. A broad set of tap intensities was used, thereby allowing us to

obtain a correspondingly wide range of solids fractions, from a loose configuration, rather

like a 'poured' assembly, to a relatively dense structure with local crystalline order. The

vessel itself was chosen to have a smooth (i.e., not bumpy) floor so as not to preclude the

well-known 'ordering' effect of a flat plane on packing of uniform spheres [16, 17].

Also we have studied the crystal order propagation using Discrete Element

Method. This method is based on the approximation of the collisional interactions

between particles using idealized force models that dissipate energy, integration of

system equations of motion and following determination of the individual particle

positions and velocities [18]. Finally, we compute relevant transport quantities, bulk

properties and analyze evolving microstructure of interest. The external tapping of the

bottom in this case was provided via consecutive intermittent harmonic oscillations of the

floor. The results obtained by DEM validated the formation of hexagonal close packing

crystal microstructure observed in Monte Carlo method.
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1.2 Evolution of Solids Fraction in Published Literature

The compaction process of the granular matter has an extensive history and the time

evolution of bulk solids fraction is widely represented in the literature. The formation of

regular and irregular configurations of particles during granular compaction is naturally

accompanied by study of the microstructure geometry. This section is constructed to

provide an overview of the experimental, theoretical and simulation approaches that have

been applied to the problem of density relaxation. To begin, a brief chronological survey

will be given based on the most relevant publications on density relaxation. More

specifically, experiments involving discrete taps and continuous vibrations of particulate

systems will be reviewed, following by related numerical simulations involving Monte

Carlo and discrete element methods. Finally, a discussion on various theories that have

been developed will be given.

1.2.1 Experimental Work

This subsection provides a concise review of the experimental results reported in the

literature in which continuous vibrations and discrete taps have been used.

1.2.1.1 Study of Continuous Vibration. In an early paper [19], Stewart has found that the

maximum improvement of the solids fraction was observed in the experiments in which

the bed of granular particles had undergone a high-frequency vertical vibration with a

low amplitude. Similar results were obtained by Evans [20]. Henceforth, the

characterization of the floor response to the vibration was described by dimensionless



4

floor acceleration F, which is provided by the following combination of amplitude (a)

and frequency (f) of oscillations:

Further experimental work in continuous vibration was performed by Ayer and

Soppet [21] who observed that maximum density of single-component packing of steel

shots might be achieved when the cylindrical shaker acceleration F is set in the range

from 6 to 12. They also analyzed the dependence of the solids fraction for different

container-to-sphere diameter ratios (D/d) and proposed following relationship for the

limiting solids fraction v.. :

In the successive experiments by D'Appolonia et al. [22] using dry sand, the

highest solids fraction was obtained when acceleration of vertical oscillations was about

2. These results were produced by harmonic shaking of the sand in a cylindrical

container (with a maximum displacement corresponding to 0.25 mm and the highest

frequency equal to 60 Hz). An increase of vibratory acceleration F > 2 led to the

elimination of stable configuration and an ensuing decrease of solids fraction. Later

Dobry and Whitman [23] noticed that the most rapid densification of the granular matter

in a cylinder took place at accelerations F in the range from 0.9 to 1.1, while the highest

bulk density was obtained when 1.1 F 1.3 . More recently, Zhang and Rosato [24]

have expanded the selection of experimental quantities (amplitudes 0.04 a/d 0.24 and

frequencies 25Hz co 100Hz ) which correspond to the range of dimensionless
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accelerations F from 0.94 to 11.54. For each frequency-amplitude combination, they

vibrated a cylindrical vessel of uniform acrylic spheres for ten minutes, after which the

improvement of solids fraction (from the poured system) was measured. The highest

growth (> 5%) was found to correspond to accelerations (F) between 5 and 7, and

displacement amplitudes (a) from 0.06 to 0.1 diameters, while an augmentation of

amplitude to 0.24 diameters revealed almost indistinguishable bulk density improvement

over what was seen at the lower displacement amplitudes.

1.2.1.2 Tapping of Granular Matter. The tapping of the container filled with granular

particles involves the harmonic oscillation of the vessel floor followed by a "relaxation

period" during which time the agitated particulates settle to a stable configuration with

zero kinetic energy. As early as in 1957, Macrae [25] studied the effect of taps applied

to a cylindrical vessel filled with powders of coal and zirconium. He observed that a

sufficiently large increase of impact velocity (or in other words, the energy absorbed by

the bed) lead to the destruction of existing particle assemblies. He hypothesized that this

was caused by a reduction the surface friction, and thereby weakening the force network

maintaining the system in a 'metastable' equilibrium configuration. That is, the system's

internal force network responsible for maintaining its structural integrity was disrupted.

Evolution of the system to states having greater bulk densities could be achieved by

applying taps of impact velocity smaller than the critical value.

In later experimental work, Takahashi and Suzuki [26] proposed an empirical

expression for the tapping density evolution in terms of first-order rate kinetics as a

function of the reciprocal of the tap number,



where n = 1/N is the reciprocal tap number and V * = —v° IL- is the fractional volume
V0

compaction. Here, V0 and V., is the initial (poured) arid final fractional volume,

respectively. The compaction parameter V* was considered as the integration of the

continuous distribution of different types of microscopic holes with a different filling rate

constants k:

Later they found that the compaction function could be well fit by the applying Weibull's

distribution function:

and finally for k =1 obtain the Kawakita's compaction equation for ceramic powders

[27]:

In addition to their theoretical results, the authors tapped four different powders

(titanium, Kibushi clay, glass beads, and fly ash) in a cylindrical container. The tapping

amplitude was set at 1 cm and frequency of 1 Hz that provides acceleration F=0.4.

Measuring the volume fraction of the granular vessel after every 10 to 50 cycles, they

analyzed the dependence of the fractional volume compaction V * on reciprocal tap

numbers and reported the agreement between experimental and theoretical results defined

by Equation 1.6.
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A series of experiments was carried out by Knight et al. [28] using glass spheres

in a tall cylindrical container. Their experimental technique involved randomly pouring

glass particles into a narrow tube and exposing the tube to a sequence of vertical taps.

The solids fraction was measured using a capacitance probe technique at several positions

from the top surface of the container. The tapping was performed by applying a full cycle

of a 30 Hz sine wave to the cylinder using an electromagnetic vibration exciter. The

magnitude or intensity of a tap was characterized by its peak acceleration amplitude F.

After each tap, the system was subsequently allowed to relax to a stable state; and after

the application of many thousands of taps, the solids fraction v was gradually reduced to

an equilibrium value voo. Continuation of the taps after this simply resulted in

fluctuations of the solids fraction about the equilibrium value. The value of voo was found

to be strongly dependent on the vibration intensity F.

Knight et al. [28] have reported two functional formulas for the fitting of granular

relaxation with four parameters. The first fit introduced was a stretched exponential

Kohlraush-William-Watts (KWW) law:

(1.7)

Although the KWW law worked well for the initial phase of experiment (10 1 -102 taps),

its use remains an open question due to significant deviations of the fitting data from

experimental solids fraction in the final period (103-104 taps). To cope with

logarithmically long times to reach the steady state, the second functional expression was

found to be inverse logarithmic law:
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(1.8)

In successive works [29-32] the group observed and reported reversible-irreversible

behavior of solids fraction v depending on increasing-decreasing vibration intensity F.

Very promising experimental work was reported by Nicolas et al. [33]. They

studied the behavior of cyclically sheared spherical glass beads in a parallelepiped. The

shear deformation was performed by the action of the sidewalls, which rotated in parallel

clockwise and counterclockwise through an angle 0, where 0 = 0 corresponded to the

walls being vertical. They observed the characteristic stroboscopic increase of solids

fraction from an initial value 0.61 up to a value of 0.66 for a fixed 0=2.7 ° . An increase of

the angle amplitude lead to greater compaction (for instance, 0.68 for angle amplitude 0

=5.4° and 0.693 for 0=10.7°). The spheres were arranged in a crystalline hexagonal close

packing (HCP). The other important observation reported was the effect of reversible-

irreversible volume fraction evolution depending on variable shear angle, somewhat

analogous to the results of Nowak's tapping [32].

A quasi two-dimensional experimental study of tapping of spherical particles that

were positioned between two vertical planes was performed by Lumay, Ludewig, and

Vandewalle [34]. For several different tap intensities the solids fraction obtained was in

good agreement with a stretched exponential law of the form,

Case studies for a range of tap intensities as measured by dimensionless acceleration 2

F 10, where F = aω²/g, was carried out. However, the equilibrium state was not
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obtained because of the small number of taps applied to the packing (NT=100) in these

experiments.

1.2.2 Simulation Studies

In what follows, a succinct review of Monte Carlo and Discrete Element simulations of

the density relaxation phenomenon is given.

1.2.2.1 Monte Carlo Simulation. 	 Monte Carlo simulations applied to granular

systems model the effects of collisions of particles by applying "random" displacements

to the particles that are consistent with the physical process of the specific phenomenon

under consideration. Since particle motions are not governed by Newtonian dynamics,

there is no real time evolution; rather the goal is to find the equilibrium configuration that

minimizes the energy. Perhaps one of the most interesting Monte Carlo studies was that

of Rosato et al. [35] in 1986, who identified a geometric mechanism that occurs in size

segregation promoted by tapping or vibrations - now known as the "Brazil Nuts model.

In 1988, Tobochnik [36] adapted the Metropolis approach [37, 38] to investigate

rather complicated systems of two and three-dimesional hyperspheres with spherical

boundary conditions. The maximum bulk solid fraction achieved for the random close

packing system of 500 hyperspheres was v=0.69. Obviously, the spherical boundary

conditions caused a relatively large packing fraction as compared with that associated

with a random close packing of spheres (i.e., — 0.63).
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Later, Barker and Mehta [39] introduced a different Monte Carlo technique to

induce the "shake" of the close-to-equilibrium system. In a series of consecutive papers

[40, 41], they have considered a shaking cycle comprised of three phases:

1) Uniform vertical expansion of particles y e' = ye x (1+ 6.) , with and without

Gaussian randomly distributed lateral shifts = x, +	 = z, +

2) Monte Carlo procedure that incorporated random displacements of spheres in

a neighborhood of radius d, i.e.,:

where a is a uniform random vector with components ax , a y, az E [ — 1; 1 , ri is the

position vector of the center of particle i, and a prime denotes the trial position.

3) A phase in which particles are allowed to 'roll' over supporting neighbors to

stable configurations.

After a detailed analysis of the data, they suggested that the relaxation process involved

both single particle and collective relaxation mechanisms. The dependence of packing

fraction on a variety of expansion intensities E in which the maximum number of shaking

cycles was 100. It was suggested that the evolution of the solids fraction v(t) could be

modeled as the sum of two exponentials representing the individual and collective

dynamics, given by

where of is the final or equilibrium value, and rind (τcol) represent single particle

(collective) relaxation times.
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A series of studies of slow dynamics of granular compaction was performed by

Nicodemi, Coniglio and Herrmann [42-51]. They applied the Monte Carlo technique to

model the vertical shaking of the tilted two-dimensional periodic box filled with

randomly located particles. The Hamiltonian of the particle-particle interaction was

expressed by using the lattice gas Ising spin model. The density relaxation behavior

corresponded to the logarithmic form by Knight given by Equation 1.8.

1.2.2.2 Discrete Element and Molecular Dynamics Modeling. As an outgrowth of

conservative molecular dynamics methods used in the statistical physical community, the

discrete element method (DEM) was originally developed in the 1971. The method has

much use in modeling the behavior of bulk solids. In 1985, Williams, Hocking, and

Mustoe [52] built up a theoretical basis for the DEM considering it as a generalized finite

element method. The main idea of DEM involves the determination of the positions and

velocities of the particles by numerical integration of Newton's equations, in which

forces are governed by hard to soft sphere interactions. A key feature of the method is

the inclusion of dissipation in the forces to model the energy loss that occurs in the

collision of macroscopic particles. (For example see, Walton [53] and Schafer [54]).

DEM studies on the densification of granular matter have been report in the

1990's (eg., Luding [55], L.Liu [56], Cheng [57], G.Liu [58], Rosato [59]). In what

follows, a brief review of the most recent studies appears.

In 2005, An et. al. [60] simulated the micromechanical response of a three-

dimensional granular vessel of 2,000 spheres that was subject to a one-dimensional

vertical vibration with amplitude A = 0.1d and frequency f ranging from 8 to 32 Hz.

They investigated the transition from initial random loose packing to random close
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packing, where the densification process was seen involve to two different intrinsic

mechanisms. The first of these mechanisms was termed jump filling, which occurs when

inter-particle contacts are destroyed for high values of acceleration F , while the second

was called push filling, where contacts are retained at low values of F . In subsequent

simulations, they studied the packing behavior of cohesive wet particles [61]. Here, they

identified three jamming regions depending on the force structure. For a system with

loose packing (v < 0.56) , isolated force clusters were found; for the random close

packing (0.56 v < 0.64) . continuous force networks were prevalent; and highly -

jammed force networks were seen for dense configurations (v > 0.64) .

The formation of structural order for large vibration amplitudes was also

confirmed by [62]. In this simulation, Remond and Galias investigated the behavior of

10,000 spherical particles within periodic parallelepiped container (20dx20dx36.5d).

They investigated the effect of 500,000 cycles of "random vibration" with amplitude

range varying from 0.005d to 0.065d. Crystallization, of systems was reported for the

amplitudes A E [0.05; 0.065], at which solids fraction obtained was identical to those of

packings having solids fraction in the range [0.635;0.66]. Local structural ordering was

observed in the radial distribution with a second neighbor (at d 2) corresponding to the

face-centered cubic (fcc) or hexagonal-close packing (hcp).

A similar phenomenon of densification of granular matter through the application

of continuous sinusoidal vibrations applied to a system of uniform spherical particles was

reported by Zhang and Rosato [24]. The maximum solids fraction v = 0.655 was

obtained for 8,000 spheres (LA = 25) with vibration amplitude 0.36d. They also
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observed a region in amplitude frequency space for which the highest solids fractions

were obtained.

In 2006, Arsenovic et. al. [63] reported on the compaction dynamics of hard disks

by using dissipative molecular dynamics methodology. The simulation was divided into

two cycles. First, a packing of 1,000 disks experienced a linear vertical dilation and then

the random velocities were set to all the particles. Second, the "event"-driven algorithm

was implemented to model the parabolic trajectories two particles after collision (event).

The dissipation of energy caused by the presence of Coulomb friction was used to

equilibrate the packing. The evolution of solids fraction was fit to the Mittag-Leffler law:

where

The authors also reported the dependence between time-scale i and the tapping intensity

F (K is a constant):

r = KГ-¹ 	(1.13)

1.2.3 Theoretical Groundwork

The experiments performed by Knight were followed by several scientific publications

attempting to build a fundamental theoretical basis of the evolution of the solids fraction

evolution under tapping. It is easy to underline four major theoretical directions: free

volume arguments initiated by Boutreux and de Genres [64], the one-dimensional

parking lot model of clusters of particles by Gavrilov [65], the stroboscopic decay model



14

of Linz [66], and the mesoscopic one-dimensional lattice model of Brey [67]. A

description of each of these models now follows.

1.2.3.1 Free Volume Model. The "free volume model" for compaction of granular

matter appeared in 1997 by Boutreux and de Gennes [64]. They assumed a Poisson

distribution of holes (free volumes of voids between particles), and used a statistical

mechanics approach to obtain a kinetic rate of compaction which led to an inverse

logarithmic law (see Equation 1.8). Nowak in [31] expanded this theory by introducing

of thermal fluctuations as an analogue to the experimental volume fluctuations; he stated

that the evolution of the solids fraction is due to the reorganization of local volumes of

particles. This idea was further developed by Head [68, 69], who found a similarity

between the logarithmic compaction to the glass-transition phenomena of super-cooled

liquid described by Adam and Gibbs [70]. He linked the vibration intensity parameter

to the "granular temperature" η(Г) and showed the intrinsic dependence of parameters B

and i on F. In 1998, Peng and Ohta [71] proposed one-dimensional model to simulate

compaction of granular matter under vertical tapping. In particular, the continuity

equation for density of particles was numerically solved by using discrete positions in a

lattice. In addition, an analytical solution was asymptotically found to have an inverse

logarithmic functional form.

1.2.3.2 Parking Lot Model. In 1998, Gavrilov [65] observed that the one-dimensional

traffic flow model of randomly packed car clusters shows similarity to the behavior of

packing voids undergoing vertical tapping. He assumed that the fragmentation parameter

K, which physically represents the split of K individual particles from a cluster of j
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particles during one vertical tap, was linearly dependent on the "dimensionless

acceleration" F used by Knight. Gavrilov also assumed that the probability that a

separate particle will join the group of j particles is the ratio of the number of groups with

j particle clusters to the total number of clusters. This theory predicted the transition to

crystalline state with maximum solids fraction and hexagonal structure of near neighbors

and described the phenomenon of reversibility-irreversibility observed by Knight.

1.2.3.3 Stroboscopic Decay Theory. In 1996, Linz [66] introduced the stroboscopic decay

law by using compaction ratio an (n is number of taps):

and applying the recurrent equation for the one-dimensional stroboscopic map:

(1.15)

He derived the minimal relaxation law supported by Knight's inverse logarithmic law.

He gave an explanation of the phenomenological nature of the compaction evolution as

the process of two counteracting mechanisms: decompaction and recompaction of

packings.

1.2.3.4 Stochastic Lattice Model. 	 In 2001, Brey [72, 73] described the discrete

compaction process by using a mesoscopic differential master equation:

where f1 (F) and f2 (F) are positive functions of F, and p i (t) and µ2(t) are positive

quantities depending on the configuration of the system. Applying the derivations to the
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stochastic Markov process for one-dimensional lattice model, the evolution of linear

response to the tapping small vibration intensity was obtained.

Table 1.1 below summarizes the literature that is most relevant to the density

relaxation analysis that was considered in this section. Here, MC stands for results

obtained by Monte-Carlo simulation, DEM - Discrete Element Method simulation, MD —

Molecular Dynamics modeling.



Table 1.1 Density relaxation of solids fraction in the literature.

17
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1.3 Microstructure Analysis of Spherical Arrangements

A quantitative characterization of geometrical properties of spherical particles has been a

scientific goal for centuries. There are several global parameters used to insight into the

structural geometry of the packings of spherical particles: Voronoï and Delaunay 'free

volumes', coordination number, dihedral and solid angular distribution, radial distribution

function, local orientation order, fabric tensor, etc.

Table 1.1 below lists several microstructure analysis studies in the literature. In this

table, CRD represents coordination number distribution, RDF — radial distribution

function, ADF — angular distribution function, Voronoi — analysis of Voronoi polyhedron

distribution, Porosity — distribution of porosity, Phase — analysis of phase transition for

different loose packings. In this dissertation, the focus will be on the coordination

number and radial distribution function as well as introduce a new geometric measure —

vertical center distribution.
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Table 1.2 Microstructure analysis of spherical particles of solids fraction in the
literature.

1.3.1 Coordination Number

The coordination number describes the number of points of contacts between particles in

a granular material. This measure was most likely originated in 1694 in a prominent

dispute between Isaac Newton and David Gregory. These two famous scientists wanted

to determine the number of three-dimensional monodisperse spheres in touch with one

particular sphere (the so-called "kissing number"). Newton suggested that only 12

spheres may be in contact with a central sphere, on the other hand Gregory believed that

there was enough space for 13. The first geometric proofs of Bender, Hoppe, and Ginter

were produced in 1874; they found that "though there is a significant amount of free
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space left after packing 12 spheres around the central one, although it was not enough to

put in a 13 th sphere".

An early study of irregular packings was completed by Smith et. al [13]. They

carried out experiments where lead shot was poured into a large container, which was

subsequently filled up with an acetic acid. After being drained of acid, the number of

contacts for each particular lead shot (etched on the sphere surfaces) was simply counted.

The assumption that packing consisted of only two possible arrangements (simple cubic

and hexagonal) was a key in the derivation of the relationship between number of

contacts and the porosity (and consequently solids fraction) of the random packing that

was determined by following formula:

where Nc  is the number of contacts and v - the solids fraction of the spheres. Two

limiting pairs of the Equation 1.17 correspond to the number of spheres in contact and

solids fraction (6, 0.524) for simple cubic and (12, 0.7405) for hexagonal structures.

In 1960, Bernal and Mason [5, 101] shook 3,000 ball bearings enclosed in a box

with an irregular floor. After the system equilibrated to the close packing, the container

was filled with paint. Bernal analyzed the coordination number and found out that the

random geometry of equal spheres formed by these shakes is highly different from the

geometry of a crystal with fixed coordination. It was reported that two spheres within 5%

of a diameter of each other have average coordination number about 6 (with the range of

neighbors from 3 to 10). This peculiar feature was confirmed by independent

observations by Scott [102] who measured the coordinates of 1,000 ball bearings;

however he was not able to eliminate wall effects in his experiments.



21

The ensuing development of computational techniques has enabled the calculation

of the geometry of random packings of equal spheres with a higher accuracy in

comparison with experiments. The first use of Monte Carlo technique in granular science

was by Metropolis [37] who analyzed the pair distribution function (radial distribution

function) of two-dimensional system of particles. This approach was later extended to

three dimensions by Rosenbluth and Rosenbluth [38]. The first analysis of two-

dimensional coordination number distribution was done by Round in 1963 [74], followed

by three-dimensional work of Levine and Chernick [128]. In the last paper, it was stated

that, though the pattern of a global random bed structure was not distinguishable, the

local structure could be clearly characterized by repeating volume unit cells of

"polyhedrons created by touching points for each particular sphere".

The other approaches of finding the number of near neighbors were based on a

variety of statistical methodologies. The first technique was used by Beresford [114]

who studied the probability of readjustments of the random heaps of particles that occur

during repeated random relocations of spheres. He observed a reasonable agreement

between the probabilities to find a number of near neighbors that he calculated with the

experimental results of Bernal and Scott [5, 102].

Using a binomial probability mechanism, Haughey and Beveridge [104] predicted

the bell-like dependence of the probability distribution of a local mean voidage

(fractional free volume in a local bed region) on the particular coordination number n.

The summation of probabilities over all number of contacts provided the dependence of

complete local mean distribution versus number of contacts. The dependence of mean

voidage probability for different envelope radii ("search radii") was investigated as well.
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Another statistical approach was used by Gotoh and Finney [119] who considered

the formation of random packings as a combination of the tetrahedrons as the most

probable "Voronoi polyhedrons". They also argued that the average coordination number

in random packings is 6.0 and then infer the solids fraction packing density from that of

the most probable tetrahedron.

Tory [15, 107] observed anisotropy in numerically simulated packings that were

directed downwards under gravitational force in a system consisting of 297 equal

spheres. The average number of contacts Nc  6.1 observed in simulations was

deviating from at least four spheres in contact with an inner neighbor in experiments.

This fact was explained by the creation of holes between spheres in real experiments.

An analysis of a random packing as the mixture of several known regular

packings (cubic, orthorhombic, tetragonal-sphenoidal and rhombohedral) was performed

by Gotoh [118]. The curve fit of coordination number Nc versus solids fraction v was

found to be:

The use of the combination of Monte Carlo simulation and statistical approach

allowed Suzuki et. al. [129] to formulate the functional dependence of the number of

neighbors with solids fraction as follows:

where S is an indeterminate coefficient which might be found from the derivation of the

average inter-particle distance given by Gaussian error function (Erfc):
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(1.20)

The authors also compared the results obtained with those ones obtained by researchers

in late 1950's - early 1970's the part of which is represented in Table 1.3 below.
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Table 1.3 The functional relationship between the average coordination number Nc  and

solids fraction v for random packings in the literature.

Author	 Relationship

Smith [13]

Rumpf [130]

Meissner [131]

Ridgway, Tarbuck [132]

Haughey, Beveridge [104]

Nakagaki, Sunada [133]

Gotoh [118]

Suzuki [129]

Gotoh [119]

Ouchiyama [134]

Aste [1]
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The probability to have a particular number of contacts (frequency distribution)

for a given random distribution of particles was found to possess a symmetrical bell-like

silhouette which is depicted in Figure 1.1. The functional dependence is derived from

statistical mechanical considerations in [135], this was modeled by considering x

touching spheres around a central particle as a "gas" that may freely travel within an

effective phase space confined by a solid angle 4741 - ) , where x * is the maximum

number of contacts for one particle. Upon integration of the statistical free-volume

partition function over all possible angular degrees of freedom, the probability or

frequency distribution of the number of contacts x was found to be:

(1.21)

where x * =12.99 .

The aforementioned frequency distribution has also been validated by a series of

experiments [5, 110] and numerical simulations [1, 15, 60, 77, 136, 137], in which a

similar distribution was found in cylindrical packed bed [105]. As seen in [108], the

average number of contacts for a random structure is 8, which is larger than the value of 6

obtained by Bernal [5]. Such a difference might be intuitively understood since random

packings would hold different solids fraction. The shift of the peak of maximum

frequency to the left represents the smaller average solids fraction (for instance,

= 0.607 [5]) while shift to the right is a peculiarity of packings with higher solids

fraction.
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Figure 1.1 Bell-like dependence of the coordination number probability for random
configurations

1.3.2 Radial Distribution Function

The radial distribution function (RDF) is the probability of finding one particle center at a

given distance r from the center of a considered particle. Thus, the magnitude and

position peaks of the radial distribution function may be regarded as a fairly reasonable

indication of structured configuration formation.

The radial distribution can be written as

where n(r) is the number of particle centers that are located inside a spherical layer of

the thickness Ar and at a distance r from the center of a given sphere.
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The radial distribution function is usually normalized by dividing by the bulk

density. If v denotes the bulk solids fraction and Vp the volume of a single particle, then

(This normalization is reasonably useful in view of the fact that g- -r ---> 1, as — ---> 1 as
d 	 d

it was first observed by Scott [102]. This universal trait has been established for matter

in fluid [138] and gaseous states [139] in contrast to the asymptotic linear behavior of

atomic radial distribution functions [140].

This normalization is reasonably useful in view of the fact that

(k —r —> 1, as --I. --> 1. (See Scott [102]). This universal trait has been established for
d 	 d

matter in fluid [138] and gaseous states [139] in contrast to the asymptotic linear behavior

of atomic radial distribution functions [140].

The development of statistical mechanics in the 1930's brought in the recognition

of radial distribution function (at that time, molecular pair distribution function [141]) as

a very vital parameter of liquid solutions [142]. However, the first experimental analysis

of this geometrical quantity for monodisperse granular matter was not done until 1962 by

Scott [102], and later independently confirmed by Bernal [101], re-computed by Haughey

[104], and summarized by Finney [110]. Bernal [101] noted that the magnitude of first

peak, located at r/7 -:11.0 , represented the average coordination number. Recent
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numerical computations have shown that the radial distribution function near r/d 1.0

can approximated by power-law singularity [1, 12]

The second and third peaks corresponded to radial distances r d J and

r= 2.0d . These peaks implied that particles rearranged themselves into a structured

order. It was suggested [1, 12] that the peak at r~d 3 was responsible for two

coplanar tetrahedron bases formation while the peak at r= 2.0d stood for the

collineation of particles along the line.Later similar results were obtained by Mason who

measured the Cartesian coordinates of 1,000 spheres and averaged 25 individual

distribution functions of for each group of 25 spheres that were located in the center of

the packing. Later these data were computationally analyzed for dense random packings

= 0.637) by Adams [2]. Similar observations were reported from experiments by

Cargill [112] who for Ni-P non-crystalline alloys, subsequently computationally

confirmed by Bennet [4]. Granular systems with modest random packings ( = 0.607 )

were analyzed by Matheson [123].

1.4 Objective

In this dissertation, the effect of discrete taps applied to a vessel of granular

material is modeled using two approaches, namely Monte Carlo and discrete element

(also known as granular dynamics or dissipative 'molecular' dynamics) simulations, in

which the granular material is modeled as uniform (monodisperse) spheres. The main
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objective is to identify mechanisms responsible for the increase in density that has been

reported in the experimental literature.

The simulation vessel itself consists of a rectangular parallelepiped having

periodic boundary conditions in the lateral directions, a plan solid floor and an open top.

For the Monte Carlo studies, the macroscopic solids fraction 'evolution' was determined

via statistical analyses of ensemble averaged configurations. By applying the discrete

Element Method (DEM), an investigation of the effects of the consecutive bumps or taps

on the vessel was done in an attempt to establish a connection with the analogous Monte

Carlo results. In the discrete element study, a tap to the assembly was done by imposing a

half-since displacement to the plane floor for a time duration tb at a frequency Q. Further

upward propagation of the energy through the system was produced via the inter-particle

collisions that were characterized by the "soft sphere Hertzian model".

A systematic examination of geometrical topology of the microstructure of the

configurations generated by Monte Carlo simualtions was performed using various local

`measurement' approaches, as well as through the computation of average global

quantities, such as the radial distribution function and the coordination number. The

results confirmed the formation of a dense configuration in the region adjacent to the

floor, which propagated upwards towards the vessel surface as the number of taps

increased. The development of the final dense packing of the system was essentially due

to the ordered structure formation at bottom of the bed, as well as the rearrangement of

spheres within a vessel subject to an external vertical tapping. The results show a

possibility of formation of the configurations with a relatively higher solids fraction in

comparison with those ones published previously in the literature. Both simulation
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studies provided a clear picture of the dynamical process responsible for density

relaxation, namely the upward progression of self-organized layers induced by the plane

floor as the taps evolve. Its occurrence in both the MC and DMD simulations strongly

suggests the universality of this mechanism in density relaxation.

1.5 Dissertation Outline

The remainder of this dissertation is organized as follows. Chapter 2 describes the Monte

Carlo simulation method and how it is applied. Chapter 3 presents the results of Monte

Carlo simulation with a detailed analysis of solids fraction and microstructure. Chapter 4

describes modifications that were made to an existing discrete element code in order to

investigate the evolution of the solids fraction. Chapter 5 presents the results of the study

of the microstructure propagation using the data from the Monte Carlo and Discrete

Element simulations. Finally, Chapter 6 contains the conclusions and recommendations

for further work.



CHAPTER 2

THE METHODOLOGY OF MONTE CARLO SIMULATION

2.1 Background

In 1946, Polish born mathematician Stanislaw Ulam developed a new computational

technique which "solves the problem by generating suitable random numbers and

observing that fraction of the numbers obeying some property or properties". Working

with John von Neumann and Nicholas Metropolis, he further elaborated algorithms for

computer implementations, as well as exploring means of transforming non-random

problems into random forms that would facilitate their solution via statistical sampling.

This new technique was given the name Monte Carlo by Metropolis as a reference to the

world-known famous casino in Monaco [37].

Today Monte Carlo methods are exceptionally important in mathematics,

computational physics [143], physical chemistry [144, 1451, economics, and related

applied fields. They are handy for the simulation of phenomena with a large number of

coupled degrees of freedom [146], such as strongly coupled solids [147], liquids, and

disordered materials (for instance granular particles), stochastic risk modeling, and

integral differential equations of heat transfer. In granular science, the Monte Carlo

technique is recognized for its role to imitate the compaction of granular solids. The

Monte Carlo method is unlike molecular dynamics (MD) simulation in that it is

stochastic in nature as opposed to the use of Newton's equations of motion in MD

simulations governed by intermolecular forces.

31
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2.2	 Overview

The Monte Carlo code used in this dissertation utilizes the hard sphere models with the

implementation of the Metropolis algorithm [37]. The basic of idea was taken from the

early work on segregation using Monte Carlo modeling [35]. For the purpose of this

dissertation, a new MC was written, that incorporates contact detection using the

`chaining-cell' method [148], as well as various criteria to determine completion to an

equilibrium configuration. Analyses of the solids fraction and microstructure were

performed using embedded subroutines and post-processing subroutines. The reader is

referred to Appendix A for the details of these codes.

The Monte Carlo simulation is arranged as follows (See Figure 2.1):

0. Read the input file, initialize simulation parameters.

1. Assign particle positions (the code creates random poured assembly unless the

computation is the continuation of previous simulation run).

2. Apply Metropolis algorithm which enables a series of random downward

displacements of a single particle at a time (Monte Carlo Step).

3. Save coordinates of all particles for intermediate configuration and compute

solids fraction for every million Monte Carlo steps. If the difference between two

consecutive million Monte Carlo steps is less than 10 -3 then terminate the

Metropolis algorithm.

N+106 
— vN 0.001	 (2.1)

4. Induce vertical tapping to the system (linear upward change of vertical

coordinates).
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5. Repeat from step 3. One tap corresponds to the red, green and blue arrows from

Figure 2.1.

6. One realization is the simulation complete.

7. Statistical analysis of physical and geometrical properties for one case study is

results from of the averaging over many realizations for the same set of

paramteters.

Figure 2.1 Scheme of Monte Carlo Methodology.

Hence, the Monte Carlo simulation has a strict hierarchy. The lowest element is a

Monte Carlo step (random displacement of one particle at a time). A series of 15-20

million Monte Carlo steps restricted by criterion (2.1) completes one tap. Third

hierarchical component is a realization which requires at least a few hundred to several
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thousand taps to achieve equilibrium state for parameters considered in this dissertation.

The top ladder of hierarchy is the case which is acquired when equilibrium state is

achieved (supported by statistical averaging over a number of realizations which usually

varies from 100 to 150 in this dissertation).

The flow chart of the FORTRAN subroutines is depicted on Figure 2.2.



nrcgo=1 nrcgo=1

Generating Random Initial

Configuration (RINCFG)

Reading Coordinates from

the Old File coord.txt

Start of Program

Initialization of Data and Parameters	 /

Reading Data from Input File (READDT)

---
Determination of the Initial Tap (nrcgo)

35

Particle-Particle

Overlap Detection

(OVLCHK)

New Particle Generation

Change the Indexes according to

Increasing X-coordinate order

(BISRCH)

Insertion of a New Particle

with Index "isave"

(COINST)

,i- Calculating of the Map of Neighboring Cells

(CELMAP) 

Computation of Inverse Values of Cell Sizes

(PARTTN)

Assignment of Arrays HEAD, LIST and CELL

(HSHFTN)

Overlap Detection (CONTACT)

Metropolis Approach (MTRPLS)

Saving Data (DATSAV)

End of Program

Figure 2.2 Flow Chart of the Monte Carlo Simulation.

The Main
Computational

Subroutine
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The Monte Carlo program is structured by the main subroutine mtcll f which

unites all other subroutines together. At the outset, the code initializes constants and

parameters and opens old text files and generates new ones. Then, subroutine READDT.f

reads data (the geometrical dimensions of a computational vessel, physical properties of

particles, and global simulation parameters) from the input file input.dat. (A sample input

file is shown in Appendix D). Note that all subroutines are described in Section 2.3

below). If specified in the input file (initial tap nrcgo 1) that the simulation is a restart

of a previous run, then the coordinates of particles are read from the old file coord.txt that

must be located in the same directory folder as the executable and the input files.

If the input file indicates that the simulation is a new one (nrcgo 1) then a

random initial configuration of particle center positions for all particles is generated by a

subroutine RINCFG.f : Center coordinates of the particles are uniformly and randomly

distributed within the computational box of given size. Note that the mechanism of initial

contact detection and automatic application of periodic and hard boundaries is embedded

in the code in all computational subroutines. The computational domain typically consists

of a parallelepiped of dimensions 12dx24dx 12d (d is the diameter of the sphere), with

periodic boundaries in lateral directions (i.e. x and z directions). Further information

about geometric sizes of the system of particles is given in Section 2.4. In addition,

subroutine RINCFG.f calls in three supplementary subroutines OVLCHK.f, BISRCH.f and

COINST.f.. The subroutine OVLCHK.f carries out an overlap detection to ensure that a

newly inserted (or trial) particle does not overlap existing ones. The penetration between

two spheres takes place if the distance between their centers is less than the diameter of

particle, d. If an overlap is found, then a new trial position for this particle is generated
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until this particle does not overlap with particles or walls (in case of hard boundaries).

The subroutines BISRCH.f and COINST.f determines the location of the trial particle

according to an increasing order of x-coordinates of existing particles, and assigns the

index of a new particle according to aforementioned order. The subroutine RAND (an

embedded FORTRAN routine) is used to generate the random numbers. This routine was

successfully tested by examining known problems of the random walk mean squared

displacement and generation of number it using different integrating methods.

After the initial positions of the particles have been determined, subroutine

CELMAP.f is called. The purpose of this subroutine is to store array map - a block of 27

memory locations, each containing the index of the neighboring cells of the cell having

index (imap+27). Here, the term 'cell' refers to a single element of the partition of the

computational box, i.e., the box is partitioned into cells. The subroutine CELMAP.f also

accounts for boundary conditions of the box taken from subroutine READDT.f. If the

floor, top, or rigid walls in x and z directions are specified, then the memory locations

containing indexes of geometrically forbidden cells are assigned to the flag (-99). This

flag will be frequently used in subsequent overlap detection subroutines CONTACT.f and

CNTMDF.f., and this results in substantial decrease of computation time.

Subroutine PARTT'N.f calculates and returns inverse values of cell sizes (for

instance, cellix) using input parameters from subroutine READDT.f. If the edge length is

too small, it is recomputed based on shortest allowable edge length. That is, the code

calculates edge length based on the shortest dimension of the box, and then it scales the

other sides so that there are an equal number of cells in each direction. It could be

extended for the procedure of auto-calculation of mdiv by choosing a trial value for mp
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based on maximum storage. In this case, the edge lengths are calculated based on this

value. To reduce the computation time, the dependence of CPU time on the number of

cells mdiv was analyzed, the results of which can be found in Appendix E. In addition,

optimal parameters mdiv were found for various sizes of system (number of particles np).

The most time-consuming computational process of the Monte Carlo program is

the overlap detection between two particles. To check that the central distances of all

pairs of particles in the system are greater than diameter of particle takes at least 1 2 np 2

computational operations. A very powerful technique used to reduce CPU time is called

the chain-cell search method [148]. The main idea of this method is to carry out overlap

detection for a given particle with the particles that are located in the same cell as this

particle, as well as with all the particles in the 27 neighboring cells. The heart of the

chain-cell method appears in subroutine CELMAP.f. when each cell is assigned to a 'map'

of neighboring cells by using array map. Then, subroutine HSHFTN.f initializes arrays

HEAD, CELL and LIST. Firstly, HSHFTN.f checks that all particle centers are positioned

within the limits of the computational cell. If it is not the case then the subroutine calls

error exit from the main code indicating the reason for the error. Afterwards, all the

particles in the system are assigned to the cell corresponding to their center coordinates

using hashing function ICELLT. Thus, the subroutine HSHFTN.f returns three arrays

HEAD, LIST and CELL into the main code mtcll.f. Details about the chain-cell search

method may be found in. Section 2.5.

Using arrays HEAD, LIST and CELL from chained-cells, an overlap detection

routine CONTACTf ensures that none of all particles in the system are overlapping each

other or a boundary before the simulation starts. Subroutine CONTACT.f will return the
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flag ier = 0 unless central distance between all the pairs of particles is less than diameter

of particles; it this occurs, then ier is equal to -11, indicating a forbidden overlap of

particles.

The core of the program, "Metropolis algorithm", is enclosed in the subroutine

MTRPLS.f. This subroutine simulates the random displacement of one random trial

particle at a time within a spherical neighborhood of diameter delta 8, checks overlap of a

trial particle with neighboring particles and boundaries, and applies the Metropolis

probabilistic approach to vertical displacement of a trial particle. To decrease

computation time, MTRPLS.f contains several optimization criteria, which did not cause

any significant statistical differences in the solids fraction results. More information

about subroutine MTRPLS.f is given in Section 2.6. Besides Metropolis algorithm itself

MTRPLS.f includes auxiliary subroutines CNTMDF.f, CHANGE.f, GRAVPL.f,

PACKPL.f, NEWCFG.f and DATSAV.f.

CNTMDF.f checks the likelihood that one randomly selected particle with new

trial coordinates xmnew, ymnew, zmnew and index "imove" will overlap with any of the

particles in a new trial cell and any of the particles within its neighboring cells. To

achieve this goal CNTMDF.f calls in the supplementary subroutine CHANGE.f which

creates new modified arrays CELLP, LISTP and HEADP that symbolize a trial position of

particle "imove". The forementioned modified arrays will become new arrays CELL,

LIST, HEAD unless it is found that the trial displacement of this particle is forbidden due

to the overlap with other particles. We remark that the designation of CNTMDF.f is

completely different from that is used in previous overlap subroutines OVLCHK.f and

CONTACTf in view of the fact that during construction of the random initial
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configuration, the routine OVLCHK.f verifies the permissible allocation of one new

particle and existing ones (which might be less than the maximum number of particles in

the system np), while CONTACT.f ensures that central distance between all the pairs of

particles is greater than diameter of particles. Subroutine GRAVPL.f computes the total

gravitational potential of the system of all particles for given vertical coordinates, density,

and diameter of particles. Subroutine NEWCFG.f is responsible for the application of

external disturbances to the system of particles. In this dissertation 'linear' and 'uniform

lift' taps were used; however it is possible to apply other types of disturbances to the

system in order to increases it potential energy. The reader is referred to Section 2.7 for

detailed information about the vertical taps used in the simulations. Subroutine

PACKPL.f is called to compute the bulk solids fraction of the current configuration. (See

Section 2.9 for details). Lastly, after each tap, subroutine DATSAV.f writes the solids

fraction for this particular tap into a file pack. txt and updates the file coord txt with

current coordinates of all particles so as to enable easy restarting of the code from the last

tap if necessary. After the desired number of taps has been completed, MTRPLS.f is

halted, and control is returned to the main code. At this point, CONTACT! verifies that

there are no forbidden overlaps of the particles in the final configuration.

For the sake of completeness, the two post-processing programs should be

mentioned: microstructure analysis and study of solids fraction statistics. These

programs are independent of mtcll.f subroutine albeit they post-process output files

pack txt and coord.txt produced by Monte Carlo code.

Characterization of the global microstructure is facilitated by computations of the

radial distribution function (RADDST.f), the coordination number (CRDNMB.f) and
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fabric tensor (FABRIC.f). The reader is referred to Section 2.10 for more information

about these quantities. It is noted that it is possible to also determine the Voronoi

structure of the system from which dihedral and solid angular contact distributions can be

obtained. The sample of FORTRAN file ave.f which endows with statistics of solids

fraction is shown in Appendix K.

The remaining Sections of Chapter 2 are arranged in following order: Section 2.3

Description of Subroutines, 2.4 Geometry of System, 2.5 - Chain-Cell Method, 2.6 -

Metropolis Algorithm, 2.7 - Vertical Tapping, 2.8 - Equilibrium Bulk Solids Fraction,

2.9 - Solids Fraction and lastly 2.10 - Microstructure Analysis.

2.3	 Description of Subroutines

The following subroutines are the building blocks for the Monte Carlo code and post-

processing programs.

• ave.f

ave.f post-processes an evaluation of the average and the standard
deviation of solids fraction from output files pack. txt for many
realizations.

• BISRCHf

BISRCHf finds the place for a new particle in RINCFG.f according to
increasing order of x-coordinate (part of RINCFG.f).

• CELMAP f

CELMAP.f creates a map of neighboring cells.

• CHANGE.f

CHANGE! is used to assign tryout arrays CELLP, HEADP and LISTP for
overlap detection CNTMDF.f
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•CNTMDF.f

CNTMDF.f produces overlap detection during Metropolis displacement.

• COINSTf

COINST.f inserts a trial particle into a position defined by BISRCHf (part
of RINCFG.f).

• CONTACT.f

CONTACTfensures that none of two particle pairs overlap each other.

• CRDNMB.f

CRDNMB.f computes the number of spheres in contact with a given
particle (part of microstructure analysis).

• DATSAV.f

DATSAV.f stores solids fraction in output file pack txt and coordinates of
all particles in coord. txt after each Metropolis tap.

• FABRIC!

FABRIC.f computes the average fabric tensor for all particles in the system
(part of microstructure analysis).

•GRAVPL.f

GRAVPL.f evaluates the total gravitational potential of the system.

• HSHFTN.f

HSHFTN.f assigns array HEAD for all cells and arrays CELL and LIST for
all spheres in the system.

• mtcl 1 f

mtcl 1 f is the main code of Monte Carlo program, unites all subroutines
together.

• MTRPLS.f
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MTRPLS.f simulates a specified number of taps, each of them consists a
number of Monte Carlo steps (random displacement of one particle at a
time) that correspond to restricting criteria.

• NEWCFG.f

NEWCFG.f recalculates vertical coordinates of all particles i.e. performs
the vertical lifting.

• OVLCHK.f

OVLCHK.f confirms the permissible allocation of one new particle and
existing ones (part of RINCFG.f).

• PACKPL.f

PACKPL.f computes bulk solids fraction.

• PARTTN.f

PARTTN.f is used to calculate inverse values of cell sizes.

• RADDSTf

RADDST.f is employed to find radial distribution function (part of
microstructure analysis).

• READDT.f

READDTfreads incoming data from input. dat file.

• RINCFG.f

RINCFG.f creates random initial configuration of particles.

2.4 	 System Geometry

The density relaxation process occurs as a result of a series of discrete taps applied to a

`box' containing Np spherical particles of diameter d. The computational domain (i.e. the
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`box') is a rectangular parallelepiped having periodic boundary conditions in the lateral

direction, which is denoted here as x and z. The box has a rigid square base (12d x 12d)

floor that does not allow particles to drop below the bottom, or mathematically saying the

vertical position of the particle can never be less than the radius of a sphere. At the top

the box isn't constrained by a physical "roof'. The vertical size of the box (24d) is

chosen to optimize CPU time. Two typical geometrical configurations is represented on

Figure 2.7. The first arrangement is obtained by a random deposition in all coordinates

of the number of particles (Np) into a box with aforementioned sizes. The second

configuration is obtained by allowing particles to fall downwards under the gravity which

is performed by Metropolis Algorithm that is described later in Section 2.6. The

simulation results for this particular system size are given in the Chapter 3.

The analysis of larger and smaller systems with square-base floor is provided in

the Chapter 5. Higher systems (36d and 48d) with the same floor size (12d x 12d) were

taken to observe the effect of the flat bottom that is responsible for the formation of

ordered configuration at the lower layers. The Monte Carlo Simulation was also

extended to the systems with a floor size (10d x 10d). The Discrete Element Method

study was performed only for the rectangular vessel with the base of (12d x 12d) and a

series of aspect ratios of the height to the base size.

2.5 Chain-Cell Method

The most important part of the current Monte Carlo technique is the contact detection

subroutine, since the particles of the system are considered to be hard spheres. The hard
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spheres cannot overlap; i.e. the distance between the centers of two particles is always

greater or equal to the diameter of a sphere. Contact detection is performed by three

subroutines that check the mutual geometrical position of each pair of particles.

Regardless of the simplicity of the detection subroutine, the overlap check

becomes very computationally expensive if the contact check has to be performed for

each possible pair of particles. Simple analysis shows that this routine requires about Np²

computations (-10 6 contact checks) per each Monte Carlo step. In general one

realization from a computational study consists of the billions of accepted Monte Carlo

steps; as a result, the completion of even one simulation becomes very computationally

expensive thereby indicating the importance of the use of some auxiliary technique.

The chain cell method implemented into this Monte Carlo code was first proposed

by Allen and Tildesley in [149]. The main idea is to impose a grid of cells of a given

dimension on the geometrical configuration, determine the initial positions, and keep

permanent track of all the particles by assigning arrays HEAD, LIST and CELL. Thus, for

each particle the subroutine finds the indexes of all the neighboring particles in the cell

where it is located as well as of all the particles in the neighboring cells. The neighboring

cells are preliminarily arranged by array MAP by taking into account boundary (periodic

or hard wall) conditions. Qualitative analysis shows that when using this method, the

contact detection subroutine requires approximately N²p/Nc operations where Np is the

number of particles and N, is the total number of cells.

The comparative analysis of the dependence of CPU time usage on the number of

cells N, is given in Appendix E. Detailed information about the chain cell method can be

found in [148].
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2.6 Metropolis Algorithm

The simulation is initiated by randomly placing within the box N spheres that are

subsequently allowed to collapse vertically under gravity to generate a configuration

corresponding to a loose (`poured') assembly. The spheres are `hard'; that is, in order to

avoid overlap of the spheres, for each i # j, the distance IF — rjIbetween the centers

= (x, , z ; ) and r, = , yj  , zj ) of particles is always greater than d + e , where

c = led. The Metropolis [37] algorithm is then used to advance the system to a stable

configuration. A single Monte Carlo (MC) step in the Metropolis algorithm consists of

the random selection of a particle (xi , yi,zi ), followed by its assignment to a trial position

in accordance to the prescription,

Here, 4 .,„ .,„ z are random numbers sampled from a uniform distribution on [0,1] , and

6 is the maximum allowed displacement. The trial position is accepted unconditionally as

the new center coordinate if the change in the system potential energy is negative, i.e.,

AE mgNΣi=1(y'i — y,) < 0 . Otherwise, ( AE 0) the trial position is accepted with
i=1

probability e-βΔE. For the macroscopic particles that we are studying, p is very large [35]

so that for all practical purposes, only downward displacements are allowed. Another

particle is then selected at random, and this procedure is repeated.

As the process described above advances through many hundreds of MC steps,

the space between adjacent particles is reduced and the bulk density increases. If the
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maximum allowed displacement 6 were set to a small fixed value 6 d 1 at the outset,

the evolution of the system to a local equilibrium would be prohibitively slow. The

situation would be the same if 81 d — 1, since the percentage of accepted steps would be

drastically reduced as the system density increases. In order to prevent this from taking

place, we dynamically change 8 from a maximum value 6 = d at the beginning of the

process to a minimum (5 =10-3 d by monitoring the accepted fraction of steps every 10 4

MC steps. If more than half of the MC steps have been accepted, 8 remains unchanged;

otherwise 6 is modified as follows: 6' = 0.9958. While other algorithms in the literature

may be more computationally efficient [150, 151], this approach has a great deal of virtue

in its simplicity.

The change in the bulk solids fraction is computed every one million MC steps

and the Metropolis algorithm is terminated when

where v(17;7) is the bulk solids fraction at number of Monte Carlo steps n and lift

intensity 7. To ensure that this stopping criterion did not cause premature termination, in

many test runs we required the criterion in Equation 2.3 to be satisfied twice before

ending the process. In none of these instances was a premature termination observed,

allowing us to satisfy Equation 2.3 only once for many of the results presented below. In

all of the case studies reported in this dissertation, the initial random assembly collapsed

to a loose configuration having a bulk solids fraction in the range 0.56 to 0.58. In general,

the poured assemblies filled the box to a height H I d = 11. The detailed flow chart of

Metropolis algorithm is shown on Figure 2.6.



Figure 2.3 Flow Chart of the Metropolis Subroutine (MTRPLS).
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2.7 	 Vertical Tapping

The poured assembly is dislodged from its local energy minimum by applying vertical

position dependent displacements to each particle in accordance to

The factor y represents the effect of a single tap so that in a qualitative sense, a greater

impulse applied to the container corresponds to a larger value of y. We remark that the

form Equation 2.4 for vertical displacements is equivalent to that used by Barker and

Mehta [40], who also imposed random lateral displacements on the particles at each tap.

The influence of applying this additional lateral displacement on the equilibrium solids

fraction is considered later in this dissertation. After expanding the vertical coordinates

using (2.4), the system is allowed to settle using the Metropolis algorithm as described in

the previous section. Satisfaction of the stopping criterion (Equation 2.3) to signal

completion of a single 'tap' applied to the system typically required 17 to 20 million MC

steps 40 CPU seconds on our computers). Figure 2.4 shows a sequence of

configurations, starting from the initial random placement, the 'poured assembly', its

expansion via a single tap (2.4), and its state in accordance with the criterion (2.3).



(a)
(h)
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(c) (d)

Figure 2.4 Snapshots of system: (a) Initial random configuration, (b) Poured assembly
(v=0.568), (c) Configuration after applying one tap, and (d) Final configuration at 1000
taps. Note that particles are shaded only for the purpose of visualization.
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2.8 Equilibrium Bulk Solids Fraction

A tapping cycle is initiated with the poured particle assembly as described in previous

Section 2.6. A single experiment (or realization) consists of a sequence of individual taps

(Section 2.7). As used here and henceforth, the term 'tap' refers to the expansion by

Equation 2.4, and subsequent relaxation. Each realization is carried out using a fixed lift

intensity y; the total number of taps to obtain equilibrium depends on y. For smaller

values of y, more taps are needed to reach an equilibrium solids fraction, which is

intuitively reasonable since each such tap is less effective in rearranging the locations of

the particles. However, as will be seen later, our results suggest that there is a value of y

that optimizes the evolution of the system to equilibrium. Typical plots of bulk solids

fraction against the number of taps NT are shown in Figure 2.5 for two different

realizations at 7 = 1.25 . The graphs exhibit an overall increase in the solids fraction with

the number of taps, a general trend that was evident in all realizations. The convergence

to the equilibrium configuration also exhibited dependence upon the choice of y, which

will be demonstrated in subsequent figures.
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200	 400	 600	 800	 1000
Tap Number NT

Figure 2.5 Bulk solids fraction v versus tap number NT for two independent realizations
at tap intensity y =1.25 . These plots show the typical evolution of the system.
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The ensemble averaged bulk solids fraction (v (n; y)) was computed over M

realizations. In order to identify the minimum number of realizations M so that a

statistically correct equilibrium value was obtained, the standard deviation (σ(n;y)) as a

function of the tap number n was determined as

where

The behavior of (6(n; 7)} was monitored by increasing the number of realizations M

until, over a sufficient number of taps NT,

which essentially defines equilibrium in the simulations. The behavior of the standard

deviation (o- (NT ;1.25)) depicted in Figure 2.6 demonstrates that criterion (2.7) is

reached when of NT ~ 800 for this value of y. The ensemble averaged solids fraction as a

function of M is shown in Figure 2.7 for the same case when NT = 1000 . The vertical

lines in the figure denote error bars in the ensemble averaged solids fraction. In general,

it was found that M 100 realizations were adequate to satisfy the criterion in
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Figure 2.6 Standard deviation of the bulk solids fraction (a (n; y)} versus tap number NT

at tap intensity y =1.25 for 100 realizations. This demonstrates the convergence
properties of the methodology.

Figure 2.7 Dependence of the ensembled-averaged bulk solids fraction (v(1000;y)) on

the number of realizations at tap intensity y = 1.25 to exhibit the sensitivity of the system
to the ensemble size. The vertical lines through the points are error bars.
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2.9 Computation of Solids Fraction

The solids fraction is defined as the volume ratio of solid particles to the total volume

within which the particles are enclosed. The complete description of four different

approaches used to define the structural and evolutional behavior of the solids fraction of

the granular matter is incorporated in this section. Figure 2.8-2.8 show all the possible

segmentations of the spheres by a sampling layer. The geometric conditions of these

segmentations are classified depending on the locations of the particle centers. For each

classification, the exact formula to determine the contributions to the volume that is

occupied by the spheres inside a sample layer are tabulated in the Table 2.1.

The first technique (named "low eighty") involves the computation of the total

volume of particle segments for the lower 80% of the height of the granular stack. The

elimination of the volumes of the particles from the top was performed to avoid the "top

effect" that is responsible for the random loose rearrangement of the particles on the top

of the stack. This technique was embedded into the code as a subroutine PACKFR.f that

was called after the last Monte Carlo step for each discrete tap. The outcome of the

computation was the solids fraction v that was stored in output data file pack. txt.

Afterward the evolution of solids fraction <v> versus tap number was provided by the

statistical analysis of the solids fraction averaged over the ensemble of discrete

realizations for each individual tap. The details of this analysis are provided in Chapter

3. It is clear that for the "low eighty" approach the total volume of spheres below the top

20% of the stack could be determined by the summation of the contributions of the

spheres that are prescribed in these three cases: spherical center lies above the layer top
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Figure 2.8 The volume occupied computation by the spheres inside a sample layer: case
1 — spherical center lies above the layer top, case 2 — spherical center is located below the
layer top, but the spherical bottom is situated above the layer bottom, case 3 - sphere is
entirely inside the layer, case 4 — spherical center is positioned below the layer top and
above the layer bottom, while the spherical bottom is below the layer bottom.

(case 1), spherical center is located below the layer top, but the spherical bottom is

situated above the layer bottom (case 2), and sphere is entirely inside the layer.

The second solids fraction approach used was so-called "slice method", which

produces the profile of the solids fraction along the height of the packing. This vertical
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distribution of the solids fraction in the vertical vessel is computed by summation of the

volume of the pieces of spheres within layers or slices to the volume of that layer (i.e.,

product of the area of the square base and thickness of the layer denoted by dstinc). In

essence, by selecting very thin layers, it is possible to determine the solids fraction profile

— as a function of y/d. It is easy to see that with increasing of the thickness of the sample

layer, the generated number of data points v(y/d) decreases so that the resolution of the

solids fraction profile becomes coarser. However, the analysis of the integral behavior of

the solids fraction v using a layer thickness of one sphere diameter (dstinc=d) is

especially important, because the curve with this resolution represents a complete profile

of the solids fraction at this moment. The slice method may require all eight possible

bisections of the particles that are tabulated in Table 2.1 (especially for the layer with a

thickness dstinc less than spherical diameter). While "lower eighty" is basically used for

the evolution of solids fraction versus increasing number of taps, the slice method is used

to obtain some insight into the vertical distribution of the solids fraction for a particular

tap. The analysis of the modified vertical expansion of the system which is

fundamentally built on the slice method is presented in Chapter 5.

There are two additional approaches to analyze the height dependence of solids

fraction. The first technique considered in this dissertation called "fixed bottom —

moving top") calculates the solids fraction as the ratio of the volume occupied of the

particles to the total volume constrained by two horizontal planes: the bottom of the bed

and one that is restricted by an imaginary line y top . This imaginary line moves upwards to

the maximum vertical position of the particles & max) with a step of 1% of the diameter of

the particle (0.014 This method was performed by calling the subroutine PACKBT.f.
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The second approach PACKTP f was named as "fixed top — moving bottom". In contrast

to the previous technique, this method computes the contributions of the partial solids

fractions of particles inside a box that is constrained by the planes of the maximum

vertical position of the particles ymax and the imaginary bottom Ybot, which moves starting

from the floor with the same increment of 1% of the diameter of the particle (0.01d) up to

the maximum vertical position of all particles. Thus, the solids fraction vertical profile is

"scanned" from the top to the bottom with a very high precision. Both techniques are

computationally expensive for the same aforementioned reason as in slice method;

therefore they were not embedded into the Monte-Carlo code but rather were executed in

a post-processing stage. For both subroutines, the bisecting cases 6, 7, and 8 (Table 2.1)

were excluded from the search of the solids fraction since the sample layer could not

possibly split the sphere into three parts based on the definition of methods. Simulation

results when using both techniques are given in Chapter 3.
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Figure 2.9 The volume occupied computation by the spheres inside a sample layer: case
5 — spherical center is below the layer bottom, while the spherical top is located above
than the layer bottom, case 6 — the sphere is divided by three parts, and the spherical
center lies between the planes of layer top and bottom, case '7 - the sphere is divided on
three parts, while both planes of the layer top and bottom are situated above than the
center of the sphere, case 8 - Sphere is divided on three parts, while both planes of the
layer top and bottom are located below than the center of the sphere.

The volumes that are computed in Table 2.1 bring into play the known expressions for

volume of sphere and the volume of spherical caps that are formed as the cut off by the

appropriate planes of a layer ("bottom" and "top"). The thickness of the cap was defined
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Table 2.1 Computation of the volume occupied by spherical particles (sum of the
segments of spheres) inside of a sample layer for the all possible bisections

by the mutual vertical coordinates of the spherical center y(k), top y(k)+R and bottom

y(k)-R and the vertical positions of cutting planes of the sample layers "top" and

"bottom".
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2.10 Microstructure Analysis

There are several global parameters that provide insight of the structural geometry of the

packings of spherical particles: Voronoï and Delaunay 'free volumes', coordination

number, dihedral and solid angular distribution, radial distribution function, local

orientation order, fabric tensor etc. In this dissertation, a geometrical characterization of

packing configurations was performed by monitoring following measures: coordination

number and radial distribution function. Both topological quantities were computed for

the lower 80% of the packing to have consistency with solids fraction computation and

avoid the "top effect" described in the previous section.

2.10.1 Coordination Number

The coordination number represents the number of particles in contact with a given

particle. It is one the most frequently used geometrical quantities which provides

significant description of the local and global configurations of granular packings.

The definition of contact is highly dependent on the distance between the centers

of two spheres. A detailed analysis of the influence of central distance on coordination

number was done by Aste [122]. In the current work, the criterion for a sphere to be in

contact with another is that the distance between their centers is less than or equal to 1.05

sphere diameters. This computation was performed by generating bins for the integer

number of contacts, and then counting all number of spheres having the specified number

of contacts.
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2.10.2 Radial Distribution Function

The radial distribution function (RDF) is the probability of finding one particle center at a

given distance r from the center of a considered particle. The first analysis of this

geometrical parameter for granular matter was done by Bernal [5] who showed that the

magnitude and position peaks of radial distribution function are a good indications of the

formation of structured configuration.

The master equation for radial distribution is defined by:

where n(r) is the number of particle centers that are located inside a spherical layer of

the thickness Ar and at a distance r from the center of a given sphere. In this

dissertation, the thickness of the layer was set at a constant value 0.01 of the particle

diameter throughout all the calculations.



CHAPTER 3

MONTE CARLO SIMULATION OF VERTICAL TAPPING

3.1 Introduction

In this chapter the results of Monte Carlo Simulation are given. First, the solids fraction

evolution versus tap number is discussed. Then, the model fitting analysis of solids

fraction evolution was done using hyperbolic tangent, inverse logarithmic, stretched

exponential and reciprocal linear functions. Also we carried out the studies of system

microstructure via coordination number and radial distribution function. Finally, we

discuss the necessity of the modified and uniform expansions of the bed for higher

systems of particles and analyze the results obtained.

3.2 Evolution of the Solids Fraction

The value of the equilibrium bulk solids fraction depends on the lift intensity y , which, in

a physical experiment, is analogous to changing the intensity of the taps on the

containment vessel. As will be seen, the results demonstrate that it is possible to obtain a

rather wide range of equilibrium solids fractions, from loosely packed assemblies to

rather dense configurations whose radial distribution functions contains peaks associated

with the presence of crystalline structures.

For the pouring phase of the simulation, we obtained 'poured' solids fractions in

the range 0.560 to 0.580, corresponding to a random loose structures reported in the

literature [10, 31, 85, 88].

63
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Figure 3.1 Evolution of the ensemble-averaged bulk solids fraction (v(n;y)) for tap

intensity y = 1.2. 5 (A), 1.3 (X), 1.35 (0), 1.4 (0), 1.50 (*). This demonstrates the effect of

increasing y on (v(n;y)).

Starting from the poured structure, taps are applied to the system following the

procedure described in Sections 2.2 and 2.6. The ensemble-averaged bulk solids fraction

(v(n; y)) for lift intensities y between 1.25 and 1.50 as a function of the tap number is

shown in Figure 3.1.

For the purpose of clarity, only every twentieth data point is plotted; here each

symbol represents the average bulk solids fraction over 100 realizations. It can be seen in

the figure that taps of smaller intensity eventually yield larger equilibrium bulk densities.

Simulations were also performed at y =1.2 ; however these results were not included in

Figure 3.1 because of the larger number of taps ( NT 2,000 ) required to reach

equilibrium. In fact, for y =1.15 , we carried out 10,000 taps, which were not sufficient to
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Figure 3.2 The number of taps required to attain 99.5% of equilibrium bulk solids
fraction versus the tap intensity y . A reduction of y results in a greater number of taps
to reach equilibrium.

satisfy the equilibrium criterion in Equation 2.7. This is not unexpected given the trend

shown in Figure 3.2 for the number of taps required to reach 99.5% of the equilibrium

solids fraction.

The deviations (equations 2.5 and 2.6) for y =1.25, 1.35 and 1.50 as a function

of the tap number in Figure 3.3 exhibit a clear-cut dependence on lift intensity y. The

peak observed in the y =1.25 case was observed to be a characteristic feature at small

values of the intensity.
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Figure 3.3 The standard deviation of bulk solids fraction (σ(n; y)) versus tap number NT
for tap intensity y = 1.25 (A), 1.35 (0) and 1.50 (*). Smaller values of y yield higher
variances.

However, as the lift intensity became smaller, the peak in the deviation grew so

that it required significantly more taps to satisfy criterion (Equation 2.7). At the smaller

intensities y considered here, the system tends to visit a greater portion of the phase space

in approaching its final lower energy state. However, preliminary results have indicated

that for much smaller values of 7 than are considered in this dissertation, the system

remains at local energy minima without extensive exploration of the phase space.

In order to determine if random lateral displacements of the particles in sync with

vertical taps would significantly change the equilibrium bulk solids fraction, we modified

our Monte Carlo procedure by incorporating this feature of Mehta et al.'s algorithm [40].

That is, in conjunction with the vertical motion prescribed by (Equation 2.4), each

particle is assigned a random lateral displacement within a disk of radius p given by,
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where	 and are uniformly distributed random numbers E [0;1] .

The parameter p is computed at each tap as the average (over Np particles) of the

minimum near-neighbor lateral distance,

, where the minimum is taken over all

particles j whose centers are within two diameters from particle k. In Figure 3.4 below,

we compare the bulk solids fraction versus tap number at lift intensity y =1.25 with and

without application of the random lateral displacements given by Equation 3.1.

The trends of the two graphs are very similar, and we observed steady-state values

of the solids fraction that were statistically equivalent. A further check was done by

introducing lateral displacements in a system that had equilibrated without them in order

to determine if it would return to the same equilibrium solids fraction. In the results of

this study, it was observed that random lateral displacements did not move the system out

of equilibrium.
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Figure 3.4 Comparison of the evolution of the ensemble-averaged bulk solids fraction at
intensity y = 1 .25 with (X) and without (0) the application of random lateral
displacements. The results with and without these displacements are statistically
indistinguishable.

3.3 	 Fitting Analysis of the Solids Fraction

The simulation data could be fit to a hyperbolic tangent model (solid lines in Figure 3.1)

of the form,

v (n; y) = v 0 (y) +[v .(y) — v 0 (y)] tank (A(y)n)	 (3.3)

where vo (y) and v .,,(y) are its initial and equilibrium values, respectively and A(γ) is

the controlling rate constant. The use of Equation 3.3 is motivated in part by the rate law

dp(t) 
= — βρ , the solution of which suggests a difference equation of the form,

dt

ρn A-1 C e- fin • 	 (3.4)
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The general solution of this difference equation is given by

By expressing the model in Equation 3.3 in terms of Linz's [66] compaction ratio

vn
 — v°° , it becomes

vo — voo

ρn 	 tanh(An) . 	 (3.6)

It can be noted that the solution of Equation 3.5 with B =1, fi = 2A and C = 2(1 -
e²A

is seen to be the first two terms of the asymptotic expansion of Equation 3.6.

Parameters determined from the least-squares fit to Equation 3.3 using the

simulation results appear in Table 3.1 for y 1.2 . Recall that these parameters are the

initial and final solids fractions v 0 (7) and v.(7) , respectively, and the rate

constant A(7) .

Observe that the initial solids fractions v.(7) from the fit fall within the range

0.560 to 0.580 generated by the simulation and that the plot of the rate A versus y in

Figure 3.5 suggests that there may be a value of the lift intensity that optimizes the
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Figure 3.5 Behavior of the rate constant A versus intensity y from fits of the data to the

hyperbolic tangent model v(n; y) = v 0 (y) + [v .(y) — v 0 (y)] tank (A(γ)n) .

densification rate. Although it is premature to be more definitive on this point, recent

discrete element simulations and experiments [24] would appear to support this

conjecture.

The graph of voo (γ) versus y in Figure 3.6 shows that a reduction in the lift

intensity results in the creation of a more dense system, but at the expense of an

increasingly growing number of taps (see Figure 3.2) to reach equilibrium via criterion

given by Equation 2.7. Values of v oo (y) from the fit closely matched that obtained from

the simulation for yf 1.2 .
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Figure 3.6 Behavior of the equilibrium solids fraction v ac, obtained from the fit of the

data to the hyperbolic tangent model ( v (n; y) = v. (y) +[v oo (γ) — v 0 (y)] tanh(A(γ)n) )
versus intensity 7 . Smaller tap intensities yield more dense configurations.

Furthermore, the model displayed rather good agreement with the progression of the data

with tap number n, although (as expected) less than perfect conformity was found at the

onset of the densification process.

However, the hyperbolic tangent function was not observed fit the lower intensity

data (at y =1.1 and 1.15) as well since computational limitations precluded the

generation of a data set of sufficient size in the sense of being close to equilibrium. In

fact, a crude backward extrapolation of the data in Figure 3.2 suggested that for lift

intensity y = 1.1 upwards of 40,000 taps may be required.

For the sake of completeness, we have also considered fits of the simulation data

to other models in the literature.



In particular, comparisons were done with the stretched exponential [152, 153],

and the inverse log law [88]. The stretched exponential takes the form

There are four parameters in this model, corresponding to the initial solids fraction vo ,

the equilibrium solids fraction v. , the Monte Carlo time scale i and the stretching

exponent i3 [152]. The fits to the data appear in Table 3.2 from those cases in which

equilibrium was attained in accordance with Equation 2.7; these fits do not reveal a

consistent value or a trend in the stretching exponent 13. Furthermore, neither i nor τß

revealed a decrease with intensity y, as would be expected for a time scale measure.

Despite these issues, the fits matched the data for the tap intensities considered in this

study.

The inverse log model is given by

where the four parameters are the initial and equilibrium solids fractions vo and v oo

respectively, the Monte Carlo time scale ti and an amplification factor B. For tap
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intensities y 1.2 , poor correlation between this model and the simulation data was

found since equilibrium was attained more rapidly than could be accommodated by the

form of Equation 3.8. In the lower tap intensity regime (i.e., y =1.1 and 1.15), Table 3.3

shows that nearly constant values of the ratio B/τ were obtained as a function of the

number of taps, with the value of this ratio being dependent on y.

The possibility that B/τ is a relevant parameter for low tap intensities is also

suggested by the experimental data in Fig. 5 of Knight et al. [88]. An exact correlation

between y in the Monte Carlo simulations and the bed's response to the sinusoidal taps,

as in the experiments of Knight et al., is a matter of further research. However, rough

scaling arguments (done by equating the normalized average bed expansion in the

simulations with the experimental tap amplitude a) suggest that the lower intensities

(y =1.1 and 1.15) correspond to accelerations F aω²/g greater than the experimental

values, but within the same order of magnitude. A similar fit analysis of the data to (14)

for y .1.2 revealed that B/τ was not constant as a function of the number of taps; for

example, the ratio increased monotonically by an order of magnitude for y =1.25 when

600 NT 3000 .
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Further exploration of the significance of Biz - was carried out by fitting the low

intensity data (y = 1.1 and 1.15) to the functional form

The results are given in Table 3.4, where it is observed that the values of D are close to

Biz obtained from the inverse log fits (Table 3.3). Furthermore, the increase of D with y

is in line with the expected behavior of a time scale parameter. These findings suggest the

ratio is an important factor that captures the evolution of the data as a function of Monte

Carlo time (i.e., tap number n). Note that Equation 3.8 is simply the first order

approximation to the denominator of Equation 3.9 with the identification that D Biz- .

3.4 Characterization of the Microstructure

The dependence of the configuration microstructure was examined by computing the

ensemble-averaged (i.e., equilibrium) distribution of near-neighbor contacts as well as the

radial distribution function. These computations were done for a variety of lift intensities.

Distribution functions were determined by averaging on configurations in which the
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upper 20% of the particles was removed from the data so as to minimize the influence of

the top surface and to simplify (without a loss in accuracy) the numerical procedure.

Spheres were defined as being in contact if the distance between their centers is less

than or equal to 1.05d. The number of nearest neighbors is commonly referred to as the

coordination number. Figure 3.7 shows the expected result that the near-neighbor contact

distributions shift to the right corresponding to an increase in mean coordination number

(NO with bulk solids fraction voo as determined from the tit to Equation 3.3.

Figure 3.7 Mean coordination number (i.e., fraction of particles with mean number of
nearest contacts (NO) for equilibrium bulk solids fraction values (and associated tap
intensity y) = 0.593 (y =1.4) (*); = 0.623 (y =1.3) (0); v oo =0.659(y=1.2)(•).
As expected, systems which are more tightly packed have, on the average, more contacts
per particle.
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Figure 3.8 Mean coordination number (NC ) versus voo from the simulation results (A)

and experimental measurements (0) of Aste et al. [1]. This comparison with the
experimental data shows good agreement.

A comparison of the simulated values (NC ) as a function of voo with the

experimental measurements of Aste et al.[1] is shown in Figure 3.8, where the simulation

results are denoted by solid triangles. Here, good agreement is observed with the trend of

the data, as indicated by the linear regression fits appearing in the figure and a

quantitative comparison of the data with the reported experimental averages.

The radial distribution function [154] is given by:

where Np is the number of particles, v is the bulk density (i.e., number of particles per

unit volume where v = pπd³/6 ), rij is the distance between the centers of particles i and



77

j, and 8 is the standard delta distribution. Thus, g(r) may be considered as that quantity

which, when multiplied by the bulk density, yields the local density. Computationally.

g(r) is approximated as an ensemble-average quantity taken at the last Monte Carlo

time step (or tap).

where (•) represents the ensemble average, N(r) is the number of sphere centers within a

spherical shell of radius r and thickness Ar , and v is the bulk solids fraction. Due to

limited computational facilities, more refined 'time' and ensemble averaging was not

possible over the range of tap intensities considered in this study. However, several

preliminary calculations indicated little difference in the radial distribution results when

`time' averaging was included.

Figure 3.9 shows (g(r I d)) of the initial configuration and the result of three tap

intensities (y =1.15, 1.3, and 1.45) corresponding to decreasing solids fractions v oo . As

the density increases, observe that the peaks in the distribution function become more

pronounced. For 7 =1.15 , a power-law singularity at r =d of the form

was found. The least-squares fit to Equation 3.12 yielded a 0.528 , in agreement

with the value reported in the molecular dynamics studies of Silbert et al. [12] and later

experiments of Aste [122]. The second and third peaks in the distribution appear

at 1 ~ -Nfi and 13- , which correspond to those in a hexagonal-close packing lattice.
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Figure 3.9 Radial distribution function for a poured assembly and for various
equilibrium bulk solids fractions v. with their associated intensities y shown. The

higher v. results reveal local crystalline structure, while systems with smaller v. exhibit

features observed in experiments.

This result suggests that the low intensity taps tend to induce local crystalline order in the

system that resembles a hexagonal-close packing structure. At the lowest tapped solids

fraction (circled in Figure 3.9, for v. = 0.583 ), it is observed that the two peaks at

1.8 and 2.0 provide evidence of a local structural arrangement similar to the

experimental results of Aste [122]. This structure does not appear in the poured assembly

v0= 0.567 as seen in the plot at the lower right hand corner of Figure 3.9. We remark

that this local arrangement differs from that seen by Nicolas et al. [33], who observed

hexagonal close-packed structures resulting from the application of horizontal cyclic

shearing.
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3.5 Study of the Uniform Lifting of the Vessel

In previous sections of this dissertation we have established the formation of the ordered

microstructure for the system of 1,728 monodisperse particles which were located inside

the granular container of dimensions 12dx 12dx 12d. Unfortunately, the number of

particles chosen might technically limit the geometry of possible configurations to those

ones enclosed in a cube having dimensions 12d× 12d× 12d. Because the fill height is

approximately the same as the lateral dimension of the box, this causes very fast

densification and a high compaction. Consequently, in this section, results on deeper

systems are presented.

A system of 3,456 identical particles was chosen, in which the cross-section area

of the box is identical to the previous study (12d× 12d), but is now twice as high (24d) as

previous case, so that the dimensions are 12d×24d× 12d. Typical configurations of

random initial configurations and poured assemblies for 3,456 particles are shown on

Figure 3.10. The fill height H for such systems generally varies from 22 to 24 diameters.

For the deeper system, the linear expansion method as described in Section 2.7 in

caused a very substantial displacement of the particles in the upper layers. For instance,

following Equation 2.4, the displacement corresponding to the linear expansion with

7 =1.25 of the particles at the top (y ~ 20d) could reach 5 particle diameters, which

correlates to a relatively high input of potential energy into the system. This physically

unrealistic upward movement causes the effect of particles in the upper layers to "forget"

the positions of previous configurations.
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Figure 3.10 Snapshots of system of 3,456 particles: random initial configuration (picture
to the left) and poured assembly with fill height H/d~22 (picture to the right).

To verify the "memory loss" that takes place at the upper layers, simulations were

carried out in which the tapping of the system was modified. The tapping of the system

is carried out so that the lower layers (up to fixed y c) were expanded proportionally to

their vertical positions expressed by Equation 2.4, while the particles in the top layers that

are higher than yc were uniformly lifted by an equal amount X corresponding to the value

of the lift at yc . The particle vertical displacement of the modified expansion is defined

as follows:

(3.13)

To avoid the possibility of a forbidden particle overlap, a condition of continuity was

imposed so that the uniform lift intensity X is given by expression A= (y —1)· yc  .
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Figure 3.11 Vertical displacement of linear and modified expansions with different
stationary points yc and different X, values.

Figure 3.12 Vertical center distribution for modified expansions by Monte Carlo
method.
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Figure 3.13 Graphic representation of uniform lift of system particles on lift intensity X.

The distribution of centers along the height of the bed, (details of the calculations

appear in Chapter 5), provides the evidence of a physically unrealistic lift. As seen from

Figure 3.12, very intensive energy inputs of top layers for linear and modified

expansions with yc =12d causes the top of system to remain in a very loose state. On the

other hand, smaller values of yc = 2d at = 0.5d leads to perceptible advance of

crystallization into the top layers. This observation indicates the importance of the nature

of the energy input mechanism on further crystallization progress.

Thus, in subsequent computations, the system was tapped by lifting all particles

by the same vertical displacement regardless of their vertical positions during the tap

(referred to as a `uniform lift'). Hence,
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All other simulation routines remain the same as described in Chapter 2 for linear

expansion. The effect of uniform lift on the vertical coordinates of system particles is

schematically represented on Figure 3.13. Segments of particles that are shown located

outside of the box represent the periodic boundary conditions in lateral directions.

A characteristic ensemble average solids fraction evolution for several uniform

lift intensities is given in Figure 3.14. Here, lift intensities varying from A. = 0.1d to

= 0.35d are used. On this plot each point represents the average solids fraction

(average over 100 realizations via the procedures described in Section 2.8) at every 500

taps. This figure clearly demonstrates the effect of lift intensity on the solids fraction

evolution.

Figure 3.14 Ensemble average solids fraction v versus tap number NT for different lift
intensities. The plot shows the typical evolution of the solids fraction for uniform
expansion of the system.
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Figure 3.15 Solids fraction attained at final tap NT for different lift intensities k.

Figure 3.15 depicts the results of solids fraction obtained for different lift

intensities. Note that each data point represents the solids fraction for the particular

number of taps shown with the symbol. At the larger lift intensities (2 > 0.35d), no

significant increase in bulk density from the initial poured configuration was observed.

However, the results shows a large improvement in solids fraction at (A, = 0.25d).

Although not all of the points shown in Fig. 3.15 were at equilibrium, it is hypothesized

that there may be a critical intensity at which the solids fraction is optimized.



CHAPTER 4

DESCRIPTION OF DISCRETE ELEMENT MODEL

4.1 Introduction

This chapter contains a description of the Discrete Element simulation, beginning with a

concise background on the method itself and the force models used. This is followed by

introducing the physical properties of system. Details of the modifications made to an

existing discrete element code are described, consisting of how discrete taps were

implemented. Finally, the analyses of the particle layer responses to the taps via

maximum displacements are provided.

4.2 Background

In the discrete element method, the positions and velocities of the particles are

determined by integrating the equations of motion governed by Newton's second law.

This approach was introduced in the 1970's by Cundall and Strack [18] to describe the

mechanical behavior of spheres and discs. The principles of discrete element method are

very similar to those that are used in molecular dynamics (MD) modeling. The key

difference between these two methods is that the motion of molecules is determined by

molecular forces that are conservative, while the collisional (or contact) forces for

macroscopic particles in discrete element simulations are dissipative.

The discrete element code that was modified for the purpose of this dissertation

was originally written by Walton and Braun [53] to study flows of monodisperse,
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frictional, inelastic spheres subjected to uniform shear. This code was subsequently

modified by Zhang [24] to investigate the densification behavior of granular systems

within a rectangular box, in which the floor was a piston that periodically oscillated up

and down. Subsequent to this, the code was code was modified to analyze segregation

and migration in granular Couette shear flows, and to study the floor pressure in a

cylindrical vessel loaded with particles.

This version of the code employs a partial-latching spring model that was

developed by Walton [155]. The energy of independent particles dissipates during their

collision for both normal and tangential directions. The normal direction is parallel to the

line connecting the centers of two spheres, and the tangential direction is perpendicular to

the normal one. Along the normal direction, the dissipation mechanism is described by a

linear spring model which involves a loading with stiffness K1, and unloading with a

spring stiffness K², such that K1 > K². The energy loss along tangential direction is

simulated by applying Mindlin-Deresiewicz's theory [156].

The physical properties of the system particles were as follows: restitution

coefficient coact = 0.9 , friction coefficient p = 0.1 , density of the system particles

dens = 1.2 g/cm ³ , normal force loading stiffness K 1 = 2.8 ×10 5 , unloading stiffnessc

K² = 10 5 , and tangential to normal stiffness coefficient ratio of 0.8.
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4.3 Modifications to DEM code

For this dissertation, the DEM code was modified to simulate the response of the

particles in a rectangular vessel whose floor was subjected to harmonic vertical taps.

Tapping is provided by the half-period of sine displacement (or half-period of cosine

velocity) that are applied to the floor. In the code, the floor is represented by a "floor

particle", which is located one radius below the level yf, and it has a "virtual" radius

equal to the radius of system particle. Thus it is simply an "image particle" whose role is

to mimic the effect of the floor. The governing equation for the floor motion is given by:

where vamp is the maximum velocity "amplitude" of the floor oscillation, Q is the cyclic

frequency of oscillation which is equal to 2πf  , f is the frequency of oscillation, tp is

the relaxation time, tc is the time of one cycle, (equal to the sum of "tapping" time tb

and the "relaxation" time tp ), and it is the tap number. The relationship between tapping

time and frequency is given as:

During the tapping, the impulse (energy input) that is experienced by the floor is

transmitted to the particles through collisional impulses. As the tapping period of time is

completed, the floor returns to its initial zero level and stays motionless there for the

duration of the relaxation time tp , thereby allowing the system particles to settle down to

a configuration for minimal kinetic energy. A schematic illustration of the floor motion

is depicted in Figure 4.1.
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Figure 4.1 The vertical location of the floor level yf as the tapping occurs. The floor
particle is positioned below yf at one particle radius.

In this particular case, the frequency of oscillation was 5 Hz, tb = 0.1 sec, time of

tapping is 0.1 sec, tp = 0.3 sec and time of one cycle ( tc ) is 0.4 sec (or, in other words, 5

complete cycles for 2 seconds).

4.4 	 Response of the System to the Discontinuous Tapping

The subroutine avezon.f was created to examine internal response of the particles to

tapping. This subroutine finds the maximum vertical displacement of a particle during a

tap. For this purpose, the computational cell was partitioned into vertical layers or 'zones'

of thickness equal to one particle diameter.



Figure 4.2 The time at which arrays ZONE, LIST and HEAD are being computed.

Before the tap, spheres were assigned to the related chain-cell arrays according to their

vertical positions (see Figure 4.2). Subsequently, the vertical coordinates of the particles

in a zone are traced by following the corresponding sphere indices and then averaging

their maximum vertical positions over the number of spheres within the layer. For a

graphic visualization of the response of seven layers to the harmonic tapping described

above, the reader is referred to Figure 4.3.

The maximum vertical displacement for a layer is computed as the difference between

the maximum and minimum values of the average vertical positions, that is,
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Figure 4.3 The schematic response in time of multiple layers (7 zones) of spheres to the
floor tapping. The positions of the floor particle are shown as the dynamics of the lowest
layer of spheres.

Generally, a minimum vertical average is reached right at the moment when the tracing

arrays were recomputed (i.e. the time-step before tapping is initiated). This moment is

also characterized by the minimum potential energy of particles in the layer for a

particular tap number. On the other hand, a maximum vertical average is attained within

a short period of time after the middle of the tapping period. This is related to the wave

nature of signal propagation in granular matter that has been reported in the literature

[157-159].

Another helpful parameter used was the expansion factor y, which is the ratio of

(maximum to minimum vertical average γ = ymax/ymin 	
• 

The use of this quantity was
-Y min

motivated by the desire to identify a connection between two Monte Carlo and Discrete

Element results.
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Figure 4.4 Maximum vertical displacement of the vertical layer average as the response
to the floor tapping.

Figure 4.4 illustrates the maximum vertical displacement in terms of layer height

location (y/d) for the case f = 5 Hz, F = 1.35, and displacement amplitude b/d= 0.675. It

is clear that the response of the particles to harmonic oscillation of the floor has nonlinear

behavior which is in contrast to the Monte Carlo linear expansion given by Equation 2.4.

For the Discrete Element Method we calculate the parameter 7 which is an

equivalent to the linear expansion parameter from Monte Carlo simulation as described in

Section 2.7:

Y new 
=	 (4.4)

Y old

where yi old is the average vertical coordinate for a layer i (usually the smallest one),

yinew is its maximum vertical coordinate after a tap.
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Figure 4.5 DEM expansion factor γ of the vertical layer average as the response of
granular matter to the floor tapping.

As seen from the Figure 4.5, the expansion factor varies within a relatively

narrow interval [1.1;1.16] , except for the particles of the first layer that lie on the floor

and have a small value of min • For the case presented in Fig. 4.5, the range of expansion

factors obtained for in the discrete element simulations lies in a region which corresponds

to the low-energetic linear expansion tapping of the Monte Carlo simulation.

The results seen in Fig. 4.5 cannot be said to be characteristic of the expansions

fact as it was done for only a single set of vibration parameter. Although beyond the

scope of this dissertation, it is clear that a complete parameter study should be done to

characterize the behavior of the expansion factor as a function of amplitude, frequency

and acceleration.



CHAPTER 5

FORMATION AND DEVELOPMENT OF ORDERED MICROSTRUCTURE IN
GRANULAR MATTER

5.1	 Introduction

In this chapter the formation and development of ordered microstructure in a tapped

configuration of spheres is discussed. For this purpose, a local geometric measure is

introduced that quantifies the distribution of centers along the height of the box.

Characteristic features of the vertical center distributions are explained for both the

random initial and poured configurations, as well as for the evolving system as the taps

progress. These results are used to more clearly interpret the analogous effect that was

observed in Monte Carlo technique results presented in Chapter 3.

5.2	 Motivation of Analysis

How does a random, loose assembly of spheres subjected to tapping develop an 'ordered'

microstructure? To find an answer for this question, scientists have developed a variety

of geometrical structure analysis tools that were discussed in previous chapters.

Unfortunately, most of these techniques (coordination number, radial distribution

function, fabric tensor etc.) are global geometrical measures, and as a result they do not

provide a clear picture of the evolution of interior structure. In this study, the

propagation of the ordered configuration is quantified by using the vertical distribution of

particle centers. This idea was inspired by the use of local area fraction for one-
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dimensional theory of fluidized suspensions of spheres by P. Singh et. al. [160, 161]. The

outcome of the vertical distribution analysis and conclusions drawn from it follow.

5.3 Vertical Center Distribution for Monte-Carlo Simulation

Vertical distribution analyses for the both Monte Carlo and Discrete Element simulation

results are done via post-processing using the positions of the sphere centers (stored in

file coord.txt). The box is partitioned (see Fig. 5.1) into layers of thickness

(8H = y, — y,_ 1 = 0.01d) and the number of sphere centers (xk, yk, zk) within this layer is

summed, the result of which is divided by the number of particles (Np ) in the system.

Thus,

This distribution describes the allocation of particle centers along the height of the box.

The vertical thickness equal to 1% of the particle diameter was identified as optimal after

performing a series of tests using thicknesses d, 0.5d, 0.25d, 0.1d, 0.05d and 0.001d. For

a relatively large thickness 0.1d the evolution picture was rough and rather inaccurate.

On the other hand, implementation of the "precise" thickness 0.001d provides relatively

noisy pattern because the vertical center distribution would reflect every minute detail of

the microstructure.
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Figure 5.1 Schematic representation of the inspection layer of thickness OH. Blue
spheres are counted for vertical center distribution.

Now we consider the outcome of vertical center distribution analysis. The first spherical

arrangement of the system of 3,456 particles stored for Monte Carlo simulation is a

random initial configuration generated by subroutine RINCFG.f (see Figure 2.4 a for

snapshots). For this system, the vertical coordinates vary from 0.5d to 36 d, and the total

number of layers equals to 3,550 (corresponding to 0.973 centers per layer and

n (y/ 2.7 ×10 -4 ). For this configuration, a relatively low peak in the vertical center

distribution was observed near the floor, followed by a uniform distribution of centers up

to the vessel surface (see Figure 5.2). The small peak at the floor can be explained by
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Figure 5.2 Vertical center distribution for random initial configuration from Monte
Carlo simulation.

physical limitation that no particles could be placed lower than 0.5 d. A mean value

= 2.5 ×10 -4 corresponds approximately to the average number of of particles per

layer for uniform initial distribution.

Following the Monte Carlo procedure described in Section 2.6, particles settled

down to poured state (see Figure 2.4 b). The vertical center distribution of the poured

state is shown in Figure 5.3. The highest particle is now located at y in., = 22.3d in

contrast to ymax = 36d for random initial configuration, which reflects that the system has

settled. The vertical center distribution contains a rather high peak near the floor,

followed by three smaller peaks, all of which are characteristic of the local ordering

effect of the plane floor. Although not reported in this dissertation, the formation of



97

hexagonal-close packing geometry was also seen from two-dimensional analysis of the

layer of particles adjacent to the floor. For subsequent layers upwards from the 1 st near

the floor, (for instance, second and third), there is a weakly developed hexagonal

structure, which was found experimentally and reported in 1969 by [16, 17]. Finally, the

layers above 3.5d have a slightly noisy uniform distribution similar to that seen for

random initial configuration. However, the mean value of vertical distribution

n 	 4.5 ×10 -4 is significantly higher than the mean value of the random initial

configuration since the particles were packed closer to each other.
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Figure 5.3 Vertical center distribution for a poured configuration for the system of 3,456
spheres.

As the tapping proceeds, the geometry of the bulk configurations becomes more

and more organized and the vertical crystallization advances from the floor into the

middle of the container. For the analysis that follows, Monte Carlo taps were done using

a uniform lift equal to 0.25d.

Two states of crystallization level are labeled - intermediate and ultimate. The

intermediate state is characterized by the creation and slow progression of new peaks in

vertical center distribution, which indicates the formation of newly ordered layers of

particles at higher positions above the floor. As can be readily observed from Figure 5.4,

for NT = 50,0') = 0.579 , four ordered layers near to the floor are in the process of being

formed, while a disordered structure can be seen at the level roughly equal to four

diameters. At NT = 250, (v) = 0.597 , the particle arrangement shows evidence of the
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formation of at least eight ordered layers and the disordered loose state "retreats" to 7.8 d.

It is worth noticing that the magnitude of peaks is constantly growing which clearly

indicates the "filling up" of the open spaces to establish a hexagonal-close packing

geometry. The bulk solids fraction of this configuration is very close to the lower limit of

random loose packings. At NT  =1000, (v) = 0.617 is identified as the beginning point of

a transitional phase to the ordered microstructure for the entire bulk vessel. Here, we

discern at least nineteen layers in which some ordered is evident, while the disordered

state remains for heights from 14.5d to 21 d above the floor.



100

0	 4	 8	 12	 16	 20	 24

Figure 5.4 Progress of crystallization at the intermediate level of the tapping process.
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The evolution of the vertical center distribution at the later stages in the

simulation is shown in Figure 5.5. Here, the evolution could be characterized by the

vanishing of the disordered layers from one side, and an expansion of the ordered

structure into the bulk from the other side. For NT = 7,000, (v) = 0.638 the arrangement

of spheres is largely associated with an ordered state. Higher peaks near the bottom (up

to the height 6d from the floor) give very clear evidence that ordered layers are almost

completely shaped and, an increase of the peak magnitude supports the idea that the last

open holes are being filled up by spheres from upper layers; this organization proceeds

further to the top with small divergence for the set of secondary peaks that are isolated

from the primary peaks and are slightly lower in magnitude than the primary peaks. The

emergence of the secondary peaks starting from 7d from the floor could be explained by

the formation and development of secondary ordered configuration, the nature of which

is yet unknown. As tapping further proceeds and the granular vessel tends to relatively

dense ordered configurations at NT = 90, 000,(v) = 0.654 , the final geometry of the

primary peaks becomes well-organized with intervals without intermediate layers of

spheres (vertical center distribution is equivalent to zero). The secondary peaks become

smaller and the secondary ordered geometry starts to vanish.

The evolution of the bulk solids fraction is given in Figure 5.6 and Figure 5.7.

This shows the attainment of the microstructure development from random loose packing

to a random close packing with a transition to the intensification of dense ordered

configurations (as depicted on Figure 5.7). A fit of the bulk solids fraction as a function

of tap to the slow inverse logarithmic law [88] is included in Figure 5.7.



Figure 5.5 Progress of crystallization at the ultimate level of the tapping process.
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Figure 5.6 Evolution of the ensemble-averaged bulk solids fraction (v(n)) for lift

intensity A= 0.25d for intermediate tap numbers NT =1,000. Each circle stands for the
solids fraction at every 50 taps.

Figure 5.7 Evolution of the ensemble-averaged bulk solids fraction (v(n)) for lift

intensity A= 0.25d for ultimate tap numbers NT = 120,000 . Each circle stands for the
solids fraction at every 5,000 taps.
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Figure 5.8 Vertical center distribution for various lift intensities at tap NT 20,000 .

Different lift intensities cause different crystal structure development.

In Figure 5.8 above, the influence of the energy input mechanism on

crystallization progress is considered for different lift intensities (k). As seen from the

plot, crystal structure develops starting from the bottom to the top of vessel for modest

A= 0.25d and 0.3d , slowly propagates for small X, = 0.1d, and almost stalls for an

`energetic' value X, = 0.35d , for which a loose packing occupies most of the box.



105

Yid
Figure 5.9 The comparison of the vertical center distribution for the MC configuration at
NT =10 5 (plotted by thick red lines) and the hexagonal-close crystal packing (marked out

by dash-dotted green lines). Both systems enclose 3,456 independent particles.

Figure 5.9 demonstrates the vertical center distribution from the Monte Carlo

configuration at the final stage of the tapping process, i.e. at NT =10 5 and that of a

hexagonal-close crystal structure (green lines). The positions of the vertical center

distribution peaks of the bottom layers supports the existence of a HCP-like geometry of

the ordered layers located near the floor. The magnitude of the peaks gradually

diminishes for higher layers, which may be due to voidage between the layers. The

nature of the further divergence of the MC configurations from hexagonal close-packing

which occurs for the layers that are located higher than 4d from the floor remains a matter

of further exploration.
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Table 5.1 Summary of the energy input effect on crystallization propagation and solids
fraction evolution for Monte Carlo method using uniform lift of the system.

Table 5.1 summarizes the effect of different lift intensities λ on developed of

structure in the system, in which three separate regions of the energy input are identified,

depending on the lift intensity X.

5.4 Vertical Center Distribution for Discrete Element Method

In this section we consider the vertical center distribution evolution of a system

containing 3,456 monodisperse particles of diameter d = 0.02m , The particles initially

are randomly packed into a box of size (12d×48d×12d) with periodic boundary

conditions in x and z directions; subsequently they settle down to poured undisturbed bed

with fill height H/d = 20.7. Then the containment vessel is subject to the intermittent

harmonic oscillations of the floor as described in Section 4.3 and depicted in Figure 4.1.

The vibration parameters are as follows: amplitude b/d = 0.35 , frequency of oscillations
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ω = 47.12Hz . These parameters yield a dimensionless acceleration F = 2.03. The

duration of one tap cycle is tb = 0.0667 sec . The relaxation time tp = 0.3 sec is chosen to

ensure that kinetic energy of the particles is nearly equal to zero. The vertical center

distribution statistics are averaged over ten consecutive taps to minimize noise.

How does the crystal propagation occur for Discrete Element Method simulation?

The vertical center distribution dependence shown in Figure 5.10 and Figure 5.11 is very

similar to the analogous results from the Monte Carlo simulations with regard to the

development of an 'ordered' structure. There is a similar arrangement of the ordered

layers adjacent to the floor for the early stages of tapping. As the tapping continues,

crystallization of the spheres advances from the floor as the initial random loose

configuration is transformed to an 'ordered' packing. The maximum vertical coordinate

of the spheres at the top ymax is lowered as the packing becomes more dense.



Figure 5.10 Crystallization at the early tapping levels for DEM simulation.
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In spite of the qualitative similarities found for propagation mechanism in the

Monte Carlo and Discrete Element simulations, a number of differences between them

could be observed as well. First, the level of the peaks for the ordered layers is much

higher for the DEM as compared with the MC simulation (see Figure 5.11). For instance,

Element Method than for the relevant values for Monte Carlo simulation

propagation and structural reorganization are rather distinguishable. In contrast with

Monte Carlo, the DEM vertical center distribution is exceptionally inhomogeneous with

perceptibly separated regions of random loose structure in the heap of the vessel and

clearly developed hexagonal-close packings close to the floor, and the limiting boundary

at 11 d for the state at NT E [990,1000]. The third obvious distinction is the presence of

particle centers in the intervals between peaks for layers adjacent to the floor

(d y 5d). This effect may be due to the effect of the inter-particle friction that

creates the contact bridge networks of the touching particles.
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Figure 5.11 Crystallization at the middle and ultimate tapping levels for DEM
simulation.
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Figure 5.12 illustrates the average vertical center distributions of the tapping

process at N, E [990,1000] as compared with a hexagonal-close crystal structure (dashed

blue lines). The locations of the vertical center distribution peaks strongly supports the

hypothesis of the formation of the HCP-like geometry of the ordered layers located near

the floor. It is worth noticing that the magnitude of the peaks steeply drops down for

higher layers. This plunge in vertical center distribution may be due to the presence of

voidage between hexagonally-close packed layers. It is remarked that the box geometry

and the dimensions chosen for these simulations are not commensurate with that of a

HCP crystal.

Figure 5.12 The comparison of the vertical center distribution for the system that
corresponds to DEM configuration at N, = [990;1,000} (plotted by thick red lines) and
the hexagonal-close crystal packing (marked out by dash-dotted blue lines). Both
systems enclose 3,456 independent particles.



CHAPTER 6

CONCLUSIONS AND FURTHER WORK

6.1	 Conclusions

Numerical simulation techniques (Monte Carlo and Discrete Element Method) were used

to examine the density relaxation process arising from discrete taps applied to a granular

material consisting of monodisperse hard spheres within a laterally periodic

computational volume. In the MC simulations, which essentially use the Metropolis

algorithm to generate stable configurations, the effect of a tap applied to the system is

modeled using two different approaches: (1) application of the vertical position-

dependent displacements to the particles (the so-called linear expansion) at intensity y,

and (2) uniformly lifting of the entire granular vessel on a small displacements above the

supporting floor. For both methods the Metropolis algorithm was adapted so that

motions which increase the system potential energy occur very rarely. Although not

documented in this dissertation, the application of random lateral displacements in

conjunction with the vertical expansion produced no effect on the final outcome. In order

to accelerate the process and avoid trapping at local minima, the size of the neighborhood

in which a particle is allowed to move was dynamically reduced as the system density

increased. Also for both methodologies with tap intensity y and lifting intensity A, the

equilibrium value of the bulk solids fraction (1, (0) at tap n was computed as an

ensemble average over a sufficient number of realizations to ensure a standard deviation

of less than 0.001.
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It was found that both methods resulted in an increase in the system density after

many thousands of taps. Furthermore, we report that more dense systems were created at

smaller tap and lifting intensities, but this was at the expense of an increasingly growing

number of taps to reach equilibrium.

The following outcomes for the simulation using the linear expansion technique (1)

were found. The evolution of the simulated data fit well to a hyperbolic tangent model of

the form v (n; 7) = vo (7) + [v (7) — v .(γ)]tanh (A(γ)n) for tap intensities 1.2 	 1.5 .

For these energetic taps, poor correlation between the inverse log model

v (n) = v 
v^ — vo 	 and the simulation data was found because equilibrium

1+Blog(1+n/τ)

was attained more rapidly than could be accommodated by this functional form.

However, at smaller intensities that roughly corresponded to the magnitudes of the tap

accelerations used in experiments [88], the inverse log model was consistent with the

data. The fit of the data to this model and to the form v = v,, v oo — vo indicated that the
1+ Dn

ratio D~B/τ is a relevant parameter for low tap intensities. A fit to the stretched

exponential v (n) = v — 	 — v°) e-(n/τ)ß I showed reasonably good agreement with the

data, albeit neither ti nor 13 exhibited an expected decrease with intensity y compatible

with a time scale parameter.

Quantification of the microstructure via the radial distribution function g(r/d)

revealed local crystalline order consistent with a hexagonal-close packing crystal

structure. In the densest tapped configuration v. = 0.675 , a power-law singularity in

g (rid) near r/d = 1 was found, while at the lowest tapped solids fraction v. ° = 0.583 ,
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the appearance of a double peak for 1.8 < r/d < 2.0 resembled that seen in experiments

and molecular dynamics simulations in the literature. The behavior of the mean

coordination number, computed from the near-neighbor distributions, as a function of the

equilibrium bulk solids fraction was found to be in good agreement with experimental

measurement in the literature.

However, method (1) was exhibited a strong dependence of the final system

density on the fill height, which has not been experimentally reported in the literature. On

the other hand, this dependency was not seen when the expansion of type (2) was used.

The MC evolution of the bulk solids fraction here was also found to be in qualitative

agreement with an inverse log form that has been reported in the experimental literature.

The simulated results illustrated that the bulk density is related to amount of the lift in

method (2), with a critical value producing the most favorable results. Quite striking is

the finding that as the taps evolve, the particles self-organize into quasi-crystalline layers,

initiated by the planar floor.

Granular dynamics studies were performed using deterministic Discrete Element

simulations, which employed force models of Walton and Braun [53] for uniform,

inelastic, frictional soft spheres. The equations of motion were numerically integrated to

obtain the coordinates and velocities of the particles. The container with confined

granular material was tapped via a series of harmonic intermittent oscillations applied to

the floor. After each tap, particles 'sediment' down under gravity and the system

configuration finds its local potential energy minimum. The maximum vertical

displacements of the particle layers showed a clearly nonlinear behavior (as a part of

wave propagation through granular matter observed in the literature [157-159]) of the bed
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expansion. Although (as expected), the response to the tapping for the MC simulations

was not the same as for the discrete element simulations, the same type of self-

organization into quasi-crystalline layers (first identified in the MC simulations) was

found in the discrete element results. This supports the conjecture that this may be a

universal mechanism of the density relaxation process.

6.2 Further Work

The product of this dissertation opens a fruitful area for complementary exploration of

crystallization in granular systems. Some possible directions for further work are present

below.

1. The author would like to encourage the examination by Monte Carlo Simulation

of the nonlinear maximum vertical displacement that was the response to the

harmonic oscillations (see Figure 4.4).

2. It would be particularly interesting to understand the ordered origin of the

secondary peaks of the distribution of centers in y-direction seen for several cases

for Monte Carlo simulation (for instance, Figure 5.5).

3. Using both simulation techniques, starting with a dense crystal structure, energetic

taps should be applied to destroy the configuration in attempt to produce

randomness.

4. The analysis of the correlation of the number of Monte Carlo steps per particle

required to reaching equilibrium (given by Equation 2.7) and the average number

of sphere collisions in the discrete element simulations appears to be very
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promising. Moreover, it is suggested that analyses are made of the motions of a

particles for both the Monte Carlo and Discrete Element simulations.

5. Perhaps a correlation could be made between the number of rejections by the

overlap detection subroutine in the Monte Carlo and number of particle collisions

with the relaxation time tp in the discrete element simulations.

6. Further discrete element simulations could be done by using different tapping

strategies (i.e., a uniform lift followed by gravity settling).

7. A detailed parameter study using discrete element simulations of the effects of

taps of various intensities should be done (by varying amplitude, frequency and

acceleration). As a first step, an analysis (i.e., Buckingham-Pi) should be done to

identify governing dimensionless groups.



APPENDIX A

HEURISTIC DERIVATIONS OF THE INITIAL VALUE OF 8 BASED ON FREE
VOLUME APPROXIMATION

The choice of the initial value of the radius 8 of the hemisphere environment where a

particle may be randomly displaced is justified by following heuristic derivations. First,
the solids fraction f7 and voidage s of the system of particles are defined as follows:

Then we define the volume of environment sphere (of diameter D) inside which the
particle can move and the volume of a particle (of diameter d) as follows:

This yields the free-volume between the particles as:

Now the relationship between D and solids fraction 17 becomes:

the relationship between D and 8 becomes:

Thus, for v = 0.58 the initial 6 is given as 6 0.2r , where r is the particle radius in
comparison to the initial 2r used in current simulations. However, the higher value of S
chosen doesn't influence on the formation of the ordered structure in the system.
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APPENDIX B

VERTICAL CENTRAL DISTRIBUTION FOR CRYSTALS

The distribution of the number of spherical centers for four crystal structures - hexagonal
close packings (HCP), cubic (CCC), face-centered cubic (FCC) and body-centered cubic
(BCC) - are considered. The first peak is located at 0.5d, which exactly corresponds to
the floor layer of spheres. The next peaks are equidistant from each other according to the
periodic structure of each particular crystal.

1) Cubic crystal
Total number of particles: 1,728

Figure B.1 Schematic representation of cubic crystal
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Figure B.2 The generalized radial distribution function for cubic crystal.
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Figure B.3 The vertical center fraction distribution for cubic crystal (distance between
each peaks equals to d)



Figure B.4 Schematic representation of face-centered cubic crystal

Figure B.5 The generalized radial distribution function for face -centered cubic crystal.



Figure B.6 The vertical center fraction distribution for face-central cubic crystal
(distance between each peaks equals to ~0.71d)



3) Body-centered cubic crystal:

Total number of particles: 1,728
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Figure B.7 Schematic representation of body-centered cubic crystal

Figure B.8 The generalized radial distribution function for body-centered cubic crystal.
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Figure B.9 The vertical center fraction distribution for body-central cubic crystal
(distance between each peaks equals to ~0.58d)



Figure B.10 Schematic representation of hexagonal-close packing

124

Figure B.11 The generalized radial distribution function for hexagonal-close packing
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Figure B.12 The vertical center fraction distribution for hexagonal close packing crystal
(distance between each peaks equals to ~0.82d)



APPENDIX C

DERIVATIONS OF THE GENERALIZED RADIAL DISTRIBUTION
FUNCTION (RDF)

In this Appendix, a formula to compute the radial distribution function of spherical
particles is given.

Number of particles N(r) inside a spherical layer (r-Δr; r+Δr) is (See Fig. C):

N(r):= N(r — Δr;r + Δr)

Figure C Spherical centers within a spherical layer of the thickness 2Δr that were
counted to obtain radial distribution function.

Radial Distribution Function g(r) is defined as:

Generalized radial distribution function g(r) could be expressed as follows:

The physical term of bulk density is defined as number of particles inside some volume
divided by the total volume:
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which is related with packing fraction F, :
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Therefore, the generalized radial distribution function

form of:

could be written in the

This form is later used to measure the radial distribution function of granular packings
(word "generalized" is omitted for simplicity).



APPENDIX D

SAMPLE INPUT FILE FOR MONTE CARLO SIMULATION

This appendix gives the explanation of the sample of the input file (input.dat) that is used
for Monte-Carlo Simulation and is described in Section 2.2.
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APPENDIX E

CPU TIME USAGE BY MONTE-CARLO SIMULATION

Optimization of CPU time spent to provide simulation results was, is, and will be an
essential task for any numerical simulation. In this appendix we report the computational
time which is being used by Monte Carlo Simulation arid Discrete Element Method codes
on NJIT UNIX-platforms.

As seen from Figure E.1, the average number of particles in a cell is a crucial parameter
for Monte-Carlo Simulation. By reducing the number of particles in a cell, we reduce the
number of possible overlap detection attempts, however from the other side an increase
of the number of cells means the check over the loop with more number of cells.

Figure E.1 CPU time usage dependence for one tap on the average number of particles
in one cell.
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Figure E.2 CPU time usage dependence for one tap on the number of divisions of one
side (i.e. length). The system considered is a box (12d×24d×12d) and 1,728 particles.

Figure E.2 above represents the influence of the number of one side divisions of the box
on the computational time. Box sides (length, width and height) are divided into the cells
of same dimensions and the number of divisions is very likely correlated with the average
number of particles in the cell. The optimal numbers of divisions for different system
sizes are tabulated in the Table E.1 below.



Table E.6.1 The optimal number of divisions for different system size.
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APPENDIX F

CPU TIME USAGE BY DISCRETE ELEMENT METHOD SUBROUTINES

In this appendix we report the computational time which is being used by Monte Carlo
Simulation and Discrete Element Method codes on NJIT UNIX-platforms. Spheres
diameters chosen were equal to 0.02m and 0.002m and consequently different time-step
intervals used by different DEM subroutines. Maximum time of run for both cases was
2.25×10-1 seconds. As seen from the Table F the most time-consuming subroutine is a
subroutine forces.f where force model described in Chapter 4. Also it is very crucial to
use a relatively moderate spherical diameter 2×10 -² m which results in moderate time-
step 10-6 sec. The reduction of the time-step leads to several orders of the magnitude
increase of CPU time use.

Table F The CPU time usage in seconds by various DEM subroutines for two different
time-steps.
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APPENDIX G

APPLICATION OF PERIODIC BOUNDARY CONDITIONS IN DEM CODE

Given that in the previous versions of DEM code the lateral x and z boundaries were
solid walls, the construction and implementation of the periodic boundary conditions for
lateral x and z coordinates was naturally required. Let's consider a pair of neighboring
spheres that are placed inside the box and suppose each of them touch opposite periodic
boundary "walls". To take into account the periodic boundary conditions, one needs to
create the "virtual image" particle from the opposite side with a shift of the proper
coordinate for +xcell, where xcell stands for the box dimensions in x-direction:
Now the square of the central distance between two particles is calculated as the sum of
the squared differences of the appropriate coordinates of centers (rx,ry,rz):

rijsq=rx²² ry² + rz ²

where rx=x(j)—x(i), rz =z(j)—z(i).

Figure G.1 The interpenetration of the search "envelopes" of two neighboring particles
due to periodic boundary conditions.
This was done by modification of the inverse value of xcelli to:
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