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ABSTRACT

USING WAVELET AND TEMPLATE ANALYSIS TO CLASSIFY HAND
POSTURES IN UNSUPERVISED DAILY ACTIVITIES

by
Soha Hassan Saleh

This project's goal was to identify determinants that characterize different types of

activities an individual do in daily life, knowing the quality of hand function is essential

to plan more effective rehabilitation therapies and treatments for upper limb movement

disorders. The first part of the project was Jebsen-Taylor study where healthy individuals

and individuals with brain injury performed seven activities classified as precision grasp,

cylindrical grasp, and palmar grasp while metacarpal joint angles were measured in real

time. The data from those seven activities was used to determine parameters that

characterize each type of activity and which might be used as evaluation parameters after

treatment. The determinants studied were the mean and variance of joints' angles, range

of motion, flexion and extension speed, and range of motion. A glove was used to record

hand activity of an individual for 24 hours. Characteristics of these hand activities

produce signals that are localized in both time and frequency, thus wavelet transform was

used to detect the instance of change in the type of activity. Three clusters built after

analyzing the seven activities were used to scan the 24 hr data and summarize the types

of activity that had been performed by the subject in addition to reporting multiple

parameters of the hand as range of motion and speed. The result was that the subject did

no activity for 8 hours, precision grasp activities for 2 hours, palmar grasp activities for

12 hours and cylindrical grasp activities for 1 hour.
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CHAPTER 1

INTRODUCTION

1.1 Statement of the Problem

There are multiple neurological disorders, primarily brain injury that affect hand activity

in terms of functional ability, ease and speed of movement, and range of motion. In the

presence of a variety of rehabilitation therapies and treatments, the accuracy in studying

hand function is a major concern as a post-treatment evaluation. Currently, several

methods exist to study the function of the hand. Some assessment methods depend on

measuring the time the subject requires to perform an action. Others include calculating

range of motion of individual joints of the hand; however, a major drawback of the

current hand function evaluation methods is that they do not give clear outcomes

regarding the quality of hand function. Besides, they are restricted to evaluation in the

clinic or research site. In addition to range of motion, quality of hand function can be

more completely assessed by studying fingers' speed during daily life activities. A better

assessment of hand function during normal daily activities is critical to plan for more

effective rehabilitation therapy and treatments for upper limb movement disorders.

The goal behind this thesis project is to use measure joint angle activity for the

five metacarpal (MCP) joints of the hand, and use the data to identify the types of

activities the subject was doing at different instances of time, in addition to assessing the

range of motion and the flexion and extension speed of the fingers during the activities.

1
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The first challenge in this project is to find a measurement device to record hand

activity while an individual is living life normally (driving, sleeping, cooking, typing,

running, etc); therefore, there are multiple requirements needed to be present in a

measurement device. These requirements include portability, ease in donning and

doffing, low cost, low weight, and durability, because the device will be used for hours

and maybe days.

Another concern besides the measurement device itself is the post-processing step

of the data analysis. The challenge is to scan the data and to detect what types of

activities the patients was doing while wearing the glove and for how long each activity

was performed after a long stream of data (up to 24 hours) has been separated into

activities, finger speed, and range of motion for each can be calculated. The need to

identify types of activities require initial data from short known activities; however, these

data will be used as the studied environment or training data. Important determinants or

characteristics of these data will be used to scan and study the long streams of 24 hour

raw data that include the unknown activities. The initial training data was recorded by

capturing real-time finger posture during the performance of the standardized

Jebsen-Taylor Hand Function Test (JTHFT).

JTHFT include seven types of activities: writing, simulating page turning,

simulating feeding by moving kidney beans using a spoon, lifting small objects, stacking

checkers, lifting large heavy cans, and lifting large light cans. Ten healthy subjects (HC)

and ten subjects with movement disorders (Acquired Brain Injury (ABI)) participated in

the study. While doing the seven activities, MCP joint angles were measured; the next

step was analyzing the data and identifying the trends. Identified determinants of hand
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postures were used to scan long stream of data and give summary about the quality of

hand function. The challenge in this step was to define the instance at which there is a

change from one activity to the next. A hand activity characteristic is not regular or

periodic, as a real time signal, it has no predictable time or frequency, and activities may

be of different lengths of time. Therefore, simple Fourier analysis, which is most

appropriate for periodic signal, may not yield useful results for long streams of changing

data. The solution of this problem was found in wavelets; wavelet analysis is a signal

processing technique that allows the study of signals localized in time and frequency,

such as a series of hand activities that change characteristics unpredictably in time.

Different features were required in the measurement device of joint angles, those

features include but are not limited to portability, low weight, low cost, and efficiency.

The design of the Shadow Monitor glove was developed for such application. The

glove's cost, wearability, light weight, and ease of use, are all advantages that permit

using it with patients who have difficulty opening their fingers as a result of brain injury.

In addition it is lower cost and can be used by patients without regard for major damage.

For this project, the glove was used to measure bending angles for the 5 metacarpal

(MCP) joints of the hand.

1.2 Goal

After data collection of the hand posture for the seven activities, the objective is to

identify determinants in hand posture to define the type of activity. The first insight from

the data suggested that mean, variance, and range of motion could be the primary

parameters to identify the type of activity, and also the difference between posture of
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healthy subjects and those with movement disorders. This hypothesis was studied by

calculating those parameters; and comparing them within and between the two groups

and the seven activities. The high frequency component of finger's activity has been

compared between and within groups. Other parameters that were checked are average

speed. flexion speed, and extension speed. The next step in this project was to define the

parameters, put them into clusters, and then use that in scanning 24hr data and identify

the types of activities performed over that time. The 24hr data was collected for a subject

who used the shadow monitor glove for 24 hours, while doing different types of

activities, writing, reading, eating, typing, sleeping, cooking, etc.

Assuming that the parameters defined in the first part are effective in defining the

type of activity performed, a second challenge is how to determine the site of change of

activity in the 24 hour data file. In the literature, Fourier analysis has been used to filter

data and identify change in activity based in the change of absolute frequency

components; however, hand posture is an activity that does not have predefined pattern

for the change of frequency in the activity; instead, it is localized in both time and

frequency. On the other hand, wavelet analysis has an advantage over Fourier analysis in

extracting localized features in the data; therefore, it has been proposed in this project due

to its ability to detect discontinuities in the signal, to define the site and the type of the

change in terms of time and frequency, and to give the amplitude of the change. After

defining the instance of the activity change, and segmenting the data, the parameters

defined in the first part can be used to define the type of activities in the 24 hour streams

of data.



CHAPTER 2

BACKGROUND

2.1 	 Brain Injury

Brain injury is a condition that affects millions of people. Acquired brain injury (ABI) is

brain damage that happens after birth, ABI includes traumatic brain injury (TBI) and

stroke, Whiplash is another type of ABI caused by injury to the neck. In the United States,

approximately 5 million people are currently affected by some from of TBI disability

which is also a leading cause of death for persons under age 45 [1]. In general, different

types of brain injury are classified based on the cause of injury and severity level.

Traumatic Brain Injury (TBI) occurs after an outside force harshly moves the

brain within the skull causing damage. TBI has also been called "silent epidemic" and it

is associated with life-time emotional, behavioral, and cognitive impairments that could

be temporary or permanent. TBI includes diffuse axonal injury, concussion, and

contusion. in addition to coup-contrecoup injury, second impact syndrome, penetration

injury. shaken body syndrome, and locked in syndrome. TBI comprises at least 14-20%

of the surviving causalities in the time of combat. It is a significant health problem since

it is not just a cause of death but also a reason of disability in US and in countries all over

the world. Data from Center for Disease Control and Prevention (CDC) shows that about

50% of TBI cases are caused by transportation accidents (motor vehicles, car accidents,

pedestrian accidents, etc). [1]

5
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Acquired Brain Injury (ABI) is more associated with changing in neural activity

and affecting the brain cells in terms of physical integrity, metabolic activity, and

functional ability. The after effects of ABI include difficulties in cognition, speech-

language communication, memory, attention, concentration, reasoning, abstract thinking,

physical functions, psychological behavior, and information processing. The causes of

ABI include but are not limited to anoxic and hypoxic brain injury after an inefficient

supply of oxygen to the brain, heart attack, stroke, arterio-venous malformation,

infectious disease, intracranial tumors, metabolic disorders, AIDS, meningitis,

hypo/hyperglycemia, airway obstructions, electrical and lightening shocks. [1]

While TBI is associated with lethargy (sluggish, tires easily), numbness or

tingling, ABI is more associated with general muscle movement disorders. In both cases,

the condition directly affects the speed, fluency, quality, and ease of movement, which

adds limitations to the ability to perform activities of daily living because individuals

become unable to do certain activities, or do other simple actions with low speed and

range of motion. [1]

There is a difficulty in assessing the impairments behind disability, basically due

to the effects of spasticity and other impairments. Spasticity was seen as the major

determinant of disability, clinically it is caused by abnormal reflex activity that increases

resistance to passive movement to a relaxed muscle. The major impairments that show

similar symptoms are spasticity, hypertonia, hyperflexia, and muscle overractivity.

Physiologically, spasticity arises from disruption of certain descending pathways in the

CNS that involves motor control, those pathways control proprioceptive, cutaneous, and

nociceptive spinal reflexes. [2]



Causes of Brain Injury 

Figure 2.1 Causes of Brain Injury. [3) 

o transportation 
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III other 
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The severity of brain injury is mainly classified as mild, moderate, or severe, 

based on three indexes: Glasgow Coma Scale (GCS) score, length of loss of 

consciousness (LOC), and length of post-traumatic amnesia (PTA) [l). However, the 

evaluation of the case after initial treatment is not an accurate process, usually physicians 

depend on subjective methods to decide ifthe patient is improving, but there is no precise 

evaluation of the fluency and quality of motor movement. 

The complexity of brain injury effect on hand posture IS influenced by the 

complexity of hand posture itself. This is primarily because manipulation and 

coordination of hand fingers are extraordinary important for human and they require 

central and peripheral circuitry to control them. The brain injury could affect the central 

or peripheral circuitry in the cerebral cortex, or the pathways between central nervous 

syste'rn (CNS) and the upper limb. Regardless of the actual cause, the result is a loss of 

function that affects the ability to perform daily activities. 
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2.1 Therapy Evaluation Methods

Traditional evaluation methods of hand function, especially after treatment or therapy,

often focus on measurement and treatment of specific impairments, such as range of

motion (ROM) or perceived resistance to passive stretch; however, there is a need to use

outcome measures that more closely reflect functional improvements [4]. Finch's group

[5] suggested that assessment methods should focus on an individual's ability to be active

and to do the general life activities. Rehabilitation clinicians, engineers, insurance

companies, families and patients have different priorities on different outcome goals. For

example, the insurance companies and families might not be satisfied by the subjective

methods and experience of the clinician, they would desire more quantitative measures of

the hand function to justify payment or to show clear progress.

One of the methods currently used to evaluate hand function is the Modified

Ashworth Scale (MAS), it is a clinical measure of tone intensity that quantifies muscle

tone on a scale of 0 (no increase in muscle tone) to, 1, 1+, 2, 3, and 4 (high degree of

muscle tone). The Ashworth test depends on the assessment of the resistance to passive

stretch by the clinician who applies the movement. A negative change in score signifies

an improvement in muscle tone. This scale measure is useful for clinicians, but it is

subjective and does not reflect function or individual's ability to do an activity at home.

The reliability of the test is based on the ability of the observer both to control the rate of

stretch and to assess the resistance [6]. Another scales used to measure functional

activity is Tardieu scale. Tardieu scale include measuring velocity of stretch based on

three scales V1 (as slow as possible), V2 (speed of the limb segment falling under

gravity), and V3 (as fast as possible). The other parameters studied in Tardieu scale are
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the quality of muscle reaction which is tested based on the resistance at 5 scales; 0 (no

resistance), 1 (slight resistance throughout course of passive movement), 2 (clear catch at

a precise angle), 3 (fatiguable clonus), and 4 (unfatiguable clonus) [6].

Elovic and Simone et al. [4] categorized outcome goals and assessments into 1 of

5 groups: physiological measurements, passive activity measures (e.g., Ashworth Scale

and passive ROM), voluntary activity measures (i.e., Fugl-Meyer), functional measures,

and quality of life (QOL) measures. The challenge is to focus on the functional and/or

QOL assessment in addition to the physiological or motion assessment measures. An

example of physiological measurement is measuring the excitability of the motor

neuronal pool. Some passive activity measures include measuring changing of elasticity

of connective tissues muscle tone, and deriving subjective measures such as the

Ashworth scale, Tardieu scale, or more objective measures such as passive range of

motion, torque, stiffness, and viscosity.

Measures of voluntary activity is a category that includes many assessments

where the individual is asked to perform an activity, such as pedobarographs that provide

information about foot position, movement, and center of pressure. Other tests include

Fugl-Meyer test, the Box and Block test (BBT), and the 9-HPT. A Fugl-Meyer task does

not include daily activities. BBT and 9-HPT are two tests that are commonly used in the

assessment of the upper extremity. BBT includes testing how many boxes a patient can

move from one container to another in one minute. BBT tests are commonly used in the

literature to assess selected hand usage in the stroke population. The fourth category,

functional measures, is used to assess daily activities as hygiene, standing, and

ambulation in real life or under approximately real life situations. Examples of functional
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measures are Disability Assessment Scale (DAS), used to evaluate efficacy of upper

extremity, and 3D gait analysis. [4]

Finally, QOL measures are useful in assessing the satisfaction of a patient in life.

Such measures include questionnaires or health surveys. It is important to create a new

functional assessment method for assessing the performance of patient after treatment,

based on the capability of living normal life, thus, the ultimate goal of this thesis is to

introduce an objective method to measure the functional activity of an individual,

specifically hand activity, and to help evaluate how well individuals can perform

activities that are important in their daily lives.

2.3 Measurement Devices

Originally, joint angles and ROM were measured using a goniometer. The first

goniometer device developed was mechanical, later electric, and optoelectronics

goniometers were developed to improve the accuracy of the device and to allow for

continuous data collection. A goniometer has two arms separated by a hinge. To

measure MCP angle, one arm attaches along the back of the hand, and the other arm

attaches on the segment after the joint. The length of the goniometer is aligned over the

bones. In the alignment of the goniometer, several things can contribute to the

inaccuracy of the results since placement is affected by the shape of the joints and bones,

fat, and mass of muscles [7]. Besides, the goniometer does not stick to the site of contact

with the joint and bones, it moves by the movement of joints, and this contributes to

inaccuracy, and it decreases repeatability from one test to another at different time [8]. In

addition, the manual goniometer is associated with Inter-tester error problems that are not
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present in other approaches for measuring ROM as biomechanical or machine vision 

approaches [8]. The mechanical goniometer used to measure finger angles in the 

Functional Measurement lab is shown in Figure (2.2). 

Figure 2.2 Goniometer measuring the CP joint. [9] 

Although the goniometer measures joint angles, it can not be used to measure real 

time range of motion and hand function for multiple reasons. A meaningful hand 

function is formed by a sequence of hand actions and not by a static posture. Finally, the 

activity of a hand includes movement of multiple joints and not single one. Therefore, 

the need to measure multiple joint angles both automatically and continuously requires 

different methods. 

There are different approaches to study hand activity by measuring joint angles in 

the hand in real time. The two main approaches are machine-vision and biomechanical 

or haptic approaches. The former analyzes the video and image data of a hand in motion 

while the basic idea of the haptic approach is to gather and analyze data from a glove 

[11]. The main disadvantage of the machine-vision approach is the need of a camera to 

continuously monitor the hand. One limitation is the need to locate the camera in a pre-

defined position with respect to the hand all the time, and this is very cumbersome if the 

camera is to be worn by the individual, or a second person must follow the patient all day 

long. Another disadvantage is that post-processing of image data is complicated and time 
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consunung. In the Haptic approach, gloves can be used to capture quantified values of 

different properties of the hand, such as joint angles in real time; however, those devices 

should be portable, light weighted, cost-effective, and effectively functional over long 

period of time. Different gloves available in the market, each has different characteristics 

that make it suitable for specific application. 

Example of commercial gloves include the Data-Glove family (Fifth Dimension 

Technologies (5DT), Irvine,CA), Cyberglove (Immersion Corporation, San Jose, CA), 

and the Humanglove™ (Humanware S.R.L., Pisa, Italy) [12]. Humanglove uses 20 Hall 

Effect sensors to measure data related to a degree of freedom (DOF) of the hand. The 

control unit of this glove is connected to the PC via RS-232, so it is not considered 

portable [11]. Its size makes it unsuitable for data collection while doing normal daily 

activities. CyberGlove® (Figure 2.3) uses piezoelectric sensors, it has been used in sign-

language recognition applications, virtual technology, tele-robotics and video games; 

however, they have big size and mass, not portable, and expensive. In conclusion, they 

are not suitable for this application which is studying hand activity in the normal 

environment and not at a laboratory or clinic [12]. 

'Nireleu CyberG!cwe • CyberGrup CycerToliCh 

Figure 2.3 Cyber-gloves first three to the (left) manufactured by Immersion 
Corporation [13] and the fourth manufactured by Humanware [14]. 

-
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Example of non commercial gloves is GRASSY (Grasp ASsessment System)

glove; it is being used at the Computing Lab in Zurich for investigating human hand

grasp function. The glove was implemented with Force Sensing Resistors (FRSs) to

study finger tip forces, and sliding potentiometers mounted on the back of the hand have

been used to quantify the flexion for each finger. Designers of this system report that the

measurement data are very promising but no final assessment is available. [15]

Some companies as 5DT and Immersion offer wireless versions of their gloves

using Bluetooth technology to transmit data to nearby computer; however, these wireless

options can be expensive and do not give the wearer the freedom to move about the home

and community settings while data is being collected [11].

In this application, there is a need to a glove that is easy to don and doff especially

for individuals with reduced range of motion after brain injury, many cannot open the

fingers to put on a traditional glove. The gloves must be lightweight and unobtrusive in

order to be worn comfortably for more than 24 hours. Another concern is durability, and

consistency, the results should remain consistent throughout the data collection period.

The cost as well is a major concern since the glove will be used by many participants, and

multiple gloves will be needed. In addition subjects are supposed to wear the glove while

performing daily activities, so low cost allows easier replacement after possible damage.

Since existing measurement methods, especially commercial gloves, are not

suitable for the assessment of functional capacity over time and in the community due to

the broad range of hand function disorders, Shadow Monitor was developed to allow

unobtrusive measurements of finger postures across all ability levels in this underserved

population [16]. The shadow monitor glove is considered portable since it records
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continuous streams of finger posture and transmit them wirelessly to the PC. The

wearability property is due to the embedded flexion or bending sensors attached to the

back of the hand over the 5 MCP joints, leaving the palm free of obstruction. Both the

control unit and the sensors have light-weights. Conclusively, Shadow monitor gloves do

defeat the obstacles of donning and doffing, sensor drift over joints, portability, low cost,

and lightweight packaging [16], and they can be considered best suited for studying the

functional measures of hand activity while doing daily activities. The function of the

glove proved to be effective for this type of study in terms of repeatability.

2.4 Types of Grasps

The primary objective of this thesis study is trying to determine hand activity from the

bending angle of the MCP joints. First, it is important to define the different types of

grasping activities. Based on Webster's dictionary [17], grasp is to seize and hold by

clasping or embracing with the fingers or arms. Prehension is the application of

functionally effective forces by the hand to an object for a task, given numerous

constraints. With activity, the joint angles change and hand muscles flex or extend in

order for the hand to reach out and grasp an object, by opening or closing fingers into a

shape suitable for a certain grasp. There have been several attempts to classify different

hand postures from different perspectives including, medical, clinical, occupational, and

industrial applications.

The first study on classifying hand posture was by Schlesinger in 1919.

Schlesinger gave 12 classes for hand posture: open fisted cylindrical grasp, close fisted

cylindrical grasp, spherical prehension, palmar prehension, tip prehension, lateral
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prehension, hook prehension, cylindrical w/add thumb, flat and thin two finger pincer,

three jaw chuck, and nippers prehension. Schlesinger basic classifications are

summarized in Figure (2.4). Some researchers classified different classes of hand posture

based on anatomical features and others on the functional features of the hand. Napier

classified power grip based on the anatomical position of the thumb, classifications are

summarized in Figure (2.5). In a power grip, the thumb is located in the plane of the

palm and the MCP and carpo-phalangeal (CP) joints are adducted. Precision element in

the power grip depends on thumb placement which ranges from precision when the

thumb is adducted and can contact the object to no precision when the thumb is abducted.

Elliot and Connolly (1984) clarified that researchers should take care of the different

features, anatomical and functional, when distinguishing hand posture. [18]

Figure 2.4 Schlesinger's classification of prehensile posture [18].



Figure 2.5 Napier's classification of prehensile postures. The first to right is "power 
grasp", in the middle "precision grasp", and to the left a special type of precision grasp 
called "coal hammer" [18]. 
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An important way to look at hand prehension is to look at the forces being applied 

in opposition to each other against the surface of the object. Iberall, Bingham, and Arbib 

(1986) used for the first time the term opposition to define three classes: pad opposition, 

palm opposition, and side opposition. Pad opposition generally occurs along an axis 

parallel to the palm, as in the case of holding a small ball or a needle. On the contrary, 

palm opposition occurs along an axis perpendicular to the palm when holding for 

example a hammer. Lastly, side opposition occurs between hand surfaces along a 

direction generally transverse to the palm as when holding a cigarette. Figure (2.6) 

describes the different postures that consist of three basic ways the hand can provide 

opposition around objects. Figure (2.7) shows how something called virtual fingers (VFl 

and VF2) define a specific grasp based on their orientation along x, y, and z axes. The 

literature shows that classifYing a hand posture or hand prehension depends on MCP 

joints and CP joints and on the position of the hand surface with respect to the palm. 
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Figure 2.6 A. Pad Opposition that occurs along an axis that is parallel to the palm. B.
Palm opposition that occurs perpendicular to the palm. C. Side opposition along an axis
transverse to the palm [18].

Figure 2.7 Oppositions described in terms of virtual fingers (VF1 and VF2). A. Pad
opposition along an axis (x) parallel to the palm. B. Palm opposition along axis (z)
perpendicular to the palm. C. Side opposition along an axis (y) transverse to the palm
[18].

In this study, the Shadow Monitor was used to record angles from the MCP joints

only. So, there is no information about the forces across the palm and about the CP joints.

Therefore, it is impossible to imitate any of the classifications present in the literature; the
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challenge was to create activity classifications specific to this study. In this application,

there is a need to know the general type of activity and not strictly what was the type of

grasps that is why it was suggested that using information just from MCP joints might be

quite enough.

2.5 Wavelet Analysis

2.5.1 Introduction to Wavelets

As mentioned in the introduction, the hand posture activities include finger angles that

vary in an unpredicted manner with changing time and frequency. Therefore, the data are

localized in time and frequency. The concept behind Fourier analysis is to convolute the

signal with a cutting window, knowing the exact frequency and the exact time of

occurrence of this frequency in a signal. By other means, in Fourier analysis the Fourier

transform of a waveform is to decompose or separate the waveform into a sum of

sinusoids of different frequencies. However, joint angle in hand activity has no

predefined pattern, and it was unrealistic to use Fourier analysis for analysis. Joint

characteristics are non-stationary signals that involve a compromise between how well

transitions between activities can be localized and how well long-term behavior can be

identified. [19]

Wavelet analysis was the best alternative because of its scalable modulated

window; in wavelet transform short windows are used at high frequencies and long

windows at low frequencies, therefore, wavelet analysis help encounter many kinds of

waves without favoring a set of particular functions [20]. Instead of fixing the time and

the frequency resolutions (Δt and Δf) in Fourier transform, both resolutions vary in time-
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frequency plane in order to obtain a multi-resolution wavelet analysis. Wavelet analysis

is gaining popularity because of its power in giving chance for researchers to have good

time and frequency resolution due to a shape that might be close to the signal and is not a

sine wave.

The concept in wavelet analysis is to decompose the signal into a set of equal

bandwidth frequency channels. A window with variable scaling factors is shifted along

the signal and for every position the spectrum is calculated, this window is called mother

wavelet. There are multiple wavelet families in the literature, wavelet families depend on

different mother wavelets. The choice of a mother wavelet depends on multiple factors

and it is very important since the application of wavelet transform is a correlation

analysis between the input signal s(t) and the basis function of the mother wavelet ψ(t)

[21]. The two variables that define wavelet matching are the width or scale "a" and the

position or shift scale "b" (Equation 2.1). The wavelet is convolved with the original

signal as defined in Equation (2.2).

C(a,b) are the coefficients produced after correlation between the signal and

mother wavelet, it describes the quality of match between the signal and the wavelet.

The integration of the signal multiplied by the wavelet shows that local maxima of C

represents inflexion points in s(t)* w and it defines initiation of signal [22] or it can be

describes as a discontinuity or transition between inactive to active, Figure (2.8) describes

how wavelet identify discontinuity in the signal.
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Figure 2.8 Example of using wavelet analysis to identify discontinuity in the signal. The 
parameter "a" stands for approximate coefficients and "d" for detailed coefficients [23]. 

The coefficients derived by Equation (2.1) can be used to reconstruct the original 

signal through "inverse coding", however, faithful construction of a signal after 

decomposition, reqUIres multiple conditions to exist in the wavelet primarily 

orthonormality. Before starting the discussion of reconstruct, there are two basic 

properties should present in the mother wavelet which are admissibility and regularity. 

2.5.2 Wavelet Properties 

The admissibility condition in the wavelet makes it oscillate about a mean of zero 

(Equations 2.3 and 2.4). This conditions implies that frequencies at or near 0 are very 

slow waves with infinity wavelength, and then the wavelet vanishes at a definite point in 

time. This concludes that the wavelet is localized in time domain, and compactly 

supported in the frequency domain. The localization in time and compact support in 
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frequency properties cannot both be exact at the same time; the condition depends on the

position of time (t) and frequency (co) in the Heisenberg box. Heisenberg box (Figure

(2.7)) is a rectangle R with area 2t in the time-frequency plane. The position of t and co

in the box defines the Heisenberg uncertainty plane (Equation 2.4) where the Heisenberg

uncertainty principle insures that the time (Δt) and (Δω) are inversely proportional and

cannot both be solved for at the same time [20].

When the energy of the signal is finite, admissibility function permits exact

reconstruction of the original signal without need for all values of decomposition, or for

all coefficients. Known wavelets generally satisfy the admissibility condition. The effect

of admissibility condition is to make to possible to characterize a continuous-time signal

s(t) by the knowledge of the discrete transform. Discrete analysis is sufficient in such

case while continuous analysis is redundant. When the signal is recorded in continuous

time or on a very fine time grid, both analyses are possible. Discrete analysis ensures

space-saving coding and is sufficient for exact reconstruction. The major advantage of

continuous analysis is that it is easy to interpret, since its redundancy tends to reinforce

the traits and makes all information more visible. This is especially true for very subtle

information.

Regularity property insures that the product of time and frequency (Δt and Δf) as

low as possible. This could be accomplished by eliminating low frequency components
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from high scales, so at very small scales approach zero, the wavelet decay to amplitude

zero. Therefore, the coefficients of the signal decay as the scale converges to zero. As

discussed at Matlab® Wavelet toolbox, the regularity criterion is useful for getting nice

features, like smoothness of the reconstructed signal. Both the smoothness and

localization of wavelet y combined with the admissibility condition suggest that [24]:

i) Wavelets are bandbass filters such that the frequency response decays
sufficiently rapidly as ω → ∞  and is zero as ω →  0 .

ii) Ψ(t) is impulse response of the filter which decays rapidly as t increases. It
is an oscillatory function with mean zero and assumed to be absolutely
integrable functions.

Wavelet analysis depends on convoluting a section of the signal s(t) and a

wavelet. The scaling factor "a" is the frequency parameter, if "a" is large, the basis

function will be a stretched version of the original mother wavelet, and this basis function

is useful for isolating low frequency components of the signal. If "a" is small, the basis

function will be a compressed version of the mother wavelet and it will be used in

isolating high-frequency components of the signal. The convolution of the signal with a

basis function of mother wavelet that has a "large" and "small" scaling factor lead to

decomposing the signal into "approximate" and "detailed" coefficients of the signal

respectively. The translation factor "b" is the time parameter that helps scan the signal

with the basis functions with all possible scaling factors. The result of wavelet

decomposition is a list of time-frequency representations of the signal known as

decomposition coefficients. Each of the different scales in the decomposition process

pertains to a specific frequency channel so that various scales will bring out details that

are not apparent in the original signal.
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2.5.3 Multi-resolution Analysis (MRA)

The simultaneous existence of multi-scale of the original signal is also referred as multi-

resolution. Based on different applications, MRA is an effective framework for

hierarchical decomposition of a signal into component of different scales [24]. MRA is

completely determined by the scaling function 9(t). The concept behind MRA is to

represent a signal as a formal approach to construct orthogonal wavelet. The theory of

MRA is to start from a single wavelet ψ, and a family of functions ψ m ,n that is generated

from ill by the operation of binary dilations by 2 m and dyadic translation 2 m , the factor

n2-mis introduced to ensure orthonormality (Equation 2.6). The orthogonality property

insures simpler reconstruction of the signal and Orthonormality is the condition where

both orthogonality and normality properties exist.

A wavelet of ψ  is said to be orthonormal if the family functions ψm,n is

orthonormal. The wavelet series of a function f is described in Equation 2.7, where cm,n

defines the wavelet coefficients (Equation 2.8).

Exact reconstruction of the signal requires bi-orthogonal two pairs of filters. The

concept behind signal decomposition in wavelet analysis is to multiply the signal by low

pass filter H to get approximate coefficients, and high pass filter G to get detailed
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coefficients. Those filters must be orthogonal to ensure faithful construction of the

signal, so the following conditions should apply [25]:

1) Self duality H* H =G*G =1

2) Independence G*H = H*G = 0

3) Exact Reconstruction HxH+GxG= I

4) Normalization HI = √2l 	 where 1= {...,1,1,1,...}

These four conditions lead to orthogonal property, in case of Quadrature filters

(H = H' and G =G') Bi-orthogonality is insured.

Figure (2.9) shows the wavelet analysis for three decomposition levels on the left,

signal reconstruction or synthesis from coefficients is represented on the right [26]. HPF

and LPF stands for high pass and low pass filters respectively, IHPF and ILPF stands for

inverse HPF and LPF respectively.

Figure 2.9 Wavelet decomposition on the left and reconstruction on the right [23].

The presence of admissibility, regularity, and orthogonality could lead to good

analysis of a signal and faithful reconstruction however there is still one factor should be

taken into consideration when choosing a mother wavelet. This factor is the resemblance

between the wavelet and the studied signal is important, for example Wilen [27] used
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"db6" mother wavelet because of the similarity between the wavelet and the studied

motor unit action potential (MUAP). Ismail and Asfour [28] used "db4" in their study

since it resembles the triphasic pattern of the studied MUAP.

There exist two types of wavelet analysis, Discrete and Continuous wavelet

analysis. As a brief summary, continuous analysis is easy to interpret, and its redundancy

reinforces the traits and makes all information more visible. On the other hand, discrete

analysis has an advantage by ensuring space-saving coding and by being sufficient for

exact reconstruction; therefore what the continuous analysis gains in "readability" and

ease of interpretation, it loses in terms of saving space [23]. In this application, the

discrete wavelet analysis approach was taken simply because discrete decomposition of

the signal is enough in this application, besides it saves time of processing.

After decomposition, coefficients can be used to faithfully reconstruct the

original signal without loss of important information in the signal. However,

decomposition of the signal in this study was useful to define the site of change of

activity by separating high and low frequency components of the data, but reconstruction

of the signal after decomposition was not an objective. Temporal analysis is performed

with a contracted, high-frequency version of the wavelet, while frequency analysis is

performed with a dilated, low-frequency version of the same wavelet. The site of change

in activity is temporal information, thus, it was defined at the instance of high amplitude

or peak in the detailed coefficients.



CHAPTER 3

METHODS

3.1 Jebsen-Taylor Study

3.1.1 Data Collection

Previous to studying the hand activity for individuals with movement disorders, it was

required to identify determinants of hand posture. What meant by determinants are the

quantitative parameters that characterize different activities and different functional

performance between healthy and ABI subjects. Those determinants are proposed to scan

and divide long-stream data into different segments which have similar properties which

roughly correspond to the different activities. The Jebsen-Taylor Hand Function Test

includes different types of activities that people do in their daily life, and performance is

normally determined by time to complete the tasks. The two groups enrolled in the study

are: healthy subjects used as control, and subjects suffering from movement disorders

caused by stroke and other types of brain injury. Each group included ten subjects. The

seven types of activities are: writing using a pen (J1), simulating turning papers(J2),

lifting small objects as a small spherical object (J3), simulate feeding by using a spoon to

hold a bean(J4), stacking checkers(J5) , holding a large light can (J6), and holding a large

heavy can(J7). The mean age of the 20 subjects was 50.3 (41.0 for HC and 59.5 for ABI).

Tables (3.1) and (3.2) summarizes the time that was needed by the subjects to accomplish

26
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the defined activities for the HC and ABI groups respectively. The average time for HC 
group is 9.935 seconds and 57.315 seconds for the ABI group. 

Table 3.1 Time Needed to Do a Jebsen Activity (HC group) 

subject\ 
J1 J2 J3 J4 J5 J6 J7 average 

activity 
2 10.84 7.88 6.16 5.08 7.92 5.48 5.48 8.140 

21.2 
3 27.86 4 27.08 10.2 9.52 7.52 6.86 18.380 
4 42.84 3.64 13.04 6.4 11.08 3.2 2.36 13.760 
5 22.6 5.8 5.84 5.68 5.56 4.2 4.24 8.987 
6 9.72 4.6 6.6 4.2 6.92 4.32 4.84 6.8677 
7 25 7.32 8.24 5.32 8.68 5.48 5.36 10.900 
8 11 .68 4.04 4.08 5.4 6.56 3.4 3.36 6.42 
9 14.44 5.24 6.44 6.52 7.56 4.6 4.6 8.233 

13 20.32 5.52 10 8.8 11.52 5.32 5.4 11 .147 
19 9 3.52 6.2 5.12 6.04 4.32 4.92 6.52 

average 19.43 6.88 9.368 6.27 8.136 4.78 4.742 9.935 

Table 3.2 Time Needed to Do a Jebsen Activity (ABI Group) 

Subject 
\activity 

J1 J2 J3 J4 J5 J6 J7 average 

48.6 44.8 
10 4 21.2 23.36 4 32.64 16.1 9.36 32.687 
11 38.7 217 67.52 34.6 298.1 30 71 .8 126.373 
12 52.5 69.6 200 28.2 40.2 22.2 21 .32 72.347 
14 29.9 12.6 26.68 13.4 14 11.8 11.6 20.00 
15 42.1 16.2 29.8 21.9 89.76 21.1 13.2 39.027 
16 23.8 12.2 19.12 14.0 16.48 10.2 8.32 17.360 
18 303 27.9 34.24 148. 24.64 15.3 15.4 94.820 
21 16 6.48 10.16 11 .9 7.28 7.32 6.96 11 .027 
22 67.6 110 213.2 191 39.48 19.1 58.96 116.767 
23 134 17.3 39.56 19.6 30.84 7.6 7.12 42.740 

average 75.7 51 .2 66.4 52.9 59.3 16.1 22.4 57.315 

3.1.2 Jebsen Data Analysis 

Hand posture is not normally evaluated during the test, although MCP joint angle was 

collected to explore hand posture as well. First, general data pre-analysis was done using 

Microsoft Excel and it showed that frequency, mean, and standard deviation are 
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parameters that might characterize different types of activities and differentiate between 

the two groups. There is no pre-defined frequency to any activity; subjects perform 

activities at different speed, which is why it was impossible to compare activities based 

on absolute frequencies although some activities such as writing were characterized by 

higher frequencies than other activities. 

In this study, 20 subjects participated and each subject did 7 activities, therefore, 

there are 140 files to be analyzed. Microsoft Excel was useful for primary manual 

analysis; however, it was decided to use Matlab® for fast and more efficient automated 

analysis. For each activity, there are two Matlab® files to load data, one for each group, 

He and ABI. In the same file , after reading data from the comma-separated (.csv) files , 

the mean and standard deviation of the data were calculated. 

J1 : Wnting 

J4: S imulati ng 
feeding 

J2: Simple page J3' Lifting small 
turning objects 

~;:-:.~ 

J5: Stacking J61J7: Holding 
checkers large, light and 

heavy objects 

Figure 3.1 Subject doing 7 different Jenson-Taylor activities. 



29

As discussed previously, Wavelet transforms were proposed to detect the instance

when the individual changes activity. Wavelet analysis include decomposing the signal

into detailed and approximate coefficients, it was suggested that those coefficients could

be useful not just to detect instance of change but to differentiate between activities and

between the normal and abnormal hand posture. It is important to state here that data

analysis was done on digitized data and not continuous signal; however, the theory

behind wavelet transform is to decompose continuous signal therefore, wavelet transform

on Matlab® could also be called Sub-band transform.

The choice of mother wavelet was based on the presence of general properties,

admissibility, regularity, and orthogonality, due to their advantages discussed in section

(2.5). However, it has been found that there are multiple wavelets in Matlab ® that

supplies these properties. Different wavelets were explored to decompose and analyze

the joint activity characteristics; it has been found that different wavelets (including,

Haar, Coiflet, Symlet (Sym), Mexican hat (mexh), and Daubechies (db)) give similar

results with respect to this application. This similarity includes showing same trend of

the signal when using different wavelets. The difference was in the shape of the signal,

some wavelets show more resemblance with the studied signal with respect to others.

Often, the wavelet selected bears a resemblance to the signal being studied; therefore,

based on resemblance with the signal, the Daubechies wavelet was used.

Daubechies wavelet exists with multiple levels. The level of the wavelet is

associated with the distance between consecutive filters in the signal. Higher level means

closer scaling functions and reading more details in the signal, which increases the result

number of coefficients. Given that the wavelet family level is 2*N, the scaling and
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wavelet functions are defined in equations (3.1) and (3.2). The parameters c k and dk  are

wavelet and scaling functions respectively.

The Daubechies wavelet family with level eight was used to study the joint

angle's characteristics, since it has been found enough to represent the signals. The result

of decomposing the signal leads to a set of approximate "a" and detailed coefficients "d".

Those coefficients can be used to reconstruct the signal; however, signal reconstruction

was not an objective.

The detailed and approximate coefficients between the two groups were

compared. It has been found that the coefficients, specifically detailed coefficients, are

generally lower in amplitude and bandwidth in the ABI group than the HC group. This

could be due to abnormal motor control (caused by the spasticity in the muscles or low

tone), which lessens the ability to do higher frequency (faster) actions with high

amplitude by opening and closing joints more fully. With respect to the approximate

coefficients, they faithfully represent the original signal; they can be used for mean,

standard deviation, and range of motion testing instead of the original signal.

Conclusively, approximate coefficients were found useful to study the activity while

detailed coefficients show difference between groups. Unfortunately, the difference in

detailed coefficients between the two conditions, HC and ABI, could not be quantified.

The detailed coefficients were derived for the 20 subjects in the two groups. Table (3.3)



31 

summarizes the plots for those peaks. Although the detailed coefficients' are of lower 

amplitude in case of AB! group, it is clear that the values are variable so that the 

difference can not be quantified. The basic reason is that the subjects participated in the 

study are of different severity levels, besides different people have different ways in 

writing, holding objects, etc. 

Table 3.3 Summary of the Detailed Coefficients Maximum Amplitude for the Subjects in 
the Two Groups 

HC Group AB! Group 
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Analysis was made more difficult because subjects perform the same activities in 

different ways. Examples of different ways to do an activity are the different ways to 

hold a pen while writing or different ways to grasp a can, it has been noticed that some 

subjects hold a can in a cylindrical way where the palm is parallel to the central axis of 

the cylindrical can while others hold it by putting the palm tangential to the top of the can 

Figure (3 .2). The inability to quantifY the difference between detailed coefficients of the 

ABI and He group made it impossible to make conclusion about the relation between the 

detailed coefficient and the level of disease; however, it is important to study this factor 

in a study where the conditions of the participating subjects are known and quantified 

based on certain scale, this could help define correlation between detailed coefficient and 

severity of disease. 
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Figure 3.2 Different ways to hold a pen and write or hold a cylindrical object as a glass. 

During object grasp, the activation of distal muscles must be coordinated in a way 

to shape the hand in relative to the physical properties of the object; those physical 

properties include mass, shape, and size of the object, in addition to the material in 

contact with the hand. The type of activity limits the range of motion of fingers, thus 

limits the range of the degree at the MCP joint. Therefore, the range of angle at each of 

the five MCP joints could help identify the type of activity; this hypothesis was studied 

by quantifying the range of motion and comparing it between activities and groups. 

Conventional method to calculate range. of motion is to sUb.tract the minimum 

angle from the maximum one. However, it is possible that the data include outliers that 

do not contribute to the activity. Those outliers would affect calculation of ROM. A 

better method to calculate ROM of an activity is proposed by using the probability 

density estimate (POE) of the approximate coefficients. POE is useful to define 
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distribution of joints' angles around the peak of PDE, while ignoring any spikes or noise

that could appear in the signal. Figure (3.3) shows the joint angles of pinkie, the

maximum angle is 75 degrees, and the minimum angle is 19. The 75 degree peak is

likely caused when the subject banged his hand on the table; these spikes are not related

to the writing activity. If the range was calculated by the difference between minimum

and maximum, the result is range of 51 degrees, however the probability density in

Figure (3.4) suggests that the 75 degree peak does not contribute to the activity, and that

the more realistic range is between 25 and 40.

To perform this analysis, the Matlab® function used is ksdensity, which depends

on the kernel smoothing method to calculate PDE. The range of angles in addition to the

difference between upper and lower limit in the range were calculated for the seven

activities in the two groups. As an example, in case of writing one of the subjects had the

range of angles at the thumb between 62 and 82, index between 53 and 64, middle

between 74 and 79, ring 45 and 50, and pinkie between 35 and 43, The difference

between upper and lower limit was found maximally 20 or for writing. The ranges for all

the subjects were calculated in the same way, their averages are summarized in Table

(4.1) in Chapter 4. In the table, the Lower Angle is the minimum joint angle during an

activity and the higher angle is the maximum one, 'cliff' is the difference between the

maximum and minimum angle in each activity for the five joints. The table shows

clearly how the ranges are much similar within three groups of activities (J1&J4), (J2, J3,

& J5), and (J6&J7). This conclusion introduced to the fact that the seven activities can be

classified into clusters.



Figure 3.3 activity of pinkie when the subject was writing with a pen (ABI group).
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Figure 3.4 probability density estimate of pinkie activity shown in figure (3.3)

After analyzing range of motion, the mean and variance of joint angles were

calculated and saved in excel (.xls) files. Later those files were studied to quantify the

difference between activities. The joint angles' means were compared for each activity,

between and within the two groups (HC and ABI). It was concluded that despite the

change between mean average between HC and ABI groups, this difference exists as well

within the same group between subjects doing the same activity, this is due to the fact
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that hand activity is a very complex action where multiple factors contribute in changing

it from a person to another.

With respect to variance, there were no significant difference between HC and

ABI group, since similar difference existed between healthy subjects doing same activity.

In general, variance of ABI group is lower. The joint angles' mean and variance were

used to characterize an activity. For each activity, it has been found that an activity lies

more likely in a specified range of means more than another one, this lead to define three

ranges for each activity giving each range a power. Besides, it has been found that for

each group of activities there is a maximum variance. Similarities and difference in the

mean of joint angles and maximum variance is discussed in chapter four. It can be stated

here that those similarities and difference lead to classify the seven activities into three

clusters, precision, palmar, and cylindrical grasp.

Next study was speed analysis. Speed of activity is a parameter used to study the

condition of hand activity, so the speed of flexion and extension of fingers were

calculated and compared between and within groups. Speed analysis Matlab ® function

was built to calculate joint speed as the difference between current and previous sample

divided by the difference of time (3.1).

Minimum flexion and maximum flexion are the minimum and maximum positive

speed respectively, and minimum and maximum extension speeds are the minimum and

maximum negative speed respectively. The output of the speed analysis function is the

flexion average speed, extension average speed, maximum and minimum extension,

maximum and minimum flexion, and range of motion which is the difference between
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maximum flexion and minimum flexion. Speed is used to provide information about the

condition of the activity in terms of fluency and quality; but it is not used to differentiate

between activities, simply because different individuals performed same activity with

different patterns and speeds, tables in Appendix A summarizes the average speed for the

20 subjects while doing the seven activities. Although, for the same subject, flexion and

extension speed differs between from one activity to another. This could not be

extrapolated to conclude range of speed to different activities although it is taken into

consideration in the study due to its correlation with standard deviation.

The seven activities were classified into three clusters based on the similarity in

the mean and variance ranges. Three Matlab programs were built for each cluster. In

each cluster, the mean and variance of the joint angles were compared by the ranges

predefined by the results of Jebsen study; each range was given a power of 60, 40, or 20.

This power is defined by the statistical analysis of Jebsen study. For each activity in a

cluster, the powers for the four fingers, index, middle, ring, and pinkie are calculated.

The power of the thumb was not calculated since the range of mean did not vary much

between activities. The sum of powers are calculated, it varies between 0 and 240. Class

one include calculating powers of the writing and simulating feeding activities, class two

for palmar group that include simple page turning, stacking checkers, and lifting small

objects. Class three works for the cylindrical group that includes holding large heavy and

light cans. Class one define precision activities, class two more include activities done

across the palm (palmar grasp), and class three include cylindrical grasp activities. Class

four was added to match with durations when the subject is not active, a minimum

standard deviation was defined (6 degrees), if the five joints have joint angles with
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standard deviation less than 6 degrees, and the activity is classified as class four which

means no activity. In each class, class power is the maximum of the individual activity

powers.

3.2 Long-stream Data Study

Data of hand activity was collected from a subject who used the Shadow Monitor glove

for about 25 hours. The subject is a healthy person who performed normal daily

activities as office work, cooking, typing, driving, and sleeping while wearing the glove.

The primary goal was to define the instance of transition from one activity to the next in

order to classify types of activities performed, and the durations of these activities. As

mentioned previously, wavelet analysis was used to define the site of change by tracking

peaks in the detailed coefficient. The Daubechies wavelet (2N=8) was used. Analysis

was done at the second level, the position of peaks along the time span of the signal does

not change much from the first to 8 th level

In order to define a peak in the detailed coefficient that represents the instance of

activity change, a minimum threshold for peak should be defined. The choice of

threshold needs to be done carefully in order to avoid missing an instance of activity

change if it is very high, or having very short segments if the threshold is low. Visual

feedback from the detailed coefficients of the signal showed that threshold could be

defined at amplitude of 3 degrees in the detailed coefficients. This threshold could be

different for another subject; during Jebsen study the amplitude of detailed coefficients

was variable between subjects.
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For different types of activities, the index is the finger that mostly changes

between different types of activities, so it was suggested to use the index to determine the

instance of activity change, instead of tracking the peaks at the five joints. The validity

of this choice was studied by comparing the instance of peaks at the five fingers; it was

found that those peaks occurred at nearly the same time for the five joints. Therefore,

choosing one joint is better for reducing duration of data analysis.

After decomposing the index, and detecting the peaks, the data is segmented

between one peak and the next one. The length of this segment is calculated, if the length

is shorter than 500 samples which is approximately 20 seconds, the segment is ignored

because it is might be short to describe a complete activity. Data segmenting continues to

the second peak ignoring the previous one. After cropping every segment, a function

decision is called. This function includes running the programs for the four clusters and

comparing the power for each class.

In the decision function, the power of each class is calculated; the powers are then

compared to define the maximum one, and the confidence proportion for each class was

calculated by dividing the class power over the maximum power which is 240. The

decision of activity depends on which class has the highest power. Presenting the

confidence proportions next to the activity will show how close an activity is to each

class, this is important since there is overlap in the mean ranges and variances in the three

classes so that any activity can not be absolutely classified. After defining the segment

activity, the function "speed analysis" is called to calculate; flexion and extension speed

averages, in addition to maximum and minimum flexion and extension speed. The
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averages of ROM for the five joints are also calculated, in addition to standard deviation

average.

Finally, a Matlab® file (longstream_data_analysis.m) was built to do data analysis

of the whole long stream data. The long-stream data was saved in 35 spreadsheet files

because of the limitation to save the whole data in one file. In this file, each of the 35

spreadsheet files are loaded, then "decompose.m" function is called given index data as

input. After decomposition step, the "Segment.m" file is called. The result of the last

function is an array "R" that include: duration of segments, activity during each segment,

confidence proportion for three classes, flexion speed average, extension speed average,

maximum flexion, maximum extension, average of ROM, and finally average of standard

deviation. The final step after analyzing each file is to summarize the results. After

analyzing the first data file an array "T" that include titles of data in the R files is saved to

spreadsheet file named "result.csv", then the transpose of array "R" is appended. After

analysis of every data file, the transpose of array "R" is appended to the result file. The

final result will be a spreadsheet file (result.csv) that summarizes information about hand

activity during 25 hours.



CHAPTER 4

RESULTS AND DISCUSSION

4.1 Jebsen-Taylor Study Results and Discussion

The main objective behind doing the Jebsen-Taylor study was to identify determinants in

hand activity and extrapolate the results to analyze data of unknown activity. The result

was classifying the seven Jebsen activities into three groups: precision grasp, palmar

grasp, and cylindrical grasp. This classification was based on the similarity of parameters

whether range of angle, mean, and variance within each group.

The range of angle analysis implied that the seven groups could be defined in

three clusters. In case of writing and simulating feeding data, the difference between

upper and lower borders of the angle is low, it is also low in case for holding cans

however, the ranges of joint's angles were lower than in case of writing and simulating

feeding simply because the fingers are widely open when holding can while they are bent

to hold a small object or to do precise activity. In case of simple page turning, lifting

small objects, and stacking checkers, the range borders changed between low and high,

but the difference between the lower and upper borders of the range was found to be

higher than the other activities. These conclusions introduced to the possibility that the

seven activities could be put into clusters. The next parameters to be studied were mean

and standard deviation, the mean and standard deviation of joint angles represent the

distribution or range of joint angles during an activity.
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Table 4.1 The Means of Joint Angles' Ran es for each Activity. 
Activity thumb index middle 

lower higher diff lower higher diff lower higher diff 
angle angle angle angle angle angle 

11 12.50 26.38 13 30.6 46.47 15.5 42.82 60.7 19 

J4 11.52 28.62 17 23 44.35 21. I 29.54 53.3 24 

J2 3.05 29.35 26 7.9 47.33 39.4 2.202 57.17 55 

J3 3.57 25.48 22 13.6 54.45 40.8 10.76 53.44 43 

J5 3.45 30.52 27 14.9 52.27 37.4 9.388 48.35 39 

J6 2.55 19.8 12 3.94 27.64 25 .2 3.31 30.85 28 

J7 2.61 I 22.78 20 3.62 29.67 26. 1 3.33 32.41 29 

ring pinkie 

Activity lower higher diff lower higher diff 
angle angle angle angle 

J1 26.06 14.47 28 44.1 18.31 41.1 
2 

J4 25.06 55.49 30 22.4 55.12 32.6 
J2 1.385 43.25 41 2.37 41.83 33.3 

J3 10.16 49.61 39 5.26 46.51 41.2 
7 

J5 7.98 51.89 44 3.99 49.67 45.7 

J6 2.69 34.38 31 3.33 35.9 32.6 

J7 2.61 34.67 32 3.31 36.35 33.1 

The mean of each activity for the five joints were calculated and the distribution 

of the angles in a range was summarized in the tables (4.2) through (4.8). Three intensity 

levels, black, dark grey, and grey, were used to illustrate higher, medium, and lower 

number of subject have activity in a specific range. For the writing and simulating 

feeding activities, the angles were distributed along high angles. The distribution is more 

clear and localized in the writing activity than the simulating feeding activity. Since in 

the both cases the joint angles are high, then those two activities were located in a cluster 

defined as the precision grasp class. 
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Table 4.2 Distribution of Joint Angles during Writing Activity 

10- 20- 40- 50- 60- 70- 80- 90-
20 30 40 50 60 70 80 90 lOO 

Thumb 

Index 

Middle 

Pmkie 

Table 4.3 Distribution of Joint Angles during Simulating Feeding Activity 

40- 50- 60- 70- 80- 90-
50 60 70 80 90 100 

Middle 

Ring 

Pinkie 

The distribution of the joint angles for the simple page turning activity was found to be 

around 10 to 30 degrees. Its distribution is considered to be low with respect to the 

writing and feeding activities. In the case of stacking checkers, the joint angles were 

distributed highly between 20 and 40 degrees and to a lesser degree around that range. In 

case of lifting small object, the ranges of joint angles are more distributed, the ranges are 

said to be low or medium. Tables (4.7) and (4.8) show the distribution of the average 

joint angles when the subject used to hold light and heavy cans respectively. The angles 

were found to be low. 



Table 4.4 Distribution of Joint Angles during Simple Page Turning Activity 

Simple 
Page 
Turning 

Thumb 

Index 

Middle 

0-
10 

10- 20- 60- 70- 80- 90-
20 30 70 80 90 ' 100 

Table 4.5 Distribution of Joint Angles during Stacking Checkers Activity 

Stacking 0- 10- 20- 30- 40- 50- 60- 70- 80- 90-
Checkers 10 20 30 40 50 60 70 80 90 100 

Thumb 

Index 

Pinkie 

Table 4.6 Distribution of Joint Angles during Small Object Lift Activity 

Small 
Object 
Lift 

Thumb 

0-
10 

10- 20- 30- 40- 50- 60- 70- 80- 90-
20 30 40 50 60 70 80 90 100 

.. 
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Table 4.7 Distribution of Joint Angles during 'Holding Large Light Object' Activity 

Large - 10 0- 10 20- 30- 40- 50- 60- 70- 80- 90-
Light - 0 10 - 30 40 50 60 70 80 90 100 
Object 20 

Thumb 

Index 

Middle 

Ring 

Pinkie 

Table 4.8 Distribution of Joint Angles during ' Holding Large Heavy Object' Activity 

Large 
Heavy 
Object 

Thumb 

Index 

Middle 

Ring 

Pinkie 

0-
10- 10 
o 

10-
20 

20-
30 

30- 40- 50- 60- 70- 80-
~ 50 ~ m 80 ~ 

90-
100 
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The variances for different activities were also studied. The Figures (4.1) through 

(4.6) show that variance values vary between subjects whether in the HC (I through 10) 

or ABI (II through 20). With respect to writing and simulating feeding activities, the 

variance values were found low with respect to other activities. For simple page turning, 

stacking checkers, and lifting small objects activities, the variance was variable between 

low and medium, and a big difference was found between the different joints. The same 

case was in the case of holding large and light cans. The variance values were found 

mainly low for thumb, index, and middle and higher for ring and pinkie. Conclusively, 

the maximum variance for each joint in each activity was calculated and the activities 

were classified into three groups. 
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Figure 4.3 distribution of variance for the 20 subjects (HC and ABI) during simple page 
turning activity . 
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Figure 4.4 distribution of variance for the 20 subjects (HC and ABI) while stacking 
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holding large light objec1 
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figure 4.5 distribution of variance for the 20 subjects (He and ABI) while holding large 
light object. 

holding large heavy object 

.• tlll,lmb .. rodtx • '"lIdd:. 
DI1fl!iJ DOIIl~'1I 

Figure 4.6 distribution of variance for the 20 subjects (He and ABI) while holding large 
heavy cans. 
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Conclusions about range of motion, average means, and variance were used to 

classify the seven Jebsen activities intro three groups: 

i) Precision Grasp includes writing and simulated feeding activities. 

ii) Palmar Grasp includes simple page turning, stacking checkers, and lifting 
small objects activities. 

iii) Cylindrical Grasp includes holding large light objects and holding heavy 
objects. 

Those classifications were found consistent with the k-means cluster analysis 

done by Dr. Lisa Simone for the same data. Dr. Simone chose to use speed, average 

angle, and average standard deviation to put the seven activities into clusters. It has been 

found that Jl(writing) and J4 (simulating feeding) come into one group whether studying 

each group, HC or ABI, or both groups together. J2 (simple page turning) and J5(lifting 

small objects) were clearly concluded to be in one group, (J7)holding large heavy objects 

has been found close to this group in the HC group. 

Table 4.9 Cluster Analysis of Jebsen Activities 

J J2 J3 J J5 J6 J7 Su 
1 4 m 

Cluster 0 10 9 1 10 6 8 44 UM angle, 
1 UMspeed, H SD 
Cluster 1 0 3 1 2 0 0 38 H angle, L 
2 6 7 speed, MSD 
Cluster 0 6 3 0 0 0 4 13 Mangle, M/H 
3 speed, M/H SO 
Cluster 4 4 5 2 8 14 8 45 L angle, L 
4 speed, UM SO 

HC J J2 J3 J J5 J6 J7 
1 4 

Cluster 0 4 5 0 7 3 5 24 UM angle, 
1 UMspeed, H SO 
Cluster 1 0 2 1 1 0 0 23 H angle, L 
2 0 0 speed, MSO 
Cluster 0 5 2 0 0 0 4 11 Mangle, M/H 
3 speed, M/H SO 

w 



Cluster 
4 

ASI 

Cluster 
1 
Cluster 
2 
Cluster 
3 
Cluster 
4 

o 

J 
1 
0 

6 

0 

4 

1 1 o 2 

J2 J3 J J5 
4 

6 4 1 3 

0 1 7 1 

1 1 0 0 

3 4 2 6 

7 

J6 J7 

3 3 

0 0 

0 0 

7 7 

12 L angle, L 
seed, LIM SD 

20 LIM angle, 
LlMspeed, H SD 

15 H angle, L 
speed, MSD 

2 Mangle, M/H 
speed, M/H SD 

33 L angle, L 
speed, LIM SD 

4.2 Long-Stream Data Analysis Results and Discussion 
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The major result of Jebsen study was to build three classes representing the seven 

activities. The result of long-stream data analysis was to segment the data and summarize 

the activities during those segments, in addition to reporting information about speed, 

range of motion, and standard deviation. 

cylindrical 
grasp 

pa lmar 
grasp 

precision 
.grasp 

no activ it}" 

Figure 4.8 Distribution of activities during the 24 hours and 40 minutes. 
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Figure 4.9 Activities during the 24 hours and 40 minutes.

With respect to activity, the activities during the 24 hours are defined in Figure (4.8). The

total number of segments was 1255. The durations of the four classes of activities are

summarized in Table (4.10).

Table 4.10 Summary of the Four Classes of Activities.

Activity Duration Average flexion speed

No Activity 8 hours, 16 minutes, and 51 seconds 6.3892 deg/sec

Precision Grasp 2 hours, 44 minutes, and 27 seconds 20.5445 deg/sec

Palmar Grasp 12 hours, 9 minutes, and 6 seconds 17.1893 deg/sec

Cylindrical Grasp 1 hour, 6 minutes, and 10 seconds 16.5747 deg/sec
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Figure 4.10 The percentage of each of the four types of activities during daily activities.

In this approach, the activities are not accurately classified, but general idea about

the hand activity is deduced. Comparing Figures (4.8) with (4.9), the sleeping period in

Figure (4.9) is classified in Figure (4.8) as 'no activity', the office work activities, during

the first three hours, varies between the four classes. Office work activities vary between

precision and palmar classes. Cooking vary between precision and palmar classes to

cylindrical and no activity classes. Continuing to typing and office working, there is no

accurate classification, but the general information in Figure (4.8) looks logical.

However, it is very useful to evaluate hand activities for individuals with movement

disorders, these general classifications would be an objective reflection of health

condition.



CHAPTER 5

RECOMMENDATIONS AND CONCLUSION

In this study, the data recorded from the MCP joints were useful to generally classify

hand activities, this general classification could be enough for physical therapists and

clinicians. Just knowing the percentage time that an individual spent performing different

postures, such as the precision grip versus cylindrical grasp, as compared to no activity at

all, will provide more information than in currently available about hand function at

home. However, if more detailed or accurate classifications of hand activities are needed,

it is recommended to study adding sensors to record CP joint angles.

There was another concern about the choice of threshold when defining the

segments in the long activity file. Lower thresholds will create shorter segments when

there was actually change in activity. Higher thresholds may create longer segments that

contain more than one activity. There is a need for an optimal threshold that decreases

the number of segments without overlapping multiple activities in one segment. For the

subject presented here, the threshold was chosen by visual inspection. This can be done

for all subjects, but a method that can automatically segment the files and then perform

clustering analysis and then evaluate the quality of the assessment would be a challenging

but positive goal. In this study, we found that the detailed coefficients were, on average,

lower for the brain injury group. Another recommendation is to study the detailed

coefficients of joint activity of individuals with brain injury, looking for correlation

between amplitude of detailed coefficients and severity of disease. In this study, severity

was not considered, only the presence or absence of injury.
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Conclusively, this study was done to find a method to identify determinants of

hand activity as a first step to study hand function and posture while doing daily

activities. The result was to define characteristics of three clusters that represent the

general daily activities (precision, palmar, and cylindrical grasps). Using these

characteristics, long-stream data were scanned and segmented; those segments were

compared with those three clusters to automatically define the activity types in each

segment. The result of the long stream analysis provides a report of subject activities

over a 25 hour period. This type of long term reporting is currently not available to

clinicians, and provides a view into how individuals use their hands at home and in the

community. Using this type of continuous data analysis in conjunction with conventional

methods to evaluate rehabilitation treatments, provides a new approach to evaluate daily

activities of an individual. With further development, this can be new approach for

rehabilitation therapy evaluation.



APPENDIX A

SPEED COMPARISON

This appendix presents summary about the speed of joint angles for the 20 subjects in the
two groups (HC and ABI). It is clear that speed is lower in the ABI group, the speed is
variable between the seven activities in each group.
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APPENDIX B

DECOMPOSE

This appendix includes the matlab file built to decompose a given signal. The wavelet
used is 'db8'. The signal is decompose into two approximate and detailed coefficients.

[c1,111] = wavedec(s1,L,w);

D1(1,:) = wrcoef(' ',c1,111,w,1);
D1(2,:) = wrcoef('',c1,111,w,2);

for i = 1:L
Dal(i,:) = wrcoef('a',c1,111,w,i);

end

for i=1:2;
subplot(2,1,i); plot(tt,D1(L-(i-1),tt),'k');

end
figure;
for i=1:2;

subplot(2,1,i); plot(tt,Dai(L-(i-1),tt),'k');
end
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APPENDIX C

CALCULATING MEAN OF JOINT ANGLES

A Matlab File that calculate mean of joint angles for writing activity and save the
summary in spreadsheet file. The same steps are repeated for the other six activities in
the HC and ABI group. The means of the five joints are loaded to `calculatedmean.xls'
excel file.

%loading writing activity
writingHC;

%calculate the mean of joint angles for 10 subjects
HCthumbvar=[mean(thumb2) mean(thumb3) mean(thumb4) mean(thumb5)
mean(thumb6) mean(thumb7) mean(thumb8) mean(thumb9) mean(thumb13)
mean(thumb19) ];
HCindexvar=[mean(index2) mean(index3) mean(index4) mean(index5)
mean(index6) mean(index7) mean(index8) mean(index9) mean(index13)
mean(index19) ];
HCmiddlevar=[mean(middle2) mean(middle3) mean(middle4) mean(middle5)
mean(middle6) mean(middle7) mean(middle8) mean(middle9) mean(middle13)
mean(middle19) ];
HCringvar=[mean(ring2) mean(ring3) mean(ring4) mean(ring5) mean(ring6)
mean(ring7) mean(ring8) mean(ring9) mean(ring13) mean(ring19) ];
HCpinkievar=[mean(pinkie2) mean(pinkie3) mean(pinkie4) mean(pinkie5)
mean(pinkie6) mean(pinkie7) mean(pinkie8) mean(pinkie9) mean(pinkie13)
mean(pinkie19) ];

%save data to 'calculated mean.xls' file.

dlmwrite('calculatedmean.xls', HCthumbvar);

dlmwrite('calculatedmean.xls', HCindexvar, '-append');dlmwrite('calculatedmean.xls', HCmiddlevar, '-append');

dlmwrite('calculatedmean.xls', HCringvar, '-append');
dlmwrite('calculatedmean.xls', HCpinkievar, '-append');%leading activity

writingABI;

%calculate the mean of joint angles for the 10 subjects

ABIthumbvar=[mean(thumb10) mean(thumb11) mean(thumbl2) mean(thumbl4)
mean(thumb15) mean(thumbl6) mean(thumbl8) mean(thumb2l) mean(thumb22)
mean(thumb23) ];
ABIindexvar=[mean(index10) mean(index11) mean(index12) mean(index14)
mean(index15) mean(index16) mean(index18) mean(index21) mean(index22)
mean(index23) ];
ABImiddlevar=[mean(middle10) mean(middle11) mean(middle12)
mean(middle14) mean(middle15) mean(middle16) mean(middle18)
mean(middle21) mean(middle22) mean(middle23) ];
ABIringvar=[mean(ring10) mean(ring11) mean(ring12) mean(ring14)
mean(ring15) mean(ring16) mean(ring18) mean(ring21) mean(ring22)
mean(ring23) ];
ABIpinkievar=[mean(pinkie10) mean(pinkie11) mean(pinkie12)
var(pinkie14) var(pinkie15) var(pinkie16) var(pinkie18) var(pinkie21)
var(pinkie22) var(pinkie23) ];

59



mean (index23) ] ;
ABImiddlevar= [mean (raj ddle10) mean  (Middle 11 ?rears (middle12)
mean (middle14) mean (middle15) mean (middle16) mean (middle18)
mean (middle21) ,mean (middle22) mean (middle23) ;
ABIringvar= [mean (ring10) mean (ring11) mean (ring12) mean (ring14)
mean (ring15) mean (ring16) mean (ring18) mean (ring21) mean (ring22)
mean (ring23) 1;
ABIpinkievar= [mean (pinkie10) mean (pinkie11) mean (pinkie12)
var (pinkie14) var (pinkie15) var (pinkie16) var (pinkie18) var (pinkie21)
var (pinkie22) var (pinkle23) 1;

%save data to '
calculatedmean.xls' file.dlmwrite('calculatedmean.xls', ABIthumbvar, '-append');
dlmwrite('calculatedmean.xls', ABIindexvar, '-append');
dlmwrite('calculatedmean.xls', ABImiddlevar, '-append');
dlmwrite('calculatedmean.xls', ABIringvar, '-append');
dlmwrite('calculatedmean.xls', ABIpinkievar, '-append');
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APPENDIX D

CALCULATING STANDARD DEVIATION

A Matlab File that calculate standard deviation of joint angles for writing activity and
save the summary in spreadsheet file. The same steps are repeated for the other six
activities in the HC and ABI group. The standard deviation of the five joints are loaded
to 'stdreport.xls excel file.

writingHC;
-11

HCthumbvar=[std(thumb2) std(thumb3) std(thumb4) std(thumb5) std(thumb6)
std(thumb7) std(thumb8) std(thumb9) std(thumb13) std(thumbl9) 1;
HCindexvar=[std(index2) std(index3) std(index4) std(index5) std(index6)
std(index7) std(index8) std(index9) std(index13) std(index19) 1;
HCmiddlevar=[std(middle2) std(middle3) std(middie4) std(middle5)
std(middle6) std(middle7) std(middle8) std(middle9) std(middle13)
std(middle19) 1;
HCringvar=[std(ring2) std(ring3) std(ring4) std(ring5) std(ring6)
std(ring7) std(ring8) std(ring9) std(ring13) std(ringl9) 1;
HCpinkievar=[std(pinkie2) std(pinkie3) std(pinkie4) std(pinkie5)
std(pinkie6) std(pinkie7) std(pinkie8) std(pinkie9) std(pinkie13)
std(pinkie19) ];

Y1=[max(HCthumbvar) max(HCindexvar) max(HCmiddlevar) max(HCringvar)
max(HCpinkievar)];
Ylm=[min(HCthumbvar) min(HCindexvar) min(HCmiddlevar) min(HCringvar)
min(HCpinkievar)];

dlmwrite(strArrt.xi', HCthumbvar);
HCindexvar,'-pd');
HCmiddlevar,'-append');

dimwritersifeprt.15', HCringvar,'-appeDdv);
HCpinkievar,'-and°);

writingABI;

ABIthumbvar=[std(thumb10) std(thumbll) std(thumbl2) std(thumbl4)
std(thumbl5) std(thumbl6) std(thumbl8) std(thumb2l) std(thumb22)
std(thumb23) ];
ABIindexvar=[std(index10) std(index11) std(indexl2) std(index14)
std(index15) std(index16) std(index18) std(index2l) std(index22)
std(index23) 1;
ABImiddievar=[std.(mj_ddle10) std(middle11). std(middle12) std(middle14)
std(middle15) std(middle16)' std(middle18) std(middle21) std(middle22)
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std(middle23) ];
ABIringvar=[std(ring10) std(ring11) std(ring12) std(ring14) std(ringl5)
std(ring16) std(ringl8) std(ring2l) std(ring22) std(ring23) ];
ABIpinkievar=[std(pinkie10) std(pinkie11) std(pinkiel2) std(pinkie14)
std(pinkie15) std(pinkie16) std(pinkie18) std(pinkie2l) std(pinkie22)
std(pinkie23) ];
Y8=[max(HCthumbvar) max(HCindexvar) max(HCmiddlevar) max(HCringvar)
max(HCpinkievar)];
Y8_m=[min(HCthumbvar) min(HCindexvar) min(HCmiddlevar) min(HCringvar)
min(HCpinkievar)];	 % Save the result in spreadsheet file 'stdreport.xls'

dlmwrite('stdreport.xls', ABIthumbvar,'-append');
dlmwrite('stdreport.xls', ABIindexvar,'-append');
dlmwrite('stdreport.xls', ABImiddievar

,'-append');dlmwrite('stdreport.xls', ABIringvar,'-append');dlmwrite('stdreport.xls', ABIpinkievar,'-append');



APPENDIX E

SPEED ANALYSIS FUNCTION

This appendix includes the speed analysis matlab function. This function calculate the
speed of joint activity, and derive the average of flexion and extension speeds, in addition
to the maximum and minimum flexion and extension speeds.%%% Speed analysis function that computes the speed the activity,the%%% flexion and extension speed ( averages, max, and min)% the input values are data and time output is speed flextionaverage,% extension averages, max, and min flexion speed, max and min extension% speed, respectively

function [speed flexionaverage extensionaverage maxflexion minflexion
maxextension minextension]=speedanalysis(data,time)

%clc

L=length(data);

	

speed(2)=((data(2)-data(1))/(time(2)-time(1)));%initial value
for n=3:(L);

if (time(n)-time(n-1))% checking if difference is positive sincethe '.csv' files shows 4 digits	 	 %after the decimal so sometimes there is repeated samples oftime

		

speed(n)=((data(n)-data(n-1))/(time(n)-time(n-1)));

	

else

		

speed(n)=speed(n-1);% in case 0 difference of time, we

consider the speed at that sample same as	 	 %in the instance before

	

end
end

flexion_speed_average=0;
Nf=0;
extension_speed_average=0;
Ne=1;% dividing the speed as extension and flexion average speed aas flexionis% positive and extension negative

for n=2:(L-1);
if(speed(n)>=0 )

flexion speed average=flexion_speed_average+speed(n);
Nf=Nf+1;

else
Ne=Ne+1;
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extension_speed_average=extension_speed_average+speed(n);
end
end

flexionaverage=flexion_speed_average./Nf;
extensionaverage=extensionspeedaverage./Ne;

%max extension is the min speed wich is negative and max flextion isthe% maximum positive speed
minextension=min(speed);
maxflexion=max(speed);

% set initial values of minimum extension and flexion as equal to the% maximum values before going to the loop to compute these values

maxextension=minextension;
minflexion=maxflexion;

for n=2:(L-1);
if(speed(n)>=0 && speed(n)<minflexion )

minflexion=speed(n);
end
if(speed(n)<0 && speed(n)>minextension )

maxextension=speed(n);
end
end

minflexion;
minextension;% (f,xlyksdensity data);

ROM=max(data)-min(data);
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APPENDIX F

LONGSTREAM DATA ANALYSIS

This is the Matlab File that loads the 36 spreadsheet files that include the long-stream
data. After loading each file, the index data is decomposed and the files are segments as
described in chapter 3. After segmenting the data based on locating peaks in the detailed
coefficients, the decision is called to decide the activity during specific duration and to
report the speed analysis about the segments. These indexes present the steps done for
the first two file, the same steps are repeated till data file
prepared_data_angles_SPLIT035.csv.%% Extracting columns from data fileprepared data angles SPLIT 000.csv

clear all; close 	 all;
time=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv',0,0,

[0 0 62050 0]);
thumb=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv'

,0,1,[0 1 62050 1]);
index

=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv'

,0,2,[0 2 62050 2]);
middle

=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv'

,0,3,[0 3 62050 3]);

ring=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv'

,0,4, [0 4 62050 4]);
pinkie

=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_000.csv'

,0,5,[0 5 62050 5]);%%

sl=middle;
decompose;
close all;
segmental;

T=['duration' ' 	 ' 'activity' ' 	 ' 'precision_conf' ' 	 ' 'palmer_conf' ' 	 ' 'cyllindrical_conf' ' 	 ' 'avgROM' ' 	 ' 'avgflextion' ' 	 ' avgextension' ' 	 ' 'maxflexion' ' 	 ' 'maxextension' ' 	 ' 'avgstd'];R=[du;ac;precision;palmar;cyllindrical;avgROM;avgmaxflex;avfmaxex;avfle
x;avex;avgstd];

dlmwrite('result.csv',T,'delimiter','\t',precision',8);dlmwrite('result.csv',R','-append');

%% %%% Extracting columns from data file prepared_data_angles_SPLIT_001clear all; close all;

time=csvread(('C:\Users\saha\Desktop\data\prepared_data_angles_SPLIT_001.csv'

,0,0,[0 0 61424 0]);
thumb=csvread(:': , :

[0 1 61424 1]);
index=csvread('

,- ,0,2,[0 2 61424 2]);
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middle=csvreadrC:\Users\soha\DesiKtop\data\prearedta........anies SPLIT . °
01.csv',0,3,[0 3 61424 3]);
ring=csvread(' ( :\Users\soha\Desktc,p\data\reparediiata anles_SPLIT 001
csv,0,4,[0 4 61424 4]);

pinkie=csvread('C:\Users\scha\Desktp\data\prepared_data ±angles_SPLITJ
01.osv',0,5,[0 5 61424 5]);

sl=middle;
decompose;
close all;
segmental;
T=['duration' ' 	 ' 'activity' ' 	 ' 'precisionconf
' ' 	 ' 'palmar_conf' ' 	 ' 'cyllindrical_conf' ' 	 ' 'avgROM' ' 	 ' 'avgflexion' ' 	 ' 'avgextension' ' 	 ' 'maxflextion' ' 	 ' 'maxextension' ' 	 ' 'avgstd'];

R=[du;ac;precision;palmar;cyllindrical;avgROM;avgmaxflex;avfmaxex;avfle
x;avex;avgstd];
dlmwrite('result.csv',R,'-append');



APPENDIX G

SEGMENTING FUNCTION

This appendix includes the matlab file that is called to segment the data files and call the
decision function. The lower bound of initial segment is set to 1. Decomposition action
is called, and the detailed coefficients are compared with threshold 3. If the difference
between the segment index at the peak and the lower bound is greater than 500 samples,
the upper bound is set equal to that index. The data between lower and upper bound is
classified as a segment, to which the duration is calculated. The decision function is then
called to find the statistical information about the segment and to define the activity .

l=length(D1);lb=1: % lower bound of the segment

count=0;% count of segments
ub=1; % upper bound of 	 the segment
k=1;
for n=1:1,

if (D1(2,n)>2)if (D1(2,n)>3)if (D1(2,n)>4)	 %if (D1(n)>5)

	

if (D1(2,n)>3)
m,(n)=1
else
m(n)=0;
endend

numel(m);

12=0;

%%

while k<1,

	 %

for n=1:1,

%if (D1 (2,n)>2)%if (D1 (2,n)>3)%if (D1 (2,n)>4)
	if (D1(2,n)>3) % defining the threshold at which segmenting

	 	 m(n)=1;

	

else

		

m(n)=0;

	

end
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end

numel(m);

if (m(k)==1)1!(k==(1 - 1))

i=k-lb;

if i>500
count=count+1;
ub=k;
tt=0;
A=0; B=0; C=C; D=0; E=0;
o=ib:ub;

tt=time(o);
A=index(o);
B=middle(o);
C=ring(o);
D=pinkie(o);
E=thumb(c);
length(o);

12=i;

Decision;

du(count)=time(ub)-time(lb);

ac(count)=activity;
precision(count)=classone_conf;
palmar(count)=classtwo_conf;
cyllindrical(count)=classthree_conf;
avgROM (count) =averageROM;
avgstd(count)=averagestdv;
avgmaxflex(count)=avg_maxflexion;
avfmaxex(count)=avg_maxextension;
avflex(count)=avg_flexionavg;
avex(count)=avg_extensionavg;
numel(m);
lb=ub;

end

end

k=k+1;
End
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APPENDIX H

DECISION

This appendix includes the matlab file that is derive the activity during a defined
segment, in addition to finding all needed information about speed, range of motion and
standard deviation.call the four classes (class one for precision, two for palmar, three for cylindrical, and four for nothing)

classone;
classtwo;
classthree;
class four;

	 %look for the class with highestpower, activity is 0 if power for class four is the highest, 1 if class one power is the highest, 2 if that of class three is the highest, and 3 if the power of class three is the highest.if classonepower>classtwopower

	 %activity='PRECISION 	 GRIP';

	

activity=1;

	

pcwer=classonepower;
else	 %activity='PALMAR 	 GRASP';

	

activity=2;

	

power=classtwopower;
end
if classthreepower>power

	 %activity='CYLINDRICAL 	 GRASP';

	

power=classthreepower;

	

activity=3;
end

	

if classfourpower>power

	

power=classfourpower;

	

activity=0;
end	 % calculate the confidence proportion for each class power

classoneconf=classonepower/240;
classtwo_conf=classtwopower/240;
classthreeconf=classthreepower/240;	 % calculate the average ROM

averageROM=((max(E)-min(E))+(max(A)-min(A))+(max(B)-min(B))+(max(C)-
nin(C))4(max(D)-min(D)))./5;
averagestdv=(std(E)+stdfA)+std(B)+std(C)+std(D))./5

t=tt;
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data-E;	 % calculating the speed information

[th_speed th_flexionavg th_extensionavg th_maxf th_minf th_maxe
th_mine]=speedanalysis(data,t);
data=A;
[i_speed i_flexionavg i_extensionavg i_maxf i_minf i_maxe
i_mine]=speedanalysis(data,t);
data=B;
[m_speed m_flexionavg m_extensionavg m_maxf m_minf m_maxe
m mine]=speedanalysis(data,t);
data=C;
[r_speed r_flexionavg r_extensionavg r_maxf r_minf r_maxe
r_mine]=speedanalysis(data,t);
data=D;
[p speed p flexionavg p_extensionavg p_maxf pminf p_maxe
pmine]=speedanalysis(data,t);

avgspeed=(th_speed+ispeed+m_speed+rspeed+p_speed)/5;
avg_flexionavg=(th_flexionavg+i_flexionavg+m_flexionavg+r_flexionavg+p_
flexionavg)/5;
avg_extensionavg=(th_extensionavg+i_extensionavg+m_extensionavg+r_exten
sionavg+p_extensionavg)/5;
avg_maxflexion-(th_maxf+i_maxf+m_maxf+r_maxf+pixf)/5;
avg_maxextension=(thmaxe+imaxe+mmaxe+rmaxe+pmaxe)/5;
avgminflexion-(th_minf+i_minf+m_minf+r_minf+p_minf)/5;
avg minextension=(th mine+i mine+m mine+r mine+p mine) /5;



APPENDIX I

ACTIVITY CLASSES

I.l CLASS 1

This is the matlab file where ranges of mean and maximum variance for precision grasp
are summarized. Mean and variance of a given segment is compared with these values to
find the power of the class in that segment.
%% CLASS ONE (PRECISION GRASP)% WRITING (EXTERNAL PRECISION GRIP)

classonepower1=0;
i=mean(A);
v=var(A);
if i>40 &i<60 & v<100

	

indexpower=60;
classonepowerl=classonepowerl+indexpower;

elseif i>30 & i <40 & v <100
indexpower=40;
classonepowerl=classonepowerl+indexpower;

elseif i>20 & i<30 & v<100
indexpower=20;
classonepoweri=classonepowerl+indexpower;

end

m=mean(B);
v=var(B);
if m>50 & m<80 & v<300

middlepower=60;
classonepowerl=classonepowerl+middlepower;

elseif m>40 & m<50 & v<300
raiddlepower=40;
classonepower1=classonepowerl+middlepower;

elseif m>30 & m<40 & v<300
middlepower=20;
classonepoweri=classonepoweri+middlepower;

end

r=mean(C);
v=var(Q);
if r>60 & r<80 & v<100

ringpower=60;
classonepowerl=olassonepowerl+ringpower;

elseif (r>50 & r<60) II (r>80 & r<90) 	 & v<100
ringpower=4C;
classonepowerl=classonepoweri+ringpower;

elseif (r>40 & r<50) & v<100
ringpower=20
classonepoweri=classonepoweri+ringpower;
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end

p=mean(D)-;
v=var(D);
if (p>60 	 p<80) II (p>0 & p<10) & v<200

	

pinkiepower=60; ,

	

classonepower1=classonepowerl+pinkiepower;
elseif (p>10 & p<20) II (p>80 & p<90) & v <200

	

pinkiepower=40;

	

classonepowerl=classonepower1+pinkiepower;
end

% SIMUATING FEEDING (INTERNAL PRECISION GRIP)classonepower2=0;
i=mean(A);
v=var(A);
if i>30 & i<40 & v<100

	

indexpower=60;

	

classonepower2=classonepower2+indexpower;
elseif i>40 & i<50 & v <100

	

indexpower=40;

	

classonepower2=classonepower2+indexpower;
elseif (i>10 & i<30) II (i>50 & i<80) & v<100

	

indexpower=20;

	

classonepower2=classonepower2+indexpower;
end

m=mean(B);
v=var(B);
if m>40 & m<60 & v<300

	

middlepower=60;

		

classonepower2=classonepower2+middlepower;
elseif (m>20 & m<40) 11 (m>60 & m<80) & v<300

	

middlepower=40;

		

classonepower2=classonepower2+middlepower;
elseif m>70 & m<80 & v<300

	

middlepower=20;

		

classonepower2=classonepower2+middlepower;
end

r=mean(C);
v=var(C);
if (r>40 & r<50) || (r>80 & r<90) &v<300

	

ringpower=60;

		

classonepower2=classonepower2+ringpower;
elseif r>50 & r<80 & v<100

	

ringpower-40;

		

classonepower2=classonepower2+ringpower;
elseif r>30 & r<40 & v<100

	

ringpower=20;

		

classonepower2=classonepower2+ringpower;
end

pi=mean(D);
v=var(D);
if (p>10 & p<20) & (p>40 & p<60) & v<400
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	pinkiepower=60;

		

classonepower2=classonepower2+pinkiepower,
elseif ((p>20 & p<40) II (p>60 & p<100)) & v<400
	 pinkiepower=40;

		

classonepower2=classonepower2+pinkiepower;
end

%%

if classonepowerl>classonepower2

	

classonepower=classonepowerl;
else

	

classonepower=classonepower2;
end

1.2 CLASS 2

This is the matlab file where ranges of mean and maximum variance for palmar grasp are
summarized. Mean and variance of a given segment is compared with these values to find
the power of the class in that segment.%% CLASS TWO (PALMAR GRASP)% simple page turning

classtwopower1=0;
i=mean(A);
v=var (A)
if i>10 &i<20 & v<500

	

indexpower=60;

	

classtwopowerl=classtwopoweri+indexpower;
elseif i>30 & i <50 & v <500

	

indexpower=40;

		

classtwopowerl=classtwopowerl+indexpower;
end

m=mean(B);
v=var(B);

if m>20 & m<40 & v<800

	

middlepower=60;

		

classtwopowerl=classtwopowerl+middlepower;
elseif (m>10 & m<20) & v<800

	

middlepower=40;

		

classtwopoweri=classtwopowerl+middiepower;
end

r=mean(C);
v=var(0);
if r>10 & r<30 & v<700

	

ringpower=60;

		

classtwopowerl=classtwopowerl+ringpower;
elseif (r>0 & r<10) !| (r>30 & r<40) & v<700

	

ringpower=40;

		

classtwopowerl=classtwopowerl+rinapower;



end

p=mean(D);
v=var(D);
if p>0 & p<20 & v<10000

	

pinkiepower=60;

		

classtwopowerl=classtwopoweri+pinkiepower;
elseif (p>20 & p<30) & v <10000

	

pinkiepower=40;

		

classtwopowerl=classtwopowerl+pinkiepower;
end% stacking chechere

classtwopower2=0;
i=mean(A);
v=var(A);
if i>30 &i<40 & v<200

	

indexpower=60;

		

classtwopower2=classtwopower2+indexpower;
elseif (i>20 & i <30) 11 (i>40 & i <50) & v <200

	

indexpower=40;

		

classtwopower2=classtwopower2+indexpower;
elseif (i>10 & i<20) II (i>50 & i<50) & v<200

	

indexpower=20;

		

classtwopower2=classtwopower2+indexpower;
end

m=mean(B);,
v=var(B);
if m>20 & m<40 & v<300

	

middlepower=60;

		

classtwopower2=ciasstwopower2+middlepower;
elseif (m>10 & m<20) [I (m>40 & m<50) & v<300

	

middlepower=40;

		

classtwopower2=classtwopower2+middlepower;
elseif (m>0 & m<10)11(m>50 & m<60) & v<300

	

middlepower=20;

		

classtwopower2=c1asstwopower2+middlepower;
end

r=mean(C);
v=var(C);
if r=10 , & r<40 &v<500

	

ringpower=60;

		

classtwopower2=classtwopower2+ringpower;
elseif r>0.& r<10 & . v<500

	

ringpower=40;

		

classtwopower2=classtwopower2+ringpower;
end

p=mean(D);
v=var(D);
if p>30 & p<40 & v<1000

	

pinkiepower=60;

	

classtwopower2=classtwopower2+pinkiepower;
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elseif p>20 & p<30 & v<1000

	

pinkiepower=40;

		

classtwopower2=classtwopower2+pinkiepower;
elseif (p>0 & p<10) || (p>40 & p<70) & v<1000

	

pinkiepower=20;

		

asstwopower2=classtwopower2+pinkiepower;
end%%% small obj life

classtwopower3=0;
i=mean(A);
v=var(A);
if i>30 &i<60 & -j<500
	 indexpower=60;
	 classtwopower3=classtwopower3+indexpower;
elseif (i>10 & i <30) & v <600

	

indexpower=40;

	

classtwopower3=classtwopower3+indexpower;
elseif (i>60 & i<70) & v<600

	

indexpower=20;

	

classtwopower3=classtwopower3+indexpower;
end

m=mean(B);
v=var(B);
if (m>10 & m<20) || (m>30 & m<40) & v<900

	

middlepower=60;

		

classtwopower3=classtwopower3+middlepower;
elseif (m>0 & m<10) || (m>30 & m<40) || (m>60 & m<80) & v<900
	 middlepower=40;

		

classtwopower3=classtwopower3+middlepower;
end

r=mean(C);
v=var(C);
if r>30 & r<40 &v<900

	

ringpower=60;

		

classtwopower3=classtwopower3+middlepower;
elseif r>20 & r<30 & v<900

	

ringpower=40;

		

classtwopower3=classtwopower3+middlepower;
elseif (r>0 & r<20)II (r>50 & r<70) & v<900

	

ringpower=20;

		

classtwopower3=classtwopower3+middlepower;
end

p=mean(D);
v=var(D);
if p>10 & p<20 & v<900

	

pinkiepower=60;

		

classtwopower3=classtwopower3+pinkiepower;
elseif (p>0 & p<10) 11 	 (p>20 & p<50) & v<900

	

pinkiepower=40;

		

classtwopower3=classtwopower3+pinkiepower;
end
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if classtwopower1>classtwopower2
	 classtwopower=classtwopower1;
else

	

classtwopower=classtwopower2;
end

if classtwopower3>classtwopower

	

classtwopower=classtwopower3;
end

1.3 CLASS 3

This is the matlab file where ranges of mean and maximum variance for precision grasp
are summarized. Mean and variance of a given segment is compared with these values to
find the power of the class in that segment.% CLASS THREE(CYLINDRICAL GRASP)

classthreepower1=0;

% LARGE LIGHT OBJ

i=mean(index);
v=var(index);

if i>, 10 &i<20 & v<200
	 indexpower=60;

		

classthreepowerl=classthreepowerl+indexpower;
elseif i>0 & i <10 & v <200

	

indexpower=40;

		

classthreepowerl=classthreepowerl+indexpower;
else_f i>20 & i<30 & v<200
	 indexpower=20;

		

classthreepowerl=classthreepowerl+indexpower;
end

m=mean(middle);
v=var(middle);
if m>0 & m<20 & v<300

	

middlepower=60;

		

classthreepowerl=classthreepower1+middlepower;
elseif m>20 & m<30 & v<:300

	

middlepower=40;

		

classthreepowerl=classthreepowerl+middlepower;
elseif m>30 & m<40 & v<300

	

middlepowerl=20;

		

classthreepowerl=classthreepowerl+middlepower;
end

r=mean(ring);
v=varring);
if r>0 & r<10 & v<400
	 ringpower=60,

		

classthreepowerl=classthreepower1+ringpower;
elseif r>10 & r<40 & v<400



	ringpowel=40;

		

classthreepowerl=classthreepoweri+ringpower;
elseif r>-10 & r<0 & v<400

	

ringpower=20

		

classthreepowerl=classthreepower+ringpower;
end

p=mean(pinkie);
v=var(pinkie);
if p>0 & p<10 & v<900

	

pinkiepower=60;

		

classthreepowerl=classthreepowerl+pinkiepower;
elseif p>40 & p<70 & v <900

	

pinkiepower=40;

		

classthreepowerl=classthreepower1+pinkiepower;
end% large heavy obj

classthreepower2=0;
i=mean(index);
variance=var(index);
if i>0 &i<20 & variance<400

	

indexpower=60;

	

classthreepower2=classthreepower2+indexpower;
elseif i>20 & i<40 & variance <400

	

indexpower=40;

		

classthreepower2=classthreepower2+indexpower;
elseif i>40 & i<50 & variance<400
	 indexpower=20;

		

classthreepower2=ciassthreepower2+indexpower;

m=mean(middle);
variance=var(middle);
if m>0 & m<20 & variance<400

	

middlepcwer=60;

		

classthreepower2=classthreepower2+middlepower;
elseif m>20 & m<30 & variance<400

	

middlepower=40;

		

classthreepower2=classthreepower2+middlepower;
elseif m>30 & m<40 & variance<400

	

middlepower=20;

		

classthreepower2=classthreepower2+middlepower;
end

r=mean(ring);
variance=var(ring);
if r>0 & r<20 & variance<800

	

ringpower=60;

		

classthreepower2=classthreepower2+ringpower;
elseif r>20 & r<40 & variance<800

	

ringpower=40;

		

classthreepower2=classthreepower2+ringpower;
elseif (r=-10 & r<0) || (r>40 & r<60) 	 & variance<800
	 ringpower=20;

	

classthreepower2=classthreepower2+ringpower;
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end

p=mean(pinkie);
variance=var(pinkie);
if p>0 & p<10 & variance<800

	

pinkiepower=60;

		

classthreepower2=classthreepower2+pinkiepower;
elseif p>10 & p<40 & variance<800

	

pinkiepower=40;

		

classthreepower2=classthreepower2+pinkiepower;
elseif p>40 & p<70 & variance<800

	

pinkiepower=20;

		

classthreepower2=classthreepower2+pinkiepower;
end

if classthreepowerl>classthreepower2

	

classthreepower=classthreepowerl;
else

	

classthreepower=classthreepower2;
end

1.4 CLASS 4

This is the matlab file used to find if there is an activity or the hand joints are not active.
The standard deviation for the five joint are compared with a threshold of six degrees. If
the five joints have low standard deviation then the hand is not active and class four
power (power of "no activity") is set to 240.

Sl=std(E);
S2=std(A);
S3=std(B);
S4=std(C);
S5=std(D);
classfourpower=0;

if (S1<6) & (S2<6) & (S3<6) & (S4<6)

	

classfourpower=240;
end
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