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ABSTRACT

PROPAGATION AND SCATTERING OF BEAM WAVES IN

VEGETATION USING SCALAR TRANSPORT THEORY

by

Michael Yu-Chi Wu

Vegetation is a very complex propagation medium, and multiple scattering effects play a significant

role in the propagation of microwave and millimeter (mm)-wave signals through foliage. At

frequencies above 1 GHz, both the coherent and incoherent field components have to be taken into

account and vegetation has to be modeled as a random medium of discrete scatterers having a wide

variety of sizes and shapes. Multiscattering can be studied effectively by using transport theory. In

prior studies, theories have been developed for microwave and mm-wave propagation in vegetation

using transport theory for continuous wave and pulsed signals. In this study, the theory has been

extended to the more realistic cases of incident fields in the form of pulsed beam waves that are

confined within a specified solid angle. Such spherical or diverging incident beam waves are very

important in many practical applications since millimeter, optical and acoustic waves are often

confined within a small conical angle. For spherical beam waves that propagate in vegetation, the

range dependence, the effects of angular spread (beam broadening), and pulse broadening are

determined. Pulse broadening is important especially in digital communications, where it may cause

intersymbol interference and—depending on the data rate—a significant increase in bit error rate.



The specific problem that is analyzed is that of a periodic sequence of spherical pulses

incident from free space (air) onto a forest region (vegetation). The forest is modeled as a half-space

of randomly distributed particles, which scatter and absorb electromagnetic energy. The incident

pulse train under investigation, as mentioned before, is a characteristic of the radiation produced by

a microwave or mm-wave antenna.
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CHAPTER 1

INTRODUCTION

For line-of-sight communication, cellular communication in particular, current interest centers on

radio-link performance, and how it is affected by wave attenuation, fading and co-channel

interference. When vegetation -such as a forest-lies along the path of a radio-link, strong

multiscattering effects affect the radio performance.

There are two methods that are usually used to study multiscattering effects in random

media, such as a forest-namely-analytical theory and transport theory [1] Analytical theory is a

very rigorous mathematical approach based on Maxwell's Equations. Since it is very complicated,

strong simplifications are required to obtain any feasible solution, thus limiting its usefulness to

restricted parameter ranges. In contrast, radiative transfer theory deals [1-5] with the transfer of

energy through the multscattering medium and is developed heuristically from the conservation of

energy principle in radiation space. The transport equation is equivalent to Boltzmann's equation

found in the kinetic theory of gases and in neutron transport theory and is less rigorous than the

analytic theory. However, the transport theory has been very successfully applied in the study of

many radiation problems, such as optical propagation through the atmosphere, remote sensing and

radiation from stars.

In previous work, continuous wave (CW) millimeter wave and plane wave pulse

propagation in vegetation were studied by using the scalar transport theory [6-11]. In these

1



studies, interests focused on the determination of the range and the directional dependency of the

received power as well as on the pulse broadening and distortion. The scalar transport equation is

capable of specifying the total energy density of radiation in two orthogonal polarizations, but not

polarization or depolarization effects; see [8] for experimental justification of their neglect in these

studies for millimeter waves in vegetation. In the earlier developed theory for a plane wave incident

upon the forest half-space, it was shown that the range dependency in the forest-treated as a

random medium-is not simply an exponential decay at a constant attenuation rate. What actually

occurs for the received power is a high attenuation rate at short distances into the medium that

evolves into a much lower attenuation rate at large distances. The theory explains this in terms of

the interaction between the coherent and incoherent field components. The coherent

omponent-dominating at short distances-is highly attenuated by absorption and scattering

while the incoherent component-generated by the scattering of the coherent component-does

not lose power by further multiple scattering but scatters into itself, thus dominating at large

distances into the forest, which in turn decreases at a greater reduced attenuation rate. In the

transition region between the high and low attenuation regimes, significant beam broadening and

pulse broadening occur.

Following these studies, the scalar time-dependent equation of radiative transfer was used to

develop a theory for the propagation and scattering of narrowband, pulsed, collimated beam waves

of finite cross-section in a medium, characterized by many random discrete scatterers (vegetation)

that scatters energy strongly in the forward scattering direction. Applications include the scattering
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of millimeter-waves in vegetation and the scattering of optical beams in the atmosphere. Strong

forward scattering occurs at millimeter and optical frequencies since all of the scattered objects in

the forest or in the atmosphere are large compared to the wavelength.

In this study, the scalar time-dependent equation of radiative transfer is used to develop a

theory for the propagation and scattering of narrowband pulsed beam waves in a medium that is

characterized by many random discrete scatterers (vegetation) which are assumed to scatter energy

strongly in the forward scattering direction. Of interest are the range and directional dependency of

received power, pulse broadening and distortion, and in addition the effect of a finite beam width

when the incident field is not a plane wave.



CHAPTER 2

Figure 1 Beam wave pulse train incident onto a forest half-space

In this study, vegetation (a forest) is modeled as a statistically homogeneous half-space of randomly

distributed particles that scatter and absorb electromagnetic energy as shown in Figure 1. A

periodic sequence of pulses is taken to be incident from free-space onto the planar boundary of the

forest. This incident pulse train is taken to be a diverging (spherical) beam wave (as opposed to the

collimated (cylindrical) beam wave previously studied [11]). Such an incident pulsed beam wave

constituents, for example, the radiation emitted by a transmitting microwave or millimeter wave

antenna that is located in free-space outside a forest half-space. This situation is an important

practical problem currently of interest to military and commercial applications.

4
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2.2 	 Incident Divergent Beam Wave Pulse Train

Figure 1 illustrates the situation. The incident field traveling in the air region toward the boundary

plane of the random medium takes the form of an idealized, diverging, periodically pulsed beam

wave with a Gaussian time dependence. The magnitude of the instantaneous Poynting vector field

of this beam wave in the R -direction is taken to be

(1)

c is the wave velocity. SA, is time-average Poynting vector magnitude and is expressed

where F(6,0 ) is the radiation intensity pattern function, D(Oo ) is the directive gain, and

the power radiated by the antenna.

The antenna pattern function is chosen to be given by

(2)

BRAD is

(3)

where n is a positive integer and F(80 ) F(cos 90 ) is normalized, such that

For n>>1, the pattern function decreases to very small values near 0 0 = 0 .
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since cosn+1 90M << 1. Numerical results in Chapter 4 are obtained for (5) to permit comparisons

to the collimated beam case, which has been verified in comparison to a second solution method,

the quadrature method in [11]. Hence, the comparison between the spherical beam case using (5)

as presented here and the cylindrical case presented in [11] substantiates the theory to be presented

below.

The function f (t) in (1) determines the time dependence of the pulses (i.e. the pulse

envelope). It is a positive and an even function of time t that is periodic with period T, i.e.

f (t + pT) = f (t) , wherep is an integer, and f (t) is normalized, such that

For Gaussian incident beam pulses, f (t) takes the form

Since the function f (t) —defining the incident, beam wave pulses—is an even function, it can be

represented by the real part of the Fourier series or the Fourier-cosine series:

V • J. 1. where  J.

(8)

(9)

Hence, after substituting (7) into (9), the unknown coefficients are obtained as

(10)
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a, has to be chosen large enough to ensure that the Gaussian function in (7) approaches to zero

as t -f ± 712 , allowing the limits of the integration in (9) to be replaced by ± infinity . Finally, the

factor— 2 sin2 [co, (t - R/ c)]=1-cos[2wc(t - R/ c)] —in (1) characterizes the oscillations of the

carrier within the pulse envelope; co, 1 27z- is the carrier frequency, which is assumed to be much

bigger than the pulse repetition rate-1/T--so that numerous carrier oscillations can occur in one

pulse.

In order to apply the transport theory, the incident beam needs to be characterized in terms

of the specific intensity I, which is the basic quantity of the transport theory and is defined as the

power per unit area and per unit solid angle being transmitted at a given point and in a given

direction to the random medium. From (1) through (10), the specific intensity ofthe incident beam

takes the form:

Where L is given by (10) for the Gaussian pulses in (7). In (11), 6(4) is the Dirac delta

function, 0 is defined as the scattering angle, which is measured positive from the positive z-axis

direction (see Figure 2). The δ-function appears in (11) because the incident beam has a

well-defined direction (0 = 00 and ψ = 0) at any point in the air-region (z<0). In the forest region

(z>0), the specific intensity has a continuous spectrum of directions which replaces the δ-function.
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The carrier oscillations at the frequency co, / 27z- »1/ T at any given frequency, which in

the air region are expressed by the term 2 sin^2[wc(t-z/c)] , tend to be obscured in the forest

half-space due to the multiple scattering processes that take place in this random medium. Hence,

in (11), this term has been replaced by unity, its average value. More precisely, individual

multiscattering wave trains—crossing a given point (p,Φ  ,z) in the random medium in a given

direction (9,0) and at a given time t—tend to travel on many different paths, and their phases will

be random, particularly because co is so large that small changes in path length will result in

significant differences in the phase. Thus, replacing 2 sin e (co (t — z / c)) in (11) by unity is well

justified.



Figure 2 Basic geometry for scattering in the forest half-space of an incident beam
wave pulse train. The "sphere” represents a scatter point in the forest. The
tilted cylinder represents a receiving antenna, which is shown enlarged. The
brown cylinder is the transmitting antenna, and the ellipsoid next to the brown
cylinder is the incident beam wave.

9

2.3 	 Phase Function

In transport theory, the random scattering medium is characterized by an absorption cross -section

per unit volume σ„ a scattering cross-section per unit volume σ „ and a power scatter or phase
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function p(s,s') . The phase function depends on both the incident power directional unit

vector s or, equivalently, the in-scatter angles ( 9%0' ) and the scatter power directional unit vector

.s" or, equivalently, the out-scatter angles ( 0,0 ) for each scatter event (see Figure 2).

Since scattering surfaces in a forest essentially have random orientations, it is reasonable to

assume that a forest scatters energy symmetrically about the direction of the incident radiation.

Hence, the scattering, which occurs at each point in a forest, can be characterized by a phase

function that depends only on the angle 7 between .A'and .s" , where y = cos -1 (s' . s); therefore,

the phase function is expressed as

In addition, since all the scattering objects in a forest are large compared to the wavelength at

millimeter-wave and optical frequencies, the forest scatters energy strongly in the forward direction

but weakly in all other directions. As such, the scattering function is assumed to be characterized by

a strong narrow lobe, centered about 7=0 and superimposed over an isotropic background. This

type of scattering function can analytically be expressed as a Gaussian function added to a

homogeneous term:

which is normalized such that
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dΩ is the differential solid angle about the scatter angle 1 , A y, denotes the width of the

forward lobe in the scatter pattern and a is the ratio of the forward scattered power to the total

scattered power. The scattering function (14) was justified in [6] by referencing to the comparison

of results theoretically and experimentally in [7,8], and by the experiments conducted by Ulaby et al.

in [12].

Therefore, by taking the scattering function as specified in (14) and assuming that random

scatter medium is statistically homogeneous, the forest medium is then characterized by four

spatially constant statistical parameters—namely— o-„ o-„ Ay, and a . These four parameters are

understood to be "global" parameters so that they remain valid at all points in the random medium,

governing the average scatter and absorption event that may occur at any given point in this

medium.

2.4 	 The Scalar Time-Dependent Transport Equation in Cylindrical Coordinates

In transport theory, the specific intensity I of the field in a random medium is governed by the

radiative transfer equation, also known as the transport equation. In the normalized cylindrical

coordinate system (10',0„,z) for symmetric scattering about the direction of the incident radiation,

the scalar transport equation takes the form [5]:



where
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The parameter Woe is called the albedo and the parameters σa , σ s and 6, are the absorption,

scatter and extinction cross-sections per unit volume, respectively. Implicit in writing (16) is the

assumption that all parameters are independent of frequency. Figure 2 illustrates the five basic

spatial coordinates p,Φx,z; 0,0 used in (16); p and z are shown here before normalization.

To obtain a unique solution to (16), the intensity I, assumed to be periodic with time,

requires the satisfaction of the following two boundary conditions:



CHAPTER 3

RIGOROUS SOLUTION FOR DIVERGENT BEAM WAVE

3.1 	 Introduction

As is customary [1], the specific intensity is separated into two components, namely, the reduced

incident intensity I n  and the diffuse intensity /d, by letting

/=/ri-Id 	 (23)

Substituting (23) into (16) and (22) yields the defining equations for I n  and I d , which take the

forms

with boundary conditions

where s .V 9is defined in (17). Thus, the reduced incident intensity is defined in the random

medium as the incident intensity attenuated by both scattering and absorption. The absorbed

power is lost while the scattered power, represented by the last term in (25), serves as the forcing

term, which builds up the diffuse intensity.

(24)

(25)

(26)

13
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To solve for (24) through (26), Fourier series representations are introduced for the time

dependence of the intensities:

where T' = σtcT , co' =2pi/T' and the normalized angular frequency of = w / (co-, ) . Observe also

that although the specific intensity (power quantity) is always positive, the individual Fourier

constituents may be negative and thus cannot physically represent power. The Fourier series

(27) as used here is a purely mathematical procedure without any physical interpretation.

Substituting (27) into (24) yields for z' >0

(28)

with the following boundary conditions:

where v = 0,1, 2, • .. .

A comparison of (11) with (12) expressed in normalized variables with (27) gives

(29)

(30)

(31)

where R' =σtR=(z' +zo')/cosθo , zo 0-tzo , and F( cos 00 ) is the antenna radiation intensity

pattern specified in (5), respectively. The reduced incident intensity at a point in the forest is the
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incident intensity, exponentially attenuated over the distance from the forest boundary to the

observation point. Hence, tracking the incident intensity from the antenna, a distance R' in

direction θn to the point in the forest permits the construction of In  , which satisfies (28) and the

forest boundary condition of (30). It is given by

Substitution of the reduced incident intensity 	 from (32) into (29) and (30) gives, for

z ' >0

with boundary conditions

where v = 0,1, 2, 	 and y = 70 for 0' = 00 in (17).

To solve (33), let /d ,, = 621d,,, be represented in terms of the Fourier—Hankel transform by

with inverse transform
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The representation in (35) for id,„ is an expansion in terms of the basis functions

cos(mψ) Am(kV) , which are complete and obey well-known orthogonality properties. The

θ-dependent coefficients A„,' (ki,z',θ) are further expanded in terms of Associate Legendre

functions

so that (35) becomes

Since scattering is assumed to be symmetric about the direction of the incident wave,

the phase function is a function of 7 only (see (13), (14), and (18)) and is conveniently represented

as a series of Legendre polynomials P, [1]:

The Legendre polynomials are then expressed in terms of Associated Legendre functions via the

expansion [1]

. 	 . 	 .

with

p = cosθ 	 and

2, n=0

1, n = 1,2,...
0, n = —1

n (41)



Substituting (38), (42) and (43) into (33), using orthogonal properties, recursion relations and

various identities of the functions Jm(k' p') , cos(mψ) and Pm (cos 0) , and truncating at (m =N ,

1=N) yield the following inhomogeneous system of linear first-order differential equations for the

expansion coefficients Am,' ( k', z)of Iv 	 , '	 d,v •
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3.2 Homogeneous Solution

Solving (49) requires the determination of both homogeneous and particular solutions. To find the

homogeneous solution, the right hand side of (49) is set to zero, and the homogeneous solution is

assumed to be of the form
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Substitution of (51) into (49) with the right hand side set to zero yields the homogeneous system of

linear equations

for m=0, 1, 2, •WW,N 	 1=m, m +1, WWW,N 	 0<k<infinity,

where bv1=1—Wogl+ivw' ; e n, is given by (41) and a„ by (50), respectively. Writing (52) in

matrix form gives the generalized eigenvalue equation

[Ao]G = σ[Co]G 	 (53)

where [A0 ] and [Co ] are matrices. The eigenvalue (a) and eigenvectors ( G ) are determined

by using the ZGGEV based on the QZ method algorithm in the LAPACK library. Nis chosen

to be odd due to the boundary condition, making the combined matrix [Ao]— a[Co ] to be of size

M x M , where M= 0.5(N+1)(N+ 2) as seen from (52). It can be shown that the number of

eigensolutions is N b = (N + 1)2 / 2 < M, as the eigenvalues σ appear—somewhat in a complicated

fashion—on the subdiagonal and the superdiagonal rather than the diagonal of the combined

matrix. Moreover, the boundary condition (30)—requiring that 1,,, -30 for z'--> infinity —restricts the

number of allowable solutions to those associated with eigenvalue satisfying Re(1 / σ) >0. As such,

only half of the eigensolutions conform with this requirement and the number of these allowable

solutions is Nb = RN + 1) / 212 , hence justifying why Nis chosen to be odd.
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The matrices [A0 ] and [C0 ] are sparse and their coefficients are given by simple algebraic

expressions. Thus, even though the number of eigenfunctions to be determined for each pair of

k' and v values of interest is in the order of several hundred, the numerical effort remains within

reasonable limits.

3.3 	 Particular Solution

To obtain the particular solution to the inhomogeneous system of equations (49), the forcing term

gvm,l(k1,z') is restructured. Note that km"/(k', z') is defined (and used) for the region 0 z' < infinity

only. In the region --Go < z' <+ 0 , kni" / (k', z') can be defined arbitrarily; in the solution to the

problem under discussion, k-„,' / (k',z') in the region z' 0 is not used. Hence, it is defined here, for

convenience, to be an even function of z', i.e. to satisfy the condition

gvm,l (k',(k',z') = gm,l a (k', --z') .	 (54)

Thus, it is postulated that g, ,„1" a (k' , z') is represented in terms of its Fourier cosine transform:

(55)

(56)

where

(57)
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Viewing the forcing term (56) as a superposition of differential forcing terms

(58)

the particular solution to (52) for the differential forcing (58) is assumed to have the same

exponential z' — dependency, namely,

(59)

Hence, (49) reduces to the linear system of equations:

where Gm,/ (k',z') is given by (57) with -,g--„,' / (k',z') given by (50) so that

For convenience, the integration over p' in (62) is changed to an integration over ,μo by

(60)

(61)

(62)

introducing the change of variables
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(63)

(64)

In the numerical evaluation of (64), the limit on the integral over is truncated at z' = zm to

provide sufficient numerical accuracy. The integral over P o ranges from μo = μom to 1 for n>>1.

In matrix form, (61) is rewritten as

[Bo ]F = g 	 (65)

where [130 ] is a matrix while F and g are column vectors. The ZGESVX routine from the

LAPACK library is used to find the particular solution [13].

The general solution to (49) is the superposition of the particular solution and

Nb =(N+1) 2/4 allowable homogeneous solutions that obey the condition Re{yσ} > 0 , which

ensure that solutions decay as z' 09 . Thus, the general solution is obtained as
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where a j , j =1,...,N , are arbitrary constants that are determined from the boundary condition at

=O.

Using (66) in (38) and incorporating the truncations, the diffuse intensity is expressed as

where

(68)

3.4 	 Boundary Condition at Entrance to Forest (z' = 0) to Find the Coefficients a

From (30), 	 must satisfy the boundary condition, such that

/d,v (p',z' = 0,0,0 = 0 for z' = 0, 0 5_ 19 5_ 7Z / 2 , 0 p' <infinity,	 0	 (69)

(67) shows that -rd ,, is an even function of Viand that its dependence on the coordinates p' and ψ is

given by the functions J m (k' p') cos (my') . As already stated earlier, these functions form a

complete orthogonal system into which any function of p' and yi (that is even in Ψ) can be

expanded in a given plane =coast. This includes the boundary plane z' =0 of interest here. As a

consequence, the boundary condition (69) reduces to the requirement that the coefficients of the

functions In (k' p') cos (mΨ) , as they appear in (67) under the integral over k' and the sum over m,

must be zero individually for z =0. Thus,
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(70)

The boundary condition (70) is satisfied and the unknown coefficients ad of the

homogeneous solutions are determined by using the normalized Associate Legendre functions

Pm / U7, as testing functions. Since (70) must be satisfied over the half-range 0 0 7112, only

half of these polynomials are used, for which 1' = m + 1, m + 3,.... These "odd" polynomials

Pi'," (cos 9) —i.e. those of order 1'-m=1,3,5,...—form a complete orthogonal system for the half-region

(0,θ,pi/2) . The even Associate Legendre functions polynomials with 1' - m = 0,2,4,... may be

used as an alternative set of testing functions. It can be shown that the number of equations

obtained in this way equals to N b = [(N +1) / 2]2 of the unknown coefficients aj  . These

equations take the form

with
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The coefficients aj are independent of 1,1' but vary with k' and m , which implies that the system

of equations (71) has to be solved separately for each pair of k' and m values of interest. The

process—of course—has to be repeated for each value of v .

3.5 	 Power Received by a Highly Directive Antenna in the Forest

A highly directive, lossless antenna of narrow-beam width and narrow-bandwidth is located inside

the forest as was done in [11]. This receiving antenna is characterized by an effective aperture

A(γ R ) , where y R is the angle included between the direction of observation (9 R , ψR  ) and the

pointing direction of the antenna axis, i.e., the main beam direction (0, ,q1, ); see Figure 2. Hence,

cos y R = cos 0 R cos 0 m + sin 0R sin 0 m cos(ψ R — (ψ m ) 	 (74)



where

and

(75)

(76)

(77)
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Since powers add the transport theory, the instantaneous power received by the antenna is the sum

of the intensity contributions coming from all directions, multiplied by the effective aperture of the

antenna, such that

1 D

Note that 0 = 6R and ψ =ψR .

For millimeter waves, the carrier frequency is very large, and—therefore—the relative

bandwidth of the received signal is narrow. For such a small bandwidth, the effective aperture and

the gain of the receiving antenna can be taken to be independent of frequency and are related by the

general expression

where A is the free space wavelength and D(yR ) is the directive gain of the receiving antenna at

the carrier frequency.

The directive gain is assumed to be Gaussian with a narrow beam width A y, and with no

sidelobes given by



which is normalized such that

Using (75) - (79), the received instantaneous power PR in (75) is obtained as the sum of

the diffuse power PR, and the reduced incident power F.: . The received diffuse instantaneous power

is obtained as

(81)

(82)

It is assumed here that the beam width A y, of the receiving antenna is much narrower than the

beam width of -rd ,, . Similarly, the received reduced incident instantaneous power is obtained as

where

(83)

(84)

(85)



28

For convenience, the instantaneous received power is normalized to the received

time-average power at p' = 0 , Z' =0, Om = 0 and m = 0 , which—since Id,, is zero at i =0

and by using (6) and (7)—is given by

where 	 γm = 00 = 0° .

Thus, the normalized total instantaneous received power is the sum of the reduced incident and the

diffuse normalized received powers, namely,

Using (81)-(86), the total normalized instantaneous received power in (87) becomes

where

Thus, (88) and (89)

(87)

(88)

(89)

(90)
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(91)

which is in agreement with expectation. The diffuse power Pd , on the other hand, is determined by

Id,ν and, thus, is zero in the boundary condition (34) in the boundary plane z' for all p' and

and for 0 Om 5._ 77- / 2 .

The result (90) was expected since the reduced incident power Pr: is the power of the

incident beam wave pulse train that, as it travels through the forest along a straight path, decays

exponentially due to absorption and scattering, but maintains its narrow beam width and its time

dependence. No beam broadening or pulse broadening occurs. The 0 -dependence of Pr: , thus

reproducing the radiation pattern of the receiving antenna. On the other hand, the diffuse intensity,

generated by scattering of the reduced incident intensity and by self-regeneration due to

multiscattering, is characterized by a broad beam width—which is larger than that of the receiving

antenna. Hence, the receiving antenna acts to probe the angular distribution of the diffuse intensity

I as seen from (89). Multiscattering also causes pulse broadening. Due to the increasing length

of their propagation paths, multiscattered wave trains arrive later and the pulses develop tails. In the

numerical results, the summation in (90) is truncated at a value v = um_ that ensures convergence.



CHAPTER 4

NUMERICAL RESULTS

4.1 Background

A significant part of this research is the numerical simulation. The simulation for one set of

parameters required running 160 processors continuously for eight days. The reason the numerical

simulation takes such a long time is because the solution to the transport equation involves five

variables, which requires implementation of multiple numerical integrations and several solutions to

very large linear systems of equations (both dense and sparse matrices).

The three-dimensional scalar transport equation is an integro-differential equation for the

specific intensity that, in general, depends on six independent variables—three positional variables

(P', Ox , z') , two scattering directional variables (θ,0), and one temporal variable (t') —and several

parameters (Woe; Ay, ;zo ,n) . For the cylindrical symmetry case considered here, these six variables

reduce to five independent variables, which include the rotational azymuthal angle y = 0 – Or .

Further development reduces the integro-differential equation of five variables in (16) to solving

discretized linear equations in (52), (61), (71), which permit implementation of a numerical solution

on the computer.

To obtain the discretized equations, use is made of the Fourier series to transform from t'

to v , the Spherical Harmonics to transform from (0,) to (m,l) , the Fourier-Hankel

30
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transform to transform from p' to k' (ranging from 0 to km ), and the Fourier-cosine transform

to transform from zf to if (ranging from ax to u'max). Consequently, it is necessary to

determine the accuracy of the discretizations. To do so, a few test cases are conducted before

running any lengthy simulations. In addition, the parameters of the simulations are chosen in such a

way that they can be computed within a reasonable amount of time due to limited computational

resources for this research. Next, methods of integration are chosen carefully to obtain numerical

solutions for the phase function, for the Fourier-Hankel transform, for the forcing term of the

particular solution, and for the inverse Fourier transform of the particular solution. The particular

solution, the homogeneous solution, and the boundary condition at z' =0 are then computed for all

chosen values of V and k' . Subsequently, the diffuse intensity is calculated for different values of the

dependent variables (pi ,z' ,v, 9 . Finally, the time-dependent received power is computed using

the diffuse intensity over a range of time t' and the reduced incident power.

The solutions to the linear system of equations (61) for finding the particular solution and

(71) for solving the boundary condition at z =0 were obtained by using LU factorization, linear

equation solver, and iterative refinement packages provided by the optimized LAPACK library. The

eigenvalue solutions were obtained by using the ZGGEVX routine from the LAPACK library that

is based on the QZ method in EISPACK [13]. When tested, both of these procedures gave

absolute errors ranging from 10 -1° to 10 -16 . This accuracy is acceptable, as the library routines

handle all variables using double precision, which means a precision that is accurate up to about
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sixteen digits. The phase function, the pattern function for the incident divergent beam, and the

satisfaction of the boundary condition at z =0 will be discussed before showing any numerical

results for the received power. Next, the graphs will be illustrated and discussed in this chapter,

thereby concluding the theoretical development of the work.

4.2 	 Global Parameters

In the simulations, the following parameters are global in that are used in all of the simulations, as

was done in [11]:

Woe = 0.75
a = 0.8

αo = 4/5- 	 (92)
Ay, = 0.3

Aγm= 0.012
T' = 2

In addition, in most cases unless specified otherwise, the following parameters are used:

zoo= 40 (93)
N = 31

Moreover, there are other parameters determined by trial and error to ensure that the system can be

solved accurately within a reasonable amount of time. For example, k m' . is determined by observing

how much the forcing function of the linear system of equations (61) is attenuated, allowing better

selections of n and zoo, which determine the beam width of the incident beam and the distance

between the transmitting antenna and the forest boundary, respectively. Meanwhile, the u m' ax is

determined through several test cases by taking the inverse Fourier transform of the Fourier-cosine
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transform of the forcing function in the particular solution. This allows one to observe the range of

u needed for acceptable convergence for the given parameters. In all of these test cases, it is shown

that 100 is sufficiently large for u m' a. . The following quantities vary among different simulations:

N, k., νmax, w'  , Pi, z', 0, ψ.

Truncation at /max = N ?._ 27 of the series representation (39) for the phase function in

terms of Legendre polynomials was shown in [11] to exhibit the required shape of a pronounced

forward lobe superimposed on an isotropic background and to agree with the exact expression (14)

for the phase function to within a relative accuracy of 10' .

The km' ax value that is required in the truncation of the Hankel transform in (38) is taken

so that more than 99% of the integrand is included. The truncation at v.. > 12 of the series

representation (8) for the Gaussian incident pulses was found to yield values that are sufficiently

close to the exact values determined from (7) as was done in [11].

4.3 Phase Function

Phase function (14) is a power scattering function that describes how electromagnetic energy is

scattered and absorbed by objects in the random medium. The scatterers—which are the objects

(such trees and leaves) in the random medium (the vegetation)—scatter energy strongly in the

forward direction and weakly in the backward direction. Recall that the phase function is

normalized in (15) such that
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p(γ)dΩ = 	 (94)
 

47r

This dictates that g o in (43) must equal unity. However, g o does not equal unity when

determined numerically from (43), which gives g o = 0.9881 for A As = 0.3,a = 0.8 . To ensure that

g o is unity, the phase function p(7) is redefined as pnorm (γ). p(7) I go , which guarantees that

phase (scatter) function given in (14) is plotted in Figure 3. As one can see, there is a tiny back lobe

in the graph, which shows that the scattering is weak in the backward direction.

4.4 Pattern Function

The pattern function F(cos e) given in (5) represents the radiation intensity pattern of the

transmitting antenna; it is plotted in Figure 4 and Figure 5 for integer powers n=50,200, and 1000.

Observe that the pattern becomes narrower as n increases.

Figure 4 shows the overlapping of the pattern function F(cosθ0) of the spherical

incident beam having integer power n=1000 with the Gaussian amplitude function A(p') for the

cylindrical incident beam having beam width w' = 1.79 see [11]. This was expected because the

half-power beam width of the n =1000 spherical beam equals that of the cylindrical beam width

having w' =1.79. For these two incident beams, the powers received by antenna in the forest are

identical. The numerical results for these cases provide verification of the theory presented here for
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the spherical (diverging) incident beam because the results for the incident collimated beam have

been validated by comparisons to alternative approaches in [11].

4.5 	 Forcing Function

The forcing function for the particular solution is written in (64) and is repeated as follows:

(64)

The factor F(μ0)Plm  (μ0)/u0  over 4u0 from μoM  to 1 is not highly oscillatory. In (5) , μoM  is

defined in the range 0 < 190A4 < z / 2 such that COSn+1 θom << 1. The truncation value Z in the

upper limit of the integral over z' is obtained from the exponential decay term in (64) because it is

the most attenuated term in the integrand. Because the remaining portions of the integral over z'

can be oscillatory, it is necessary to integrate over enough points within one spatial period in order

to compute the integral accurately. To determine an estimate for this period, one adds the individual

periods of each oscillatory term in (64), i.e. the periods for the Bessel function, the oscillating

exponential term and the cosine term. The asymptotic form of the Bessel function term is used to

obtain the period of the Bessel function as the worst-case scenario. Therefore, the spatial period is

found to be given as
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(95) is used to estimate how many points are needed for the z'  -integration range.

4.6 Discussions

Computational results for diffuse intensity are presented for the time-independence case in Figure 6

to Figure 23. To be acceptable, these solutions must satisfy the boundary condition (34), which

requires that the diffuse intensity -rd,, be zero at z' =0 throughout the forward angular range

0 9 71- / 2. Observe that in Figure 6 the boundary condition (34) is very satisfied for the

time-independent case ( V=0) for different incident beams and improves as N increases (shown for

convergence). Numerical inaccuracies produce the negligibly small, non-zero values for d ,o over

the range 0 9 90° . Although only the v = 0 case is illustrated in Figure 6, satisfaction of the

boundary condition was also obtained for v> 0 for which values of lI d,v were shown to be

significantly smaller than lId,o1-

To validate the results determined for the spherical beam case, comparisons are made

between the very narrow spherically divergent incident beam case ( n =1000) and the collimated

incident beam case for which w' =1.79. Note that results previously obtained for the incident

collimated beam case were shown to reduce correctly to the incident plane wave case and to agree

with results obtained by the Quadrature method [11]. As mentioned earlier, the particular incident

collimated beam wave having w =1.79 possesses the same half-power beam width as the spherical
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incident beam wave with n = 1000 and to have identical beam patterns (see Figure 4 and Figure 5).

Figure 7 shows that the two cases also yield almost identical results for the diffuse intensity over the

full range 0 5_ 0 180°.

To enable comparison between results for the spherical and cylindrical beams, intensity

Id,v is normalized by using the received time-average power P' given in (86) for the spherical

beam and (39) in [11] for the cylindrical beam. Hence, in Figure 6 and Figure 7,

(96)

is plotted for the spherical beam while _Lc/ , given by (33) in [11] is plotted for the cylindrical beam.

Figure 7 (top) shows how different intensities for the cylindrical beam ( w' =1.79) and the

narrow spherical beams (n = 200 and n = 1000) behave as a function of penetration depth z '

into the forest. This figure shows that close to the interface at z ' = 0, the diffuse intensity grows

rapidly, reaches its peak for z =1-2 and then falls (attenuates) more slowly as Az' increases.

Comparisons of Figure 7 (top) and Figure 7 (bottom) show that /d o is strongest on the Z — axis

(for p' = 0) at its maximum value and has a smaller maximum value at off-axis points, which

decrease as p' gets larger.

Figure 8 to Figure 10 characterize how /d o varies with the penetration depth for n = 200

and n = 1000 at different off-axis locations ( p' > 0) in different scatter directions. Figure 8 shows

that a smaller maxima occurs over at larger values of p' and the maxima all occur near the same

penetration depth, but slightly to the right for smaller p' . Note that for the scatter direction
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9 = 0° : as p' increases, the maximum decreases; but for 0=15° , as p' increases, the maximum

first increases then decreases. Figure 9 demonstrates that the maximum decreases as p' increases

for 8 = 0° and that the locations of these maxima shift slightly to the right as p' increases.

However, for 8 = 45° on the same graph, one can see that as p' increases, the maximum first

increases then decreases and the locations of the maxima shift noticeably. In Figure 10, the location

of the maximum of /do shift to the right as p' increases.

Figure 11 shows that the maximum decreases as 8 increases from 0° to 75°, that the

peak shift to the right initially as 0 increases but then after 0=45 ° in the top figure the location of

the maximum shifts to smaller z' values. In Figure 11 (bottom), the maxima shift to the left after

0 = 30°. Figure 12 shows the same behavior as in Figure 11, but the maxima shift to smaller

values of Z' = z'max (the penetration depth at which Id o is maximum) as 0 increases.

Figure 13 to Figure 15 display /d o at different p' values in the backscatter direction.

Figure 13 shows that over the backscatter direction for 0 = 105° to θ9=180°, the /do seems

almost unchanged for n= 1000 ; note that data for 8 = 180° is not reliable. Figure 13 to Figure

15 show the behavior of /do in the backscatter direction with id o largest in the 8 = 105°, but

decreases to smaller values as 0 increases towards 180°.

Figure 16 to Figure 21 show plots of /do versus scatter direction 0. In these figures, beam

broadening occurs as A z' increases. In Figure 16, for p' = 0 , all scattering is symmetric about the

z — axis. Note in Figure 18 that all scattering is symmetric about a tilt angle measured positive
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from the positive Z' — axis. In Figure 18, beam broadening occurs as z' increases for fixed p'

whereas in Figure 19, beam broadening occurs as p' increases for fixed z' . In Figure 20, the beam

,is symmetric about the z — axis ( 0 = 0° ) for p' = 0 but it is symmetric about 9 = 38° for

p' = 0.5 . Figure 21 shows similar behavior.

Figure 22 and Figure 24 shows the three-dimensional plots of / do in different scatter

directions ( θ = 0°,30°, 60°,120°,150°,180° ). In Figure 24 to Figure 28, the normalized received

diffuse power Pd versus normalized time t' for the spherical beam ( n =1000) and the cylindrical

beam ( w' = 1.79 ) are plotted. These figures show that the diffuse power are identical for 9 = 0

and p' = 0 at different z' locations. In plotting these cases, the time-delay between the spherical

and cylindrical case is taken into consideration to synchronize the received signals. These curves

verify the theory developed here for the spherical beam wave since these curves agree so well with

the cylindrical beam case which has been independently verified in [11].

Figure 29 gives the normalized received reduced incident power versus normalized time for

both the spherical beam ( n =1000) and the cylindrical beam ( w' =1.79) for different penetration

depths z' . Here, no compensation is given for the time-delay between these two beams. In

addition, the error in the diffuse power received at z' = 0 is shown to be very small. Figure 30 to

Figure 35 show the total received power at different locations p' in the forward direction

One sees how energy progresses, attenuates and

distorts the further it travels in the forest.
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Figure 3 The plot of the phase function (power scattering function) for strong forward
scattering by the discrete scatterers in the random medium: notice that there is a
small back-lobe at the far left, thus indicating that the energy scatters weakly in
the backward direction but strongly in the forward direction.

Figure 4 	 Plot of the incident divergent beam's pattern functions F(e0s00 ) for different
values of positive integral powers n.



Figure 5 	 Plot of the incident divergent beam's pattern functions F(cosθ o ) for different
values of integer power n in polar coordinates.
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Figure 6 Boundary condition plot for the normalized diffuse intensity of different incident

Other parameters include: 1
diffuse intensity of the divergent beam have been normalized.
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Normalized diffuse intensity versus the penetration depth: (a)Figure 7

note: the curve with n=200 uses the right axis and the
remaining curves use the left axis.
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Figure 8 	 Normalized diffuse intensity versus the penetration depth: (9=0° (top) and

0= 15° V= 0 and 71=200 for different values of p' ranging from 0 to 4.



Figure 9 Normalized diffuse intensity versus the penetration depth when n= 1000
(narrow beam): 0=0° (top) and 0=45° (bottom), and 0=0 for different
values of p' . In this plot, the pulse tends to "spread" as p' increases. In
addition, because the values of the diffuse intensity differ greatly in the top graph,
the diffuse intensity for the top graph has been normalized to 1.
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Figure 10 	 Normalized diffuse intensity versus the penetration depth when n= 200: 0 = 0°

(top) and 0 = 60° (bottom), iu = 0° , and v = 0 for different values of p' . The
top graph have been normalized to a maximum of one.
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Figure 11 	 Normalized diffuse intensity versus the penetration depth when n=1000:
p' = 0 (top) and p' = 4 (bottom), v = 0° , and v= 0 for different values of 19.
Note: all of the curves on the upper graph are normalized to 1.



Figure 12 	 Normalized diffuse intensity versus the penetration depth: (a) 11 = 200 and
p' = 5 (b) n=50 and p' =10 .
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Figure 13 	 Normalized diffuse intensity versus the penetration depth iwhen n =1000
(narrow incident beam), = 0° , and p' = 0 (top) and p' = 4 (bottom) for

different values of O.
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Figure 14 	 Normalized diffuse intensity versus the penetration depth z' when n= 50 (wide
incident beam), ψ = 0°, and p' = 0 (top) and p' = 10 (bottom) for different
values of 0.
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Figure 15 	 Normalized diffuse intensity versus the penetration depth z' when n= 50 (wide

incident beam), v = 0° , and 0= 120° (top) and 9= 180° (bottom) for different

values of p' . The normalized diffuse intensity in both of the graphs have been
normalized to the maximum of one.
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Figure 16 	 Normalized diffuse intensity versus the scattering angle B when n=50,
lief = 0°,180° , and p' = 0 for different values of : notice how the beam

broadens as 	 increases.
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Figure 17 	 Normalized diffuse intensity versus the scattering angle 0 when n=1000
(narrow incident beam), = 0°,180° , and p' = 0 for different values of z' :

notice how the beam broadens as increases.
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Figure 18 	 Normalized diffuse intensity versus the scattering angle '8 when n = 50,
= 0°,180° , and p' = 10 for different values of Az' : notice how the beam

broadens as increases. These curves have been normalized to a maximum of a
unity.
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Figure 19 	 Normalized diffuse intensity versus the scattering angle 0 when n= 50,
vi = —90°, 90° , and z =8 for different values of p' : notice how the beam
broadens as p' increases.



Figure 20 	 Normalized diffuse intensity versus the scattering angle 0 when n= 1000
(narrow incident beam), ψ  = 0°,180° , and z' = 6.5 for different values of p'

57



58

Figure 21 	 Normalized diffuse intensity versus the scatter angle 8 when n=50 (wide
incident beam), iu = 0°,180° , and z' = 6.5 for different values of p' : notice how
the beam tilts slightly upwards as p' increases while getting smaller.
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Figure 22 	 Three-dimensional graphs for Ido (p' ,z' ,0 ,v =0) vs (p' ,z') when n=1000 ,
where (a) 0=0° , (b) 0= 30° (c) 0 = 60° (d) 0=120° (e) 0=150° (f)
0=180° .
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Figure 23 	 Radiation scattering plots for Id o (p' ,z' ;0 ,v) versus (θ,0 in spherical
coordinate, where p' = 6,z' = 3 and n = 50 (top), n = 200 (middle), and
n = 1000 (bottom); note there's a very small backscattering lobe and that y-axis
is the same scale as the x-axis.
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Figure 24 	 Normalized diffuse power versus normalized time comparing the divergent
incident beam ( n=1000) with the incident collimated beam case (w' = 1.79 )
for z' = 0.5 (top), z' =1.0 (bottom), 0 =0° , = 0° . Other parameters include:
N= 31, vmax. = 15 , and z = 40 . Note: the curves for the collimated beam have
been synchronized to the divergent beam for better comparisons.
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Figure 25 	 Normalized diffuse power versus normalized time comparing the divergent

incident beam ( n = 1000) with the incident collimated beam case ( = 1.79 )
for p i = 0 , z = 3.0 (top), z = 5.0 (bottom), 0 = 0P , = 0° . Other parameters

include: N= 31 v m. = 15 and z' = 40 . Note: the curves for the collimated
beam have been synchronized to the divergent beam for better comparisons.
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Figure 26 	 Normalized diffuse power versus normalized time comparing the divergent
incident beam ( n=1000) with the incident collimated beam case ( = 1.79 )
for p' = 1.0 (top), p' = 4.0 (bottom), z'= 3.0 , 0=0° , ii = . Other parameters
include: N =31, Amax = 15 , and z = 40 . Note: the curves for the collimated
beam have been synchronized to the divergent beam for better comparisons.



64

Figure 27 	 Normalized diffuse power versus normalized time comparing the divergent
incident beam ( n=1000) with the incident collimated beam case ( w' =1.79 )
for p' = 0.0 , = 3.0 , 0= 30° (top), 0=60° (bottom), ψ = 0° . Other
parameters include: N= 31, Vmax = 15 , and zoo = 40 . Note: the curves for the
collimated beam have been synchronized to the divergent beam for better
comparisons.
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Figure 28 	 Normalized diffuse power versus normalized time comparing the divergent
incident beam ( n=1000) with the incident collimated beam case ( = 1.79 )
for p' = 0.0 , z'= 3.0 , 9= 120° (top), 8=150° (bottom), t/1= 0° . Other
parameters include: N= 31, um. = 15 , and zoo = 40 . Note: the curves for the
collimated beam have been synchronized to the divergent beam for better
comparisons.
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Figure 29 	 Normalized power versus normalized time for different values of i (top) and for

different types of incident beams when z =0 (bottom): note that the thick lines
are the reduced incident power at the origin, where the incident beam starts to
penetrate into the forest, or, namely, the incident power. In addition, the thin
lines on the lower graph are the diffuse power at the boundary, which is

essentially 0. Other parameters include: N=31, Vmax
 = 15 , 0=0, and v=0.
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Figure 30 	 Normalized received power verus normalized time for n=1000, p' = 0 (top)
and p' = 2.5 (bottom), θ= 00 , and v = 0° versus different values of z'



68

Figure 31 	 Normalized received power for n=1000 , p' = 1.5 (top) and p' = 4 (bottom),
0=0° , and u = 0° versus different values of z'
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Figure 32 	 Normalized received power for n=1000, z' =1.5 (top) and z' = 5.5 (bottom),
and ψ = 0° versus different values of p' ; note: at 0=00 , the received power has
contributions directly from the incident beam.
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Figure 33 	 Normalized received power versus normalized time for n=1000 , p' = 0.0 ,
z' =1.5 (top) and z' = 5.5 (bottom), and ψ = 0° versus different values of 0;
note: at 0=0° , the received power has contributions directly from the incident
beam.
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Figure 34 	 Normalized received power versus normalized time for n= 1000, p' = 4.0 ,
z' = 1.5 (top) and z' = 5.5 (bottom), and 1/1 = 0° versus different values of 0;
note: at 0=- 0°, the received power has contributions directly from the incident
beam.
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Figure 35 	 Normalized received power versus normalized time for 74=1000 ,

(p' ,z') = (0 ,0.5) (top), (p' ,z 1)= (2.5,2.5) (bottom), and ψ =0° versus different
values of 9.



CHAPTER 5

CONCLUSION

The scalar time-dependent equation of radiative transfer was used to develop a theory of divergent

beam wave pulse propagation and scattering in vegetation, a medium characterized by many random

discrete scatterers which scatter energy strongly in the forward scattering direction. The specific

problem analyzed is that of a spherically divergent beam wave pulse train with 0 -dependent cosine

radiation pattern incident from free-space onto the planar boundary surface of a random medium,

half-space, such as a forest, that possesses a power scatter (phase) function consisting of a strong,

narrow forward lobe superimposed over an isotropic background. After splitting the specific

intensity into the reduced incident and the diffuse intensities, the solution of the transport theory

expressed in cylindrical coordinates was obtained by expanding the angular dependence of both the

scattering function and the diffuse intensity in terms of Associate Legendre functions, by using a

Fourier series/Hankel transform to obtain the equation of transfer for each spatial frequency, and by

satisfying the boundary conditions that the forward traveling diffuse intensity be zero at the

interface and zero at infinity.

Plots of intensity and received power in the random medium (forest) showed distortion due

to pulse broadening, power attenuation (especially at large penetration depths), beam angular

spreading and out-of-beam scattering.
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APPENDIX A

TIME-DEPENDENT TRANSPORT EQUATION

The time-dependent transport equation—an integro-differential equation for the specific intensity

I(r,t; ".0 —is defined as the flow of power per unit area and per unit solid angle at position r and

time t, crossing a surface perpendicular to the direction of the travelling scattered waves .

(97)

where AP(r,t;s) is the differential power.

To derive the transport equation, a beam of radiation is assumed to flow along a path in

direction .s' through a medium characterized by absorption σa and the scattering A, cross-sections.

In the medium, a cylindrical volume element with a cross-sectional area of AS and length Ar that

surrounds a segment of the path is constructed. Let the specific intensity at r and t be /(r, t,s ) ;

hence, at r + Ar and at t +At,

I(r +Δr,t+Δt;ŝ) = I(r,t;ŝ) +AI 	 (98)

where AI is the change in intensity, occurring between position r at time t and r + Ar and t +At.

The difference in the radiant energy AW between the wave entering into the volume

element at r and the wave exiting it at r + Ar through the cross-sectional area AS during a time

interval At is given by

A W = AIASAQAt 	 [joules]	 (99)

74



75

Hence, the net gain in energy per unit volume is

(100)

Since the spherical intensity on the vegetation medium propagates at the speed of light, the distance

traveled in time At is Ar = cAt ; hence, (100) becomes

The total or the substantial derivative of the intensity is given by

where

and .5C, 5, z' , and f are unit vectors. Since Br =rdr =rcdt , (101) and (102) yield

The net gain in the radiative power W e is given by

where the loss of energy due to absorption is given by

the loss due to scattering by

(101)

(102)

(103)

(104)

(105)

(106)

(107)
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and the gain due to in-scattering from all directions is

(108)

with normalized scatter (phase) function p(ŝ;ŝ') . Implicit in writing (106)-(108) is the

assumption that the scatter medium free of dispersion. Therefore, all of the parameters

characterizing the medium are independent of the frequency. Combining (101) to (108) yields the

time-dependent transport equation:

(109)



APPENDIX B

DIVERGENCE BEAM TO COLLIMATED BEAM

The pattern function for the divergence incident beam is as:

F(μ0) = 2(n +1)μon , 	 (110)

(i-μ)^2

where μo = co s 00 and sin θ0 = 	 . The collimated incident beam takes the following form:μo

_v/02
Inc =Spec 	 . 	 (111)

Since the Gaussian term (6.41'7°2 ) in (111) and the power term ( μon ) in (110) have maximum of

one, it is easy to equate them to half in order to compare between the collimated beams and the

divergence beams:

Since the interest is at the forest boundary, where z' = 0 ,

Solving for p 0 in (112) gives

po = 0 . 51/n , (114)

which then gets substituted back into the Gaussian term in (112) along with (113) to reveal that

(115)

(112)

(113)

Solving for w' gives the following expression:
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(116)

(117)

Solving for n in (116) reveals that

For example when n=1000 and z'o = 40 , the equivalent collimated beam width will be, based on

(116),

(118)

The requirement to use the half-power beam width equivalence is that the transmitting

antenna pattern beam width has to be narrow, i.e. n has to be very large (n>>0), so that the

diverging beam can be close to the collimated beam. In this research, a narrow divergent beam

(n=1000) is used in the simulations.



APPENDIX C

CODES

This short script is written in MATLAB and is used to observe the forcing function quickly

without going through a significant amount of calculations.

Example to obtain km. : k = 0:0.01:5 ; G = geng( k , 1 , 0 , 0 , 1000 , 40 ) ; plot( k , G )

function G = geng( k_ , z_ , m , 1 , n , z0 )
1=0;j=0;k=0;
G = zeros( length( k_ ) 1 ) ;

[gw , gx] = gaussQuad96( ); % 48-point Gaussian Quadrature weights and values
gw-=[ gwgwl;
gx=[ -gxgx];
ax=(1E-10/(2*n+2))^(1/n)
bx = 0.5 * ( 1 - ax ) ;
ax = 0.5 * ( ax + 1 ) ;
k_i = ;
T = zeros( length( gx,1);
for i = l: length( gx ) ;

x=bx*gx(1)+ax;
L = legendre( 1, x ) ;
T(1)=(2*n+2)*x^(n-1).*L(m+1);

end

fork =k_
k_i = k_i + 1 ;
g = 0;
j = 0 ;
for x = bx * gx + ax

j=j+l;
kk=k *sqrt(l./(x.*x)-l);
g=g+ exp( -z_ / x ) .* besselj( m kk * ( z_ + z0 ) ) * gm( ) * 	 ) ;

end
0( k_i ) = G( kJ) + g * ax ;

end
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