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ABSTRACT

DESIGN AND ANALYSIS OF SCALABLE SCHEDULING SCHEMES FOR
HIGH-SPEED INPUT-QUEUED PACKET SWITCHES

by
Chuan-bi Lin

Single-stage input-queued (IQ) switches are attractive for implementation of high perfor-

mance routers because they require no speedup in the used memory. It has been shown

that IQ switches can provide 100% throughput under admissible traffic when using either

maximum-weight matching schemes or iterative maximal-weight matching schemes with

a significant speedup. These different approaches require either high computation com-

plexity or high memory costs that can make them infeasible. Therefore, there is a need for

low-complexity and fast matching schemes that provide high throughput under several ad-

missible traffic patterns, without recurring to speedup nor multiple iterations. In this thesis.

the concept of captured frame is proposed, and the application of this concept to matching

schemes is demonstrated. Two weightless matching schemes, one is based on round-robin

selection, called uFORM, and the other is based on random selection, called uFPIM, are

presented. Furthermore, the high throughput of these schemes using a single iteration and

no speedup, under a variety of admissible traffic patterns, is shown.

As switch scalability is required in high-capacity switches, a Clos-network architec-

ture is considered. Clos-network switches are implemented with small switch modules to

reduced the hardware complexity of large-capacity switches. However, the complexity of

configuration schemes for these switches is high because of a) the distributed modules,

and b) the high port count. This complexity can be reduced by adding memory to the first

and third stages in a three-stage configuration. This switch is then called

Memory-Space-Memory (MSM) switch. An effective dispatching scheme for MSM Clos-network switches

must provide high throughput under any admissible traffic pattern, without expanding in-

ternal bandwidth, and while being simple to implement. To satisfy those requirements, two



dispatching schemes are proposed for an MSM Clos-network switch, the framed random

dispatching (FRD) and the framed concurrent round-robin dispatching (FCRRD) schemes.

It is shown that these schemes, using a single matching iteration, achieve high throughput

under traffic with uniform and nonuniform distributions.

Although FRD and FCRRD are simple dispatching schemes, the memory used in the

MSM Clos-network switch requires speedup. Therefore, an input-queued three-stage Clos-

network (IQC) switch is considered. IQC switches use no memory switch modules and are

free out-of-sequence forwarding that may occur in buffered Clos-network switches, how-

ever, they have greater scheduling complexity. The configuration of IQC switches involve

port matching and path routing assignment, in that order. The implementation of a sched-

uler capable of matching thousands of ports in large size switches may have prohibitively

large complexity. To decrease the scheduler complexity for large switches, a matching

scheme, called the Module-First Matching (MoM), for IQC switches that hierarchizes the

matching process is proposed. In a practical scenario, this scheme performs routing first

and port matching thereafter. The high switching performance of the proposed approach

under uniform and nonuniform traffic is presented. A practical two-stage Clos-network

switch that uses module-first matching (MoM) scheme to improve the scalability and to

reduce the configuration complexity for a very large scale switch, is also presented.

A new Clos-network switch that uses the crosspoint buffers in the third-stage mod-

ules and two matching schemes to configure the new Clos-network switch are proposed

to reduce resolution time and provide high performance. This switch is called Space-

Space-Memory (SSM) Clos-network switch. This switch needs no memory speedup in

the third-stage modules. The two configuration schemes for SSM Clos-network switches

are called the weighted module-first and none-port matching (WMF-NP), and the weighted

central modules' link matching (WCMM) schemes. These two approaches provide high

performances for SSM Clos-network switches under uniform and nonuniform traffic, and

WCMM can reduce the number of the exchange information between different modules.
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CHAPTER 1

INTRODUCTION

1.1 Packet Switches

The explosive growth of the Internet has brought the demand for higher capacity at the

core network and higher link rates. The high-speed connection links and high-performance

switches/routers are critical elements of the new network infrastructure. Multi-terabit Inter-

net protocol (IP) routers, asynchronous transfer mode (ATM) switches [1-3], and optical

switches are examples of the technology that address those demands. Packet switching

plays an important role in these switches/routers. In a packet switch, incoming variable-

length packets are segmented into fixed-length packets, or cells, at the ingress side of the

switch to perform internal switching, and packets are re-assembled at the egress side before

they leave the switch.

The way packet switches work can be classified into two groups: time-division

switching (TDS) and space-division switching (SDS) [4, 5]. TDS provides a single com-

mon internal communication path from input to output ports. Cells coming in on different

input ports pass through the switch to different output ports, but do so at different times.

The internal communication structure can be a ring, a bus, or memory. TDS can achieve

optimal throughput and delay performance. However, TDS needs speedup to handle N

incoming and N outgoing cells in a time slot, and therefore the switch size is limited and

the control is more complex. Therefore, SDS is more desirable than TDS for high speed

and scalable switches. SDS provides a multiplicity of paths from input ports to output

ports. Cells coming in on different input ports and going to different output ports can pro-

ceed through the switch simultaneously on these separate paths, without interfering with

each other. SDS can be classified based on the number of available paths between any

1
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Figure 1.1 An \T > N crossbar switch.

input/output pairs as single-stage switches, which have one single path, and multiple-stage

switches, which have multiple possible paths.

Crossbar-based switches are very attractive switches, because they have: simple in

architecture, internally nonblocking, and modularity. An N x N crossbar switch is shown

in Figure 1.1, where horizontal lines represent the inputs, and vertical lines represent the

outputs. The switch consists of N 2 individually operated crosspoints, one corresponding

to each input-output pair. Each crosspoint has two possible states: cross and bar. The bar

state is used to connect an input to an output; otherwise, the cross state is used. Therefore,

a crossbar switch is a simple and nonblocking switch fabric. However, a crossbar switch

can suffer from output port contention as packets from different input ports can be destined

to the same output port simultaneously. To solve this contention, some packets must be

stored at the buffers while one packet is transmitted to the output port.

Although output buffers, placed at the output ports, can solve the output port con-

tention and achieve 100% throughput, they needs memory speedup to deal with N packets

to be stored in an output buffer in each time slot in an N x N switch. This makes it complex

to build output-queued (buffered) crossbar switches. Other ways to resolve the output port

contention are to place the buffers in other locations of a crossbar switch: a) at the input

ports, b) at the crosspoints, or c) at the input ports and output ports. An input-queued (IQ)
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switch is the most attractive architecture among the three buffered switches because an IQ

switch doesn't need memory speedup [6, 7]. However, an IQ switch with first-in-first-out

(FIFO) input buffers may suffer from head-of-line (HOL) blocking problem. HOL block-

ing causes idle outputs to remain so, even in the existence of traffic for them at an idle

input, thus impeding the delivery of high throughput. The introduction of virtual output

queues (VOQs), where one queue per output port is placed in an input port of an IQ packet

switch, is used to remove the head-of-line (HOL) blocking problem [8].

To scale up a switch, multiple stages may be an alternative. Three-stage Clos-network

switches are desirable because they employ simple and nonblocking crossbars as switch

modules, resulting in low hardware complexity for building large-scale switches. Further-

more, Clos-network switches can also provide reliability since multiple paths can be used

to connect from any input port to any output port. The structure of three-stage Clos-network

switches, as shown in Figure 1.2, consists of three stages of switch modules [9]. The first-

and third-stage have k input modules (IM) and output modules (OM), respectively, and the

second-stage has m central modules (CM). At the first stage, N= n x k input lines are

divided into k groups of Ti lines, so that an IM has n input ports. There are m output lines in

an IM, each connects to all in CM. Similarly, each CM has k output lines so that it connects

to all k OM. At the third stage, an OM has n output ports.

Three-stage Clos-network switches suffer from second-stage internal contention among

cells from different first-stage modules excluding output contention. To remove this con-

tention, the use of buffers in the second-stage modules without expanding internal band-

width was considered [10, 11]. However, switches with buffers in the second-stage mod-

ules may suffer from serving packets in out-of-sequence order, which is undesirable as

re-sorting packets might increase the switch complexity and cost. The other options are

to use a switch with bufferless second-stage modules, where buffers are only placed in the

first and third stages, or else to use a switch with bufferless three-stage modules where

buffers are placed in the input ports, both options can be used without expanding inter-
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Figure 1.2 A Clos-network switch architecture.

nal bandwidth. The former is also called a memory-space-memory (MSM) Clos-network

switch [12]. Since MSM Clos-network switches cannot resolve the internal contention,

dispatching cells from first to second stage becomes an important issue. The latter is an

input-queued Clos-network switch, called IQC switch. The IQC switch needs to configure

ports matching and path routing before packets are transmitted. The switch configuration

can be a complex process.

1.2 Scheduling Schemes for Packet Switches

A high-performance packet switch should provide maximum throughput, low switching

delay, fair sharing, and high port speed. To achieve these goals, the scheduling scheme

used in a packet switch architecture plays an important role. An efficient scheme requires

feasible and fast arbiters that have: a) low complexity, b) fast contention resolution, c)

fairness, and d) high matching efficiency.

A maximum-weight matching (MWM) scheme finds the matching whose weight is

the highest [13]. A maximum size matching scheme [14-16] finds the maximum bipartite

matching of inputs with packets queued for. N outputs. An MWM scheme can provide
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100% throughput under any admissible traffic patterns, where weights are assigned to input

queues proportionally to their occupancy or HOL cell age. The cell arrival rate at input i

for output j, received by VOQi ,j , is denoted as λ i. J . Admissible traffic is considered as:

However, MWM schemes are not simple to implement as they require a computation com-

plexity of 0(N3 log N). On the other hand, the most efficient maximum size matching

scheme is known to converge in with a complexity of O(N2.5 ) [17]. Because of this,

maximum-size matching schemes are too slow for practical use in high speed switches.

A maximal matching is an alternative to maximum matching [18]; PIM [15], iSLIP

[19], DRRM [20, 21], and iLPF [22] are some examples. These maximal-matching schemes

need a number of iterations, where one iteration is the number of times that an scheduling

scheme is performed to obtain a cumulative matching result, to achieve satisfactory match-

ing results. PIM and iSLIP use simple and efficient matching arbiters, which perform the

request-grant-accept approach. PIM and iSLIP are simple to implement in hardware. Other

existing schemes that are neither maximum nor maximal have been proposed, and those

schemes are based on load-balancing stages [23-25] or on frame-based matching [26, 27].

A class of matching algorithms based on randomized selection has been proposed

to achieve high throughput with low computation complexity [28, 29]. These randomized

schemes keep the matches that are likely to continue sending cells. These schemes are

ALGO3, APSARA, LAURA, and SERENA. ALGO3 uses a Hamiltonian walk to achieve

stability. 'The other three use the randomized weight augmentation, a merging procedure,

and randomness, and the information provided by recent arrivals to achieve 100% through-

put under admissible traffic. These randomized matching algorithms require computations

and comparisons of the sum of the weight for each matching VOQ-output pair in every

time slot. The resulting schemes are then a combination of weight- and weightless-based

matching schemes.
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1.3 Motivation and Contribution

MWM schemes have been used to show that IQ switches with VOQs can provide 100%

throughput under any admissible traffic while using no speedup. Two maximum weight

matching schemes were presented in 1301: one is the longest queue first (LQF) match-

ing scheme where weights are assigned to input queues with longer occupancy; the other

scheme is the oldest cell first (OM matching. where weights are assigned to HOL cells

according to their waiting time. Moreover, the LQF algorithm can cause the starvation

of one or more inputs because the matched input that has longest queue occupancy keeps

the service. On the other hand, PIM with multiple iterations can provide high through-

put and SLIP with a single iteration can deliver 100% throughput under uniform traffic.

However, these two weightless-based matching schemes cannot provide 100% throughput

under nonuniform traffic patterns without speedup.

It is of interest to know if a weightless-based scheme can achieve a throughput of

100% under admissible traffic with nonuniform distributions, such as unbalanced traffic,

with neither speedup nor multiple iterations.

A solution of weightless-based matching schemes for IQ switches is proposed. This

new approach is called unlimited frame-size occupancy-based round-robin matching (uFORM)

scheme, which uses the concept of capture-frame size. A frame comprises one or more cells

that can be considered eligible for matching. The captured-frame concept is also used on

PIM scheme giving place to a new scheme, called uFPIM. The two schemes improve the

performance of the arbitration schemes without captured-frame concept. The frame size

can be adjusted or limited for different switch sizes of IQ switches. A round-robin-based

matching scheme, which adjusts or limits the captured-frame size, is called FORM. It can

provide high throughput under admissible traffic patterns for different switch sizes with

optimal captured-frame sizes.

As for IQ switches, a number of matching dispatching schemes have been pro-

posed for MSM Clos-network switches. It has been shown that weight-based matching
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dispatching schemes in MSM Clos-network switches can provide high throughput under

independent (uniform or nonuniform) admissible traffic. Two weight-based matching dis-

patching schemes are presented in [31]: one is the maximum weight matching dispatching

(MWMD) scheme, based on MWM for single-stage IQ switches [13], the other dispatch-

ing scheme for this switch is the maximal oldest cell first matching dispatching (MOMD)

scheme, based on the OCF algorithm for single-stage IQ switches [13]. The MOMD

scheme can achieve 100% throughout with multiple iterations under uniform and unbal-

anced traffic [32]. However, weight-based dispatching schemes have intrinsically high

computation complexity, as MWM schemes for single-stage IQ switches. On the other

hand, a weightless-based dispatching scheme, called concurrent round-robin dispatching

(CRRD) scheme, was proposed [33]. The CRRD scheme can provide 100% throughput

under uniform traffic and is simple to implement in hardware because no comparisons

need to be performed among those contending queues. However, it has been shown that

weightless-based dispatching schemes can not provide high throughput with multiple itera-

tions in input module (1M) (also referred as IM iterations) under several nonuniform traffic

patterns.

An implementable solution of dispatching packets schemes for MSM Clos-network

switches is also provided. This novel approach is called frame occupancy-based dispatch-

ing scheme. The approach extends the study of the captured-frame concept into dispatch-

ing schemes for MSM Clos-network switches. These dispatching schemes, the framed

concurrent round-robin dispatching (FCRRD) scheme and the framed random dispatching

(FRD) scheme, both using a single iteration in the matching between first- and second-

stage modules, can achieve high throughput with a small number of IM iterations under

several nonuniform traffic patterns. Furthermore, the throughput of FCRRD is also 100%

as in CRRD.

A variety of matching schemes to configure IQC switches have been proposed [34,

35]. These schemes solve the configuration process in two phases: port matching in the first
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phase and routing afterwards, as the routing process uses the results of port matching. The

matching processes in those schemes show high complexity and long time consumption of

the configuration process. For example, in a 1024 x 1024 switch, these schemes would con-

sider a scheduler that can match 1024 input ports to 1024 output ports, at once. However,

the scheduler for such match can be complex to implement [36]. Those schemes show high

performance under uniform traffic. However, it has not been shown these schemes provide

high throughput under several nonuniform traffic patterns for IQC switches.

This results raise the question: can a scheme reduce the complexity of the configura-

tion process and provide high throughput under several nonuniform traffic patterns for IQC

switches?

As another contribution, a novel configuration scheme for IQC switches is proposed.

This approach is called Module-first Matching (MoM) schemes. MoM schemes perform

matching between modules in the first and third stages in the first phase, and matching

between input and output ports of those matched modules, afterwards. Therefore, MoM

can reduce the size of schedulers for IQC switches. As in the example above, a switch

with 1024 ports, and n = m = k = 32, the largest matching size performed by MoM is

32 instead of 1024, and a 32 x 32 scheduler is feasible to implement. The MoM scheme

can provide high performance under uniform and nonuniform traffic patterns. On the other

hand, a practical two-stage Clos-network switch is proposed. While employing the two-

stage Clos-network switch and MoM scheme, a very large scale switch is built and the

configuration complexity of this scale switch is reduced.

Configuration schemes for IQC switches that perform module matching first and port

matching thereafter can reduce the complexity of matching process and scheduler size [37-

39]. However, these schemes require more than one iteration in the module matching

process to achieve an acceptable performance. As in each module matching iteration the

matching information (e.g.. requests and grants) travels from IMs to CMs and back to IM

(for port matching) in an scheduler implementation that follows a distributed approach, this
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number of iterations can accumulate a long processing delay, which can limit the switch

scalability.

One question raises: Is it possible to reduce the number of iterations between differ-

ent modules (referred as IM-CM iterations), the complexity of the matching process, and

provider high throughput under uniform and nonuniform traffic patterns for the three-stage

Clos-network switches?

A three-stage Clos-network switch with buffers in the last stage and two configura-

tion schemes for the novel three-stage Clos-network switch are proposed. This new switch

is a Space-Space-Memory (SSM) Clos-network switch that uses buffers in the crossbars of

the third-stage modules. The SSM Clos-network switch can reduce a complex matching

process as output contention is resolved by using crosspoint buffers in the output modules.

The two weighted configuration schemes are called the weighted weighted module-first and

none-port matching scheme (WMF-NP) scheme, and the weighted central modules' link

matching (WCMM) scheme. The two approaches can reduce the configuration complexity

and the number of IM-CM iterations as more IM-CM iterations produce long resolution

delay. The SSM Clos-network switch using the proposed configuration schemes provides

high throughput performance under uniform and uniform traffic models, while using no

speedup at the crosspoint buffers of the third-stage modules. In addition, WCMM pro-

vides these advantages while executing single iteration between IMs and CMs, therefore,

reducing the time for configuring the switch.



CHAPTER 2

CAPTURE-FRAME SELECTION SCHEMES FOR INPUT-QUEUED PACKET

SWITCHES

2.1 Introduction

Input-queued (IQ) switches are attractive because their memories work without the speedup

requirement of an output-queued (OQ) switch. As a result, IQ switch architectures have

been adopted by several manufacturers of switches/routers. The introduction of virtual

output queues (VOQs), where one queue per output port is placed in an input port of an

IQ packet switch, is used to remove the head-of-line (HOL) blocking problem [8]. HOL

blocking causes idle outputs to remain so, even in the existence of traffic for them at an idle

input, thus impeding the delivery of high throughput.

It is common to find the following practices in packet-switch design: 1) segmenta-

tion of incoming variable-size packets at the ingress side of a switch to perform internal

switching with fixed-size packets, or cells, and re-assembling the packets at the egress side

before they depart from the switch; 2) use of VOQs, to avoid HOL blocking; and 3) use

of crossbar fabrics for implementation of packet switches because of their non-blocking

capability, simplicity, and market availability. These practices is followed in this chapter.

One major requirement for an IQ switch is the delivery of high throughput under

different traffic conditions. In this chapter, admissible traffic [13] with Bernoulli and bursty

arrivals that have destinations with uniform and nonuniform distributions are considered.

The matching scheme used in IQ switches determines in large measure the achiev-

able throughput. Maximum weight matching (MWM) schemes have been used to show

that IQ switches with VOQs can provide 100% throughput under admissible traffic [13]

while using no speedup. However, MWM schemes have intrinsically high computation

complexity that is translated into long resolution time and high hardware complexity. This

10



makes these schemes prohibitively expensive for a practical implementation of high-speed

switches with currently available technologies. An alternative is to use maximal-weight

matching schemes. These schemes can provide high throughput performance under uni-

form traffic by using multiple iteration and under nonuniform traffic patterns by using a

speedup of two or more. The hardware and time complexity of these schemes can be con-

sidered high for the ever increasing data rates because of the large number of iterations and

speedup. Furthermore, some weight-based schemes may starve queues with little traffic to

provide more service to the congested ones, therefore, presenting unfairness [30].

Maximal-size matching schemes can be used to resolve contention in IQ switches in

a fast manner. An example of these size matching schemes is PIM [15], which is based

on random selection. However, PIM cannot achieve 100% throughput under admissible

uniform traffic because contentions cannot be totally avoided by this scheme. Schemes

based on round-robin selection can provide higher throughput than PIM [19] under uniform

traffic. Some examples of round-robin schemes are iSLIP [19], iDRRM [20, 21], and

SRR [40], which can deliver 100% throughput under uniform traffic with a single iteration.

iSLIP showed that the desynchronization effect, where arbiters reach the point where each

of them prefers to match with different input/outputs, is beneficial for switching under this

traffic pattern. However, schemes based on round-robin selections have not been shown

to provide nearly 100% throughput under nonuniform traffic patterns without speedup or

without pre-calculated switch configurations for traffic with pre-known distributions [23].

The exhaustive dual round-robin matching (EDRRM) scheme [41] has shown a throughput

higher than iSLIP under nonuniform traffic patterns at the cost of reduced performance

under uniform traffic.

This results raise the question: can weightless matching schemes provide 100%

throughput under admissible traffic?

To answer this question, the schemes that perform matching for train of cells instead

of for a single cell are presented. Matching in train-of-cells basis have been shown to
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improve throughput using an optimal train size for a given traffic distribution [26, 42].

This approach seems to be beneficial for nonuniform distributions as outputs receiving

large amount of traffic may utilize efficiently an achieved match. However, it is difficult to

define an optimal train size for all traffic distributions.

As a answer to that question, the captured-frame concept and its application on

maximal-size matching schemes for IQ switches are introduced. The resulting schemes

are maximal-size based that can provide service to VOQs in proportion to their input loads

to achieve high throughput in a similar way weight-based schemes do, with however, also

providing high throughput under uniform traffic. This is achieved by using the frame ser-

vice, where the frame length depends on the accumulation of cells in a given period of (ser-

vice) time, and therefore, the frame length is adjusted dynamically. The resulting schemes

are called as the unlimited frame-size occupancy-based round-robin matching (uFORM),

and the unlimited frame-size occupancy-based PIM (uFPIM). In this chapter, it is demon-

strated that the captured-frame concept, used for cell matching eligibility, improves the

performance of the arbitration schemes, which are run in a cell basis. In this chapter, the

analysis of the achievable throughput of uFPIM in single-stage IQ switches under uniform

traffic is proposed. The switching performance of uFORM and uFPIM under uniform and

nonuniform admissible traffic is also showed in this chapter. It is shown that uFORM re-

tains the high performance of round-robin schemes under uniform traffic and provides high

throughput under nonuniform traffic.

This chapter is organized as follows. Section 2.2 describes the single-stage IQ switch

and introduces preliminary definitions. Section 2.3 introduces the uFPIM and uFORM

matching schemes. Section 2,4 analyzes the throughput of uFPIM in single-stage IQ

switches. Section 2.5 presents a simulation study of the throughput and delay performance

of uFORM and uFPIM under uniform and nonuniform traffic patterns. Section 2.6 presents

the conclusions.
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Figure 2.1 Input-queued switch with VOQs.

2.2 Single-Stage Input-Queued Switch Model and Definitions

A single-stage N x N switch, with VOQs at the inputs is considered. A VOQ that stores

cells from input i to output j is denoted as VOQ(i, j). Unless otherwise stated, it is consid-

ered that a VOQ can store a large number of cells. In this switch, each input can dispatch

one cell each time slot and each output can receive up to one cell per time slot (i.e., no

speedup is used). Figure 2.1 shows the switch model.

The following definitions in the description of the proposed matching schemes are

presented.

Frame. A frame is related to a VOQ. A frame is the set of one or more cells in a VOQ that

are eligible for dispatching. Only the HOL cell of the VOQ is eligible for matching each

time slot.

On-service status. A VOQ is said to be in on-service status if the VOQ has a frame size

of two or more cells and the first cell of the frame has been matched. An input is said to be

on-service status if the status of a VOQ becomes on.

Off-service status. A VOQ is said to be in off-service status if the last cell of the VOQ's

frame has been matched or no cell of the frame has been matched. Note that for frame sizes

of one cell, the associated VOQ is off-service during the matching of its one-cell frame.

Captured frame size. At the time t,. of matching the last cell of the frame associated to

VOQ(i, j), the next frame is assigned a size equal to the cell occupancy at VOQ(i,j).
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Figure 2.2 Example of a frame and the service status of a VOQ.

Cells arriving in VOQ(i, j) at time td , where td > tc , are not considered for matching until

the current frame is totally served and a new frame is captured. This is called a captured

frame as it is the equivalent of having a snapshot of the VOQ occupancy at time tc , where

the occupancy determines the frame size.

Figure 2.2 shows an example of the frame capture and the service status of a VOQ.

At time slot t, the frame is off service, and the request for a match of the HoL cell is off

service as well. Assuming that the size of the frame is four cells and that the VOQ is first

matched during time slot t, the VOQ becomes on service at time slot t 1. The status of

the VOQ remains on service for the rest of the frame duration, or until time slot t 3. After

the last cell of the frame is matched, a new frame is captured with a size of two cells, as

these cells are the only ones in the queue at this time. Then, the status of the VOQ changes

to off service in the following time slot.

For each VOQ there is a captured frame-size counter, CFi, j(t).  The value of CFi, j (t)

indicates the frame size; that is, the maximum number of cells that a VOQ(i, j) can have

as candidates in the current and future time slots. CFi, j(t) takes a new value when the last

cell of the current frame of VOQ(i. j) is matched. CFi, j(t) decreases its count each time

a cell is matched, other than the last. Each VOQ has a status flag F i to indicate the on/off

service status. If VOQ is in on-service status, Fi, j= 1. Otherwise,Fi, j=0.
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2.3 Matching Schemes with Captured Frame for Single-Stage IQ Switches

2.3.1 uFPIM Matching Scheme for Single-Stage IQ Switches

The uFPIM scheme uses CF counters and F flags as indicated above. uFPIM follows three

steps as in the PIM scheme:

Step 1: Request. Non-empty on-service VOQs send a request to their destined

outputs. Non-empty off-service VOQs send a request to their destined outputs if input i is

off-service.

Step 2: Grant. If an output arbiter a j receives any requests, it chooses a request

from the on-service VOQ (also called an on-service request) in a random fashion. If none

on-service request exists, the output arbiter chooses an off-service request in a random

fashion.

Step 3: Accept. If the input arbiter a, receives any grants, it accepts one on-service

grant in a random fashion. If none on-service grant exists, the arbiter chooses an off-service

grant in a random fashion. The CF counter updates the value according to the following. If

the input arbiter a ; accepts a grant from a , and:

i) If CFi, j(t) > 1:CFi, j(t+ I) =CFi, j(t)- 1, and this VOQ is set as on-service,

Fi, j= 1.

ii) Otherwise (CFi, j(t) = 1): CFi, j(t +1)is assigned the occupancy ofVOQ(i, j),and

VOQ(i .j) is set as off-service, F i, j= 0.

Figure 2.3 shows an example of a matching in the uFPIM scheme. The CF values are

shown as input contents. This example only shows the captured-frame sizes and the service

status at each VOQ. In the request phase, Inputs 0, 1. and 2 send off-service requests to all

outputs they have at least a cell for. Input 3 sends a single on-service request to Output

0, as the off-service VOQ is inhibited as described in the scheme. The output and input

arbiters select a request by service status and in a random fashion among all requests of

the same service status. Ls shown by the grant and accept phases. Output 0 selects the
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on-service request from input 3 over the off-service request from Input 1. After the match

is completed, the CF values are updated as shown in the figure. Note that at time slot t 1,

three VOQs become on service.

Figure 2.3 Example of uFPIM in a 4 x 4 switch.

2.3.2 uFORM Matching Scheme for Single-Stage IQ Switches

uFORM follows request-grant-accept steps as in uFPIM, and uses round-robin selection

instead of random-based selection. The matching process is as follows:

Step 1: Request. Non-empty on-service VOQs send a request to their destined

outputs. Non-empty off-service VOQs send a request to their destined outputs if input i is

off-service.

Step 2: Grant. If an output arbiter a1 receives any requests, it chooses a request from

the on-service VOQ (also called an on-service request) that appears next in a round-robin

schedule, starting from the pointer position. If none on-service request exists, the output

arbiter chooses an off-service request that appears next in a round-robin schedule, starting

from its pointer position.

Step 3: Accept. If the input arbiter a i receives any grants, it accepts an on-service

grant in a round-robin schedule, starting from the pointer position. If none on-service grant
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exists, the arbiter chooses an off-service grant that appears next in round-robin schedule

starting from its pointer position. The input and output pointers are updated to one position

beyond the matched one. In addition to the pointer update, the CF. counter updates the

value according to the following: If the input arbiter a accepts a grant from aj , and:

i) If CFi, j(t) > 1: CFi, j(t + 1) = CFi, j(t) - 1, and this VOQ is set as on-service,

= 1.

ii) Otherwise (CFi, j(t) = 1): CFi, j(t + 1) is assigned the occupancy of VOQ(i, j), and

VOQ(i, j) is set as off-service, Fi, j = 0.

The prefix unlimited to the names of these two matching schemes is used because the

captured-frame size is not limited to a maximum value at the capture time.

Figure 2.4 shows an example of uFORM in a 4 x 4 switch. In this example, the

contents of the VOQs are the same as that of the uFPIM example. The pointers of the input

and output arbiters are initially positioned as shown in the request phase. The off inputs

send requests to all outputs they have a cell for. In the grant phase, the output arbiters select

the request according to the request status and the pointer position. Output 0 selects the on-

service request over the off-service request. Output 3 receives two off-service requests,

and selects Input 1 because that input has higher priority according to the pointer position.

Outputs 1 and 2 receive a single off-service request, therefore, the requests are granted. In

the accept phase, Input 1 selects Output 3 by using the pointer position. Input 2 accepts

the single grant issued by Output 1. Input 3 accepts the single grant, issued by Output 0.

Since the results are the same as in the uFPIM example, the CF values and service status are

updated as in that example. Note that the input and output arbiters for the on-service ports

(Input 3 and Output 0) are updated, but since the service status takes higher precedence,

the pointer position in this case becomes secondary in the selection process.
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Figure 2.4 Example of the uFORM scheme in a 4 x switch.

2.4 Throughput Analysis of Randomized Selection using the Captured-Frame

Concept

This section analyzes the throughput of uFPIM and shows the improvement of over the

throughput of PIM. It has been shown that the throughput of an IQ switch using PIM under

uniform traffic [43, 44] for a large A7 and a single iteration, where PIM's throughput (TPIM )

is defined by:

where, N is the number of input/output ports and ρ is the probability of a cell arrival in a

time slot. As presented in [43], the probability of a request that is being granted by output j

is ρ/N. The probability that output j does not receive a cell from any inputs is (1 - ρ/N).

When N is large and ρ = 1.0, TPIM  is known to be 63.2% under uniform traffic with

Bernoulli arrivals.

The uFPIM scheme uses the captured-frame concept. In this scheme, a frame is de-

fined at the end of the VOQ service and those cells that arrived during the (frame) servicing

time are considered part of the next frame. Therefore, cell arrivals (after a frame is defined)

do not affect arbitrarily the matching process. Furthermore, once a match is achieved, the
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match is kept during the frame duration and the input is set on-service, thus, reducing the

number of contending ports that participate in random selection. In subsequent time slots,

the number of matches is increased because the use of frames makes a match last during

the time that a frame is served. Therefore, the probability of a request of being granted by

an output i is

and the throughput of uFPIM, TuFPIM, Ai, is defined by

where E(m) is the average number of on-service inputs.

In the worst case, E(m) is then defined by the number of cells in a frame. Because

of the two states of an input (on-service or off-service), it is considered that the average of

the duration of a frame, Pm , follows a binomial distribution:

where p is the probability that an input becomes on service. Therefore,
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or

When the switch size N is large,

Recalling that after the first cell of the frame with two or more cells is matched, the

status of the VOQ becomes on-service. That is, a VOQ must not be matched at the least

first two time slots (as the number of cells require to form a frame with the minimum size to

become on-service is two), and the VOQ can get matched in the third time slot, therefore,

capturing a new frame-size. Let's have p1st-um andp2nd-um denote the probability that an

output does not get matched in the first and second time slots, respectively, and

p

3rd-um , is

the probability that the output gets matched in the third time time slot, p becomes:

where A l , A2, and A3 represent the number of on-service inputs at the first, second, and

third time slots, respectively. Here, because E(m) is difficult to calculate, the following

approximation



is used to calculate p. From Eq. (2.5) and Eq. (2.8),E(m) it is obtained. Using E(m) in

Eq. (2.2) the maximum throughput of uFPIM is estimated when p = 1.0. For example, if

= 32, p ≥  0.952, and E(m) ≈ N • p ≈ 30, and then TuFPIM = 0.986.

When N is large,

then

Now, using this value in Eq. (2.2) and

In this way, for a large N, the actual 

T

uFPIM is higher than 0.982.

Figure 2.5 shows the throughput of uFPIM produced by analysis and simulation un-

der Bernoulli uniform traffic. The analysis result is close to the simulation result under

different switch sizes, The actual throughput is expected higher than the one obtained

through analysis because of the Eqs. (2.6) and (2.8).



Figure 2.5 Throughput comparison of analySis and simulation of uFPIM with different
switch sizes under Bernoulli uniform traffic.

2.5 Performance Evaluation of uFPIM and uFORM

iSLIP (with one iteration, or I SLIP) and PIM on this study for comparison purposes are

considered. The performance evaluations are produced by computer simulation, where

results are obtained with a 95% confidence interval, not greater than 5% for the average

cell delay. The traffic models considered have destination with uniform and nonuniform

distributions. The simulation does not consider the segmentation and re-assembly delays

for variable size packets.

2.5.1 Uniform Traffic

Figure 2.6 shows the simulation results of 32 x 32 IQ switches with 1SLIP, PIM, uFORM,

and uFPIM under uniform traffic with Bernoulli arrivals. This figure shows that uFORM,

as iSLIP, delivers 100% throughput under uniform traffic. Under this traffic, PIM delivers

about 63% throughput. However, when using the captured frame-size concept in uFPIM,

the throughput improves to nearly 100%. The reason for the improvement by uFPIM is

that, once a match is achieved, the match is kept during the frame duration. Therefore,

contention among the others ports is reduced with each time slot.

22
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Figure 2.6 Average delay of uFORM and uFPIM schemes under Bernoulli uniform traffic.

Figures 2.7 and 2.8 show the average cell delay produced by uFORM and uFPIM

schemes as a function of the offered load for switches with 8, 16, 32, 64, 128, and 256

ports. It can be seen that as the switch size increases, the average cell delay increases.

However, in a load close to 1.0, small switches, N = {8} of uFORM and N {8, 16} of

uFPIM, produce a long average delay.

2.5.2 Nonuniform Traffic

These four schemes under five nonuniform traffic models is simulated: unbalanced [32],

Chang's [23], asymmetric [45], diagonal [46, 47], and power-of-two (P02) [26].

The unbalanced traffic model uses a probability, w, as the fraction of input load

directed to a single predetermined output, while the rest of the input load is directed to

all outputs with uniform distribution. Let us consider input port s, output port d, and the

offered input load for each input port p. The traffic load from input port s to output port d,

ρs,dis given by,
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Figure 2.7 Average delay of uFORM in function of switch size, under Bernoulli uniform
traffic.

Figure 2.8 Average delay of uFPIM in function of switch size, under Bernoulli uniform
traffic.
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Figure 2.9 Throughput performance of uFORM and uFPIM under unbalanced traffic.

When w = 0, the offered traffic is uniform. On the other hand, when w = 1, it is completely

directional, from input i to output j, where i = j. This means that all traffic of input

port s is destined for only output port d, where s = d . Figure 2.9 shows the throughput

performance of 1 SLIP, PIM, uFPIM, and uFORM under unbalanced traffic. This figure

shows that uFORM provides over 99% throughput under the complete range of w and that

uFPIM reaches up to 99% throughput, while both PIM and 1 SLIP reach 64% throughput.

The high throughput of uFORM and uFPIM under this traffic model is the product of

considering the VOQ occupancy. uFORM ensures service to queues with high load by

capturing a large frame size for each, and to the queues with low load by using round-robin

selection.

	

Figure 2.10 shows the throughput performance of uFPIM and uFORM with different

switch sizes under Bernoulli unbalanced traffic with 1.0 input load. This figure shows that

uFORM provides over 99% throughput and that uFPIM reaches just 99% throughput for

large switches. However, small switches, N {8, 16}, have the lower throughput because

they are more sensitive to the value of the captured frame sizes.
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Figure 2.10 Throughput performance of uFORM and uFPIM in function of switch size,
under unbalanced traffic.

Chang's traffic model can be defined as ρ = 0 for i = j, and ρ i , j = 1/N-1 otherwise.

Figure 2.11 shows the average cell delay achieved by the four matching schemes under this

traffic model. The results show that the obtained throughput is 64% by PIM, 97% by ISLIP,

and 99% by both uFORM and uFPIM.

The asymmetric traffic model is defined as the following. Consider the asymmetry

coefficients a0  = 0, a;=(f -1)/(fN-1- 1),aj= a1 Vj ≠ 0. Then λ(i,i+j)modN)

=ajand λi, j/λ i[(i+1)mod N], j = f Vi ≠jand [(i+1) mod N] ≠j,andf =(100 :

1)-1/(N-2), where λi,jis the input load from input i to outputj.The coefficients define that each

neighboring port receives a load difference of .1. Figure 2.12 shows the average cell delay

of the matching schemes under the asymmetric traffic model. The results show that the

obtained throughput is 70% by PIM, 72% by 1SLIP, and above 99% by uFORM and uFPIM.

The diagonal traffic model distributes all the load of an input between two different

outputs, making the distribution heavily distributed among a small number of output. This

traffic model is defined as ρ i.j = 0.5 for j and j = H- 1) mod N, and ρ i ,j = 0

otherwise. Figure 2.13 shows the average cell delay of thses matching schemes under this



Figure 2.11 Throughput performance of uFORM and uFPIM under Chang's traffic.
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Figure 2.12 Throughput performance of uFORM and uFPIM under asymmetric traffic.
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Figure 2.13 Throughput performance of uFORM and uFPIM under diagonal traffic.

traffic model. These results show that the obtained throughput is 75% by PIM, 85% by

I SLIP, 90% by uFPIM, and 95% by uFORM.

The PO2 traffic model can be represented by a matrix load as: where A i is the load

at input i (e.g., λ0,0=λ 0/21 ,..., λN-1, N-1 = λN-1/2N-1). This traffic model presents a large

nonuniform distribution among all inputs and outputs. The distribution difference in an

input changes along all N possible destinations. Figure 2.14 shows the performance of

the four matching schemes under the P02 traffic model. Because of the complexity of

describing the P02 traffic model in the simulation program, a 30 x 30 switch is considered

for simulation. Under this traffic model, the obtained throughput is 72% by PIM, 75% by

1SLIP, and 95% by both uFPIM and uFORM. Although uFPIM and uFORM provide below

99% throughput under P02, these schemes show, nevertheless, performance improvement

over the other schemes.

In summary, Figures 2.6-2.14 show that the throughput is improved by using the

captured-frame concept to define the set of eligible cells for the matching process.
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Figure 2.14 Throughput performance of uFORM and uFPIM under P02 traffic.

2.5.3 Discussion of Performance Results

The use of a captured frame size and the service concepts used here make uFORM and

uFPIM deliver high performance under uniform and unbalanced traffic patterns. Note that

in the case where a VOQ has no cells at the capturing time, VOQ can still participate in a

matching when a cell arrives after that, as long as the input is off-service.

When a VOQ changes its status to on-service, that VOQ has higher priority than the

others to continue sending its request in subsequent time slots. When an input is off-service,

all nonempty VOQs (independently of the CF value) send a request to their respective

outputs.

Under uniform traffic, the captured frame sizes are not expected to reach large values

because of the cell distribution among all queues. Therefore, most queues may remain

in off-service status while completing service for one-cell frames. The performance is

then determined by the selection policy. Furthermore, as the captured frame includes old

cells, the delay may be smaller than pure round-robin or random based matching. Under

unbalanced traffic, some queues are expected to have heavier loads than others. The queues

with large occupancies have a higher service than the queues with lower occupancy. The
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difference on frame sizes results in more service for queues with a larger number of arrivals

than those for queues with a small number of arrivals. Moreover, the selection policy

ensures that all queues receive service.

2.6 Conclusions

In this chapter, the captured-frame size concept to determine cell eligibility in the matching

process for input queued packet switches, and two matching schemes, uFORM and uFPIM,

that use the captured frame concept, a single iteration, and no speedup, both for single-stage

IQ switches were introduced. In this chapter, it was analyzed that the throughput of uFPIM

is performed under uniform traffic with independent and identical distributions, and it was

demonstrated that uFPIM can achieve higher throughput than PIM. Furthermore, the pro-

posed schemes are tested under several nonuniform traffic patterns. The presented schemes

show above 99% throughput under the unbalanced traffic model, using a single iteration

and no speedup. uFORM and uFPIM were also studied under Chang's, asymmetric, diang-

onal and P02 traffic models and these schemes showed higher switching performance than

those schemes without the captured-frame concept. The new schemes give similar perfor-

mance to that of weight-based matching schemes under nonuniform traffic patterns without

recurring to queue comparisons and keep the high throughput of weightless schemes under

uniform traffic. Furthermore, the proposed concept is scalable as the throughput perfor-

mance increases as the switch size increases.



CHAPTER 3

FRAME OCCUPANCY-BASED ROUND-ROBIN MATCHING SCHEME FOR

INPUT-QUEUED PACKET SWITCHES

3.1 Introduction

A single-stage IQ switch, based on a crossbar switch fabric and VOQs, has the through-

put performance dependable mainly on the used matching scheme. In general, matching

schemes are required to provide: a) low complexity, b) fast contention resolution, c) fair-

ness, and d) high matching efficiency. One major requirement for an IQ switch is the deliv-

ery of high throughput under admissible traffic. The admissible traffic [13] with Bernoulli

and bursty arrivals, and uniform and nonuniform distributions are considered.

As discussed in Chapter 2, the captured-frame concept and its application on maximal-

size matching schemes for IQ switches have been introduced. These two weightless-

based matching schemes, the unlimited frame-size occupancy-based round-robin match-

ing (uFORM) and the unlimited frame-size occupancy-based PIM (uFPIM), can achieve

throughput of nearly 100% under admissible traffic with nonuniform distributions, using a

single iteration and no speedup, for large IQ switches. However, smaller switches are less

sensitive to the unlimited frame-size occupancy values.

As an application to different switch sizes, a variation of uFORM is developed, this

is called frame occupancy-based round-robin matching (FORM). This scheme, which cap-

tures the limited frame-size occupancy values, also provides high throughput under uniform

and unbalanced traffic patterns for small switch sizes with different limited frame-size val-

ues.

This chapter is organized as follows. Section 3.2 presents the switch model under

study and several definitions. Section 3.3 introduces the proposed arbitration scheme.

Section 3.4 presents a simulation study of the throughput and delay performance of the
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resulting switch under uniform and nonuniform traffic patterns. Section 3.5 presents the

conclusions.

3.2 Switch Model and Preliminary Definitions

The following definitions are used in the description of the proposed matching scheme.

Frame. A frame is related to a VOQ. A frame is the set of one or more cells in a

VOQ that are eligible for matching. Only the HOL cell of the frame is eligible for matching

at each time slot.

On-service status. A VOQ is said to be on-service status if the VOQ has a frame

size of two or more cells and the first cell of the frame has been matched. An input is said

to be on-service status if there is at least one on-service VOQ.

Off-service status. A VOQ is said to be off-service if the last cell of the VOQ's

frame has been matched (i.e., finished service) or no cell of the frame has been matched

(i.e., not started service yet). Note that for a frame size of one cell, the associated VOQ is

off-service during the matching of its one-cell frame. An input is said to be off-service if

all VOQs are in off-service status.

Captured frame size. At the time tc of matching the last cell of the frame associated

to VOQi, j, the next frame is assigned a size equal to the minimum of the cell occupancy,

denoted as Li ,j (tc), at VOQi,j and a minimum limiting value fm , where 1 ≤ fm ≤  Li,j(tc).

Cells arriving at VOQi, j at time td , wheretd  >tc  are not considered for matching until

the current frame is totally served and a new frame is captured.

3.3 Frame Occupancy-based Round-Robin Matching (FORM) Scheme

The proposed matching scheme is based on round-robin selection. For each output, there is

an output arbiter ai that selects a request among all received according to the policies de-

scribed in the matching algorithm. For each input, there is an input arbiter at that accepts a

grant among all received according to the policies described in the matching scheme. Each
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arbiter has a pointer that indicates the counter-part port with the highest priority position in

a round-robin schedule.

For each VOQ, there is a captured frame-size counter, CFi,j(t).This captured frame

size is counted as it is the equivalent of having a snapshot of the occupancy of a VOQ

at a given time t, thus, the frame size is then equivalent to the occupancy at time t. The

value of CF

i,j(t), |

CF

i,j

(t)| , indicates the frame size; that is, the maximum number of

cells that a VOQi, j can have as candidates in the following and future time slots.

| CF i,j(t)|

takes a new frame-size value when the last cell of the current frame of VOQ i,j is matched.

| CF

i,j

(t)| decreases its count by one each time a cell is matched other than the last. VOQs

are considered either on-service or off-service. All VOQs are initially considered with a

frame size of one cell and in off-service status.

This scheme follows request-grant-accept steps, as in the iSLIP algorithm [19]. The

arbitration process is as follows:

Step 1: Request. Non-empty on-service VOQs send a request to their destined

outputs. Non-empty off-service VOQs send a request to their destined outputs only if the

input is off-service.

Step 2: Grant. If an output arbiter a

i

 receives two or more requests, it chooses

a request of an on-service VOQ (also called an on-service request) that appears next in a

round-robin schedule, starting from the pointer position. If no on-service request exists, the

output arbiter chooses an off-service request that appears next in a round-robin schedule,

starting from the pointer position.

Step 3: Accept. If the input arbiter aj receives two or more grants, it accepts one on-

service grant that appears next in a round-robin schedule, starting from the pointer position.

If no on-service grant exists, the arbiter chooses an off-service grant that appears next in

a round-robin schedule, starting from its pointer position. The input pointers are updated

to one position beyond the accepted ports. The output pointers are updated to one position

beyond the accepting port. In addition to the pointer update, the CF counter updates its
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value according to the following: If the input arbiter a

i

 accepts a grant from output arbitera

i,:i) If |CFi,j(t)|  > 1:|CFi,j(t + 1)  =|CFi,j(t)| - 1, and VOQi,j is set as on-service.

ii) Otherwise (i.e..|CFi,j(t)|  = 1):|CFi,j(t + 1)  is assigned the minimum of the

occupancy of VOQi, j and fm, and VOQi, j is set as off-service.

The variable fm  is a value to limit the captured frame size. Note that fm  may be equal

to a constant or a variable value. In this paper, fm  is used as a constant. The frame size is

used to determine the service status of a VOQ. Although the frame size is used to determine

eligibility of a VOQ to participate in the matching process, matching is performed on a

time-slot basis. The value of fm  affects the performance of FORM in different traffic

scenarios. The effects of using different fm values are shown in Section 3.4. Note that

when fm  = 1, FORM becomes 1SLIP ( iSLIP, with i = 1). The description above presents

the matching procedure for a single iteration. FORM can consider multiple iterations.

However, that is beyond the scope of this paper.

3.4 Performance Evaluation

The iSLIP with one and four iterations (1SLIP and 4SLIP, respectively)on this study for

comparison purposes is considered. Since the study is the performance with a single it-

eration, the comparison between FORM and 1 SLIP is performed. The performance eval-

uations are produced through computer simulation. The traffic models considered have

destinations with uniform and nonuniform distributions, the latter called unbalanced [32].

Both models use Bernoulli arrivals. The simulation does not consider the segmentation and

re-assembly delays for variable size packets. Simulation results are obtained with a 95%

confidence interval, not greater than 5% for the average cell delay. The VOQs are assumed

to have infinite capacity.
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3.4.1 Uniform Traffic

Figure 3.1 shows simulation results of three 32 x 32 IQ switches, using the scheduling

schemes: 1SLIP, 4SLIP, and FORM, and an OQ switch, all under uniform traffic with

Bernoulli arrivals. This figure shows that FORM with fm  = 2N, as iSLIP, delivers 100%

throughput under uniform traffic. FORM, with fm  = 1, is the equivalent of iSLIP. There-

fore, the average delay of FORM, with Fm  = 1, is depicted by the 1SLIP curve. The

desynchronization effect is also present in FORM under uniform traffic. This effect and the

frame service policy allow FORM to deliver high throughput and low average cell delay

under uniform traffic. The average cell delay of FORM is low as the frame consideration

has an effect similar to having fm=1 and several iterations. After a frame starts being

served, the VOQ in service will keep the match in a number of subsequent time slots equal

to the frame size. This increases the number of matches by reducing the number of un-

matched ports, resulting in a lower average delay than 1SLIP. Note that FORM shows a

slightly longer average cell delay than 4SLIP. However, then the input load is 0.99, FORM

has the same average cell delay. This makes FORM efficient for high input loads, with a

single iteration.

Figure 3.2 shows the average cell delay of switches of different sizes, all using

FORM. This case shows the results for fm  = 2N. It can be seen that as the switch size

increases, the average cell delay increases. However, in a load close to 1.0, small switches

develop a long delay. Simulation experiments showed that small switches, N = {4, 8},

have higher performance when fm , ≤  N, and larger switches are less sensitive to the fm ,

value. This figure shows that the performance of FORM with an intermediate fm  value,

fm = 2N, for both small and large switch sizes, is high in all cases.

Figure 3.3 shows FORM with fm = 2N and an OQ switch under bursty traffic,

modeled as an on-off modulated Markov process, with average burst length 1. The traffic

has bursts with average lengths of 16 and 32 cells (1 = 16 and 1 = 32), and Bernoulli

traffic, 1 = 1. The simulation shows that the FORM scheme provides 100% throughput



Figure 3.1 Average cell delay of FORM scheme under Bernoulli uniform traffic.
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Figure 3.2 Average delay of FORM in function of switch size, under Bernoulli uniform
traffic.
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Figure 3.3 Average delay of FORM, with fM  = 2 N , under bursty uniform traffic.

under uniform traffic under Bernoulli and bursty arrivals. The curves for l = 16 and l= 32

show a constant delay of FORM over the OQ average cell delay. This constant delay is

proportional to the burst length. Therefore, switching performance is not affected by the

frame concept used in FORM.

Under uniform traffic, the average frame size is small, as the uniform distribution of

traffic among VOQs results in small average queue occupancies. Note that FORM does

not suffer from VOQ starvation, even in the case when VOQ occupancy and fm have large

values, as the captured frame has a finite size, and the arrival of new cells does not affect

the CF value arbitrarily.

3.4.2 Nonuniform Traffic

The study presented in this section uses a nonuniform traffic model, the unbalanced traffic

model [32]. Three switches, of size 32, are considered under this traffic model. Each

switch uses the schemes: ISLIP, 4SLIP, and FORM. Figure 3.4 shows that FORM with

= 3N provides over 99% throughput under the complete range of w . FORM provides

an improved matching efficiency using a single iteration, compared to the other schemes.
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Figure 3.4 Throughput performance of FORM under unbalanced traffic.

The high throughput of FORM under this traffic model is the product of considering

the VOQ occupancy. The occupancy of that queue can be expected to have a length in

proportion to its received service and to the arrival rate. FORM ensures service to queues

with high load by capturing a large frame size for each, and to the queues with low load by

using round-robin selection.

Figure 3.5 shows a 32 x 32 switch with FORM under unbalanced traffic. This graph

shows that for fm  > 2N, the throughput under unbalanced traffic is higher than 99%. Note

that the lowest throughput value along the w range is the one considered.

To illustrate the dependency of N . Figure 3.6 shows the throughput of FORM for

different switch sizes, N = {4, 8, 16, 32, 64}, where fm  = 2N for switches of sizes N =

{ 4. 8, 16} and fm  = 4N for switches of sizes N = {32, 64}.

The figure shows that the smaller switches offer high performance (nearly 99% through-

put) when fm  = 2N, while larger size switches offer higher performance with rather larger

values of fm. In this case, a 32 x 32 switch offers a throughput above 99% under this traffic

model with fm  > 2N . As the switch size increases, FORM is less sensitive to the fm value



Figure 3.5 Throughput performance of a 32x32 switch for different jr values.
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Figure 3.6 Throughput performance of FORM for different switch sizes under unbalanced
traffic.
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for delivering high throughput. The decreased dependency on f„ with the increase of the

switch size was observed not only under unbalanced traffic, but also under uniform traffic.

3.5 Conclusions

A novel matching scheme, FORM, was introduced for IQ packet switches. This scheme

is based on round-robin selection and uses the concept of captured frame size, where the

frame size depends on VOQ occupancy at complete-service time. The chapter presented a

study when the maximum frame size is limited to several constant values. As the switch

size increases, FORM shows above 99% throughput under unbalanced traffic models, while

retaining the high performance of round-robin based schemes under uniform traffic. This

matching scheme does not need to compare the status of different VOQs as it is based on

simple round-robin. The hardware and timing complexity of FORM is low. This makes

FORM an efficient and implementable scheme.



CHAPTER 4

FRAME OCCUPANCY-BASED DISPATCHING SCHEMES FOR BUFFERED

THREE-STAGE CLOS-NETWORK SWITCHES

4.1 Introduction

There are two broad approaches to implement a high-performance switch: single and mul-

tiple stages. Single-stage switches are mainly based on crossbar switch fabrics. Several

single-stage high-speed switch are described in [13, 20, 48]. However, the single-stage

approach makes it difficult to implement a large-scale switch, in terms of the number of

ports, because a larger number of switch chips are needed to form a bi-dimensional array

of chips.

A multiple-stage switch, such as a three-stage Clos-network switch [9], needs fewer

switch chips for implementing a switch with large number of ports. This makes the Clos-

network switch very attractive for scalable switches.' Two broad types of Clos-network

switches are considered: bufferless and buffered. A bufferless Clos-network switch has no

memory in any of the three stages. Although the design of the switch modules is rather

simple, this switch may require a complex matching process and a long resolution time.

A variety of matching schemes for bufferless Clos-network switches have been proposed

[34, 46, 49, 50].

Within the buffered Clos-network switches, they can be categorized into two types:

one has the buffers in the second-stage modules and the other has no buffers in the second-

stage modules. Implementing buffers in the second-stage modules helps to resolve con-

tention among cells from different first-stage modules [10, 51, 52]. However, switches with

buffers in the second-stage modules may suffer from serving packets in out-of-sequence or-

der, which is undesirable as re-sorting packets might increase the switch complexity and

I Clos-network switches also use a smaller number of crosspoint elements.
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cost. The other option is to use a switch with bufferless second-stage modules, where

buffers are only placed in the first and third stages. This architecture, which avoids the

out-of-sequence problem, is called a memory-space-memory (MSM) Clos-network switch

[12]. This definition in the remainder of this chapter is presented. By adding buffers to the

first stage of the switch, a dispatching scheme needs to be used to avoid contention within

the input module. This matching is implemented as a matching process.

There are several studies on matching schemes for dispatching packets from the first

stage of MSM Clos-network switches. As in single-stage switches, a maximum-weight

matching dispatching (MWMD) scheme has been used in MSM Clos-network switches

to provide high throughput under admissible traffic [31], but the MWMD scheme has high

computation complexity that could slow down high-speed switches. An alternative is to use

maximal-weight matching dispatching schemes. However, the hardware and time complex-

ity of these schemes can be considered high for the ever increasing data rates. Schemes

based in round-robin dispatching matching, which are maximal-size matching schemes,

such as CRRD [33], have been proposed to deliver 100% throughput under uniform traf-

fic and with a low implementation complexity. CRRD showed that the desynchronization

effect, where arbiters reach the point where each of them prefers to match with different

input/outputs, improves switching performance under uniform traffic. However, CRRD has

a limited throughput under some nonuniform traffic patterns.

Frame-based scheduling with fixed-size frames has been shown to improve switching

performance [26]. However, how to choose a suitable frame size is complex. In this chapter,

the framing is applied, based on queue occupancy [53], to improve throughput under several

nonuniform traffic patterns, without allocating any buffers in the second stage to avoid the

out-of-sequence problem, and to offer a low implementation complexity. Here, the frame

occupancy-based random dispatching (FRD), which is based on random dispatching [12],

and the frame-occupancy concurrent round-robin dispatching (FCRRD) scheme, which is

based on the CRRD scheme and on the captured-frame concept [53] are presented. In this
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chapter, it is shown that the captured-frame concept, used for matching eligibility, improves

the performance of dispatching schemes. The RD scheme and FRD for this purpose are

provided. In addition, the results show that FCRRD can achieve higher throughput than that

of CRRD under nonuniform traffic patterns, while retaining the high performance under

uniform traffic and the low implementation complexity of round-robin schemes..

This chapter is organized as follows. Section 4.2 presents the MSM Clos-network

switch model and some preliminary definitions. Section 4.3 proposes the captured frame

eligibility and the frame occupancy-based round-robin dispatching scheme. Section 4.4

presents the performance study of the proposed scheme under uniform and nonuniform

traffic patterns. Section 4.5 presents the conclusions.

4.2 MSM Clos-Network Switch Model and Preliminary Definition

A MSM Clos-network switch is a three-stage switch architecture [9], as Figure 4.1 shows.

The chapter uses he same terminology in [33], as follows:

IM (i): (i + 1)th input module, where 0 ≤ i ≤  k - 1.

CM (r): (r + 1)th central module, where 0 ≤ r ≤ m  - 1.

OM (j): (j + 1)th output module, where 0 ≤ j ≤ k - 1.

n: number of input/output ports in each IM/OM, respectively.

k: number of IMs/OMs.

m: number of CMs.

IP (i, h): (h + 1)th input port (IP) at IM (i), where 0 ≤ h ≤ n - 1.

OP (l , 1): (1 + 1)th output port (OP) at OM(j), where 0 ≤ l ≤ n - 1.

VOQ (r, j ) : Virtual output queue at CM(i) that stores cells destined for OP(j,1).

LI(i, r): output link of IM(i) that is connected to CM(r).

LC(r, j): output link at CM(r) that is connected to OM(j).



Figure 4.1 Clos-network switch with VOQs in the IM s.

The switch has k input modules (TM), in central modules (CM), and k output modules

(OM). An IM (i) has input ports, each of which is denoted as IP(i, h). Each IM ( i ) has

n x k VOQs to eliminate head-of-line (HOL) blocking. A VOQ(i, j, l) stores cells going

from IM(i) to OP(l) at OM (j ). In an IM, there are m output links. An output-linkL

i,(i, r) is connected from IM (i) to CM(r). A CM(r) has k output links, each of which

is Lc ( r, j ) , which are connected to k OMs. An OM (j) has n , output ports, each of which

is denoted as OP(j,1), and has an output buffer.

The following definitions, adapted from [53], are used in the description of the pro-

posed dispatching scheme.

Frame. A frame is related to a VOQ. A frame is the set of one or more cells in a VOQ that

are eligible for dispatching. Only the HOL cell of the VOQ is eligible per time slot.

On-service status. A VOQ is said to be in on-service status if the VOQ has a frame size of

two or more cells and the first cell of the frame has been matched.
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Off-service status. A VOQ is said to be in off-service status if the last cell of the VOQ's

frame has been matched or no cell of the frame has been matched. Note that for frame sizes

of one cell, the associated VOQ is off-service during the matching of its one-cell frame.

Captured frame size. At the time tc of matching the last cell of the frame associated to

VOQ(i, j, 1), the next frame is assigned a size equal to the cell occupancy at VOQ(i, j, 1).

Cells arriving to VOQ(i, j, l) at time td , where td > tc , are not considered for matching

until the current frame is totally served and a new frame is captured.

4.3 Frame Occupancy-Based Concurrent Round-Robin Dispatching Scheme

In I AI (i), there are m output-link round-robin arbiters and nk VOQ round-robin arbiters.

An output-link arbiter, which is associated with LI (i,r), has its own pointer PL (i.r). A

VOQ has an arbiter associated with it. For the sake of simplicity, VOQs are re-denoted as

VOQ(i. v), where v = hk + j and 0 ≤ v ≤ nk - 1) and each VOQ has a pointer Pv (i, v).

	

In CM(r), there are k round-robin arbiters, which have their own pointer Pc (r, j)

For each VOQ there is a captured frame-size counter, CFi, j, l(t).The value of(t),

indicates the frame size at time slot t; that is, the maximum number of cells that a VOQ (i, j. 1)

can have as matching candidates in the current and future time slots. CFi, j, l(t) takes a new

value when the last cell of the current frame of VOQ(i, j, l) is matched. CF i, j, l (t)decreases

its count each time a cell is matched, other than the last.

The arbitration process includes two phases. This scheme follows request-grant-

accept approach, as in the CRRD algorithm [33]:

Phase 1: Matching within IM

- First iteration

• Step 1: Non-empty VOQs send a request to the output-link arbiter LI , where each

request indicates the on-service or off-service status of the VOQ.
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• Step 2: If an output-link arbiter receives any request, it chooses an on-service request

in a round-robin fashion starting from the position of P l( i , r ) . If none on-service

request exists, L 1 chooses an off-service request in a round-robin fashion starting

from the position of PL ( i, r). LLthen sends a grant to the selected VOQ.

• Step 3: If the VOQ arbiter receives any grant, it accepts an on-service grant in a

round-robin fashion, starting from the position of PV ( i, v ). If none on-service grant

exists, the VOQ arbiter accepts an off-service grant that appears next in round-robin

schedule, starting from the position of PV ( i, v ).

- ith iteration

• Step 1: Each unmatched VOQ sends another request to all unmatched output-link

arbiters.

• Step 2 and 3: The same procedure is performed as in the first iteration for matching

between unmatched nonempty VOQs and unmatched output links.

Phase 2: Matching between IM and CM

• Step 1: After Phase 1 is complete, L f (i,r) sends the request to CM (r).Each

round-robin arbiter associated with OM(j) then chooses a request from the on-

service Li ( i, r ) that appears next in a round-robin schedule, starting from the position

Pc (r, j ) and sends the grant to Li ( i, r ) of IM(i). Pc (r, j) is updated to one posi-

tion beyond the granted one. If none on-service request exists, the OM(j) chooses

an off-service request that appears next in a round-robin schedule, starting from its

position Pc (r, j) and sends the grant to LI (i, r).

• Step 2: If the IM ( i) receives the grant from the CM (r ) . PV  and PL are updated

to one position beyond the granted link and VOQ, respectively. IM(i) sends the

corresponding cell from that VOQ at the next time slot. Otherwise, the IM (i) cannot

send the cell at the next time slot. The request from the CM (r ) that is not granted
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will be attempted again at the next time slot because the pointers that are related to

the ungranted requests are not moved. In addition to the pointer update, the CFi, j, h

counter updates the value according to the following:

If an IM ( i ) received a grant from a CM(r ), the counters are updated as follows. If:

1) CF i, j, l(t) > 1: CFi, j, h(t. + 1)=CF i, j, l(t) - 1 and this VOQ(i, j, 1) is set as

on-service.

ii) IfCF i, j, l(t) = 1:CF i, j, l(t + 1) is assigned the occupancy of VOQ(i, j,1), and

VOQ (i, j, l) is set as off-service.

Note that the matching within IM can have several iterations as the arbiters can be

placed in the IM ;nodules. The matching between TM and CM is considered with one iter-

ation only as, depending on the implementation, the IM and CM modules may be located

far from each other.

4.4 Simulation Evaluation

The performance evaluations are produced through computer simulation. The simulation

showed that the comparison between the performance of the RD scheme [121, and the

framed version of it, FRD. Here. CRRD and FCRRD with multiple iterations in IM, which

are denoted as IIM , and only a single iteration between IMs and CMs are considered. FRD,

as RD, assumes that up to r non-empty VOQs are matched, disregarding of the number of

iterations, and therefore. the results don't indicate the number of iterations performance.

The traffic models considered have destinations with uniform and nonuniform distributions

and Bernoulli and bursty arrivals. The bursty traffic follows an on-off Markov modulated

process and has an average burst length, !, of 10 cells. The simulation does not consider

the segmentation and reassembly delays for variable size packets. Simulation results are

obtained with as 95% confidence interval, not greater than 5% for the average cell delay.
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Figure 4.2 Average delay of FCRRD and CRRD schemes (n=tn.k.8) under Bernoulli
uniform traffic with multiple iterations in IM.

4.4.1 Uniform Traffic

Figure 4.2 shows the simulation results of RD, FRD, CRRD and FCRRD, all under uniform

traffic with Bernoulli arrivals in an n = m =k =8 switch (i.e., 64 x 64 switch without

internal expansion). This figure shows that FRD delivers higher throughput than RD, and

therefore, showing the improving effect of the captured-frame concept. FRD achieves 90%

throughput and RD achieves 65% throughput. This figure also shows that FCRRD, as

CRRD, delivers 100% throughput with any number of iterations in IM (also referred as IM

iterations) under this traffic type. The average delay of FCRRD with two IM iterations is

lower than that of CRRD with four IM iterations. Therefore, FCRRD converges when the

number of iterations in the TM reaches two. The reason for this improvement is that once

a match is achieved, the match is kept during the frame duration. Therefore, contention in

IM is reduced as the number of participant VOQs is reduced with each match. Figure 4.3

shows that FCRRD provides 100% throughput under Bernoulli uniform traffic while using

different switch sizes n = m =k{2, 4, 8, 16}. The average delay increases when the

switch size increases.
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Figure 4.3 Average delay of FCRRD scheme with different switch sizes under Bernoulli
uniform traffic.

Figure 4.4 Average delay of FCRRD and CRRD schemes ( n=m=k=8) under burst)/ traffic
with multiple iterations
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Figure 4.5 Throughput performance of FCRRD and CRRD (n=m=k=8) with multiple
iterations under unbalanced traffic.

Figure 4.4 shows that FCRRD provides 100% throughput even when the input traffic

is bursty, with l= 10. As the figure shows, the average delay of FCRRD with one and two

IM iterations is smaller than that of CRRD with any number of IM iterations.

4.4.2 Nonuniform Traffic

This section shows the simulated results for RD, FRD, CRRD, and FCRRD with multiple

IM iterations under different nonuniform traffic patterns: unbalanced [32], Chang's [23],

asymmetric [45], and diagonal [35].

Figure 4.5 shows the throughput performance of RD, FRD, CRRD, and FCRRD

under unbalanced traffic. When w = 0, the throughput of RD is about 65% and it increases

as w increases. However, the throughput of FRD is above 90% when w = 0 and increases

to 100% as w increases, because of the effect of the captured-frame concept. This figure

also shows that the throughput of FCRRD with two IM iterations is higher than that of

CRRD with four IM iterations under the complete range of w. The high throughput of

FCRRD under this traffic model is the product of considering the VOQ occupancy and

traffic isolation. FCRRD, as uFORM, ensures service to queues with high load by capturing
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Figure 4.6 The performance of FCRRD and CRRD (n=m=k=8) under Chang's traffic.

a large frame size for each, and to the queues with low load by using round-robin selection.

The captured-frame size allows the scheduler to isolate the stored cells from incoming cells

that could make the queuing delay longer, as observed in single-stage switches.

Figure 4.6 shows the performance of these dispatching schemes under Chang's traffic

model. This figure shows that RD delivers about 63% throughput while FRD ca.n deliver

about 91 % throughput under this traffic pattern. This figure also shows that the average

cell delay of FCRRD with two IM iterations is higher than that of CRRD with four IM

iterations under Chang's traffic, as seen in the other traffic models.

Figure 4.7 shows the simulation results under asymmetric traffic. These results show

that RD delivers about. 75% throughput as CRRD with four IM iterations, while CRRD

and. FCRRD, both with one IM iteration, deliver below 45% throughput. FRD and FCRRD

with two IM iterations provide close to 100% throughput. This figure shows that random

selection is as effective as round-robin selection under this traffic model.

Figure 4.8 shows the simulation results under diagonal traffic. These results show

that FCRRD. with two 1M iterations, delivers higher throughput than FCRRD with one IM

iterati.on and than CRRD with any number of iterations. Also, RD and FRD show higher
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Figure 4.7 The performance of FCRRD and CRRD (n=m=k=8) under asymmetric traffic,

throughput than round-robin based schemes. The performance of FRD is comparable to

that of the FCRRD with two IM iterations, of about 95% throughput. One of the reasons

for this improvement is that the pointer update in round-robin schemes might not provide

effective desynchronization of pointers as traffic is directed to only two different outputs

per input.

The use of the captured frame and the service concepts make FRD and FCRRD

deliver high switching performance under uniform and nonuniform traffic patterns. This is

because when a VOQ is on-service status, service remains for the next time slots until the

current frame is depleted.

4.5 Conclusions

In this chapter, two dispatching schemes for MSM Clos-network switches FRD and FCRRD

are introduced. These schemes use random and round-robin selection, respectively, and the

concept of unlimited captured frame-size, where the frame size depends on VOQ occu-

pancy at completed-service time. As compared to RD and CRRD. FRD and FCRRD show

higher performance under several nonuniform traffic patterns. Furthermore, the throughput
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Figure 4.8 The performance of FCRRD and CRRD (n=m=k=8) under diagonal traffic.

of FCRRD keeps 100% under uniform traffic as that of CRRD. The result also showed

that FCRRD with 2 iterations is sufficient to achieve a high switching performance. The

reduction of the number of iterations is important in MSM Clos-network switches as the

input modules are located in different physical locations from the central modules in a large

switch.

The FRD and FCRRD schemes do not need to compare the status of different VOQs

as they are based in random and round-robin selection, respectively. The hardware and tim-

ing complexity of FCRRD is comparable to that of CRRD because only the frame counters

and the on/off service flags are added.



CHAPTER 5

MODULE MATCHING SCHEMES FOR INPUT-QUEUED CLOS-NETWORK

PACKET SWITCHES

5.1 Introduction

The three-stage Clos-network switches use small switches as modules in each stage to

build a switch with a large number of ports and less hardware than that of a single-stage

switch of the same size [9]: Each of these modules can be a crossbar switch: Input-queued

Clos-network (IQC) switches have queues in the input ports to store cells (variable-length

packets are segmented into fixed-length packets, called cells, for internal switching) in case

of input or output contention: The configuration of these switches is complex as output

contention and path routing need to be resolved for every time slot before the transmission

of packets occurs.

Although Clos-network switches reduce the hardware amount, in terms of the number

of crosspoints, the module size, and the number of modules required to implement high-

capacity packet switches, there are other issues that can limit their scalability : a) The time

for configuring all modules before a packet is sent through the switch: This requires a fast

packet scheduler and an efficient exchange of scheduling information among the arbiters

that select the packets that are to be switched at a given time slot: b) The number of

matching units(e.g., ports), as a large number of matching ports would require large arbiters

implemented in hardware. For a switch with large number of ports N, a matching process

involves all N ports: The implications of this are high-hardware complexity that may not

allow a centralized implementation of schedulers, and long resolution times: For example,

a switch with N = 1024, using a scheduler, with an implementation complexity of 0(N 2 )

[36] and a time complexity of O (log N ), would be difficult to build: Implementation of

schedulers of up to N ≤  64 have been reported as practical for implementation [36]: c)

54
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Time relaxation for the configuration of all modules, or an asynchronous configuration, as

each input port may be located far from each other. The time to configure the switch not

only implies fast arbiters as in a). but also that the exchange of control information must

travel the shortest inter-chip distances to decrease the delay overhead: For example, for

a distributed implementation of a scheduler, which may be segmented into parts placed

in different modules, the scheduling process may need to exchange requests and grants

between different modules, placed in distinct boards.

One strategy that simplifies the configuration complexity of Clos-network switches is

the use of queues in the first- and third-stage modules [33], called the MSM Clos-network

switch. In this way, the scheduling of packets becomes a dispatching scheme issue [12]

[46]1311133]: However, the queues in the first-stage modules are required to work with a

speedup of it I and those in the third-stage modules are required to work with a speedup

of m + 1. where n is the number of input ports of the first-stage modules, and m is the

number of second-stage modules: This makes it complex to build MSM Clos-networks

switches.

Various matching schemes to configure IQC switches have been proposed [3411351

[54J: Many of these schemes solve the configuration process in two phases: port matching

first and routing thereafter, as routing uses the results of the port matching phase: For a

1024x 1024 switch these schemes require a scheduler able to simultaneously match 1024

input ports to 1024 output ports: However, a scheduler of that size may be complex to

implement [36].

The scheduler complexity is simplified for IQC switches by applying a similar con-

cept of Clos networks used to reduce the complexity of the data path of large switches

to the configuration process: It is proposed to perform matching between first- and third-

stage modules first, and matching between the input and output ports of matched modules

afterwards: This hierarchical approach is called as module-first matching (MoM). The

longest input queue-occupancy first selection as a weight-based MoM (WMoM) selection
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is used to show the switching performance when using this simple configuration approach.

The comparison between the switching performance of WMoM and the weightless MoM

schemes based on round-robin and random selections are performed. It is shown that MoM

simplifies the configuration of IQC switches. For switches with a large number of ports,

say 1024, and n=m=k=32, where k is the number of first- and third-stage modules, MoM

can use a scheduler size of 32 instead of 1024, and a fast 32x 32 scheduler is feasible to

implement. MoM can also provide high throughput under several traffic models despite its

simplicity.

As a practical example, the module-first matching is used to determine the configura-

tion of the second-stage modules and port matching for the configuration of the first-stage

modules. With the configuration of the first- and second-stage modules, the third-stage

modules become needless and the architecture becomes a two-stage switch. Therefore, a

practical two-stage Clos-network switch is proposed. The two-stage Clos-network switch

and module-first matching (MoM) are used to reduce the complexity of very large scale

switches, of up to Exabit capacity, using currently feasible scheduler size.

The remainder of this chapter is organized as follows, Section 5.2 presents the three-

stage IQ Clos-network switch used in the description of module-first matching scheme.

Section 5.3 describes WMoM as an example of the proposed configuration scheme for

IQC switches. Section 5.4 discusses the implementation of the proposed approach. Section

5.5 presents the performance evaluation. Section 5.6 presents the scalability of very large

scale switches by using two-stage Clos-network switch and MoM. Section 5.7 presents the

conclusions.

5.2 IQC Switch Architecture

The three-stage IQ Clos-network switch is uses virtual output queues (VOQs) in the input

ports, as Figure 5.1 shows. A terminology is similar to that in [33], which is as follows:

IM (i): (i + 1)th input module, where 0 ≤ i ≤ k - 1.
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• CM(r ): (r + 1)th central module, where 0 ≤ r ≤  m - 1.

• OM(j): (j + 1)th output module, where 0 ≤ j ≤ k - 1.

• n: number of input/output ports in each IM/OM, respectively.

• k: number of IMs/OMs.

• m: number of CMs.

• IP(i, g): (g + 1)th input port (IP) at IM(i), where 0 ≤ g ≤  n - 1 .

• OP(j, h): (h + 1)th output port (OP) at OM (j ), where 0 ≤ h ≤  n - 1.

• VOQ(i, g, j, h): Virtual output queue at IP(i, g) that destined for OP( j, h).

There are k input modules (IM), m, central modules (CM), and k output modules

(OM) in the switch. IMs have a dimension of n x m , OMs have a dimension of m x n, and

CMs have a dimension of k x k. The input ports at IM(i) are denoted as IP(i, g). The

output ports of OM (j) are denoted as OP(j, h). Each IP(i, g) has N = n x k VOQs to

avoid head-of-line (HOL) blocking. A VOQ(i, g, j, h) stores cells going from I P(i, g) to

OP(j, h).

Figure 5.2 Shows the proposed two-stage Clos-network switch, which uses the same

notation of the three-stage switch. However, since the third stage is removed, the OMs are

not used. This architecture is called two-stage Clos-network switch as it can be derived

from the original three-stage Clos-network.

5.3 Weight-Based Module-First Matching (WMoM) Scheme

This section describes MoM with a weight-based selection scheme as an example. Other

selection schemes can be used by following the described process. The MoM scheme

uses two classes of schedulers for matching: the module matching scheduler, SM , which

determines the matched IM(i)-OM(j) pairs, and the port matching scheduler, Sp. which
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Figure 5.1 The three-stage input-queued Clos-network switch architecture.

Figure 5.2 The two-stage input-queued Clos-network switch architecture.
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determines the matched VOQ(i, g, j, h)-OP(j, h) pairs after the IM-OM pairs are defined.

Weight-based MoM (WMoM) uses longest queue-occupancy first as the selection policy,

which is similar to the iLQF algorithm 113] for single-stage switches. However, WMoM

considers the occupancy of all ports in an IM for module matching.

To determine the weights for IW-OM(j) matching, the IQC switch uses a VOQ

module counter (VMC) to store the number of cells in IM (i) going to OM ( j). A VMC

is denoted as VMC (i, j). The VOQ(i. g, j, h) - OP(j, h) matching is performed after

module matching. Each of the matching processes follows a request-grant-accept approach.

In the general description WMoM performs IIM-CM  iterations of the complete scheme

(e.g., module matching is executed 

I

IM-CM  times, where

I

IM-CM  ≥  1), and q iterations

for module and port matching (e.g., module matching executes q iterations, where 1 < q <

k). The following is the description of WMoM:

First iteration of WMoM (

I

IM-CM )

Part 1: Module matching: first iteration

Step 1 (request). Each VMC whose count is larger than zero sends a request to the destined

output module arbiter at the SM . Requests include the number of cells for an output-

module.

Step 2 (grant). If an unmatched output-module arbiter at the SM  receives any requests, it

chooses the one with the largest occupancy. Ties are broken arbitrarily.

Step 3 (accept). If an unmatched input-module arbiter at the S M  receives one or more

grants, it accepts the one with the largest occupancy. Ties are broken arbitrarily,

qth iteration of module matching

Step 1: Each unmatched VMC sends a request to all unmatched output-module arbiters at

the SM , as in the first iteration.

Steps 2 and 3: The same procedure is performed as in the first iteration among unmatched

VMCs and unmatched output-module arbiters,
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Part 2: Port matching

After Part 1 is complete. port matching is performed between those ports of the

matched /Ms and OMs.

First iteration of port matching

Step 1 (Request): Each nonempty VOQ of the matched IM(i) sends a request to each

output arbiter in Sp for the matched. OM (j) for which it has a queued cell, indicating the

number of cells in that VOQ.

Steps 2 (grant) and 3 (accept): The same procedure as in the module matching is performed

for matching nonempty VOQs of a matched I M(i)and. OPs of a matched. OM(j). This

matching is performed by input port arbiters and output port arbiters in Sps. These out-

put and input arbiters select requests and grants, respectively, with the largest occupancy

selection policy. Ties are broken arbitrarily.

qth iteration of port matching

Step 1: All unmatched VOQs in IM(i) at the previous iterations send another request to

corresponding unmatched OPs in the matched OM(j) as in Step I of the first iteration.

Steps 2 and 3: The same procedure is performed as in the first iteration for matching

between unmatched nonempty VOQs and unmatched output ports in the matched IM(i)-

OW) pairs. The cumulative number of matched ports per IM and OM at this time slot are

counted. The number of matched ports is smaller than or equal to n.

For IIM-CM  > 1, the number of matched ports determines the number of central

modules that are used to transfer cells from IM(i) to CM(r) and from CM (r) to OM( j).

The selection of modules is performed by selecting those available CMs with the smaller

index. For IIM-CM  = 1. all CM paths are configured by using the module match result,

which makes all CMs hold the same configuration.
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IIM-CMth iteration of WMoM

Part 1. is performed with those modules that have fewer than n matched ports and

whose unmatched ports are non-empty, and Part 2 is performed with the non-empty un-

matched ports of the modules matched at the current iteration.

5.4 Implementation of MoM

The first objective of MoM is to provide a feasible solution for performing the matching

processes used to configure an IQC switch. A module scheduler with k input and output

arbiters is used based on the observation of IMs and OMs matching. Since k = N/n the

size of the scheduler can be small. The same is the case for the scheduler that performs

matching for the input ports of the matched IM to the output ports of the matched OM,

called port scheduler. This scheduler performs an x n matching, and therefore, it has n

input arbiters and n output arbiters. There is one port scheduler in each IM and there is only

one module scheduler that can be placed in one of the CMs, where IMs' requests would

converge, in a distributed implementation of MoM. Figure 5.1 shows the port and module

arbiters as small circles in IMs and in a CM, respectively. A centralized implementation

can also be considered because of the small size of the schedulers.

A second property of MoM is the reduced number of information exchange between

input ports and the module scheduler, for any number of iterations that the matching pro-

cess performs. The way the information flows through the switch to perform MoM with

IIM-CM = 1 (or in an iteration) is as follows: 1) the inputs send a request to the module

scheduler, 2) the module scheduler performs module matching, and if several iterations are

needed, the module scheduler can perform that without using another requests from the

input ports, 3) the module scheduler sends the grants to port schedulers at IMs, and to CMs

(and OMs) for their configuration, 4) the port schedulers at IMs perform matching with

any number of iterations, and 5) the port schedulers send a grant to the input ports, one

per port. Figure 5.1 shows these steps with dashed arrows as seen by an input port. The
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processes are indicated with numbers over the arrows, and the arrows indicate the direction

that information flows, A bidirectional arrow represents an iterative matching process.

5.5 Performance Evaluation

Three MOM schemes are modeled for simulation: WMoM, MoM with round-robin se-

lection, and MoM with random selection to show the performance of weight-based and

weightless-based schemes. It is considered IIM-CM  = 1 to show the lowest performance

of these MoM schemes, and q = { 1, 8} for a fair comparison of WMoM and the other

two schemes. A 256 x 256 Clos-network switch with n=m=k=16 is considered. The pro-

cedures for the weightless schemes follow the steps described in Section 5.3, except for

the selection policy of ports and modules. The traffic models considered have destinations

with uniform and nonuniform distributions and Bernoulli arrivals. The simulation does not

consider segmentation and re-assembly delays for variable size packets. Simulation results

are obtained with a 95% confidence interval and a standard error not greater than 5%.

Figure 5.3 shows the average cell delay of WMoM under uniform traffic with Bernoulli

arrivals. This figure shows that WMoM, as the other schemes, has low throughput with

q=1. Round-robin delivers the highest throughput with q=1, however, of up to 80%.

When q=8 WMoM delivers close to 100% throughput under this traffic model, as the other

schemes.

In this chapter, WMoM is simulated under four different nonuniform traffic patterns:

unbalanced, Chang's, asymmetric, and diagonal. They were described in other sections.

Figure 5.4 shows the throughput performance of WMoM under unbalanced traffic.

This figure shows that WMoM delivers 40% throughput, while the other schemes deliver

close to 20% throughput (w=0.9) with q=1. When q=8, the throughput of WMoM is close

to 100%, while the others remain low. The use of a large q makes WMoM match a larger

number of VOQs with high occupancy. The throughput of the other schemes decrease as

w increases because they do not consider the VOQ occupancy in their selection policy,



Figure 5.3 WMoM in a n=m=k=16 switch under Bernoulli uniform traffic.
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Figure 5.4 WMoM in a n=ni=k=16 switch under 'Bernoulli unbalanced traffic.
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and once modules are matched, the VOQs with large occupancy wait for the following

opportunity to send a cell.

The simulation measured the throughput of WMoM with q=8, under Chang's, asym-

metric, and diagonal traffic models. WMoM delivers close to 100% throughput under

Chang's traffic, 91 % throughput under asymmetric, and 87% throughput under diagonal.

Furthermore, WMoM was tested with larger r values and it was noted that the switching

performance does not increase significantly under these traffic patterns, making IIM-CM  =

1 sufficient in these cases, and therefore, greatly simplifying the configuration of CMs.

However, for traffic models with a hot spot distribution, an IIM-CM=kmay be necessary.

Also, q=8 is a large number of iterations: however, these are performed in-chip.

5.6 Scalability

Because an IM is only matched to a single OM, then all CMs have the same configuration

at a given time slot. Therefore. the information coming from the module scheduler to all

CMs is the same.

Figure 5.5 shows an example of configurations of a 9 x 9 three-stage Clos-network

switch after the MoM process with a single iteration. All CMs use the same configuration

obtained through module matching. In this example, IM (0) is matched to OU (1), IM (1)

is matched to OM (2), and IM (2) is matched to OM (1). Also, IP(0, 0) is matched to

OP (1, 2), IP (1, 0) is matched to OP(1, 1), and IP (2, 0) is matched to OP(0, 1). Be-

cause port matching involves only those IM-CM pairs, the configuration for such match

can be done at the IMs only. As shown in this examples, OMs would be using always the

same configuration (no reconfiguration, independently of the matching result), and there-

fore switching is not performed by them. Therefore, the three-stage switch used in the

matching process is only a reference, and a two-stage Clos-network switch (whose mod-

ules are indicated by the bold line) suffices.
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Figure 5.5 Example of configuration of the Central Modules. 

The module and port arbiters might have counters to retain the number of cells in an 

input and VOQ, respectively, In this way, a single request can be sent from each input and 

VOQ to the module and port schedulers, respectively. 

The reduction of scheduler sizes by module matching aHows to consider the imple-

mentation of large switches_ The two different strategies are considered: a) with n O~ k = 

IlL, and b) with a more flexible selection of n and 1T! values. Table 5.1 shows an example 

of the component size for switches with n = k = 1T! , Here, the size of the IMs/OMs and 

eMs are denoted by II MI and leM!, respectively. The number of module scheduler is 

always one, and the number of port scheduler is k , and it is denotyd by PS_ The sizes of . ,-
the module and port schedulers are denoted by IMSI and IPSI, respectively_ . . . , 

. . " ," . 
Here, the maximum matching size is 64 to reduce hardware and time complexities is 

considered, Since the implementation issues related to cabling and distribution of a large 

number of c\:ips is out of rre scope of this paper, \h~\ l>\rge quai rities of such elements may 

be acceptable_ 

" . 
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Table 5.1 Example of Scheduler Sizes of Clos-netWork Switches with n = k = m

N n=m=k |IM| = |CM| PSs |IS | |PS|

256 16 16x16 16 16 16

1024 32 32x32 32 32 32

4096 64 64x64 64 64 64

16384 128 128x128 128 128 128

Table 5.2 Example of Scheduler Sizes in a Switch with Flexible Configuration

N n k m MSs PSs |MS | |PS|

256 64 4 4 1 4 4 64

512 64 8 8 1 8 8 64

1024 64 16 16 1 16 16 64

2048 64 32 32 1 32 32 64

4096 64 64 64 1 64 64 64

8192 64 128 128 1 128 128 64

For switches with 77 = k = m, the number of size possibilities is rather reduced, so

it can be considered a more flexible selection of n and m as Table 5.2 shows.

By the two tables above, it is clear that the switch size is limited to 4096 ports with

a matching size of 64 (i.e., 64 x 64 schedulers). A larger number of ports would increase

the size of module schedulers and the CMs, beyond the restricted value in our example.

However, the module matching principle can be applied to nested Clos-network switches,

used to reduce the CM sizes.
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Nested Switches and Recm-sive Module-First Matching 

Nested Clos-network swi!ches can be seen as a recursive application of the Clos·· 

network configuration directly inm any module (e.g., 1M, CM, or OM in a three-stage 

switch, and 1M and CM in a two-stage switch) of a switch. For the sake of simplicity, let's 

cons ider that nesting is applied to eMs, and that OIlly two levels are used (i .e. , a CM has one 

Clos-network configuration within and the modules inside are on ly single-stage switches), 

as Figure 5.6 shows. This figure also shows the order the matching process follows , first the 

module matching of the internal modules in eM (modules with bold lines), then the fM-

OM modules external to the eMs (bold dashed lines), and fina lly the port matching among 

matched 1M-OM pairs (bold dashed ports at IM(k - n - 1) and OM(n - 1). The nested 

two-stage C1os-network switch is inside the large rectangle in th is figure. Therefore, the 

architecture of CMs can use a Clos-network configuration . To apply module-first matching 

to nested C1os-network switches. the module-first matching among the 1M and OMs that arc 

inside a CM of the reference three-stage Clos-network switch are processed, each denoted 

as (',\;fIM and CflifoM • respectively. 

OM f!!J 
r- I--

: I /I X" I : • I • 
.... I--
I : 
c°t!.. (~:.!J.:~ .. 

-I I : 
: I -F 1m. 

OM k-I/-I 

OM (k-I 

}' igure 5.6 Nested Clos-network switei'! for large sca le packel switches. 

" 
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Table 5.3 Scheduler	 of Nested Clos-network Switches

Table 5.3 shows the number hardware on nested Dos-networks using module-first

matching. Here, it can be seen with a restricted scheduler size of 64, the maximum port

count is up to 262,144. In a switch with 160 Gbps ports, module matching would allow to

configure a 40 Ebps (Exabit per second) switch, in three phases.

5.7 Conclusions

A configuration scheme for input-queued Clos-network switches, called MoM, which per-

forms module matching before port matching to reduce the configuration (and matching)

complexity, was proposed. A weight-based MoM scheme, called WMoM, based on the

selection of the longest VOQ occupancy first is used to describe MoM scheme and to show

the obtainable performance.

The scheduler and configuration complexities for large-size switches can be reduced

to O(N1/2 ), where N is the number of ports. This complexity is smaller than any of the
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schemes previously proposed. For example, a 1024 x 1024 match by MoM requires parallel

and independent 32x 32 schedulers while other schemes require 1024x 1024 schedulers.

A two-stage Clos-network switch is proposed for scalable IQ Clos-network packet

switches. The reduction of the original Clos-network switch proposed for circuit switching

was allowed due to the packet switching fashion. This novel two-stage switch uses the

MoM scheme to reduce the configuration complexity of the very scale switches, of up to

Exabit capacity.

The switching performance of several MoM schemes is presented: round-robin,

random, and WMoM in a switch with N=256. The result showed that WMoM delivers

higher performance than the other schemes under uniform and nonuniform traffic models.

WMoM, using longest occupancy-queue first, provides 100% throughput under Bernoulli

uniform traffic, above 99% throughput under unbalanced and Chang's traffic, 91% under

asymmetric traffic, and 87% under diagonal traffic.



CHAPTER 6

SCALABLE AND PRACTICAL SPACE-SPACE-MEMORY CLOS-NETWORK

PACKET SWITCHES

6.1 Introduction

The design of the switch modules for an IQC switch is rather simple, however, the required

configuration process may be complex as output contention and path routing need both

to be resolved for every time slot before the transmission of cells occurs. The previously

configuration schemes to reduce the scheduler size and configuration complexity by group-

ing ports that belong to a module and performing module matching have been proposed in

Chapter 5 [37, 38, 541. These schemes perform module matching first and port matching

thereafter. However, these schemes require more than one iteration in the module matching

process to achieve an acceptable performance. This number of iterations can accumulate

a long processing delay as in each module matching iteration the matching information

(e.g., requests and grants) travels from IMs to CMs and back to IM (for port matching)

in an scheduler implementation that follows a distributed approach. As IMs and CMs are

located in the different places, the exchange of information between arbiters in different

modules requires long resolution delay, which can jeopardize the switch scalability.

In this chapter, the reduction of iterations of information exchange between IMs

and CMs is addressed by proposing a novel three-stage Clos-network switch architecture

that uses buffers in the crossbars of the third-stage modules. This switch is called

space-space-memory (SSM) Clos-network switch. The SSM Clos-network switch can reduce the

complexity of the configuration process as output contention is resolved by the crosspoint

buffers in the output modules. Speedup is not required for the memory in the third-stage

modules of the SSM Clos-network switch [32, 55, 561.

70
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In addition, two weighted configuration algorithms for this SSM Clos-network switch

are proposed. One is the weighted module-first and none-port matching scheme (WMF-

NP) scheme, the other is the weighted central modules' link matching (WCMM) scheme.

The two approaches reduce the configuration complexity and the number of IM-CM it-

erations as more IM-CM iterations produce long resolution delay. As these schemes are

designed for the SSM Clos-networ switch, the two schemes include output arbitrations

over the buffers in the third-stage modules, and have no matching processes between input

and output ports. This is an advantage over the previously proposed weight-based module-

first matching scheme for IQC switches [381. Furthermore, the simulation results show the

high performance of the proposed approaches using weight-based schemes under uniform

and nonuniform traffic.

The remainder of this paper is organized as follows. Section 6.2 presents the switch

architecture used in this chapter. Section 6.3 describes the proposed configuration schemes,

WMF-NP and WCMM, and the examples of WMF-NP and WCMM. Section 6.4 dis-

cusses implementation details. Section 6.5 presents the performance evaluation. Section

6.6 presents the conclusions.

6.2 SSM Clos-Network Switch Architecture

The SSM Cos--network switch is a three-stage switch architecture with crosspoint buffers

in the third-stage modules and virtual output queues (VOQs) at the input ports as shown in

Figure 6.1. The following terminology is used, as in [331: IM(i):(i +1)th input module,

where 0 ≤ i ≤ k - 1, CM (r): (r + 1)th central module, where 0 ≤ r ≤ m -  1, OM(j):

(j + 1)th output module, 0 ≤ 	 k - 1, number of input/output ports in each IM/OM,

k: number of IMs/OMs, m: number of CMs,	 g): (g + l)th input port (IP) atIM(i),

where 0 ≤ g ≤ n - 1, OP(j, h): (h + 1 )th output port (OP) at OM(j), where 0 ≤ g ≤  n- 1 ,

Ll (i, r): (r + 1)th output link at IM (i) that is connected to CM (r ). LC ( r, j ):(j + 1)th

output link that is connected to OM(j), VOQ ( i, g, j. h): virtual output queue at IP(i, g)
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that stores cells destined for OP(j , h ), and ex 8 (g , j , h ): crosspoint buffer at OM(j) that 

stores cells at C M (r) destined to OP(j , iL). Each 1 P(i, g) has N = n x k VOQs to avoid 

head-of-line (HOL) blocking [8]. Each OM (j ) has N = n x k crosspoint buffers. 

6.3 Weighted Module-First and None-Port Matching (WMF-NP) and Central 

Modules' Link Matching (WCMM) Schemes for SSM Clos-Network Switch 

In thi s section , two weight-based matching schemes for the SSM Clos-network switch are 

introduced. One is the weighted module-first and none-port matching (WMF-NP) scheme, 

the other is the weighted central module 's link matching (WCMM) scheme. The WMF-

NP scheme uses a scheduler SM for module matching and arbiters at 1M output-links, CM 

output-links, inputs , and outputs to associate· the.matching processes. WCMM also has al'­

biters as in WMF-NP and uses Tn. eM-link schedulers instead of a module-matching sched­

uler. These two schemes IJse the longest output module queue-occupancy first (LOQF) as 

the selection policy. This scheme is similar to iLQF [13]. however, the selection policy is 

execmed at the output-module leve l. A tl ow control mechanism is used to indicate VOQs 

F 
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about the available room at CXB(g. j, h) (or CXB occupancy) and to determine which

VOQ can be considered for arbitration and for forwarding a cell to it.

6.3.1 WMF-NP Matching Scheme

WMF-NP uses the module-matching first approach [38], using weights assigned by the

occupancy of an input module for an output module. To determine the weight for the

IM(i) -OM(j)matching, a VOQ module counterVMC(i , j)is used to count the number

of cells in IM(i) that are destined to OM(j) (i.e. VMC(i, j) = Σn-1g=0Σn-1h=0|VOQ(i, g, j, h)|),

where VOQ occupancy is denoted as |VOQ|. The matching process follows a request-grant-

accept approach. In general, the switch performs multiple iterations in the matching be-

tween inputs and IM output-link arbiters, and between IM and OM modules. Each Ll (i, r)

has an available/matched flag FLC (i, r) and each Lc (r. j) has an available/matched flag

F (r, j). These flags indicate whether a link (and therefore the configuration of CM(r))

is selected or not. These flags are used to define eligibility of an OM in the module-

matching phase. OM(j) is considered eligible to match IM(i) if at least there is one path

(and LI (i, r 1 ) and LC (r2 , j), where r 1 = r2 ) is available connecting these two modules.

The following is the description of WMF-NP matching scheme:

First iteration of WMF-NP (IIM-CM )

Part 1: Module matching: first iteration

• Step 1. Request. Each VMC whose count is larger than zero sends a request to the

destined and eligible output-module arbiter at the SM . Requests include the number

of cells for an output module as weight.

• Step 2. Grant. If an unmatched output module arbiter at the SA/ receives any re-

quests, it chooses the one with the largest weight. Ties are broken arbitrarily.
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• Step 3. Accept. If an unmatched input module arbiter at the SM  receives one or more

grants, it accepts the one with the largest occupancy. Ties are broken arbitrarily. The

FL/ and F Lc flags of the matched links are set as matched.

qth iteration of module matching

• Step 1. Each unmatched VMC sends a request to all unmatched output-module ar-

biters at the SM , as in the first iteration.

• Steps 2 and 3. The same procedure is performed as in the first iteration among

unmatched VMCs and unmatched output-module arbiters.

Part 2: VOQ selection and Matching within IM

The VOQ selection and the Matching in IM are processed in parallel (or else, VOQ

is selected first and IM matching thereafter). After Part l is complete, each input arbiter

selects a non-empty VOQ for the matched OM(j) by using LQF selection policy. Each L 1

is matched to an input. Step 1. Each input with cells to OM(j) sends a request to all (k)

L (i , r) arbiters. Step 2. Each LI arbiter selects the request of an input whose weight is the

largest and sends a grant to the input. Step 3.Each input accepts one grant.

This matching needs to perform m iterations if LQF is used, among those unmatched

L I and inputs.

//m _cli th iteration of WFM-NP

Perform module matching (Part 1), and VOQ selection and matching within IM (Part

2) with those modules that have one or more unmatched and non-empty input ports and

available paths between unused IM output-link Li (i , r 1 ) and CM output-link Lc (r2 , j), for

instance, r 1 of IM output-link LI (i , r 1 ) is equal to r2 of CM output-link Lc (r2 , j), where

r1 and r2 are the index of CM (i.e., CM(r)).

Figure 6.2 shows an example of the available paths between an unused IM output-

link LI (i, r 1 ) and a CM output-link LC (r . 2 , j) at the IMth iteration in an n = m = k = 3

SSM Clos-network switch. The dark circles represent the IMs and CMs, and the blank
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Figure 6.2 The example of the available paths between unused IM output-link L / and CM
output-link L 1  in a (n=m=k=3) SSM Clos-network switch.

and crossed squares denote available and matched flags FLI (i, r ) of LI and FLC (r, j) of

LC , respectively. This example shows an available path between LI (0, I) and LC (1, 1),

therefore, then IM(0 ) can be matched to OM (1).

Output selection

Output arbiters at each output port in OMs use the LQF policy to select a buffered

cell among non-empty crosspoint buffers to forward a cell to the output port.

6.3.2 WCMM Matching Scheme

The WCMM matching scheme includes two matching phases. In Phase 1, a matching pro-

cess between input arbiters and IM output-link arbiters AEIM (i,r) is performed within the

IM. WCMM employs an iterative matching by using LOQF selection to assign an input

to an IM output link. In Phase 2, WCMM performs an iterative matching between IM

output-link arbiters AICM (r, i), where I indicates the ingress link of CM(r) connected to

LM ( i ), and CM output-link arbiters AECM (r , j), where E indicates that is the egress link

of CM(r) connected to OM (j), within the CM. The selection policy in WCMM is also
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based on LOQF. To determine the weight for I P(i. g) - LI (i , r) matching within the IM and

Li (i, r) - Lc (r, j) matching within the CM, a VOQ module counter VOMC(i, g, j)(i.e.

VOMC(i, g, j)| = Σn-1h=0(VOQ (i g, j, h)|), where the VOQ occupancy is denoted as |VOQ|,

which counts the number of cells in IP(i, g) that are destined to OM(j). Each of the

matching processes follows a request-grant-accept approach. The following is the descrip-

tion of WCMM.

Phase 1: Matching within IM: first iteration

• Step 1. Each inputs selects the non-empty VOMC with the largest occupancy and

sends a request to every output-link LI arbiter AEIM (i, r), where each request indi-

cates the number of cells of the selected VOMC as weight value.

• Step 2. If an output-link arbiter AEIM receives any requests, it chooses a request with

the largest weight. Ties are broken arbitrarily.

• Step 3. If the input arbiter receives any grants, it accepts a grant with the largest

occupancy. Ties are broken arbitrarily.

qth iteration of matching within IM

• Step 1. Each unmatched inputs sends another request to all unmatched output-link

arbiters.

• Step 2 and 3. The same procedure is performed as in the first iteration for matching

between unmatched inputs and unmatched output links.

Phase 2: Matching within CM: first iteration

• Step 1. After Phase 1 is complete, each VOMC(i,g,j) in I P(i, g) matched with

LI (i , r) sends a request to its destined output link LC  arbiter AECM(r, j). Requests

include the number of cells for an output link LC .
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• Step 2. If an LC  arbiter AECM (r , j) receives any requests, it chooses a request with

the largest occupancy. Ties are broken arbitrarily.

• Step 3. If the LI arbiter AICM  (r, i) receives any grants, it accepts a grant with the

largest occupancy. Ties are broken arbitrarily.

qth iteration of matching within CM

• Step 1. Each unmatched VOMC sends another request to all unmatched output-link

arbiters AECM (r, j).

• Step 2 and 3. The same procedure is performed as in the first iteration for matching

between unmatched VOMCs and unmatched output links LC .

Input and output selection

After Phase 1 and 2 are completed, each input arbiter selects a VOQ with largest

occupancy from a matched VOMC and sends a cell to the CXB(g, j,h). Then, an output

arbiter uses the LQF policy to select a buffered cell among non-empty crosspoint buffers to

forward a cell to the output port.

Figure 6.3 shows that L 1 links in group A from different IMs can only be matched to

LC  links at a same CM. This can be resolved by separating groups that perform matched in

parallel. The small circles are denoted as LI and LC  arbiters at CMs.

Figure 6.4 shows an example of the first matching phase in the WCMM scheme.

The VOMC values show the sums of VOQ cells in IP(i. g) that are destined to OM(j).

Each input selects the largest VOMC to send a request to every LI arbiter with VOMC

value. In IM (0), IP(0, 0) and IP (0. 1) select the VOMC(0, 0, 0) and VOMC(0, 1, 1),

respectively, and send a request to LI (0, 0) and LI (0, 1) arbiters with VOMC value of 5 and

6 cells, respectively. In 1M(1), /P(1, 0) select the VOMC(1, 0, 0) and sends a request to

LI (1, 0) and LI (1, 1) arbiters with VOMC value of 3, respectively. The LI and inputs

arbiters select a request or grant by the largest VOMC values among all requests (grants)
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Figure 6.3 The example of matching process of the WCMM scheme in a (n=m=k=3)
SSM Clos-network switch.

Figure 6.4 The example of matching within IM for the WCMM scheme in a (n=m=k=2
SSM Clos-network switch.
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Figure 6.5 The example of matching within CM for the WCMM scheme in a (n=m=k=2)
SSM Clos-network switch.

of each arbiter, as shown by the grant and accept steps. LI (0, 0) selects the request with

VOMC value of 6 from IP (0, 1) over the request with VOMC value of 5 from IP(0, 0), and

LI (1, 0) selects the request with value of 3 from IP (1, 0). In the second iteration, the same

procedure is performed as in the first iteration for matching between unmatched inputs and

unmatched output links. LI (0, 1) is matched with IP (0.0) in the second iteration, as shown

in the accept step, indicated by the dashed line.

After Phase 1 is completed, WCMM performs Phase 2: matching within CM, as

shown in Figure 6.5. In the request step, VOMC(0, 1, 1), VOMC(1, 0, 0), VOMC (1, 0, 1),

VOMC(0, 0, 0), and VOMC(0, 0, 1) send requests to their destined output link output link

LC  arbiter AECM  (r, j), respectively. In the grant step, AECM (0, 1) receives two requests, and

selects AICM (0, 0) because that it has larger VOMC value according LOQF selection policy.

AECM (0, 0), AECM(1. 0), and AECM (1, 1) receive a single request, therefore, the requests are

granted. In accept step, AICM (1, 0) selects AECM (1, 0) by using LOQF policy. AICM (0, 0)

accepts the single grant issued by AECM(0, 1 ). AICM (0, 1) accepts the single grant issued by

AECM (0, 0). After Phase I and 2 are completed, input arbiters select the largest number of

VOQ cells from the matched VOMCs.
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6.4 Implementation of WCMM

Figure 6.1 shows the input, output, L I output-link, and LC  output-link arbiters as small

circle in inputs, OMs, IMs, and CMs, respectively, in a distributed-approach implementa-

tion. The WCMM process is as follows: 1) the input arbiter selects a largest VOM(i, g, j)

and sends a request to each LI output-link arbiter, 2) the input and LI output-link arbiters

perform the matching in IMs with q iterations, 3) the LI and LC  output-link arbiters per-

form the matching in CMs with q iteration, and 4) the CM send the grant to IMs and inputs.

Figure shows these numerated steps indicated by dashed-line arrows. The processes are

indicated with a number below the arrows, and the arrows indicate in what direction the

information flows. A bidirectional arrow represents an iterative matching process.

6.5 Performance Evaluation

The performance of the proposed scheme is studied by using computer simulation. The

performance of the WMoM [38] in a bufferless Clos-network switch, and of the WMF-NP

and WCMM in an SSM Clos-network switch are compared. The number of iterations for

module matching, which mean that the information travels between arbiters in IMs and

CMs, is denoted as IIM-CM . Due to the same number of iterations for port matching. the

matching within IM, and the matching within CM, the indication for those iterations in

the following figures is denoted as q. The crosspoint buffer size in OMs is denoted as B.

It is considered a 256 x 256 Clos-network switch with n = m = k = 16 to show the

performances of these schemes. The traffic models considered have Bernoulli arrivals with

destinations with uniform and nonuniform distributions. The simulation does not consider

the segmentation and re-assembly delays for variable size packets. Simulation results are

obtained with a 95% confidence interval, not greater than 5% standard error for the average

cell delay.
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Figure 6.6 Average delay of WMoM, WMF-NP and WCMM schemes (n=m=k=16) and
an OB switch (256 x 256) under Bernoulli uniform traffic.

6.5.1 Uniform Traffic

Figure 6.6 shows the simulation results of 256 x 256 switches with WMoM, WMF-NP,

and WCMM schemes and of an output-buffered (OB) switch, all under uniform traffic with

Bernoulli arrivals. This figure shows that the WCMM and WMF-NP can achieve 100%

throughput with q = 16 and B = 2, as WMoM does, under uniform traffic. The figure also

shows that the average delay performance of WCMM under this traffic is close to that of an

OB switch, and WMF-NP is lower than that of WMoM. The reason for this improvement

is that WCMM and WMF-NP remove port matching to reduce configuration complexity.

6.5.2 Nonuniform Traffic

The WMoM, WMF-NP, and WCMM schemes with multiple iterations are simulated under

two different nonuniform traffic patterns: unbalanced 132] and diagonal [46].

Figure 6.7 shows the throughput performance of WMoM, WMF-NP, and WCMM un-

der unbalanced traffic. This figure shows that the throughput of WMF-NP and of WCMM

is above 99% with q 16 and B = 2 as that of WMoM under the complete range of w.

The high throughput of WMF-NP and WCMM under this traffic model is the product of
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Figure 6.7 Throughput of WMoM, WMF-NP, and WCMM schemes n=m=k=16 switch
tinder unbalanced traffic.

considering the VOQ and CXB occupancy and of providing multiple paths between IMs

and OMs.

The last nonuniform traffic pattern considered here is the diagonal traffic model. Fig-

ure 6.8 shows that WCMM, using a single IM-CM iteration and B = 2, and WMF-NP, us-

ing IIM-CM  = 2 and B = 2, deliver higher throughput than WMoM, using IIM-CM = 16,

under the complete range of x. One of the reasons for this improvement is that WMF-NP

and WCMM schemes for SSM Clos-network switches use the input and output port ar-

biters separately instead of ports matching with multiple iterations, that is, the information

doesn't travel from CM to IM for ports matching.

6.6 Conclusions

In this chapter, a novel SSM Clos-network switch is proposed. The SSM Clos-network

switch uses crosspoint buffers in output modules and the memory used in the crosspoint

buffers needs no speedup. Two configuration schemes for SSM Clos-network switches,

called the weighted module first matching and weighted central modules' link matching,
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Figure 6.8 Throughput of WMoM, WMF-NP and WCMM n=m=k=16 under diagonal
traffic.

WMF-NP and WCMM, respectively, are also proposed. These schemes reduce the config-

uration complexity by removing port matching in both schemes and by WCMM reducing

the number of iterations in the exchange of information between IMs and CMs in WCMM.

Both schemes require small and feasible size schedulers. The reduction of the number of

IM-CM iterations is of major importance in three-stages Clos-network switches as the in-

put modules are located in different physical locations from the central modules in a large

switch to make their implementation feasible.

The switching performance of three schemes is studied: WMoM of a 256 x 256

bufferless Clos-network switch, and WMF-NP and WCMM of a 256 x 256 SSM Clos-

network switch. The results showed that WMF-NP and WCMM provide 100% throughput,

as WMoM does, under Bernoulli uniform traffic and above 99% throughput under unbal-

anced traffic and no memory speedup in the crosspoint buffers at the third-stage modules.

WMF-NP and WCMM use a smaller number of IM-CM iterations than WMoM to deliver

higher performance under diagonal traffic.
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CONCLUSION

High-speed and large-capacity switches are in demand because of the speedy growth of

the Internet. In this dissertation, a new efficient, implementable, and low complexity

schemes for single-stage IQ switches were proposed. These schemes, called uFORM and

uFPIM, are examples of weightless-based matching schemes, that offer a solution for low-

complexity and fast matching for IQ packet switches, based on a nonblocking crossbar fab-

ric. The matching schemes use a proposed capture-frame concept and are based on round-

robin and random selections, respectively. These schemes provide high throughput under

several admissible traffic patterns, including uniform and those with nonuniform distribu-

tions, without recurring to speedup nor multiple iterations. The throughput improvement

achieved by uFPIM is demonstrated. Furthermore, the proposed captured-frame concept is

shown to be scalable as the throughput performance increases as the switch size increases.

uFORM and uFPIM can provide high performance for large IQ switches. However,

smaller switches are less sensitive to the unlimited frame-size occupancy values. As an ap-

plication to different switch sizes, a variation of uFORM is developed, this is called FORM.

This scheme, which captures the limited frame-size occupancy values, also provides high

throughput under uniform and unbalanced traffic patterns for small switch sizes with dif-

ferent limited frame-size values. The uFPIM, uFORM, and FORM schemes do not need to

compare the status among those contention VOQs. The hardware and timing complexity

of these schemes is low. This makes them efficient and implementable schemes.

A Clos-network architecture is efficient considered, as switch scalability is required

in high-capacity switches. A solution for dispatching schemes on the MSM Clos-network

switches is presented. In this dissertation, the study of the captured-frame concept is ex-

tended into dispatching schemes for MSM Clos-network switches. The framed concur-

84
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rent round-robin dispatching (FCRRD) scheme and the framed random dispatching (FRD)

scheme, both using a single iteration in the matching between first- and second-stage mod-

ules, can achieve higher throughput than those schemes without the captured-frame size

under several nonuniform traffic patterns without placing buffers in the second stage mod-

ules and without expanding the internal bandwidth. The result also showed that FCRRD

use fewer IM iterations than CRRD to keep 100% throughput under uniform traffic. The

reduction of the number of iterations is important in MSM Clos-network switches as the

input modules are located in different physical locations from the central modules in a large

switch and schedulers may be implemented in similar distributed fashion.

To avoid the requirement of memory speedup that MSM switches may have, a novel

configuration scheme for input-queued Clos-network (IQC) switches is proposed: the module-

first matching (MoM) scheme. In a practical scenario, this scheme performs routing first

and port matching thereafter. This approach reduces the scheduler size and the configu-

ration complexity of IQC switches. For example, a 1024 x 1024 match by MoM requires

parallel and independent 32 x 32 schedulers while other schemes require 1024 x 1024 sched-

ulers. The high switching performance of the proposed approach using weight-based and

weightless selection schemes under uniform and nonuniform traffic is presented. A. weight-

based MoM scheme, called WMoM, based on the selection of the longest VOQ occupancy

first is used to provide high throughput under uniform and nonuniform traffic patterns. A

two-stage Clos-network switch and module-first matching (MoM) scheme are proposed. It

is shown that a very large scale switch is built and the configuration complexity of this scale

switch is reduced by employing the two-stage Clos-network switch and MoM scheme.

The exchange of information between arbiters in different modules produces long

resolution delay. A solution for the resolution delay of three-stage Clos-network switches

is proposed: the Space-Space-Memory (SSM) Clos-network switch, the weighted module-

first and none-port matching (WMF-NP) scheme, and the weighted central modules' link

matching (WCMM) scheme. This SSM Clos-network switch that uses crosspoint buffers
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in the third-stage modules needs no memory speedup. The two configuration schemes

provide high throughput under any admissible traffic patterns and reduce the configuration

complexity for the SSM Clos-network switches.In addition, WCMM reduces the number

of iterations needed in the exchange of information between IM and CM.
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