Copyright Warning \& Restrictions

The copyright law of the United States (Title 17, United States Code) governs the making of photocopies or other reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and archives are authorized to furnish a photocopy or other reproduction. One of these specified conditions is that the photocopy or reproduction is not to be "used for any purpose other than private study, scholarship, or research." If a, user makes a request for, or later uses, a photocopy or reproduction for purposes in excess of "fair use" that user may be liable for copyright infringement,

This institution reserves the right to refuse to accept a copying order if, in its judgment, fulfillment of the order would involve violation of copyright law.

Please Note: The author retains the copyright while the New Jersey Institute of Technology reserves the right to distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select "Pages from: first page \# to: last page \#" on the print dialog screen

The Van Houten library has removed some of the personal information and all signatures from the approval page and biographical sketches of theses and dissertations in order to protect the identity of NJIT graduates and faculty.

ABSTRACT
 RNA GENOME ANNOTATION WITH A FOCUS ON T. BRUCEI

by
Brett Bucci

The goal of this project is to identify untranslated regions (UTRs) and UTR-indicating patterns in the genome of T. brucei. T. brucei is an interesting organism, and as the cause of African sleeping sickness-which infects $300,000-500,000$ people and a significant number of cattle annually-is currently the subject of considerable research. Using existing algorithms, several patterns have been found that may lead to more complete UTR annotations in the T. brucei genome. The most encouraging sequence is the 11-base sequence GAGGG[CG]TGGGG, which appears in five hypothetical genes near the tail. Discovery of several such sequences could guide laboratory experimentation toward more useful results and a better allocation of time and resources.
by
Brett Bucci

A Thesis
Submitted to the Faculty of New Jersey Institute of Technology in Partial Fulfillment of the Requirements for the Degree of Master of Science in Computational Biology

Department of Computer Science

APPROVAL PAGE

RNA GENOME ANNOTATION WITH A FOCUS ON T. BRUCEI

Brett Bucci

Drłason T. L. Wang, Thesis Advisor
Professor of Computer Science, NJIT

Dr. Andrew Sohn, Committee Member
Associate Professor of Computer Science, NJIT

Dr. Dimitrios Theodoratos, Committee Member Date
Associate Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author:	Brett Bucci
Degree:	Master of Science
Date:	January 2008

Undergraduate and Graduate Education:

- Master of Science in Computational Biology, New Jersey Institute of Technology, Newark, NJ, 2008
- Bachelor of Science in Science, Pennsylvania State University, University Park, PA, 2000

Major: Computational Biology

ACKNOWLEDGMENT

I would like to thank Dr. Wang for his patience during my research, as well as his insight into interesting ideas and direction for my work. His willingness to share ideas has helped my studies and has hopefully helped his laboratory as well. I'd also like to thank his doctoral students for helping with questions I had along the way. And of course my committee members, Dr. Sohn and Dr. Theodoratos, deserve thanks for reading and critiquing my work.

My girlfriend, Vicky, deserves a special thank you. She kept me on track when I frequently lost focus. She kept me laughing when I otherwise wasn't in the mood. Vicky, your perseverance on your dissertation was incredible and was inspiration for me to finish a much smaller task. I couldn't ask for anyone better.

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION 1
2 METHODS 2
3 PUTATIVE UTRS 3
4 UTR SEARCH 5
5 DR. GOPAL'S RESEARCH. 10
6 DISCUSSION. 12
APPENDIX A UTR ANNOTATIONS 14
APPENDIX B UTRSCAN OUTPUT FROM NCBI SEQUENCES 18
APPENDIX C UTRSCAN OUTPUT FROM CHROMOSOME II 27
REFERENCES 37

LIST OF FIGURES

Figure Page
3.1 Locations of GAGGG[CG]TGGGG sequence in T. brucei genome 3
4.1 Locations of CACACATACAC sequence in T. brucei genome. 6
4.2 Distribution of 15-LOX-DICE locations on chromosome II 7

CHAPTER 1 INTRODUCTION

The goal of this project is to identify UTRs and UTR-indicating patterns in T. brucei. Current UTR annotations are limited, and are mostly focused on chromosome I. Several algorithms exist to predict UTRs, and many have been predicted by sequence homology and other methods, but without experimental evidence functionality cannot be verified. One of the aims of this project is to determine the best UTR candidates, and perhaps guide laboratory experimentation toward more useful results. One of the sequences found to recur in putative UTR regions also seems to be present toward the end of several hypothetical proteins, and may be a good indication of where to direct laboratory resources.

CHAPTER 2

METHODS

The two main sources of annotated UTR sequences were GeneDB [1] and NCBI [5]. To find UTRs in NCBI, the author performed the following steps. This search will produce approximately 34 results.

1. Enter trypanosoma brucei in the search field
2. Select Organisms on the Limits tab and click Go
3. Enter $5^{\prime} U T R$ in the search field
4. Click on the Limits tab and change to All Fields
5. Click History
6. Click the numbered link next to Search trypanosoma brucei Field: Organism
7. Click AND in the pop-up menu, and then click Go

To find UTRs in GeneDB, the following will yield about 15 results.

1. Select T. brucei from the Protozoa menu on the right
2. Enter UTR under Full Content Search, and then click the Full Content Search button

CHAPTER 3

PUTATIVE UTRS

The sequences in Appendix A have been annotated as UTRs by either GeneDB or NCBI. Where possible, some subsequent sequence information has been provided. The key to the annotations is as follows:

The bold portion of the sequence is what's annotated as a UTR by GeneDB or NCBI. The underlined portion is one of the following highly conserved sequences that appears four times in this data A[AT]AG[CT]AGAGG), or twice GAGGG[CG]TGGGG (see note below).

The sequence GAGGG[CG]TGGGG appears 11 times in the T. brucei genome according to a BLAST search using The T. Brucei Genome Project (8) website:

[^0]Figure 3.1 Locations of GAGGG[CG]TGGGG sequence in T. brucei genome.

The above sequences marked with asterisks $\left(^{*}\right)$ are good candidates for further exploration because the likely UTR indicator appears in the last 20% of the sequence. There are five such sequences. Although the sample is small, this is noticeably more than the statistically expected number of appearances, which is approximately two. It is
important to note that each of these sequences is currently a hypothetical protein, and that laboratory experimentation would be required to confirm functionality. With further UTR information, the five sequences with potential UTR regions might be good targets. This could be a good indicator of 5' UTRs.

CHAPTER 4

UTR SEARCH

To search for coding regions in unannotated sequences, two main tools were used. The first tool, UTRscan [9], was developed by researchers at Istituto di Tecnologie Biomediche in Italy. UTRscan searches for approximately 30 patterns that are believed to indicate 3^{\prime} or 5^{\prime} UTR regions. More information about the patterns, including descriptions and sequence permutations, can be found at UTRsite [10]. These descriptions include functionality, mentions of conservation in other species, references, and historical information.

Another resource, BlastUTR [7], is maintained by the same researchers and looked promising, but has not been functioning properly.

MEME [3], the second tool used to analyze sequences for UTRs, was developed by three researchers at the University of California, San Diego. It searches input sequences for motifs and provides detailed output including locations, regular expressions, and p-values. MEME has the ability to find quite a few motifs depending upon the input parameters. These motifs nearly always have quite a bit of variability in the actual sequence, with only certain sequence locations being fixed. The sequences below show some of the MEME hits with the least variability.

The sequences in Appendix B were obtained from NCBI and run through UTRscan. Each sequence included a UTR in the annotation. The underlined regions are hits from UTRscan. The bold regions are identified as UTRs in the sequence's annotation. The blue italicized regions are motifs found by MEME.

The sequence CACACATACAC (which appeared twice in the UTR of AM168497) appears 24 times in the T. brucei genome according to a BLAST search using The T. Brucei Genome Project website:

```
Tb09.v1.0620 (117 bp) 74-84
*Tb927.1.1320 (231 bp) 11-21
*Tb927.1.3440 (246 bp) 3-13
Tb09.160.3650 (297 bp) 202-212
Tb927.1.4060 (306 bp) 245-255
Tb927.1.4510 (306 bp) 59-69
Tb09.211.2690 (312 bp) 106-116
*Tb927.1.1250 (312 bp) 30-40
Tb927.5.2330 (13254 bp) 3048-3058
Tb927.4.4800 (393 bp) 264-274
Tb09.160.4060 (456 bp) 159-169
Tb09.211.3260 (510 bp) 417-427, 409-419
Tb09.211.4260 (537 bp) 275-285
tmp.1.100 (8300 bp) 3217-3227
Tb09.160.1410 (543 bp) 258-268
Tb927.3.1190 (6984 bp) 6671-6681
*Tb927.6.3210 (678 bp) 35-45
*Tb927.2.4440 (714 bp) 53-63
Tb11.02.4490 (714 bp) 454-464
*Tb927.4.3550 (1029 bp) 5-15
*Tb927.4.4810 (1095 bp) 162-172
Tb927.4.3280 (1233 bp) 566-576
Tb11.01.3740 (2637 bp) 813-823
*Tb11.01.6760 (1788 bp) 19-29
```

Figure 4.1 Locations of CACACATACAC sequence in T. brucei genome.

The above sequences marked with asterisks $\left(^{*}\right)$ are good candidates for further exploration because the likely UTR indicator appears in the first 20% of the sequence. There are eight such sequences. The sample is small as above, but again this is noticeably more than the statistically expected number of appearances, which is approximately five. Since these appear in the front of the sequences, these are more likely to indicate 3 ' UTRs.

To get an idea how common the sequences in UTRsite are (these are the sequences that UTRscan searches for), the author submitted the first 330,000 bases of chromosome II as input into UTRscan. The results are shown in Appendix C.

The most common UTRsite sequence found in this section of Chromsome II was 15-LOX-DICE, with 153 occurrences. The following is a histogram of the 15-LOXDICE locations as output by UTRscan above. Each bucket represents 27,500 bases. Therefore, bucket 1 counted sequence locations 1-27,500, bucket 2 counted locations $27,501-55,000$, etc. The distribution is fairly even, with occurrences an average of 2,170 bases apart in this sample. Submitting each segment of the genome sequentially (in roughly 330,000 base sections, since the limit imposed by UTRscan is 350 kb) could yield more interesting patterns.

Figure 4.2 Distribution of 15-LOX-DICE locations on chromosome II.

The next most common UTRsite sequence was K-Box with 34 occurrences. Since the 15 -LOX-DICE appear to distributed relatively uniformly, the author became curious about how some of the other output sequences line up with respect to these. The locations and distances of the 34 K -Box sequences were compared to the 15-LOX-DICE sequences and an interesting relationship was found.

The K-Box sequences tend to precede the 15-LOX-DICE sequences. In 23 of 34 instances (62%), the nearest $15-$ LOX-DICE sequence was "behind" the K-Box in question. In other words, from the K-Box's starting position, it was usually more likely to find a nearby 15 -LOX-DICE sequence in the forward direction. This could mean that the combination of a K-Box followed closely by a 15-LOX-DICE provides a stronger indication of a potential UTR segment than either sequence alone. The average distance from a K-Box to the next 15-LOX-DICE ahead of it is 1457 bases, while the average distance from a K-Box to the previous 15-LOX-DICE sequence is 6080 bases. Although the sample is small, this is more than a four-fold increase.

To confuse matters, the average forward distance from a K-Box to a 15-LOXDICE is 3,225 bases, while only 2,619 bases in the backward direction. This might suggest that in the 62% of instances in which the forward 15-LOX-DICE is closer the sequences are in some way correlated. Since the average distance between 15-LOXDICE sequences in this sample is 2,170 bases, it would also appear that the K-Box segments are occurring in the larger gaps between 15-LOX-DICE hits. This makes sense probabilistically, since if one assumes a uniform K-Box distribution, longer spans for the K-Box sequences to fall in would yield more hits. Otherwise, the expected average
distance from a K-Box to the nearest 15-LOX-DICE would be about 1,000 bases. The actual average of 1,733 bases is greater, but not alarmingly so.

CHAPTER 5

DR. GOPAL'S RESEARCH

ORBIT [6], one of the tools used here to help predict whether an RNA sequence is coding or non-coding, was developed by Dr. Shuba Gopal, currently at the Rochester Institute of Technology. Dr. Gopal's work has focused on creating an alternative to annotation by sequence homology because organisms that are long since evolutionarily diverged tend to yield many false positive coding regions [2]. T. brucei, for example, are thought to be more than 800 million years diverged from S. cerevisiae, its nearest evolutionary neighbor.

Her paper (An organism-specific method to rank predicted coding regions in Trypanosoma brucei) describes a method that separates coding and non-coding regions based on nucleotide composition. Using standard sequence homology, more than 500 coding regions have been noted on T. brucei chromosome I , yet barely one-fourth of these have assigned functions. The reason so many regions remain unassigned is because there is little evidence for function besides homology, and experimental determinations of function for so many regions is unfeasible. However, if educated guesses could be made as to which regions to look at first (i.e., that were the most likely to be true coding regions), then the effort might be worthwhile. This is what ORBIT attempts to accomplish.

ORBIT identifies differences in nucleotide composition between coding regions and the region immediately upstream. This upstream region is rich in thymine and cytosine; an abundance of these pyrimidines appears to signal a trans-splice site. These
trans-splicing signals are assumed to indicate non-coding regions because it is very unlikely that they will occur in the middle of a coding sequence.

To determine whether or not a region codes for a protein, ORBIT uses linear discriminant analysis (LDA). While LDA may not be as sophisticated as other pattern recognition methods, it was the optimal classifier for this simple coding vs. non-coding decision. Transition probabilities at the dinucleotide level were calculated using maximum likelihood estimation. The codon level, which comprises groups of three nucleotides and has three potential reading frames in each direction, did not provide useful classification information for the coding vs. non-coding decision.

Dr. Gopal's other tool is Motif-er. Motif-er's primary use is for genome visualization. T. brucei chromosomes I and III are currently mapped with coding regions predicted by ORBIT as well as current public annotations. Sequence information can be downloaded along with the coding likelihood score as predicted by ORBIT's LDA classifier.

CHAPTER 6

DISCUSSION

The results are encouraging if not entirely concrete. With a relatively limited data set, enough clues and motifs have emerged to continue searching using similar methods. The motifs found by MEME in the UTR-only data set have yielded clues as to other possible UTRs, as shown by the five hypothetical genes in which the sequence GAGGG[CG]TGGGG appears near the tail.

The small number of UTRs that are currently annotated leaves a lot of room for improvement in this area. The current techniques are a good start, and some more advanced techniques could be a decisive step in better UTR predictions. While ORBIT's use of LDA may be optimal for a two-pattern classifier, more advanced techniques such as Support Vector Machines (SVMs) may be able to better learn the sequences and identify untranslated regions. Another advantage of using SVMs may be that there is more information than just that contained in dinucleotide transitions.

There are several sequences that show Internal Ribosome Entry Sites at their tails. There are also sequences whose annotated UTR does not agree with UTRscan's results. The 330 kb section of chromosome II against which UTRscan was run gives an indication of the tool's sensitivity. In this section of bases UTRscan found 267 hits from the UTRsite list. This amounts to a potential UTR-indicating sequence every 1,236 bases. This might be slightly more than expected, however, each UTR might be composed of several different sequences, and thus this inter-UTR spacing would increase.

The sequence CACACATACAC was found by MEME to appear twice in the same UTR, and may be a promising key to other UTRs. MEME is a very valuable tool, but it will be easier to use without the 60,000 base restriction. Being able to submit an entire chromosome's sequence at a time, for example, will allow motifs that appear farther apart than 60,000 bases to be elucidated. For example, motifs that appear infrequently-perhaps only once every 100,000 bases-could be stronger indicators of UTRs than more common sequences.

If motifs could be generated by MEME and shown graphically on a map of the genome similar to the one used in Motif-er, the location of these motifs could be compared with the predicted coding regions. This could provide very valuable insight.

APPENDIX A

UTR ANNOTATIONS

This appendix contains sequences annotated as UTRs by either GeneDB or NCBI. The bold portion of the sequence is what's annotated as a UTR by GeneDB or NCBI. The underlined portion is one of the following highly conserved sequences that appears four times in this data A[AT]AG[CT]AGAGG), or twice GAGGG[CG]TGGGG (see note below).

Tb927.1.1000 5' UTR
Source: GeneDB
Chromosome 1
289,877 ... 289,892
ORBIT:
-16 bp UTR non-coding (.840)
-1263 bp gene coding (.969)
UTRscan:
-1 IRES in 80 bp sequence centered at UTR
GAATGAAGGTAGTACTATGCGTCGCTTATTGTGTCT...

Tb927.1.700 3' UTR
Source: GeneDB
Chromosome 1
231,710 ... 232,503
ORBIT:
-794 bp UTR non-coding (.999)
-1323 bp gene coding (.963)
ACTTCCAGAAAAAATATATTTCTGCAAAATACTTTTGGAAGTTTGTCTTG TCTTTATAGATGAAGGATTTGTTTCTTTTTTGTGATGTTTTCAAGGTTAAT TAGTTTTGGGGGTTCGTTATCTTAATTATTTTGGTGGGTGGGAGTAAATA AAGCAGAGGTAAATTTTTTGGTGACACAAAAATTGGGAAGCTTCGTGTT CTTACTTGTTCAACTGAAAAATGCCTTTTCAGGAATTCATATTTGGGAGT TATTGTGGTGTAGAAGGACTGAGGAACAGAAGAAAGCAGAGGTTATTTG CCCCTTCATGAGGAAATGTCGATGTAATTAAGTATGAGGGAGGACATGT TGATACTGGGAAATGGACTCTAAAAATGAGAAATAAAGGGAAAGAGAAA GGAAGAGTGATATATATTTATTTTTGGAAAAAAACACCTTTCGTTTGCTT

GCGCTGCTGAGTGGGAGATCATTCTCTGTGTTATATGTCCTTTTTCTAGT GGTTGAGATTGTGTTGTTGTTTTTTCAATTTCTTCTGTGGATGATCTTCC TCGTGAAGAAGACGCAGAAAGCGGGCCACACGGAGTGAATTCATACCTT ACTTAAAATAATATAAAACGTATTAAAATATGTAATTATATATATATATAT TTCCCTTTCTTTTTTAAAAAATCTCTCTTTTGTGCTTCTTGCTTCTCTCAT TTTCTAAACTGGGCAATTAATATGCTCGAAAGTAAATATTGAGGTTATTG AAGAGGGCTGGGGTGTGAATGCTTTTCTTTTT CCTTTGCCTGTGTTACCGGTGGAGCTCTCTTTAA ...

Tb927.1.700 5' UTR
Source: GeneDB
Chromosome 1
233,825 ... 233,904
ORBIT:
-80 bp UTR non-coding (.918)
GTTCAGCTCTTTGGTGATATCAAAGCATAATTGCTGCGGAGATACGTTTT TCCACCTAATAAGTAATTGTGATACAAGATCAAATCGTTTGGACTGTAGG

Tb927.1.710 3' UTR

Source: GeneDB
Chromosome 1
234,043 ... 234,175
ORBIT:
-133 bp UTR non-coding (1.000)
-1263 bp gene coding (.978)
TATTCATCCTGTTACGGGCCTGTTTTATGGAATTGTGTTTTTTAGTCCTTT TTATTTGTTGGTTAGGTATTGGTTCGTACGTGACTATTATTTTTTTTTTAG GATAACATTTATGTTTTTTCTACTCATTTTAATTGGACGAAAAGGAGTAAT

Tb927.1.710 5' UTR
Source: GeneDB
Chromosome 1
235,437 ... 235,552
ORBIT:
-116 bp UTR non-coding (.996)
CAACATACTTGTATTTTTTGTTTCAAAACATTAAAAAATTGTAACAAGGG AGTTTCTTATTTTTTTGAAAAAACTATATATATCGATATATACTTATCTGA TCACAAATCAAATATCAACGTTTTCTCACTTAGCC ...

```
Source: GeneDB
Chromosome 1
862,869 ... 863,029
ORBIT:
-161 bp UTR non-coding (.999)
-1062 bp gene coding (1.000)
TGGAATGGCTCTTTTACCCGCGTAGGTTTTGTTTATTAGTCTATTTATAT ATTTACCTATTCGTTTGTGTATGCAATGGAGTTAGTTTGTAGCAAAGGGG GAAGGAGGGGTGGGGAGGGGAGGTCCCAGAGAGAAAGTGAAGGAAATA GAGGGAAGAAGAGGCTCTCAAACAAGATTTAGT...
```

Tb927.1.720 3' UTR
Source: GeneDB
Chromosome 1
235,665 ... 235,769
ORBIT:
-105 bp UTR non-coding (1.000)
-1530 bp gene coding (.972)
TGTACATCAGGCGAAGGGTTTGTTTTTTTTTTTCTCCTGCCCTATGTTTTT CTGATGTCGTGGGAGTTTTGAATACTTTTAGTATATCGTTTATTATTTGT GAACATTGGATGATAAGGAGTAAT...

```
Tb927.1.720 5' UTR
Source: GeneDB
Chromosome 1
237,298 ... 237,503
ORBIT: non-coding (.785)
GGAACGTGTGTGTGTGTGTGTCATAGAACTGCTTTCCAGCAACGCATCG CACCAGAAAATTAATATACCTTAGTCATTCCATTTCCTATTGCGGGTACA ACGATAACGGTGGTAAAACCGTCGGCGTTTTTTTTTTCTAAGTAATCGAA ACAACGAGAAGTAGCGGGAAGGTCAAGAACAAAAATAAGAAAAACAAGC GGGATCATTCTTTTACTTACTGTTAGTG...
```

DQ826505 3' UTR
Source: NCBI
Chromosome 1
58 bp
ORBIT: non-coding (.996)
ACTAGTTTCTGTACTATATTGTGAGTAGCCAGCTTTGACCAAAATATAAC TGACTGCTATGTATTCGAAAAGCA...

Source: NCBI
Chromosome 1
19 bp
ORBIT: coding (1.000)
AGAAAAGACACGACCAGAAATGGCCAACACATCG...

N45755 5' UTR
Source: NCBI
Chromosome 1
376 bp
ORBIT: non-coding (.999)
TGTNCACCCGCTGTCGNCCGCTCTAGAACTAGTNNTTCCNCTGTGNCTGC AGGNTTTCNGNACGAGGTTGGTCGCCGCGAAGTTATNCCATACAAGGGC
GTTTTTAGGCAGCAAAANCCAAGCAAATAGCAGAGGCAAGGNGCTTCCN CGTAAGTNTAGTTAGTGGAGCGGTTTTCTNATGCNAACAGNCGTNGCTN TCCTGTTGNTNNTTTACAGNGGCAGTNNTTTTNTNGTNCAGTNTTTGGGG GCCATTTNGGANAAATGCCNTTTTACAAATAACNNTGGTAAGTAGCTTGT NTGTNGTGTTTNAGNNNACGTTGCTTCTANNGAANGTTTNNAAATTGGTN AATGTCCCTNNTTTNTTGGTGTTGGGATT

T26740 5' UTR
Source: NCBI
Chromosome 1
249 bp
ORBIT: coding (.942)
TGTACATCCGCGCGCCACTCTATTCAGAGAGCCACGGATAGTAGAGGAG GTGGGAAGGGTATATNAGGGACACGCGTACCATGATGTGGGATGTATTG GGGTCCCTGTCTGTCCTTACGTGACTATGTATGAACCGTNACGTGTAAG ATGAGCTAGTGAGATCAACAGTACAACTCATTAAACACGNCTTCTTCTCG TTAAATGTACACAATCTTGNTCCTCCACCTTTAAAAAAAANAAAAAAAAA AA

APPENDIX B

UTRSCAN OUTPUT FROM NCBI SEQUENCES

The sequences in this appendix were obtained from NCBI and run through UTRscan.
Each sequence included a UTR in the annotation. The underlined regions are hits from
UTRscan. The bold regions are identified as UTRs in the sequence's annotation. The
blue italicized regions are motifs found by MEME.

AJ243568

GTTCCAAGTTTAGGGGGGAACCAGCGGCCTCCAACCGAATGAACCAACCTAT ATCATCCTATATCCTCTGTGCCGCGGCCTCGCTCCAGGCGCTTTACCGCCACA AGAGGAATTCCCTCAATGAGGGTCTCCGCTTGTTCACTTTAGGAAGGCCACA AACCATCCGTTCCCGCAACGGGTGGAGACCCCAGCGTTCCCCAAACGCCGCTT CTCCAACTCCCGAAGAACCATCACCGCTTTTCGGGCGTCACGACTCGCCATCC ACCTCCACATGCATATCAGTCGGTCCAAAATGCGACCCTCCCTTCCCACGCAG AACGACAGCTTTTTTCGCCACATTGGAAGGAAGGTGGACAAAACACCCATCC ACCACACGTGCCTTTTTCCCGTTTCGGTGAAGCCGGTGGGTAAGGAAATTGG GCGCCCAGAAAAGGGCCGTTACGGGAATTGAACCCGTGACCTCCTGCACCCA AAGCAGGAATCATACCACTAGACCAAACGGCCACACCGGCGGGGCACCAGGTC CAACTTATGCACCTATGCTGGAGTAGATTGGAGATAGCGCCGGGTCCCCGAA GCACCGTGGCGCAGGGGAAGCGCGATGGGCTCATAACCCATAGGACGTTGG ATCGAAACCAACCGGTGCTAAGTTTTCACATCCACCCTTTTTTCTCCAAAGGA AAATAAAGGTCGCCGGTTCGCAAAAAGTTGACGAGAGTGGGGTTTGAACCCA CGCCCTCGGAAGGATTGGAACCTTAATCCAACGTCTTAGACCACTCGACCAT CTCGCCACGGGACACCGCTACAGCACAAAACATCGACACACCGCAATGAGC AGATCGTTATCATTTTAAGCACGTCCTGGGAAGAAAACAGCCAGCCGTGGAT TCGAACCCTCGACAGACGAAAAACCACGTGGTATGGAAGCGGCTGAACAAG CAGCGCCAGGCGGCGGTGGTCATGGTGTTTATTGTAACAAAATATTTATTTAA AGTGATGGTTAGTTTTTGTAACAAGTAAGTCAGTGTTGAGCACTGGCTGGCAT CGCCGTCTCGACTTTTACTAGGCGGCGCAGCCGATTAGCGTTTAAACTTTGGG GTGTCGGCGGTTGTTTCCGTCCGGTGTCAATATTTTTTTCGCTTTTCCCACGGA AGGAAAGGTAGCAATTGGGTCCGCTGGAACTCGGCTTCGCGACTGCCTTCTG TGCCAAAGTGGCCAGAGACCCTAATAAGAGACATAAAGTTGAGTCCAGCAAC CGACTGCCGTCGCGCTTCGTCCAACAGCAAACTACGAACAAAATCCCACGGG CGGCGAGCACATTTCTGCTAACTAAGAGTCTGCCCGACAGAAACGAAATAAG ATGCCATAGTCCTTGCCACCTGATACTGGTCACTGGTGAAGCCGCGTCGTCAC CCACGTCGTCCGCTGTACCTGTGACAGCCAATTCATCACTCTCAGGTGCTTCG ACCAGGAGGATCAACATCGATTGTGCATCAGTCCCATGTGGCCGGGAAGCGG

GCTTGTCTGCGATCCGGCTAGCTCTAGTCCAATCGATTTTGTCGGGGGCAAAT TTGGAGTAAAGCATGCTACCTGTTCCAAGGGATGGCCACTCCATACTAACTG CTCCAAAAGAAGGTCCCCATTCAGTTTAGCTTGTCCAGAGGGAGGCAAAAAA TCTCGGCTAGACCCGCGGAGTTAACACGCAACGACCGGGTAATTCATCCCAG CAAATCGGTCAGAGCCGCCATGGCACACTCACCACGGAGCGCTTGTGTTTTC CAGAACTGAGGAAACAACGAGCGTCGCTATTAAGGCGCAGCACTAAACAGC ATCAGTCACGCGCCGCTAAAAGAGCGAGTCCCAGTGGAGAGGTATTAAATAA TTAAAGTAAGGTCTATCGGGTTATGAACAGTTCAGTTGGTTATAATATCCCGG GTGGAATCGGAATATTGAGGTCCTTTACTTTTAACACTGAGCATATATTTGCC GACATGAAAATTGCGGGCGCGTACGCTGGAGGAAAATGCTGCGCTGAAGGG TGCGACTCGGAAGAAGAGAGTACTCAGCCACAGCGGCCAGTATCGAACCAA ATGCAGTGAGGCCACGGCCGGCTGCAAACAGAAAACAGGGTTCCCCATACA ACAAACGGGTGTTCACAGGATTCACAATCCCAAAAATCTAGTACCAAACACT GTCAGCCTTCTCGCATCCACTAAGGATCTAAAATGTAACTTTTACAAGTAAAT ATTTGCAACTAAGAGAATTTTAACGCAGCGGAAATATAGACACAAGACAAAT CCAAATAGCACCTGCACGCATAACCGAAGGTATACAGGAAGATTCCTCCCAT AAATGTACAGCTCGCGCCGATCCAGATAGGCAATTGAAGTACGTATGACCTT CATAATTACCTTTTGCGATTGCATAGAGGCAACAAAGGGGTCTTGGGAAATG AGGATGGAGATGGGATTTAAATGGTACGAGTAGTATAGTCGATTGCGTTGCA CAAAAAATCCGCTAACGCTGCTGCATTTCTCATTTGACTCGACCATTGGGGAG AGTCGTGAAACGCGCGGGTAGTAGGAAGGGGAAAGAGCGTGATACCGGCCG TTTCACCGCCTTGCAAAGGCCCAGTATCTTTTTTAAGGAAAGAAAGTTCGAAG CCGGAAAGCTTGCAGCTGCACCACTCGCTATTCCACCTCCACGCCGTGGTATG CGTCTTGCCTCGCTCTCTGCGGTCGACTGCGAATTATGCACAGGGAACCCAAT ATGTCAGTTATAACACCCACAAAGGGGACCGGGAAGAGGTGGTGAACTTATC GAAGGGTTTATTTGGATCAAGCGAATATCGTCACCTTAGGGAGGCGATTGGG GGCGCAGAAGCTATTGCTTCCACCAACTTATGGGTTTCTATTTTCCGATGGTG CAGGGATTTATAGGGGTGAGTGTGTCTTCCTCGATACTTCGGTCAAACGTTAA AATGTCCTCCAACTGTGGCATCCGTAAATTCGTTACGATCTTCCACCACGGAA GGGGTGACATACAGCCTCCTTCGGGAGTTACCGTTAAAGAGAGAGAAGTGAG TAACACATACGCGGGCTTGTGGCAATCAAGATGCGGATTTTGCTGAAACATG CATTTTTGCAGCCTCAGAAAAAGATCCCAACGATGCACTTTTATGGTATATCC ACCACTCGTCAGTTCCCAGGCCCTCTGCGTGCTTGCTGAAAGGGTGAGGGAG TTGCAAGGGTAATGTTAGAAAATCGCTGCGCGTACTTTCGGCGCGATTTGTCT ATTTACTTTAGCTTTCGATTGGTTAGGACCTCTATTTTCGGGTAAGCAATAAC TCATTTCATTCTTCTCGTAGAAACGGTGGCTACACGAAATTCCAATGTTCCCT TTCCGCGGAAAAGTCGCTTGTACGAGAAACTTGTGAAGCAGACGAGGGCGCC CACTCGTTATGGGGGCATGGGAAAGGGTGGTGGTGAGAAACCATAGGACGC GATCAAATGGCGTTTCTTTTGCCTTTTCCTTTCTCCGAAAAAAAGTGAATACC GGAGAAGGACGTAATGCCGGATAAAATTACATCTCTCGTGGATACGAGGGGA AACTTTCGTTCCCCTACGCAATGCTAAAGATAAATCAGTGGATTGCGAAAAA GGTAACGGCAACTGGTCGATAAATTAGGAATAAAACTAAAACATAATGGCAC TGCACCAAAAATTTTTAGCGTTTTCCTTGCTGTGGTGATGCCAAAAATGGGCG TCGCCTCAACGAATAAAAAAAAAATTGACCGATAAAAAAGTGAAGTTGGCCAC TTTTGAGGGTGGGGGAGGGGGGAGGGACGCTAACCCTCACTTGCACGGCACT ATTCAGAGGTTCCATTCATGTGTGTTTTTAAGTTGTGATAGATTTACAAAGGA

GATGGACATTGACTTGGGAAGTTTTCCGCCGCTCATTAAATTGTGCGGTAGTT GGGAAGAGACGAATGGTTACGAACTGGTTGGATGATTCCTTTTCTCTTCGTGG AGACCCCAGGGCACCTTGCATTTCCTCATGTTCACCACTCCCTCCCTTCTTACG TGTACCAAAGAAAAAGAAGAGGAAAGAGGGGAGCACAAGCAACAAGTACCC TGCCAGTTTTCGCCAACCGAATCTGACTAAGCCACCGGCCCTTTGGTGTCTGC GTTTCCCGCCTCCCCGACGAGCAAAGGCCGTTGTGAAGTGGTGAAAAACGAG GCCACTGGGGGGATCGAACCCCCGACCTCCGTCTTACTAGGACGGCGCTCTG CCATTGAGCTAAGCGGCCACGCATGCCGTTGACCTTCACCGCCTTGTTTGCCT TATTCCTGACAAGGAATCGAAAAGAGGGCCCAGCCGGGAATTGAACCCGGG ACCTCTCCCACCCTAAGGGAGAATCATGCCACTAGACCACTGGGCCGCGGGAA CACCCCAATTTTTATTTTTCTTTTCTACTTTTAGAACGTTCATCCTGTTAGGTG GAAAGGGTCTCTGCATCTCCCTATCCCGATTGGGCCGTACCGCACACTCAGA GCGCTTCGGTGAGCACGTCTCCAGTCCCACTCCACAGGTTGTCTGACCTGCAT CTTCATATATACAGAGAAATAGCAACTTAAATGAAAAAGAAAGCACATCCGC AGGCAGGAAGAGAGGCTGCA

DQ246439

CGCTATTATTAGAACAGTTTCTGTACTATATTGAATCCACTACAAGACAG CAGGCACAAGCTTCGATACCATCCAAATTAACAACAATTATGAGCATCAC TTTTCATAGTTTATGGCTACTTCTGACAGTGTTGTGCACTGCAGGTATTCGTG GTGATCGAGTCTGGTACGATTGTCCAGAAAAAGGTGTGGACACATCGCGGGA CGGCATACAAGCTTTGTGCCGTGCGGCGGAGCAGTTCAGAGGCCTATCACAA ACAGTAACATCTGCTGTGGAAACTTCCGCTACTGCTTCGAGTAAAGCATTTGA AGCAAAGGTACAAGCAGAGGAAGCTGTGGAACTTGCCGAGTCAAAAGGCCT AAACGTTACGAAAGCGAAGGAAGCTGCTGTGAGAGCAACACTCGCTGCTGA AGCTGCGGCTACGGCTGCAAGTAATGTGGAAATTAACGCTGCAAATATTGCT GCGGTGCCGTGGTCACAACCAAGCAGTGATGCAGGTTTACAGAAGCTGGCAC TATGTGAAAACATCGACAAGAGTTTACGACAGTTGGCATCAGAGTGCTCGAA GAGAGCGGAAAACGTGACAGCCCAATCGCTCAGTGAGGCGTTGGAGGGACT AAGAAAACTACGCTACAATGATGTATACGTTAAGGAAATATTAGAGAGAGA AGATGTTGAGTTCCACAAAGAGTTTATGTGGTTGCAGCACCACCTCCGGGAG GCAGTTCATGCACGAAAACAGGCTGAGGATGCAGCTGCCGAGGCGAATGAA ATTGCCGGCACAAATACGGGACCAGTTGGAAGTTCCGTTGCATCACCTGAAG GGTCAGTGCTGCTACTGATGGCTGGACTGTTTCTCAGTTCTCTACTGTAAGAG GTTACAACTCCATGAATTGTGATCCCAGCCATTCCACTTGTCTCCACACA GTTATGTGCACATACAAGTGGGGCAGCAAACATTCTTTCATATTAACCTT ATTTTCTATCAGTGACTATTAATATTGTTATTTTATTTTGTTTCCTTTATA CTTTCACTTTTATTATTCTTTTTTACTTTACTTTTCCTTTTACAATGTTATC TTTCGAACAGTTGTTGTAACTTTTATCCTTCATTTTTATTACTTCTTAACT AGTGTGTCTATTGTCCTACTTTTTTAGCTATATTTTTTCCTTTATTACCTTT GTTATTTCATTATTTTATTCATGTAATGCACTGAGGTGATTGCGTGTAAG CATGGCCACCTATGCGTTACAATAGTGACACTTTTTTAAATCAAAATCTAT CATGTCTACGCATCCATAATGTCCTATTGTATGCGCAAGGCTAACTGATT CTGAGGGTTTTTATTTTATCATGAAAAAA

Abstract

Z15031 TTTCTGTACTATATTGCGTCCTTTCCCACAACGGTAAACATCTAAGAAATA ATGGCAGAGGAGACATCGTTGGTTGCAGATAAGGTTCCAGAGCCAGCGGTGA TTGATGCCGTCGCAGATGCAATGCCGGACAGCCTCGAAGACGCTCTCCGGAT TGTGTTGATGAAAGCTCGTGAGACGAATGGCCTCATTTGCGGCCTTTCAGAG GTCACACGGGCCTTGGACCGCCGCACGGCTCACCTTTGTGTACTTGCTGATGA TTGCGAGGATGAGGAGTACAAAAAGCTTGTTACTGCTCTCGCCAAACAAAAC AACATTGACCTCGTAAGCATGGACGAGCGCGAGAAACTCGCTCAATGGGCAG GACTCACCAGAATGGCCGCCGACGGTTCGGTACGGAAGACGTTGAAGTGTTC CTGCCTTGCTGTAAGGGATTTTGGCGAGCGCACAAAGGCTCTTGACTACCTTC TGTCGCAACTGCAGTAATGTAGTGAACTGTCGCGGCACCGACATCAGCAC TGGAGTTTGTAGGAGTTTGTGGCACATGAGTGAAGGAGAGAGTACCTCG GGAGTACGAGGGCGGGACTGTCATGTTTGTGTTTGCATTGTTGAGGTGG TGTAGCATGTTGGAGGAAACGTTTTCCTATGTCCTCCATTACAGCTCGTT CCATTTGGACGTTGCCCCTCTTCTGAGCTTATTGATATTTTCGTTGTTTA AACAATGAAATTGATACTCCCCTTTTTCCCTTGTTGAACCCTCGATTCCT CTGTGATTTTGCTCTTCTTACTTGTCTGCCGACCTTTCTCTTTGAGGACG TCGATCTGTGGGAGGGAGACCACTTCTCTCTTAAAATGGTTTACTTTATT ATTTTATTCAGTGATATAAACGAAAAAGAAAACAACAACAACAAAAAAAC CAAAAGCTATCAGGAGTGACAAGGGTCTACGATGCATTACTTCAGTAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Abstract

AM295303 CGATCCCTAGAGTGATTGCACCTTGAGAACTGGTGGCAGCAGAGTTGTG GATTACAATTGGTCTAGTGAAGTGAAAGTCTACCATATTGAGTGAGGGA AGCTTTTACTAAAAGAAAAAAGGCCACGTGATCGACTTGTAATCAACCG CTTTTGACAGGACGCGCGTGCAATAATAAGGGGGTTCGTATTCTTTTTTTG TTTTTTTTTTCACCAGGCAGTCCGTTGGATGCTAGCTCTTACATCACGCCG GTTGCTGCTGCAGCAAACATTTATGCGATGCTGTAAGAGTGTAAACAGTGTG ACCCTTGTTGGCGTCGTTCACGATATTCAGAGCGGCTTTGTATATGAAGATGC CGTCACGCAGTTTACACTAACAACGACGAGCATTGACACGACACATCCAACT CAGGAGGTTGTCGTCGAAAAGGACCACCACACGATCCGCTGCTTCGGCGAGC TCTTCTCAGCGGAAGTGAAACAAAAGGTAAAGGAGGGAAACGTAGTGTGTGT GAATGGGAGGCTTCGTCTTACCCCTCAACTTGAGCCTTCCTGCAACAAACACT TTTACTTTCCATACATTCAGGTTCAGCCACCTCATGGCCAGGTGGCGGTCATC CATGGCGACAGGCGGACGGTTCCCGCGGCAGTGAACCCTGCGGTGGAGGAT ATAAAGTCGGAAAAGGAGGGCGCTGGTGGTGACCAGAGTGGTGTGCCGTCGT AATGCCCTTGTGTTTCCGCAGTGTGAAGGAACTGTGATGGTTTTCTTCCT CACAGATGTGGAGGTTTCGTGAAGTGAATGGATTGGTGGGGAAATCGCT TTCCTCTGCTTTGTTTCGCGCTTCGGCGACCTTCGGTGTGTTTGGAATGC CGGCGTTGTCAACTAAATTAATGGTGTGTGACTTTGTGGTGCTTCGGTTG GTGAGTTTAATCGCAGGTCTCTGTGTTTC

Abstract

AM168497 TTTCTGTACTATATTGGAGGACTAGTATATTCGACCCTCAAGCGCGCAGCA TGCTTTCGTATACAGTGAAGGAGGAAGTAAAGGATGAAAAGCTCCCCGGAGC TAACAACTTCGCTGACGTCGGAGGATCATTGGAGGATGAGGAACCCATGACG CTGTACACGTGCGCGAATTGCACGCGCGTTGTAGCATTATGCCCGTCCTCCCA ACTCATGTGTACGCATTGCGTTCATCGTACGGGTTCCTCTACAGTGTTCTACA AGGTTCGCCAGCAACCCACAACATATGACACTGTTTGATAACACAAAGCCAT TTAGGAGATGGTGCCCTTCCGGTTGATGCCTACATTGCCTCGGTTGTGGC GGCTCCCTGTTGTGCGAGTACGGAAGAGGTGACTGAATTGATTCTCTTT CGCGCACTCCTCCGCGACGAACGCCGTCAGTTGCACACATACACACACAC ATACACAATTCTCTATGCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Abstract

AJ879575 ACAGTTTCTGTACTATATTGTTATGAAATAGGTCCGGCGTGTTGGTACAAT AATGCGTAGGAACAATCGCACACGTTGCACTATTGATGATGTGAATGGAATG CTTGCCAGAAACGCGCAGCTACGCAACGCCTTACAGGAAAGGTACAAGCAGT TGAAAATGCGATATGAACAGCTGGCAGCTCTGAGAGCGGCCCTCTATCCTTC GCGGGGGGTGACTCTGAGGAAACTAGGTGTAAGACAGGAAACTGCTGACGG TGCTGAGGAGGTACGTTTCCTTGACGATTATACAACGGGAGGTGTGGGTAAT CCCCCCTTTCGTGACGCTGGTATTTATTCAGCCAAGAATATTGTATGTTACGC ACCGGTTCCACCTACACGAGACGAGTTGCGATGGAAAGGAGTGACGTTGGCA TTTCCACAGTTGGCATACGTACATTCTTTGGCAATGCTGCCGGAAACAGCGAA CAGTTTTTCTAAAGCTCTCCAGTGGAGTCGAGAAGAAGATAGTGCACTCAGA GAGCAGGTTCACGCCTACAAGGGCGCAAGGTGTGGACCTTCTTTTTGGAAAGC ACTTGGTGCACCCGGTCAATCACGATTCGAAGTGGCGAGTCATTATATTAGGT TGCAGCAGCTTGGACTCATCGAACCGGGGAAAAACGACAAAACGATGATGT GGATCCCAGAGGAACAACGCGATATTGCTTTGCGGGAGGCAGTGTGGCGTCA TTTAGGTGATGAGGGTGGCATTATGGCGGCTTACGTGGAAATTATTAGCGTTG CAGCACGGAAATGTGTGTACCTTTCGGAGGTAACATGTAATGAATCACTTGT GTTCCCTCCGTATGTGTGGGTGAAGCGTACCACCTTCAATTGGCTAACTTCAC TTCTCATACAGAAAGCGAAAGCTCCTCTCGTGCGATGTGAAGGAGAATTTTC AGATGATACACCTTTGTGCATGCACTTTAAGAGTGACATTTCCCTAAAACTTT CTGCAGAAGATATGATGGCGTGTTTGTTGGCTTTCAAGGGTGAGGTGTTCGG AGAGGTGGGTGGACTGCGGTTTATTGAGCGCGCGTTTTTGCCGAAGAATAGG ACCTATGCACTGAAGGCCACAGACTTCATGGCTAAAAGAGAGGGCAAGAAA CATAAACTGGATGAAGAAGTTTGAGGTGCCTGGGGGAGATCAAAAATAAA GGAGCATAGTGCCAAGTAATGTGATTATCATGCACAATATATCACTGTTC CTCACCTTGCGCGCACTCGCATATGAACTTGCTGTTGCGCCATATCTATG TGTGCGTGGGTGTTACTGAGAACCCTCGCTTTCCTTTGCTTGTTTGCCGA TGCTGTTGCTGCTGCGGTTCCTCCTGTCCATTTGTGTGAGTACTGCGTAT AAATTAATGCGTAAATATATACGGCACTGAGGAGTTTGTATGTTTGTCTC TGTAGTTTATCTCNCTGGGACTGAGTGTTTGAAAAAAAAAAAAAAAATAAA AAAAAAAAAAAAAAAAAA

Abstract

L30155 TATTATTAGAACAGTTTCTGTACTATATTGGGTGTCAAACTACTGCCGCA TAAACTACGGTTATCCCAAATTTAAGAGAAAGCAATAAAGCATCAATGTG TGGAAAGGAAGTTGAAGGTGTTGTGAGTCCTGCGGCACAGCAGCAGCCAGCC GTCCCGGAGGTAACAGATATCACGCTGGAGGCCGCCCGCAAGCAGAAAATTC ACAACCTGAAGTTGAAGACCGCCTGCCTTTCGAATGAGGAATATGTCCAGGA CCTGCACGTATCCGAGTGGAGTGAGACGCAGAAGCAGAAGCTGCAGGCTGC ACACGAGAAAGCGCATGAATTGCTTGCCTCAGTGGAGGGTGGGACGAAGTG GAGCCTGACAGAGGCGTATGACATCAAGAAGCTGATGCGCGTCTGTGGTCTT GAGATGTCTGTGCGTGAACTGTACAAGCCGGAGGACAAGCCACAGTTCATGG AGATTGTTGCACTCAAGAAGACAATGAACGAACTGAAGCAACATCACAACA AGACTCGCACGGTGTCTTTCACCGGCATGATCGACAATGCCATCGCCAAACT GGAGAAAATCCAAGACGAACTGCGCCGGTCCCAGCTCGACGCTTCTGAGATG GCGCAAGTTCCTGTGGCTGCACTGAAGAATATTGAGGACACGATGAACGTGG CTGTTGTGCAGACGGCTCTTCTTGGGAACGAGGAGCAGATCAAAGCCCAACT TGCAGCCGTTGAGAAGGCGAACGAAATCCGTAATGTTGCCATTGCCGATGGT GAGATGGCGATTGCTGAGGAACAGTATTACATTAAGGCGCAGCTGTTGGAGC ACCTTGTGGAGCTTGTGGCCGACAAGTTTCGCATCATTGGGCAAACTGAGGA TGAGAATAAGAGCTTCAGTAAGATCCACGAGGTACAGAAGAAGTCATTTCAG GAATCTGCCTCAATCAAGGACGCGAAGCGCCGCCTTAAGCAACACTGCGAGG ACGACCTACGTAACCTTCACGATGCCATCCAGAAAGCTGACTTGGAGGACGC CGAAGCCATGAAACGGTTCGCCACGCAGAAGGAGAAGTCGGAGCGGTTCAT CCACGAGAACCTCGACAAACAGGACGAGGCATGGCGTCGCATTCAGGAACT GGAGCGCGTGTTGCAGCGCCTTGGGACGGAGCGTTTTGAAGAGGTGAAGCGC CGTATTGAGGAGAACGACCGCGAGGAGAAGCGTAAGGTGGAGTACCAACAG TTCCTCGATGTATGTGGCCAGCATAAAAAGCTGCTGGAACTGTCTGTGTACAA CTGCGACCTTGCGCTTCGCTGCATGGGTATGCTGGAGGAGATCGTAGCCGAG GGCTGCAGTGCCGTCAAGTCACGCCATGACAAGACGAACGATGAGTTGTCTG ACCTTCGGCTGCAGGTGCACCAGGAGTACCTGGAGGCATTCCGTCGCCTGTA CAAAACTCTTGGCCAGCTTGTGTACAAGAAAGAAAAGCGCCTGGAGGAGATT GATCGCAACATCCGCACCACACACATTCAACTGGAGTTTGCCATTGAGACCT TTGACCCCAACGCGAAACTACACTCCGATAAGAAGAAAGACCTATACAAACT TCGTGCGCAGGTGGAGGAAGAGTTGGAGATGCTGAAGGACAAGATGGCGCA GGCGTTGGAGATGTTTGGACCTACTGAGGATGCGCTGAACCAGGCTGGTATC GATTTTGTTCACCCTGCTGAGGAGGTTGAGTCCGGCAACATGGATCGCCGCA GCAAGATGGTGGAGTACCGTGCACACCTGGCGAAGGAGGAGGAGGTGAAGA TTGCCGCGGAGCGCGAGGAGCTGAAACGATCTAAGATGCTCCTGAGCCAGCA GTACCGCGGCCGCACGATGCCCGAGATCACTCAGTAGCGCTGCGCTTAAAT GTCTTTCATTATAATCAATGTATAACCTTTATGTAGTATTTCAATCTATGC CGCTGTGTACGTGCACTGCGGTGCCTATCCTTCGGCATTAGAGAGTCAC TGTTTGTGTAGATCGTAGCTGCATGTCTG

Abstract

AY157307 AACGCTATTATTAGAACAGTTTCTGTACTATATTGGCAAGACATACTGGG GGTAATATCAAGGGTGGCACACACTAAGCAGAGGAGGGGACGCCAAAC GAAAAAAGAAAGAAACCTGCACTGACCAAAAAGACTGAACGAAACGAAA TTGAGGCGATTGAGACGCCCCTTTCTGTAAGCGGGGTTTAGTTCATATTC GAACGGAATGGGAGGGTGTACCTCACGTGGGCTCTCAGAAGAGAAACTCGC ATGTTACTCCCACCGTACCGGCAACCTCGTTGATGAGCATCTTTCGACAGGGG CAGTTGAGGCACACGAGCTTCAGCCCTTCTTTTCTTCTCTGCTGGGAGCCATC ACGGACCTTTTGAAGTGCAGCCGGGAGGATGCCGTCGAGTTCCTTGCATGCT CAAGTAGTGCAAACCCACGGGCGGCAGAGTTGTTTACTTCCTTTTGTGCTGCA AATCCGCTGAATCTCATAAAATGGGATGTGAATCACGCGAAGTTCATGATGA TATGGATAAAGTACGACGACGACAACAGCGGGGACATATGCGTTCGTGAATT GAGGAAAATCTTGAAGGGTTTGAGCTTCCCTGAAAGGCTCTCACAAAAGATG ATTGACGAGCTGGAAGCTACAGGGGGGAGGGCAAGCTACAAGTTGATGCAG GGGACATTTATGTCTCTGACAAGACTTAATGAACTGACATATGCAATGCGAA ATGTCGTGGGTCCCGATCGGGACGTGATGACAAAGGCTGAGTTTGTTACCTTC CTGAAGGAAACTCAAGGAGAGGGTGCCGATGGTGAGGAGCTGCACGTATTTC TAGACGCTATTGGCTGTACCGAAGAGCATCCTCTACATTTGGACGCATTCTTA TCATTTCTCAGCGACAGGCGCTTTAACTCCATTGTGAACAACAGAAAGGTGTC TAGTGTTTACCACGATATGACTCGCCCGATATGTGAGTATTTCATCAATTCCT CGCACAATACCTACCTTACGGGTGATCAACTCTTGAGCAAATCTTCCACGGAT ATGTACAAGAGGGTTCTACTGGATGGCTGCCTCTGCGTTGAACTTGATTGTTG GGATGGTCGCAAGGGTCAGCCTGTAGTTTATCATGGTTACACAAGGACTTCC AAGCTTTGGTTCCGGGACTGTATTAGCACGATCAAGAAGTATGCTTTCGTTAA TTCAATATACCCTGTCATTTTGTCGCTTGAGGTTCACACTAGCCTCCGCCAAC AGGATCGAATGGCGGAAATTTTGTGTGAAACGCTCGGAGATATGCTATTCTG CAGTCCTTGGGGTGCTGGTGAACAGACTTCTTTCACGTTCTCGCCGGAAGCGC TAAAGGGAAAAATTCTGCTAAAGAGCAAACGGGCTACTACACCTACCGATGG GGTACAGGTTGATGATGACGACGATGAGGATGAGGAAGCCGATGGTGTGGT GGAAAATTTCGTACCACCTGAAACTGCTCGGCGTTGTCGCGGTGGTGGAAAA ACGAATTCAAGGGGTGCTGAAAAGAAAAAGAAGGTTTCAAAGGTTTCAGAG AAACTATCTCGTCTTATTTCAATCGAATCCATTGGTTATAAGGGTGTTGAGGA TCTAAGTTATCTTGAAACGCGTCAACCATATCACTGCAGCTCTTTTACTGAAG GGAAAGCGGGGAAAATTGCCTCTTCTAACCAGGAGGAGTTTGTTGCCGTCAA TAATCGGTGTTTGAGTCGCATATACCCCACAGGAACTCGCATCGGTAGCAGT AACTTTCATCCTCAAACGTTTTGGAATTGTGGGTGCCAACTAGTTGCACTCAA TTGGCAGAATTACAAGTCATACCAGCTTAGGCTAAATAGGGGGTTCTTCAGC GACAATGGTAACTGCGGCTACCTTCTCAAACCGACTGCTGTGGACATTGCAC GTGCAAGGGGGCCAAAACGGCAGTCACGGTTGCTCACAATAGAAATTATATC AGCTTTCTGTCTTCCCAGGCGGAAAAATGCATCCGGTAGCAGTATTGTGGATT CTCGCGTAGCCGCCTTGATTGAGGGCCCCGGCATGGAGAAAAGCCAACGAAA CACATCTCCCATTCACAATAATGGCTTTCATCCTGTCTGGCGGGGTGAGCGCC TAAACAACGAGTTCTGCTGGAAGGTGTACGAGTGGGAACTGTCCACCCTTGT CATGCAGGTGTATGACGAGGATACCAAAAGCAATAACCTTCTGGGTGAATAT GTTGTGCCATTACGTGCCCTAAAAGAAGGAATTCGCCAGGTCCCCCTTCGAG ACCTCAAAGGATCTATTATACATGGCTCTTTTTTAATGGTTCAAGTATCTTATC

Abstract

AGTAGGAGTTTGAGAATATCGTGTTCTTCAATTGGGTTACAAGTGTGCGT TGCATGTACCCGACTTTATGGCACCATGTTGTGCCATGGTCTTCACAGCG TAGCTCATTTTTACTGATATATATATATATATTTAAACATATATTTTTCTT GACACTGTTATTTTCATTTTTGTTGGCCGTTCTATCGTGCCTTCGGTGAG TATTACACTCATCACGACATCATATATGAACACACCGACGGTGTTGTTTT GTTTTGTTTTTTTTTTGCGTGTGGGTAAAATCACCAGGGGATTCCCAATG TTTCGACCGAGGATAATGTTTCATTCAGTATCTACTTTTCCAATTCATCA CTTCATTTGAGTTTATTTCTTTGTTGTCTCCGCTTACTTTCATGTCCTCAC ACCGTGAGGCAGGATAGGTGAGCTGAACGATTTTTTTTTCCTTTGTGTGT GGTGGTTAGAAGGAAGGAACGTAATATGGTAATTGGGCTTATATGGGTC TGATGCTTCATTTTGTCCTTCCCTTCGCACACGTGCTTCCAGCTACGTGT TCGTATTTCTGTAAATGTAAATTCGTTTCGTAGAACGGATGCCTGTTTCC TCTGCCGATTGTTTCGCTGCTCAAGGGACTGCGGCGGTCGCAGTTAGGT AACTGATTTTCCGTTCCACATCCCTACTTTCTAGTTGATCGAATATACGG AAATTAAGCTACAAAAGATATCGGAAGTCAATGATGGTCCAGACGAAAA AGTGCATCGCCACTTTCCGGGGCCACAGGCAAGATATGTGGGATGGGCAA TAACAAAGAAATTTTCCTCAGCCCCTTTTCCCTTTTCAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAA

254338

CTGTTTCCACATTGTCGTCGGGGGTTGTGTCGCTTCTGTAGACTTTCCATTTTC TATTTGGGGACTCTTTTGAAACCTCTCTGACCATAATTTGCTTTCATTCCTTCT TCTGTTTCGTCTTTTCCAATACTCGATGGCAGCCTCCCTTTCCAGTAGCACAAT GGCAAAGAAGGTCAAGTCGAAGGTGGACACCATCAACACCAAGATCCAACTG GTGATGAAATCCGGCAAATACGTTCTCGGGACGCAGCAGTCACTCAAGACAC TTCGTCAGGGCCGCAGTAAACTCGTTGTCATTTCCGCTAACTGCCCGCCGATC CGCAAGGCGGAGATTGAGTACTACTGCACTTTAAGCAAGACGCCAATTCACC ACTACAGCGGCAACAACCTTGACCTTGGAACGGCATGCGGAAGGCATTTCCG TGCTTGCGTACTTTCCATTACGGATGTTGGTGACTCTGACATCACTTCTGCAT AATCGCAACGGTGTAGGTGTGTGCCGTATGTCCTTACCGAGAGTCGTTCAAGT GATTT

M81386

TACGCAATCAGGCAAACTCATATAAATTGTCCAGTGACCCAAAACAATGA CTGAGCGTCGTGATAACGTTTCCCACGCACCTGATGCCATCGAGGGCCCAAA CGATGGTGCTCACGCCGAGGACACATCACCGGGTTTCTTCTCATTCGAGAATC TTGGTGTGGCGCAGGTACAAGTCGTCGGAGGAACTCTGAACGGATATGTTAT TGGGTATGTTGCTGTGTATTTGCTGCTGTACCTGACGGCAACTGAGTGCAAAT TTACTACGGAGGGTGCATGTGGCGGAGCTAAGATATATGGGTGCAAATGGAG CGGCACGACATGCAAATTCGAGAATCCCAAATGTAGTGAAGGCTCCGATCCT TCCGATTCTTGCAAAAACGAGGTGGCCTACACGTCTGTTTACAGCGGTATCTT TGCCTGCGCCATGATCGTTGGTTCAATGGTTGGGTCGATTATAGCCGGGAAGT GCATCACTACGTTTGGACTGAAGAAATCATTTATCATTGTCTCAATCACTTGT ACTATAGCTTGTGTTGTGGTGCAGGTAGCGATTGAGTACAATAATTACTACGC

ACTGTGCACTGGACGAGTGCTCATAGGTCTCGGCGTTGGTATTTTATGCTCTG TTTGCCCCATGTATGTGAATGAGAACGCACATCCCAAACTCTGCAAGATGGA CGGTGTGTTGTTTCAGGTGTTCACAACACTTGGCATTATGCTTGCCGCGATGC TGGGTCTGATTTTGGACAAAACAGGAGCTAGTAAAGAAGAGGCAAACATGG CTGGGCGGTTACACGTTTTTTCAGCGGTACCGCTTGGATTGTCCGTCGCCATG TTCCTAGTGGGCATGTTCCTCCGCGAAAGCACTGCAACATTTGCCCAAGACG ATGATGGTAAGGCTGATGGCGGAATGGACCCCAACGAGTATGGCTGGGGGCA GATGTTGTGGCCACTGTTCATGGGCGCTGTAACCGCTGGTACGCTGCAGCTGA CTGGGATCAACGCGGTAATGAACTATGCGCCGAAGATTACAGAGAACCTCGG AATGGATCCATCACTTGGCAACTTTCTGGTTATGGCATGGAATTTTGTGACAT CCCTTGTGGCTATTCCACTTGCGTCACGCTTTACGATGCGTCAAATGTTTATC ACCTGTTCCTTTGTTGCGTCATGTATGTGCTTGTTCCTATGTGGAATCCCAGTG TTCCCCGGTGTTGCAGGAAAAGAGGTGAAGAATGGTGTGGCAACTACTGGTA TCGCCCTGTTCATAGCTGCATTTGAGTTTGGTGTTGGGTCGTGCTTCTTCGTGC TTGCACAGGACCTTTTCCCACCATCATTCCGACCTAAGGGCGGTTCGTTTGTT GTCATGATGCAGTTTATCTTTAACATCCTTATTAACCTATTGTATCCCATTACA ACTGAAGCTATATCTGGTGGGCCAACTGCCAACCAGGACAAGGGACAGGCC GTTGCATTCATACTGTTTGGTTTAATTGGCTTGATTTGTTCCGTTCTGCAGTTC TTTTACTTGTATCCATATGATGCCAATCAGGACCATGAGAATGACCATGGTGG TGAGCCTGTGGAACAGAAGACATATCCCGTTGAAGCATCTCCGCGGAACTAA AGCACTGAAGCTTAATTCATCTGGTGAGGTATTGTTTGTCTCGCTCGCAT GACTCATGTGCTGGGGAGGTGTAAAGGGGGGATGGCGACGAAGTTGTTT CTTGCATATTTCTCGCGCATCTGATGAATTAAAAAAAAACGATTATTGCA TAACATGATTATCTGACCACAAAACGTTTTGTAGTTTGAAGGAGGTAATT GGGTAATGTTTTAGAGGTCGTCAATATTAGTGGCGTTAATGAAAACGGA TTTTAAAAATTTACTTCTTTTTGCTGTTTTAATGTTGTCTATATATACTTTTG TTTTTCCATCAAGTCGACTGTGCCTATTATTATCTGCTCGGTTTTGTAGC AGCGGATGGACAGATGGATGAAGTGATATATGAGGGCAGTATGCTGTTA GTGTGTATGTGCACTCTAAAGCTGCTGCTGTGTCGGGATAGTGATTTAC GTAGGGCAGTTGATTTTTCTTTTTTCCTTTTTTTTTGTAATATTATACAAT TGAAGACGTTTCTTAATAGTTTTTTGAAAAAAAAACATTGTGTTGTTTTTT ATTGGTGTACAGGGGACAACTTGTTTTATT

APPENDIX C

UTRSCAN OUTPUT FROM CHROMOSOME II

This appendix shows the results of submitting the first 330,000 bases of chromosome II as input into UTRscan.

Pattern $=$ Histone 3'UTR stem-loop structure

Pattern not found

Pattern $=$ IRE
Pattern not found

Pattern $=$ SECIS -1

Pattern not found

Pattern $=$ SECIS-2

Found 3 matches in 1 sequences
seq :[152066,152127] :GATA ATGTATGGA A TGAA AGTGTGGA AAC
AAGGTTGAGAGAAA TCATGTG TGAG ACTG TATT
seq :[171238,171301] :ATGA CAAAT A TGAT GTTACCAT TTA AAA AATAAGTAGCAATA GTAGTAG GGAG AAAGCTA TTGT seq :[313819,313877] :CGCT GACAACT A TGAT GTTTTAGA AAG
CAGCGGCATGGTCG
GTGAAAC GGAC TAC AGCG
\qquad
Pattern = APP

Pattern not found

Pattern $=\mathrm{CPE}$

Pattern not found

$$
\text { Pattern }=\text { TGE }
$$

Found 3 matches in 1 sequences
seq :[16493,16527] :GTCA ATTGAATATCT CA TTTC TT GTATGTT TTTCT seq :[53295,53331] :CTCA CACTGAGGCCGCA CA TTTC TT TCAATTG TATCT seq :[138215,138251] :CTCA CACTGAGGCTGCA CA TTTC TT CCAATTA TATCT

> Pattern = NANOS_TCE

Pattern not found

$$
\text { Pattern }=15 \text {-LOX-DICE }
$$

Found 153 matches in 1 sequences
seq :[6,21] :CCCTATCGCT CAA ATG
seq :[266,281] :CTCCACCCCT TTC AGG
seq : [2743,2757] :CCCCACCTCG AT ATG
seq :[3062,3078] :CCTTACCCCT CACA ACG
seq :[5563,5581] :CCCTTCCTTC TCCATT AAG
seq :[9871,9889] :CCCTCACTCT GAGTAA ATG
seq :[11047,11060] :CCCCGCCCGT A ACG
seq :[18933,18952] :CCCTTCATCC TCTGCGC ACG
$\mathrm{seq}:[22569,22582]$:CTCTGTCTCT G AGG
seq :[23118,23137] :CCTCGCCCTT CCCCGGG ACG
seq :[23191,23209] :ACCGTCCTCC TTCACT ATG
seq :[24782,24801] :CCCCTTCCCT GCCAGTA AAG
seq :[26891,26907] :CCCTAACTCT GCCA ACG
seq :[32386,32405] :CCCCGTACCC TTCCTAG AAG
seq :[32735,32750] :CCCCACCTCT TCG ACG
seq :[34158,34176] :CCCTTCCTTC TCCATT AAG
seq :[35291,35306] :CACACCCTCC GAG AGG
seq :[37159,37179] :CCCTACCCTTC ACAAAAT AAG
seq : $[37460,37476]$:CCAACCCTCC TGCG AGG
seq :[39542,39560] :CCCTTCCTTC TCCATT AAG
seq :[42814,42833]:TCCCGTCTCC ATTCAAA AAG
seq :[45668,45682] :CCCTATCTCT AC ACG
seq :[45933,45952] :CCTCACCTCC GGCACTC AAG
seq :[46083,46097] :CCGCTCCTCC TA ATG
seq : $[46104,46118]:$ TCCCTCCTCT TT AAG
seq :[47343,47357] :CGCCTCCTCC GA AAG
seq :[48263,48281] :CTCCATCTCT CAGTCC ACG
seq :[48712,48728]:CCCCTTCCTT CAAT AGG
seq :[51793,51807]:CACATCCTCC CT AAG
seq :[52928,52943] :CCCATCCTGT CGT ATG
seq :[54150,54165] :CCCTATCGCT CAA ATG
seq :[54412,54427] :CCCCACCCCT TTC AGG
seq :[56896,56910]:CCCCATCTCG AT ATG
seq :[57215,57231] :CCTTACCCCT CACA ACG
seq :[59739,59757] :CCCTTCCTTC TCCATT AAG
seq :[60892,60907] :CACACCCTCC GAG AGG
seq :[65131,65149] :СССТТССТTC TCCATT AAG
seq :[66259,66274] :CACACCCTCC GAG AGG
seq :[68127,68147] :CCCTACCCTTC ACAAAAT AAG
seq :[68428,68444] :CCAACCCTCC TGCG AGG
seq :[70510,70528] :CCCTTCCTTC TCCATT AAG
seq : [73798,73817] :TCCCGTCTCC ATTCAAA AAG
seq :[76652,76666] :CCTTATCTCT AC ACG
seq :[76917,76936] :CCTCACCTCC GGCACTC AAG
seq :[77088,77102]:TCCCTCCTCT TT AAG
seq :[78327,78341] :CACCTCCTCC GA AAG
seq :[79244,79262] :CTCCATCTCT CAGTCC ACG
seq :[79331,79344] :CCTCATCCTC A AAG
seq :[79693,79709] :CCCCTTCCTT CAAT AGG
seq :[86382,86400]:TCCTATCTCT ACACAG ATG
seq :[86647,86666] :CCTCACCTCC GGCACTC AAG
seq :[86818,86832] :TCCCTCCTCT TT AAG
seq :[88057,88071] :CACCTCCTCC GA AAG
seq :[88980,88998] :CTCCATCTCT CTGTCC ACG
seq :[89432,89448] :CCCCTTCCTT CAAT AGG
seq :[91140,91155] :CACACCCTCC GAG AGG
seq :[92989,93009] :CCCTACCCTTC ACAAAAT AAG
seq :[94052,94068] :CCCCTTCCTT CAAT AGG
seq :[97485,97503] :CCCTATCTCT ACACTG ATG
seq :[99759,99772]:ACCTTCCTCC G AAG
seq :[101976,101994] :CCCTTCCTTC TCCATT AAG
seq :[104542,104556] :CACATCCTCC CT AAG
seq : [108116,108130]:CCCTATCTCT AC ACG
seq :[108381,108400] :CCTCACCTCC GGCACTC AAG
seq :[112664,112682] :CCCTTCCTTC TCCATT AAG
seq :[116949,116967] :CCCTCACTCT GAGTAG ATG
seq $:[118166,118184]:$ CACCGCCCTT GCCAAC ACG
seq :[122748,122761] :CGCTGTCCCC A ACG
seq :[122769,122785] :CCTCACCCCC GCAC AAG
seq :[124499,124512] :CCCCGCCCGT A ACG
seq :[137843,137858] :CCCATCCTGT CGT ATG seq :[139317,139332] :CCCCACCCCT TTC AGG
seq :[141788,141802] :CCCCACCTCG AT ATG seq :[142107,142123] :CCTCGCCCTCC ACA ACG seq :[143895,143912]:CCCCACTCCT CTCTT ATG seq :[144749,144764] :CTCCACCTCT TCG ACG seq :[146166,146184] :CCCTTCCTTC TCCATT AAG
seq :[150463,150481] :CCCTCACTCT GAGTAG ATG
seq :[151680,151698] :CACCACCCTT GCCAAC ATG
seq :[156217,156230]:CGCTGTCCCC A ACG
seq : $[156238,156254]$:CCTCACCCCC GCAC AAG
seq :[157969,157982] :CCCCGCCCGT A ACG
seq :[172656,172671] :CCCTTTCCTCC CG AGG
seq :[173468,173483] :CCCCACCCCT TTC AGG
seq :[175945,175959] :CCCCACCTCG AT ATG
seq :[176660,176673] :CTCTGTCTCT A AGG
seq :[177209,177228] :CCCCGCCCTTC CCCGGG ACG
seq :[177282,177300] :ACCGTCCTCC GTCACT ATG
seq :[178874,178893] :CCCCTTCCCT GCCAGTA AAG
seq :[180982,180998] :CCCTAACTCT GCCA ACG
seq :[186813,186829] :CCCCTTCCTT CAAT AGG
seq :[190228,190242]:TCCTATCTCT AC ACG
seq :[190493,190512] :CCTCACCTCC GGCACTC AAG
seq :[190664,190678] :TCCCTCCTCT TT AAG
seq :[191401,191415] :CCCGGCCTCT GC AGG
seq :[191901,191915] :CGCCTCCTCC GA AAG
seq :[192597,192615] :CTCCTCCTCC GTCCAT ATG
seq :[197810,197823] :ACCTTCCTCC G AAG
seq :[198065,198083] :CCCCACTTCT TTGGCA ATG
seq : $[200000,200018]:$ CCCTTCCTTC TCCATT AAG
seq :[201083,201096] :ACCCACCTCC T AAG
seq :[201099,201114] :CACACCCTCC GAG AGG
seq :[204477,204491] :CTCTTCCTCC TC ACG
seq :[204774,204793] :CCCCTTCCCT GCCAGTA AAG
seq :[206490,206508] :CCCCGTCCACT GCAGT AAG
seq :[206886,206902] :CCCTAACTCT GCCA ACG
seq :[212206,212224] :CTCCATCTCT CAGTCC ACG
seq :[212293,212306] :CCTCATCCTC A AAG
seq :[212655,212671] :CCCCTTCCTT CAAT AGG
seq :[219344,219358]:CCCTATCTCT AC ACG
seq :[219609,219628] :CCTCACCTCC GACAACT ATG
seq :[222123,222142] :CCCCGTACCC TTCCTAG AAG seq : $[223882,223900]$:CCCTTCCTCC TCCATT AAG
seq :[228156,228174] :CCCTCACTCT GAGTAG ATG seq :[229373,229391] :CACCGCCCTT GCCAAC ATG seq :[233949,233965] :CCTCACCCCC GCAC AAG seq :[257254,257268] :CCCCTGCTCT CA ATG seq :[261219,261236] :CCCCATACTT CCCTC ACG seq :[263044,263061] :CCCCCGCTCC GAGTA ACG seq : $[263647,263664]$:CCTCACCCCC ACGCC ACG seq :[266171,266184] :ССТСАТСТСС C ATG seq :[266572,266590] :CCCCGCTCTT TTGATC AAG seq :[268058,268074]:GCTGCCCTCC GTAG AAG seq :[268119,268136] :CCCCCGCTCC CGTCA ACG seq :[271503,271521] :TCCCGCCTCC CCTCTA ATG seq :[273981,274000] :CCCCGTCTCA TCGGGGG AAG seq :[274202,274221] :CCCTGCCCCCT CCACCG AAG seq :[275600,275614] :CCACTCCTCT GA ATG seq :[276178,276194] :CCCCACCTCT AGAA ATG seq : [276779,276796] :CCCATCATCC TCTTA ATG seq :[279558,279575] :CCCCATACTT CCCTC ACG seq :[281383,281400]:CCCCCGCTCC GAGTA ACG seq :[281986,282003] :CCTCACCCCC ACGCC ACG seq :[284508,284521] :CCTCATCTCC C ATG seq :[284909,284927] :CCCCGCTCTT TTGATC AAG seq :[286395,286411]:GCTGCCCTCC GTAG AAG seq: :[286456,286473]:CCCCCGCTCC CGTCA ACG seq :[287840,287858] :CCCCTTCCCT TAACTG AGG $\operatorname{seq}:[289096,289111]$:CCCCACCGCC AGG ATG seq :[299888,299905] :ACCACCCTCC AGAAC ACG seq :[304302,304315] :CCCCCCCCCC G AAG seq :[305119,305132] :CCACATCCTT G AAG seq :[305596,305613] :CGCTATCCCT TGTGG ATG seq : $[309015,309034]$:CCCTCCCTGT GCTATCG AAG seq :[315061,315074] :CCCTAACCCT C ATG seq :[316412,316426] :CCCCATCTGC GC AGG seq : [317728,317747] :CCCCGTCCTG AATTGCC ATG seq : [321022,321040$]$:CCGCACCCCC TTGGGT ATG seq :[322115,322129] :CGCACCCTCC AG ATG seq :[325080,325094] :CACCTCCTCT CA ATG seq :[326850,326865] :CTCCATCCCT TAT AGG seq :[328116,328130] :CACCTCCTCT CA ATG seq :[329943,329959] :TCCTGCCTCC CAAC ATG
-----> Checking repeats for 15-LOX-DICE (min: 2)
Found 0 matches for pattern 15-LOX-DICE

> Pattern = ARE2

Found 0 matches for pattern ARE2
\qquad
Pattern $=$ TOP

Pattern not found
Pattern = GLUT1

Pattern not found

Pattern $=$ TNF

Pattern not found

Pattern $=$ VIMENTIN

Pattern not found

> Pattern = IRES

Pattern not found
\qquad
Pattern $=$ MSL2-5UTR

Pattern not found

Pattern $=$ MSL2-3UTR

Pattern not found

Pattern not found

$$
\text { Pattern }=\text { BRE }
$$

Pattern not found

> Pattern = ADH_DRE

Found 11 matches in 1 sequences

```
seq :[12902,12909] :AAGGCTGA
seq:[85602,85609]:AAGGCTGA
seq:[96691,96698] :AAGGCTGA
seq:[107326,107333] :AAGGCTGA
seq :[123908,123915] :AAGGCTGA
seq:[126344,126351] :AAGGCTGA
seq :[159819,159826] :AAGGCTGA
seq:[218561,218568] :AAGGCTGA
seq :[237528,237535] :AAGGCTGA
seq :[319145,319152] :AAGGCTGA
seq:[320720,320727] :AAGGCTGA
```

 Pattern = BYDV
 Pattern not found

> Pattern = Proneural-Box

Pattern not found

Pattern $=$ K-Box
Found 34 matches in 1 sequences
seq :[7894,7901]:ATGTGATA
seq :[15701,15708]:GTGTGATA
seq :[30753,30760] :CTGTGATA
seq :[41487,41494] :GTGTGATA
seq :[51179,51186] :GTGTGATA
seq :[56646,56653] :GTGTGATA
seq :[72471,72478] :GTGTGATA
seq :[82204,82211] :GTGTGATA
seq :[100710,100717] :ATGTGATA
seq :[103920,103927] :GTGTGATA
seq :[118548,118555] :ATGTGATA
seq :[128291,128298] :GTGTGATA
seq :[141538,141545] :GTGTGATA
seq :[152062,152069] :ATGTGATA
seq :[154474,154481] :CTGTGATT
seq :[158999,159006] :CTGTGATA
seq :[162618,162625] :GTGTGATA
seq :[165402,165409] :CTGTGATA
$\mathrm{seq}:[184835,184842]$:CTGTGATA
seq: [191776,191783] :TTGTGATA
seq :[210685,210692] :CTGTGATA
seq :[214120,214127] :ATGTGATA
seq :[215167,215174] :GTGTGATA
seq :[224794,224801] :ATGTGATA
seq :[229755,229762] :ATGTGATA
seq :[232168,232175] :CTGTGATT
seq : [243103,243110]:CTGTGATA
seq :[259844,259851] :TTGTGATA
seq :[265300,265307] :CTGTGATA
seq :[278192,278199] :TTGTGATA
seq :[283639,283646] :CTGTGATA
seq :[316371,316378]:CTGTGATC
seq :[321231,321238]:CTGTGATT

> Pattern = Brd-Box

Found 16 matches in 1 sequences
seq :[11993,11999] :AGCTTTA
seq :[20307,20313] :AGCTTTA
seq :[121436,121442] :AGCTTTA
seq :[125435,125441] :AGCTTTA
seq :[154951,154957] :AGCTTTA
seq :[158910,158916] :AGCTTTA

seq :[168381,168387] :AGCTTTA
seq :[207973,207979] :AGCTTTA
seq :[232648,232654] :AGCTTTA
seq :[236619,236625] :AGCTTTA
seq :[246732,246738] :AGCTTTA
seq :[256155,256161] :AGCTTTA
seq :[274599,274605] :AGCTTTA
seq :[276022,276028] :AGCTTTA
seq :[276853,276859] :AGCTTTA
seq :[303252,303258] :AGCTTTA

Pattern = GY-Box

Found 11 matches in 1 sequences
seq :[3482,3488] :GTCTTCC
seq :[57635,57641] :GTCTTCC
seq :[64594,64600]:GTCTTCC
seq :[80769,80775] :GTCTTCC
seq :[99110,99116] :GTCTTCC
seq :[99878,99884] :GTCTTCC
seq :[135443,135449] :GTCTTCC
seq :[144077,144083]:GTCTTCC
seq :[221800,221806] :GTCTTCC
seq :[264797,264803]:GTCTTCC
seq :[283136,283142]:GTCTTCC
\qquad
Pattern $=$ Androgen-Receptor
Pattern not found

> Pattern = Elastin G3A

Pattern not found

Pattern = Insulin 3'UTR stability
Pattern not found

Pattern = Beta-actin 3'UTR zipcode

Pattern not found

Pattern $=$ Gap-43 stabilization element

Pattern not found

Pattern $=$ Dendritic localization element

Pattern not found

REFERENCES

1. GeneDB. Retrieved March 24, 2007 from http://www. genedb.org.
2. Gopal, S., Cross, G., and Gaasterland, T. (2003) An organism-specific method to rank predicted coding regions in Trypanosoma brucei. Nucleic Acids Research, Vol. 31, No. 20, pp. 5877-5885.
http://nar.oxfordjournals.org/cgi/content/ful//31/20/5877?ijkey=02Akzed6YFYVI $\& k e y t y p e=r e f$.
3. MEME. Retrieved April 2, 2007 from http://meme.sdsc.edu/meme/meme.html.
4. Motif-er. Retrieved April 8, 2007 from http://xanthos.bioinformatics.rit.edu/~shuba/bin/motif-er.cgi.
5. NCBI. Retrieved April 6, 2007 from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?CMD=search\&DB=nucleotide.
6. ORBIT. Retrieved April 9, 2007 from http://xanthos.bioinformatics.rit.edu/~shuba/bin/orbit.cgi.
7. Pesole, G. and Liuni, S. (1999) Internet resources for the functional analysis of 5' and 3' untranslated regions of eukaryotic mRNA. Trends in Genetics, Vol. 15, No. 9, pg. 378. http://www.ba.itb.cnr.it/BIG/UTRScan/TIGUTR.pdf.
8. The Trypanosoma brucei Genome Project. Retrieved February 16, 2007 from http://www.sanger.ac.uk/Projects/T brucei/.
9. UTRscan. Retrieved April 11,2007 from http://www.ba.itb.cnr.it/BIG/UTRScan/.
10. UTRsite. Retrieved March 24, 2007 from http://bighost.ba.itb.cnr.it/srs6bin/wgetz?-e+[UTRSITE-ID:*].

[^0]: *Tb10.389.1530 (741 bp) positions 621-631
 Tb927.2.2070 (474 bp) positions 132-142
 Tb11.22.0002 (486 bp) positions 264-274
 Tb10.329.0010 (513 bp) positions 281-291
 Tb927.8.3080 (3915 bp) positions 1143-1153
 *Tb927.3.2780 (3309 bp) positions 3146-3156
 *Tb927.3.3050 (3096 bp) positions 2926-2936
 Tb10.05.0160 (1569 bp) positions 528-538
 *Tb927.3.1910 (1776 bp) positions 1738-1748
 $\mathrm{Tb} 11.01 .6770(2172 \mathrm{bp})$ positions 1536-1546
 *Tb11.02.0020 (1941 bp) positions 1719-1729

