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ABSTRACT

PATTERN RECOGNITION OF BRAIN FMRI IMAGES
FOR VARIOUS PHYSIOLOGICAL STATES

by
Priyanka Bhatt

The development of fMRI (functional Magnetic Resonance Imaging) has led many

researchers to localize brain functions using different stimuli. The use of pattern

recognition techniques have made it possible to predict the stimuli being presented from

the corresponding brain images and activation patterns. The primary objective of the

present study was to use pattern recognition methods to develop a model using available

fMRI images and then to use the model to identify the stimulus presented from a large

number of unknown images. Two different experimental conditions were used involving

both binary and multi-class classification. Bilateral finger tapping data which had two

distinct states "Active" and "Rest" were used for binary classification. Binary

classification was done using Learning Vector Quantization (LVQ) and Least Square

Support Vector Machine (LS-SVM). Gas mixture data, which were obtained from rats

while ventilated with different gas mixtures for rest and breath hold task, gave various

physiological conditions. These multi-class data were also classified using LS-SVM

technique. Feature selection was performed on every data to select out patterns made up

of significant voxels using statistical techniques like correlation, paired t-test and

ANOVA. The accuracies for binary classification were between 90% and 100% while the

average accuracy for multi-categorical data was 70%.



PATTERN RECOGNITION OF BRAIN FMRI IMAGES
FOR VARIOUS PHYSIOLOGICAL STATES

by
Priyanka Bhatt

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

January 2008



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL PAGE

PATTERN RECOGNITION OF BRAIN FMRI IMAGES
FOR VARIOUS PHYSIOLOGICAL STATES

Priyanka Bhatt

Dr. Tara Alvarez, Co-Advisor 	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. Bharat Biswal, Co-Adviser 	 Date
Associate Professor of Radiology, UMDNJ

Dr. Richard Foulds, Committee Member 	 Date
Associate Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: 	 Priyanka Bhatt

Degree: 	 Master of Science

Date: 	 January 2008

Undergraduate and Graduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2008

• Bachelor of Engineering in Biomedical and Instrumentation Engineering,
U. V. Patel College of Engineering, Mehsana, Gujarat, 2005

Major: 	 Biomedical Engineering

iv



Kindly dedicated to my loving and caring family and my dear friends

v



ACKNOWLEDGMENT

I would like to convey my deepest gratitude to Dr. Bharat Biswal, who guided me

throughout this research with his valuable time and assistance. I am thankful to Dr. Tara

Alvarez and Dr. Richard Foulds for actively participating in my committee. I am also

thankful to my researcher friends at Advanced Imaging Center, UMDNJ for their

constant support and encouragement.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Overview 	 1

1.2 Objective 	 3

1.3 Background Research 	 4

1.4 Outline 	 5

2 FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING 	 7

2.1 Physics of Nuclear Magnetic Resonance 	 7

2.1.1 Magnetic Properties of the Element 	 7

2.1.2 Important Terms Related to MR signal 	 10

2.1.3 Types of NMR Images According to Image Contrast 	 14

2.2 Geometric Orientation of MR Signal 	 15

2.3 MRI Instrumentation 	 17

2.3.1 Magnet 	 17

2.3.2 RF Coil 	 18

2.3.3 Additional Components 	 19

2.4 Functional Magnetic Resonance Imaging 	 19

2.4.1. The Bold Response 	 20

2.4.2 Experimental Design 	 20

2.4.3 FMRI Artifacts 	 22

3 DATA ANALYSIS 	  23

vii



TABLE OF CONTENTS

Chapter	 Page

3.1 Motion Correction 	 23

3.2 Histogram Study 	 24

3.3 Feature Selection 	 25

3.3.1 Masking 	 26

3.3.2 Correlation 	 26

3.3.3 Paired T-test 	 27

3.3.4 Analysis of Variance 	 28

	

4 PATTERN RECOGNITION TECHNIQUES   29

4.1 Neural Networks 	 30

4.1.1 Perceptron Network 	 32

4.1.2 Learning Vector Quantization Network 	 34

4.2 Least Square — Support Vector Machine 	 35

5 METHODS AND MATERIALS 	 38

5.1 Finger Tapping Data 	 38

5.1.1 Subjects and Data Acquisition 	 38

5.1.2 Pattern Recognition 	 39

5.2 Gas Mixture Data 	 40

5.2.1 Animal study and Data acquisition  	 40

5.2.2 Pattern Recognition 	 41

6 RESULTS 	  43

viii



TABLE OF CONTENTS

Chapter 	 Page

6.1 Results for Finger Tapping Data 	 43

6.1.1 Histogram Study 	 43

6.1.2 Feature Selection 	 44

6.1.3 Pattern Recognition 	 45

6.2 Results for Gas Mixture Data 	 47

6.2.1 Histogram Study 	 47

6.2.2 Feature Selection 	 49

6.2.3 Pattern Recognition 	 50

7 DISCUSSION AND CONCLUSION 	 54

7.1 Discussion 	 54

7.2 Conclusion 	 57

REFERENCES 	  59

ix



LIST OF TABLES

Table Page

4.1 Truth Table for 'AND' function  33

5.1 Ten Different Conditions for Gas Mixture Data 	 41

6.1 Outcomes of Feature Selection Performed on Finger Tapping Data 	 45

6.2 Outcomes of Feature Selection Performed on Gas Mixture Data 	 50

6.3 Classification Results for Rat #1 	 51

2.6 Classification Results for Rat #2 	 52

3.1 Classification Results for Rat #3 	 52

4.1 Classification Results for Rat #4 	 53

x



LIST OF FIGURES

Figure Page

2.1 Spin characteristics with and without applied magnetic field 	 8

2.2 Proton's precession about its axis at angular frequency ω0 	 10

2.3 Ti and T2 relaxation curves 	 12

2.4 TE and TR intervals 	 13

2.5 Longitudinal recovery (Ti relaxation) and Transversal decay (T2 relaxation)
curves for tissues of fat, white matter, gray matter and CSF 	

14

2.6 The sequence of three gradients applied for the localization of 90' RF pulse.. 16

3.1 A reference matrix used for finding correlation coefficient of each voxel
for finger tapping data 	

27

4.1 Biological neuron and simple artificial neuron architecture 	 30

4.2 Two layer neural network with multiple inputs and multiple outputs 	 32

4.3 Plot created for perceptron classification of 'AND' function 	 33

4.4 Classification using piecewise-linear boundary for learning vector
quantization networks 	

34

4.5 Example of binary classification using LS-SVM 	 36

4.6 Example of grid search method to find the values of regularization
parameters 	

37

6.1 Time series of finger tapping data and histogram plotted for this time
series 	

43

6.2 Feature selection performed on masked image of finger tapping data 	 44

6.3 Time-series of fMRI responses for five different gas mixtures 	 47

6.4 Histogram plot for five gas mixtures together  48

xi



CHAPTER 1

INTRODUCTION

1.1 Overview

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive method with high

spatial and temporal resolution to study brain function. The invention of fMRI has

motivated many research laboratories to measure, quantify, and interpret the brain

responses and a number brain functions have been revealed. The Brain has distinct

identified regions for different sensorimotor and cognitive activities like visualizing,

hearing, memorizing etcetera. These localized brain regions have been studied by

"activating" these regions by applying specific known stimulations and outcomes can be

studied to determine normal brain function. Blood oxygenation level dependence

(BOLD) is the most common mechanism currently being used to measure signal changes

in fMRI during brain activation.

Most fMRI studies have thus far been used to detect and quantify change in signal

intensity when a stimulus/task is presented. Eloquent regions of the brain that undergo

changes corresponding to the task are then identified using a number of appropriate

statistical techniques. This mode of methodology and analysis is most commonly used in

fMRI and has opened a large number of research avenues to pursue systems level

neuroscience in both healthy and patient populations. Thus, fMRI has enabled researchers

to non-invasively map different regions of the brain corresponding to specific types of

stimulus. For example, the visual cortex and its associated regions have been mapped

non-invasively on an individual basis and variations have been shown between them.
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Clinically, it is being used for a number of applications including presurgical planning,

language localization as an alternative Wada test and retinotopy mapping of the visual

cortex.

While, the majority of the fMRI experiments are used to detect localize and

quantify changes in signal intensity corresponding to a stimulus, some researchers have

become interested in the inverse problem i.e. predicting the stimulus type by analyzing

one or more fMRI images. Pattern Recognition is a very useful and popular technique in

this field of research. This technique is typically used to categorize the activation maps

from each of the stimulus/task into a unique set of multi-voxel patterns each

corresponding to a specific stimulus/task. The procedure of identifying the stimulus for

the given fMRI brain images is often referred as brain reading.

Currently, there are a large number of methods available to categorize and cluster

information into different classes according to their distinct characteristics. Neural

networks and Support Vector Machines are examples of classification tools. These

techniques typically need some datasets with prior knowledge about their categories.

They create a model (relating the input and output data sets) and train it using these data

sets to classify them as per labels assigned and then use it to determine the class of test

data set. For pattern recognition of fMRI images, fMRI images with known stimuli i.e.

their labels which will be used for training and the output will be the identified stimulus

of an unknown image or a set of images.

For effective classification, feature extraction plays a very important role. It

discards common features present in every image and it selects only those voxels of the

image which show maximum variety of responses to various stimuli. This is typically
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done by selecting an appropriate mask and using statistical techniques including

correlation, t-test, ANOVA and GLM.

In the present study, different algorithms were implemented which can identify

different physiological conditions of the brain using fMRI images. Two different

experiments were performed. In the first, binary classification method was used. In the

second, multi-class classification methods was used. For the first experiment, finger

tapping data was used which had two distinct states, "Activation" and "Rest". In the

second experiment, multi-class classification was done using data obtained from animal

models (rats). The images were acquired under normal breathing and breath hold with

five different gas mixtures.

1.2 Objective

The purpose of the present study was to use fMRI brain images in conjunction with

pattern analysis to predict the input stimulus used. Pattern analysis methods were utilized

to prepare a model which can discriminate different physiological conditions of brain

using fMRI images and identify the category of the unknown image accordingly. The

first experiment was binary classification to categorize the "Active" and "Rest" states of

images for finger tapping data. The second experiment was performed on the multi-

categorical images which were acquired from rats while ventilated with different

mixtures of gases. Normal breathing and breath hold were two tasks which were

performed for each gas mixture and which created different physiological states of the

brain. Various feature selection techniques and classification tools were tested in order to

obtain the highest possible accuracy values.
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1.3 Background Research

Pattern recognition for fMRI images is useful to classify similar looking images

according to distinct activation patterns created by different brain responses. The concept

of pattern recognition using multiple voxels has recently been reviewed by Norman,

Detre and Haxby [1]. They stated that individual voxels contained in the image might not

respond significantly to a particular task but selected group of voxels together would

create a distinct pattern for distinct mental state. The pattern analysis study was very

much dependent on the spatial preciseness of the images and therefore, they limited the

experiments within individual subjects. The multi-voxel pattern analysis was used to find

how well the voxels of particular region respond distinctively for different cognitive

tasks. They also discussed about four basic steps that are required for successful pattern

analysis of fMRI images. The four basic steps included, feature selection, pattern

assembly, training classifiers and testing of classifiers.

Cox and Savoy (2003) used pattern recognition algorithms by dividing a high-

dimensional space into different regions for different labels [2]. They classified the fMRI

patterns created in the visual cortex due to different stationary visual stimuli. These visual

stimuli were the objects covering wide variety of living and non living entities. In their

study, as much as 30% of the brain volume covered by the images was discarded. They

found classification accuracy well above chance, even when experiments were separated

by days or weeks.

In another seminal study, Kamitani and Tong (2005) performed classification of

the fMRI patterns for the perception of different edge orientations [3]. They introduced

the concept called "ensemble feature selectivity" to explain the neural codes for different
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perceptions. The stimuli for their study were finely spaced thin lines which were rotated

at eight different angles to generate eight different orientations. They hypothesized that

every voxel of 3 cubic mm area of visual cortex presents the signal change for different

orientations. While this signal change might have been blurred due to limitations of fMRI

acquisition, still the information taken from all voxels together presented a distinct

pattern for each orientation. They could then identify the patterns using linear classifiers.

The final accuracy was well accepted with only a few cases of misclassification which

happened to be at neighboring orientations. Even when they showed overlapping

orientations and asked subjects to concentrate on one of them, they were able to predict

the attended orientation.

A very challenging job of multi-subject pattern recognition was undertaken and

successfully implemented by Wang, Hutchinson and Mitchell (2003) [4]. For stimulation,

they presented pictures and sentences to thirteen subjects in one study and a mixture of

ambiguous and unambiguous sentences to five subjects in the second study. They used

two different methods to compare the brain images of different subjects which were ROI

mapping (for both experiments) and Talairach coordinates (for second experiment only).

Both methods had some advantages and disadvantages and showed no significant

difference in accuracies for classification for the second study.

1.4 Outline

This thesis document is organized in the following way. The second chapter explains the

fundamentals of magnetic resonance imaging, MRI instrument and concepts of functional

MR imaging. Chapter 3 is about data analysis performed on fMRI brain images using
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motion correction technique, histogram study and feature selection. The pattern

recognition is explained in chapter 4 which includes different classification tools like

neural networks and LS-SVM. Chapter 5 explains data acquisition and methodology for

both experiments. Chapter 6 describes outcomes of data analysis techniques and pattern

recognition. Chapter 7 discusses some important aspects of this study and the conclusion.



CHAPTER 2

FUNDAMENTALS OF MAGNETIC RESONANCE IMAGING

Magnetic Resonance Imaging (MRI) is a modern and popular medical imaging modality.

It has certain advantages over other available imaging tools like x-ray and CT scan as it

does not involve any radiation. It provides very high resolution and better soft tissue

contrast [5]. Functional MRI (fMRI) is the advancement of MRI which not only provides

the view of the brain anatomy but also tracks the neurophysiological changes occurring in

different regions and because of this ability it has become researchers' favorite tool to

study the brain responses to different stimulations. This chapter discusses the basic topics

related to MRI and fMRI including Nuclear Magnetic Resonance (NMR) principle, MR

imaging, MRI instrumentation, BOLD contrast in fMRI, experimental design and fMRI

artifacts.

2.1 Physics of Nuclear Magnetic Resonance

2.1.1 Magnetic Properties of the Element

Nuclear Magnetic Resonance (NMR) is a spectroscopic method to observe the behavior

of any substance when exposed to electromagnetic radiation. Magnetic property of any

matter is determined by the spin of basic particles like protons, electrons and neutrons.

Each particle has a V2 spin either in positive or negative direction. The Nucleus is

comprised of neutrons and protons and has zero net magnetism when protons and

neutrons are equal in number. For imaging of the living tissues by MR signal, some

important isotopes, present in tissue composition, like 1H , 16O , 17O , 19F, 23Na,31P are

7
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taken to consideration [6]. Out of them, `1-1 has the highest magnetic moment, gives larger

signals and it is abundantly present in the tissues. As it has only one charge particle

(proton), the spin of the proton can be considered as the spin of the whole nucleus and

therefore, the proton is the key particle for the medical MR imaging. The protons

according to their spins align in either in the same or in opposite direction of the applied

magnetism.

Figure 2.1 Spin characteristics with and without applied magnetic field. (a) Individual
spins aligned in random directions in absence of magnetic field and hence no net spin. (b)
Spins aligned in either in the same or opposite direction of the applied magnetism and
therefore generating net magnetic moment in the direction of applied magnetic field [7].

In absence of external magnetic field, the particle alignments are in random direction due

to external thermal energy and inhomogeneity and thus the net spin becomes zero (Figure

2.1 (a)). Permanent magnets are the exceptions in this case as they always have more

spins aligned in one particular (either parallel or non parallel) direction. When any object

is placed in the magnetic field, its internal magnetism either opposes or gets attracted (as

shown in Figure 2.1 (b)) to it.
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Depending on the magnetic susceptibility, there are three kinds of magnets:

paramagnetic, diamagnetic, and ferromagnetic. Diamagnetic has weak susceptibility

which causes to oppose the magnetic field. Paramagnetic is opposite of the diamagnetic

which has weak positive attraction forces. Ferromagnetic materials have strong

inclination to the magnetic field and some of them are themselves permanent magnets.

When placed in the magnetic field, protons also experience the torque which

causes precession and makes that proton wobble around the magnetization vector (Figure

2.2). The relationship between precession frequency (coo) and the magnetic field (Bo) is

given by larmor equation (Equation 2.1).

Where, γ  = Gyromagnetic ratio

ω0 = precession frequency

f0= Linear frequency in MHz (=ω0/2π)

Bo = Magnetic strength in T (tesla)

The protons precess in parallel (lower energy level) and antiparallel (higher energy level)

direction canceling out each other and thus the net magnetization vector remains in the

direction of the applied magnetic field. When an RF (Radio Frequency) pulse is give to

these precessing particles, they absorb energy and start precession from lower energy

level to higher energy level. As this disturbed system goes back to equilibrium it releases

the energy in form of an RF pulse which is the MR signal carrying the information about

the state of that particular proton. Under the application of 1 Tesla of magnetic field,

precession frequency of proton ( 1 H) is 42.58 MHz.
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Figure 2.2 Proton's precession about its axis at angular frequency ω 0 .

Conventionally, Bo is applied parallel with the z direction of the spinning proton, as

shown in the Figure 2.2, which is perpendicular to x and y direction. In the absence of RF

pulse, the net magnetization vector (M 0) remains in the z direction which is called

longitudinal magnetization vector (M z). Mxy is the transversal magnetization vector which

is at 90' from Mz [7].

2.1.2 Important Terms Related to MR Signal

Resonance

Resonance occurs when an RF pulse is applied to the precessing protons and its

frequency matches with the precessing frequency. The frequency at which resonance

occurs is called the Larmor frequency. If RF pulse frequency does not match with the

precessing frequency, the resonance does not occur. At resonance, the magnetization

vector M0 flips from Mz  and tries to align with Mxy. When Mo returns back to equilibrium

it releases RF signal which is proportional to the number of protons transferred from

parallel to anti-parallel direction. The flip angle θ can be found using Equation (2.2).
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Where, t = Duration of RF pulse application
B1= Magnetic field of RF pulse

From Equation 2.2, it can be seen that 0 is directly proportional to time t. If the

magnetization vector (M0) is needed to be flipped at 180', the RF pulse should be applied

for double duration than for 90'. Sometimes for faster imaging, smaller angles are chosen

[7].

T2 Relaxation

The application of 90' RF pulse flips M 0 to be aligned with Mxy and when it returns back

to Mz, damped sinusoidal signal is induced by an antenna receiver coil. This damped

signal is also known as free induction decay. The decay manner of signal is due to

intrinsic inhomogeneity of the tissue which causes the loss of coherence of the spins. This

exponential decay can be represented by the below equation.

Where, t = instantaneous time
Mxy (t) = Transverse magnetization at time t

M0 = Transverse magnetization at time t=0
T2 = Decay constant (time elapsed between peak M xy and 37% of peak Mxy)

T2 decay depends on the tissues' molecular properties. T2 decay is shorter for liquid

molecules because motion of the molecules makes the dephasing process faster. It also

depends on the molecular size. The shorter T2 can be expected for larger molecules. T2

can also be decreased by inhomogeneity of the main magnetic field (B 0) and this decay is

known as T2 * [7].
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Figure 2.3 Ti and T2 relaxation curves.

T1 Relaxation

The Ti relaxation is time during which the longitudinal magnetization returns back from

zero (in case of 90' pulse) to maximum amplitude. This time is not the same as T2

relaxation as both terms are independent. In fact, T2 relaxation generally occurs faster

than Ti relaxation. Ti relaxation is also known as spin-lattice relaxation as it depends

upon the spin interaction with the molecular properties. The rephasing of the spins can be

explained using the Equation 2.4.

Where, Mz (t) = Longitudinal magnetization at time t
Ti = Decay constant (time required to reach 63% of maximum Mz)

The T1 relaxation varies with tissue properties. Very small molecules rotate very quickly

and thus they give very less potential of resonant frequencies while large molecules rotate

slowly and do not give any useful resonant frequency [8]. Medium sized molecules like

fat and mucous fluids yield better relaxation and hence exhibit the shortest Ti [7].
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Time of Echo (TE)

The echo signal is generated by giving 180' RF pulse after the initial 90' pulse. The echo

time will be the twice the time kept between 90' pulse and following 180' pulse. The

180' pulse again rephases the spins and generates the echo of the previous decaying

signal. This concept can be well understood from Figure 2.4.

Figure 2.4 TE and TR intervals. The echo signal is generated by giving 180' pulse at
TE/2 time after initial 90' RF pulse. Another 90' pulse is given after TR time which
generates new FID which will be slightly lesser in the amplitude [7].

When 90' pulse is given, it immediately makes the spins rephase and emit the MR signal.

It can be inconvenient to apply RF pulse and receive the MR signal at a single time. The

echo signal is helpful because it generated the replica of the decay signal but adds some

delay after 90' pulse application [7].

Time of repetition (TR)

Time of the repetition is the duration between two 90' RF pulses. The TR is generally set

that the new 90' pulse occurs before complete recovery of Mz and hence the following

MR signals are slightly smaller than the very first FID. The second MR signal and



14

following MR signals will be same in amplitude as tissues become partially saturated

during first RF application and remain so during rest of the scanning [7].

2.1.3 Types of NMR Images According to Image Contrast

T1 and T2 Weighted Image

T1 weighted images can be acquired by adjusting TR and TE values and thus eliminating

the effects of T2. This way, the major contrast of the image is only due to different

individual Ti values of different tissues. To eliminate the effects of T2, TE is kept

relatively short and to enhance T1 characteristics, TR is also kept shorter. For T2

weighted images, the TR and TE are selected such that effects of T2 relaxation can be

enhanced. Generally, TR and TE values are kept longer to get T2 weighted images.

For example, Ti and T2 relaxation curves for fat, white matter gray matter and

cerebral spinal fluid (CSF) are as given in Figure 2.5.

Figure 2.5 Longitudinal recovery (T1 relaxation) and Transversal decay (T2 relaxation)
curves for tissues of fat, white matter, gray matter and CSF. Points denoted by 'A' and
`13' are selected values of TR and TE to get T1 and T2 weighted images, respectively [7].
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From Mz vs. TR graph, it can be seen that at shorter TR (point 'A') these tissues

have greater difference of T1 values and at longer TR (point '13') they have less

discrimination. Therefore, for shorter TR can be selected to enhance contrast due to Ti

and longer TR can be selected to inhibit Ti effects. Same concept can be explained from

Mxy vs. TE graph for effects of T2 relaxation [7].

Proton Density Weighted Image

As the name suggests, in this type of images, the image contrast depends on the number

of spinning protons present in the tissue rather than T1 or T2 characteristics. The TR is

kept longer to eliminate the influence of T1 constants and TE is kept shorter to discard T2

weighting. The image contrast is relatively poor in proton density weighted images.

Tissues with lower proton density like air and bone yield smaller signals and show up as

dark areas in the image while, hydrogenous tissues like fat and CSF yield larger signal

and thus show up as bright regions [7].

2.2 Geometric Orientation of MR Signal

Slice Select Gradient

The slice select gradient (SSG) is used to select the slice of desired thickness and

position. This gradient is provided in the axial direction i.e. z-direction of the subject.

This gradient is given as linearly varying field intensity of RF pulse over finite region.

The bandwidth of the RF pulse can be used to determine the width of the slice. According

to larmor equation, field intensity is proportional to precession frequency and thus by

providing bandwidth of RF pulse, the protons in specific region precess which experience
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the resonance. The narrow bandwidth excites protons of narrow slice and vise versa. The

slice thickness also depends upon the field strength. The higher strength produces a

thinner splice. The slice select gradient determines the specific region to be scanned [7].

Frequency Encode Gradient

Frequency encode gradient (FEG) is applied along the x-direction of the subject. The

gradient is given as changes of precession frequency which is null at center of slice,

higher at the right side and lower on the left side. The positions column by column i.e.

from left to right are differentiated according to linearly varying frequency values [7].

Figure 2.6 The sequence of three gradients applied for the localization of 90" RF pulse
[9].

Slice encode (Gs) is applied at the same time of RF pulse to select the slice. Then applied

is the phase encode (Gφ) to enter phase shift and after turning off the phase encode,

frequency encode (G f) gradient is applied [9].
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Phase Encode Gradient

Phase encode gradient (PEG) determines the y-direction of the image hence helps to

change the signal row by row. This gradient is provided after the application of RF pulse.

The phase gradient changes the frequency of the precessing protons and when it is turned

off the protons return to original precession frequency but with different phases. This

gradient changes the phase at each TR according to desired number of voxels. The phase

shift is null at the center, lagging in negative direction and progressing in the positive

direction [7]. The sequence of these gradients in accordance with 90' RF pulse is shown

Figure 2.6.

2.3 MRI Instrumentation

The simplest MRI instrumentation includes a magnet, RF coil, Gradient coils, consol to

control gradients and pulse sequences and an image construction processor. More

facilities can be added to the instrument as per requirements. The most important part of

this instrument is the magnet which generates magnetic field Bo.

2.3.1 Magnet

The most important criterion in selecting a magnet for resonance imaging system is its

field strength. Normally, for MRI machine, the magnetic field strength ranges from 0.2T

to 3 T. There are basically three types of magnets used in MRI instrument which are

permanent magnet, resistive magnet and superconductive magnet.

Permanent magnets generate magnetism without any external excitation. These

magnets are large and heavy and can not generate higher magnetic strength. They are
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relatively cheap and easy to maintain. The major disadvantage of permanent magnet is

that it can not be turned off in case of emergency.

Resistive magnets are made using core and a current carrying coil wrapped

around it. When the current is passed through coils, magnetism is produced in the core.

They need constant electric supply and can be easily turned off. The heat dissipation is

higher in these magnets and thus they need cooling systems. The main disadvantages are

higher cost and poor uniformity of the field. It generates around 0.1 to 0.3 T of magnetic

field.

Superconducting magnets are most commonly used magnets for MRI. They are

similar to resistive magnets as they also have current carrying coils around a core but

these coils are continuously submerged in coolants (for example, liquid helium) and thus

they reduce the chances of heat dissipation and also alleviate the resistance of the coil.

Due to less resistance, the current increases in the coil and higher magnetic field is

produced using lesser electricity. These magnets are costly due to use of expensive

coolants. They can produce 0.5 to 10 T of nicely uniform magnetic field and thus higher

image quality can be acquired. Superconducting magnets are closed structure and can be

uncomfortable for claustrophobic patients [7].

2.3.2 RF Coil

The functions of RF coils are to generate RF pulses (magnetic field B 1 ) and to receive the

MR signal from the tissues. The magnetic field B1 is generated perpendicular to the main

magnetic field BO. The transmitter and receiver coils can be separated or only one coil

can perform both tasks. These coils should be able to produce the resonance. The
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distance between the coil and the object determines the field strength. If the coil is placed

nearer to the object, it produces stronger field (B1). The type of the coil is decided from

the type of object to be imagined. The SNR (signal to noise ratio) can be a major criterion

in selection of coils [7].

2.3.3 Additional Components

The important additional components are gradient coils, shimming coils, consol, image

construction hardware and software. Gradient coils are placed inside the drum of the

main magnet and they are excited as explained in the section 2.2.1. Shimming coils are

used to adjust the magnetic field BO and to maintain the homogeneity of BO. The consol

contains the controls for gradient coils, RF coils, patient table, etc. The image

construction tools are used to construct the image from received MR signals and to adjust

the image parameters like brightness and contrast [7].

2.4 Functional Magnetic Resonance Imaging (fMRI)

The MRI image is a snap shot of the anatomy of the brain which helps viewing different

regions of brain and their structure. Only a single image can be sufficient for this type of

imaging. The functional MM image helps to observe physiological changes occurring in

different areas of brain over time. It collects many images which are useful to track

changes in reference to the experimental stimulus. The fMRI produces signal changes

according to the BOLD (Blood-Oxygen-Level Dependent) signals received from the

brain as explained in the below section [10].
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2.4.1 The BOLD Response

FMRI is the technique that measures cerebral blood flow, and cerebral blood volume

changes in the brain while performing different various tasks and control conditions. The

increased neural activity following a task/stimulus elevates the need for Oxygen supply,

which results in increased blood flow to the activated region. The cerebral blood flow

contains hemoglobin which has diamagnetic (negative magnetic susceptibility) properties

when oxygenated but has paramagnetic (positive magnetic susceptibility) characteristic

when deoxygenated [10]. The elevated oxygen consumption changes the hemoglobin-

oxygen (HbO2) level and therefore the observed MR signal. This change in MR signal

mechanism is known as BOLD (Blood-Oxygen-Level Dependent) response. Hence, for

different physiological states, images with signal changes occurring in the brain can be

acquired [5].

2.4.2 Experimental Design

The experimental design of fMRI study is the practice of using stimuli in conjunction

with the scanning to acquire satisfying results for the given hypothesis. For most of the

fMRI researches, two kind of experimental designs namely the block design and event-

related design are typically used. Both methods have advantages and disadvantages with

them and ultimately the selection of them depends on the type of the study and the

hypothesis to be tested. For example, block design is appropriate for the finger tapping

experiment as it has two distinct responses for "Task" and "Rest" states while the

experiment involving watching a movie can need event related design as brain response

changes continuously [10].
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Block Design

In block design, the stimuli are presented to the subject for blocks for several seconds.

The brain response is assumed to be similar or constant over a single block. The

transition from one block to other triggers similar fMRI signal changes and the temporal

data can be used to study brain response for each individual block. Many times the task

block is followed by a control (rest) block which helps the MR signal returning to the

baseline. The duration of the task block is an important criterion. Very short block can

limit the subject's fMRI signal response and can also takes some time to be stabilized to

one level. Longer blocks which significantly improves signal detection, can also be

disadvantageous due to motion artifacts and in some cognitive tasks when subject starts

learning and being indifferent to the stimulus. Some tasks like breath holding can be

difficult to last for longer time and that limits the block duration. Block designs can be

created and correlated to the fMRI outputs very easily but might not suitable for some

studies [10] .

Event-Related design

Event-related designs are especially for the short term/constantly changing neural

activities. It is a sequence of many different tasks that take place for shorter durations and

time between two stimuli can be random. This method provides higher flexibility for the

timings of the tasks, and can control for various cognitive process including attention,

learning, and habituation. It is advantageous over block design as it can measure the

response for many stimuli in a single run. Thus, while block design can detect processes,

event related design can detect single events. It can be also helpful to find the pathway of



22

connectivity between different regions of the brain. Sometimes the signal gets distorted

because of motion or respiration and it is very hard to detect whether the signal is

changed due to different task or the artifact [10].

2.4.2 FMRI Artifacts

The main causes of artifacts in fMRI signal are thermal noise, inhomogeneity of the

magnetic field, external noise, head motion, physiological activities like respiration and

pulsatile blood flow and neuronal activates which are not due to the stimulus [30]. The

magnetic inhomogeneity can cause difference in precessing frequencies of the proton and

hence affect the spatial resolution of the image. Signal change due to head motion and

physiological activities are not uncommon and play a major role in spatial and temporal

artifacts. For certain tasks, it becomes very difficult to distinguish between signal changes

due to task and due to motion [10].

In summary, the functional magnetic resonance imaging is a useful imaging

technique which provides not only the picture of the inside of the brain but provides the

information about ongoing process of the different regions of the brain. It involves no

harmful chemicals or radiation and gives better image resolution than PET or CT scan. It

is more expensive compared to other imaging modalities and that is the sole reason that it

is not being used for larger population of the world. The careful experimental design can

give clear representation of the brain response to the particular stimulus. There are few

artifacts in fMRI but they can be minimized with the better design of MR instrument.



CHAPTER 3

DATA ANALYSIS

Data analysis plays a crucial part for all fMRI experiments to prove the underlying

hypothesis to be tested. It also plays an equally critical role in pre-processing and feature

selection prior to pattern recognition. It could be very hard to get accurate classification

results without performing this step. Data Analysis consists of various stages including

motion correction, histogram study and feature selection techniques. Motion correction is

generally the first step to be performed which helped to remove the motion artifacts and

align the corresponding voxels of different images to the same dimensions. Histogram

study was done to find whether images with different physiological conditions were

distinct enough for classification. Feature selection is the most important part which helps

to find the multi-voxel patterns for classification. These stages are explained in detail in

below sections.

3.1 Motion Correction

Motion Correction is a necessary step to be performed on fMRI images prior to any

additional data analysis. The head motion in human subjects is not unusual for a long run

of the experiment. This artifact needs to be corrected because it is assumed that each

voxel in the image had same dimensional location (x-y positions) through entire scanning

and only then voxel to voxel time series comparison is possible. Head motion induced

signal changes also are not due to the stimulus but in many cases may be correlated to the

stimulus. The best strategy for motion artifact is to prevent the motion
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by using cage or some padding to keep the head in stationary position throughout

scanning. Motion was not significant with the rats' data because rats were anesthetized

during the scanning. There are various methods for motion correction but the most

common method is to take one image (usually image at the early time point) as a

reference and all other images will be repositioned according to that image. It is usually

assumed that head does not deform during the scan and is referred to as rigid body

registration [ 1 0] .

In this study, AFNI (Analysis of Functional Neurolmages) software was used

for motion correction of human and rat data sets. It used an arbitrary image from each

time series data sets and registered it with every image in the time series. For this study,

the reference (base) image was set as the fourth time point in this experiment. The

registration algorithm uses a linearized least square algorithm to register all images to the

base image. In addition several options like ' fourier' and other interpolations, 'clipit' to

clip the volume of each image to match with reference image, `zpad' to pad with zeros at

the edges exist in the algorithm [11].

3.2 Histogram Study

The distribution of the signal intensity within a brain image (or within a single voxel over

a period of time) was performed using histogram analysis to find out different intensity

thresholds which helped to differentiate the images of different conditions. It is an

important step especially for gas mixture data to find out whether the images taken while

breathing different gas mixtures were distinct enough to be classified or not. Prior to

plotting the histogram, the time series of the data were observed to determine the level
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change of the signal for different states. The data were then analyzed to see whether all

possible classes were statistically separable from each other using histogram analysis.

Threshold values for signal intensities which may help to discern the images can then be

determined. These threshold values can then be used to find activation in each of the

fMRI images. Consequently, a set of activation maps can be created and compared to

discern different conditions based on intensity values.

3.3 Feature Selection

Feature selection is a very important criterion for classification of fMRI images. For the

specific stimulation given to the subject, only a small fraction (typically less than 100

voxels) of the brain volume gets activated. These activated voxels are very less in number

compared to entire volume of the brain. It is thus difficult to perform pattern recognition

on entire images for these small activations, since the overall effect is diminished. So,

while performing classification, it is necessary to find out only those voxels which react

to the task/stimulation condition.

In this study, feature selection was done in two steps: Masking and statistical

analysis. Masking was done using AFNI software to remove the background voxels from

brain voxels. This was done because a large portion of the fMRI obtained contains voxels

from region surrounding the brain. Specific voxels selection was done in MATLAB using

statistical techniques like correlation (for first study), paired t-test (for second study) and

ANOVA (for both studies).
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3.3.1 Masking

Masking is a useful method to decrease the size of the data by removing the background

voxels (voxels which are not included in the brain) and to focus only on those voxels

which carry the useful information from the brain. The mask was created using AFNI.

There are two possible methods to create the mask using AFNI, one is using automask

and the other is creating a mask manually. Automask creates the mask by clipping the

data which do not have values above the particular threshold. This clipping level can be

selected as per the requirements of the mask size. Mask also can be created manually by

simply drawing the boundary around the specific region which needs to be used as the

mask [11]. In this experiment, the area of mask was chosen manually. In this study, for

both the experiments (finger tapping and gas mixture tasks), the whole brain volume was

selected as the mask rather than selecting a particular brain region.

3.3.2 Correlation

Correlation is a simple statistical technique that computes the degree of similarity

between two groups. Its value ranges from -1 to 1 where 1 indicates that both groups are

identical and 0 indicates no similarity between them. Negative value shows the negative

correlation due to one of the signal being out of phase [12].

This statistical technique was used for finger tapping data, where activation had a

unique "ON and OFF" pattern. The 'Rest' condition was considered as a lower level

response (i.e. 0) and the 'Active' condition was considered as a higher level response (i.e.

1). This finger tapping response can be compared to a pulse cycle of definite duration.

The correlation-coefficient matrix was found using MATLAB function "corrcoef'. To
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find the voxels that responded well for this task, 'Rest' and 'Active' images were

considered as different groups. The series of activation and resting images were

compared to the reference vector which is shown in Figure 3.1 and the correlation

coefficient was calculated on a voxel wise basis for the every voxels in the brain. The

number of 1s was assigned same as number of active images and number of Os were same

as number of non-active ("Rest") images.

Figure3.1 A reference matrix used for finding correlation coefficient of each voxel for
finger tapping data.

Voxel time-series that followed the reference pattern were considered as active

and selected. The correlation coefficient gave the measure of similarity in form of values

between -1 and 1. To extract the most effective voxels, a threshold value was selected.

The voxels having correlation values more than this threshold were chosen for

classification.

3.3.3 Paired T-test

T-test is used to find the differences in the means of two different groups. It measures the

probability in favor of the provided null hypothesis, which states "The means of two

groups are equal". The significance level alpha is generally set to 0.05 and the alternative

hypothesis for this case was "The means of two groups are not equal" [13].
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The t-test was used to determine significant voxels for gas mixture data. T-test

can not be performed on more than two groups and thus t-test was done pair wise. It was

performed on every possible pair of images. In this study, for ten different conditions of

gas mixture data, total 45 different t-tests were performed. The common threshold value

was chosen to select out voxels from each t-test. The voxels which were selected by each

t-test were further utilized for pattern recognition.

3.3.4 ANOVA

ANOVA is a widely used statistical techniques for comparing two or more groups. It

tests these groups for the equality of means and measures the probability of the null

hypothesis, where null hypothesis was stated, "Mean of each group is equal". The

alternative hypothesis is true when any two sample means are different. ANOVA

computes variation within the groups and between the groups. If the variation within the

samples is low and between the samples is high then there is a significant difference in

means of these groups [12].

In this study, ANOVA was used to find voxels, whose intensities were distinctly

different for various stimuli. This technique was used for finger tapping as well as gas

mixture data. Images with different patterns were referred as different groups of

ANOVA. In each group same numbers of images were used and ANOVA was performed

using MATLAB. With the use of threshold value voxels having higher variability

between groups were selected. The threshold value was selected as per the requirement of

the desired number of voxels for pattern recognition.



CHAPTER 4

PATTERN RECOGNITION TECHNIQUES

Pattern recognition is the process that identifies the given data (or images) using available

prior knowledge about their characteristics. It has wide spread application in various

fields including biometrics, space technology, image processing, iris recognition,

handwriting recognition, and face recognition [14]. Pattern recognition is one of the

applications of classification technique which uses machine learning algorithms.

Classification is a statistical method to categorize and cluster existing data according to

their distinct characteristics. Today, there are many techniques available to solve

classification problems. Neural networks and Support Vector Machines are few such

methods. These methods accept datasets (inputs) along with their labels (types of

category) for the training of the network. The training process enables the network to

classify the datasets as per their unique labels and when the network is given the test data;

it determines the category of this data according to prior knowledge gained by training.

The classification accuracy depends upon type of the algorithm used, the type of datasets,

and the underlying noise sources. If the datasets are distinct and linearly separable, then

simple linear algorithm is sufficient but if the datasets are overlapping and have very few

changes compared to overall data, then more complex classification tools are needed. The

fMRI images show very less overall variation for different conditions and thus their

classification is a challenging task. The following sections explain different classification

tools including neural networks and LS-SVM (Least Square Support Vector Machine).

29
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4.1 Neural Networks

Simon Haykin (1999) has defined neural network as: "a massively parallel distributed

processor made up of simple processing units which has a natural tendency to store

experimental knowledge and making it available for use." [15]. The Neural network is

architecture of multiple artificial neurons semi or fully connected to each other. The

concept of artificial neural network is inspired from biological neural connections and

their functions [13]. The biological neuron has dendrites to receive the inputs, cell body

to process the inputs and an axon to deliver the output to the next neuron. The axon is

connected with dendrites of other neurons through synapse and that way the network is

created. The brain contains millions of these neurons complexly interconnected. Each

neuron generates a signal when gets activated i.e. its total input value goes higher than

the set threshold through electrochemical process. Same way, the artificial neuron is the

processing unit of the neural networks with many inputs and one output. The artificial

neuron receives inputs from connections specified with distinct weight vectors that are

similar to synaptic strengths. The negative weight values indicate the inhibitory function

of the brain neurons.

Figure 4.1 (a) Biological neuron and (b) simple artificial neuron architecture.
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The artificial neuron is the smallest unit of complex artificial intelligence (AI)

system whose basic function is learning. The learning process can be supervised (i.e.

target values are provided) or unsupervised (no information about target values are

provided). The learning process updates the neuron's function. It multiplies the incoming

inputs to the corresponding weight vectors and adds the bias if necessary. Bias is the

threshold value which is generally negative to subtract common value from the sum of

the inputs. This procedure can be understood by Equation 3.1.

Where, n - Number of neuron inputs
xi - i-th input value
wi - i-th weight vector
B - Bias

This set of inputs is then given to the transfer function. This transfer function (f)

can be linear, hard limit (step function), logarithmic sigmoid, saturating linear or compet

(competitive transfer function - "winner takes all" principle) [16]. The output of the

neuron will be the output of this transfer function.

Where, f - Transfer function
Y- Output of a neuron

Number of layers in the neural network determines the complexity of the network. The

two layers (inputs are not considered as a layer), fully connected, feed forward

(unidirectional flow of data from inputs to output) network is shown in the Figure 4.2.

The middle layer is also known as a hidden layer.
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Figure 4.2 Two layer neural network with multiple inputs and multiple outputs. 

For binary classification, there are number of predefined networks available like 

perceptron and learning vector quantization. The perceptron network does not have any 

hidden layer and thus is not able to classify the non-linear problems while learning vector 

quantization networks gives very effective classification for non-linearly separable 

classes. 

4.1.1 Perceptron Network 

The perceptron is a single layer, feed-forward network and is used to solve simple 

classification problems like binary classification [15]. It takes multiple inputs and target 

values for the training process. By training this network, a linear decision boundary can 

be created. When a new set of inputs is tested for this trained network, the network 

classifies it according to this boundary. This can be explained by a simple AND function. 

The truth table shows inputs P I and P2 and output T corresponding to them. 
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Table 4.1 Truth Table for 'AND' Function. 

PI P2 T 
0 0 0 
0 I 0 
I 0 0 
I I I 

0.9 0.9 ? 

The perceptron network was trained USIng first four inputs and target output 

values (either zero or one). According to these values, it created a decision boundary to 

separate two classes. The plot is showed in Figure 4.3 where ' 0 ' symbolizes class-I and 

'+' shows class-2 inputs. Then, this trained network is simulated fo r fifth input set ([0.9 

0.9)) and it is correctly classified as class-2 according to this decision boundary. The 

perceptron network can be trained again and again for new input and target values and it 

changes its weight vectors and thus the boundary position each time . 
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Figure 4.3 Plot created for perceptron classification of' AND' function. 
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4.1.2 Learning Vector Quantization Network

Learning Vector Quantization (LVQ) was invented by Teuvo Kohonen [15]. It is a feed

forward, two layers, fully connected supervised network. The first layer uses the compet

transfer function and the second layer has linear neurons. None of the layer has biases

[16]. LVQ works using a learning process which includes updating of weight vectors

during each training procedure. It doesn't create common decision boundary like in

perceptron. Instead, class boundaries are built piecewise-linearly as segments of the mid-

planes between neighboring classes and these boundaries are modified during each

learning process. If the inputs are very similar then it is not possible to create distinct

regions for them.

Figure 4.4 Classification using piecewise-linear boundary for learning vector
quantization networks [17].

To test this trained network, new unknown data is given and is classified

according to the distance from the defined regions. Generally, the Euclidean distance is
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used for comparison between an input vector and the class representatives. The class of

the new data will be decided according to which region is the nearest. The less distance

suggests the higher resemblance [17].

4.2 Least Square Support Vector Machine

Support Vector Machines were introduced by Vladimir Vapnik. They are used for

classification and regression tasks. They prepare a network which can be trained using

the data and their assigned labels and this network is then used to perform the required

task. To perform the classification task, support vector machines try to make a

hyperplane in the space for available inputs and their labels. The data are separated

according to their class and put in separate regions away from each other as much as

possible. While new dataset is fed for testing, SVM try to find distance of new data set

from the defined regions. According to this distance the class of new dataset can be

predicted [18].

LS-SVM (Least Square- Support Vector Machine) is derived from the original

SVM. It is based on the background of statistical learning process. It is proved more

competent for especially multi-class classification. LS-SVM is used widely these days for

solving classification problems. It is very efficient for nonlinear classes and takes less

time for training.

For classification process, it takes certain parameters together with input data and

target values. They are type of the model (function estimation or classifier),

regularization parameter y, kernel parameter σ, and kernel type. In the present research,
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' Classifier' for binary classification and ' Function Estimation ' for multi-class 

classification were chosen as model types. 

LS- S\,M:"!.';, ... -_O'::' with '2 ditrerert Qlasses 

x, 

Figure 4.5 Example of binary classification using LS-SVM. Magenta shows class-I 
region and cyan shows class-2 region. Black thick boundary is the classification 
boundary created by the LS-SVM model. 

For kernel selection, there were basically three choices: linear, polynomial and 

RBF (Radial Bias Function) kernel. Accuracy for classification output is so much 

dependent on regularization parameter y and kernel parameter cr [19). The calculation for 

these parameters is very complex and hence, generally these values are found by 

performing grid search. The grid search is also a tedious job but that is relatively simpler 

way to find these parameters. 

In first step of grid search, wide range of rough grid values is chosen according to 

the dimension of the inputs. The gird value selection depends on the user and as both 

parameters are independent the grid search is simpler. 

-
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Figure 4.6 Example of grid search method to find the values of regularization
parameters.

After running the algorithm for each set of grid values, the particular region of the

grid is selected where the better results are found. Second step is the fine grid search,

where the procedure is repeated on the selected section and the most appropriate values

of 'y and a are estimated for training LS-SVM model [20]. For each experiment with new

dimensions of inputs, the new grid search should be performed to obtain highest output

accuracies.



CHAPTER 5

METHODS AND MATERIALS

5.1 Finger Tapping Data

5.1.1 Subjects and Data acquisition

In the experiment of finger tapping task, four (three male, one female) healthy subjects

who aged between 20 and 30 were participated. Written consent was obtained from each

of the subjects prior to scanning. Subjects were paid on an hourly basis for their time and

the experiment was approved by the local Institutional Review Board.

Each subject was asked to perform a finger-tapping task as per the instructions

presented on a visual screen. The subjects were asked to tap their both fingers when

images were presented on the screen and to stop when they blank screen appeared. The

duration for finger tapping was 20 seconds followed by rest period of 20 seconds. The

total duration of scanning for each subject was 180 seconds (3 minutes).

The scanning was done using a 3T Siemens Allegra (Ehrlagen, Germany) imaging

system. The imaging system was equipped with a three axis balanced torque head

gradient coil and a shielded end cap quadrature transmit/receive birdcage radio-frequency

coil. Volunteers were positioned supine on the gantry with the head in a midline location

of the coil. To reduce motion artifacts, foam padding was placed between the forehead

and the coil. In our experience, foam padding considerably minimizes head motion and

allows only small motions. Each scanning session began with acquisition of high-

resolution (256x256) anatomical T 1 -weighted axial images. Based, on the high-resolution
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images, several axial slices covering the entire sensorimotor cortex and its associated

areas were chosen. For this study, seventeen axial slices echo-planar images were found

to be adequate to cover the entire sensory motor cortex. Echo-planar images were

obtained using the following imaging parameters: TR=1000ms, flip angle=90°, TE=27

ms, slice thickness = 5 mm, FOV = 22cm x 22 cm, and Matrix size = 64 x 64. This

resulted in a spatial resolution of 3mm x 3mm x 5mm pixel. During each run, 139 echo

planar images were collected for further data analysis.

5.1.2 Pattern Recognition

AFNI was used to analyze the fMRI data sets obtained. Motion correction was done for

each subject to ensure that all images were in same position. Feature selection was the

next step to be performed. Both correlation and ANOVA were used as feature selection

techniques. For correlation eight 'Active' and eight 'Rest' images were used which were

not included in the test data set. The reference shown in Figure 4.1 was used to find the

correlation between two categories using MATLAB function "CORRCOEF". The

probability threshold was set and voxels having higher probability than these were

selected. For ANOVA, eight 'Rest' images were taken as one group and eight 'Active'

images as the second group. The null hypothesis was tested for these two groups and

found the probability values. This was done using MATLAB function "ANOVAl" which

is one way ANOVA method. Voxels with the probability threshold or less were selected.

Logical 'AND' function was performed to find common voxels selected by both

techniques and these voxels were used for the training of the network.
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For binary classification, there are many methods available. In this study, LVQ

network and LS-SVM were used. Generally for any classification task, total number of

datasets is divided in two equal groups. One group is used for training and the other

group is used for testing. In the present experiment, the datasets were divided in two

groups for training and testing by approximate ratio of 60:40. The 'Rest' images were

assigned as class-1 and 'Active' images were assigned as class-2. For LVQ network,

neural network toolbox provided in MATLAB 6.1 was used. The weights of the network

were updated by training it for each new set of images. The trained network was

simulated to find out whether the image is active or at rest.

For classification using LS-SVM, LS-SVMlab Toolbox (version 1.5) created by

Research Council, KULeuven university-- ESAT - SCD-SISTA was used. Regularization

parameters were established according to the data size. Unlike LVQ, LS-SVM was

trained in a single session using all input test images simultaneously. This trained

network was then tested using the unknown images to predict the state.

5.2 Gas Mixture Data

5.2.1 Animal study and Data acquisition

For this study, four male Sprague-Dawley rats were used. For the scanning, they were

anesthetized and their body temperature was maintained at 37.0+0.5' C. They were

ventilated mechanically with air. A paralyzing agent was given in the beginning to them

to stop sudden breathing during scanning. Mean arterial blood pressure was checked

continuously and blood gas samples were taken before and after the scans and analyzed.

All rats were given room air (21% Oxygen), 100% Oxygen, Carbogen (95% Oxygen+5%
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CO2), 2 % CO2  and 5 % CO2  at regular intervals. These gas mixtures were given for 15

minutes each following by 20 min ventilation with air + 30% Oxygen. MRI scanning was

started 5 minutes late every time after starting of particular ventilation. Total experiment

duration was 3 hours for each animal. Scanning was done using Bruker Medscape 3T/60

cm imaging system. An RF bird-cage coil with the length of 0.5 cm and diameter 3.8 cm

was used to acquire the data. The rat was secured to RF coil by bite bar to minimize the

motion artifacts. First anatomical coronal images were taken using RARE (Rapid

acquisition relaxation-enhanced) sequence with TR=1 sec, TE=19 ms, 256*256 matrix

and 3.5 cm of field of view. Then taken were fMRI images using TR=2 s, TE=27.2 ms,

64*64 matrix, 2 mm of slice thickness and bandwidth of 125 kHz. Total 180 images were

acquired per each of total three slices. Images were collected for 60 s while breathing,

alternating with 30 s of Breath hold in three epochs.

In this study, images were collected for ten different conditions, for five different

gas mixtures at rest (normal breathing) and at breath hold. They are shown Table 5.1.

Table 5.1 Ten Different Conditions for Gas Mixture Data

Gas mixture At Rest At Breath Hold
Room air Class 1 Class 6

2 % CO2 Class 2 Class 7

5 % CO

2

Class 3 Class 8

Oxygen Class 4 Class 9

Carbogen Class 5 Class 10
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5.2.2 Pattern Recognition

The first step of the procedure was to set up a pattern made up of selective voxels. To

find these voxels, two statistical techniques: pair wise T-test and ANOVA were used. The

MATLAB function "TTEST" was used with ALPHA = 0.05. The significant voxels were

found and used for pattern recognition. ANOVA was performed on sets of five images of

ten different classes using MATLAB function "ANOVA1 ". The probability values for

each voxel in support of null hypothesis were calculated. Threshold value for probability

was set and voxels which showed probability less than this were selected as featured

pattern for training and testing.

For pattern recognition task, all possible images for every class were taken. It was

hard to set a ratio of images for training and testing because each category had different

number of images. The LS-SVM was used as classification toolbox for this multi-

categorical data. The parameters of LS-SVM were discussed and selected to get the best

results. Appropriate values for regularization parameter (γ) and Kernel parameter (σ)

were found by 'Grid Search' method. Training sets i.e. different classes were assigned

labels of equal intervals to give same weight to all classes. These labels were from 100,

200, .. , 1000 for ten different classes. The LS-SVM network was trained using these

labels and training datasets. This trained network was simulated for test images for

pattern recognition. For LS-SVM, it is hard to give crisp output values like 200 or 400.

Instead, it gives values nearer to particular label and according to this output value the

class type can be determined.



CHAPTER 6 

RESULTS 

6.1 Results of Finger Tapping Data 

6.1.2 Histogram Study 

As it can be seen from time series of finger tapping data (Figure 6.1 (a)), the two states 

"Rest" and "Active" were distinct. The ideal response for finger tapping task is shown in 

red . 
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Figure 6.1 (a) Time series of finger tapping data and (b) histogram plotted for this time 
series. 

To verify that these two states are distinct, the histogram was plotted for the entire 

time,series for an active voxel. It helped to check whether two different types of images 

were really discrete from each other. The threshold intensity values were determined 

from this histogram and were used to differentiate between two types (' Rest' and 
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'Active') of images. The intensity threshold values were used to generate activation 

maps. These maps showed that threshold values discerned some voxels very effectively 

between two states and thus it was concluded that these two images were separable. 

6.1.2 Feature Selection 

For feature selection of significant voxels from [mger tapping data, correlation and 

ANOV A were used. Correlation technique was used to find the consistency of the fMRI 

response with the task. For this study, voxels having correlation values greater than 0.60 

were considered active. 

ANOV A was used to find the voxels which showed significant difference across 

two different conditions. The voxels having output probability values less than 0.1 were 

selected. 

The dark s pots s how co mmon "axels selected by ANOVA and Correlation 
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Figure 6.2 Feature selection performed on masked image of finger tapping data. Voxels 
in red color were selected jointly using ANOV A and correlation. 
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The common voxels found by both techniques were used as a pattern for

classification task. Usually for finger tapping task, left and right sensory motor cortex

regions show higher activities compared to other areas of brain and the voxels in the

same area were found using feature selection (Figure 6.2).

Using criteria to select voxels that were active during both correlation and

ANOVA helped decrease the number of voxels (dimensions) of the images which made

the classification process faster. The number of selected voxels varied for different

subjects which are shown in Table 6.1.

Table 6.1 Outcomes of Feature Selection Performed on Finger Tapping Data

Total
Voxels of
the Image

Correlation
CC > 0.6

ANOVA
P < 0.05

Number of Voxels
Commonly Selected

by ANOVA and
Correlation

Subject 1 1139 78 159 76

Subject 2 1377 50 270 50

Subject 3 1268 59 510 57

Subject 4 1379 98 322 97

6.1.3 Pattern Recognition

For binary classification, two different algorithms i.e., learning vector

quantization (LVQ) and least square support vector machines (LS-SVM) were used. For

classification using LVQ network, the learning rate was set to a default value of 0.1. Two

hidden neurons were used because it was a binary classification and two layers were

enough for this simpler classification. Ten epochs (learning steps to reach the target
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output) were used for training, which were enough for network to reach the desired goal.

As per the design of LVQ, number of inputs for both classes should be same.

In this study, 50 "Rest" and 50 "Active" patterns of selected voxels were used for

training and a mixed group of 80 patterns was used for testing. The test images were not

used for training or feature selection. Total compilation time for this algorithm (including

feature selection, training and testing of data) was less than 15 seconds.

LS-SVM was also used for the same task but it accepts various numbers of inputs

for different classes. For training, 50 "Active" and 80 "Rest" patterns were used and

mixture of 80 patterns was used to test the trained model. For classification using

LS-SVM, 'RFB' was selected as kernel type and model type was kept as 'CLASSIFIER'.

The value of regularization parameters were found according to the size of the pattern.

The y and a values were 80 and 75 respectively. The total compilation time for LS-SVM

depends on the data size and the value of a and for this experiment it was less than 20

seconds.

Both classification techniques gave similar and satisfactory outputs. For all four

subjects, both classes ('Rest' and 'Active') were identified correctly. The rare cases of

misclassification occurred for the images to be happened at the transition of the MR

signal from one state to another. Approximately 10 % of test images in each subject were

acquired during transition time. Hence, overall classification accuracy remained between

90% and 100%.
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After the primary analysis of temporal responses for all conditions, the histogram

was plotted for all ten categories (5 gas mixtures during rest and during breath hold)

together to find out ten separate conditions. If each of the classes were distinct, it should

show at least ten distinct peaks corresponding to each of the ten classes. But from the plot

in Figure 6.4, it can be observed that ten different peaks could not be identified. This

suggested that some of the fMRI responses were so similar that their histograms were

simply overlapped.

Figure 6.4 Histogram plot for five gas mixtures together.

The histogram helped to find out some threshold intensity values from the peaks.

The images of all different conditions were plotted with highlighted voxels which had

threshold intensities and they were compared. From theses images it was found that there
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were distinctions in responses for normal breathing of 2 % CO2, 5 % CO2 and air but there

was no such threshold value which can distinguish 2 % CO 2 from 5 % CO2 at breath

hold. It was also confirmed that Carbogen at breath hold had no difference from

Carbogen at rest.

6.2.1 Feature Selection

The second experiment was the classification of images obtained from rats during

different gas mixtures. Paired T-test was used for multi-categorical data was found not be

very robust in detecting significant voxels in rat brain. A significance threshold of p < 0.1

was set for the initial selection of voxels. With the paired t-test, signal detection was

performed between every possible pair of conditions, and to detect the significance

voxels, only voxels that were detected in every pair of conditions were chosen. Using this

method, very few voxels passed the significance level in all the possible combinations.

The threshold value was not further reduced, because at lower threshold, the detected

voxels were not significant, and could have occurred due to chance. As a consequence, t-

test was not used for this method.

AVOVA which is typically faster was used as an alternative to the paired T-test.

Further, the detection of significant voxels was more robust compared to the t-test. As a

result, it was used for gas mixture data. Five images from each group were taken to

perform ANOVA. The threshold value was set to select out the voxels of desired number

for pattern recognition. Table 6.2 shows the threshold value and thus the number of

voxels selected for each animal.
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Table 6.2 Outcomes of Feature Selection Performed on Gas Mixture Data

Total Voxels of the
Image

Threshold for
ANOVA

Number of Voxels Selected
by ANOVA

Rat #1 334 P < 0.0001 222
Rat #2 384 P < 0.00001 220

Rat #3 409 P < 0.0001 189

Rat #4 364 P < 0.0001 179

6.2.2 Pattern Recognition

For classification of gas mixture images, LS-SVM was utilized. For normal

breathing task, 75 patterns for each gas mixture and for breath holding task, 20 images

for each gas mixture were used for training. Ten images from each category were

selected for testing the classification algorithm. These test images were selected

randomly and were not used for either training or feature selection. 'RBF' was selected as

kernel type for this experiment also. The type of LS-SVM model was chosen as

'Function estimation' for multi-class classification task. The algorithm was previously

tested to find most appropriate values of regularization parameters. The values of these

parameters varied according to the size of the patterns. The classes for these images were

determined according to their output values of function estimation. Ten different

conditions as shown in Table 5.1 were attempted for pattern recognition.

The classification outcomes were not satisfactory for these ten categories.

Therefore, it was decided to exclude those classes which were not enough distinct to be

classified. From the histogram study, it was concluded that 2 % CO 2 was not very distinct

from 5 % CO2 breath hold and there was no distinction of Carbogen at rest from

Carbogen at breath hold. Hence, two categories 2 % CO2 at breath hold and Carbogen at
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breath hold were excluded and pattern recognition was performed on remaining eight

conditions.

The LS-SVM model was trained again for these eight patterns and tested for ten

different sets of test patterns. Below are the tables showing classification outputs of ten

test sets for all four animals. Each table has values of regularization parameters which

were chosen for that particular dataset. The 'Y' shows the correct classification while 'X'

is marked for false identification of the pattern. The accuracy of the each test run was

calculated and shown in the last raw of each table. The average accuracy for all gas

mixture data was 75%.

Table 6.3 Classification Results for Rat #1

Regularization parameters: γ  = 80, σ = 200
Test Set	 1 2 3 4 5 6 7 8 9 10

2% CO2 at REST Y Y Y Y Y Y Y Y Y Y
5% CO2 at REST Y Y Y Y Y Y Y Y Y Y

OXYGEN at REST Y X X Y Y Y X Y Y X
AIR at REST Y Y Y Y Y Y Y Y Y Y

CARBOGEN at REST Y Y Y X Y X Y Y Y Y
5% CO2 at BH Y Y Y Y Y Y Y X Y Y

OXYGEN at BH Y Y X X X Y Y Y Y X
AIR at BH X X Y Y Y Y Y X Y X

ACCURACY IN % 87.5 7575 75 87.5 87.5 87.5 75 100 62.5

In the first animal the pattern was made up of 222 selected voxels and the a was

to set to 200 according to size of the pattern. From the above table it can be seen that 2%

CO2 at rest, 5% CO2 at rest and air at rest were always classified correctly. The overall

classification accuracy remained between 62.5% and 100% (Table 6.3).



52

Table 6.4 Classification Results for Rat #2

Regularization parameters: γ  = 80, σ  = 200
Test Set 1 2 3 4 5 6 7 8 9 10

2% CO2 at REST Y X Y Y Y Y Y Y Y Y
5% CO2 at REST Y Y X Y Y Y Y Y Y Y

OXYGEN at REST X X Y X Y X Y Y X X
AIR at REST Y Y Y Y Y Y Y Y Y Y

CARBOGEN at RESTX Y Y X Y X Y X Y Y
5% CO2 at BH Y Y Y Y Y Y Y Y Y Y

OXYGEN at BH X X Y X Y X X X X X
AIR at BH Y Y Y Y Y Y Y Y Y Y

ACCURACY IN % 62.5 87.5 62.5 100 62.5 87.5 75 75 75

For the second animal, 220 voxels were selected by feature selection and a was to

set to 200. The classification results for this animal suggest that conditions of 2% CO2 at

rest, 5% CO2 at breath hold and air at rest were classified 100% while, Carbogen at rest

and Oxygen at rest were misclassified in many cases. For this animal also the overall

accuracy remained between 62.5% and 100% (Table 6.4).

Table 6.5 Classification Results for Rat #3

Regularization parameters: γ  = 80, σ  = 150
Test Set 1 2 3 4 5 6 7 8 9 10

2% CO2 at REST Y Y Y Y Y Y X X Y Y
5% CO2 at REST Y Y X Y Y Y Y Y Y Y

OXYGEN atREST Y Y Y Y Y Y Y Y X Y
AIR at REST Y Y Y Y Y Y Y Y Y Y

CARBOGEN at RESTY X Y Y Y Y Y Y Y Y
5% CO2 at BH X X Y X Y Y Y X Y X

OXYGEN at BH X X X X X X X X X X
AIR at BH X X Y- Y_, X X X X Y X

:A. CLIRA, 775'-
..., ■■■

' 75 , 62.5
I

50 75 62.5
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For third animal, the cases of misclassifications were more especially in patterns

with breath hold task. Oxygen at breath hold was always classified incorrectly. From

Table 6.2, it can be seen that only 189 voxels were selected from 409 when probability

threshold was set to 0.0001. If these values are compared with values of first animal, it

can be deduced that the images for this animal were less distinct for different conditions.

And this could be the possible reason that the accuracy of pattern recognition for this

animal was from 50% to 75% (Table 6.5).

Table 6.6 Classification Results for Rat #4

Regularization parameters: γ = 80, σ = 150
Test Set 1 2 3 4 5 6 7 8 9 10

2% CO2 at REST Y Y Y Y Y X Y Y X Y
5% CO2 at REST Y Y Y Y X Y X Y Y Y

OXYGENatREST Y Y Y Y Y X Y Y X Y
AIR at REST X Y Y X Y Y X Y Y X

CARBOGEN at REST Y Y Y Y Y Y Y Y X X
5% CO2 at BH X X X X X X X X X X

OXYGEN at BH Y Y X Y Y X X X X X
AIR at BH Y Y X Y Y X Y Y Y

ACCURACY IN % 75 87.5 75 62.5 75 50 50 75 37.5 50

In the fourth animal also, the misclassification occurred more in patterns

of breath hold. The same reason as given for third animal can be counted for lower

accuracies (Table 6.6).

The probability of getting 100% classification just by chance is 50% for binary

classification and 12.5% for multi-class (eight classes) classification. In both present

experiments, the outputs of classification were satisfactory and accuracies were well

above chance.



CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Discussion

Pattern recognition finds the distinction between different datasets and develops a model

that can identify the category of the unknown pattern. It is a useful technique for

classification of fMRI images because for the given stimuli, small changes take place in

only certain regions of the brain images. This method is helpful to distinguish among data

sets that been obtained using different stimulus. In this study, both binary classification

and multiclass classification was performed on fMRI data sets.

For the first experiment, when subjects tapped their fingers, the fMRI response

was significantly higher than the baseline condition while, during rest the response was at

baseline condition. Therefore, finger tapping data had unique "ON-OFF" pattern of fMRI

response for two different conditions.

The second set of experiments involving ventilation of different gas mixtures had

different BOLD responses from the brain. For 2% CO2 and 5% CO2 the temporal

response patterns were similar. For 2% CO2, 5% CO2 and air, the MR signal remained

high during breathing and got suppressed during breath hold in most cases. During

Oxygen inhalation, the signal remained low at rest and it increased during breath hold.

There was no signal change for Carbogen between rest and breath hold but the signal

intensity for this gas mixture was higher than all other gases.

54
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Classification accuracy depends on various factors and number of classes to be

classified for each one of them. Binary classification is a relatively simpler task for fMRI

images. But classification becomes more complex as the number of classes increase

especially for fMRI data which are much overlapped. In second experiment, the low

accuracy of classification can be because of various reasons. From the results of third and

fourth animal (Table 6.5 and 6.6), it can be observed that cases of misclassifications are

more for breath hold data than normal breathing. This might be due to fewer images of

breath hold were available for training. Breath hold duration was 30 seconds and the task

was repeated three times for each animal. After each 30 seconds, the animals were

needed to be ventilated again to keep them alive. For each animal, breath hold task gave

approximately 30 images. Out of these 30 images 20 were used for training which were

not sufficient to train the model.

The second reason could be the classification algorithm itself. As mentioned

before, the accuracy of LS-SVM model depends mostly on regularization parameters of

the model. These values were found by grid search method which is the most convenient

but an approximation method.

It is also possible that some images were not classified correctly because they

were physiologically not significantly different. The time-series for 2% CO

2

 and 5% CO

2

looked similar during rest as well during breath hold. It may be because there was no

change occurring between MR signals for these two gases. It is possible that in the animal

models being used for this study, 2% CO 2 was enough to saturate the signal and as a

consequence there was no significant increase in 5% CO 2 when compared with 2% CO

2

.
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From this study, it can also be deduced that if for two different stimuli, the images

are same and can not be classified, then there are chances that two stimuli different

stimuli elicit similar physiological response in the brain.

Feature Selection techniques were proved useful to select effective number of

voxels for efficient pattern recognition. The pattern recognition algorithm was performed

with and without using feature selection. The classification was not significant without

feature selection of effective voxels while, the classification accuracies were satisfactory

when patterns made up of selected voxels were used. The correlation technique which

was used for finger tapping data is helpful when the ideal response of particular stimulus

is known. In this experiment, correlation compared the finger tapping data to the ideal

"ON-OFF" pattern of the stimulus and found the effective voxels. Paired t-test which was

used for multi-categorical data was a tedious task as it had to be performed individually

on each possible pair of gas mixture conditions. ANOVA was the most convenient

method for both experiments. It can be performed on multi-group data and desired

number of voxels can easily be obtained by setting the threshold probability value.

There are few limitations of this study. The pattern recognition can be difficult

task across the subjects. The pattern recognition algorithm compares the fMRI images

voxels by voxel and thus it needs matching of the spatial patterns of the brain activity.

The spatial matching across the subjects or animal models is difficult. There are few

methods like ROI mapping and Talairach coordinates to register images across subjects

but they harm the image resolution and thus the classification. The other limitation of

pattern recognition is that the correct classification of unknown image is possible only if

it belongs to one of the categories for which the classifier is trained.



57

Researchers are also trying to perform real time pattern recognition on fMRI data.

Real time classification of fMRI images can be possible using fixed-block designs [21].

For real-time classification, the weights of the network can be updated with each new

learning for better classification. For real-time classification of fMRI images, the required

classifier should take very little time for training and get well along with the speed of the

stimulus blocks. The real-time pattern recognition can be utilized in lie detection, brain-

computer interfacing, etcetera.

7.2 Conclusion

The objective of this study was to perform pattern recognition to identify different

physiological conditions of brain from fMRI images. The study was divided in two

different experiments. The finger tapping data and gas mixture data were used for binary

and multi-class classification, respectively. Motion correction helped removing motion

artifacts and registering all images to the reference image. The mask was created to

remove background voxels. Feature extraction helped to select effective voxels from

fMRI images which actively responded to the given stimuli.

For finger tapping data, the two states 'Rest' and 'Active' were found to be very

distinct by histogram study. They were classified correctly most of the times. The

patterns used for classification were produced using voxels those were chosen by

ANOVA and correlation techniques. These active voxels were found in right and left

sensory motor cortex area which are most likely to be active during finger tapping task.

Both classification tools, LVQ and LS-SVM were proved successful methods and gave

classification accuracies more than 90%.
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In the second experiment of gas mixture data, ten different conditions were to be

classified. To find the significant voxels for classification, ANOVA was found to be the

most robust method. From histogram study it was found that all ten conditions were not

distinct and hence two conditions 2%CO2 at breath hold and Carbogen at breath hold

were eliminated. The classification algorithm was performed on remaining eight patterns.

LS-SVM was used for classification of multi-categorical patterns and proved a successful

classification devise. The classification accuracies were found between 37.5% and 100%,

with an average accuracy of 70%.

From these two experiments, it can be said that pattern recognition is a useful tool

to prepare the model which can classify the distinct physiological conditions of the brain.

Feature selections methods are also very useful to extract the useful information from the

overlapped fMRI images. The pattern recognition algorithm in conjunction with feature

extraction can provide useful ways to analyze fMRI images.
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