





ABSTRACT

DESIGN OF THREE-DIMENSIONAL
AXON STRETCH GROWTH DEVICE

by
Fayekah Assanah

Spinal Cord Injury (SCI) causes destruction and degeneration of axons in the white
matter of the spinal cord, resulting in functional loss and paralysis. A successful
treatment of SCI requires axons to regenerate across damaged regions. Current studies
focus on identifying mechanisms to promote axon regeneration in lesions and have yet
to be successful in preventing nerve degeneration due to scar tissue formation.
Establishing axonal bridges over long distances of SCI lesions remains a challenge,
resulting in poor functional recovery. Instead of relying on promoting axon regeneration
into lesions, Pfister et al. has developed a transplantable nervous tissue construct
spanned by stretch grown axon tracts. These tracts of living axons are intended to act as
a bridge to facilitate axon outgrowth from the nerve construct to the host nerves over
long SCI iesions. While axon stretch growth is fast and efficient, the current approach
uses a two-dimensional (2D) culture system, posing a challenge for uniform distribution
of DRG explants throughout the culture. This yields in a less than optimal number of
axon tracts being stretched.

The research objective of this thesis is to increase the number/density of axons
that are stretched grown by using three-dimensional (3D) cultures. This thesis work
involves modification of the existing 2D axon stretch growth device to achieve axon
growth in 3D cultures. The design includes separating two 3D hydrogel cell cultures

using a porous nylon mesh to constrain each half of the culture. Optimal mechanical



properties of the collagen hydroge! and nylon mesh pore sizes are tested for mechanical
support, best axon outgrowth, and the number of axons available for stretch growth.
Phase contrast and fluorescent microscopy are used to determine axon outgrowth in the
hydrogel and through the nylon mesh. Live staining with fluorescent intracellular dyes
and confocal microscopy are used to quantify the cross sectional areas of axon bundles
stretched using the 2D device. This provides insight into developing a quantification
method for axons grown in the 3D setup to determine the efficiencv and the growth

mechanism of axons in 3D cultures.
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CHAPTER 1
INTRODUCTION

1.1 Introduction

An estimated 450,000 people live in the United States with Spinal Cord Injury (SCI) and
approximately 11,000 new cases of SCI result each year [1]. About 10,000 are
permanently paralyzed, and many die as a result of their injuries [2]. The annual cost of
medical care for treating SCI has been estimated at about $11 billion [3, 4]. Although
some SCI injuries allow for recovery to a certain degree, others result in complete
paralysis of the body from below the site of injury [4]. Injuries to the spinal cord are
classified as functionally incomplete or complete [5]. In incomplete injury, sensation to
certain body parts still survive, as compared to complete injury, where, signals coming
from the brain to the body parts are completely obstructed by nerve damage [5, 6]. Thus,
it is very difficult to repair the functional loss in a complete spinal cord injury.

Research has focused on many techniques to repair and treat SCI. To fully
understand the methods and approaches, it is important to understand the functional
elements of the spinal cord and how injury to the spine can result in paralysis. The
following section in this chapter briefly describes the essential components of the spinal
cord, how spinal cord injury may lead to functional loss and explains the factors that
hinder axon outgrowth after chronic SCI. This chapter also discusses the different

techniques used to repair SCI and the advantages and disadvantages of such approaches.



In the later sections of this chapter, the axon stretch growth device designed by
Pfister et al is described and how this technique presents a unique insight into repairing

SCI. This is followed by the discussion of the goal of this thesis work.

1.2 Spinal Cord Injury
The nervous system consists of two main divisions: the central nervous system (CNS),
which includes the brain and the spinal cord, and the peripheral nervous system (PNS),
which is composed of the cranial, spinal, and autonomic nerves that exit the spinal cord
and connects to the limbs and organs of the body. The spinal cord is about 18 inches long
and extends from the base of the brain, down the middle of the back, to about the waist
(Figure 1.1). The upper motor neurons (UMNSs) lie within the spinal cord and their
function is to carry messages back and forth from the brain to the spinal nerves along the
spinal tract. The spinal nerves that branch out from the spinal cord to the other parts of
the body are the lower motor neurons (LMNs). Nerve fibers enter and exit the cord
through the spinal roots: (1) the ventral root sends signals to the periphery, (2) the dorsal
roots brings information from the periphery through the Dorsal Root Ganglia (DRG) into
the spinal cord up to the brain [7, 8]. The DRG is a group of sensory nerve cell bodies
that pass sensory information to neurons in the spinal cord so it can be analyzed by the
brain. The spinal nerves, mentioned above, communicate with specific areas of the body:
carrying sensory messages from the brain to the other body parts and organs (also called

effector organs) and from the rest of the body back to the brain.



Figure 1.2 shows the cross-sectional area of the spinal cord [8], the pathway of
signals inbetween the effector muscle and the spinal cord, the Dorsal Root Ganglion

(DRG), the interneuron and the synaptic connections.
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Figure 1.1 The spinal column showing the Dorsal Root Ganglion, Spinal Nerve and the
Spinal cord [8]. )
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Figure 1.2 Cross section of the spinal cord showing the Dorsal Root Ganglion, the
synaptic connection, the interneuron, and the pathway of signals to and from the effector
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The functional unit of the nervous system is the neuron. The neuron consists of a
cell body, dendrites and an axon. The dendrites serve as antennas to receive signals from
other neurons. The axon on the other hand, is longer than the dendrites and transmits
nervous signals, over long distances, away from the cell body of the neuron to the
synapse of the post synaptic neuron in the effector organs. In other words, axons carry
signals up and down the spinal cord between the brain and the rest of the body [8]. The
signals that are carried by the axons over such long distances, through the spinal cord are
called axon potentials. The synapse is the junction between neurons where transmission
of signals occurs. In a synapse, signals are transmitted from the axon terminal of the pre-
synaptic neuron to the receiving end of the post synaptic neuron of the effector organ. At
the post synaptic neuron, the signals are transmitted through chemicals called
neurotransmitters.

The Figure 1.3 is an illustration of the structure of a neuron and its axons and
dendrites. It also shows the synapse and the transmission of signals from the cell body of
the neuron to the post synaptic neuron at the synaptic cleft. Thus, the spinal cord acts as a
passageway for all the nervous/axon tracts carrying signals to and from the brain to the
rest of the body. The spinal cord, in turn, is supported and protected by the spinal column.

Damage to the spinal cord can impair various nervous system functions such as
memory, cognition, language, and voluntary movement [4]. Spinal Cord Injury occurs as
a result of a traumatic blow to the spine that fractures or dislocates the spinal discs and
the vertebrae, displaces bone fragments and tears ligaments or spinal cord tissues. As a
result, nerve tracts and axons in the white matter tracts of the spinal cord are crushed [5,

11].






involved in axon regeneration and the factors that hinder axon outgrowth, in further

details.

1.2.1 Inhibitory Factors that Hinder Axon Regeneration after Spinal Cord Injury

When axon tracts are damaged in SCI, regeneration of such axons is difficult because
damaged tissue releases biological factors that inhibit axon growth. Major sources of
inhibitory factors are: (1) CNS myelin made by oligodendrocytes (neuroglia that forms
the myelin sheaths enveloping the axons [8]) and (2) Glial scar formed at the injury site
[14, 15]. The non-permissive property of the white matter in the spinal cord is associated
with the breakdown products of myelin (protein components of the CNS myelin) which
account for most of the CNS axon regeneration failure [15, 16]. On the other hand, the
glial cells (supporting cells of the central nervous system) create a glial ‘scar’, creating a
barrier against axon growth. Scar tissues, in turn, prevent axons from regenerating into
the lesions. Ischemia, on the other hand, deprives the tissue of oxygen, glucose and other
nourishment. Excess leakage of plasma from the damaged blood vessels causes the spinal
cord to swell, killing many interneurons and glial cells. The dead cells aggravate the
injury, causing many undamaged interneurons in neighboring uninjured regions to
undergo apoptosis and/ or demyelination. Furthermore, large cavities in the cord tissue
results as inflammatory response bring neutrophils and macrophages into the lesion to

ingest bacteria and cellular debris [4, 5, 15].



1.2.2 Axon Regeneration after Spinal Cord Injury

After Spinal Cord Injury, axon regeneration in the CNS involves a cascade of complex
sequences [17]. Once axons are transected, new axons have to sprout and grow into and
through the lesion at the site of injury to reestablish functional connections with the
disconnected targets [4]. After chronic injury, as a result of the body’s natural defense,
the lesion site is greatly occupied by dense scar tissues filled with fibroblasts, astrocytes,
meningeal cells, and a variety of inhibitory molecules derived from the CNS myelin.
These cells and the factors that greatly hinder axon regeneration are discussed in the next
section. Axons are free to sprout around the scar region but these axons fail to elongate
and retrace their original pathway to reach their intended targets, thus, permanently losing
functional connections [4, 15]. In Figure 1.4 the axons and glial/macrophages are shown
to degenerate beyond the injury or lesion site because of the damage to the functional
connection. New axons sprout at the injury site but fail to regenerate and grow towards
their previous targets.

As a result of the axon disconnections, signals coming from the brain no longer
reach their destinations to the effector organs. Alternately, signals from the rest of the
body fail to travel back to the brain. This causes paralysis of body parts and motor and
sensory functional loss.

Functional recovery becomes feasible only if regeneration of injured spinal axon
tracts can reconnect with their original targets. The factors discussed above hinder axon
regeneration over long distances. The following section of this chapter discusses the

various methods and techniques involved in repairing spinal cord injury.






replace dead cells (neurons or myelinating cells e.g. oligodendrocytes) [5]. Different cell
types such as Schwann ceiis, olfactory en-sheathing glial cells, neural stem cells,
embryonic and adult stem cells have been used for this purpose.

Schwann cells are a cell type located in the PNS, rather than in the CNS [4]. The
role of Schwann cells largely involves myelination and ensheathing of peripheral nerve
fibers. The potential of Schwann cell to facilitate the neuronal repair has been widely
noted [5, 19, 20, 21]. Researchers have replaced injured cells of SCI by Schwann cells. It
has been observed that Schwann cells are seen to promote CNS nerve tract repair because
of their production of neuronal trophic factors, such as nerve growth factor (NGF), brain-
derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) that all help
promote axon regeneration by inhibiting the effects of CNS myelination [20, 21, 22].

Olfactory ensheathing glial cells (OEGs) are a specialized type of CNS glial cells
that support and guide the growth of newly formed axons from the olfactory mucosa of
the nasal passages to the olfactory bulbs [4, 23]. OEG migration is not obstructed by the
CNS glial scars and they are able to enter both gray and white matter, potentially
attracting regenerating axons. In the last few years, the efficacy of OEGs in promoting
axonal regeneration in the injured adult mammalian CNS has been extensively examined
[24, 25, 26, 27, 28, 29, 30].

McDonald et al., Ogawa Y et al., T. Veizovic et al. and other groups [25, 31, 32,
33] have shown the remarkable potential of transplanted neural stem cells (NSCs) to
promote functional recovery. Neural stem cells are defined as multi-potential and self-
renewing cells that are able to generate all the major cell types in the adult CNS. Multi-

potential means that a single neural stem cell may give rise to various neuronal or glial
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cell types depending upon the specific environmental cues [4]. Researchers have seen
that NSCs assist in the formation of functional synapses as well as help in remodeling the
injured tissue and increase the tissue plasticity when transplanted into the adult CNS.

McDonald et al., Keirstead HS et al., and Zeng X et al. [34, 35, 36] have
transplanted embryonic stem cells (ESCs) (rodent and human) into injured spinal cord.
ESCs have a remarkable ability to self renew and they can also be genetically
manipulated in vitro [4, 5]. The implanted cells tend to survive, integrate and differentiate
into glial and neuronal phenotypes at the injury site and eventually induce some level of
locomotor recovery. However, ESCs replacement present many ethical issues unlike in
the case of adult stem cells (ASCs) which are also becoming increasing popular for CNS
repair [5, 37]. For instance, a number of studies have evaluated the potential of bone
marrow stroma cells (BMSCs) from adults for the treatment of SCI. These cells are
attractive for autologous transplantation because they can be easily isolated and expanded
in culture and delivered to the injury site [5].

Although cell transplantation/replacement has been successful in axon
regeneration, this method and its strategies have turned out to be more complex than
initially anticipated [S]. This is partly due to the underestimated influence of factors such
as lineage restriction and the variable immune response to the engrafted population [4,
38]. SCI injuries tend to span several centimeters in length and cell replacement
techniques can only enhance axon regeneration over a much smaller distance. Therefore,
fully recovering the axonal tract and encouraging axons to grow towards their lost targets

to completely bridge the lesion in a short time still remains a challenge.
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1.3.2 Transplantation of Biomaterials

Transplantation refers to the method of reconstruction of the glial pathway by biomaterial
scaffolds and nerve constructs [5, 18]. A scaffold is defined as a temporary framework or
substrate to support cells. Prior to the emergence of tissue engineering and cellular
replacement for repairing SCI, strategies to bridge or replace the lesions relied upon the
utilization of biomaterials to form scaffolds and artificial transplants [39]. Figure 1.5
illustrates the general concept behind bridging the lesion site with a substrate made of
different biomaterials and size comparable to the native tissue. Current research involve
the use of polymeric materials, both non-degradable (e.g polyvinyl chloride [9, 40],
polyethylene [41, 45]), and degradable (e.g. polyglycolic acid [42], collagen [43]) to
build the bridges. The bridges or the constructs are usually tubular in structure in order to
match the geometrical structure of the spinal cord. These brides also act as a guidance
channel for the regenerating axons [44, 45]. It directs cell behaviors such as migration,
proliferation, differentiation and apoptosis which encourage a favorable environment for
cell-cell and cell-matrix communication [4, 18]. Some scaffold materials have been
incorporated with neutrophic factors such as NGF and BDNF to encourage axon
outgrowth [46, 47]. The applications of biodegradable materials for constructing
guidance channels may offer an advantage compared over the nondegradable construct,
as they timely degrade from the implantation site and do not require an additional

surgical intervention for removal from the body [4, 48, 49, 50].
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Figure 1.5 Illustration of the concept of bridging the lesion in CNS injury by a substrate
made of various biomaterials [4].

Various techniques have focused on using different polymeric hydrogels for
supporting axon regeneration. W. Plant et al. have used poly 2-hydroxyethyl methacrylate
(HEMA) collagen sponges to provide a highly porous, mechanically stable 3D network
structure able to house a population of glial cells to assist in axon outgrowth. However,
results show that the number of regrowing axons is limited and the sponge of HEMA
give little protection to peripheral glial cells when implanted inside the host cell [51].

A. Jain et al. have studied axonal growth in 3D scaffold of agarose, optimized
with embedded drug delivery system: BDNF. The results demonstrate that the agarose gel
conforms to the shape of the spinal cord cavity. BDNF reduces the reactivity of the
astrocytes and the production of chondroitin sulfate proteoglycans (CSPGs) and enhances
the ability of regenerating nerve fibers to enter the hydrogel scaffold [12].

Other investigators have proposed scaffolds to guide regenerating fibers by

providing an oriented surface on which to grow [15, 20, 21, 22]. For example, P. Prang et
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al. have assessed the capacity of anisotropic capillary hydrogels (ACH) channels to
promote directed axonal regrowth in the injured mammalian CNS. Results show that the
ACH is able to promote highly oriented axon regeneration in vitro and in vivo in the
injured mammalian CNS leading to appropriate target re-emervation in vitro [45].
Although guidance channels have shown promise in directed regeneration of axons in the
spinal cord, issues regarding biocompatibility and biodegradability are yet to be resolved.

A few techniques have seen the possibility of transplanting grafting tissues such
as peripheral nerves [5], genetically modified fibroblasts [12, 52, 53], and intact fetal
spinal cords [54] into the spinal cord to promote axon bridges across spinal cord lesions.
Although these techniques have shown success, the use of artificial nerve grafts,
constructs and scaffolds made of certain biomaterials arise a major concern regarding
biocompatibility and biodegradability in the host cell that can induce unwanted chemical
cues to the other cells of the body.

The methods described above prove to be worthwhile and effective in promoting
axon growth. However, as mentioned earlier, SCI lesions can span upto several
centimeters in length and it is seen that axons cannot regenerate over long distances on
their own because of the factors discussed above. Additionally, for long distances, the
transected axon segment at the injury site degenerates even before axons can reach their
original targets. Therefore, it is a challenge to regenerate the axons uni-directionally
towards its original targets, over long distances.

Instead of relying on the promotion of axon regeneration into lesions by the
methods discussed above, Pfister et al. has developed a transplantable nervous tissue

construct spanned by stretch grown axon tracts. The hypothesis is that living axon tracts
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act as a bridge to facilitate axon outgrowth from the nerve construct to the host nerves
[13]. Unlike the techniques mentioned above, this approach allows repairing lesions that
span several centimeters in length because, here, axons are rapidly elongated at an
escalated rate to stretch grow upto several centimeters under the application of
mechanical forces. In addition, axon tracts in this construct are not myelinated making
them non-immunogenic when transplanted. The axon tracts are supported by natural
hydrogel such as collagen to form the construct. Hence, the properties of the construct
can be matched to that of the spinal cord. The following section explains the concept
behind applying mechanical forces to stretch axons and the method of axon stretch

growth using the custom designed axon stretch growth device by Pfister et al.

1.4 Axon Stretch Growth in Spinal Cord Injury
The axon stretch growth method by Pfister et al., involves an in vitro tissue engineering
method to rapidly elongate numerous axon bundles under the application of mechanical
forces. The forces from stretching induce the longitudinal growth of axons at rates up to
lecm/day in comparison to the natural growth rate of axons by a growth cone which is
approximately 1mm/day [13]. Before discussing the design and the method of axon
stretch growth it is important to understand the concept behind the growth of axons under
the application of external mechanical forces. The following section discusses the

hypotheses behind axon stretch growth.
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1.4.1 Concept behind Axon Stretch Growth

The concept behind the method of axon stretch growth is regulated by mechanical tension
[55, 56, 57]. Growth cone mediated growth is not the only way axons grow [55]. Growth
cones pull on the axon to activate unknown stretch-sensitive mechanisms that, in turn,
stimulate axon growth. It is believed that in growth-cone mediated axonal elongation,
microtubules are added at the distal end of the growth cone as the axon cylinder grows in
length [55].

After synaptic connections are established at the axon terminals, the axons grow
by co-ordinating with the surrounding tissue [55]. As the body of an organism grows, it
exerts tension on its axons, and stimulates axonal growth. Tensional forces in the axons
are the mechanisms that regulate chemical reactions of microtubules assembly and
disassembly, which in turn, drives axonal elongation and retraction, respectively. As
explained by Bray et al., nerve cells respond to the axial tension applied to them by
increasing the length and number of microtubules and neurofilaments by assembling
membrane components. The tension causes the axons to activate unknown stretch
sensitive mechanism that in turn stimulates axonal outgrowth [58]. As the axons elongate,
the tension is dissipated and the axons add mass to accommodate the increased length.
Hence, axons do not stretch elastically but behave more viscoelastic, as the axons slowly
adapt to the tension [55]. This growth by the application of external mechanical forces is
called towing. It is hypothesized that in the towing mode, the mass addition of axons is

interstitial around the entire length of the axons [59, 60].
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1.4.2 Axon Stretch Growth Device

The axon stretch growth device designed by Pfister et al. applies the concept of towing,
discussed above, to rapidly elongate axons grown inbetween two cell cultures. The axon
stretch growth device or the bioreactor is a custom designed axon expansion chamber
consisting of a linear motion table, stepper motor and a controller as shown in Figure 1.6.
The chamber houses an axon stretching frame that is enclosed with a CO, exchange port.
The axon stretching frame is connected by means of metal rods to a linear motion table

which is in turn connected to the stepper motor that drives the linear displacements.

Figure 1.6 Axon Stretch Growth System. The system contains an expansion chamber
with carbon dioxide exchange port, a linear motion table and a stepper motor [13].
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distances. Figure 1.8 and Figure 1.9 shows the linear motion of the stretching frame. In
Figure 1.8 (a), the two neural cultures are together allowing for axon growth from one
culture to the other. In Figure 1.8 (b), as the stretching frame is displaced uni-
directionally, the two cultures separate and the interconnecting axons are stretched.
Figure 1.9 is the schematic of axon stretch growth showing the overlapping Aclar
membranes. As the towing Aclar membrane is uni-directionally displaced the

interconnecting axons are stretched.

Figure 1.8 Schematic of Axon Stretch Growth. (A) Neurons are plated on two adjoining
Aclar substrates and axons are allowed to grow into either culture. (B) Population of
neurons are separated from the other, thereby elongating the interconnecting axons. (C)
Length of axons increase as elongation proceeds [13].
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Figure 1.9 Axons stretched grown. As the towing frame moves linearly and the
interconnecting axons between the two population of neurons stretch [7].

Using the device described above, axons can be stretched to a desired length of
upto 10 cm in length at varying rates. To create a nerve constructs, the stretched axons
are then supported by collagen hydrogel. The hydrogel protects the axons from damage
during surgical manipulation and preserves the uni-axial orientation of the axons. The
stretch grown axons, covered by the collagen hydrogel is then separated by cutting away
from the Aclar membrane and rolled into a cylindrical structure to form a transplantable
nerve construct. The nerve construct can then be transplanted into the lesions of SCI.

Figure 1.10 illustrates the process described above.
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Figure 1.10 Formation of a nervous tissue construct spanned by stretch grown axons [7].

While the uni-axial axon growth achieved with the above technique is fast and
efficient there still remain a few limitations to this technique that may be solved by three-
dimensional (3D) axon stretch growth. Currently, the 2D axon stretch growth procedure
is optimized and the stretch-growing axons from DRG cultures are at maximal density. In
the current approach, axonal growth occurs in a two-dimensional (2D) plane, limiting the
uniform distribution of DRG explants along the substrate interface and the number of
axons that cross the interface. A higher density of neurons may yield a larger number of

axon tracts available for stretch growth.
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In order to form the nervous construct, the stretched axons are supported in
collagen hydrogel and rolled into a cylindrical structure, as discussed above. Therefore, it
poses a challenge to transform a 2D structure into a 3D configuration to fit the confines
of the rat spinal cord. This process works at the expense of proper mechanical stability
required for re-constructive surgical procedures. The procedure of rolling also causes
damage to the stretched axons. As such, stretch growth of 3D neuron cultures can be
produced to form a nerve construct that matches the rat spinal cord diameter and have
better mechanical properties for constructive surgery purposes. Thus, the focus of this
thesis is on the design and development of a 3D axon stretch growth device that will

allow “stretching” of axons in three-dimension cultures.

1.5 Three-dimensional Axon Stretch Growth Device
The research goal of this thesis is to increase the number and density of axons in the
nerve construct available for transplantation. The construct designed should fit into the
small confines of the rat spinal column and should be easily handled by the surgeons. In
order to achieve the goal, this thesis focuses on the modification of the 2D elongator to
accommodate 3D growth of neuronal cultures. Compared to the 2D setup where axons
grow across a uni-axial plane of neural culture, the 3D cultures add depth to allow axons
to grow in multiple planes at the same time thus increasing the number and density of
axons being stretched. The modification to the 2D axon stretch growth device includes

the design of the 3D components that fit in the existing stretching frame to accommodate
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3D growth of neuronal cultures. The design of the 3D components and its essential

parameters are presented in details in Chapter Two.

1.6 Summary
The functional elements of the spinal cord are highlighted in this chapter. The nature and
properties of the spinal cord pose a challenge for axon regeneration in the spine, over
long distances, leading to motor and sensory functional loss. The success of any
regeneration therapy depends on reviving functional connections by improving axon tract
regeneration in the spinal cord. This chapter discusses the advantages and the
disadvantages of the various approaches to treat and repair SCI. The axon stretch growth
device designed by Pfister et al presents a unique insight into repairing SCI. The concept
of the method and the design of the axon stretch growth device are described in details in
this chapter. Although the design is fast and efficient, the few limitation (as described
earlier) can be resolved by axons stretched in 3D cultures. This thesis focuses on the
design of the 3D modifications and testing the essential parameters to optimize the
system. The following chapter presents the design and parameters of the 3D axon stretch

growth device in details.



CHAPTER 2
DESIGN OF THREE-DIMENSION AXON STRETCH GROWTH DEVICE

2.1 Introduction

The design of the 2D axon stretch growth device has been described in details in Chapter
1. We hypothesize that the number and density of axons can be increased for use in the
nerve construct by stretch growing axons in 3D cultures. The goal of this thesis is to
modify the 2D axon stretch growth device to accommodate axon stretch in 3D cultures.
For the success of the 3D system, it is important to consider the essential parameters of
the design. This chapter, thus, presents the design of the 3D axon stretch growth design

and highlights the vital parameters.

2.2 Overview of the Two-dimensional Axon Stretch Growth Device
The 2D axon stretch growth device allows axons, from dorsal root ganglion (DRG)
neurons, to rapidly elongate to a desired length. Interconnecting axons between two cell
cultures are towed by the stepwise application of external mechanical force by means of a
stepper motor and controller. This 2D system has been described in details in Section
1.4.2. Figure 2.11 shows the setup for the existing 2D stretching frame having three
individual lanes. Each lane consists of separate cultures of embryonic DRG neurons.
When elongated in the bioreactor by the microstepper motor and controller, each lane of

axons elongates the same length in a 2D fashion.
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expense of proper mechanical stability for surgical purposes. Specifically, the extensive
manipulation of axons in culture increases the potential of damaging the nervous tissue.
The 3D cultures can solve this limitation as the final 3D culture can be matched to the
geometrical confines of the rat spinal cord and thus eliminates the need to roll the 2D
culture into a 3D construct. The mechanical properties of the 3D construct formed can be
varied by forming a stiff hydrogel around the stretch grown axons just prior to
transplantation. This Chapter thus, focuses on the design and development of the

modifications made to create a 3D axon stretch growth device.

2.3 Development of the 3D Axon Stretch Growth Device
The goal of the 3D axon stretch growth device is to increase the density and total number
of axons and form an effective transplantable nerve construct. However, in order to fulfill
this requirement, the number of axons available for stretch growth must be increased
first. The design considerations for the 3D modifications are described below:

1. Accommodating axon growth in multiple planes: The new 3D axon stretch
growth design allows for axons to grow in multiple planes at the same time, by
adding depth to the culture. The depth is added by incorporating cultures of
neurons in a collagen hydrogel. Figure 2.12 illustrates the concept of axon stretch
growth in multiple planes.

2. Separation of two cultures: Similar to the 2D setup, the 3D design requires a
stationary and towing population of neurons, allowing axons to grow in-between.

Thus the 3D cultures are contained in two halves.
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elongation. One of the 3D components is kept stationary and the other component is
allowed to move. Hence, the¢ components are named as attached and towing component,
respectively. The attached 3D component is fixed to the base frame and the towing
component is fixed to the stretching frame. The components are shown in Figure 2.13,
Figure 2.15 and Figure 2.17.

A Nylon mesh acts as the physical barrier separating, splitting and constraining
the cultures in each component as shown in Figure 2.15 and Figure 2.17. A collagen
hydrogel is used to create a 3D culture in which the rat DRG explants are suspended and
grown. The two components are aligned together and the hydrogel and DRGs are plated
within the two halves. In order for the 3D design to be a success it is important to discuss
the essential parameters which are: (1) Dimension of the attached and towing
components, (2) Choice of hydrogel and (3) Nylon mesh pore size. The following

sections discuss the above criteria in further details.

2.4.1 Dimensions of the 3D Components

The 3D components are modifications of the 2D system. As such, the dimensions play an
important role to make the 3D components and the existing 2D frame function as a single
unit. Each of the important dimensions are discussed below:

1. The width of each component, w, (Figure 2.15 and Figure 2.17) matches the
width of each lane, providing maximum surface area for DRG explants to
distribute uniformly.

2. The depth of each component, d, (Figure 2.15 and Figure 2.17) is kept minimal

so that DRG explants are dispersed more towards the front end, closer to the
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mesh at the front. This enables axons to grow efficiently across the mesh to the
population of neurons on the other half of the 3D culture.

3. The height of the components, /4, (Figure 2.15 and Figure 2.17) is kept 2 mm
higher that the height of the lanes of the stretching frame in order to hold the
culture media inside each component, on top of the collagen hydrogel.

4. The thickness of the base of the components, 7, (Figure 2.15 and Figure 2.17) is

kept as minimal as possible in order to minimize the slag in the axons once

stretched.

“ Base frame

Attached part Towing part

Figure 2.13 Schematic of the assembly of 3D components in the base frame.

The measurements of the components are given in Figure 2.15 (b) and Figure 2.17
(b). The 3D components are designed to fit the existing stretching frame. Thus, they act
as additional attachments to the existing stretching frame requiring no alterations of the
basic 2D setup. The assembly of the 3D setup includes gluing the attached 3D component

to the base frame and the towing 3D component to the stretching frame with silicon glue
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as illustrated in Figure 2.13 and Figure 2.23. The bottom Aclar membrane is glued to the
base frame as like the 2D setup to hold and support the media and cultures. Like the 2D

setup, the 3D setup can be easily autoclaved.

Figure 2.14 CAD drawing of the attached 3D component with Nylon mesh.

Figure 2.15 CAD drawing of the attached 3D component. Dimensions of the attached
component.
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Nylon mesh

Figure 2.16 CAD drawing of the towing 3D component with Nylon mesh.

Figure 2.17 CAD drawing of the towing 3D component. Dimensions of the towing
component.
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2.4.2 Choice of Collagen Hydrogel for 3D Culture

Collagen based hydrogel forms the base of the 3D culture. The functions and the purpose
of the hydrogel are to support the DRG explants, provide nourishment and hold the 3D
cultures in place inside each component. It also acts as an extracellular matrix,
encouraging axon outgrowth and uniform distribution of DRG explants throughout the
culture. The hydrogel, thus, determines (1) the rate of axon outgrowth and (2) the
mechanical stability. The rate of axon outgrowth, in turn, determines the time point as to
start elongation after the axons have fully grown across the mesh into either side of the
cultures. The mechanical stability determines the structural solidity of the 3D cultures
inside the components. The goal is to obtain the most compatible hydrogel that would
promote axon growth in between the two populations of DRG explants in each
component and at the same time provide adequate stiffness for separating the two 3D
cultures.

Lower concentration gels (0.6 mg/mL to 0.8 mg/mL) have shown to provide
optimal axon outgrowth in length and rate of growth, compared to higher concentration
gels (2 mg/mL to 3.2 mg/mL ) [61]. However, higher concentration gels are stiffer and
provide more mechanical support and structure.

In this thesis work, the above concentrations of gels are tested inside each
component. Experiments have been carried out to ensure that hydrogels do not leak out
through the pores of the Nylon mesh. This is important to ensure that the DRG explants
stay in place inside each component and the 3D cultures stay separated. Details of the

experiments are described in details in Chapter 3.
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grow through the mesh because the pore sizes are much bigger than the axons posing
fewer barriers for axon growth. Alternately, the smaller pore size allows less number of
axons to pass through the mesh.

Thus, the Nylon mesh plays a crucial role in axon out growth. Experiments
carried out to optimize the 3D design using the Nylon mesh as one of the major

components is described in details in the following chapter

2.5 Setup of the 3D Axon Stretch Growth Device

The above 3D components have been built and machined by John Hoinowski, Lab
Supervisor of the Biomedical Engineering Department at the New Jersey Institute of
Technology. The design of the 3D components is created to scale using Computer Aided
Design (CAD) Software. The components are constructed of Polyetheretherketone
(PEEK) plastic because it is autoclavable and biocompatible with neuronal cultures. It
also allows the hydrogel to slip out for transplantation after stretch growth. The Nylon
mesh of fine and medium pore sizes is obtained from McMaster Carr. Figure 2.19 is the
images of the attached component with the “medium” pore size Nylon mesh. The towing
component with the “medium” pore size Nylon mesh is shown in Figure 2.20. The

alignment of the two components again each other is seen in Figure 2.21.



on mesh of Attachment point
"medium" pore size

ylon mesh glued
around the
component with
silicon glue

Figure 2.19 Attached component for the 3D design.

Attachment poi
on mesh of
"medium"'
pore size

Nylon mesh
attached around
the component
with silicon glue

Figure 2.20 Towing component for the 3D design.
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Towing
component

Attached
component

Nylon mesh
glued to each
component

Figure 2.21 Alignment of the attached and the towing component for the 3D design.

The setup of the 3D device is shown and explained in Figure 2.23. The 3D axon
stretch growth device moves in a linear fashion in each lane. Figure 2.23 (a) shows the
3D components aligned against each other. At this position the 3D cultures in each
component is in direct contact with each other allowing the axons from one half of the
culture to grow into the other half through the double Nylon mesh. Figure 2.23 (b) shows
that as elongation starts, the 3D components gradually separate from each other. Figure

2.23 (c) shows the 3D components further apart as elongation continues.
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Direction of
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Attached
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Figure 2.22 Assembly of the 3D Axon Stretch Growth Device. The two 3D components
are perfectly aligned against each other in the lane of the base frame. The attached
component is glued to the base frame with silicon glue and the towing component
similarly glued to the stretching frame. The components contain the collagen hydrogel
that forms the base of the 3D culture for the neurons. The 3D cultures are together when
the two components are aligned against each. This allows the two Nylon mesh to be in
contact and allows the axons to grow through the mesh into each of the adjacent 3D
cultures.
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2.6 Summary

The design of the 3D axon stretch growth device has been described in details in this
chapter. The essential parameters of the design have been summarized and the
importance of the parameters have been highlighted in the above sections. The 3D system
has been built and it is seen to fit the existing frame of the 2D system. Experiments
carried out to optimize the design parameters are explained in the following chapter. The
next chapter also describes the experimental protocol for the 3D device and the results

obtained.



CHAPTER 3

EXPERIMENTAL PROTOCOL AND RESULTS

3.1 Introduction

The design of the 3D axon stretch growth device has been discussed in Chapter 2. The
essential parameters to accomplish axon stretch growth of 3D cultures are: (1) the
dimension of the attached component and the towing component, (2) the choice of
hydrogel, and (3) the pore size of the Nylon mesh. The attached and towing components
are made to the specifications discussed in the previous chapter. These components have
been easily assembled into the existing axon stretch growth bioreactor and visual
alignment is achieved as shown in Figure 2.21 and Figure 2.23. This modified system
has been used to identify the optimal hydrogel and Nylon mesh pore size for 3D stretch
growth. Cultures of rat embryonic dorsal root ganglia (DRG) neurons are used in all
experiments. This chapter focuses on the description of the experimental setup to test the
parameters and the results obtained are described in Section 3.2. The chapter also
provides the experimental protocol for the 3D axon stretch growth device and explains

the observations in Section 3.3.
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3.2 Experimental Set-up of Essential Parameters and Observations

3.2.1 Determination of Optimal Hydrogel

A hydrogel, made from type 1 collagen from rat tail, is used to physically suspend DRG
neurons in a 3D culture. The mechanical properties of the collagen hydrogel can be easily
adjusted by varying the concentration of collagen in the hydrogel. The preferred protein
for DRG neurons is collagen because it supports DRG growth in both 2D and 3D culture
conditions. Type 1 collagen has been shown to not cause an adverse reaction when
implanted in vivo because it is highly biocompatible and thus, supports cell migration,
proliferation, cell adherence, and cell differentiation. Collagen, being natural, does not
cause an adverse reaction when implanted in vivo and does not degrade into toxic
components inside the body [61].

The purpose of the hydrogel is to provide an extracellular matrix like scaffold for
3D culture. The hydrogel confines the DRG explants in 3D, holds the 3D cultures in
place inside each component of the axon stretch growth system, and supports DRG axon
growth throughout the gel. The goal is to identify the optimal properties of the hydrogel
that will (1) allow rapid axon outgrowth to bridge the two populations of DRG explants
within each component and (2) provide adequate stiffness to hold the cultures in place
during separation of the 3D culture

Lower concentration collagen hydrogels (0.6 — 0.8 mg/mL) are less stiff
compared to the hydrogels having a higher concentration (2.0 — 4.0 mg/mL) of collagen.
While stiffer gels are easier to work with and manipulate, lower concentration gels allow
for more rapid axon outgrowth than the higher concentration gels [61]. In order to

achieve optimal axon outgrowth and mechanical stability for the 3D design, in this work,
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collagen concentrations of 0.8 mg/mL, 2.0 mg/mL and 3.2 mg/mL are tested for each of
the 3D components. The experimental set-up and the observations are discussed below.
Collagen hydrogel is made according to the standard protocol of Pfister et al [13].
Each 3D component of the axon stretch growth device can hold upto 250 uL of hydrogel.
In total, 500 pL of hydrogel solutions of 0.8 mg/mL, 2.0 mg/mL and 3.2 mg/mL collagen
hydrogel is made from measured amounts of 10X MEM, sterilized cell culture water, |M
concentration of NaOH, and collagen stock solution obtained from Becton, Dickinson
and Company (BD). All the ingredients are mixed in specific proportions on ice to
prevent the hydrogel from polymerizing. The ingredients and proportions to make 500 puL
of collagen hydrogel is given in Table 3.1. While the hydrogel mixture is still in the

liquid state, 250 pL of the solution is pipetted in each of the 3D components.

Table 3.1 Proportion of Ingredients for Collagen Hydrogel

500 pL of collagen
hydrogel 0.8 mg/mL 2.0 mg/mL 3.2 mg/mL
10 X MEM 50 puL 50 uL 50 uL
Sterilized Water 348.5 uL 196 pL 44 uL
IM NaOH 6 puL 10 pL 11 pL
Collagen stock solution
(4.0 mg/mL) 100 pL 250 uL 400 pL

Lower concentration collagen hydrogels require more time to polymerize and are
less viscous compared to higher concentration gels. For this design, the hydrogel must
adhere to the Nylon mesh without leaking out before polymerizing. Each hydrogel

concentration is examined and monitored to see if the hydrogel solutions seep out
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through the Nylon mesh during the course of pipetting and polymerizing.

Figure 3.24 0.8 mg/mL concentration of collagen hydrogel is pipetted into the attached
3D component. It is seen that during polymerization, the hydrogel leaks out through the
Nylon mesh of “medium” pore size.

Figure 3.24 shows 0.8 mg/mL collagen hydrogel solution inside the attached 3D
component. During the course of polymerization, the hydrogel, being less viscous, is
observed to leak out of the Nylon mesh. This shows that the lower concentration collagen
hydrogel lacks the mechanical stability required for suspending and containing the DRG
neurons inside the 3D components. If leak occurs, as shown in the figure, the two 3D
cultures cannot be formed and the cultures will no longer be separate.

Figure 3.25 shows the hydrogel containing a higher concentration of collagen (2.0
mg/mL and 3.2 mg/mL). The higher concentration collagen hydrogels require less time to

polymerize and the higher viscosity of the gel is observed to retain its structure inside

each 3D component. As seen in the image, the hydrogel adheres to the mesh but does not
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leak through. This allows the two 3D components to be in contact with each other and
encourage axon outgrowth through the double layer of mesh, yet conserve the separation

and the structural stability of the 3D cultures.

Figure 3.25 2.0 mg/mL and 3.2 mg/mL concentration of collagen hydrogel is pipetted
into the towing 3D component. It is seen that the hydrogel retains is structure and does
not leak out through the Nylon mesh of “medium” pore size.

From the above tests, it is concluded that higher concentration collagen hydrogel
best suits the purpose for the 3D design, as it retains its structure inside each component.
The collagen hydrogel is able to suspend the DRG neurons and provide adequate

mechanical stability. Henceforth, the experiments conducted in the later sections involve

the use of 2.0 mg/mL and 3.2 mg/mL concentration of collagen hydrogel.
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3.2.2 Choice of Nylon Mesh Pore Size

The Nylon mesh acts as a physical separator of the two 3D neuron cultures in each
component. The pore size of the Nylon mesh plays a crucial role in holding and
separating the hydrogels and allowing axon growth. Nylon meshes with pore sizes of 30
x 30 treads per inch or 160 um x 160 um ( “medium ” pore size), and 104 x 104 treads per
inch or 50 um x 50 pm (“fine ” pore size), are chosen so as to determine the effect of pore
size on axon outgrowth. The bigger pore size allows more axons to grow through the
mesh. The converse is true for the smaller pore size of the Nylon mesh. The outgrowth
of axons will in-tum determine the time point, i.e. time required to start the elongation
process. This corresponds to the time when most axons have grown across each mesh
into either half of the 3D culture. The experimental setup to test this parameter and the
results obtained are discussed below.

To test the ability of axons to growth through the Nylon mesh, the experimental
set up includes gluing a double layer of Nylon mesh in each well of a 24-well tissue
culture plate. The double layer mimics the setup of the actual 3D components: one of the
attached components and one of the towing components. In order for the axons to grow to
either population, the axons have to grow through both layers of mesh.

In order to form the double layer, Nylon mesh of each pore size is cut to match
the diameter of each well. To ensure that the double mesh is sturdy and vertically in place
across each well, rectangular pieces of thin glass are glued on either side of the cut pieces
of the Nylon mesh, as shown in Figure 3.26. Warped Nylon mesh inside the well cast

shadows while imaging under the phase contrast microscope making it difficult to image
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the axons that grow through the mesh. For this reason, the glass pieces help the Nylon

mesh to be vertical.

ore size nylon mesh

Glass
pieces

"fine" pore
~—— size nylon
- mesh

Figure 3.26 Double layer of Nylon mesh both “medium” and “fine” is secured with glass
pieces on either side for more stability.

Glass cover slips Nylon mesh walls

Figure 3.27 Nylon mesh walls secured in between two glass cover slips to prevent from
warping during the sterilization procedure.
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The Nylon mesh walls are then autoclaved in between two cover slip glasses
secured together (Figure 3.27). This prevents the Nylon mesh walls from further warping
once exposed to heat and pressure inside the autoclave. After sterilization, the Nylon
mesh walls are glued on the inner walls of each well with silicon glue inside sterilized
hood. The pieces of glass on the mesh walls also help to secure the glue firmly in
position. Figure 3.28 shows the Nylon mesh walls glued inside each well. The 24-well

plate is then let to dry inside the hood overnight.

Well
Nylon
mesh wall

Glass
pieces

Collagen
hydrogel

Collagen hydrogel placed in individual well

Figure 3.28 Nylon mesh walls are secured with silicon glue in each well of a 24-well
plate cell culture dish. After the glue dries, collagen hydrogel is pipetted in each well.
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Explants are plated only on one side of the mesh wall to make sure axons that do
grow through the mesh are originated from the DRG neurons plated on the other side.
This also helps minimize inconsistent data. Another 400 pL of hydrogel is pipetted on top
of the DRG explants and allowed to polymerize. In this way the DRG are “sandwiched”
in between two layers of hydrogel. Cell culture media is then placed in each well once the
hydrogels have completely polymerized. The cultures are then incubated and axons are
allowed to grow in culture. Figure 3.29 is a schematic of the procedure explained above.

Experiments are carried out using 2.0 mg/mL and 3.2 mg/mL collagen
concentration hydrogel with both “medium” and “fine” pore size of Nylon mesh. The cell
cultures in each well with the Nylon mesh are imaged using a Phase Contrast Light
Microscope (PCLM). Phase contrast images are obtained for specific time points of 2
days, 5 days, 7 days, 9 days, 14 days and 21 days to observe the axon outgrowth
behavior, and the time it takes for axons to grow across the double layer Nylon mesh of
mentioned pore sizes. In this section, two samples of each case are imaged and discussed.

Figure 3.30 and Figure 3.31 (a) and (b) show the phase contrast images for the
experimental setup with “medium” pore size Nylon mesh in 2.0 mg/mL collagen
hydrogel. Figure 3.30 shows the axon outgrowth from the DRG explants at day 2. Axon
outgrowth on day 2 is not sufficient to reach the Nylon mesh. However, on day 5 (Figure
3.31 (a)), axons are seen to just cross through the mesh, whereas on day 7 (Figure 3.31
(b)), the axon length, and number through the mesh, is more as compared to that on day

5.
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Similarly, Figure 3.40 shows axon outgrowth through “medium” pore size Nylon
mesh in 3.2 mg/mL at day 21. The density of axons on either side of the mesh is seen to
be comparable. However, in the stiffer gel (3.2 mg/mL concentration of collagen
hydrogel), the rate of axon outgrowth is slower.

Figure 3.41 is the image of experimental setup with “fine” pore size Nylon mesh
and 3.2 mg/mL collagen hydrogel on day 7. As seen from the figure, very few axons are
visible to grow through the double layer of Nylon mesh. Figure 3.42 shows the images
for the experimental setup with “fine” pore size Nylon mesh and 2.0 mg/mL collagen
hydrogel on day 14. Unlike the “medium” pore size Nylon mesh, the “fine” pore size of
the mesh allows fewer numbers of axons to grow through. Also, observations reveal that

the density of axons on either side of the mesh is not comparable: axons density on the

opposite side of the mesh is much less than that on the side of the DRG explants.

Figure 3.41 Day 7: axon outgrowth through the Nylon mesh of “fine” pore size in 3.2
mg/mL.
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dyes. Calcein AM is retained in cells having intact membranes and does not stain dead
cells. This property allows calcein to be used for fluorescence-based assays for cell
viability [62]. Calcein is used to stain the cells in each well and fluorescent images of the
live axons are obtained to track their growth direction through the mesh.

Calcein AM is obtained from Molecular Probes. The experimental set-up for the
calcein stain sample follows the same protocol as discussed above. The DRG explants are
allowed to grow in each well with the Nylon mesh walls. On day 5, the cultures are
stained with calcein AM according to the standard protocol attached with the product
description from Molecular Probes [62]. Staining with calcein AM renders a better image
compared to the phase contrast images and the effect of pore size on axon outgrowth is
clearly visible. Figure 3.43 and Figure 3.44 are the fluorescent images of axon outgrowth
through the “medium” pore size mesh in 2.0 mg/mL collagen concentration hydroge!l on
day 5 and day 7, respectively. It is evident from the images that almost all of the axons
from the DRG explants grow through the Nylon mesh of “medium” pore size. The
densities of axons on either side of the mesh are also comparable.

Figure 3.45 (a) and (b) are the calcein stained images of the DRG neurons and
axons. The figures show similar axon outgrowth on a second sample with “medium” pore
size mesh in 2.0mg/mL collagen hydrogel. The density of axons on either side of the
Nylon mesh is seen to be comparable showing the “medium” pore size allows most axons

to grow through the mesh
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density of axons growing in between each pair of 3D components. The time point of axon
outgrowth is important as it determines the point when to start the elongation process
once axons are fully grown in between each 3D component. Both, the concentration of
the collagen hydrogel, and the pore size of the Nylon mesh, determine the time point.

Collagen hydrogels with concentrations of 2.0mg/mL and 3.2 mg/mL are tested
with the “medium” and “fine” pore size mesh. Visual observation of the collagen
hydrogel concentration does not appear to affect the number of axons growing through
the Nylon mesh. From the observations discussed in Section 3.2.1, both the 2.0 mg/mL
and 3.2 mg/mL concentrations of collagen hydrogel work best in the 3D components
while providing structure and stability. However, observations discussed in Section
3.2.2, show that the rate of axon growth through the mesh is slower in the stiffer hydrogel
(3.2 mg/mL collagen concentration) when compared to the less stiff one (2.0 mg/mL).
The 3D axon stretch growth device calls for both fast and optimal axon outgrowth
through the Nylon mesh in each component in order to generate a continuous “flow” of
axons in between the two 3D neuron cultures. Hence, the 2.0 mg/mL collagen
concentration of hydrogel meets all requirements for the design. As seen from the phase
contrast and the fluorescent images, 2.0 mg/mL collagen hydrogel encourages a good rate
of axon growth through the Nylon mesh of either pore size, allowing the elongation
process to start at day 7.

The Nylon mesh pore size has an evident effect on the number and density of
axons growing through the mesh. Images presented in this section exhibit that the “fine”
pore size of the Nylon mesh obstructs the number of axons growing through the mesh

and so the density of axons on the opposite side of the mesh remains a lot less than that



69

compared to the density around the DRG explants. The “medium™ pore size however,
allows almost all axons to grow through the mesh resulting in an equal density of axons
on either side of the mesh. Hence, for the 3D design purpose, the “medium” pore size
Nylon mesh optimizes the density of axons.

The time required for axons to fully grow in between the two 3D cultures is an
important parameter as it determines when to start the elongation process. From the
images and observations done in Sections 3.2.1 and 3.2.2, it can be concluded that the
time it takes for all the axons to completely grow through the mesh is 7 days. Axons from
the DRG explants close to the mesh grow through within a period of 5 days. However, in
order for the axons (originating from the DRG explants further away from the mesh) to
cross the mesh, a period of one week is required. In all the images presented here, it can
be seen that on day 7 the number and density of axons growing through the Nylon mesh
is optimal for the 2 mg/mL collagen concentration hydrogel. In the 2D axon stretch
growth device, there is no hydrogel to suspend the neurons. The neurons grow in a 2D
plane on the extra cellular matrix of collagen. Thus the 2D setup allows the elongation
process to start on day 5 after the axons have fully grow into either 2D cultures In the 3D
setup, the use of the hydrogel is crucial, as emphasized earlier. The growth of axons in a
hydrogel thus, decreases the rate of axon outgrowth because axons grow three
dimensionally in multiple planes. Also the hydrogel being stiffer delays axon growth rate.
Hence, elongation process for the 3D design is determined on day 7 versus day 5 for the

2D setup.
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3.3 Experimental Set-up of the 3D Axon Stretch Growth Device

This section describes the experimental protocol for the 3D axon stretch growth device.
The setup of the device uses the optimized parameters that have been discussed in the
earlier sections. The setup of the 3D axon stretch growth device is similar to the 2D
setup. The device along with its 3D components are cleaned with soap and thoroughly
rinsed with sterilized reverse osmosis (RO) water and dried in a biological safety cabinet.
The Nylon mesh is cut to the size of the each 3D component. Next, a thin and even layer
of silicon glue is “painted” around the front edges of the component. A uniform thin layer
of glue is crucial because the thickness of the glue around the edges would result in a gap
in between the attached and the towing component when brought together and aligned
against each other in the stretching frame. Once the hydrogel is pipetted in the
components, as discussed below, this gap may hinder the hydrogel of the two
components to be in close contact with each other, thus disrupting the continuous path for
axon outgrowth.

The cut pieces of the Nylon mesh are firmly set in place on top of the glue around
the edges of the components. The bottom plane of the components is extremely thin
(approximately 5 mm as seen in Figure 2. 9) and as such, extra caution is taken to ensure
that the Nylon mesh is firmly in place on the front. If the Nylon mesh is not securely
glued to the bottom of the component then it can come off during the elongation process,
causing the 3D culture to leak out as shown in Figure 3.48. Figure 2.18 and 2.19 show the
Nylon mesh glued around the edges of each of the components. Once the Nylon mesh 1s

glued, the attached component is glued with silicon glue to the base frame and the towing
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working with cells at room terperature without disturbing the pH level. Imbalance in pH
in culture media may be harmful to the cells.

Each 3D component allows 250 pL of collagen hydrogel to be pipetted in. Hence
in total of 500 pL of collagen hydrogel of, 2.0 mg/mL is made according to the protocol
described in section 3.2.1. DRG explants are centrifuged to a pellet at the bottom of the
tube and the supernatant of L 15 culture media is removed. Then the DRG explants are
resuspended in the collagen hydrogel mixture and pipetted up and down to disperse the
pellet. Next, 250 pL of the collagen hydrogel mixture and the DRG explants is pipetted in
each of the component which is in close contact with each other. The 3D setup is then
placed inside the bioreactor and incubated until the hydrogel polymerizes. Next cell
culture media is placed on top and around the 3D components so as to fill the lane of the
base frame and incubated. Growth media consists of Neurobasal Medium (Invitrogen),
supplemented with B27 supplement, 1% fetal bovine serum (FBS), L-glutamine, 20 %
concentration glucose, and 10ng/ml nerve growth factor (NGF) (Becton Dickinson).
Mitotic inhibitors (MI) are used to inhibit the elimination of non-neuronal cells and
Penicillin/Streptomycin to prevent bacterial growth.

Observation reveals that the “medium” pore size Nylon mesh allows the culture
media to seep out of the components resulting in less media to be retained on top of the
hydrogel. Hence, by pipetting 1 mL of media on top of the cultures every day and
surrounding the cultures with media in the lane, ensures that the DRGs get adequate
nourishment.

The time point to start the elongation process is decided based on the experiments

discussed in Section 3.2.2. Once the axons have fully grown into either side of the 3D
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components after a duration of 7 days, elongation of the 3D setup is begun by the stepper
motor and controller.

Tests of the 3D axon stretch growth device have been carried out using 3D axon
stretch growth device. For the particular test shown below, the concentration of collagen
used was 2.0 mg/mL and DRGs from three rat embryos’ spinal cord. The 2D setup also
utilizes DRGs from three rat embryos’ spinal cord for each lane and hence the number of
DRGs was kept consistent for the 3D setup as well. Elongation process was started on
day 7. Stretching occurred at a rate of 1 mm/day for 10 days. Using the optimized
parameters as discussed earlier, axons was stretched to 1 cm in length. This shows that
the 3D components have been successful in stretching axons in the 3D cultures in the
fashion discussed above. Figure 3.50 and Figure 3.51 are the images of the 3D stretch
grown axons.

For another experiment axons were stretched to a length of 6 mm at a rate of 1
mm/day. 3.2 mg/mL collagen hydrogel was used as the base of the 3D cultures, culturing
DRG explants from three rat embryo spines. The images of axon growth through 3D
cultures are shown in Figure 3.52 (a) to (d) and in Figure 3.53 (a) and (b). Figure 3.52 (a)
to (c) are the phase contrast images of the stretched axons. The figures show that axon
stretch occurs in multiple planes. Figure 3.52 (d) and Figure 3.53 (a) and (b) are the

fluorescent images of the same set of axons, stained with calcein.
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determines the elongation process to start on day 7 when all the axons are fully grown
across both mesh for each component into either 3D neuron cultures.

Using the above optimized parameters axons have been stretched to a length of 1
cm at a rate of 1 mm/day for 10 days. The preliminary testing has shown the success of
the 3D axon stretch growth design.

The next chapter discusses the quantification method used to measure the cross
sectional area of the axon bundles stretched and grown using the current 2D device. The
chapter focuses on the use of confocal microscopy, and Nikon EZ-C1 FreeViewer

software for the purpose of quantifying axon bundles.




CHAPTER 4

QUANTIFICATION OF AXONS STRETCHED IN TWO-DIMENSION

4.1 Introduction

As discussed earlier in Chapter 3, the essential parameters of the 3D axon stretch growth
device have been tested. Using the chosen parameters, the 3D axon stretch growth device
has achieved axon stretch growth using 3D cultures. However, for 3D cultures to be
useful, the number of and axon bundle density of stretch-growing axons must be better
compared to 2D cultures. Such a comparison requires an understanding of the axon
profile (thickness) and cross-sectional area of axon bundles grown in 2D cultures. As a
result, in this chapter, a quantification method used to understand the profile of axon
bundles stretched using the 2D system is discussed. The quantification method uses the
confocal microscope to calculate the cross-sectional area of axon bundles. It can also be
used to analyze the effect of the rate of stretch growth on axon bundle cross-sectional
area. The preparation of the samples is discussed in Section 4.2 and the quantification of
axon bundle thickness is discussed in Section 4.3. The chapter also provides description

of the calculation method and the software used to validate the data obtained.
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4.2 Preparation of Samples

Confocal microscopy has proved to be a powerful imaging tool to quantify axon
outgrowth in various hydrogels and scaffold materials. Confocal microscopy eliminates
light collected from out of focus planes that degrades image quality, thereby offering an
advantage over other conventional techniques. Confocal microscopy also provides the
ability to collect serial optical sections from thick specimens to create 3D renderings. The
work discussed in this chapter takes advantage of this 3D scanning ability. The work is
carried out on the Confocal Microscope (NIKON) to measure of the cross sectional area
of the axon bundles stretched using the 2D axon stretch growth device. The samples
preparation of stretch grown axons is mentioned below.

The axons are stretched in 2D using the existing 2D axon stretch device. Stretch-
grown axons are then fixed with 4% paraformaldehyde (PFA) and treated with 0.1%
Triton X and 4% normal goat serum (NGS) in PBS at room temperature according to the
standard protocol of immunocytochemistry by Pfister et al. [13]. Immunocytochemistry is
a method that uses antibodies to target antigenic receptors on the cell membranes.
Primary antibodies in 4% NGS, and 0.1% Triton X in PBS are applied to the fixed axons.
The primary antibodies used are: SMI-31, Sternberger Monoclonals, in a dilution of
1:1000 specific to phosphorylated state of neurofilament fragment, and SMI-62,
Sternberger Monoclonals, in a dilution of 1:1000 specific to assembled forms of tubulin.
Next, the axons are treated with fluorescent secondary antibodies, IgG 488 Goat anti
Mouse (GaM) obtained from Molecular Probes, Eugene, OR. |

After being marked with fluorescent antibodies, the Aclar membrane containing

the 2D stretched axons is cut away from the base frame and mounted in between glass
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Figure 4.54 shows the confocal image of axon bundles stretched in 2D. Figure
4.54 (a) shows bifurcating axon bundle during stretch growth and Figure 4.54 (b) shows
the typical thicknesses of an axon bundle observed during stretch growth using the
current 2D device. It can be seen from these images that axons of different thicknesses
are observed during stretch growth. The following section describes the quantification
method used to calculate the cross sectional area of such axon bundles. It also discusses

the axon profile observed by the quantification method.

4.3 Quantification of Axons Stretched in 2D

The samples prepared using the above procedure are viewed and imaged using the
confocal microscope. The 3D scanning ability of the confocal microscope offers the
benefit to calculate the thickness of each axon bundle and the 2D tissue formed. The
cross-sectional area, along with the number of axons, can be used to estimate the axon
density for a particular region of the tissue. The thickness of each axon bundle is
determined using the confocal imaging software. The software allows the axon thickness
to be divided into individual slices of equal thickness (z-dimension) giving a 2D image of
each slice. A series of these 2D images of the slices in different planes are superimposed
together to create a 3D image of the axon with a depth. The 3D image created is used to
evaluate the cross sectional area of axons.

Figure 4.55 shows the schematic of the slices or layers through the thickness of

the axon bundle in the z-dimension. When all the 2D images of each slice are
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bundle of the same image and the average value, W, is calculated. The standard deviation
of the axon width values for each image is then used to calculate the error bar for the
average axon width calculation. The top and bottom layer images tend to be of a lower
resolution and hence the axon boundaries are not well defined. As a result for these
images, the error bars of the average axon width are higher than the error bar of the axon
width in the middle layers.

The cross-sectional area for axon bundles in each image, A, is obtained by the

product of the average axon width “W” and the thickness “z” for each slice as given by:
A =W.z 4.1

Here, A is the cross-sectional area for axon bundles in each image; W is the average
axon width and z is the thickness of each slice.
The total cross-sectional area for the axon bundle, A, is given by the sum of the

areas for each slice as:

A= A (42)

Here, A is the total cross-sectional area for axon bundles.

The effect of the stretch growth rate of axons on the thickness of the axon bundles
is discussed below. A stretch growth rate of (1) 6 mm/day, and (2) 1 cm/day for axons is
used to measure the cross-sectional area. The regions showing most number of axons of
varying thickness are used to calculate the axon width and the cross-sectional area.

Calculations for the regions of interest are discussed in the following sections.
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4.3.1 Axons Stretched Grown at a Rate of 6 mm/day
Figure 4.57 shows the confocal image of a region of stretched grown axons. This sample
of axons has been stretched at a rate of 6 mm/day over a span of one week. The axons are
fixed and mounted in glass cover slips by the method discussed earlier in this chapter. In
this region, two zones of axons, as marked in the figure, are chosen for quantification.
Figure 4.58 is the magnified image of zone 1 showing “Axon 1” and “Axon 2”.
This image is the reference layer of the axons where maximum resolution is obtained and
thus the boundaries of the axons are well defined. By means of the confocal imaging
software, the thickness of this zone is measured to be 22 um. This thickness is then
divided into 10 slices each with a thickness, z, of 2.2 um. Six of the ten slices are shown

in Figure 4.56 (a) — (f).
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images. This phenomenon is observed for most cases of axons that have been quantified
and are described below. Also, the axon widths in the initial images seem to be uneven,
resulting in a greater error as compared to the axon widths in the images of the reference
layers (middle of the slice) where the axon boundaries are clearly defined. At the
reference layer, the axon bundle width reaches a maximum of 31 pm. The axon
boundaries in the middle images are also clearly defined resulting is lower error: 0.2 pm
for image 5, 0.24 um for image 6 and 0.2 wm for image 7. The axon bundle width
decreases in the later images showing that the width decreases through the z-dimension
once the maximum is reached. The small increase in the axon bundle width at greater
depths (images 8 and greater) is due to the blurry images of the fluorescence glow
obtained at these sections.

Figure 4.59 (b) shows the bar graph of the axon cross-sectional area A, calculated
for individual slices. Each slice thickness is 2 pm and the area for each bar of given by
the product of the axon width and slice thickness as discussed earlier. The errors in the
initial images are seen to be higher: 10.6 pm for image 1 and 9.9 pm for image 2, than the
reference images: 0.4 um for image 6. The pattern of the cross-sectional area is similar to
that of the axon width, the axon cross-section being the maximum at the reference layer
at 68.64 umz and gradually decreasing to a value of 66.44 um®. The total cross-sectional
area, A, as given by the sum of the areas in images 3 to 10 is calculated to be 517 pm’,
For the calculation of the cross-sectional area of the axon bundle, the values obtained by
the initial images (image 1 and 2) are not taken into account because of the large error.
Errors more than 5 pm are discarded for calculation purpose. The pattern from the axon

bundle width reveals that the axon bundle is elliptical in shape.
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present one on top of another, in the z-dimension in this particular layer. The points
where the two axons bundles merge together, give the lowest axon width values. The
errors, 0.2 pum — 0.26 pm, in these regions are also relatively less as compared to the top
and bottom layers having an error of 1.35 um and 0.68 um, respectively. The peak value
of the axon width on the either sides are 10.8 um and 10 ums with an estimated error of
0.2 pm and 0.26 pm respectively. On either ends the axon bundle width tends to decrease.

Figure 4.62 (b) shows the graph of the axon cross-sectional areas for individual
slices. The pattern of the cross-sectional area is similar to that of the axon bundle width,
having a minimum of 16.93 um? with an error of 1.08 um? at image 6. The axon cross-
section is the maximum on either side of the minimum: 21.6 pm? and 20 pm®. The cross-
sectional are gradually decreases through the z-dimension following a similar pattern of
the axon width.

Figure 4.63 (a) shows the graphs of the width for “Axon 2” in Zone 2. The
maximum axon bundle width calculated is to be 22.8 um in image 5 (reference image)
with an estimated error of 0.48 um. On either side of the maximum the axon bundle
width seems to decrease. This pattern represents that this axon bundle is circular in shape.

Figure 4.63 (b) shows the graph of the cross-sectional areas of each slice. The
pattern of the cross-sectional area is similar to that of the axon width. The maximum
cross-sectional area for the reference slice is calculated to be 50.16 pm? at image 5 with
an error of 1.07 pm?. The total cross sectional area for this axon bundle is calculated to be

388.96 um’.






















100

Figure 4.69 show the magnified confocal image of zone 2 defined in Figure 4.64.
Two axon bundles, Axon 1, and Axon 2 are seen here. This image is the reference layer
of the axons where maximum resolution is obtained and thus the boundaries of the axons
are well defined. By means of the confocal imaging software this zone of axons has been
sliced into 10 layers in the z dimension to observe the axon bundle profile along the z-
dimension resulting in a thickness of 3 um.

Figure 4.70 (a) shows the graphs of the width for Axon 1 in Zone 2. Axon bundle
width is calculated for set of 10 images with slice thickness of 3 um. The maximum axon
bundle width calculated is to be 16 um in image 6 (reference image). On either side of the
maximum the axon width is seen to decrease. However, the top and bottom images have
a higher estimated error: (2.4 um for image 1, 2.5 um for image 2 and 0.6 um for image
10) in comparison to the middle images (0.25 um for image 5 and 0.0 um for image 6)
because of the undefined edges of the axon bundles in the images.

Figure 4.70 (b) shows the graph of the cross-sectional area of each slice which
follows the pattern of the graph for the axon bundle width. The maximum cross-sectional
area is calculated to be 48 pm? for image 6. The cross-sectional area for the axon bundle
given by the sum of cross-sectional areas for images is 433.3 pm®.

Figure 4.71 (a) shows the graphs of the width for Axon 2 in Zone 2. Axon bundle
width is calculated for set of 10 images with slice thickness of 3 pm. The maximum axon
bundle width calculated is to be 34.6 um in image 6 (reference image) with an estimated
error of 0.24 pm. On either side of the maximum the axon bundle width is seen to
decrease. The axon width in seen to gradually increase, reach a maximum, and then

gradually decrease to a value of 32 um.
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Figure 4.71 (b) shows the graph of the cross-sectional area of each slice which
follows the pattern of the graph for the axon width. The maximum cross-sectional area is
calculated to be 103.8 um’® for image 6. The cross-sectional area for the axon bundle
given by the sum of cross-sectional areas for images 1 to 8 is 774.6 pm®. The axon
profile is seen to be circular.

Axon bundles stretched using the existing 2D stretch growth device has been
imaged using the confocal microscopy. Quantification of the axon width using the Nikon
EZ-C1 3.20 FreeViewer has been carried out for various axon bundles. The following

table summarizes the axon profiles observed.

Table 4.2 Axon Bundle Cross-sectional Area and Axon Bundle Profile

Axon region Total Cross-secgional area, A Axon Profile
(um’)
6 mm/day
zone 1, axon 1 517.0 elliptical
zone 1, axon 2 193 elliptical
zone 2, axon 1 - joined
zone 2, axon 2 388.96 circular
1 cm/day
zone 1, axon | 122 circular
zone 1, axon 2 164.47 elliptical
zone 1, axon 3 136.26 elliptical
zone 2, axon 1 433.3 elliptical
zone 2, axon 2 774.6 circular

From the patterns observed in the images through the thickness of the axon
bundles, it can be inferred that most stretched axon bundles are somewhat elliptical in
shape. Figure 4.72 summarizes the interpretation method. If the pattern seen is somewhat

linear, the axon bundle is considered to be elliptical in shape through the cross-section. If
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Each axon bundle is made up of several axons. The quantification carried out
above gives a preliminary idea of the cross-sectional area of axon bundles that result in
2D stretching. The more the area of the axon bundle, the more number of axons it has. A
similar method of quantification can be used for measuring the axon bundle cross-
sectional area for axons stretched using the 3D device. Measurement of the cross-
sectional area of the 3D axon bundles would give us an insight into how the profile of
axon bundles change during the process of stretching. If the axon bundle cross-sectional
area (calculated using the above method) increases during the process of elongation, then
we can interpret that the number of axons in the bundle is increasing for the 3D stretch
growth and hence, the density of axons increase for the 3D setup.

It is believed that the EZ-C1 FreeViewer software gives room for erroneous data
as it involves a manual process to define the region of interest. The average value and the
standard error has been calculated but there still remains a certain degree of inaccuracy.
In order to overcome the errors, a Matlab Image Analysis Program can be used. The
program is under development by Yi Guo, Graduate student of the Biomedical
Engineering Department at the New Jersey Institute of Technology. The Matlab program
will allow for multiple image analysis simultaneously, generating an average width value

of each axon bundle for individual 2D images.

4.3.3 Measurement of Axon Density Across a Region
The above sections describe the method of calculation for axon bundle cross-sectional
area. The cross-sectional area of the axon bundles determine the density of axons, as

discussed earlier. An alternative method to quantify the density of axon involves



105

calculating the coverage of a given area by axon bundles. This coverage can be quantified
by calculating the ratio of the total cross-sectional area covered by axon bundles to the
cross —sectional area of the region under consideration.

As done previously, the thickness range of a particular region of stretched axons
is sliced in the z-dimension. Using the method of calculation described above, the cross-
sectional area, 4, of all the axon bundles visible in the region is calculated. The total
cross-sectional area, covered by all the axon bundles in a given region, Tuon-bundiess 1S

given by the sum of the individual cross-sectional areas, 4, of each axon bundles as:

T, axon—bundles — Z A (4-3 )

Here, A is the cross-sectional area for each axon bundle and Taon pundies iS total cross-
sectional area of all the axon bundles.

The dimension of each region is found using the EZ-C1 FreeViewer software.
The product of the dimension, y, of the region and the thickness of each slice, z, yields
the cross—sectional area, Y, of the given region for each slice. The sum of the cross
sectional areas for each slice, in turn, gives the total cross-sectional area of the region,
Tregion-

Y=yz (4.4)

Toion =27 (4.5)

Here, y is the dimension of the region, z is the thickness of each slice and Y is the cross-
sectional area of the region for each slice. Tiegion is the total cross-sectional area of the

region under consideration.
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Thus, the percentage, P, of the area covered by all the axon bundles to that of the

given region is calculated by:

P=(T,

aron-bundies’ Tregion) *100 (4.7)
Here, Taxon bundies, is the cross-sectional area covered by the axon bundles, Tiegion is the
total cross-sectional area of the region under consideration, and P is the percentage of
cross-sectional area covered by axon bundles to that of the given region.

Using the above method, two samples of axon regions have been analyzed as
explained below. The percentage of axon coverage is calculated through the middle of
each sample. By means of the confocal imaging software, the region of axons, Region 2
(as shown in Figure 4.73 (a)) has been sliced into 8 layers in the z dimension resulting in
a thickness of 4.1 pm for each slice. For each image, the axon width, w, is calculated
along the line specified in Figure 4.73 (a). This is done to ensure that a particular cross-
sectional area across the region is analyzed, where the axons are uniform in shape
through the z-dimension.

Figure 4.73 (b) shows the graph of the axon widths for all the axon bundles
visible in the region in each slice. Figure 4.73 (c) gives the graph for the cross-sectional
area, 4, of individual axon bundles through the z-dimension. Using the method of
calculation explained in Section 4.3.1, the sum of all the cross-sectional area is calculated
to be 6776.89 um®. The cross-sectional area of the region under consideration is
calculated to be 13677.6 pm®. The percentage, P, of the area covered by the axon
bundles to that of the region is found to be 49.54 %.

The region of axons, Region 2, (as shown in Figure 4.74 (a)) has been sliced into

8 layers in the z dimension resulting in a thickness of 3.05 um. For each image, the axon
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width, w, is calculated along the line specified in Figure 4.74 (a). This is done to ensure
that a particular cross-sectional area across the region is analyzed, where the axons are
uniform in shape through the z-dimension.

Figure 4.74 (b) shows the graph of the axon widths for all the axon bundles
visible in the region in each slice. Figure 4.74 (c) gives the graph for the cross-sectional
area, 4, of individual axon bundles through the z-dimension. The sum of all the cross-
sectional area is calculated to be 5807.81 pm’. The cross-sectional area of the given
region is calculated to be 16561.5 um®. The percentage, P, of the area covered by the
axon bundles to that of the entire region then found to be 35.07 %.

The above method gives a good comparison for the area covered by the axon
bundles in a defined region of interest. This technique may be applied across the entire
width of the tissue spanned by stretched axons to exactly measure the area covered by
axon bundles. The more the percentage of the region covered by stretched grown axons,
the more is the axon density. Axons stretched in 3D cultures can also be quantified in a
similar way. Since this method takes the z-dimension of the tissue into account, the axon

bundles through multiple planes, as produced by the 3D cultures, can be measured

properly.
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4.4 Summary

Axons bundles stretched using the existing 2D stretch growth device has been imaged
using the confocal microscopy. Using the Nikon EZ-C1 3.20 FreeViewer, the average
axon width for each image of the slice through the axon bundle has been measured and
the error for each calculation has been estimated for each value. The cross-sectional area
of axon bundles have been calculated by the sum of the area for each image through the
slice. The values have been graphed and the patterns observed confer that most axon
bundles are circular or elliptical in shape when stretch grown. It can also be seen that the
rate of axon stretch growth does not have an affect on cross-sectional area.

The observations about the axon bundle width and axon bundle cross sectional
area give insight into the axon profile of stretch-grown axons, which can be a powerful
tool in calculating the axon density of axons grown using the 2D verse the 3D system as

discussed above.



CHAPTER §

CONCLUSIONS AND FUTURE WORK

5.1 Conclusions

This section of the thesis highlights the main conclusions drawn on the basis of the work
done so far on the modifications of the 2D axon stretch growth device to accommodate
axons to be stretched in 3D cultures.

The 2D axon stretch growth device involves an in vitro tissue engineering method
to rapidly elongate numerous axon bundles under the application of mechanical forces.
The forces from stretching induce the longitudinal growth of axons at rates up to 1cm/day
in comparison to the growth rate of axons by a growth cone which is approximately
Imm/day. Using the device axons can be stretched to a desired length of upto 10 cm in
length at varying rates. The design of the existing 2D stretch growth device has been
discussed in details in Chapter 1.

While the uni-axial axon growth achieved with the 2D system is fast and efficient
there still remain a few limitations to this technique. Currently, axon stretch growth in 2D
procedure is optimized and the stretch-growing axons from DRG cultures are at maximal
density. Increasing the number and density of axons is required to optimize the final
nerve construct formed by the stretched axons, as discussed previously. For this purpose,
axons stretched in 3D cultures are required as the DRG explants will be distributed
uniformly. The 3D cultures will add depth to the culture to allow axons to cross the

interface in multiple planes.
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In a transplantation study, stretch grown axons from the 2D system were
supported in collagen hydrogel and rolled into a cylindrical structure to form a 3D
construct. It was found that this procedure did not provide the mechanical stability for
surgical purposes. Specifically, the extensive manipulation of axons in culture increased
the potential of damaging the nervous tissue. The 3D cultures can solve this limitation as
the final 3D culture can be matched to the geometrical confines of the rat spinal cord and
eliminate the need to roll the 2D culture into a 3D construct. The mechanical properties
of the 3D construct formed can be varied by forming a stiff hydrogel around the stretch
grown axons just prior to transplantation.

The goal of this research is to increase the density and the total number of axons
in the nerve construct. This will provide more nervous tissue for transplantation. This
thesis explains the modifications made to the existing 2D axon stretch growth device to
accommodate stretch growth of axon in 3D cultures. It is believed that 3D neuron
cultures may help to improve the number and density of axons by allowing axons to grow
in multiple planes at the same time thereby providing an improved transplantable nerve
construct.

In order to design a functional 3D system, the modifications include two
individual components: an attached component, which is kept stationary, and a towing
component that separates two halves of the 3D neuronal culture. The complete design of
the 3D axon stretch growth device has been described in details in Chapter 3. Collagen
hydrogel forms the basis of the 3D cultures. The cultures in hydrogel are held in each
component and the multiple layers of explants in the 3D cultures are physically separated

by a biocompatible Nylon mesh. The mesh also preserves axon outgrowth from one
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population of the neural culture into the other yet constrain the two half of the cultures
inside each component. The essential parameters of the design are: (1) the dimensions of
the 3D components (2) choice of the hydrogel for 3D culture (3) the porosity of the
Nylon mesh used to separate the 3D cultures.

Experiments have been carried out to test the various parameters. The details of
the experiments and the observations are discussed Chapter 3. The dimensions of the
components are designed to fit against each lane and also help distribute the DRG
explants uniformly throughout. The depth of each component is kept minimal so that
DRG explants are dispersed more towards the front end, closer to the mesh to enable
axons to grow efficiently across the mesh to the population of neurons on the other half
of the 3D culture.

The functions and the purpose of the hydrogel are to support the DRG explants,
provide nourishment and hold the 3D cultures in place inside each component. The
mechanical properties of the hydrogel determines (1) the rate of axon outgrowth and (2)
the mechanical stability. Both lower concentration gels (0.6mg/mL — 0.8mg/mL) and
higher concentration gels (2mg/mL and 3.2mg/mL) have been tested in each component.
Lower concentration gels are seen to leak out through the Nylon mesh unlike the higher
concentration gels that are seen to maintain its structure. Leaking of the hydrogel is not
preferred because it causes the 3D cultures to mix and no longer be separate. As such the
higher concentration gels (2mg/mL and 3.2mg/mL) are used in the components it is able
to suspend the DRG neurons.

Collagen hydrogel concentration of 2.0mg/mL and 3.2 mg/mL are tested with the

“medium” and “fine” pore size Nylon mesh. Experimental observations show that
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collagen hydrogel concentration does not affect the number of axons growing through the
either pore size of the mesh but influences the rate of axon outgrowth and the time point.

The rate of axon growth through the mesh is slower in the stiffer hydrogel (3.2
mg/mL collagen concentration) when compared to the less stiff one (2.0 mg/mL). As
seen from the phase contrast and the fluorescent images presented in Chapter Three, 2.0
mg/mL collagen hydrogel encourages a good rate of axon growth through the Nylon
mesh of either pore size.

Time point is an important factor because it allows the time for axons to fully
grow between the two 3D cultures and also determines when to start the elongation
process. From the experimental observations described in Section 3.2.2, it can be
concluded that the time it takes for all the axons to completely grow through the mesh is
day 7. Axons from the DRG explants close to the mesh grow through within a period of 5
days. However, in order for the axons (originating from the DRG explants further away
from the mesh) to cross the mesh, a period of one week is required. In all the images
presented in Section 3.2.2, it can be seen that on day 7 the number and density of axons
growing through the Nylon mesh is the optimal.

The Nylon mesh pore sizes of fine pore size (104 x 104 treads per inch or 50 pm x
50 pum) and medium pore size (30 x 30 treads per inch or 160 um x 160 pm) are
considered for the design. The pore sizes determine the number and density of axons
growing between each pair of 3D components.

The Nylon mesh pore size has an evident effect on the number and density of
axons growing through the mesh. Images presented in Section 3.2.2 exhibit that the “fine”

pore size of the Nylon mesh obstructs the number of axons growing through the mesh
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and so the density of axons on the opposite side of the mesh remains a lot less than that
compared to the density around the DRG explants. The “medium” pore size, being bigger
poses fewer barriers against axon outgrowth and allows almost all axons to grow through
the mesh resulting in an equal density of axons on either side of the mesh. Hence, for the
3D design purpose, the “medium” pore size Nylon mesh optimizes the density of axons
inbetween the two halves of the 3D cultures.

Using the optimal parameters, preliminary experiments have been run with the 3D
axon stretch growth device. Cell culture protocol using the 3D axon stretch growth device
has been established. Using the 3D system, axons have been stretched to 1cm and 0.6 cm
in length at a rate of Imm/day. This shows that the 3D components are able to stretch
axons in the fashion discussed above.

In order to determine whether axons stretched in 3D increases the number and
density of axons, as intended, the next step to this work involves the quantification of
axons grown using the 3D system. However, before the quantification of the 3D stretch
grown axons can be carried out, it is important to understand the axon profile of axon
stretched using the 2D device and form a basis of comparison for the 3D stretched axons.
Thus, axons in two separate samples, stretched using the existing 2D device (6 mm/day
and 1 cm/day), have been quantified using confocal microscope. The method of imaging
and calculation has been described in details in Chapter 4. The cross-sectional area of
axon bundles have been calculated using the Nikon EZ-C1 3.20 FreeViewer. From the
patterns of the axon width obtained it can be seen that axons are mostly elliptical and

2

circular in shape. The axon cross section varies from approximately 122 um® to
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approximately 774.6 um”. No difference in the axon profile is seen for axons stretched at
different rates.

The following section of this chapter discusses the future work that may be
carried out to optimize the 3D design and to quantify the axons grown using the 3D

system.

5.2 Future Work
The goal of the 3D modifications made to the existing 2D axon stretch growth device, is
to improve the number and density of axons by allowing axons to grow in multiple planes
at the same time thereby providing an improved transplantable nerve construct. The 3D
components have been designed and the parameters have been optimized as discussed
earlier. The 3D axon stretch growth device has shown to successfully stretch axons in 3D
cultures.

The next step to this work involves the optimization of the 3D axon stretch
growth device so as to fit the confines of the rat spinal cord and to determine whether the
3D system improves axon density.

Optimization of the design of the 3D components may help to make the process of
3D growth more efficient. From the experimental observations it is seen that for the
axons originating from the DRG neurons that are further from the mesh take longer to
grow through. In order to shorten the time frame and allow most axons to grow through

the mesh, the depth, d, of each component can be further reduced to 1.5 mm instead of 3
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mm. This will allow more DRG neurons to be pushed towards the mesh in a uniform
fashion. This in turn will help increase the number of axons growing through the mesh.

Experimental observations show that the Nylon mesh of “medium” pore size
allows most number of axons to grow through the 3D cultures and establishes a
continuous flow of axons from one half of the culture to the other. However, during cell
culture, the “medium” pore size of the Nylon mesh allows the culture media to flow out
of the components because of the bigger pore size. As a result, media had to pipetted on
top of the hydrogel inside each component every day. In order to prevent this, in the
future 3D design, the height, A, of the 3D components can be decreased to 4 mm instead
of 8 mm. This will make the components sit lower than the height of each lane of the
base frame which is 5 mm. When the lane is filled, the media will form a trough and the
components will be submerged in media. The DRG cells inside the hydrogel of each
component will then be exposed to sufficient culture media.

Once the DRG cells are plated in the hydrogel in each component, the growth of
the axons in the 3D cultures cannot be viewed under the microscope. This is because the
base of the attached and the towing 3D components is made of PEEK plastic that is
opaque and does not allow light to pass through. Hence, axon outgrowth from one half of
the culture to the other through the Nylon mesh cannot be viewed once inside the
components. In order to overcome this problem, the base of the future 3D components
can be made out of glass. Glass being transparent will allow light to pass through and
thus the axon outgrowth inbetween two halves of the culture can be properly viewed.
This will also help to visualize the health of the culture and determine axon outgrowth

inbetween each culture halves.
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In order to quantify axons grown in 3D cultures, a similar method of
quantification to the 2D, can be used. Axons grown using the 3D system can be fixed and
labeled using the standards protocol of Immunocytochemistry as described in Section 4.2.
Axons then can be cut away from the Nylon mesh and mounted between glass cover
slips, in order to combine all the planes of axons onto a single 2D plane to create an axon
sample similar to the ones prepared for the 2D system. The 3D axon samples can be
viewed and imaged. The confocal microscope can help take images of the slices through
the thickness of axon bundles. The cross-sectional area of axon bundles across the entire
tissue can be calculated using thicker slice thickness. The ratio of the sum of all the axon
bundle cross-sectional areas to that of the given region will yield an estimate of the
regions in the tissue covered with axons.

Measurement of the cross-sectional area of the 3D axon bundles would give us an
insight into how the profile of axon bundles change during the process of stretching. As
mentioned earlier, each axon bundle is made up of numerous axons. If the axon bundle
cross-sectional area increases during the process of elongation, then we can interpret that
the number of axons in the bundle is increasing for the 3D stretch growth. The
comparison of the values of the axon bundle cross-section area would show whether
axons stretch grown in 3D yield similar area of cross sectional for axon bundles. If the
area tend to be larger, then we can interpret that there are more axons in each axon
bundle, hence, a higher axon density. It can be used to compare the axon bundle profiles
for the 2D verses the 3D stretched axons.

As seen from the observations in Chapter 4, the measuring tool in EZ-Cl

FreeViewer software could lead to erroneous data as it involves a manual process to
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define the region of interest. The average value and the standard errors have been
calculated but there still remains a certain degree of inaccuracy. In order to overcome the
errors, Matlab Image Analysis Program can be used. The program is under development
by Yi Guo, Graduate student of the Biomedical Engineering Department at the New
Jersey Institute of Technology. The Matlab program will allow for multiple image
analysis simultaneously, generating an average width value of each axon bundle for
individual 2D images.

The findings of the research described above provides a basis to develop an
optimized 3D axon stretch growth device that provides a foundation for developing a
functional 3D nerve tissue construct. The experiments aimed at quantifying the number
of axons in the 3D setup will give direction into optimizing the number and density of
axons stretch grown using the 3D setup. If the 3D system is indeed successful in
improving the density of axons, the research will provide insights into the 3D growth
mechanisms of axons and an improved nerve construct for transplantation purposes can

be developed.
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