
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

KERBEROS SECURE PHONE MESSENGER

by
Nabeel Al-Saber

Security is becoming vital in today's open insecure Internet. While popular Internet

enabled mobile devices are spreading widely, the security of such platforms is not

maturely addressed. This research extends the popular Kerberos authentication protocol

to run on mobile phones and builds a novel Kerberos Secure Phone Messenger (KSPM)

on top of the protocol. Moreover, the Kerberos network authentication protocol provides

user authentication and message privacy with the convenience of secret key

cryptography. Such an advantage in mobile phones helps reduce the computational

burden and power consumption if compared with public key cryptography. KSPM

achieves high standards in terms of security, performance and power consumption. This

thesis explains Kerberos authentication and illustrates the software implementation of the

protocol and KSPM. Furthermore, it analyzes the performance and power consumption

required by KSPM.

KERBEROS PHONE SECURE MESSENGER

by
Nabeel Al-Saber

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

January 2008

APPROVAL PAGE

KERBEROS PHONE SECURE MESSENGER

Nabeel Al-Saber

—Dr. Sotirios G. Ziavras, Thesis Advisor 	 / —Date
Professor of Electrical and Computer Engineering, NJIT

•Dr. Roberto Rojas-Cessa, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

Dr. Jie Hu, Committee Member 	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Nabeel Al-Saber

Degree:	 Master of Science

Date:	 January 2008

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2008

• Bachelor of Science in Computer Engineering,
University of Jordan, Amman, Jordan, 2006

Major:	 Computer Engineering

Presentations and Publications:

Majid A. Al-Taee, Omar B. Khader and Nabeel A. Al-Saber,
"Remote Monitoring of Vehicle Diagnostics and Location Using a Smart Box
with Global Positioning System and General Packet Radio Service,"
IEEE/ACS International Conference on Computer Systems and Applications
(AICCSA 2007), Amman, Jordan, pp. 385-388, May 2007.

iv

This project is dedicated to my family, who gave me all the love and support to

accomplish this tough mission. It is dedicated also to all my beloved ones who stood

behind me and charged me with enough power to run this long rugged journey

ACKNOWLEDGMENT

It is difficult to express my gratitude to Professor Constantine Manikopoulos. With his

wisdom, his inspiration, and his dedication, he guided me to fulfill this project. Even

when he was going through his disease, he kept helping me until the last moments of his

life.

I would like also to express my dearest appreciation and admiration to Professor

Sotirios Ziavras. Throughout my second thesis semester, he provided brilliant ideas,

encouragement, sound advice, supervision, and good company. I would have been lost

without him.

Special thanks are given to Professor Roberto Rojas-Cessa for sharing his

knowledge and wisdom with us during the courses I took with him. I also wish to thank

Professor Jie Hu for serving on my defense committee. Finally, I would like to express

my gratitude to many people who have influenced me and helped in carrying out this

project.

vi

TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Motivation 	 1

1.2 Objectives 	 2

1.3 Organization 	 2

2 KERBEROS PROTOCOL 	 3

2.1 Kerberos Infrastructure 	 3

2.1.1 Key Distribution Server (KDC) 	 4

2.1.2 Kerberos Keys 	 7

2.1.3 Kerberos Tickets	 8

2.1.4 Realms, Principals, and Instances 	 11

2.2 Kerberos Operation 	 11

2.2.1 Authentication Server (AS) Exchange 	 14

2.2.2 The Ticket-Granting Service Exchange 	 16

2.2.3 The Client/Server Exchange 	 17

2.3 Kerberos Services and Benefits 	 19

2.3.1 Kerberos Services 	 19

2.3.2 Kerberos Benefits 	 21

	

3 SOFTWARE IMPLEMENTATION 24

3.1 Kerberos Secure Phone Messenger (KSPM) Architecture 	 24

3.1.1 Instant Messaging Architecture 	 24

3.1.2 Kerberos Secure Phone Messenger (KSPM) Architecture 	 26

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3.2 KSPM Software Implementation 	 27

3.2.1 KSPM Kerberos Client 	 28

3.2.2 KSPM Kerberos Key 	 33

3.2.3 KSPM Kerberos Ticket 	 35

3.2.4 KSPM Main and Communications 	 35

3.3 Messenger Server Implementation 	 36

3.3.1 Messenger Server Class 	 38

3.3.2 MessengerServerAuth Class 	 39

3.3.3 MessengerClientAuth Class 	 40

3.3.4 Receive Class 	 42

4 SOFTWARE PERFORMANCE AND POWER ANALYSIS 	 43

4.1 Performance 	 43

4.1.1 Distribution of CPU Cycles 	 44

4.1.2 Execution Time 	 47

4.2 Memory Requirements 	 49

4.3 Power Consumption 	 51

4.4 Network Performance 	 54

5 CONCLUSIONS AND FUTURE RESEARCH 	 58

5.1 Conclusions 	 58

5.2 Future Research 	 58

APPENDIX A AUTHENTICATION SERVICE EXCHANGE MESSAGES 	 61

viii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

APPENDIX B SOFTWARE OPERATIONS 	 69

REFERENCES 	 72

ix

LIST OF TABLES

Table Page

3.1 Main Functions Description 30

4.1 Estimated Execution Time on Three Different Processors 	 47

4.2 ARM Processor Power Consumption for the Application 52

A.1 Authentication Service Request Message Fields 61

A.2 Authentication Server Reply Message Fields 	 62

A.3 Ticket-Granting Service Request Message Fields 64

A.4 Ticket-Granting Server Reply Message Fields 65

A.5 Application Server Request Message Fields 66

A.6 Application Server Reply Message Fields 67

LIST OF FIGURES

Figure Page

2.1 Kerberos authentication 4

2.2 Basic Kerberos message exchange 13

2.3 Kerberos authentication service 14

2.4 Kerberos ticket-granting service 16

2.5 Kerberos application server 18

3.1 Application architecture 27

3.2 Kerberos client class members 29

3.3 Messages exchange for Kerberos authentication 	 33

3.4 Kerberos key class members 34

3.5 Ticket and key class members 35

3.6 Messenger server application classes and members 37

3.7 Messenger server application classes diagram 38

4.1 Profiler 44

4.2 Distribution of CPU cycles used by the main parts in the program 	 45

4.3 Percentage of CPU cycles for main routines in Kerberos protocol 	 46

4.4 Estimated execution time (for VM instructions) on three different
processors 	 48

4.5 Estimated execution time for major application parts assuming a 200MHz
processor executing 220MIPS. Direct implementation of VM instructions is
assumed 48

4.6 Memory monitor 49

4.7 JVM vs. application size 50

4.8 Data types allocation for Kerberos routines 51

xi

LIST OF FIGURES
(Continued)

Figure Page

4.9 Estimated power consumption for the application using VM
instructions 53

4.10 Hardware component distribution of power consumption 54

4.11 Network monitor 55

4.12 Kerberos messages exchange showing messages size 	 57

B.1 Two clients using KSPM to exchanging messages 	 70

B.2 Messenger Server as an intermediate point between clients 	 71

xii

CHAPTER 1

INTRODUCTION

1.1 Motivation

Today, most of popular instant messaging networks are designed for scalability and

performance rather than security. The use of instant messaging in the workplace creates

potential threats to corporate computer security. Therefore, sensitive data should not be

exchanged over insecure instant messengers. The instant messaging architecture does not

provide a means for authenticating users or verifying that a message really originated

from the sender. Hence, a hacker can not only inject messages into an ongoing chat

session, but can also hijack an entire session by impersonating one of the users.

To address these security issues, major instant messaging network providers like

Microsoft, AOL, and Yahoo have announced corporate versions of their products. The

corporate versions encrypt data transmitted over the network and provide additional

functionalities such as central logging, user access controls, and corporate screen names.

As security is being recently added to desktop instant messaging, mobile phones

are not yet targeted by these new secure messengers. While smart phones are becoming

very popular with WiFi support, more security should be considered for Internet

applications. Nowadays, many corporations are using these smart phones for shipments

handling and other purposes. Hence, in the near future security will become the first

priority for these platforms.

The Kerberos Secure Phone Messenger (KSPM) introduced in this thesis is the

first mobile phone messenger that provides Kerberos security. Kerberos authentication

protocol is known as one of the best secure protocols in the literature. The main

1

2

advantage of Kerberos over most of the known security protocols is using symmetric key

cryptography. As this messenger is targeted for resource limited platforms (mobile

phones), symmetric key cryptography is the best choice for providing security.

1.2 Objectives

This research intends to build a secure messenger for mobile phones using Kerberos

protocol. The application should not only be secure but it should also be designed to

provide performance efficiency. The resulting application is designed to provide

functionalities for home users and corporations users.

The main objectives behind this thesis are the following:

• Implement Kerberos security protocol on mobiles.

• Build KSPM using Kerberos protocol.

• Analyze the performance, memory and power requirements for KSPM.

1.3 Organization

The thesis is organized as follows: Chapter 1 states the motivation and objectives behind

this research. Chapter 2 examines the literature review of the Kerberos protocol, it's

advantages and benefits. Chapter 3 discusses the software implementation of the project.

Chapter 4 analyzes the performance, memory and power requirements for KSPM.

Finally, Chapter 5 presents conclusions and future research directions.

CHAPTER 2

KERBEROS PROTOCOL

The Kerberos Network Authentication Service [1, 2, 3, 4, 5, 6, 7] provides the means of

verifying the identities of principals on an open, potentially insecure network. It allows

individuals communicating over an insecure network to prove their identity to one

another in a secure manner. The Kerberos Authentication Service was developed by the

Massachusetts Institute of Technology (MIT) to protect the emerging network services

provided by Project Athena [2]. Versions 1 through 3 were used internally. Although

designed primarily for use by Project Athena, Version 4 of the protocol has achieved

wide spread use beyond MIT. Version 5, defined in RFC 1510, of the Kerberos protocol

incorporates new features suggested from experience with Version 4, making it useful in

more situations. Version 5 was based in part upon input from many contributors familiar

with Version 4.

Kerberos prevents eavesdropping or replay attacks, and ensures the integrity of

the data. Its designers aimed primarily at a client-server model, and it provides mutual

authentication where both the user and the server verify each other's identity [3]. This

chapter describes Kerberos model and basic protocol exchanges.

2.1 Kerberos Infrastructure

The Kerberos Key Distribution Center (KDC), tickets, keys, and other terminologies are

explained in this section. Kerberos works on the basis of "tickets" which serve to prove

the identity of users. The KDC maintains a database of secret keys; each entity on the

3

4

network, whether a client or a server, shares a secret key known only to itself and to the

KDC. Knowledge of this key serves to prove an entity's identity. For communication

between two entities, the KDC generates a session key which they can use to secure their

interactions. The three main parts of the Kerberos Physical infrastructure are: KDC, client

user and server with the desired service to access.

Figure 2.1 Kerberos authentication [3].

2.1.1 Key Distribution Server (KDC)

KDC is the heart and soul of the complete Kerberos infrastructure. The KDC consists of

three logical components [4]: a database of all principals and their associated encryption

keys, the Authentication Server, and the Ticket Granting Server. While each of these

components is logically separate, they are usually implemented in a single program and

run together in a single process space.

In a given Kerberos realm, there must be at least one KDC. Vital data including

the secrets for every principal in the realm is located on every KDC in the network. Thus,

it is critical that those servers should be as secure as possible. Each KDC contains a

database of all of the principals contained in the realm, as well as their associated secrets.

Most KDC software also stores additional information for each principal in this database,

5

such as password lifetimes, last password change, and more. Windows 2000 and 2003

keep this database in the Active Directory, its LDAP store.

2.1.1.1 KDC Architecture. KDC is divided into two parts based on functionality. Each

part provides services to the other part. The two parts are the Authentication Server (AS)

and Ticket Granting Server (TGS).

Authentication Server (AS) [4] issues an encrypted Ticket Granting Ticket (also

known as a TGT) to clients who wish to login to the Kerberos realm. The client does not

have to prove its identity to the KDC; instead, the TGT that is sent back to the client is

encrypted in the user's password. Since only the user and the KDC know the user's

password, when the login process attempts to decrypt the ticket using the password

supplied by the user, only the correct password will correctly decrypt the ticket. If an

incorrect password is used, the ticket will decrypt into garbage, and the user is prompted

to try again. The TGT returned by the Authentication Server can then be used, once

decrypted by the client, to request individual service tickets. The TGT is the crucial piece

that eliminates the requirement for a user to retype their password for each subsequent

service they contact.

Ticket-Granting Service (TGS) [4] issues tickets for admission to other services

in the TGS' s domain. When a client wants access to a service, it must contact the ticket-

granting service in the service's account domain, present a TGT, and ask for a ticket. The

Ticket Granting Server takes in two pieces of data from the client: a ticket request that

includes the principal name representing the service the client wishes to contact, and a

Ticket Granting Ticket that has been issued by the Authentication Server. The TGS

verifies the TGT is valid and then issues the user the service ticket he requested.

6

2.1.1.2 KDC Advantages and Disadvantages. 	 The main advantage of using a KDC

is that it makes key distribution much easier. If any node wants to join the network, we

just need to setup a Key between the node and the KDC. Also in case some node is

suspected of being compromised, the setup again needs to be changed for just one place.

The alternative to KDC will be for nodes to share keys between themselves depending on

what service they may need to access.

Although KDC authentication has its advantages [5], it has disadvantages as well.

• The KDC has enough information to impersonate any one on the network so if it
is compromised all the network resources are open to attack.

• The KDC is the single point of failure. If it goes down nobody can access
anything [5].

• The KDC can become a bottleneck as far as performance is concerned, because
everyone frequently needs to access it. Having multiple KDC's can alleviate this
problem, but then again the complexity may be an issue.

After understanding the basics of the Kerberos architecture, the next section goes

deeper and takes a look at the logical infrastructure, the key structure, the ticket types,

etc. The various physical components of Kerberos contain a number of logical attributes

which are of prime importance for Kerberos to work properly.

Kerberos authentication relies on several keys and key types for encryption. Key

types can include long-term symmetric keys, long-term asymmetric keys, and short-term

symmetric keys. The authentication protocol was designed to use symmetric encryption,

meaning that the same shared key is used by the sender and the recipient for encryption

and decryption.

7

2.1.2 Kerberos Keys

To authenticate entities, Kerberos uses symmetric key cryptography. In symmetric key

cryptography, the communicating entities use the same key for both encryption and

decryption. The basic mathematical equation behind this process is the following:

DK(EK(M)) M (2.1)

If the encryption (E) and decryption (D) processes are both using the same key K,

the decryption of the encrypted text (M) results in the readable text (M). There are two

types of keys in Kerberos: long-term symmetric keys and short-term symmetric keys.

The master key (long-term symmetric key) [6] is a secret key that is shared

between each entity and the KDC. It must be known to both the entity and the KDC

before actual Kerberos protocol communication can take place. The master key is

generated as part of the domain enrollment process and is derived from the user, machine,

or service's password. The transport of the master key over a communication channel is

secured using a secure channel.

The master keys (long-term symmetric keys).

• User keys -When a user is created, his/her password is used to create the user
key. In the KDC domain, the user key is stored with the user's object in the
KDC. At the workstation, the user key is created when the user logs on [6].

• System keys - When a workstation or a server joins a Kerberos domain, it
receives a password. Similar to a user account, the system account's password is
used to create the system key [6].

• Service keys - Services use a key based on the account password used to log on.
All KDC's in the same realm use the same service key [6].

8

Short-term symmetric keys are session keys [6]. A session key is a secret key that

is shared between two entities for authentication purposes. The session key is generated

by the KDC. Because it is a critical part of the Kerberos authentication protocol, it is

never sent in the clear over a communication channel: It is encrypted using the master

key. The session keys used for ticket-granting tickets (TGTs) and service tickets are

short-lived, and used only as long as that session or service ticket is valid.

2.1.3 Kerberos Tickets

The main component of Kerberos authentication is the ticket. A Kerberos ticket [5] is an

encrypted data structure issued by the KDC that includes a shared encryption key, unique

to each session, along with other fields. Tickets serve two purposes: to confirm the

identity of the end participants and to establish a short-lived encryption key that both

parties can share for secure communications (called the session key). There are two types

of tickets, used in Kerberos authentication as explained below, TGTs and service tickets.

2.1.3.1 Ticket-Granting Ticket (TGT). The KDC responds to a client's

authentication service request by returning a service ticket for it. This special service

ticket is called a ticket-granting ticket (TGT) [4, 6]. A TGT enables the authentication

service to safely transport the requester's credentials to the ticket-granting service.

The TGTs are encrypted with a key shared by the KDC. The client cannot read

tickets. Only KDC servers can read TGTs to secure access to user credentials, session

keys, and other information. Like an ordinary service ticket, a TGT contains a copy of the

session key that the KDC will use in communicating with the client. The TGT is

encrypted with the KDC's long-term key.

9

Clients use the TGT to request a service ticket when accessing a certain service.

Before a client attempts to connect to any service, the client first checks its credentials

cache for a service ticket to that service. If it does not have one, it checks the cache again

for a TGT. If it finds a TGT, the client fetches the corresponding TGS session key from

the cache, uses this key to prepare an authenticator, and sends both the authenticator and

the TGT to the KDC, along with a request for a service ticket.

The KDC uses the TGT to avoid the performance penalties of looking up a user's

long term key every time the user requests a service. The KDC looks up the user's long-

term key only once, when it grants an initial TGT. For all other exchanges with this

client, the KDC can decrypt the TGT with its own long-term key, extract the session key,

and use that to validate the client's authenticator.

2.1.3.2 Service Tickets. A service ticket [4, 6] enables the ticket-granting service

(TGS) to safely transport the requester's credentials to the target server or service. The

KDC responds to the client's request to connect to a service by sending both copies of the

session key to the client. The client's copy of the session key is encrypted with the key

that the KDC shares with the client. The service's copy of the session key is embedded,

along with information about the client, in a data structure called a service ticket. The

entire structure is then encrypted with the key that the KDC shares with the service. The

ticket is the client's responsibility to manage until it contacts the service.

A service ticket is used to authenticate with services other than the TGS and is

meant only for the target service. A service ticket is encrypted with a service key, which

is a long-term key shared by the KDC and the target service. Thus, although the client

manages the service ticket, the client cannot read it. Only the KDC and the target service

10

can read tickets, enabling secure access to user credentials, the session key, and other

information. One thing to note here is that the KDC is simply providing a ticket-granting

service. It does not keep track of its messages to make sure they reach the intended

address. No harm will be done if the KDC's messages fall into The wrong hands. Only

someone who knows the client's secret key can decrypt the client's copy of the session

key. Only someone who knows the server's secret key can read what is inside the ticket.

When the client receives the KDC's reply, it extracts the ticket and the client's copy of the

session key, putting both aside in a secure cache (located in volatile memory, not on

disk). When the client wants admission to the server, it sends the server a message that

consists of the ticket, which is still encrypted with the server's secret key, and an

authenticator, which is encrypted with the session key. The ticket and authenticator

together are the client's credentials to the server. To guard against the possibility that

someone might steal a copy of a ticket, service tickets have an expiration time that is

specified by the KDC in the ticket's data structure.

2.1.3.3 Client's Tickets Information. A client needs to have some information

about what is inside tickets and TGTs in order to manage its credentials cache. When the

KDC returns a ticket and session key as the result of an authentication service (AS) or

ticket-granting service (TGS) exchange, it packages the client's copy of the session key in

a data structure that includes the information in the following ticket fields: Authentication

Time, Start Time, End Time, and Renew Till [6]. In order to reduce the risk that a ticket

or the corresponding session key might be compromised, administrators can set the

maximum lifetime for tickets. The maximum lifetime for ticket setting is an element of

the Kerberos policy.

11

2.1.4 Realms, Principals, and Instances

Every entity contained within a Kerberos installation, including individual users,

computers, and services running on servers, has a principal [4] associated with it. Each

principal is associated with a long-term key. This key can be, for example, a password or

pass phrase. Principals are globally unique names. To accomplish this, the principal is

divided into a hierarchical structure.

Every principal starts with a username or service name. The username or service

name is then followed by an optional instance. The instance [4] is used in two situations:

for service principals (which well discuss later), and in order to create special principals

for administrative use. For example, administrators can have two principals: one for day-

to-day usage and another (an "admin" principal) to use only when the administrator needs

elevated privileges.

The username and optional instance, taken together, form a unique identity within

a given realm [4]. Each Kerberos installation defines an administrative realm of control

that is distinct from every other Kerberos installation. Kerberos defines this as the realm

name. By convention, the Kerberos realm for a given DNS is the domain converted in

uppercase.

2.2 Kerberos Operation

Before going into the details of Kerberos message exchange, we look at how basic

Kerberos authentication works. In the next section, each and every step is explained in

detail.

12

The Kerberos authentication steps [1] (Figure 2.2):

• A client authenticates itself to the KDC by sending the pre authentication data.

• The KDC sends the TGT which can be used by the client to authenticate itself in
the following transactions.

• A client sends a request to the authentication server (AS) for the "credentials" of
a given server.

• The AS responds with these credentials, encrypted with the client's key. The
credentials consist of a "ticket" for the server and a temporary encryption key or
a "session key".

• The client transmits the ticket (which contains the client's identity and a copy of
the session key, all encrypted with the server's key) to the server.

• The session key (now shared by the client and server) is used to authenticate the
client and may optionally be used to authenticate the server. It may also be used
to encrypt further communications between the two parties or to exchange a
separate sub-session key to be used to encrypt further communication.

Figure 2.2 Basic Kerberos message exchange.

The Basic Kerberos exchange is divided into 3 parts:

• Authentication Server (AS) exchange

• Ticket Granting Server (TGT) exchange

• Client/ Server Exchange

13

14

2.2.1 Authentication Server (AS) Exchange

Kerberos Authentication Service Request (KRB_AS_REQ)

The client contacts the KDC's authentication service for a short-lived ticket (TGT). This

is done at login. The Kerberos client on the workstation sends the message

KRB_AS_REQ to the KDC.

Figure 2.3 Kerberos authentication service [6].

The message includes [1]:

• The user principal name.

• The name of the account domain.

• Pre-authentication data encrypted with the user's key derived from the user's
password.

The KDC has a copy of the user's key in its account database (i.e. Microsoft

Active Directory). When it receives a request from the Kerberos client on the user's

workstation, it takes the user key from a field in the record. This process of computing

one copy of the key from a password and fetching another copy of the key from a

database actually takes place only once, when a user initially logs on to the network.

Immediately after accepting the user's password and deriving the user's long-term key,

the Kerberos client on the workstation requests a service ticket and a TGS session key

that it can use in subsequent transactions with the KDC during this logon session.

15

The optional pre-authentication data is used to verify the user during the login

session. The KDC decrypts the pre-authentication data and evaluates the embedded

timestamp. If the timestamp passes the test, the KDC can be assured that the pre-

authentication data was encrypted with the user key and thus it can verify that the user is

genuine. After it has verified the user's identity, the KDC creates credentials that the

Kerberos client on the workstation can present to the ticket-granting service.

Kerberos Authentication Service Response (KRB_AS_REP)

The AS constructs the TGT and creates a session key that the client can use to encrypt

communications with the ticket-granting service (TGS) [1]. The TGT has a limited

lifetime. At the point that the client has received the TGT, the client has not been granted

access to any resources, even to resources on the local computer.

The KDC replies with KRB__AS_REP [6] containing a service ticket (TGT) for

itself. This TGT contains a copy of the session key that the service (KDC) will use in

communicating with the user. The message that returns the TGT to the user also includes

a copy of the session key that the user can use in communicating with the KDC. The TGT

is encrypted with the KDC's long-term key. The user's copy of the session key is

encrypted with the user's long-term key.

The message includes [1, 6]:

• A TGS session key for the user to use with the TGS, encrypted with the user key
derived from the user's password.

• A TGT for the KDC encrypted with the TGS key (KDC master key). The TGT
includes a TGS session key for the KDC to use with the user and authorization
data for the user.

16

When the client receives the KDC's reply to its initial request, the client uses its

cached copy of the user key to decrypt its copy of the session key. It can then discard the

user key derived from the user's password, for it is no longer needed. In all subsequent

exchanges with the KDC, the client uses the TGS session key. Like any other session

key, this key is temporary, valid only until the TGT expires or the user logs off. For this

reason, the TGS session key is often called a logon session key.

2.2.2 The Ticket-Granting Service Exchange

Kerberos Ticket-Granting Service Request (KRB_TGS_REQ)

When the client wants to access a service, it sends a request to the TGS for a ticket. This

ticket is referred to as a service ticket. To get the ticket, the client presents the TGT, an

authenticator, and the name of the target server.

The message includes [1, 6]:

• The name of the target computer.

• The name of the target computer's domain.

• The user's TGT.

• An authenticator encrypted with the session key the user shares with the KDC.

17

Kerberos Ticket-Granting Service Response (KRB_TGS_REP)

The TGS examines the TGT and the authenticator. Then, the TGS creates a sub-session

key for the user to share with the computer encrypted with the session key. The message

also includes a service ticket to the computer, encrypted with the computer's secret key.

The service ticket includes: A session key for the computer to share with the user and

authorization data copied from the user's TGT.

The KRB_TGS_REP [1, 6] message includes:

• A session key for the user to share with the computer encrypted with the session
key the user shares with the KDC.

• The user's service ticket to the computer, encrypted with the computer's secret
key.

• The service ticket includes: A session key for the computer to share with the
user, and authorization data copied from the user's TGT.

2.2.3 The Client/Server Exchange

Kerberos application server request (KRB_AP_REQ)

After the client has the service ticket, the client sends the ticket and a new authenticator

to the target server (Bob), requesting access. The server will decrypt the ticket and

validate the authenticator.

Figure 2.5 Kerberos application server [6].

This message contains [1, 6]:

• An application option flag indicating whether to use the session key.

• An application option flag indicating whether the client wants mutual
authentication.

• The service ticket obtained in the TGS exchange.

• An authenticator encrypted with the session key for the service.

Kerberos application server response (optional) (KRB_AP_REP)

Optionally, the client might request that the target server verify its own identity. This is

called mutual authentication. If mutual authentication is requested, the target server will

take the client computer's timestamp from the authenticator, encrypt it with the session

key the TGS provided for client-target server messages, and send it to the client.

If the authenticator passes the test, the service looks for a mutual authentication

flag in the client's request. If the flag is set, the service uses the session key to encrypt the

time from the user's authenticator and returns the result in a Kerberos application reply

(KRB_AP_REP). If the flag is not set, then no response is needed. When the client on the

user's workstation receives KRB_AP_REP, it decrypts the service's authenticator with

18

19

the session key it shares with the service and compares the time returned by the service

with the time in the client's original authenticator. If the times match, the client knows

that the service is genuine [6].

2.3 Kerberos Services and Benefits

Kerberos provides various services like authentication, authorization, data integrity and

confidentiality. Moreover, there are many benefits of using Kerberos. All of this is

discussed below.

2.3.1 Kerberos Services

Authentication [4] is the process of verifying the identity of a particular user. To

authenticate a user, the user is asked for information that would prove his identity. This

information can fall into one or more of three categories: what he knows, what he has, or

what he is. Kerberos provides this using the trusted third party concept. It also provides

mutual authentication by which the server trusts the client as well the client trusts the

server. At a very simple level, Kerberos uses encryption technology. The user's password

is utilized (while still on the user's workstation) to generate an encryption key. The key

encrypts certain pieces of information that are exchanged with the KDC. After a few

exchanges, the KDC returns information to the user that is usable only by software on the

workstation that knows the temporary encryption key derived from the password. Now

when users wish to contact a Kerberos-protected service, they first contact the Kerberos

ticket-granting service and ask for a ticket to the service. A ticket is a chunk of

20

information that proves the user's identity to the service; but it's encrypted in the services'

long-term key, so it's unintelligible to the user.

Authorization [3] refers to granting or denying access to specific resources based

on the requesting user's identity. This step is performed after a user is identified through

authentication. Authorization is usually performed through access control lists, which

associate user identities with specific rights. Authorization includes information such as a

user's group membership, user policies, and other information that determines what level

of access that user has to computer or network resources. By default, Kerberos does not

provide any authorization services; they are usually implemented as a separate procedure.

Still authorization information can be embedded within the TGS. A usual way of doing

this in Kerberos is to include access control lists in the ticket that the KDC sends to the

client for the server. Once the server decrypts the ticket it has a list of services that this

particular client can access and their privilege level. The server uses these ACL's to

authorize the servers future requests for resources.

Data integrity [3] ensures the recipient that the message was not tampered with

during transit. While encryption as used in Kerberos gives you message integrity for

"free," since only the two end points have the required key to encrypt and decrypt

messages, there are specialized message-integrity algorithms that can ensure message

integrity without the overhead of encryption. There are several different message-

integrity algorithms commonly used in Kerberos. Ranging from weaker to stronger, the

message-integrity algorithms included in the MIT Kerberos distribution include CRC-32,

MD5, and the Secure Hash Algorithm (SHA1).

21

Confidentiality [3] ensures that certain information is never disclosed to

unauthorized entities. Sometimes, you need to know that the conversation is completely

private. A more technical term for privacy is "data confidentiality" and once again

Kerberos addresses this need. Kerberos provides services that encrypt the entire plaintext

message and (optionally) computes a one-way hash of the cipher text. The sender

transmits the package to the receiver, who decrypts the cipher text and (optionally)

verifies the authenticity of the data. Usually, if we are encrypting the whole message for

confidentiality we use the data integrity feature as well.

2.3.2 Kerberos Benefits

Kerberos has a number of advantages as an authentication protocol. This section lists a

number of reasons which act as the main driving points for using Kerberos.

1) Faster Authentication

The Kerberos protocol uses a unique ticketing protocol that provides faster authentication

[7]. Every authenticated domain entity can request tickets from its local Kerberos KDC to

access other domain resources. The tickets are considered as access permits by the

resource servers. The ticket can be used more than once and can be cached on the client

side. Hence, Kerberos is described as a Single Sign On protocol. The use of tickets makes

the re-authentication of the client much easier. Once a client has a ticket from the KDC, it

can be used again and again for authentication.

22

2) Mutual Authentication

Kerberos supports mutual authentication where not only the client authenticates itself to

the server but the server can also authenticate to the client [7]. So there is no assumption

made that the servers are always trustworthy.

3) Open Source

Kerberos is an open source protocol, thus essentially free to use [2]. Because of being

open source, there is also much faster development going on all the fronts and it is being

used and tested by large user base.

4) Support for Authentication Delegation

Delegation means that user A can give rights to an intermediary machine B to

authenticate to an application server C as if machine B was user A. This means that

application server C will base its authorization decisions on user A's identity rather than

on machine B's account. Delegation is also known as authentication forwarding. In

Kerberos terminology, this basically means that user A forwards a ticket to intermediary

machine B, and that machine B then uses user A's ticket to authenticate to application

server C [7].

5) Support for Public Key Cryptography and One Time Pass Codes

Kerberos can support the use of public key cryptography for authentication of the client

to the KDC; this way the password guessing/stealing attacks can be minimized. Another

solution that Kerberos provides for such issues is to use one time passcodes or smart

23

cards where each time to authenticate the user requires a different password so that a

password guessing mechanism or a Trojan horse program will never work as the

password changes at each login.

CHAPTER 3

SOFTWARE IMPLEMENTATION

This chapter describes the software that empowers the system. Several object-oriented

modeling techniques are presented in this chapter. This includes class diagrams, members

and methods.

3.1 Kerberos Secure Phone Messenger (KSPM) Architecture

3.1.1 Instant Messaging Architecture

Instant messaging follows the client-server architecture. Communication between clients

occurs either via a server, or a server brokers it. This section describes the general

architecture of instant messaging networks and clients. There are two main ways

messages and files are transferred between clients: server proxy and server broker.

1) Server Proxy

In the server proxy architecture [8], all instant messaging communication is passed

through the server. For example, if two users, Alice and Bob, want to exchange messages

via instant messaging, they would not send the messages directly to each other. Instead,

the messages would first be sent to the server. The server would then forward the

message to the intended recipient. In this case, the server acts as a proxy between the

users.

The benefit of this method is that both clients initiate outgoing connections to the

server and either one does not require the ability to accept incoming connections on a

24

25

port that a corporate firewall may block. However, sending messages to the server may

incur a time delay. In general, this is the default method that all major instant messaging

networks use today.

2) Server Broker

In the server broker architecture [8], the only packets that are sent to the server are

packets requesting the server to initiate communication between two clients. The server

essentially facilitates the connection between the two clients. The server provides the

clients with the connection information; the clients then directly connect to one another.

For example, if Alice wants to send a message to Bob, Alice will send a request to

the server to initiate the session. The server will notify Bob that Alice wishes to chat with

him. If Bob agrees, he replies to the server with his contact information (typically an IP

address and port number) and this information is forwarded to Alice. Then, Alice can

directly connect to Bob and messages between the two do not pass via the server.

This method reduces the load on the server and reduces the privacy risk, as

potentially confidential messages are no longer sent to the central server. However, this

method is often blocked by firewalls, as they are usually configured to not allow

incoming connections. Yahoo! Instant Messenger (YIM) is an example of a client that

uses server brokering. YIM will send the first message via the server and then attempt a

direct connection. If the direct connection fails, YIM will continue to send messages via

the server.

26

3.1.2 Kerberos Secure Phone Messenger (KSPM) Architecture

KSPM looks like a typical phone to phone messenger for the users. The underlying

technology for this messenger is based on Kerberos authentication. Kerberos provides a

mechanism for mutual authentication between a client and a server on an open insecure

network. All communications after the authentication will be encrypted and secure.

KSPM is divided into two main parts. The first part is the messenger running on

the phone. The second part is the server messenger application running on the server. All

communications from phone to phone go through the messenger server as described in

the server proxy architecture. After the clients authenticate with the active directory using

Kerberos, the keys are passed to the messenger server. When the client wants to

communicate with another client, the message is sent to the messenger server. The

messenger server application decrypts the message using the sub-session key for client

one. Then, it encrypts the message using the sub-session key for client two and sends it.

The server also keeps a log of all communications between the clients. Figure 3.1 shows

the authentication with the active directory, and the communications between the clients

and server.

27

Figure 3.1 Application architecture.

3.2 KSPM Software Implementation

KSPM was written using the Java programming language. The java version for mobile

phones platform is called Java 2 Platform Micro Edition (J2ME). It is designed for small,

resource-constrained devices such as cell phones. The phone operating system is

windows mobile version 5.0. In order to run Java, a virtual machine is required. The only

available smartphone JVM in the market is WebSphere Everyplace Micro Edition Java

(WEME) by IBM [9]. The Kerberos protocol basic functions were written using

Connected Limited Device Configuration (CLDC) [10]. CLDC defines the base set of

application programming interfaces and a virtual machine for resource-constrained

devices. However, the newer version Connected Device Configuration (CDC) supports

more complex libraries. KSPM is written using CDC to provide advanced functionalities

and a better user interface while still being able to reuse the Kerberos CLDC version. The

28

KSPM application has four classes: Kerberos client, Kerberos key, Kerberos ticket, main

and communications. The following sections describe the implementation of the

software.

3.2.1 KSPM Kerberos Client

Kerberos Client Class

Import: BounctyCastle. crypto

Extends: ASN1DataTypes

This class implements the main functions of the Kerberos authentication protocol. All

other sub-functions are used in these main functions. It is responsible for establishing

authentication, processing tickets and keys, and encrypting/decrypting messages. Figure

3.2 shows the class diagram and its members.

Table 3.1 Main Functions Description

30

Authoring and Processing a TGT Request

The basic purpose of the getTicketResponse function is to author a request for a Kerberos

ticket (a TGT or a service ticket), send the ticket request to the Kerberos server, get a

response from the server, and extract the ticket and the session key from the response. In

other words, the first time this method is called, it authors the KRB_AS_REQ message

and extracts the ticket and the session key from the KRB AS REP message. Notice steps

1 and 2 in Figure 3.3.

Processing and Authoring a Service Ticket

After the TGT response is processed to extract the TGT and the session key, a request for

service ticket from the KDC server is made. The same TGT request (getTicketResponse

method) is used to obtain a service ticket. This time the method is called to author a

KRB TGS REQ message, and extract the service ticket and sub-session key from the

KRB_TGS_REP message. Notice steps 3 and 4 in Figure 3.3.

31

Processing Error Messages

The method getError catches any error messages received by the server. It processes the

message, then displays the error description. The Kerberos error codes are well defined in

[1]. Using these error codes, the reason of the error can be discovered and resolved easily.

For example, the time synchronization error occurs very frequently when authenticating

with Windows. The time should be corrected and the rejected message should be sent

again stamped with the server's time. Notice the error message between steps 3 and 4 in

Figure 3.3

Creating a Kerberos Session

The sub-session key and the service ticket are the two things required to establish a

secure communications context with the messenger server. At this point the Kerberos

client must author a context establishment request intended for the messenger server. The

createKerberosSession method handles the following aspects of establishing a secure

communication context with the messenger server: authoring the context establishment

request, sending the request to the server, fetching a response from the server, parsing the

response to check whether the remote server has agreed to the context establishment

request, and returning if the session establishment was successful or not. Notice messages

KRB_AP_REQ and KRB_AP_REP in steps 5 and 6 in Figure 3.3.

32

Sending a Secure Message to the Messenger Server

The createKerberosSession method returns a true value if the client has successfully

established a secure session with the remote Kerberos server. To exchange messages with

the messenger server use the sendSecureMessage method. This method takes the

following parameters: a plain text message, a cryptographic key, a sequence number

(which uniquely identifies the message being sent), and input and output stream objects

to exchange data with the server. The sendSecureMessage method authors a secure

message, sends the message to the server over the output stream, listens for a response

from the server, and returns the server's response.

The message sent to the server is secured using the sub-session key. This means

that only the intended recipient (the messenger server, which has the sub-session key) is

capable of decrypting and understanding the message. Moreover, the secure message

contains message integrity data, so the messenger server can verify the integrity of the

message coming from the client.

Decoding the Server Message

The messenger server reply is secure; only the client possessing the sub-session key can

decrypt the message. Method decodeSecureMessage takes a secure message along with a

decryption key, decrypts the message, checks the data integrity and returns the plain text

form of the message.

33

Figure 3.3 Messages exchange for Kerberos authentication.

3.2.2 KSPM Kerberos Key

➢ Kerberos Key Class

Import: BouncyCastle. crypto

The class has all the functions required to handle Kerberos keys. It is responsible for

generating the user master key which is derived from the user's password. Figure 3.4

shows the class diagram.

KerberosKey(5tring userf'.J.9me) String pas$l.Nord) Strint;1 realmf'.J.9me)
tit encodeString(String str)

• generateKey(Strint;1 pas$lNord)String realm~·Jame) String user Name)

• getFinaIKey(b)·'te data)byte key)byte[] i· ... ·_Bytes)
tit getFinalKey(byte dat.9)byte key)

• getKeyO
• getStrongKey(byte keYValue)
tit isWeakKey(byte keyV .9Iue)

tit padString(byte encodedString)

• setParity(byte byteV.9Iue)

• asnl ASf'.J1DataTypes
itt cipher CBCB!ockCipher
itt iv Parameters\NithIV

• kerberosKey byte[]
itt kp KeyParameter

6Bt parityValues byte[]
6Bt principalID String

• weakKeyByteValues byte[][]

Figure 3.4 Kerberos key class members.

34

Kerberos defines an algorithm for processing a user's password to produce a

secret key. On the Kerberos client, the Bouncy Castle cryptographic library [11] is used

for encryption and for generating a secret Kerberos key from the user's password. Bouncy

Castle is a collection of APIs (Application Programming Interfaces) used in

cryptography.

For the J2ME-based Kerberos client, DES (data encryption standard) is used in

the CBC (cipher block chaining) mode. DES is an encryption algorithm where the data to

be encrypted (plain text) and the secret key are passed as inputs to the encryption process.

The key and the plain text are processed together according to the DES algorithm to

produce the encrypted (cipher text) form of the plain text data.

35

3.2.3 KSPM Kerberos Ticket

Kerberos Ticket and Key Class

This class stores Kerberos tickets and keys. It functions as a cache for the retrieved

tickets during authentication. Whenever keys or tickets (TGT and service tickets) are

required, they can be retrieved from this cache. Figure 3.5 shows the class diagram.

Figure 3.5 Ticket and key class members.

3.2.4 KSPM Main and Communications

➢ Kerberos Main Class

➢ Kerberos Receive Thread

➢ Kerberos Send Thread

The main class runs all other classes, initiates send and receive connection threads and

also draws the user interface. The connection parameters, such as the user name, user

password, realm, server name, server IP address and service ports, are set in this class.

Parameters like the user name, user password, and realm are inserted at run time by the

GUI interface. Other parameters like the server IP address and port number are hard-

coded.

36

Connections in this class are separated into two groups:

• The first connection authenticates the client with the server (Active Directory).
It establishes a UDP connection to a well known service port number 88 in the
Microsoft server. After the authentication is done, the connection is closed but it
can be reopened if the client requires any new tickets from the server. In this
connection, the first four authentication messages are exchanged as shown in
Figure 3.3.

• The second connection is between the client and the messenger server. It
establishes a TCP connection to a predefined port number. Then, the connection
is migrated to another port to keep the first port free for other clients' connection
requests. Further messages between clients are exchanged using this connection.

Before the connection takes place, the user's name and password should be

already stored in the Active Directory on the server. The messenger server should also be

running to complete the connection. The next section will provide an overview of the

messenger server implementation.

3.3 Messenger Server Implementation

Import: javax. security. auth

java. net. ServerSocket

org. ietf.jgss

The messenger server runs on the Windows server as an intermediate point between

clients. It was developed using Java 2 Platform Enterprise Edition (J2EE). The

application consists of five classes described later in this section. Figure 3.6 shows the

class diagram.

I1t l\'lESSENGERServer Auth. startSend(int kl)
lilt r'I1E55ENGERServerAuth, startServerO

liB .. MESSENGER Server Auth, MESSENGERClientAuth 1 Runf'l'lESSENGERClientAuth
liB .. I\~ESSENGERServer Auth. MESSENGERClientAuth2 Runf·tlESSEr·JGER ClientAuth

liB .. r'I1ESSENGERServerAuth, beanCalibackHandler BeanCallbackHandler

liB .. 1\'1ESSENGERServer Auth, byte Token byte[]
liB .. l\'lESSENGERServer Auth. confFile String

81al r'I1ESSENGERServerAuth, confName String
liB .. 1\'1ESSENGERServer Auth, msgProp r','1essageProp

81wl MESSENGERServer Auth. rec 1 Recei·· ... e
Iil!I MESSENGERServetAuth, serverLC LoginContext

liB .. MESSENGER Server Auth, serverName String

Iil!I f'.'1ESSENGERServer Auth. server Port int
<? f'I1ESSENGERClientAuth, MESSENGERClientAuth(int serverPort)

I1t 1\'1ESSENGER ClientAuth. ReceiveMsgO
Ii) I\~ESSENGERCHentAuth, SendMsg(String Sentf'.'lSg)

&;I r'I1ESSENGERClientAuth, runO

81 .. ~1'ESSEr·.JGERClientAuth. clientSocket Socket
IiBwi 1\·1ESSENGERC:lientAuth. inStream DatalnputStream

81 .. f'IIESSENGERClientAuth, outStream DataOutputStrearn

liB .. I'vlESSENGERClientAuth, serverGSSContext GSSContext
IiBwi I\~ESSENGERClientAuth, serverPort int

81al r'I1ESSENGERClientAuth, serverSocket ServerSocket

<> Receive. Receive(DatalnputStream inStreamJ DataOutputStream outStreamJ GSSContext serverGSSContext)
Ii} Receive, runO

81tJI Receive. inStream DatalnputStream
liB .. Receive, outStream DataOutputStrearn

IiBtJI Receive, serverGSSContext GSSContext

~ RunMESSENGERClientAuth, RunMESSENGERClientAuth(int ser' erPort)
&;I Runr"'1ESSENGERClientAuth. Msg(String rn 1)

I1t Runf··1ESSENGER ClientAuth. runO
Iil!I Run~IIESSENGERClientAuth. eb 1 l\'lESSENGER ClientAuth

liBel Runr\~ESSENGERClientAuth. server Port int

Figure 3.6 Messenger server application classes and members.

37

Figure 3.7 shows the main structure of the application. The application is built

using object oriented approach. Each class has a certain function as explained later. Calls

between classes are also clear in the figure. The class MessengerServerAuth can initiate

multiple clients by calling the RunMessengerClientAuth class.

MessengerServer (Main)

MessengerServerAuth
JAAS (Authentication)

RunMessengerClientAuth

MessengerClientAuth
GSS (PrivilegedAction)

RunMessengerClientAuth

MessengerClientAuth
GSS (PrivilegedAction)

v
Receive Receive

38

Figure 3.7 Messenger server application classes diagram.

3.3.1 Messenger Server Class

➢ MessengerServer Class

Extends. - javax.swing.JFrame

This is the main class. It initializes and runs the JFrame display. It also calls the

MessengerServerAuth class to start the authentication process.

39

3.3.2 MessengerServerAuth Class

MessengerServerAuth Class

This class authenticates and authorizes the messenger server with active directory using

the Java Authentication and Authorization Service (JAAS) [12]. JAAS can be used for

two purposes: for the authentication of users, to reliably and securely determine who is

currently executing Java code, and for the authorization of users to ensure they have the

access control rights (permissions) required to do security-sensitive operations.

The JAAS uses the LoginContext class to provide the basic methods used to

authenticate Subjects. It also allows an application to be independent of the underlying

authentication technologies. The LoginContext consults a configuration that determines

the authentication services or LoginModules configured for a particular application.

Kerberos Login Module

The class com.sun.security.auth.module.Krb5LoginModule is Sun's implementation of a

login module for the Kerberos version 5 protocol. After authentication, the TGT is stored

in the Subject's private credentials set and the Kerberos principal is stored in the Subject's

principal set. The login modules invoked by JAAS must be able to get information from

the caller for authentication using Callback handler. For example, the Kerberos login

module may require users to enter their Kerberos password for authentication. After

authenticating using JAAS, the class starts the MessengerClientAuth class whenever a

new client wants to communicate with the messenger server.

40

3.3.3 MessengerClientAuth Class

➢ MessengerClientAuth Class

Implements.. java.security.PrivilegedAction

The Java Generic Security Services Application Program Interface GSS-API [12] defined

in RFC 2853 is used for securely exchanging messages between communicating

applications. The GSS-API offers application programmers uniform access to security

services atop a variety of underlying security mechanisms, including Kerberos.

The GSS-API is used in this class to start a Kerberos server that can accept

incoming authentication requests from clients; provided that the client has already

authenticated with the active directory and obtained the required credentials to

authenticate with the messenger server. When the GSS-API creates the session as

described in the steps below, the class starts a Receive class to keep listening for any

incoming packets from the client.

Generic Security Services Application Program Interface (GSS-API)

The Java GSS-API framework security related functionality is obtained from

GSSManager. The GSSManager can be used to configure new providers [12]. The

GSSManager also serves as a factory class for three important interfaces: GSSName,

GSSCredential, and GSSContext. These interfaces are described below with the methods

to instantiate their implementations.

41

The GSSName Interface

Sun's implementation of the GSSName interface is a container class. Implementation of

GSSName is similar to the principal set stored in a Subject. It may even contain the same

elements that are in a Subject's principal set, but its use is restricted in the context of Java

GSS-API [12]. For instance a Kerberos V5 mechanism provider might map this name to

Bob@SERVER.COM where SERVER.COM is the local Kerberos realm.

The GSSCredential Interface

This interface encapsulates the credentials owned by one entity. The Server's credential

requested is one that can accept incoming requests [12]. Moreover, servers are typically

long lived and like to request a longer lifetime for the credentials. The secret key of the

server is stored as an instance of a subclass of javax.security.auth.kerberos.KerberosKey.

The GSSContext Interface

The GSSContext is an interface whose implementation provides security services to the

two peers [12]. This returns an initialized security context on the acceptor's side. At this

point it does not know the name of the peer (client) that will send a context establishment

request or even the underlying mechanism that will be used. However, if the incoming

request is not for service principal represented by the credentials serverCreds, or the

underlying mechanism requested by the client side does not have a credential element in

serverCreds, then the request will fail.

Before the GSSContext can be used for its security services, it has to be

established with an exchange of tokens between the two peers. Each call to the context

42

establishment methods will generate a token that the application must send to its peer.

Once the security context is established, it can be used for message protection.

3.3.4 Receive Class

➢ Receive Class

Extends: Thread

This class is called as a thread to receive the messages from the server. The messages are

encrypted with Kerberos protocol sub-session keys. However, the Java GSS-API

provides both message integrity and message confidentiality. The wrap method is used to

encapsulate a clear text message in a token such that its integrity and privacy are

protected. The original clear text is returned by the peer's unwrap method when the token

is passed to it. The properties object on the unwrap side returns information about

whether the message was simply integrity protected or whether it was encrypted as well.

It also contains sequencing and duplicates token warnings.

CHAPTER 4

SOFTWARE PERFORMANCE AND POWER ANALYSIS

Mobile phones have critical parameters which must be considered carefully when

designing applications for this limited computing platform. These parameters mainly fall

into three categories: power, processing capabilities, and memory. This chapter studies

these parameters and focuses on code performance, space requirements and power

consumption.

The Sun Java Wireless Toolkit for Connected Limited Device Configuration

(CLDC) [13] provides several tools to monitor the behavior of the applications. These

tools are helpful in debugging and optimizing the code:

• The profiler lists the frequency of use and execution time for every method in
the application.

• The memory monitor shows the usage of memory while your application runs.

• The network monitor shows network data transmitted and received by the
application.

• Tracing outputs low-level information to the toolkit console.

4.1 Performance

The performance of the application is a very critical parameter. Mobile phones have

limited processing power. Kerberos Secure Phone Messenger (KSPM) is designed

carefully to perform all the tasks with the best possible performance.

The profiler (Figure 4.1) keeps track of every method in the application. For a

particular run, it Figures out how much time was spent in each method and how many

43

44

times each method was called. After running the application the pro filer pops up allowing

to browse through the method call information.

(32.29%) com. sun, midp ,io.ConnectionBaseAdapter ,openDataQutputStream."

(0.0%) KerberosCHent. <in~>
(0.18%) java.\ang.Ciass.runCustomCode."
<>to) com.sun,midp.midiet.Selector .run ...
. 4%) com. sun.midp.lcdui.Def auitEventHandler$QueuedEventHandier .run ...
(1.79%) com.sun.midp.lcdui.EmuIEventHandier.screenChangeEvent ...

b>(jJ (53.27%) J2MEClientMIDlet.commandAction
• (0,06%) jdvdx.microedition,midlet,MIDlet.notifyOestroyed ...

• (0.0%) J2MEClientMIDlet.destroyApp
8"·~ (53.21 %) J2MEClientMIDlet.sendMoney

~ .. ~ (0.06%) J2MEClientMIDlet.showTransResuit
;fJ"'~ (1.08%) KerberosClient.decodeSecureMessage
:;ii".@]j (7.64%) KerberosClient.sendSecureMessage

• (0.07%) java.lang.5tringBuffer.toString ...
(2~,89%) KerberosClient.createKerberosSession
• (0.0%) ASNlDataTypes.getNumberOfLengthSytes

(23.36%) java.io.DatalnputStream.readFuly ...
(0.03%) ASNIDataTypes.getTagAndLengthSytes

• (9.02%) ASNIDataTypes.concatenateBytes

:il"W (1.43%) KerberosClient. getAuthenticationHeacier
~" '64 (0.03%) KerberosClient.getNoNetworkBindings

.• (0.0%) TicketAndKey.getKey
. " ...• (0.0%) TicketAndKey.getTlCket
41' W (4.07%) KerberosClient.getTicketAndKey
4l"@]j (0.0%)KerberosClient.getSecretKey
rfl ,¥.3 (0,0%) TicketAndKey.<init>

[ti ·@]j (1I.56%)KerberosCHent.getTicketResponse
[t! ,,~ (3.73%) KerberosCHent.setParameters

(3.86%) com,sun,midp,main,Main,main ...

(0.01 %) J2MEClientMIDleLstartApp

Figure 4.1 Pro filer.

The profiler results show that the application executes a total of 9,630,347 VM

instructions. For further analysis, the profiler also shows the cycles required for each

method. Based on these statistics the analysis is done in the rest of this section.

4.1.1 Distribution of CPU Cycles

Figure 4.2 compares the percentage of CPU cycles used by the main parts in the program.

Network's stream connection consumes the largest percentage 62% out of the whole

program execution time. Network's socket streams are the most demanding resource in

the application. These streams use TCP connection to exchange data. TCP is a complex

45

protocol; this complexity is a price for the reliability of the protocol. On the other hand,

UDP protocol is totally efficient in phone' s application because it does not use streams.

Kerberos protocol comes in the second place consuming 23% of the application

execution time. The main processing overhead in the protocol comes from the encryption

complexity for secure algorithms. Yet symmetric key cryptography complexity is

acceptable, if compared to public key cryptography. Kerberos has a big advantage over

other protocols because of symmetric key efficiency. The rest of the execution time

(15%) is used for loading the application, initiating the classes and displaying the

interface.

Distribution of CPU Cycles

iii Netw ork Stream
Connection

o Other (Run, "
Display)

15%

------- ------,

Gil Network Stream
Connection

• Kerberos

lO Other (Run, Display) I

Figure 4.2 Distribution of CPU cycles used by the main parts in the program.

46

Figure 4.3 studies the percentage of CPU cycles for main routines in Kerberos

protocol. These routines represent the high level of interface for Kerberos. Each routine

has a specific function explained in the earlier chapter. These routines take up to 23% of

the execution time as explained in the Figure above. The Figure shows that six routines

require almost 11.5% of the application total execution time. However, the function

getTicketResponse requires another 11.5% of the application total execution time.

Obviously, this function has a large overhead when compared to other functions for two

reasons. First, the function is being executed three times while other functions are

executed one time each. Second, the function uses the system method

java.lang.System.arraycopy which is called 67 times taking 5.6% of the execution time.

This function copies an array from the specified source array, beginning at the specified

position, to the specified position of the destination array. Thus, . this method is called

many times because encryption streams use arrays frequently.

Percentage of CPU cycles for Kerberos Routines

12

10

Routines

Figure 4.3 Percentage of CPU cycles for main routines in Kerberos protocol.

l

47

4.1.2 Execution Time

The application executes a total of 9,630,347 VM instructions. The number of

instructions is dependent on the target processor. In this analysis, an assumption made is

that the number of VM instructions is equal to the number of instructions actually

executed on the target processor. Thus, the analysis is based on estimation and real values

can differ slightly. The execution time can be calculated using Equation 4.1, provided

that the phone's execution MIPS (Million Instructions per Second) rate is known, which

is normally true.

CPU time (in seconds) = Number of Instructions (in millions)/ MIPS	 (4.1)

Figure 4.4 shows the estimated execution time for the application on three

different ARM processors [14] ARM7, ARM9 and XScale. Clearly, phones with high

clock rates are faster. The execution time is smallest when executed on ARM XScale

(624 MHz) processor. Table 4.1 shows the processors performance details and the

estimated execution time for the VM instructions on these processors.

Table 4.1 Estimated Execution Time on Three Different Processors.

Source: Wikipedia, "ARM Architecture," http://en.wikipedia.org/wiki/ARM_architecture.

Estimated Execution Time for VM Instructions

180
160
140
120

T" () 100 Ime ms 80

60
40
20
o

ARM7@
60MHz

ARM9@
200MHz

Processor

Xscale @
624MHz

48

Figure 4.4 Estimated execution time (for VM instructions) on three different processors.

Figure 4.5 shows the estimated execution time for the three major parts in the

application using 200MHz processor executing 220MIPS. The longest processing time

(27ms) is being spent in network stream connection as explained in the section before.

Estimated Execution Time (for VM Instructions)
Assuming a 200MHz Processor Executin 220MIPS

30

~ 25
+i 20
t: -
~ E 15
::J-
(.) 10
C1>
>< 5 w

o
Network

Connection
Stream

Kerberos Other(Run,
Display)

Application parts

Figure 4.5 Estimated execution time for major application parts assuming a 200MHz
processor executing 220MIPS. Direct implementation ofVM instructions is assumed.

49

4.2 Memory Requirements

Memory is scarce on many mobile devices. Usually, the critical memory is the RAM. At

the time of writing this document, the average RAM size equals 64MB and the flash

memory size can range from 64MB to 1GB or more. The applications are loaded to the

RAM at run time from the flash memory. The operating system (Windows Mobile 5.0)

requires about 20 MB from the RAM. Thus, only two thirds of the RAM size will be free

for user's applications.

The Sun Java Wireless Toolkit includes a memory monitor (Figure 4.6) that

makes it easy to examine the memory usage of the application. It shows the total memory

used by the application and a detailed listing of the memory usage per object.

Figure 4.6 Memory monitor.

(2.18%) java.lang.dass.runCustomCodeO
(97.38%) com.sun.midp.kduLDefauitEventHandler$QueuedEventHardler.run()

~···tJ (97.:J801.) com.sun.midp.lcdU.DefaultEventHandler$QueuedEventHandler.handleVmEvent(I)
Si .. ·€J (97.38%) com.sun.midp.lcdui.AutomatedEventHandIer.cOlMlandEvent(I)

E,-a (97.38%) com.sun.midp.lcdui .DefaulEventHandler.corrmandEvent(I)
5i '0 (97.38%) javax .microedition .lcdui .Display$DisplayManagerI~. cummandAction(I)

S; a (97.38%) javax.microedition.lcdui.Display$DispiayAccessor.commandAction(I)
8"'0 (97.38%) J2MEClientMIDIet.commandAction(Ljavax.microedition.lcdui.Command;, Ljavax.microedition.lcd'-'.Displayab~;)

5:;"0 .(97.38%) J2MECtientMIDlet.sendMoneyO
:i;.; '0 (97.38%) KerberosClient.setParameters(Ljava.lang.String;, ljava.lang.String;, Ljava.lang.strln<,j;)

[£;. (3.05%) KerberosKey. <init>(Ljava.lanQ.5tring;, Ljava.lang.String;, Ljava.lang.Striny;)
[~ .• > (91.33"10) Kerberosdient.ge\TicketResponse(Ljava.lang.String;, Ljav • . lang.5tring;, Ljav •. Iar,g.str'l9;, byte[],

1£ .;. (0.29%) ASNID.t.Types.getIntegerBytes(I)

I'lWl ~lHiiltbm~~~~.~. ~

$;. (0.87%) ASNlDataTypes.getT.gAndLengthBytes(I, I, byte[])
!iii"'';' (0.11%) ASNIDat.Types .getBitstrinQBytes(byte[D
r:r; " (8.57%) ASNlDataTypes .getGenera!StringBytes(Ljav •. lang.String;)
!±;.C;) (7.19%) KerberosClient.getTlCketAndKey(byte[], byte[])
i£"';' (56.1601.) KerberosCient.getTicketResponse(Ljava.lang.string;, Ljava.lang.string;, Ljava.lang.String;,
[# " (i'I.38%) KerberosCIient.createKerberosSession(byte[], Ljava.lang.Strng;, Ljava.lang.string;, I,
$... " (1.72%) KerberosCient.sendSecureMessage(Ljava.lang.String;, byte(], I, Ljava.io.D..ta!rjlUt5tream;,
1£ ... " (1.59%) Kerberosdent.decodeSecureMessage(byte[], byte[])

50

The application size once it is launched is 67,928 Bytes. Then, the application size

changes depending on the called functions. Each function requires allocating dynamic

memory from the heap at run time. The size becomes 186,228 Bytes when all Kerberos

routines are executed. After the authentication is done, the size drops again to 78,340

Bytes. This drop can be achieved only if garbage data is disposed correctly.

Another important fact when running the application on windows mobile

operating system is that it uses a Java Virtual Machine (JVM) to convert the code to

machine code. The major memory requirement is going to be the JVM size (Figure 4.7).

The only available smartphone JVM in the market is WebSphere Everyplace Micro

Edition Java (WEME) by IBM [9]. WEME or J9 at run time allocates 4 MB of memory

or more depending on the available free memory. On the other hand, when running the

application on ajava operating system the VM will be already included.

JVM vs. Application Size

JVM
95%

Application

5%

Figure 4.7 JVM vs. application size.

III JVM

• Application

51

Analyzing the memory requirement for the major routines in Kerberos (Figure

4.8) is important to optimize these main routines. The function getTicketResponse

requires about 45KB of memory. Obviously this function seizes a large space when

compared to other functions. This same function requires the longest execution time as

explained before. This is because the function is being executed three times while other

functions are executed one time each. It also requires a largest size of byte arrays because

encryption streams use arrays frequently.

Data Types Allocation for Routines

45
40
35

iii' 30
~ 25
.~ 20
en 15

10
5
o

Routines

Figure 4.8 Data types allocation for Kerberos routines.

4.3 Power Consumption

o String

o Boolean[]

iii i nt[]

fII byte[]

ARM CPUs are dominant in the mobile electronics market, where low power

consumption is a critical design goal. Analysis shows that the application will consume

less than lOOmW. The major power consumption in smart phones comes from the

wireless connections.

52

Table 4.2 ARM Processor Power Consumption for the Application

Source: Wikipedia, "ARM Architecture," http://en.wikipedia.org/wiki/ARM_architecture.

Table 4.2 shows the estimated power consumption for the application on three

different ARM processors. The MIPS/W ratio for ARM7, ARM9, and XScale processors

is obtained respectively from [15, 16, 17]. This ratio gives a clear indication of the

processor's performance and power consumption at the same time, independent from the

processor's clock rate. Providing that the number of VM generated instructions equals

9630347, the power can be calculated using the MIPS/W ratio. As stated earlier, the

number of instructions is dependent on the target processor. An assumption is made that

the number of VM instructions is equal to the number of instructions being executed on

the real processor. Thus, the analysis is based on estimations and real values can differ

slightly. The power values are calculated using Equation 4.2, where the resulting unit is

watts per second.

Power = Number of Instructions / (MIPS/W) 	 (4.2)

Figure 4.9 shows the estimated power consumption for the application on three

different ARM processors. Power values are calculated in Table 4.2. Results clearly

indicate that the higher the clock rate, the higher the power consumption.

Application Estimated Power for VM Instructions

Power(mW)

25

20

15

10

5

o
ARM7@
60MHz

ARM9@
200MHz

Processor

Xscale @
800MHz

I rn Power(mW) I

Figure 4.9 Estimated power consumption for the application using VM instructions.

53

Numerous factors affect the battery lifetime of a smart phone. Despite the fact that

each application that runs on the phone contributes differently to its battery drain, there

are five fundamental hardware components that consume most of the power: backlight,

Bluetooth, CPU, WiFi, and the cell radio. Figure 4.10 illustrates the hardware component

distribution of power consumption for an average user [18]. As observed, the processor

consumes less power than the WiFi and the GSM radio. However, power analysis in

depends on estimations because phones run in different modes. The phone idle time

consumes very little power, while making calls is power demanding. Figure 4.10 assumes

a rough estimate for the percentages of time when a typical user makes phone calls,

browses the Internet, uses Bluetooth headset, plays games, or plays media files.

54

Figure 4.10 Hardware component distribution of power consumption [18] .

4.4 Network Performance

The network monitor tool (Figure 4.11) provides a simple way to observe network data

exchange. This is helpful in debugging network interactions or looking for ways to

optimize network traffic. When the application makes any type of network connection,

information about the connection is captured and displayed. The Figure 4.11 shows

datagrams requests and responses. The display on the left side shows a hierarchy of

messages and message pieces. The details are in the right side of the network monitor.

Message bodies are shown as raw hexadecimal values and the equivalent text.

Figure 4.11 Network monitor.

02
Od a3 Od 1b Ob 45 42 41 4e 4b 2e 4e 4f 43 41
a4 12 30 10 aO 03 02 01 01 a1 09 30 07 1b 05
64 6d 69 6e a5 3f ef 51 3f ee 30 3f. e9 aO 03
01 05 a1 Od 1b Ob 45 42 41 4e 4b 2e 4c 4f 43
4e a2 18 30 16 aO 03 02 01 00 a1 Of 30 Od 1b
55 62 51 5e 5b 73 55 72 75 65 72 a3 3f b6 30
b5 aO 03 02 01 17 a1 03 02 01 06 a2 3f a6 04
as Sf cf e4 75 76 c7 65 d2 27 47 da bb 7a ce
a3 4a 56 39 2f 46 70 45 d6 04 b5 ge 39 6a b8
b3 Of bb 13 6f b2 c4 96 7b 62 If df e5 50 a9

c Oa cf 2b 43 6d cd 33 ef 9c e3 ec be eO e5 24
1 69 f3 f9 25 43 e7 b1 e9 85 be 1c d9 fO cO 57
5 5b 74 41 3f 64 4f 74 a5 cd 1S 3f 1d e5 e7 3f
5 14 6a cb 34 2e 3e ab b4 ce aO c4 55 4b 67 5d

ea fd e4 b7 b4 dd 6e 6e 2c e9 19 a5 36 4a 1b
eb 17 94 60 ed 5d a4 41 fe Oc d4 cf c6 bf 6a
63 85 db 3a 35 b8 c9 65 d1 7d 5f 72 If ae fc
07 f3 7b 20 59 50 a6 3f d6 30 3f d3 aO 03 02
03 a2 3f cb 04 3f c8 73 aa 74 bO e6 df 51 bd
f2 f7 b9 cb 51 63 10 bd Od 99 1b 42 ea 2b e1
5b a1 11 c2 Oa 92 Oa 03 aa 10 2d 40 52 52 19
Oc 63 60 bO 70 ed ef d1 60 9b c6 2e 5e 8e ca
26 3f 5b 05 78 f2 15 e5 57 cd d1 3f 9b b9 aO
tf 34 3b 63 bd 60 49 66 b4 08 02 ff ac 62 53
el. e5 38 a6 d7 af 30 37 1b a7 a7 43 85 c3 92
1e Oc 26 fd 29 76 08 63 10 be a9 d6 98 7e fa
5c 27 be 5b dE bd 2d 30 37 ff ae Od 2f 46 e3
55 02 8a 32 4e e3 Of ba 56 9b 47 d4 b4 f8 la
ef ab ca fO dO e7 e5 dl 06 67 b4 8e e7 4d 2a
35 3f 34 a2 f3 e1 e3 4e 37 eO 88 4f 3f e6 be
4a 79 b9 38 60 dd 9f Db 6f 74 bb 8e Oa Oe 32

55

.... i· ... ~ ?".
te.uv~. 0' G1J»zI

PilN£iJV9/P'Pf:0.].1. 9 ••

3i~~i~:r~
~±e.l(.iHIA1J

?Ot:i. ?A~?
· jE4.<"i AUKg]
eye.· 'Y.n,E.¥6J.
e ... i])Q.p. OtlEij
.U:5.EeN)_Lru

.o{ YP: ?OO?6 ••
· ~ ?E. ?Es't'<eBQ~
o+·EQc.~ ••• Be+a
[i .A '. -@AA.
• c' 'piiN' .IE. A.i.
(?[.xC! . aWIN?·

·cWIf' .. y~.S
: x-07. §§C.A.

.&y)v.e.l(®O.-u
'lc[Jl,~-07ij«>. IFa.
•. 2Na.. ·V. GO '<!S.

li lti1'~lll)ga!\l •• ' • gM*
~ !'*,: oaa'"a. 0 ?Elc

•• 2

The execution time has network delays to consider. The exchange of messages

over the network has a certain delay depending on the network itself. Kerberos

authentication is highly affected by this. The authentication process has to exchange with

the server about six messages before the secure channel is established. This delay is also

dependant on the server speed, as the server needs to decrypt the messages and

authenticate the user. The delay by the server can be ignored for now, assulning the

server is fast and its processing time is negligible if compared with the phone.

Figure 4.12 shows the sequence of Kerberos authentication messages labeled by

their size as noticed by the network monitor. All packets have a small size. The delay for

exchanging these packets is negligible. The Round Trip Time (RTT) is less than

microseconds in a LAN and less than 11 ms on average for 1 KB packets in the internet

[19]. Hence, the delay of network can be ignored in small networks as in N JIT.

56

If the size of Kerberos messages is larger than 1500 bytes, fragmentation will

occur. Usually, the size is less than 1500 bytes unless long authorization lists are included

in the message. If this happens, windows server will replace the UDP connection with a

TCP connection to exchange the authentication messages [20]. This will require more

resources from the phone. As a result, the messages size should not exceed the limit,

otherwise noticeable delays will arise.

Time synchronization restrictions in Kerberos add an extra step in authentication

message exchange. This step arises very frequently when authenticating with windows

adding more delays [20]. Usually Kerberos allows five minutes skew between the server

and the client. This problem can be solved by using network time protocol to synchronize

the clock for all computers on the network.

1. KRB AS REQ - 131Bytes

2. KRB AS REP - 580Bytes

Alice
3. KRB TGS REQ - 553Bytes

57

KDC
(Active
Directory)

Error (time sync required) - 86Bytes

Send again 3. KRB_TGS_REQ - 553Bytes

4. KRB TGS REP - 512Bytes

5. KRB AP REQ - 231 Bytes
Server
Application

6. KRB AP REP — 572Bytes

Figure 4.12 Kerberos messages exchange showing messages size.

CHAPTER 5

CONCLUSIONS AND FUTURE RESEARCH

5.1 Conclusions

Internet enabled mobile devices are widely spreading while security is still not maturely

addressed for such platforms. Therefore, this research implements a novel Kerberos

Secure Phone Messenger (KSPM) extending the popular Kerberos authentication

protocol to run on mobile phones. Moreover, the Kerberos network authentication

protocol provides user authentication and message privacy with the convenience of secret

key cryptography to reduce the computational burden and power consumption if

compared with public key cryptography. KSPM analysis shows that the application

performance and power consumption is very practical on the commonly used mobiles

empowered by ARM processors. Hence, KSPM can provide outstanding secure services

for corporate users by protecting their workplace network and all other mobile

communications.

5.2 Future Research

Further analysis can be done for the performance of the application using Java dedicated

hardware processors. Predictions show that major improvements can occur if using such

processors to run the application.

58

59

5.2.1 Java Hardware Processors

A program written in a language that is designed to run on a virtual machine (VM) is

usually compiled to a pseudo-assembler bytecode language. This bytecode is then

downloaded and executed on the target device within a virtual execution environment,

such as a Java VM. The interpretation of bytecode in software maps individual Java

bytecodes to machine instruction sequences. This is efficient in terms of memory

footprint requirements, but the interpretation process severely limits performance.

However, direct execution of Java bytecode in hardware, significantly boosts

performance, as the bytecode effectively becomes the native instruction set. A key benefit

of interpretation techniques is that execution of the application is immediate in other

words there is no start-up delay [21]. Such examples of java hardware processors are

PicoJava II and ARM Jazelle DBX.

PicoJava II

PicoJava II [22] is a 32-bit stack based Java processor purposed by Sun Microsystems.

Microprocessor specifications are dedicated to native execution of Java-based bytecode

without the need for an interpreter or JIT compiler, thus speeding bytecode execution

many times, compared to standard CPU with a JVM [23]. This approach results in the

fastest Java runtime performance with a small memory footprint and competitive

performance.

60

ARM Jazelle DBX

ARM Jazelle DBX (Direct Bytecode eXecution) technology [24] enables hardware direct

bytecode execution of Java. Jazelle DBX technology typically increases the performance

of a highly optimized commercial JVM by around 2 and 4 times when running

benchmarks or complex MIDP 2.0 applications. In addition, all Java bytecodes are

restartable, so there is no overhead on real-time performance. When looking at Java on

embedded devices, raw speed performance is not the only factor to consider. Power

consumption, memory usage (RAM and ROM), ease of integration, system cost and user

experience are all equally important and achieving the right balance between each of

these constraints is essential.

Application Performance on Java Hardware Processors

For future research, studying the performance of the application on java hardware

processors is very important. Such processors can provide major improvements in the

application performance and memory requirements. The most important reason of

performance improvement is that each bytecode instruction requires one cycle to execute

on average. However, mapping the bytecode instructions to the processor's ISA will

result in instructions requiring multiple cycles to execute. Furthermore, the size of

bytecode instructions is less than the size of the processor's instructions. Hence, the

memory requirements are less.

APPENDIX A

AUTHENTICATION SERVICE EXCHANGE MESSAGES

1) KRB_AS_REQ Message Contents (Authentication Service Request)

The initial message sent to the AS requesting a TGT is the KRB_AS_REQ message.

Table A.1 Authentication Service Request Message Fields [6]

Field	 Description

Protocol Version 5

Message Type KRB_AS_REQ

Pre-	 The intent of these fields is to provide pre-authentication before the
authentication	 KDC sends the client a ticket. This is to prevent brute force or
Data	 dictionary attacks on the user's password. Note that these fields are

used in the KRB TGS REQ message for the TGT and the
authenticator.

PAData Type	 PA-AS-REQ or PA-PK-AS-REQ.

PAData Value	 The AS REQ includes a client timestamp encrypted with the user
key. In this case, the data type will be PA-AS-REQ.

Request Body

KDC Options	 The client can request that the TGT have certain optional features.
The KDC options are detailed in the table below.

Client Name	 Name of the requester.

Realm	 Realm (Active Directory domain) of the requester.

Server Name	 In the KRB AS REQ, this will be the KDC name. The client is
specifically requesting a ticket for the TGS.

From	 (Optional) If the ticket were postdated (not supported by
Windows 2000, but is supported in Windows Server 2003), this field
would specify the time from which the ticket would be valid.

Till	 This is the requested expiration time. The KDC does not have to
honor this request if the requested expiration time violates the
domain's Kerberos policy.

Renew Time	 (Optional) The requested renewal time.

61

62

Field	 Description

Nonce	 A random number generated by the client. The nonce can be used as
the basis for sequence numbering or as an additional authenticator.
The nonce supplied here will be returned in the encrypted portion of
the KRB_AS_REP message. The client will compare the nonces to
make sure they match.

Encryption Type The desired encryption algorithm to be used.

Addresses	 IP addresses from which ticket will be valid.

Encrypt	 Not used for KRB AS REQ.
Authorization
Data

Additional	 Not used for KRB AS REQ.
Tickets

2) KRB_AS_REP Message Contents (Authentication Service Response)

This same structure is used for both the KRB_AS_REP message and the KRB_TGS_REP

message. Thus, the field contents might change depending on the message type.

Table A.2 Authentication. Server Reply Message Fields [6]

Field	 Description

Protocol	 5
Version

Message Type KRB_AS_REP

Pre-	 For the KRB_AS_REP message, this field will normally be empty.
authentication
data

Client Realm	 Realm or domain of the requester.

Client Name	 Name of the requester.

Ticket	 The encrypted ticket is placed here. For the KRB_AS_REP message,
this will be the TGT encrypted with the TGS's secret key.

The rest of the message fields are encrypted with the user's key.

63

Field	 Description

The client cannot read the encrypted ticket and might need to verify the
ticket information. Furthermore, the client needs to have information
about start times and end times so it can determine when to request
renewal or replacement tickets. Therefore, the seven fields from
Authentication Time to Client Addresses are all included in the ticket
and copied here into these fields.

Key	 This is the session key the user will use to encrypt and decrypt TGS
messages.

Last Requested The last time a ticket was requested. This is similar to a "last logged
on" time. This can be used to track how frequently a client is requesting
tickets. A Kerberos policy can be set that limits how frequently ticket
requests can be made. Such limits can help prevent brute force attacks.

Nonce	 The nonce from the KRB AS REQ nonce field will be copied here.

Key Expiration When the user's key will expire. This is used for password aging.

Flags	 These are the flags set in the ticket, based on the flags requested in the
KRB AS REQ message and the domain's Kerberos policy.

Authentication The time the ticket was issued.
Time

Start Time	 (Optional) At what time the ticket is valid.

End Time	 At what time the ticket expires (although it can be renewed if the ticket
is renewable).

Renew Till	 (Optional) At what time the ticket absolutely expires (cannot be
renewed past this time).

Server Realm	 Requested server's realm (domain).

Server Name	 Requested server's name

Client	 (Optional) Addresses from which the ticket will be valid. This is
Addresses	 important in several situations. Normally, a ticket is only valid if sent

from a specific address.

3) KRB TGS REQ Message Contents (The Ticket-Granting Service Request)

The KRB TGS REQ message is similar to the KRB AS REQ message. The only_ _	 _ _

difference is the pre-authentication field (PAData Type and PAData Value). The TGT

and the authenticator are placed in the PAData Value field. The authenticator is encrypted

64

with the session key. The TGT is encrypted with the TGS's secret key (the key based on

the krbtgt user account). A checksum is computed using the contents of fields in the

request body, and that checksum is encrypted within the authenticator. The following

table lists and describes the fields used in the ticket-granting service request message.

Table A.3 Ticket-Granting Service Request Message Fields [6]

Field	 Description

Protocol Version 5

Message Type KRB TGS REQ

Pre-	 The intent of these fields is to provide some authentication before the
authentication	 KDC sends the client a ticket. This is to prevent brute force or
Data	 dictionary attacks on the user password. Note that this field is used in

the KRB TGS REQ message for the TGT and the authenticator.

PAData Type	 PA-TGS-REQ

PAData Value	 TGT and authenticator.

Request Body

KDC Options	 The client can request that the ticket have certain optional features.

Client Name	 (Optional) Name of the requester.

Realm	 Realm or domain of the requester.

Server Name	 (Optional) Requested server name.

From	 (Optional) If the ticket were postdated (not supported by
Windows 2000, but supported in Windows Server 2003), this field
would specify the time from which the ticket would be valid.

Till	 This is the requested expiration time. The KDC does not have to
honor this request, if the requested expiration time violates the
domain's Kerberos policy.

Renew Time	 (Optional) The requested renewal time.

Nonce	 A random number generated by the client. The nonce can be used as
the basis for sequence numbering or as an additional authenticator.
The nonce supplied here will be returned in the encrypted portion of
the KRB TGS REP message. The client will compare the nonces to
make sure they match.

65

Field	 Description

Encryption Type The desired encryption algorithm to be used.

Addresses	 (Optional) IP addresses from which ticket will be valid.

Encrypt	 (Optional) In the KRB_TGS_REQ message, this will specify a key to
Authorization	 use to encrypt any pre-authentication data.
Data

Additional	 (Optional) In a KRB_TGS_REQ for user-to-user authentication, a
Tickets	 TGT will be included in this field. The TGS will use the session key

from this TGT 	 instead of the service's secret key 	 to encrypt the
service ticket.

4) KRB_TGS_REP Message Contents (Ticket-Granting Service Response)

The KRB_TGS_REP and KRB AS REP messages are similar and the fields are

similarly used. The major difference is that the ticket in the Ticket field is not a TGT.

Instead, it is the service ticket for the target server.

Table A.4 Ticket-Granting Server Reply Message Fields [6]

Field	 Description

Protocol	 5
Version

Message Type KRB_TGS_REP

Pre-	 In a KRB _TGS_REP message, application-specific data might be
authentication	 placed here.
Data

Client Realm	 Realm or domain of the requester.

Client Name	 Name of the requester

Ticket	 The encrypted ticket is placed here. For the KRB_TGS_REP message,
this will be the service ticket encrypted with the target server's secret
key.

The message fields below are encrypted with the TGS session key.

Key	 This is the session key the user will use with the application server.

66

Field	 Description

Last Requested The last time a ticket was requested. This is similar to a "last logged
on" time. This can be used to track how frequently a client is
requesting tickets. A Kerberos policy can be set that limits how
frequently ticket requests can be made. Such limits can help prevent
brute force attacks.

Nonce	 The nonce from the KRB TGS REQ nonce field will be copied here.

Key Expiration (Optional) When the user's key will expire. This is used for password
aging.

Flags	 These are the flags set in the ticket, based on the flags requested in the
KRB TGS REQ message and on the domain's Kerberos policy.

Authentication The time the ticket was issued.
Time

Start Time	 (Optional) At what time the ticket is valid.

End Time	 At what time the ticket expires (although it can be renewed if the ticket
is renewable).

Renew Till	 (Optional) At what time the ticket absolutely expires (cannot be
renewed past this time).

Server Realm	 Requested server's realm (domain).

Server Name	 Requested server's name.

Client	 (Optional) Addresses from which the ticket will be valid.
Addresses

5) KRB _ AP _REQ Message Contents (Application Server Request)

The KRB AP REQ message contains an authenticator encrypted with the session key

that the client and target server share, the service ticket encrypted with the target server's

secret key, and the optional mutual authentication request.

Table A.5 Application Server Request Message Fields [6]

Field	 Description

Protocol Version	 5

67

Field	 Description

Message Type	 KRB_AP_REQ

Application
Options Fields

Use Session Key	 During user-to-user authentication, after the client has obtained a
new ticket for the target service, the client will send a new
KRB_AP_REQ with this flag set. This tells the target service to use
its session key to decrypt the ticket.

Mutual	 If this flag is set, the target server will respond with the
Authentication	 KRB AP REP message, which will authenticate the target server to
Required	 the client.

Other Message
Fields

Ticket	 The service ticket for the target server, encrypted in either the target
server's secret key or in its session key, depending on whether user-
to-user authentication is required.

Authenticator	 The client's timestamp and other data, encrypted with the session
key that the client and target server share.

6) KRB _ AP _REP Message Contents (Application Server Response)

This message is used when mutual authentication is required (if the client needs to verify

the target server's identity). The message consists of a copy of the client's timestamp from

the authenticator that was previously included in the KRB_AP_REQ message encrypted

with the session key that the client and the target server share.

Table A.6 Application Server Reply Message Fields [6]

Field	 Description

Protocol	 5
Version

Message Type KRB_AP_REP

The following message fields are encrypted with the session key

68

Field	 Description

Client Time	 Current time on Client (from the authenticator).

CUSEC	 Millisecond part of client time (from the authenticator).

Subkey	 (Optional) Specifies a key to encrypt client sessions with application
server.

Sequence	 (Optional) Application-specific, so used if sequence number was
Number	 specified in the authenticator.

APPENDIX B

SOFTWARE OPERATIONS

This appendix describes the operations of the program. It describes briefly how KSPM

works and what is required to establish a connection. Snapshots from the program are

displayed.

Running KSPM on the phone requires WebSphere Everyplace Micro Edition Java

(WEME) to be installed on the phone. On the other hand, the messenger server requires a

Java runtime compiler to be installed on the server.

KSPM connection parameters such as user name, user password, realm, server

name, server IP address and service ports must be known in order to establish the

connection. Parameters like user name, user password, and realm are inserted at run time

by the GUI interface. Other parameters like the server IP address and port number are

hard-coded. Before the connection takes place, the user name and password should be

already stored in Active Directory at the server. The messenger server should be running

before launching KSPM to complete the connection establishment.

In Figure B.1, two clients (Bob and Alice) are using KSPM to exchanging

messages. The program is running using an emulator. Connection information is

displayed in the chatting screen for testing purposes. Figure B.2 shows the Messenger

Server functioning as an intermediate point between clients. It also logs chat sessions if

required.

69

Bob: Hello
A.li ce : Hi

User Name lad min I
~:::::::;::::::::;::::::::::

"IPassword 10 I
' IEBA~'JK..LOCAL I

IP Address 1192.168.1.50 I

:J :================;1
Send .

User Natne ladrnin
;:::::::::::::::::::::::~
IPassw ord 10

IEBAJ\lK. LOCAL

Figure B.I Two clients using KSPM to exchanging messages.

70

71

EBANKServer starts ... Waiting for incoming connection
EBANKServer starts ... Waiting for incoming connection

BANKServer ... client connection received
B.ANKServer cl ient connection received

I [Bob: Hello I receivedl
[Alice: Hi I received

Figure B.2 Messenger Server as an intermediate point between clients.

REFERENCES

1. C. Neuman, T. Yu, S. Hartman, K. Raeburn, "The Kerberos Network Authentication
Service (V5)", IETF, RFC 4120, July 2005.

2. MIT, Kerberos. Retrieved October 2, 2007 from the World Wide Web:
http://web.mit.edu/Kerberos/.

3. B. Clifford Neuman, and Theodore Y. T'so, "Kerberos: An Authentication Service for
Computer Networks", IEEE Communications Magazine, vol. 32, no. 9, pp. 33-38,
Sept. 1994.

4. J. Garman, "Kerberos: The Definitive Guide", 2nd ed. California: O'Reilly, 2003. [E-
book] Available: Safari e-book.

5. C. Kaufman, R. Perlman, M. Speciner, Network Security: Private Communication in
a Public World, Second Edition, New Jersey: Prentice Hall, 2002, pp. 307-371.

6. Microsoft, How the Kerberos Version 5 Authentication Protocol Works. Retrieved
October 2, 2007 from the World Wide Web:

http://technet2.microsoft.com/WindowsServer/en/library/4aldaa3e-b45c-44eaa0b6-fe8910f92f281033.mspx?mfr=true.

7. Jan De Clerc, "Windows Server 2003 security infrastructures: Core Security Features
(HP Technologies)," 1st ed. Digital Press, 2004. [E-book] Available: Safari e-
book.

8. N. Hindocha, E. Chien, "Malicious Threats and Vulnerabilities in Instant Messaging
Symantec Security Response," Symantec Security Response, Virus Bulletin
International Conference, September 2003.

9. IBM, WebSphere Everyplace Micro Environment. Retrieved November 1, 2007 from
the World Wide Web: http://www-306.ibm.com/software/wireless/weme/

10. Faheem Khan, Lock down J2ME applications with Kerberos Part 1. Retrieved
November 1, 2007 from the World Wide Web:
http://www.ibm.com/developerworks/wireless/librarv/wi-kerberos/

11. Bouncy Castle Cryptography. Retrieved November 1, 2007 from the World Wide
Web: http://www.bouncycastle.org/

12. M. Upadhyay, R. Marti , "Single Sign-on Using Kerberos in Java," Sun
Microsystems. Retrieved November 1, 2007 from the World Wide Web:
http://java.sun.com/j2se/1.4.2/docs/guide/security/jgss/tutorials/BasicClientServer
.html

72

73

13. Sun Java Wireless Toolkit for CLDC. Retrieved November 1, 2007 from the World
Wide Web: http://java.sun.com/products/sjwtoolkit/

14. ARM Processors. Retrieved November 1, 2007 from the World Wide Web:
http://www.arm.com/products/CPUs/families.html

15. S. S. Segars, K. Clarke, and L. Goudge, "Embedded control problems, thumb and the
ARM7TDMI," IEEE MICRO, pp. 22-30, Oct. 1995.

16. A. Efthymiou, J.D. Garside, and S. Temple, "A Comparative Power Analysis of an
Asynchronous Processor," In Proceedings of the 11th International Workshop -
Power and Timing Modeling, Optimization and Simulation (PATMOS '01), pp. 1-
10, September 2001.

17. L.T. Clark, E.J. Hoffman, and J. Miller et al., "An Embedded 32-b Microprocessor
Core for Low-Power and High-Performance Applications," IEEE Journal of Solid
State Circuits, pages 1599-1608, November 2001.

18. A. Anand, C. Manikopoulos, and et al., "A Quantitative Analysis of Power
Consumption for Location-Aware Applications on Smart Phones," IEEE
International Symposium on Industrial Electronics (ISLE), pages 1986-1991, June
2007.

19. Internet Graphs, Packets Average RTT. Retrieved November 1, 2007 from the World
Wide Web: http://dxmon3.cern.chicgi-binicricket/grapher.cgi?target=%2Flatency-
loss%2Finternet-coltwiew=Latency;ranges=d%3Aw%3Am%3Ay

20. Microsoft, Troubleshooting Kerberos Errors. Retrieved October 2, 2007 from the
World Wide Web:
http://www.microsoft.com/technet/prodtechnol/windowsserver2003/technologies/

security/tkerberr.mspx

21. ARM, "Jazelle for Execution Environments" White paper. Retrieved November 1,
2007 from the World Wide Web:
http://www.arm.com/pdfs/JazelleRCTWhitePaper_finall-0_.pdf

22. Sun, PicoJava. Retrieved November 1, 2007 from the World Wide Web:
http://www.sun.com/software/communitysource/processors/picojava.xml

23. Wikipedia, PicoJava. Retrieved November 1, 2007 from the World Wide Web:
http://en.wikipedia.org/wiki/PicoJava

24. ARM, High Performance Java on Embedded Devices. Jazelle DBX White paper.
Retrieved November 1, 2007 from the World Wide Web:
http://www.arm.com/pdfs/JazelleDBX_WhitePaper_2007v1pl.pdf

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 3)
	Table of Contents (2 of 3)
	Table of Contents (3 of 3)
	Chapter 1: Introduction
	Chapter 2: Kerberos Protocol
	Chapter 3: Software Implementation
	Chapter 4: Software Performance and Power Analysis
	Chapter 5: Conclusions and Future Research
	Appendix A: Authentication Service Exchange Messages
	Appendix B: Software Operations
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

