
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

RELIABILITY STUDIES OF TiN/Hf-SILICATE
BASED GATE STACKS

by
Naser Ahmed Chowdhury

Hafnium-silicate based oxides are among the leading candidates to be included into

the first generation of high-к gate stacks in nano-scale CMOS technology because

of their distinct advantages as far as thermal stability, leakage characteristics,

threshold stability and low mobility degradation are concerned. Their reliability,

which is limited by trapping at pre-existing and stress induced defects, remains to

be a major concern.

Energy levels of electrically active ionic defects within the thick high-к have

been experimentally observed in the context of MOS band diagram for the first time

in Hf-silicate gate stacks from low temperature and leakage measurements.

Excellent match between experimental and calculated defect levels shows that bulk

O vacancies are probably responsible for electron trapping at both shallow and deep

levels. Their role in trapping and transport under different gate polarity and band

bending conditions has been determined. For gate injection, electron transport

through mid-gap states dominates, which leads to slow transient trapping at deep

levels. Under substrate injection field and temperature dependent transport through

conduction-edge shallow levels or trap-assisted tunneling due to negative-U

transition occurs depending on bias condition. The former gives rise to fast

transient trapping, whereas the latter is responsible for slow transient trapping.



Mixed degradation, due to trapping of both electrons and holes in the trap

levels within the bulk high-к, was observed under constant voltage stress (CVS)

applied on n-channel MOS capacitors with negative bias condition. Mixed

degradation resulted in turn-around effect in flat-band voltage shift (AVFB) with

respect to stress time. Under CVS with positive bias, applied on nMOSFETs,

lateral distribution of trapped charges in the deep levels causes turn-around effect in

threshold voltage shift (A VT) with respect to stress levels.

For the incident carrier energies above the calculated O vacancy formation

threshold and thick high-k layer, both flatband voltage shift, due to electron

trapping at the deep levels, and increase in leakage current during stress follow tn (n

0. 4) power-law dependence under substrate hot electron injection. Negative-U

transitions to deep levels are shown to be responsible for the strong correlation

between slow transient trapping and trap assisted tunneling.

As far as negative bias temperature instability, NBTI effects on pMOSFETs

is concerned, AVT is due to the mixed degradation within the bulk high-к for low

bias conditions. For moderately high bias, AVT shows an excellent match with that

of SiO2, based devices, which is explained by reaction-diffusion (R-D) model of

NBTI. Under high bias condition at elevated temperatures, due to high Si-H

bond-annealing/bond-breaking ratio, the experimentally observed absence of the

impact ionization induced hot holes at the interfacial layer (IL)/Si interface

probably limits the interface state generation and AV T as they quickly reach

saturation.



Time-zero dielectric breakdown (TZBD) characteristics of TiN/HfO2 based

gate stacks show that thickness and growth conditions significantly affect the BD

field of IL. For the thin high-к layers, BD of IL triggers BD of the gate stack.

Otherwise, BD of high-к layer initiates it. During time dependent dielectric

breakdown, TDDB, four regimes of degradation are observed under CVS with

high gate bias conditions: (i) charge trapping/defect generation, (ii) soft

breakdown (SBD), (iii) progressive breakdown and (iv) hard breakdown (HBD).

Activation energy of bond-breakage, found from Arrhenius plots of 63% failure

value of TBD, shows that IL degradation triggers gate stacks BD, and the wear-out

during TDDB.
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CHAPTER 1

INTRODUCTION, MOTIVATION AND OBJECTIVES

1.1 Introduction

Unabated demands for higher density and faster operational speed of transistors, and

lower power consumption in integrated circuits (IC) have pushed complementary

metal oxide semiconductor (CMOS) technology into the forefront of the

microelectronics industry. Transistor scaling has so far achieved a remarkable

success in optimizing these diverse objectives. However, further downscaling of

MOS field effect transistor (MOSFET) dimensions, specifically for oxide thickness

(tox) below 1.6 nm, increases transistor leakage current to levels unacceptable for low

power applications [1]. An attractive solution is to replace SiO2 with high-K

dielectric materials (mostly Hf, Zr and Al-based) while retaining the standard

MOSFET design [2], [3]. This has the prospect of resulting in higher effective

thickness tox for equivalent oxide capacitance, which in turn reduces gate leakage but

not drive current, i.e., maintains the edge in the electrical performance comparable to

SiO2.

Stringent application of the physical and electrical criteria like permittivity,

band structure offset, thermodynamic stability, interface quality, gate electrode

compatibility, process compatibility, reliability etc. show Hf-based oxides to be the

most potential candidates out of many alternatives available in the silicon IC industry

[4]47]. In particular, Hf-silicates and their nitrided alloys, are likely to be the first

generation of materials that can be implemented as high-K dielectrics [3]. They have

1
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a moderately high dielectric constant (-8-15), depending on the Hf content, but, it is

compensated by higher thermal stability, better leakage characteristics, improved

threshold voltage stability and lower mobility degradation compared to Hf0 2 [8]412].

In addition, silicates form better interfaces with Si than metal oxides. As far as circuit

fabrication is concerned, CMOS process compatibility of Hf-silicates has been

achieved. However, reliability remains to be the most critical factor to hold back its

successful incorporation into the mainstream commercial intergraded circuits (IC)

[12]415].

1.2 Motivation

For high-k gate stacks, shown in Figure 1.1, trapping within the bulk dielectric is

widely reported to be one of the most critical reliability issues [16]-[18]. Firstly,

significant hystersis due to very fast charging and discharging of the trapped carriers

causes transient threshold voltage instability, AVT. This hampers high frequency

n-MOS Structure

'e

Figure 1.1 An n-channel MOS structure of high-k gate stack showing bulk high-k
and interfacial layer.
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switching operations. Secondly, AVT due to comparatively stable trapping is a

serious concern for the long-term operational performance of MOS devices. Thirdly,

trapping has the most detrimental effect on the degradation of the channel carrier

mobility in high-k MOSFETS. Fourthly, bulk trapping distorts the internal electric

field and modifies VT/V FB and leakage characteristics. Fifthly, defects responsible for

trapping also assist in tunneling, which gives rise to high gate current and diminishes

the advantages of high-k oxides. Sixthly, charging of midgap trap levels, specifically

near the metal gate electrode/high-k interface, modifies the gate Fermi level. This

gives rise to gate Fermi level pinning, which results in higher VT. Therefore, it is

obvious that studying and understanding the charge trapping induced degradation of

high-k gate stacks is key to improving its reliability as it is the ultimate limiting factor

for its long term performance.

The other vital issues of reliability of high-k gate stacks are related to stress-

induced breakdown. Studies of breakdown characteristics of high-x gate stacks are

made complicated by the fact that potential drop/electric field across interfacial and

high-k layers are different due to the differences in the value of their dielectric

constants, lc and thickness [19]. This, along with the differences in their respective

atomic structures [20], leads to the difference in the degradation in interfacial layer

(IL) and high-k layer as the stress bias is applied. Breakdown field, EBD decreases

and the field acceleration factor, 7 of dielectrics increases with the increase in lc

because local field at the atomic level increases with lc [20]. This suggests the

inherent difference between the breakdown characteristics of IL and high-k layer of
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MOS devices. IL determines the gate stacks breakdown under substrate injection for

thick high—K layers [21]. Hard breakdown (HBD) is observed for n-channel MOS

(nMOS) devices under substrate injection [22]. For gate injection, progressive

breakdown (PBD) of IL triggers the soft breakdown (SBD) at the high-k layer, which

leads to device failure [16]. It is, therefore, imperative to examine the roles of IL and

high-k layer in the breakdown characteristics of the overall gate stacks.

Charge trapping and breakdown characteristics can be investigated by

conducting a number of electrical tests such as hot carrier stress (HCS),

positive/negative bias temperature instability (PBTI/NBTI), time dependent dielectric

breakdown (TDDB), charge-to- breakdown (QBD), stress induced leakage current

(SILC) etc. as shown in Figure 1.2 [23]. The success of these studies depends on the

formulation of effective physical models, which can comprehensibly describe the

Figure 1.2 Different components of the charge trapping induced degradation studies
of the high-k gate stacks [21].
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trapping and breakdown characteristics. As far as high-k gate stacks are concerned,

this can be achieved by understanding the atomic structure and electronic properties

of the defects within the high-k dielectrics, electronic structure of the gate stack, and

carrier transport and kinetics under various oxide electric field conditions in

conjunction with critical analysis of the results observed from the electrical

experiments. However, processing conditions such as deposition techniques,

precursors for deposition, anneal conditions etc. affect atomic/electronic structures of

the gate stack as shown in the Figure. It is, therefore, imperative that high-K

reliability studies be carried out on case-by-case basis.

1.3 Objectives

The primary objective of this research is to propose a comprehensive reliability

model, which will be able to provide a physical insight into charge trapping related

phenomena under various stress conditions. To this end, the goals are to (1)

experimentally observe pre-existing and stress induced defect energy levels using

electrical characterization techniques, (2) find their relative locations in the context of

MOS energy band structure, (3) establish their physical origins on the basis of

calculation based models, (4) investigate the role of defect levels in carrier transport

and charge trapping under different bias and temperature conditions, (5) study charge

trapping induced degradation of critical device parameters like threshold/flatband

voltage shift, sub threshold swing etc., under bias temperature stress, and (6)

understand time zero and time dependent dielectric breakdown (TZBD and TDDB)
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characteristics, specifically breakdown mechanisms, role of high-k and interfacial

layer in breakdown etc. The following Chapters describe the findings from the

studies that were carried out in this dissertation to meet theses objectives.

1.4 Scope of Work

Hafnium-based high-k devices, used for the reliability studies in this work, were

fabricated using standard CMOS technology at SEMTECH, Austin, Texas. The

sample sets comprised of both n- and p-channel MOS capacitors and transistors.

Devices with TiN/Hf-Silicate and TiN/HfO2 based gate stacks with different area

(1x10 -8 to 1x10 -3 cm2), IL thickness (0.7 to 2.1 nm) and high-k thickness (2 to 10 nm)

conditions were investigated. Most of the reliability work like defect energy level

and their role in trapping and transport, and NBTI/PBTI/SHE/SHH were performed

using Hf-silicate based gate stacks at New Jersey Inst. of Technology by the author.

Time zero and time dependent dielectric breakdown (TZBD/TDDB) studies were

partially performed at SEMATECH by the author using HfO2-based gate stacks.

1.5 Dissertation Organization

In this dissertation Chapter 2 contains a detailed literature review on the 'root cause'

of trapping in high-k oxides. Calculation based theoretical models focusing on

physical origins, energy levels and formation energies of the most crucial electrically

active ionic defects in Hf-based oxides are thoroughly scrutinized. The recent

experimental models of fast and slow transient trapping are discussed in details.
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Chapter 3 gives an overvihe ew on the fabrication of MOS devices with metal

organic chemical vapor deposited (MOCVD) TiN/HfSi xOy, and atomic layer

deposited (ALD) TiN/HfO2 based gate stacks. Major electrical characterization

techniques used in this research are also discussed. Details about the automation of

the fundamental electrical measurements in LabView environment are provided.

Chapter 4 deals with the experimentally observed defect levels in the context

of MOS energy band diagram. Low temperature measurements were employed to

find deep defect levels. Leakage measurements at elevated temperatures not only

gave information about defect levels but also clarified the conduction mechanisms

under various polarity and band bending conditions. Characterization of time and

temperature dependent de-trapping from stress-induced defects is shown to be an

effective method to understand defect levels. Physical origins of the defects are

evaluated on the basis of matching experimental and theoretical defect levels.

Chapter 5 presents trapping characteristics under different stress conditions

such as constant voltage stress in both substrate and gate injection modes, substrate

hot electron and hole stress. Physical models are developed on the basis of defect

levels and transport mechanisms to explain the experimentally observed trapping

characteristics.

Chapter 6 reports the effects of NBTI on p-channel MOSFETS with

TiN/HfSi xOy based high-k gate stacks under different gate bias and elevated

temperature conditions. For low bias conditions, AV T is due to the mixed degradation

within the bulk high-k material. For moderately high bias conditions, H-species

dissociation in the presence of holes and subsequent diffusion are initially responsible
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for interface state and positively charged bulk trap generation. Initial time,

temperature and oxide electric field dependence of AVT in the devices, investigated in

this study, shows an excellent match with that of SiO2 based devices, which is

explained by reaction-diffusion (R-D) model of NBTI. Under high bias condition at

elevated temperatures, interface state generation and AV T quickly reach saturation.

Chapter 7 deals with the breakdown mechanisms of metal gate/high-k/IL

based gate stacks. The role of IL and high-k layer in TZBD and TDDB are

determined from different splits of sample sets of TiN/HfO2 based gate stacks with

varying IL and high-k layer thickness, IL growth conditions, and pre and post

deposition anneal conditions (PreDA and PDA). For the thin high-k layers (< 3.5

nm) under substrate injection, breakdown (BD) of IL triggers the BD of the gate stack

under ramped voltage stress (RVS). Otherwise, BD of high-k layer initiates it. Four

consecutive regimes of degradation are observed under constant voltage stress (CVS)

with high gate bias conditions during TDDB: (i) charge trapping/defect generation,

(ii) soft breakdown (SBD), (iii) progressive breakdown and (iv) hard breakdown

(HBD). Temperature dependent time-to-breakdown, TBD studies show that the

breakdown is field-driven under substrate injection and is initiated by IL.

Chapter 8 summarizes the major findings of this research work. Suggested

future work is also described in Chapter 8.



CHAPTER 2

LITERATURE REVIEW: CHARGE TRAPPING IN HIGH-K DIELECTRICS

2.1 Introduction

Recently many theoretical and experimental studies are conducted on charge trapping

in high-k dielectric materials, specifically for the case of Hf-based oxides. Charge

trapping in the pre-existing defects and trap generation within high-k dielectric

materials are the major concerns for the reliable operation of the MOS devices [24].

Conduction edge shallow electron traps are found to be inherent in the high-k

materials in the most recent studies and identified to be the "root cause" of trapping

[25], [26]. Specifically under substrate injection, these traps have been found to be

contributing to (i) electron transport through gate stack, (ii) localized electron

trapping and the redistribution of the trapped charge, and its subsequent precipitation

to deeper states located at different energy levels with different time constants during

stress [27], [28] and (iii) electron de-trapping and redistribution during relaxation

after removal of stress. Photo-generation of carriers [29] under low stress voltages

was also used to induce electron trapping within the bulk [HfO2, ZrO2 and A1433]

and hole trapping within the interfacial layer (IL). Trap generation may not be

possible for low stress levels in bulk high-k materials as effects of charge trapping,

like threshold voltage (V i) instability, are shown to be reversible by applying stress of

opposite polarity [25]. However, M. Houssa [29], [30] reported neutral trap and

positive charge generation at the bulk high-k (ZrO2) and at the IL (SiON),

9
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respectively under high negative stress voltage (gate injection). Furthermore, stress

induced leakage current (SILC) is observed under high stress conditions in HfO2 films

[31]. Negative bias temperature instability (NBTI) experiments further confirms that

defect generation is possible in HfO 2 films for high stress levels at elevated

temperature [32]. Consequently, depending on the stress conditions, both negative

and positive charge trapping along with defect generation may occur at different

energy levels and locations within the high-k gate stack. Calculations typically focus

on energy level, formation energy etc. of the defects once their origins (O

vacancies/interstitials etc.) are determined [33]-[37]. Physical models of trapping and

transport are formulated mostly on the basis of experimental results [26]-[31]. Only a

few studies relate physical origins and corresponding electronic properties of defects

to experimentally observed trapping and transport in a coherent manner [35], [37]-

[39]. The following Sections describe the topics pertaining to the issues stated above.

2.2 Charge Trapping in Hf-based High-k Oxides

Literature survey shows that charge trapping within the high-k gate stacks is

generally based on the role of the pre-existing defects in trapping mechanisms. Most

of the physical models of trapping are based on experimental results obtained for Hf-

based oxides since they are the most studied high-k oxides.

Transient trapping in Hf-based gate dielectrics has been a point of critical

investigation in the most current studies on high-k reliability [36]443]. Depending

on detrapping characteristics, it may be broadly categorized into two groups: fast and
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slow. Fast transient trapping mostly occurs at the bulk defects with energy levels

near high-k band edges under resonant tunneling conditions at 'non-zero' gate bias

[41]. This is why, its effect in degradation like threshold voltage shift, AVT, is found

to be quickly reversible under post-stress low 'non zero' gate bias condition [42]-

[45]. On the other hand, slow transient trapping occurs at the defects with energy

levels lying deep within the bulk high-k bandgap, specifically within Si bandgap

range in the context of MOS band diagram, and is shown to inhibit fast AV T recovery

even under high post-stress bias conditions [13]415], [18], [41]. Consequently,

trapping at pre-existing or stress induced deep defects can be reasonably considered

to be the ultimate limiting factor for the long-term reliability of the Hf-based high-k

MOS devices. Physical models are developed to individually account for the fast and

slow transient trapping. The former leads to hysteresis and the latter to more stable

trapping. They are described separately in Section 2.2.

2.2.1 Fast Transient Trapping

Charge trapping characterization is usually based on quasi-static or dc measurement

techniques. However, such techniques are not adequate for fast transient trapping

analysis since they have low ramp rate (10 V/s maximum) [42]. Fast measurement

techniques, like multiple-pulsed technique has been proposed for better evaluation of

the fast charging and discharging effects on Vth hysteresis for SiO2/HfO2 gate stacks.

This technique is based on monitoring drain current transients of MOSFETS.
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Figure 2.1 Transient behavior of drain current (Id) under multiple-pulsed technique.
Source: [42]

Typical Id(t) transients from	 up to seconds are depicted in Figure 2.1 using

several gate voltage pulses with 2ns rise/fall time. Time-dependent reduction in Id(t)

during the application of the pulse is mostly due to the fast transient trapping.

Similarly, detrapping transients of I d(t) can be observed by changing the gate voltage

pulse from high to low. By sampling these I d(t) and V g(t) curves at a specific time, an

Id(V g) parametric plot can be constructed as shown in Figure 2.2. For static and ramp

measurements, hysteresis is obvious in the Figure. However, trapping and de-

trapping occurs even during the application of ramp, so that, proper characterization

of fast transient trapping is not possible. On the other hand, Id(Vg) plot acquired

using transient techniques at the shortest possible time (5µs) is significantly devoid of

trapping when applied pulse is moved up from —2 V to a particular value of V g . The

same is true as far as detrapping during pulling down of pulse height from V g to —2 V
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is concerned. As a result, the correct measure of hysteresis due to fast transient

Figure 2.2 Hysteresis in Id-Vg characteristics under transient, static and ramp
measurement techniques.
Source: [391

trapping can be observed. Moreover, this Id(Vg) plot for 5µs can be used as a

reference to understand fast transient trapping induced AVT for other drain current

transients observed at different times as shown by the horizontal arrow in the Figure.

AVT, thus acquired, is plotted with respect to time for different gate biases during

trapping and detrapping in Figures. 2.3 (a) and (b), respectively. It is obvious that

trapping increases with gate bias and time. Fast detrapping even for moderate

reductions in gate bias shows that trapping mostly occurred at the shallow levels.
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Figure 2.3 (a) Fast transient trapping induced positive AVT shift for different gate
bias conditions. (b) Detrapping from shallow electron trap level induced fast
reduction in AVT at different reduced post-stress gate bias conditions.
Source: [24]
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To understand the influence of the high-k gate stack architecture on

hysteresis, dynamic AVT due to the application of ramp is shown in Figure 2.4. It is

obvious that trapping decreases as the physical thickness of the bulk high-k

decreases. However, as the interfacial layer (IL) decreases trapping increases. This

shows that trapping mostly occurs at the bulk high-k, and as IL decreases direct

tunneling to the bulk oxide traps resonant with Si conduction band increases under

positive gate bias condition.

Vg max applied (V)

Figure 2.4 Ramp measurement technique induced AVT with respect to different gate
biases for different HfO2/SiO x-based gate stack architectures.
Source: [16]

The major models for the fast transient trapping, specifically to account for

hysteresis, are shown in Figure 2.5. To account for the time dependence of AVT,

initially a simple model was proposed with defects physically located at HfO2/IL
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interface but having energy levels in between the conduction bands of HfO2 and Si as

Figure 2.5 Physical models for fast transient trapping with defect levels located at
(a) SiO2/HfO2 interface and (b) in the bulk high-k oxide.
Source: [39]

shown in Figure 2.5(a). Although it explains direct tunneling of carriers of the

defects, it fails to address the issue that trapping predominantly occurs at the bulk as

observed in Figure 2.9. This leads to the model in Figure 2.5 (b), where it is shown

that shallow defect levels lie within the bulk oxide and are physically distributed.

Depending on the thickness of IL trap filling mechanism in model in

Figure 2.5 (b) changes. Under substrate injection condition, for thin IL (~ 1nm)

channel-to-defect direct tunneling takes place, specifically for the traps near high-
.

k/IL interface. Subsequent filling of neighboring shallow traps under positive gate

bias condition occurs due to trap-to-trap conduction. For thick IL (-2nm) trap filling

by the capture of Hf02 conduction band electron occurs during substrate injection.

This is why, the model successfully depicts the experimental observation.
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2.2.2 Slow Transient Trapping

Slow transient trapping is characterized by slow post-stress recovery of AVFB/AVT

under 'no bias' or 'low reverse bias' condition. Two different models based on mode

of injection are described in Section 2.2.

2.2.2.1 Slow Transient Trapping under Substrate Injection. Stress/ relaxation

cycles were applied on Hf-silicate based gate stacks as shown in Figure 2.6. It is

obvious that electron trapping occurred during stress; however, only —25% recovery

of AVT could be achieved during relaxation induced de-trapping at 'no bias'

Figure 2.6 AVT w.r.t. time under stress/relaxation cycle.
Source: [ 181

condition. If trapping occurs at the shallow levels under substrate injection, de-

trapping takes place even at the reduced positive bias condition as observed in Figure

2.3 (b). This is why, trapping at the deep levels also takes place.
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During stress, electrons injected from the Si conduction band fills the shallow

levels under the given band bending condition as shown in the physical model in

Figure 2.7(a). Accumulation of the trapped charge in the localized states quickly

modifies the internal electric field as shown in Figure 2.7 (b). This gives rise to the

subsequent redistribution of the trapped charge to deep levels and the movement of

the charge centroid toward the gate as illustrated in Figure 2.7 (c). The model is

consistent the initial sharp rise in AV T followed by its slow change as stress time is

increased.

Figure 2.7 MOS band diagram during. stress: (a) initial electron trapping at
conduction edge shallow trap levels. (b) Internal electric field distortion due to
accumulation of localized trapping. (c) Charge redistribution to deeper levels induce
stable trapping.
Source: [25]
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During relaxation at 'no bias' condition, internal field, built during stress,

gives rise to the release and subsequent redistribution of the trapped charges as shown

in Figure 2.8. Thus, the model explains relaxation induced slow de-trapping.

Figure 2.8 Relaxation induced slow release and redistribution of trapped charges.
Source: [25]

2.2.2.2 Slow Transient Trapping under Gate Injection. In order to model ANT

instability under gate injection, negative gate bias was applied on a Hf-silicate based

pMOS transistor, followed by different positive bias as shown in Figure 2.9. Positive

charge trapping occurred during gate injection as ANT < 0. Application of high post-

stress positive bias results in AV T > 0, i.e, electron trapping took place. Low positive

bias apparently reduces post-stress AV T, but full recovery is not achieved. This

reduction may be due to electron trapping. These observation, as a result, point to the

trapping at deep states.
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Figure 2.9 AVT vs. time during stress with negative gate bias followed by positive
bias.
Source: [45]

Suggested physical model that satisfies the above observations is depicted in

Figure 2.10. In Hf-based oxides, shallow electron traps are filled due to direct

tunneling during substrate injection, leading to ANT > 0. In addition, deep electron

levels lying blow Fermi level also remained filled. When the opposite bias is applied,

these shallow traps are easily discharged to high-k conduction band making AVT < 0.

However, de-trapping from these deep states occurs slowly. Because traps that are

located within tunneling distance from the substrate with energy level in resonance

with the holes in inversion layer may discharge. When the trap in close proximity to

the substrate is emptied, electron migration from the neighboring deep trap "re-fills"

it. Consequently, negative AVT builds-up slowly over time.
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Figure 2.10 Physical model of deep defect induced slow transient trapping during
gate injection.
Source: [45]

2.3 Defect Energy Levels and Trapping

The electrically active defect levels, responsible for electron/hole trapping, can be

classified into three groups according to their locations within the bulk high-k

bandgap in the context of MOS band diagram, specifically with respect to Si band

edges, as shown in Figure 2.11. Their effects on tapping/de-trapping are described

below:

Group A: Defect levels lie above Si conduction edge, Ens ' remain empty under 'zero

bias', i.e., zero electric field and thermal equilibrium conditions. However, under

`non-zero' gate bias, i.e., substrate/gate injection conditions, such states are available



Figure 2.11 Defect levels within bulk high-k in the context of MOS band diagram.
Source: [41]

for resonant tunneling of electrons from EcSi/gate. Thus, they serve as electron traps.

It may be noted here that trapping near the substrate is mostly responsible for

flatband/threshold voltage shift AVFB / AVT. Once the bias is removed, very fast de-

trapping to substrate/gate, in the order of µs for gate stacks with thin interfacial

layers, occurs from these states. Consequently, these shallow levels give rise to fast

transient trapping of electrons, which is, mostly responsible, for hysteresis and

mobility degradation.

Group B: Defect levels lie within Si bandgap range. Electron/hole trapping in them

can occur due to substrate/gate injection. Under 'zero bias' condition, carriers

trapped in these deep states de-trap slowly to substrate depending on physical
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distance from substrate and activation energy w.r.t. to Ens ' (Ea = ET — Ens`), which

gives rise to slow transient trapping. AVFB / AVT due to trapping at these deep levels

is the most critical reliability factor for the high-k MOS devices as stated in the

Chapter 1. Transient trapping will be described in more details in the following

Chapters.

Group C: Electrons trapped at levels below EvSi give rise to fixed oxide charges.

However, shallow hole trap levels, resonant with Ev Si , are responsible for fast

transient trapping under 'non-zero' bias conditions.

2.4 Physical Origins and Electronic Properties of Defects

Physical origins and electronic properties of defects, which mostly affect the

performance and reliability of the high-k gate stacks, are described in Section 2.4.

2.4.1 Why do High-k oxides Have More Defects than SiO 2 ?

The reason for the presence of a large number of pre-existing intrinsic defects in the

high-k oxides compared to SiO 2 lies in the difference in their atomic properties [14],

[28]. The high amount of heat required for the formation of SiO2 makes the off-

stoichiometry defects like 0 vacancies energetically costly. Moreover, SiO2 has polar

covalent bonds with a low coordination. This makes SiO 2 an excellent glass former,

so that it remains amorphous. In addition, bonding in amorphous SiO 2 can relax

locally to minimize defect concentration. The more prevalent bonds are the dangling

bonds, specifically at Si/SiO2 interface, and they can be removed due to rebonding.
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Unlike SiO2, high-k oxides (e.g. HfO2, ZrO2 etc.) have higher atomic

coordination numbers and greater ionic nature in their bonding due to large difference

in electronegativity of the metal and O atoms [28]. This is why, high-k oxides are

poor glass formers, which is also evident from experimental observations as they

cease to remain amorphous when subjected to high temperature processing. This is

why, HO2 is preferred to ZrO2, silicates to pure oxides and N is added to inhibit

crystallization.

2.4.2 Physical Origin of Defects in High-k Oxides

In addition, ionic bonding and higher coordination mean that the atomic structure of

high-k materials does not easily relax to rearrange and rebond to remove the possible

intrinsic defects [14]. Formation of metal (Hf, Zr etc)-site defects is comparatively

costly in terms of formation energy due to the difference in valence between metal

and O. For these reasons, O-site defects like O vacancies and interstitials are the

defects of interest to the high-k community.

2.4.3 Calculation of Electronic Properties of 0 Vacancies/Interstitials

As Hf-based high-k oxides are the leading candidates and O vacancies/interstitials are

the prime defects, Sub-section 2.4.3 dwells on reviewing the calculation-based studies

focusing on them.	 Different positively/negatively charged states of O

vacancies/interstitials, which induce energy levels of electron traps belonging to

groups A and B in Figure 2.11 and hole traps to groups C and A, are particularly

described in Section 2.4.
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2.4.3.1 Calculation Methods. 	 Formation and ionization energies, and

electron/hole affinity of the charged defect states are calculated from the change in

the total energies of the dielectric material system before and after the incorporation

of the charged defects [10]. The monoclinic structure of hafnia is used as the building

block of the system since it is the most stable phase, even for thin films. One such 12

atom monoclinic structure, comprised of fourfold-coordinated tetragonal and

threefold-coordinated trigonal bonding of O ions in the monoclinic phase of hafnia,

was used by Foster et al. [10] as shown in Figure 2.12. The monoclinic structure is

extended in three dimensions to form supercells, which are used for calculations. O

vacancy/interstitial formation energies, Ef or(D) is calculated as the energy difference

between the fully relaxed neutral supercell with a single defect in charge state q (0,

±1, ±2 etc.), EDq, and the perfect neutral supercell E00 as shown in Eq. 2.1 [33],

E for (D) = E Dq —	 ± Eq0	 (2.1)

Here, EOq  is the total energy of the isolated molecule O atom/molecule in the charge

state q. It is subtracted for a vacancy and added for an interstitial.
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Figure 2.12 12-atom monoclinic hafnia cell having 3- and 4-fold coordinated 0 ions.
Distances are in Armstrong.
Source: [33]

In order to study the stable charged defect states and understand their role in

charge trapping as stipulated in Section 2.2, it is necessary to know electron affinities

and ionization energies of the defect states with respect to the bottom of the

conduction band of hafnia, and to the other source of charged carriers, i.e., Si

substrate as shown in Figure 2.11. To realize this, comparison is made between the

initial and final systems with the same number of electrons.

The absolute value of the defect ionization energy Ip(Dq) as the vertical

excitation energy of an electron from the defect with charge state q to the bottom of

the conduction band may be defined with the following equation [33]:
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Here, E0 and E0 +I are the calculated energies of the perfect supercell with charge

state —1 and 0, respectively, EDq  is the energy of the defect with the charge state q. In

Eq. 2.2 the value EDq+¹  is calculated for the geometry of the relaxed defect with

charge state q and el is a correction for the bottom of the conduction band. Similarly,

the electron affinity of the defect at the charge state q, Xe(Dq ), i.e., the energy gain

when electron from the bottom of the conduction band is trapped at the defect can be

defined using the following equation [33]:

Here, E2 is the correction factor. One can consider both "vertical" and "relaxed"

electron affinities. For the latter case, the lattice relaxation after the electron trapping

is included in EDq-¹. One can also define the hole affinity of the defect, χh(Dq), i.e.,

the energy gain when a free hole is trapped from the top of the valence band to the

defect as [331:

Again, E3 is the correction factor and EDq+¹ takes into account the lattice relaxation

after hole trapping from the top of the valence band.

Defect levels within the bandgap of Hf-based oxide can be found from the calculated

affinities after relaxation. However, to match with practical MOS devices it is

approximated that
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Here, Eg is the bandgap of the oxide. To realize Eq. (2.5), approximation regarding

the correction factors also needs to be made: ε1=ε2=ε and c3=0. In the calculations, c

is defined as the following difference between experimental and theoretical values of

Calculations based models assign different charge states to O

vacancies/interstitials, and then calculate their formation and ionization energies, and

affinities using the equations stated above. By optimizing E, they place the defect

levels within high-к bandgap in the context of MOS band diagram. Their role as

shallow/deep traps, as far as injection from gate/substrate is concerned, is then

decided using the benchmarks described in Section 2.2.

Figure 2.13 Calculated defect levels in the context of MOS diagram.
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2.4.3.2 Calculation-based Models. Calculation-based models show that charged and

neutral O vacancies V++/V+/V0/V¯/V¯¯are the potential electron traps in the bulk HfO2

as shown in Figure 2.13. V++ , resonant with Si conduction band at positive gate bias

(substrate injection) due to its shallow level, relaxes to deep V + level after trapping an

electron (V++ + e V+). After trapping another electron V+ further relaxes to even

deeper V° level (V+ + e --> V°). V° level lies within Si bandgap in the context of

MOS band diagram. Thus, negative-U behavior of V++ , due to strong electron-lattice

interaction, is responsible for deep electron trapping which gives rise to slow transient

trapping. On the other hand, V¯/V¯¯, lying near the oxide conduction edge, shows no

such electron trapping induced relaxation (V - + e —> V --). Thus, V - acts as a shallow

traps and induces fast transient trapping.

O interstitials in the bulk HfO2 are responsible for hole trapping. O -- andO¯

have energy levels below Si valence band and after capturing holes (O -- + h -> O - ; O -

+ h --> O0), O° level, resonant with Si valence band moves to its vicinity due to the

negative-U behavior of O -- /O - .

Calculations show that another potential hole trapping center is O 'arm'

vacancy, i.e., Si-V°-Hf, which induces energy levels below EvSi [3]. This vacancy is

located at IL/high-к interface. After capturing holes, Si-V ++-Hf induces energy levels

above EvSi, but within Si bandgap range.

In the following tables, defect levels and formation energies found by the

different groups are stated. It is obvious that, each group used different set of

parameters as far as oxide bandgap, offset in Si/HfO 2 conduction edges are
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concerned. This along with number of atoms used in unit supercell formation and

level of optimization used in their calculations gave rise to variation in the values.

However, the general trend as far as trapping induced relaxation is concerned is

obvious.

Table 2.1 Calculated Defect Levels within HfO2 Band-gap Responsible for Transient
Trapping

Table 2.2 Calculated Formation Energies of Defects Responsible for Transient
Trapping

2.5 Experimental Evidence of Presence of 0 Vacancies

Electron transfer from O vacancies adjacent to the gate within the hulk high-к oxide

to high work function metal gate (V 0 — 2e —› V ++) leads to the formation of dipole

layer, which shifts Hatband voltage (VFB) [29]. This is illustrated for Re/HfO2/n-Si

gate stacks in Figure 2.14. The magnitude of VFB shift depends on the concentration

of O vacancies and their distribution within the bulk oxide. VFB  shifts can be induced

in oxidizing ambient without incurring interfacial re-growth. due to O diffusion

toward substrate and subsequent oxidation, if low temperature and low 02 partial
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partial pressures are used. This is evident from Figure 2.15(a) that VFB increases with

annealing in dilute N2/O2 mixtures at low temperatures. The almost constant

capacitance at the accumulation regime shows that interfacial growth has not

Figure 2.14 MOS band diagrams Showing Hatband voltage (V FB ) shift due to dipole
formation between positively charged O vacancy and metal gate Re.
Source: [46]

been experimentally observed to decrease the dipole induced reduction in effective

work function difference. As a further evidence, it is shown in Figure 2.15(b) that

VFB shift after O2 anneal can be reversed if FGA is applied afterward. Reducing

ambient of FGA increases O vacancies, and thus increases VFB. These experimental

observations clearly show the presence of O vacancies in Hf-based oxides.
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Figure 2.15 (a) Shift in C-V for I\19/O 2 anneal at different low temperatures and time
conditions. (b) Shift in C-V under oxidizing and reducing conditions [46].
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2.6 Summary

In Chapter 2, calculation based model of defect levels as par their physical origins are

described in details for high-к gate stacks. The effect of the relative location of the

defect level on transient trapping is stated. Physical models of fast and slow transient

trapping based on experimental observations are also discussed. However, a

comprehensive model incorporating experimentally observed defect levelS, and their

roles in trapping and transport is yet to be SyStematically formulated for the candidate

high-к gate stacks.



CHAPTER 3

DEVICE FABRICATION AND ELECTRICAL CHARACTERIZATION

3.1 Introduction

In Chapter 3 fabrication of MOS devices TiN/HfSi xOy based gate stacks are

described. Different electrical characterization techniques used in the course of this

research are discussed. For fast and efficient characterization, automation of different

types of measurements is imperative. As part of this research, such automation

programs were developed in LabView environment, detailS of which are provided in

Chapter 3.

3.2 TiN/HfSixOy based MOS Devices Fabrication

3.2.1 MOCVD and ALD

Metal organic chemical vapor depoSition (MOCVD) is a process by which gaseous

molecular precursors are converted into solid-state materials, usually in the form of a

thin film, on a heated surface [47], [48]. Ease of manufacture, high controlled

deposition rate, good film conformity and ability to control deposition easily are the

major advantages. This is why this is extensively used for high-к deposition on Si

substrate. Since MOCVD procesS involves the decomposition of a molecular

precursor, careful choice of precursors is vital. If precursors are poorly chosen

unacceptable level of residual impurities may reside in the film, which leads to a large

number of trap sites and adversely affect reliability of MOS devices. Like MOCVD,

atomic layer deposition (ALD) is a chemical gas phase thin film deposition method

34
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atomic layer deposition (ALD) is a chemical gas phase thin film deposition method

[49], [50]. In ALD method, the film is grown through sequential saturative surface

reactions that are realized by pulSing the two or more precursorS into the reactor

alternatively, one at a time, separated by purging or evacuation steps. The major

advantage is that film growth is self-limiting. This is why film thickness is dependent

only on the number of deposition cycles. This leads to an accurate and simple

thickness control, which is ideal for large area uniformity and conformity. Moreover,

binary processes are easy to combine using ALD method, which is the key to the

preparation of multi-component and multi-layer materials. Hence, it is an ideal m

choice for good quality metal gate/high-к deposition. The major drawback is the low

deposition rate, which is due to the deposition of a fraction of a monolayer in one

cycle.

3.2.2 TiN/Hf-Silicate Based MOS Device Fabrication

Hafnium silicate (HfSi xOy —20% SiO2) film and TiN metal gate were deposited by

MOCVD technique [51] on both n- and p-type Si substrates after ozone treatment had

been performed for the pre-dielectric depoSition cleaning, which reSulted in —10A of

chemical oxide growth at the dielectric and Si substrate interface [51]. Isolation edge

and n+/p+-ringed MOS capacitors of different gate areas, and n- and p-channel

MOSFETS of different lengths were fabricated using the standard CMOS process

flow. Using HRTEM, the physical thickness has been measured to be 4.5nm

including an interfacial layer (IL) of 1nm [52], [13]. These devices were further

subjected to NH3 PDA at 700°C for 60s to improve leakage performance. Physical
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characterization details can be found elsewhere. An effective oxide thickness (EOT)

of 1.8-2 nm was estimated from high-frequency C-V measurements after quantum

mechanical corrections.

3.2.3 TiN/HfO2based MOS Devices Fabrication

HfO2 film and TiN metal gate were deposited by ALD method on p-type Si substrates

to fabricate high-к MOS devices [50]. TEMA Hf, Hf[N(CH3)(C2H5)]4 was used as

precursor in O 3 ambient. N+-ringed nMOS capacitors, and nMOSFETs were

fabricated using the standard CMOS process flow. The lots of sample sets and their

corresponding splits, used in this work, are specified in Table 1. Three different lots

are used. Lott has three splits with tH-K/tIL combinations of 2.6 nm/1.1 nm, 2.7

nm/0.7 nm, and 3.3 nm/0.7 nm. Here, 0.7 nm of IL was achieved by scavenging O

from in-situ steam generated, ISSG IL after the deposition of high-K. Lot 2 has seven

splits having different IL quality for fixed tH-K of 3 nm. In Splits 1 and 2, high-к was

deposited after HF cleaning of substrate before deposition, which resulted in IL

growth of 1.1 nm. In splits 3 and 4, ISSG IL of 2.1 nm was grown first. Then it was

etched back to 0.7 nm. Afterwards, ALD HfO 2 waS grown. For splits 5 and 6, IL

was etched back to 1.1 nm. HfO2 was grown above 2.1 nm of ISSG IL in split 7.

Pre-depostion surface treatment by annealing in NH 3 ambient was done for splits 2, 4,

6 and 7. Lot3 has seven Splits of different tH - K (3/5/7/10 nm) for 1.1 nm of tip. High-

lc layer was grown after O 3 cleaning of surface for splits 1, 3 , 4 and 6. This resulted



Table 3.1 Description of Different Splits from Various Lots Tested in the Work.

High-к based MOS structures:

37

Si02 based MOS structures:

HfSiO based MIM structures:
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in the growth of 1.1 nm of chemical SiO, as IL. For the rest of the splits, 1.1 nm of

IL was grown using ISSG method. Post-deposition anneal, PDA was done in NH3

ambient at 700°C for 60 secs in lots 1 and 2. For lot 3, PDA was done at 600°C for

60 secs in N2 ambient. MOS devices with ISSG 1.6 nm SiO2 and TiN metal gate are

ALD method for MIM structures in lot 5. They were subjected to 800 °C PDA in N2

ambient for 60 secs. ALD TiN was used as the bottom and top electrodes.

3.3 Electrical Characterization

Measurements of the electrical properties, parameters extracted from these

measurements and control over these parameters lead to stable and high performance

MOS devices. Bulk oxide and oxide-substrate interface are two major regions of the

MOS system. Charges in these two regions are undesirable because they adversely

affect the device performance and stability. The MOS capacitors and transistors are

being used to study the electrical characteristics as they have the advantage of

simplicity of fabrication and analysis. Following meaSurements techniques have been

employed in characterizing the charges present in MOS capacitors and transistors

using HfO2 as gate dielectric.

3.3.1 High Frequency and Low Frequency C-V measurements

A dielectric material is deposited as a thin film, on p- or n-type semiconductor

surfaces (e.g., Si, Ge) by variouS techniqueS including thermal oxidation, sputtering,

and chemical vapor deposition [53]. On top of that, gate metals like Al and Pt are

deposited to complete the MIS structure (Figure 3.1). Inside the dielectric, there are
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four different types of charges that contribute to the capacitance: (i) fixed oxide

charge, primarily due to the structural defectS in the dielectric; (ii) oxide trapped

charge, whose origin iS due to trapped electronS or holes in the bulk of the dielectric;

(iii) mobile ionic charge, if ionic impurities are preSent in the dielectric; and (iv)

interface charge, formed due to oxidation-induced structural defects and by broken

bondS at the interface. These charges can be measured by measuring the capacitance

as a function of voltage. During the measurement a dc voltage is swept from the

negative to positive direction and iS Superimposed by an ac Signal with a small

amplitude of 10-15 mV. The dc voltage determines the bias condition while the ac

voltage iS necessary to measure the capacitance.

Figure 3.1 A metal/inSulator/semiconductor (p-type) (MIS) structure is shown that is
used extenSively to characterize dielectric filmS. Dielectric/semiconductor interface
traps and bulk traps are shown. For positive gate bias, semiconductor and metal gate
act as cathode and anode, reSpectively, whereas for negative gate bias, the opposite
holds. The equivalent circuit of the serieS capacitance of dielectric and depletion
capacitances is also provided.
Source: [53]
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When the voltage is swept across the MIS device, the semiconductor surface

goes through an accumulation of majority carriers (electrons for n-type and holes for

p-type), depletion of majority carriers, or inversion with minority carriers. For

example, if a p-type semiconductor is considered for a MIS device and a negative

potential is applied at the metal electrode (gate), mobile positive holes, the majority

carriers accumulate at the dielectric-semiconductor interface during accumulation.

These carriers form a thin layer, which acts much like a parallel plate capacitor equal

in area to the gate. Once the voltage is raised to a small positive value, the holes are

repelled, causing depletion. Raising the voltage further attracts electrons to the

interface. The electrical equivalent circuit of a MIS capacitor is, therefore, a series

combination of a fixed voltage-independent gate oxide (insulator) capacitance and a

voltage-dependent semiconductor capacitance due to depletion (Figure 3.1). Figure

3.2 shows the C-V characteristics of MIS structures with a dielectric deposited on a p-

type semiconductor. Both the cases of dielectric with and without traps (ideal case)

are considered. The capacitance in the accumulation region is defined by the gate

area (A) and the dielectric thickness (tdie lec tric ) and is designated as Cdielectric (the

accumulation capacitance). The dielectric constant (lc) can be obtained from the

following equation:

The central region of the C-V curve, where the capacitance changes rapidly

with the gate voltage, is the depletion region that contributes to a depletion
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capacitance, Cdepletion, further separating the effective capacitor plates and decreasing

the device capacitance (as two capacitances in series reduce the overall capacitance).

The depletion region starts at a voltage defined by the Hatband voltage (VFB ). The

effective value of capacitance is now given by Equation 3. 2:

Figure 3.2 High-frequency (hf) and low-frequency (1f) capacitance-voltage (C-V)
characteristics of MIS structure for dielectric films with and without (ideal) defects
are shown. Flatband voltage shift of hf C-V, AVFB = (VFB'- VFB) > 0 indicates
negative charge trapping. For a film with defects, stretch-out of hf C-V, and offset in
capacitance, AC, in between hf and if C-V indicate the presence of interface traps.
Source: [53]

The capacitance decreases till the depletion width reaches a maximum and

inversion Sets in. Inversion forms a layer of minority carriers (electrons in this case)
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—hence, called inversion layer. In the inversion region, the value of the capacitance

depends on whether the measurement is conducted at low-frequency (0.01 to -1 Hz)

or at high frequency (-1 MHz). When measured at high frequency, the charges are

not able to follow the Signal and the capacitance is clipped to the capacitance at

maximum depletion width. The low-frequency capacitance includes the contribution

from the minority carriers also and, consequently, the capacitance increases. At

strong inversion, the minority carriers become more significant and, this is why, the

capacitance is only due to the inversion capacitance. As shown in Figure 3. 2, the

presence of negatively charged traps in the bulk dielectric and interface traps cause

the high frequency C-V plot to shift in parallel to the right of the ideal curve, and to

stretch out along the bias axis, respectively. The shift in Hatband voltage, AVFB =

VFB'- VFB is used in Equation 3.3 to calculate the total trapped charge in the dielectric,

Qtot:

Qtotal Cdielectric AVFB (coulombs)	 (3.3)

Due to capacitance across the dielectric film, negative charge trapping in film

translates to AV FB > 0, whereas for positive charge trapping, it is AV FB < 0.

Interface traps also cause an offSet in between low-frequency and high-

frequency C-V plots ( AC) as shown in Figure 3.2. This offset can be utilized to

calculate interface trap level density (D it) from the measured high-frequency



capacitance (Chf) and low-frequency capacitance (Clf) at a certain gate bias:

(3.4)

(cm-²eV-')

Here, q is charge of an electron. Di, can be measured for different gate biases in the

depletion regime.

3.3.2 Conductance Measurement

The measurement of surface conductance also enables computation of the interface

state density, Di t, especially for devices with low interface trap density. Difficulty

arises in capacitance measurements because the interface-trap capacitance must be

extracted from the measured capacitance that consists of oxide capacitance,

depletion-layer capacitance, and interface-trap capacitance. While the capacitance

and conductance as functions of voltage and frequency contain identical information

about the interface, greater inaccuracies arise in extracting this information from the

measured capacitance, because difference between two capacitances must be used. In

the conductance method this difficulty does not apply as the measured conductance is

directly related to the interface traps.

Interface traps maintain electrical communication with the semiconductor

substrate by capturing and emitting carriers (electrons/holes) depending on the gate

bias, which induces a change of occupancy in them. If a dc bias is kept constant and

simultaneously an ac test signal is applied, a change of occupancy causes an energy

43
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loss, which depends on test signal frequency for the given dc bias. If frequency is too

low, traps respond immediately; if too high, they do not respond at all. Energy loss,

which is due to capture/emission of carriers by interface traps, and is represented by

an equivalent conductance, G p, of the MIS structure, is minimal in both the cases.

However, in the low frequency range, for a given bias if frequency is increased

gradually, energy loss increases as more interface traps respond with a time lag. If

the frequency is increased further, it starts to decrease as fewer traps respond.

Maximum energy loss occurs when most of the interface traps respond. So, Gp ,

measured over a wide range of frequencies and gate voltages, is a measure of Di, with

(a)	 (b)	 (c)
Equivalent	 Simplified	 Measured

Figure 3.3 (a) Equivalent circuit for MIS structures with interface traps. Ri t and Cit
represent interface traps induced energy loss and charge storage, respectively. (b)
Simplified circuit, derived from (a), for analySis. Equivalent conductance, G p, is
computed from measured data as a function of both test (ac) signal frequency and
gate biaS (dc).	 (c) Circuit representing parallel capacitance (C m) and
conductance(G m), which is measured across two-terminal MIS structures for different
frequencies and biases using conventional instruments (e.g., LCR meter).
Source: [53]

respect to gate bias. An equivalent circuit as shown in Figure 3.3(a) represents a MIS

structure with interface trans. Here. Rit represents the energy loss due to interface
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traps, while Ci t represents the capacitance due to charge stored in those traps.

Formation of a depletion region, whose capacitance is represented by CD, takes place

along with interaction of semiconductor carriers with interface traps. Hence, CD is

shown in parallel with the series combination of Ci t and Ri t. Storage of charge across

the dielectric material occurs in addition to that in the depletion region and at the

interface traps. Thus CdielectriC remains in series with the network mentioned above.

A simplified circuit (Figure 3.3 (b)) contains the parallel combination of equivalent

conductance, Gp , and capacitance, C p , which can be derived from the parallel network

of Figure 3.3 (a). The measured parallel conductance, G m , and capacitance, C m , are

also indicated (Figure 3.3 (c)) across the two-terminal MIS structure using

conventional measurement instruments (e.g., a LCR meter). To find G p from the

measured data, the following equation is used:

(3.5)

where ω=2πf is the radian frequency. G p is estimated as a function of both gate bias

and frequency, especially in the depletion regime, and Gp/ω vs. log(f)) is plotted for

each gate biaS (Figure 3.4). Dit can be calculated from the highest peak of G p/ω vs.

log(f)) plots using Equation 3.6:

(3.6)



Figure 3.4 Gp/ω vs. log(f) plotS for different gate biaSeS in the depletion regime. Dit
is computed from the highest peak of the plot.
Source: [531

The leakage current through the dielectric material can be measured by varying

the gate bias. For ultrathin films significant leakage current occurs via quantum

mechanical tunneling of electronS from cathode to anode under the electric field

across the dielectric, Edielectric =(VG-VFB)/tdielectric, where tdielectric is film thickness.

Defects in the films may also aSsist in tunneling, which is more pronounced for low

gate bias values. Thus leakage current flow at low bias is a good indication of

presence of defects in dielectric films. In Summary, the MIS device Structure seems

to be ideal for electrical characterization of dielectric films. Parameters like the

dielectric constant can be measured and pre-existing defects can be quantified in the

dielectric bulk and at the semiconductor/dielectric interface. The measurement

techniques described above are quite versatile for the characterization of a wide range

of dielectric materials used not only in the electronics industry but alSo in other

disciplines.
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3.3.3 I-V Measurements

Gate current-voltage (I-V) measurements are crucial to understanding the

reliability of oxides in MOS devices. For the stacked structures of the high-к devices,

I-V characteristics is dependent on the polarity and band-bending conditions, and the

defect energy levels lying within the high-к bandgap. These factors, in this way,

determine the type of the dominant conduction mechanism for a particular gate bias

condition. Increase in stress-induced leakage current (SILO), due to higher post-

stress trap assisted tunneling (TAT), is widely used to study the reliability of the gate

oxides. However, its applicability in the high-к devices is limited under nominal

stress conditions as defect generation within the bulk oxide is energetically costly.

Dominant conduction mechanisms under substrate and gate injection

conditions are shown in Figure 3.5 for high-к gate stacks. For low bias conditions

under substrate injection, direct tunneling (DT) dominates. For a comparatively high

bias, DT and Poole-Frenkel (PF) dominates. For higher bias, PF dominates. Under

gate injection, DT and trap-assisted tunneling dominates unless gate bias is high. For

high bias, FN dominates. Direct tunneling is the flow of electrons through the full

oxide thicknesS as illustrated in Figure 3.6. The leakage current density is given by

the following equation:
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Figure 3.5 I-V characteristics for TiN/HfO2(4 nm)/SiO2(1 nm) gate stack under (a)
substrate and (b) gate injection conditions.
Source: [54]

Here, A and B are constants, E, is oxide electric field, Vox is the potential difference

across the gate oxide and ΦB is the barrier height seen by injected electrons. It is

obvious that DT does not depend on temperature. FN tunneling is the flow of

electrons through a triangular potential barrier illustrated in Figure 3.6. FN current



density is given by the following expression:

49

Here, AG is the gate area, E 0x the oxide electric field, and A and B are usually

considered to be constants. For Equations (3.9) and (3.10) mox is the effective

electron mass in the oxide, m is the free electron mass and ΦB is the effective barrier

height at semiconductor/oxide interface which takes in to account barrier height

lowering and quantization of electronS at the semiconductor surface. Here,

Where, (1)S is the surface potential and VFB Hatband voltage. If Vox is lower than ΦB

Figure 3.6 Band diagram for (a) direct tunneling and (b) F-N tunneling.
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then DT dominates, otherwise FN tunneling occurs for high VG as shown in Figures

3.6 (a) and (b).

Poole-Frenkel (PF) emission is due to the field-enhanced thermal excitation of

trapped electrons into conduction as shown in Figure 3.7. Conduction across the

oxide in MOS structure due to PF emission can be described with the following

equation [551:

Here, J is the leakage density, Eo x is the oxide electric field, q is electron charge, 4B

is the barrier height of the trap, εi is the insulator permittivity, k is the Boltzmann's

constant and T iS temperature. It is obvious that the trap barrier heightS can be

determined from Arrehinius plot of ln(J/E OX) if leakage current is measured under

substrate and gate injection conditions at the elevated temperatures. It may be noted

that the observed barrier height is OE less than the original (= Ec — ET) value under

the electric field induced band bending condition as illustrated in the Figure.

Figure 3.7 P-F emission of the trapped carrier under electric field and elevated
temperature conditions.
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3.3.4 Id-Vg Measurements

Drain current-gate voltage meaSurements by Simultaneously applying sweeping bias

at the gate and drain and grounding substrate and source is an effective way to

meaSure thresold voltage, VT of an nMOSFET as shown in Figure 3.8. VT can be also

Figure 3.8 Id-Vg measurement set-up for an n-channel MOSFET.

Be determined in the MOSFET saturation regime. The drain current in saturation is

as followS [55]:

where m is function of doping denSity , W and L are effective width and length of

MOSFET, µeff is effective mobility of the carriers at the channel, C OX is the oxide

capacitance and VGS is drain-to-Source voltage. VT is determined by plotting I D0.5 vs.

VaS and extrapoltaing the curve to zero drain current as Shown in Figure 3.9. Since I d

is dependent on mobility degradation and series resistance, VT is extrapolated at the

point of maximum slope. Setting VGS=VDS ensures operation in the saturation region.

Moreover, the maximum Slope iS equal to (mW/L) µeffCox [57], and, consequently,

prortional to effective mobility.
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Figure 3.9 VT determination from Id0.5-Vg plot.
Source: [57]

3.3.5 Subthreshold Current Method

The drain current of a MOSFET operated at gate voltages below threshold can be as

follows [571:

Where, IDI is a constant that depends on temperature, device dimensions and substrate

doping denSity; n, given by n = 1+ (Cb + Cit)/COX. Here, Cb, Cit and C0  are space-

charge region, interface states and oxide capacitances, respectively. This accounts for

the charge placed on the gate that does not result in inversion layer charge. Some

gate charge is imaged as space-charge region charge and some as interface trap

charge. Ideally n= 1, but n> 1 as the doping density increase. (C b —NA" ) and as the

interface trap density increases (Cit DO.

The usual subthreshold plot is one of log (ID) vs. VG for VD >>kT/q. The

measurement is simple to do, requiring merely a current-voltage measurement of a
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MOSFET. Such a plot has a slope of q/[ln(10)nkT]. The slope is usually expressed

as the subthreshold swing S, which is that gate voltage necessary to change the drain

current by one decade, and is given by

S = [1n(10)nkT]/q =60n(T/300) mV/decade 	 (3.15)

The interface trap density obtained from a plot of log(ID) vs. V g is

requiring an accurate knowledge of C O, and Cb. An additional complication is the

dependence of the slope on surface potential fluctuations. For this reason, this

method is used as a comparative technique to understand electrical stress or energetic

radiation induced damage to the interface by measuring S before and after stress or

radiation. AS is easier to interpret. A typical subthreshold MOSFET curve is shown

in Figure 3.10 by plotting log 0(ID) vs. VG plot. VT is measured using the technique

in Section 3.2. S is measured in the subthreshold region.

Figure 3.10 Subthreshold swing determination from subthreshold slope.
Source: [57]
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3.3.6 Stress Measurement

High field stresS in ultra thin gate oxides in MOS devices is known to degrade the

oxide quality and eventually lead to oxide breakdown. Charge trapping in the oxide

is used to monitor the degradation of the oxide. To these ends, oxide integrity is

studied by time-dependent meaSurements by applying biaS or injecting current and

Simultaneously measuring current and voltages at different nodeS of MOS devices.

3.3.6.1 Constant Voltage Stress. Constant voltage stress (CVS) iS implemented

by applying positive or negative biaS on gate while keeping Substrate grounded as

Shown for MOS-capacitor. For MOSFETs or active-edge (ringed) MOS-capacitors,

source/drain and the ring is also grounded aS Shown in the Figure 3.11. During streSS,

Figure 3.11 (a) MOS-Capacitor and (b) MOSFET set-up for constant voltage stress
(CVS).
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Figure 3.12 Band diagram for (a) substrate and (b) gate injection during CVS with
positive and negative gate bias, respectively.

gate current is measured to estimate charge by integrating gate current over time as

shown below [57]:

Band diagrams for substrate and gate injection are shown in Figure 3.12. For

gate stacks with metal gate electron injection from Si conduction band dominates

during substrate injection. However, during gate injection not only electrons from

gate, but also holes from the channel are injected. This is specifically pre-dominant

in the case of MOSFETS. This is why, source and drain currents are also monitored

during stress. JS + JD can be integrated over time, as in (3.17) to estimate hole

injection into the oxide.
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To understand trapping at pre-existing and/or stress-induced defects gate

current is monitored during stress (Figure 3.13). If J g increases during stress time,

hole trapping or/and elrectron trap generation takes place. If J g does not change

much, neither electron nor hole trapping dominantes. If J g decreases, electron

trapping is significant.

Figure 3.13 Gate current vs. time during CVS.

3.3.6.2 Substrate Hot Electron Stress. 	 SHE stress was applied on ntringed

nMOS-C using the arrangement shown in Figure 3.14. SHE injection was realized by

keeping the gate voltage (Vg) and substrate voltage (V s) at low positive and high

negative bias, respectively, while the ring voltage (Vring) was kept grounded. Vinj is

the bias applied on ntring of the adjacent capacitor located around 10µm away,

which forms a p/n+ junction and acts as an electron injector. For low gate bias (Vg =

0.75V), the gate current during SHE injection increaseS by one order of magnitude

compared to the cold carrier case [57]. As a result, during SHE stress, gate current

comprises mostly of hot electrons injected into the oxide. In addition, the gate
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current, that is hot electron injection, increases when injector bias is increased for a

given V s .

Figure 3.14 Arrangements for (a) SHE stress on n+-ringed nMOS-C and (b) band
diagram under SHE stresS.

3.3.6.3 Substrate Hot Hole Stress. To study the characteristics of the generated

defects, SHH Stress was applied using the arrangement shown in Figure 3.15. SHH

injection was realized by keeping gate voltage (V g) and substrate voltage (V s) at low

negative and high positive bias, respectively, while the ring voltage (V ring) was kept

grounded. Vinj is the bias applied on ptring of the adjacent capacitor located around

20µm away, which forms a p +/n junction and acts as a hole injector. Hole injection

into the gate stack can be controlled independent of the gate bias by varying Vinj (Vinj

> V s) for a given V s, while the energy of the incident carriers can be controlled by

varying V. For low gate bias (V g = —0.75V), the current during SHH injection
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increases by one order of magnitude compared to the cold carrier case. This why,

during SHH stress, gate current mostly comprises of hot holes injected into the oxide.

Figure 3.15 (a) Arrangements for SHH stress and (b) band diagram under SHH
stress.

In addition, the gate current increases when injector bias is increased for a given V.

These experimental results validate the Setup for SHH injection.

3.3.7 Low Temperature Measurements

Low temperature characterization is uSeful in understanding the bulk oxide charges

and interface traps behavior. It provides detailed description of the type of trapping

taking place in the bulk oxide as well as at the interface. Furthermore, activation

energy (Et) of traps from the band edges can be calculated from Hatband voltage shift

(AV FB) at different temperatures. A temperature range of 300 °K to 130°K has been

used for measurements. CTI Cryogenics M22 closed loop helium cooled

refrigeration system and Palm Beach Cryophysics model 4075 temperature controller

were uSed for low temperature measurements.
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3.3.8 Time Zero Dielectric Breakdown (TZBD)

To understand TZBD characteristics, ramped voltage stress (RVS) is applied on the

gate of MOS devices at a certain rate in both inversion and accumulation [57].

During the application of RVS, Ig is monitored. Gate current increases as voltage is

ramped to high values. Hard breakdown occurs when the applied electric field breaks

the bonds and bandgap collapse occurs. This results in a highly conductive path,

which lets gate current to reach thermal run-away levels. Only then catastrophic

thermal or thermodynamic breakdown occurS. Gate bias at which Ig increases sharply

is defined as breakdown voltage, VBD. Breakdown field of the dielectrics, EBD can be

found from VBD. The quality of the dielectric can be understood from EBD. This is

why it is extensively used to monitor the quality of oxide during different phases of

fabrication.

3.3.9 Time Dependent Dielectric Breakdown (TDDB)

In order to comprehenSively understand the reliability of the gate stacks, TDDB is

studied by applying either constant voltage or current stress [12]. During CVS and

CCS, Ig—t and V g—t are monitored. Soft breakdown (SBD) occurs as a temporary

percolating path is formed across cathode and anode due to streSs-induced defects.

This results in a small but sharp increase of gate current with respect to stress time.

As percolating path becomes more stable due to defect generation, conductivity

across cathode and anode increases. This results in noisy but gradual increase in gate

current, which is known as progressive breakdown (PBD). When a stable conductive

path is formed, hard breakdown (HBD) occurs. As stress is continued further,
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thermal runaway current gives rise to catastrophic breakdown. For sub-2 nm oxides,

these breakdown phenomena are widely observed.

Time-to-breakdown (TBD) is defined as the moment when HBD occurs. For CVS,

charge-to-breakdown (Q BD) is defined as area under I-t plot till TBD. For CCS, it is

defined as the product of current stress level and stress time. Slopes of weibull plots

of TBD and QBD for different areas under different stress levels are used to understand

the quality of oxide as well as the uniformity in distribution. Moreover, 63% failure

values of TBD, found from weibull plots, are plotted with respect to stress bias to

project 10-year life-time and to optimize the operating voltage.

3.4 Measurement Automation

In order to have fast and accurate measurements from the experiments designed in the

GATE

Figure 3.16 Basic arrangement for electrical measurement automation of a simple
two-terminal device, e.g. MOS-Capacitor.

course of this research, the basic measurements like C-V/G-V, I-V, Id-Vg, CVS,

SHE, SHH etc were automated. Measurement automation involves remotely

programming the measurement inStrument for a particular set of measurements, the

parameters of which are provided by the user. To this end, GPIB (general purpose
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instrumentation bus) protocol is widely used. For example to take I-V measurement

for a MOS-C, the user sets the start and end gate biases along with inter step voltages.

It is also possible to provide inter-step delay, how the data will be displayed in the

instrument and which file in PC measured data will be stored. All these data can be

supplied via a man-machine interface of the resident program like LabVIEW at the

PC (personal computer). LabVIEW based automated software converts the user-

defined data to commands understood by inStrument and evokes GPIB commands to

write theSe command data to the instrument. After successful transmission of

command data to the instrument, it triggers the instrument to run the measurement.

After the completion of measurement, automation software stores a copy of data at

the instrument. It opens the file again and evokes it to transmit back to PC and store

them in a user- defined file. Figure 3.16 showS the basic building blocks. Algorithms

and instruments used for measurement automation of simple experiments like I-V/C-

CV/G-V/CVS/Id-Vg are described in the following sections.

3.4.1 I-V Measurements Automation

For I-V measurements HP4156B semiconductor parameter analyzer, Cascade

Microtech probe station (for room temperature measurements) and Micrmanipulator

hot stages (for elevated temperatures) are used. Man machine interface (MMI) of I-V

automation System is shown in Figure 3.17. This system can be used for gate leakage

from measurements of both isolated edge and active-edge MOS capacitors. It can be

noticed from MMI that user can apply bias on both gate and ring, define start and end

gate voltages along with number of steps. Mode of digital integration of raw data can
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also be selected as par requirement. Inter-step voltage is evenly distributed within the

specified range of gate bias. User can obtain both gate and substrate currents from I-

V measurements and save them in a uSer-defined file in PC where corresponding gate

voltage and gate and/or Substrate currents stored in array forms, which iS ready for

further data analysiS using commercial spreadSheet software. Moreover, obtained I-V

resultS are shown in graphical form for better user comprehension. The algorithm of

I-V automation is given in Figure 3.18 using flow chart.

Figure 3.17 View of the man machine interface (MMI) of I-V meaSurement
automation system.
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Figure 3.18 Flow chart of I-V automation algorithm.
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3.4.2 C-V and G-V Measurements Automation

For parallel capacitance and conductance measurements of MOS capacitors at

different frequencies in 1 MHz-20 Hz range, HP4284A LCR meter is used. MMI is

shown in Figure 3.19. User can define dc Sweep level from positive to negative

voltages and vice versa. Inter-Step voltages can also be defined along with inter-Step

delay. Frequency can be set in 1MHz-20Hz range for ac signals of 10 mV peak

value. MeaSured parallel capacitance and conductance values are saved in arrayS of

C-V and G-V format in user-defined file in PC. Measured C-V is also plotted on the

MMI widow. The algorithm for C-V/G-V measurement automation is shown in

Figure 3.20.

Figure 3.19 View of the man machine interface (MMI) of C-V and G-V
measurement automation system.
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4284A applies gate bias on DUT
and sweeps from Vg[0] to Vg[9].

Measures parallel capacitance
[Cm] and conductance [Gm] at
the given test frequency for each
value of gate bias.

Transmit step delay, ac test voltage
frequency & magnitude, and measurement
& integration modes to 4284A.
Put 4284A in sweep mode.

Transmit Cm and Gm
data from 4284A to PC

Save received C-V
and G-V data in a
user defined file in

Figure 3.20 Flow chart of C-V/G-V automation algorithm.
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3.4.3 CVS Measurements Automation

Constant voltage streSs (CVS), applied on MOS capacitors, is automated using

HP4156B semiconductor parameter analyzer. User-defined stress bias is provided for

a given period of time. Number of time steps and delay in each Step are provided.

Gate and subStrate current during stress iS measured and saved in user-defined file in

PC as shown in MMI (Figure 3. 21). I-t iS plotted after stress. Same program can be

used for constant current stress by changing "stress test type" option on MMI

window.

Figure 3.21 View of the MMI of CVS automation SyStem.



67

v 
Figure 3.22 Flow chart of CVS automation algorithm.
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3.4.4 Id-Vg Measurement Automation

Id-Vg measurement automation of MOSFETs is implemented using HP4156B

Semiconductor parameter analyzer. By applying VGS=VDS, ID,sat is measured w.r.t. of

Vg in the given range. User defined start and stop values are transmitted to the

instrument. After taking the measurement Id-V g data iS displayed at MMI window as

shown in Figure 3.23. During Id-V g measurement, gate leakage iS also measured and

Saved in user defined file.

Figure 3.23 View of the MMI of Id-Vg measurement automation syStem.
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Figure 3.24 Flow chart of Id-Vg automation algorithm.
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3.4.5 SHC Measurements Automation

Substrate hot carrier (SHC) stress is applied on n+-/p+-ringed nMOS-C and pMOS-C

respectively using HP4156B semiconductor parameter analyzer. Discrimination

between hot electron and hot hole injection can be made by modifying gate, ring and

injection biases in the same program as shown in Figure 3.25. The rest is same as

CVS.

Figure 3.25 View of the MMI of SHC Stress automation system.



Figure 3.26 Flow chart of SHC stress automation algorithm.
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3.4.6 Transistor Stress Measurement Automation

Automation program is modified to accommodate applying CVS on MOSFETS,

which is done using HP4156B semiconductor parameter analyzer. Gate, drain, source

and substrate bias can be gin individually for CVS as shown in Figure 3.27. The rest

is same as CVS applied on MOS capacitors.

Figure 3.27 View of the MMI of CVS automation system for transistors.



Figure 3.28 Flow chart of CVS for transistors automation algorithm.
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3.5 Summary

Fabrication of TiN/HfSixOy based devices is discussed in this chapter. Basic

principles of the fundamental measurement techniques like I-V, C-V, G-V, CVS etc.

are elaborately described. Automation of simple and complex measurements is

implemented on LabVIEW platform. Man-machine interfaces and automation

algorithms are comprehensively analyzed.



CHAPTER 4

EXPERIMENTAL OBSERVATION OF DEFECT LEVELS IN TiN/HfSi xOy

BASED GATE STACKS

4.1 Introduction

In order to observe the electrically active ionic defect levels within TiN/Hf-silicate

based gate stacks, a number of studies were performed. It is obvious from

calculations that the defect energy states, responsible for electron and hole trapping,

lie at the various levels within the bulk high-к bandgap. In the context of MOS band

diagram, they are resonant with the injecting sides (metal gate and Si band edges)

under different band bending conditionS. Electrical experiments need to be carefully

designed to find the defect levels.

Observation of AV FB , leakage etc. with respect to temperature is the key to

finding the activation energies of the defects. Techniques like low temperature

C-V/G-V measurements at different frequencies, leakage measurements at the

elevated temperatures, and Hatband voltage measurement during temperature and

time dependent carrier de-trapping from stress-induced defects were employed.

Moreover, observed defect levels were compared with the calculated values to relate

to the phySical origins of the defects.

75
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4.2 Characteristics of Detrapping from Deep Defects

In order to understand the effects of both the spatial location and the energy level of

the deep bulk traps, as shown in Figure 4.1, on detrapping time to the substrate, the

following modified Shockley-Read-Hall (SRH) model of carrier emission rate, en/p

can be used [58]:

en, p ac exp( — E, / KT) x T„, p (4.1)

p CC exp(-Φ B x dT (4.2)

Here, Ea is the activation energy of the deep bulk high-к trap with energy level lying

within Si bandgap range and is measured from Si band edge, K is Botzman's

constant, Tail, is the tunneling transparency, ΦB is the barrier height seen by the

trapped carriers and dT is the distance of the trap location from the IL/high-к interface

provided IL is less than 2nm to accommodate direct tunneling to/from bulk high-к

traps.

It is obvious that detrapping time, which is the inverse of the emission rate,

increases with E a and dT under `no-bias' condition at a fixed temperature for the deep

defects near the substrate. But, for the same defects detrapping time decreases with

increase in temperature under `no-bias' condition. It is further understood that for an

electron trap level above EcSI or a hole trap level below EvSi in the bulk high-к,

detrapping time primarily depends on tunneling transparency. Detrapping time from

these traps is considerably fast even under `no-bias' condition especially for the traps

located near the substrate and is independent of temperature. However, thermally and

field activated discharging from them appears as an additional but a competing



77

detrapping process only at comparatively high temperature and bias conditions [39].

Simulation with HfO2 based gate stacks with —1nm of IL shows that for levels 0.5eV

above En S ', i.e., shallow traps, de-trapping time to the substrate approaches ~1010 sec

for traps near the substrate under `no-bias' condition at room temperature [59[477].

For levels 0.05 eV and 0.5 eV below EIS`, i.e., deep traps, it increases to ~10 0 and 107

sec, respectively. Experimental results reported by [39], [58] conform to these

observations. This is why, detrapping time at room and elevated temperature under

`no bias' condition can be probed to understand whether trap levels lie within Si

bandgap range, especially for those located near the substrate.

Figure 4.1 Detrapping characteristics from shallow (A) and deep (B) traps under
idealized 'no bias' condition for TiN/HfSi xOy based gate stacks.

4.3 Defect Levels from Low Temperature Measurements

The electrically active ionic defects are found to be mostly responsible for the

trapping within the bulk high-к oxides. For Hf-based gate stacks with the thin IL (< 2

nm), simulations show that it is possible to quickly (-10s of ms) charge and discharge

deep electron traps by applying moderately high positive and negative bias (~ ±2 V)

[1]. To characterize the defects with the deep levels, specially lying within Si
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bandgap range, C-V measurement at low temperatures can be used as an effective

method. It is possible to fill the deep bulk traps with the majority carriers injected

from the substrate and subsequently empty them if the gate bias (V g) sweep levels

from the accumulation to inversion regimes are carefully selected [59]. The

temperature dependent response of the majority carrier traps leaves its signature in

AVFB and, thus, enables the defect characterization. In this work, the focus is on

studying the deep electron and hole traps. Essentially, C-V measurements are taken

for pMOS-C and nMOS-C with TiN/HfSi xOy based gate stacks at low temperatures

within 275K-78K and 275K-100K ranges, respectively.

4.3.1 Low Temperature C-V and G-V for pMOS-C

C-V measurements in 275-78K temperature range are plotted in Figure 4.2(a) for

pMOS-C. Shift of C-V to the right with decreasing temperature indicates that

electron trapping had occurred. 10 KHz G-V measurements in 275-78K range are

shown in Figure 4.2 (b). Horizontal shift of the peak of the G-V plots to the right also

confirms that electron trapping had occurred as the temperature was lowered [59]. It

is obviouS from Figure 4.2(b) that the change in trapping at the interface states is

negligible, as the magnitude of the peak does not change with temperature. This

affirms that electron trapping took place at the bulk high-к.

As Vg is swept from the accumulation to depletion regimes the deep bulk

traps, with the energy level lying below Fermi level, become filled with electrons

injected from the substrate. As V g is swept from the depletion to inversion regimes,

the bulk trap energy levels move above Fermi level and these traps tend to become
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empty as a result of the detrapping of electrons to Si conduction band, E cSi . However,

this detrapping process is thermally activated. As a consequence, the detrapping of

-0.5 -0.3 0 0.25 0.5 0.75 1 	 0 	 0.25 	 0.5 	 0.75 	 1
Vg (V) 	 Vg(V)

Figure 4.2 (a) 1 MHz C-V plots, and (b) 10 KHz G-V plots in 275 K-78 K
temperature range for pMOS-C.

electrons decreases as temperature is decreased. As V g is swept from the depletion to

inversion regimes, the bulk trap energy levels move above Fermi level and these traps

tend to become empty as a result of the detrapping of electrons to Si conduction band,

En S `.. However, this detrapping process is thermally activated. Thus, the detrapping

of electrons decreases as temperature is lowered, which results in the increase in

AVFB, determined after the temperature and quantum mechanical corrections, with

low temperatures as observed in Figure 4.3. This is why the activation energies of

these deep defects, responsible for electron trapping, can be determined from

Arrhenius plots as shown in the inset of Figure 4.3. The energy levels of these deep
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defects, consequently, can be determined with respect to the E IS ' from their activation

energies. The activation energies, Ea, of these deep defects were found to be 122meV

and 6meV.

Figure 4.3 Flatband voltage shift (AV FB) vs. temperature for pMOS-C. (Inset)
Arrhenius plot of AV FB . (b) 100 KHz C-V and G-V for 2 nm Hf-silicate/IL at 298 K
and 78 K for nMOSFET.

The objective was to inject electrons into the gate stack and observe its effect

on AVFB. Voltage across gate stack, Vox = VH-K + VIL. , where, VH-K and V11_, are the

potential drops at the high-к and interfacial layer, respectively. In this case, EOT is

—2 nm and physical thickness of Hf-silicate and interfacial layers are 3.5 and 1 nm,

respectively. Consequently, VH-K / V IL 1. Furthermore, VH-K = VIL = Vox / 2 = (V g

— VFB —'P s ) / 2, where T s is the surface potential. For p-MOS-C, VFB 	 0.4 V, and

for V g = +1.75 V, VIL 	 0.7 V. The offset between Hf-silicate and Si conduction

bands 1.5 eV. As far as band bending conditions during sweep are concerned,

shallow electron trap energy levels lying within ~ 0.1 eV of Hf-silicate conduction
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band are not resonant with Si conduction band, which prevents them from being

populated [60]. For this reason, the observed activation energies do not correspond to

them.

To understand whether the deep defects, responsible for electron trapping, are

located within the IL or high-к layer of TiN/ 3.5 nm HfSi xOy/ 1 nm IL gate stacks, a

new sample with a different high-к layer and the same IL needs to be used. To this

end, 100 KHz C-V and G-V measurements of nMOSFETs with TiN/2nm HfSi xOy

/1 nm IL gate stack were taken at room and low (78 K) temperatures. To initially

inject electrons into the gate stack and observe its effect on AV FB , Vg was swept from

+1.5 V to —1.5V, i.e., from the inversion to the accumulation regime as shown in

Figure 4.3.(b). V IL 0.8 V for Vg = +1.5 V, which allows the deep levels to be

filled with electrons during sweep. It may be noted that the minority carrier

(electrons) shortage during the substrate injection was avoided as source/drain were

grounded. C-V measurements, however, showed a negligible change in VFB as

temperature was lowered. Moreover, the peak value of G-V showed no change as

temperature was lowered. Trapping at the interface states was also negligible. Very

fast de-trapping from the bulk defectS in 2 nm high-к layers due to the very short

tunneling distances (< 2 nm) were reported [60]. If electron trapping in IL had

dominated, AVFB would have been significantly high positive value (see Figure 1)

irrespective of the high-к layer thickness. As this is not the case, it may be argued

that electron trapping mostly occurred within the bulk high-к layer in 3.5 nm

Hf-silicate/ 1 nm IL gate stack.
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4.3.2 Low Temperature C-V and G-V for nMOS-C

For nMOS-C, the C-V plots in Figure 4.4(a) shift to the left as the temperature is

varied from 275K to 100K. This indicates that hole trapping dominates. Arrhenius

plot of the corrected —AVF B in the inSet of Figure 4.4(a) shows a dominant defect level

with activation energy of 20 meV. Figure 4.4(b) shows that peak of 10KHz G-V

plots shifts to the left as hole trapping took place, whereas the magnitude of the peak

does not change as the trapping predominantly occurred within the bulk. The

arguments, which were put forth earlier to show that low temperature induced shift in

Hatband voltage is due to trapping at the deep defect levels, are also valid in this case.

As a result, the deep defect levels, which are physically located within the bulk high-

к and are responsible for hole trapping, lies within Si bandgap in the gate stacks.

Moreover, this defect level can be determined with respect to Si valence band from

the observed activation energy.

Figure 4.4 (a) 1MHz C-V in 100-275K temperature range for nMOS-C. (Inset)
Arrhenius plot of -AVFB ShowS a single bulk defect level. (b) 10KHz G-V in 100-
275K range for nMOS-C.
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4.3.3 Low Temperature C-V at Different Frequencies

At low temperatures, the dopant atoms activation at the surface has been reported to

cause dispersion in the C-V plots, especially at the flatband region [76]. When Fermi

level crosses dopant-atom energy level at the surface during C-V measurement,

dopant atom charging/discharging responds to ac test frequency. This results in the

observation of the 'dip and peak' in the measured capacitance near flatband region at

Figure 4.5 100 KHz and 10 KHz normalized C-V plots for nMOS-C at low
temperature of 100K and for p-MOS-C at 78K.

low temperatures as reported in [75]477]. In this case, any such discrepancies in the

capacitance were not observed in the flatband region even when the test frequency

was varied at low temperatures as shown in Figure 4.5. The Figure illustrates 10KHz

and 100KHz C-V plots for nMOS-C and pMOS-C at 100K and 78K, respectively.

This furthers confirms the earlier assumption that low temperature induced dispersion

in C-V is due to the trapping within the bulk high-к.



4.3.4 Defect Levels in the Context of MOS Energy Band Diagram

As stated earlier, the energy levels of these deep defects, as stated earlier, can be

determined with respect to the Si band edges from their activation energies as Shown

in Figure 4.6. The bulk electron (ET and ET') and hole (ET") trap levels are shown

with respect to Ec Si and EvSi, respectively in the context of MOS band diagram in

Figure 4.6.

Figure 4.6 Deep bulk electron (E T and ET') and hole (ET") trap levels in the context
of MOS band diagram.

As stated earlier, O vacancies (V++/V+/V0) are the prime candidates for

electron trapping at the deep levels within the Hf-based high-к dielectrics, which are

Shown to be O deficient [10]. Moreover, O diffuSion during growth is also observed

[68]. Following defect reactions are highly possible between vacancies (V °/V+) and



interstitials (O °/O- ), as calculated in [33], at the high temperatures during the growth:

As PDA at 700°C took place during the fabrication of the devices, which was

subject to the conventional CMOS process flow, it is quite reasonable to expect that

such charged vacancies are present in the films. As such, the equilibrium in the

numbers of charged vacancies and interstitials, i.e., the charge neutrality is

maintained in the fresh devices.

It is reported in [48] that PDA at 700°C/60s in NH3 ambient does not

significantly increase N and simultaneously reduce O in Hf-silicate films as does

PDA at higher temperature (e.g. 900°C/15s) in the same ambient. Basically, O

vacancies are less under the former condition [48], which in turn reduces electron

trapping and leakage, and, thus, improves electrical performance.

Atomic N concentration was ~10% in Hf-silicate films [48] after 700 °C/60s

PDA in NH3 ambient. One of the plausible reactions for NH3 dissociation is

NH3 (NH,)- + H+ , which has been calculated to be occurring within 1-2 ps of PDA

at T > 600 K [33]. This is why H incorporation into the film can be expected to be at

the order of that of N. Interfacial layer (IL) is chemically grown SiO2 in the devices.

H passivates interface states after PDA and Di t is in range of 10 ¹² cm².ev-¹  in this type

of deviceS. Considering reduction of O at higher temperatureS and NH 3 dissociation

starting above 600 K, it is believed that PDA at 700°C/60s is probably optimized.

As clearly mentioned in Section 2.3.3.2, shallow V ++ level shows the negative-U
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transition to deep V° level after successively capturing two electrons (V ++ + e --> V+ ;

V+ + e —> V°). After capturing two electrons, V ° puts an end to the charge neutrality

discussed above and the film becomes negatively charged [62]. According to the

calculation by Torii et al. [35], V ° lies -1.6eV below the conduction edge, which was

also experimentally observed. It may be immediately mentioned that considering Hf-

silicate/Si conduction edge band offset to be -1.5eV [66], ET lie -1.6eV below the

high-к conduction edge in these films. It affirms the assumption regarding the

presence of O vacancy defects in these bulk high-к films. Furthermore, V° level lies

within Si bandgap range, i.e., it induces deep defect level and gives rise to the slow

transient trapping. Moreover, in order to maintain charge neutrality, O7O - levels also

need to be present in this film. After capturing hole, O ° level moves upward and may

lie within Si bandgap range. Based on this, ET and ET" can be tentatively asSigned to

V° and O° defect levels, respectively.

4.4 Defect Levels from Leakage Measurements

Defect energy levels, observed from leakage measurements, in the context of MOS

energy band diagram are introduced in Section 4.4.

4.4.1 P-F Plots under Gate Injection

Gate current vs. gate voltage (I-V) measurements were taken for negative gate bias

conditions in 273K-398K temperature range as shown in Figure 4.7. It is obvious

from the Figure that a thermally and field activated conduction mechanism dominates
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during gate injection. This is further evident from Figure 4.8, which shows the

straight-line behavior of Arrhenius plots of ln(-J g/Eox ) for different negative gate

biases applied on nMOS-C. Activation energy, Ea was calculated to be ≈ 0.3eV for

Vg = —2V to —4V.

The ratio of the potential drops at the high-к layer (V H K) and IL (V IL) are

estimated from their respective dielectric constants (кHK & кO and thicknesses (tHK

& tIL) using the following equation [17]:

As tHK/tIL .---3.5 and кHK/кIL ----3.5 in these gate stacks, equal potential drops at

the high-к layer and IL occur. Here, resultant electric field, Eox = EHK + EIL =

VHK/tHK + VIAL. Furthermore, VHK = VIL = Vox / 2 = (Vg - VFB -'P s ) / 2, where Ts

is the surface potential. Therefore, Eox ---- Vox / 0.15 = (V g — VFB — Ts) / 0.15

(MV/cm).

Figure 4.7 I-V measurements in 273K-398K temperature range.



88

Moreover, VHK and V IA are directly related to the band bending in high-к

layer and IL, respectively, and VHK = (Vg VFB 'Fs )/2, where VFB 'P s -1V in

these nMOS-C devices. Considering the barrier height at TiN/Hf-silicate interface to

be -2eV [67], the band bending at the bulk high-к for V g = -2V (VHK 3 - 0.5) is not

enough for electrons to tunnel from the gate into the shallow traps with levels 0.3eV

below the bulk high-к conduction edge. The same also holds for V g = -4V (VHK —>

- 1.5V) aS far as the traps located within the direct tunneling distance from the gate

are concerned. Electrons do not enter the bulk high-к conduction band, due to the

thermal emission or field-assisted tunneling [69], at any stage during their transport

across the gate stack. TranSport rather takes place through the deep localized states

within the high-к bandgap [19], [20] as shown in the inset of Figure 4.9.

Calculations show that the midgap V ° and V+ states are the potential

candidates for electron transport [14], [20]. The strong possibility of the presence of

V° /V+ levels in this oxide is already shown. Moreover, difference between V ° and

V+ levels was calculated to be 0.3 eV, which shows an excellent match with the

experimentally observed E a . It is possible that electrons tunnel from metal gate to V+

level, which relaxes to V° level after trapping an electron. Under strong electric field

it thermally emits to the adjacent V+ level, which lies 0.3 eV above. Thus, carrier

transport may take place across the oxide during gate injection. This in turn gives rise

to the experimental observation of V+ level in this film.
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Figure 4.8 Arrehnius plot of ln(—Jg/EOx) for nMOS-C for different negative gate
biases. (Inset) Transport through deep localized states under gate injection.

4.4.2 P-F Plots under Substrate Injection

P-F plots are shown in Figure 4.9 for different positive gate biases, applied on n+-

ringed nMOS-C. N+-ring was grounded to prevent minority carrier shortage during

Substrate injection. For positive gate biases (V g), it can be approximated that VFB

+ I's —0.5 V, So that, VHK = (Vg 0.5 )12.

For very low V g (-0.5 V) conduction through deep states dominates as

described earlier. Ea of ~0.25 eV implies that V+/V0 pair, predicted for gate injection,

may be responsible for substrate injection also. This is shown in Figure 4.10(a). The
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difference in activation energies may be due to the different band bending conditions

as specified in the P-F emission model (see Figure 4.7).

For moderate Vg (-1 V), leakage shows almost no change with temperature

below 200K. At this bias, band bending does not allow F-N tunneling. Direct

tunneling is another possibility; however, high leakage points to the fact that the high

concentration of defects within high-к oxides makes the trap assisted tunneling, TAT,

.••■0 	 .0•%0

1000/T (K-1 )

Figure 4.9 Arrehnius plot of ln(—Jg/EOX ) for ntringed nMOS-C for different positive
gate biases (substrate injection). N+-ring is grounded.
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Figure 4.10 Transport mechanisms during substrate injection TiN/HfSi xOy based
gate stacks: (a) low gate bias, V g (-0.5 V); (b) moderate V g (-1 V) and temperature,
T < 200 K; (c) moderate Vg (-1 V) and T > 200 K; (d) high Vg (-2 V) and T < 175 K
and (e) high Vg (-2 V) and T >175 K.
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a more probable option. Negative-U transition of shallow V ++ levels, which are

resonant with Si conduction band, is a possible fit to TAT. This is depicted in Figure

410(b). Above 200K, P-F emission to high-к conduction edge dominates. Ea = Ec

- ET 0.3 eV matches with V¯/V¯¯ trap levels. This shows that negatively charged

vacancy levels are possibly present in these films. This is depicted in Figure 4.10(c).

For moderately high Vg (-2 V), TAT due to negative-U transitions dominates below

175K, whereas P-F emission to the conduction band is significant above 175K as

shown in Figures 4.10(d) and (e), respectively. For high Vg (-3 V), dependence of

leakage on temperature iS not noticeably high.

4.4.3 Defect Levels in the Context of MOS Energy Band Diagram

The defects levels observed from leakage current measurements under substrate and

gate injection conditions are depicted in Figure 4.11. Both theoretical and

experimental studies by different groups, thoroughly reviewed in Chapter 2, clearly

indicate that O vacancies are the primary defect centers for electron trapping.

Calculations further indicate that these centers are responsible for electron transport.

Torii et al. [35] reported TAT due to the negative-U transition of V ++ levels. The

presence of O vacancies in these films is reasonably established from low temperature

measurements. Shallow level, ET) are observed to be lying 0.3 eV below the bulk

high-к conduction edge in this case. It is a good match with the calculated value of

~0.4 eV for V¯/V¯¯ in bulk HfO², shown by Gavartin et al. [38]. It can be reasonably

expected that such shallow vacancies are also present in Hf-silicates. The likely role

of mid-gap V+/V states in P-F- like conduction is explained in Section 4.4. Such P-
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F-like conduction was also reported by Ribes et al. [391. It may be argued that

relative locations of the defect levels ET ² and ET- , shown in Figure 4.11, is consistent

with the obServations of this work. Hence, tentative physical origins of ET', ET ² and

ET3 are V¯/V¯¯, V+ and V° , respectively. For ET ', it is speculated to be V.

Figure 4.11 Defect levels in the context of MOS band diagram.

4.5 Defect Levels from Time and Temperature Dependent Detrapping

To determine defect levels responsible for hole trapping, substrate hot hole (SHH)

stress was applied. Details of substrate hot carrier stress are described in Chapter 3.

Carriers impinge on Si/IL interface with incident carrier energy, E inc qlVsl, where Vs

is the applied substrate bias. Calculated formation energy of Hf-V ++-Si is ~4eV. As a

result, SHH stress with Ei nc 4 eV, i.e., Vs = 4V is expected to generate Hf-V ++-Si

defects. Experiment involving time and temperature de-trapping of holes to Si

substrate is designed to find the defect levels with respect to Si valence band, EvSi.
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Figure 4.12 (a) VFB during 1Os of SHH stress followed by bake at 398K under 'no
bias' condition. Bake is periodically interrupted to measure VFB at room
temperature. (b) AVFB = VFB@bake time — post-stress VFB. AVFB is normalized
w.r.t. initial increase in VFB during stress (AVFB0) and AVFB/ AVFB0 is plotted for
different bake temperatures. Slopes are calculated from normalized AVFB vs. de-
trapping time curves and are shown in the Figure. (Inset) Arrhenius plot of the
slopes shows a single bulk defect level.
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In order to determine the generated defect energy level, 1Os of SHH stress with V s =

4V was followed by the bake at 398K under 'no bias' condition as shown in Figure

4.12(a). Periodically the bake was interrupted to measure VFB at room temperature.

It can be observed from the Figure that VFB decreased after stress, which signifies

hole trapping in the generated traps. During the bake, VFB increased as hole de-

trapping to substrate occurred. AVFB is calculated from the difference of VFB during

the bake with respect to post-stresS VFB. It is normalized with respect to the initial

increase in VFB during stress (AVFB / AVFBO) and plotted as a function of de-trapping

time for different bake temperatures in Figure 4.12(b). It is obvious from the Figure

that slopes of hole de-trapping, that is, hole emission rate, increases with even

moderate increment in temperature under 'no bias' condition. Based on the

discussion in the Section 4.2, it may be further affirmed that the generated bulk high-

к trap levels lie within Si bandgap range. Arrhenius plot of the slopes (Figure 4.12(b)

inset) shows an activation energy of —0.4V. It is concluded that the phySical origin of

the stress-induced defects is 'arm' vacancy. After capturing holes Hf-V °-Si level,

which lies below Ev Si , relaxes to Hf-V ++-Si level (Hf-V°-Si + 2h Hf-V++-Si), lying

within Si bandgap.
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4.6 Defect Levels in Context of MOS Energy Band Diagram

Defect levels, observed from different types of experiments, are shown in a

comprehensive manner in the context of MOS band diagram in Figure 4.13. All the

major defect levels, stipulated by theoretical models to be responsible for transient

trapping and trap-assisted carrier conduction across the gate stack, have been put in

Figure 4.13. Speculated physical origins of the defects are also stated. Calculated V +

and V++ 	are also shown for the sake of completeness. It may be safely stated

that these observations support the values of these levels.

Figure 4.13 Defect levels in the context of MOS band structure.
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4.7 Summary

Different types of experiments were successfully designed and their results were

critically analyzed to find the dominant defect levels, which are responsible for both

trapping and transport in TiN/HfSi xOy based gate stacks, in the context of MOS band

structure. Excellent match with calculations based theoretical models have been

observed. As a result, the probable physical origins of the defects have been

tentatively stipulated. On the basis of these observed defect levels, effective physical

models can be formulated to provide relevant explanation to the results obtained from

different electrical stress tests, which are the integral parts of the high-k reliability

studies. Thus, an essential step toward the comprehensive understanding of the

high-к reliability has been taken.



CHAPTER 5

TRAPPING CHARACTERISTICS OF TiN/HfSi xOy BASED GATE STACKS

UNDER STRESS

5.1 Introduction

Trapping characteristics of under both constant voltage stress (CVS) and substrate hot

carrier (SHC) stress conditions were studied during the course of the reSearch work.

The experimentally observed defect levels, which are responsible for electron and

hole trapping in these as-grown bulk high-к films, are expected to primarily influence

the trapping characteristicS under different band bending conditions aS the electrical

stress CVS is applied. Trapping characteristics due to stress-induced defects are

studied by applying substrate hot electron (SHE) and hole (SHH) stress. Moreover,

robustness of the bulk Hf-silicate against hot electron and hole with high incident

carrier energies (E inc) can be studied with SHC injection. Furthermore, SHE stress

with Einc more than the calculated O vacancy formation energy can be applied on

these devices. Thus O vacancy induced trapping and tranSport characteristics can be

studied uSing electrical characterization technique. In addition, based on the

experimental results, physical models for both gate and substrate injections are

developed.

98
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5.2 Understanding Defect Levels from Detrapping Characteristics

For traps near the substrate, detrapping time, which iS the inverse of the emission rate,

is thermally activated for the deep defects with constant E a under 'no bias' condition.

Hence, it is slow at room temperature. It is further understood that for an electron

trap level above Ec Si or a hole trap level below E v Si within the bulk high-к, detrapping

time primarily depends on the tunneling transparency. Hence, it is considerably faSt,

and does not depend on temperature under `no-bias' condition (Figure 5.1(b)).

On the other hand, the lateral distribution of trapping (high dT ) is possible for

stress with long periods of time. For the shallow traps with high dT, the fast

detrapping to the high-к band edges occurs under a low bias' condition as shown in

Figure 5.1 (a). But, for the deep traps with similar spatial distribution detrapping is

considerably slow because of the tunneling transparency factor.

Therefore, time dependent post-stress AVFB recovery characteristics need to be

studied under both 'no bias' and low bias' conditions to correctly understand the

trapping level (shallow/deep). However, re-stressing may occur for the latter, which

limits the conclusions drawn from the observations of the detrapping characteristics.



Figure 5.1 Detrapping characteristics from shallow (A) and deep (B) traps under (a)
idealized 'non-zero bias' and (b) 'no bias' conditions for TiN/HfSi xOy based gate
stacks.

5.3 CVS with Negative Gate Bias (Gate Injection)

In order to understand the effects of the pre-existing defects, CVS was applied on

nMOS-C with different negative gate biases at room and elevated temperatures.

5.3.1 CVS at Room Temperature

CVS was applied on nMOS-C with different negative gate biases for 2,000 seconds.

For better compariSon purposes AVFB is plotted as a function of charge injection, Qinj

in Figure 5.2(a) for V g = —3V and — 4V. It is obviouS from Figure 5.2(a) that hole

trapping dominateS, but it shows a turn-around effect as Qinj is gradually increased. It

is further observed that for a given Qinj the trapping increases with the gate bias.

To understand the cause of the turn-around effect, the post-stress and post-

relaxation C-V plots, shown in Figure 5.2(b), need to be carefully analyzed. Slight

dispersion in VFB is observed for 2,000s of stress with Vg = — 4V. However, 48 hours
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after removal of stress VFB shifts significantly to left. This shows that electron de-

trapping occurred at the beginning of the post-stress relaxation period, which in turn

shows the true extent of hole trapping. However, for longer relaxation times (120

hours), hole de-trapping shifts VFB towards its pre-Stress value. It may be concluded

that hole trapping occurs initially near the substrate during stress. The gradual build-

up of electron trapping near the substrate offsets hole trapping later, which results in

the turn-around effect. It may be further concluded that after 2,000s of stress

negligible AVFB is observed because of the significant presence of both trapped

electrons and holes near the substrate. However, significantly long electron and hole

de-trapping time can be observed under 'no bias' condition. Based on the discussions

in the previous Section 5.2, it may be inferred that both electron and hole trapping

occurred at the deep bulk defects lying within Si bandgap range.

Figure 5.2 (a) AVFB vs. Qinj for Vg = - 4V and —3V under CVS applied on
nMOS-C for 2,000s. (b) Before stress, post-stress and post-relaxation C-V under
CVS at Vg _ —4V.
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To investigate whether the trapping occurred at the pre-existing bulk traps, two

successive cycles of 2,000s of stress and 48 hours of relaxation were applied on a

fresh nMOS-C device for stress level of — 4V as shown in Figure 5.3. Difference

between post-relaxation and post-stress AVFB indicates the magnitude of Stress-

induced trapping. It is obvious from Figure 5.3 that, after 2nd 2,000s stress trapping

increased by only ~10%, indicating that the trapping mostly occurred at the pre-

existing traps. Therefore, it may be assumed that the pre-existing deep bulk electron

and hole traps, observed during low temperature measurements, are responsible for

the mixed degradation in the filmS under gate injection.

Figure 5.3 Post-stresS (2,000s st) and post-relaxation (48 hours of relaxation) VFB
for two successive stress/relaxation cycles applied on nMOS-C.
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5.3.2 CVS at Elevated Temperature

CVS was applied at 125 °C on nMOS-C for different gate bias conditions as shown in

Figure 5.4(a). A similar turn-around effect is observed. Therefore, mixed

degradation also occurred at high temperatures. Increase in the magnitude of VFB

with temperature is obvious. Normalized change in interface state density, Di t is

shown for different gate biases at room and elevated temperatures. Insignificant

change in D it shows that trapping mostly occurred at the bulk, which is consistent

with the earlier observations.

Figure 5.4 (a) AVFB vs. Qinj under CVS at 125 °C for different gate biases for nMOS-
C. (b) Normalized change in Di t vs. Qinj for different gate bias at room at elevated
temperatures.

By providing adequate relaxation time, separate effects of electron and hole

trapping on AVFB can be differentiated as hole de-trapping follows that of electron.

At high Vg of — 4 V, AV FB vs. stress time is plotted on log-log scale for room and
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Figure 5.5 AVFB vs. stress time in log-log scale.

elevated temperatures as shown in 55.6. Figure 5.5 confirms that AVFB shows a tn

dependence with n-0.5 for both temperatures. It is well established that this high

value of the exponent is characteristic of trap generation. The same value of the

exponent further implies that the trap generation mechanism probably remains same

as temperature is varied at high gate bias.

5.3.3 Physical Model for Gate Injection

It is obvious that mixed degradation, due to both electron and hole trapping at the

deep defects, occurs in these films. It is further understood that trapping increaSes

with temperature. The thermal activation of the trap generation clearly implies that H

species induced trapping needs to be analyzed for this case [69]472]. The cauSe of H

species release is commonly related to breaking of Si-H bonds at the Si/IL interface.
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Two visible signatures of this process are interface state generation and decrease of

inversion capacitance with time [73]. In this case, however, both are absent.

As far as hole trapping iS concerned in this case, O¯/O trap holes and O ° may

lie within Si bandgap as stated earlier. O 'arm' vacancies at the IL/high-к interface

are more potential speculated candidates since hole trap levels within Si band-gap

range have been experimentally observed. Moreover, its formation energy 4eV and

at Vg = 4V under gate injection, hole trap generation is clearly observed from Figure

5.6.

In order to understand electron trapping near the gate in this case, electron

transport during gate injection needs to be understood. It may be reasonable to

assume that electrons tunnel from the gate into the deep bulk traps during gate

injection, which initiates thermally and field activated conduction from trap to trap

towards the substrate as shown in Chapter 4. It may be further assumed that beside

transport, these localized deep bulk high-к states also trap injected electrons and the

centroid of electron trapping moves towards the substrate. This is consistent with the

gradual negative charge build-up at the deep bulk defects near the subStrate, which is

observed to increase with gate biaS during the application of gate injection on these

devices and thus, to cause turn-around effect.
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Figure 5.6 Physical model of charge trapping under gate injection. Speculated
physical origins of the observed defect levels are also shown.

BaSed on this, physical model of charge trapping under gate injection is

depicted in Figure 5.7. Speculated physical origins of the observed defect levels are

also shown. P-F- type conduction of electrons through deep traps under gate

injection, shown in Figure 5.7(a), does not give riSe to significant energy release at

the anode, i.e, Substrate side. Hence, anodic hot hole injection induced Si-H bond

breaking at SiO2/Si interface and subsequent interface state generation and H

diffusion are not observed in these experiments. Therefore, this model iS valid.

5.4 CVS with Positive Gate Bias (Substrate Injection)

In order to avoid minority carrier Shortage during substrate injection instead of

nMOS-Cs, nMOSFETs were used. Grounding source/drain, CVS was applied for

different gate bias conditions. Threshold voltage shift, AVT is shown with respect to

stress time and Qinj in Figures 5.7(a) and (b), respectively.
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Figure 5.7 (a) AVT vS. stress time and (b) AVT vs. Qinj for different gate biases
under gate injection.

The slope of the voltage shift (AV T) increases with the applied stress voltage

indicating that electron trapping rate increaSes with time. A close curve fit of the

experimental data was done using the equation [4],

AVT(Ni nj) = AVmax×(1-exp(-σ0×Ninj)ß ) where AVmax  is the total trap density, σo and 13

are model parameters [4]. A value of l×10 1² #/cm² was taken for AVmax based on

experimentally calculated values, and σ 0  and 1 were fitted for the values of l×10 -14

and 0.37-0.45, respectively. The injected charge Ninj was found to be much lower

than the 1160 confirming that the AVT follows the power law equation.

During CVS, as the injected charge in the oxide increases, increased charge-

trapping results in increased threshold voltage variation. Also note that the slope of

the curve was greater for higher streSs voltages. The slope variation of AV T is higher



108

for stress voltage of 2.5V compared to that of 2 or 1.5V. This further suggests that

the electron-trapping rate increases with the increase in applied stress voltage and

stress current.

Figure 5.8 AVT vS. stress voltage for different stress times under substrate injection.

The threshold variation is also plotted with applied stress voltage in Figure 5.8.

It is obvious that as far aS stress level is concerned, it shows a turn-around effect. The

reason for thiS will be explained later with physical models.

Pre-exiting defect levels and transport mechanisms need to be invoked to

formulate models for substrate injection. It is understood that trapping at the deep

levels are mostly responsible for observed AVT, since de-trapping from shallow levels

are difficult to detect with conventional measurement Systems as described in Chapter

2.



Figure 5.9 MOS band diagrams under substrate injection for (a) Vg ~ 1 V, (b) V g

2 V and (c) V s ~ 2.5 V.

For Vg ~ 1V, electrons injected from Si conduction edge relax to V + level due

to negative-U transition as shown in Figure 5.9(a). Although most of the injected

electrons tunnel to the anode, there is a very small probability (AVT × COX AQinj

1 ×10-1° ) of their being trapped. Therefore, charge accumulation at the deep levels

away from the substrate give rise to slow transient trapping since it takes long time to

de-trap once stress is removed. This has already been explained with tunneling

transparency factor.

For Vs ~ 2V, similar phenomenon is observed as shown in Figure 5.9 (b).

However, trapped charge accumulation occurs nearer to substrate compared to the

previous case. Hence, fast charge de-trapping to substrate takes place, which reduces

measured AVT. Hence, the dip iS observed in Figure 5.9.
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For Vg ~ 2.5V, electron trapping, occurring at shallow levels near the substrate

modifies the internal electric field as shown in Figure 5.9(c). Hence, deep trapping

occurs at a distance away from the substrate, which results in higher AVT compared to

Vg~2V case.

5.5 Substrate Hot Electron (SHE) Stress

SHE stress was applied on n+-ringed nMOS-C using the arrangement shown in

Chapter 3. SHE injection was realized by keeping the gate voltage (V g) and substrate

voltage (V s) at low positive and high negative bias, respectively, while the ring

voltage (Vring) was kept grounded. Vinj is the bias applied on n+-ring of the adjacent

capacitor located around 10µm away, which forms a pin + junction and acts as an

electron injector. For low gate bias (Vg = 0.75V), gate current during SHE injection

Figure 5.10 I-V characteristics under hot and cold carrier injection conditions.
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increases by one order of magnitude compared to the cold carrier case as shown in

Figure 5.10. Therefore, during SHE stresS, gate current compriseS mostly of hot

electrons injected into the oxide. In addition, the gate current, that is hot electron

injection, increaSes when injector bias is increased for a given V s .

SHE stresS iS applied on ntringed nMOS-C with V s = —4V, —6V, —8V, —9V

and —10V for ~4,000s. For V s= —10V, Significant electron trapping occurred aS 1

MHz C-V plots shift to the right in the Hatband region as shown in Figure 5.11.

Peaks of 10KHz G-V plots shift to the right due to electron trapping. However, no

change in the magnitude of the peaks is observed as the interface StateS generation

was negligible and trapping mostly occurred within the bulk high-к [15]. It is further

observed that 18 hours of de-trapping at 'no bias' condition achieved only a partial

AV FB recovery.

Figure 5.11 Pre- and poSt-stress, and post-relaxation 1MHz C-V and 10KHz G-V
plots for SHE stress.
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Figure 5.12(a) depictS AVFB during SHE stresS with V s = —9V, post-stress

AVFB recovery at different reverse gate biaSes and post-stress relaxation at 'no biaS'

conditions. Detrapping at —1V recoverS AVFB by almost 30% very quickly (~1s), but

later it saturates. It shows that the Shallow trapping at the conduction edge traps

located away from the Substrate occurs during the stress. This is consistent with the

earlier observations under Substrate injection. On the other hand, detrapping at —1.5V

and —2V shows comparatively slow reduction followed by saturation, which can be

attributed to the trapping at the deep defects with lateral distribution. Relaxation at

`no biaS' condition for 54 hourS, however, shows that hole trapping is partly

responsible for the

Figure 5.12 (a) Time-dependent electron de-trapping characteristics under different
post-stress reverse bias conditions. (b) AVFB during SHE stress/ detrap cycles. SHE
Stress waS applied with Vg/Vs/Vinj = 0.75/ —10/ —12 V. During detrapping cycle, Vs =
—1V.
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observed decreaSe in AVFB under the negative gate bias. In the previous experimentS,

significant hole trapping was obServed at the deep defects when constant voltage

streSS applied was on nMOS-C with the negative gate bias. Stress/detrapping cycles

were repeated for several times in Figure 12(b). Steady increaSe in the pre-stresS and

the post stress AVFB (> 0) is obServed, which ShowS that the traps are generated

during the Stress.

The Slow AVFB recovery time under 'no bias' condition, observed in Figure

5.13, therefore, showS that AVFB iS due to both the fast and slow tranSient trapping.

However, the latter dominates and is the focuS of the investigations in this work. This

is why the effect of the fast trapping on AVFB needs to be eliminated to study the

trapping at the deep defects. But longer de-trapping time under 'non-zero' biaS

conditions initiates re-stressing. Hence, after each period of SHE stress —1V of

reverSe bias waS applied for is before AVFB is measured in the following

experiments.

Figure 5.13 AVFB vs. stresS time in log-log scale for different substrate biases.
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Flat-band voltage, AVFB, thus corrected for the conduction edge trapping, is

plotted as a function of the stress time in log-log Scale for different stress levels as

shown in Figure 5.14. Power law fits clearly show that to dependence dominates for

all StreSs levels due to the generation of the deep bulk defects. Figure 5.14 shows

AVFB vS. injected charge, Qinj for different stress levels. It is obvious from the power

law fits of that the deep bulk defect generation increaseS with the stress level for a

given Q. It may be noticed that for V s= —8V to —10V, the exponents n and r3 0.4

whereas, they are 0.3 for V s= —6V. This disparity may be due to the difference in

the defect generation mechanisms. This anomaly is also visible from the valueS of

coefficient A,. shown in the inset of Figure 5.14. The value of A increaseS with stress

level for V s= —8V to —10V, which suggest similar defect

Figure 5.14 AVFB vs. Qinj under SHE stresS at different V s (V in; = V s — 2V) bias
conditions. (Inset) Table showing the value of the coefficient A for different Vs.
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generation mechanism. But, this trend is not seen for V s = —6V. This further affirms

the earlier assumption.

Change in the leakage AJ g (t) = Jg (t) — Jg (0) vs. stress time in Figure 5.15

shows that it alSo follows t" power law dependence. The bulk defect generation is

responsible for the enhanced trap-assisted tunneling induced increase in the leakage

especially at low V g [64]. Another reaSon for increase in AJ g(t) may be due to the

positive charge build-up near the substrate [64]. The release of the energy of

plasmons at the metal/high-k interface induces the energetic anodic hole injection

[64], which initiates the positive charge build-up. But, the most obvious signature of

thiS process is the interface state generation [8], which is not observed in this case.

Hence, the latter option can be ruled out. Therefore, the Stress induced defects, which

Figure 5.15 AJ g(t) vs. stress time in log-log scale under SHE stress at different Vs
(Vint = V s — 2V) bias conditions. (Inset) ArrehniuS plot of In (Jg/EOX)) for different
Vg .
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are responsible for the enhanced slow transient trapping and trap-assisted tunneling,

may be the same as they show the same value of n, especially for V s = —8V to —10V.

The value of n, however, does not follow this trend for V s = —6V, which is expected

from previous discussion.

The inset of Figure 5.15 shows Arrhenius plot of In (—J g/EOX) for ntringed

nMOS-C under substrate injection at low gate bias and high temperature conditions.

It is obvious that a thermally and field activated conduction mechanism (e.g. Poole-

Frenkel-type) is absent for V g = 0.75V and 1V in the gate stacks aS Arrhenius plots do

not show a straight-line behavior [66]. Here, electric field, EoX = (Vg VFB ψs)/tOX,

where Ts and tOX are the surface potential and the gate stack thickness, respectively.

Moreover, the change of the leakage with temperature is negligible, which is

suggested by the earlier assumption that the trap-assisted tunneling dominates during

SHE injection. The shortage of the minority carriers did not occur under the substrate

injection, as ntring was kept grounded during the leakage measurements. It may be

mentioned here that if trapping had occurred mostly at the shallow levels, which are

resonant with electrons injected during SHE stress at low V g , the fast transient

trapping would have dominated. The following parts of Section 5.5 will explain why

it did not happen; rather significant slow transient trapping occurred.

In this work, deep trap generation and subSequent trapping in them were

mostly obServed. Hence, AV FB reflects amount of trapped charge in stresS-induced

defects. De-trapping under post-Stress reverse bias condition further supports this
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observation (see Figure 5.16). The amount of trapped charge, AQtrapped (= AVFB X C ' OX

; COX : oxide capacitance per unit area) is plotted in Figure 5.17 for different V s under

SHE stress. Here, it is considered that charge centroid is located near the substrate.

Figure 5.16 Amount of stress induced trapped charge, AQtrapped and number of
stress induced traps, Ntrap,gen as a function os stress time for different V s conditionS
under SHE stress.

Number of generated traps, Ntrap,gen is also shown as the secondary axis in the same

plot. Initially, pre-existing traps are filled. Hence, Ntrap,gen does not show much

difference for low V s conditions. It is reported that trap generation probability, P g

(=AV FB × C'OX / AQinj) varies with Einc under SHE stress conditions in SiO² [71].

Moreover, defect generation by Substrate hot electrons impinging on substrate/oxide

interface follows the Same dependence on energy as that from Fowler-Nordheim (F-
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N) injection through the oxide under different positive gate bias [71]. It is further

reported that P g is independent of SiO2² growth condition and physical thickness in ~1

nm to 5 nm regime. Considering qlV sI≈Ein≈ Einc [64], comparison of P g of these devices

(4.5 nm of physical thickness) with that of SiO2 shows that for low IVsl (~ 4 V), Pg is

almost same (l× 10 -1 5. However, for high V s ( 6 V ), Pg is in l× 10 -11 to I x 10 -1°

range in these devices, whereas it is in 1 × 10 -7 to 1 × 10-6 range in SiO2 devices.

Significant trap generation most probably occurs within IL even during SHE stress

with low V s , which results in AV FB . However, for SHE stress under high V s

conditionS, trap generation within the bulk high-к dominates. High formation

energies of O vacancies in the bulk oxide most likely make it more robust against

electron injection with highEinc.

Energy levels of the defects, generated within IL, needs to be resonant with the

conduction band of the SubStrate and the bulk high-к (3.5 nm thick) trap levelS to

participate in trap-asSiSted tunneling across the oxide [71]. However, strong

correlation observed in between increase in stress induced leakage and AV FB (see

Figures 5 and 7) suggeSts that bulk trap generation, which dominates under high V s

conditions, is mostly reSponsible for both electron trapping and trap-assisted

tunneling.
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Figure 5.17 For 2 nm Hf-silicate/IL, (a) AVFB and (b) AJg(t) vs. Stress time under
SHE stress with V s = —8 and —10 V conditions.

A convincing answer to the queStion whether the trap generation

predominantly occurs within the IL or high-к layer may be obtained by applying SHE

streSs on the gate stackS with the Same IL but different high-k layers. The original

gate stack was TiN/ 3.5 nm HfSi xO y/ 1 nm IL/ p-Si. To clarify the above stand, SHE

Stress was applied under the Same conditions on TiN/ 2nm HfSi xOy/ 1 nm IL/ p-Si

gate stacks. AVFB and AJ g (t) = Jg (t) — J g (0) vs. StreSs time in Figure 5.17 show the

strikingly different characteristicS. For 2 nm Hf-silicate, the mixed degradation due

to both electron and hole trapping dominateS. This is in Sharp contrast to 3.5 nm

Hf- slicates (see Figures 7, 8, 9, 10), where the monotonously increasing electron trapping

dominates. It may be concluded that the stress-induced defects are located mostly

within the high-k layer in TiN/ 3.5nm HfSixO y/ 1nm IL gate stacks.
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Incident carrier energy during SHE stress, Einc qIVsI, where q is the charge of

an electron [64]. As stated earlier, E inc 4eV is known as the threshold for the defect

generation in Hf-based dielectrics. But, O vacancy formation energy was calculated

to be ~7eV under equilibrium conditions [67]. Such defect generation is possible if

the incident carrier energy during SHE Stress is increased to above 7eV. The

enhanced Slow transient trapping was observed due to the deep bulk defect generation

for V s = -8V to -10V, and its mechanism is shown to be different from that for Vs <

-7V.

A plausible and coherent phenomenon during SHE stress at high V s and low

V g , which is consistent with experimental observations, is depicted in Figure 5.18.

Electrons impinge on Si/IL interface with high Einc and generate V++ defects, which

act as the negative-U centers. The relaxation to V + and V° levels due to the trapping,

and subsequent tunneling from them towards the gate increase the leakage. Defect

levels other than V++  are also posSibly resonant with the injected electrons as far

as the band bending at low V g is concerned. Hence, the fast tranSient trapping at the

shallow levels is observed; however, it is found to be partially responsible for AVFB.

A small fraction of the injected electrons (AVFB x Cox / AQi nj ≈ 1 ×10-1° ) becomes

trapped at the stress induced V° level and gives rise to the significant slow transient

trapping.

It may be inferred that O vacancy generation took place, which explains the

simultaneous occurrences of the enhanced slow transient trapping and increased trap

assisted tunneling during SHE injection with high Ei nc . It may be further deduced that
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Figure 5.18 Band diagram of the MOS structure showing the negative-U behavior
of the stress induced charged O vacancy defects during SHE stress.

that the slow transient trapping occurred at the deep defect level observed from the

low temperature measurements in Hf-silicate films.

5.6 Substrate Hot Hole (SHH) Stress

In order to study the characteriStics trapping characteristics, SHH stress was applied

on p+ -ringed pMOS-C using the arrangement stated in Chapter 3. SHH injection was

realized by keeping gate voltage (V g) and substrate voltage (V s) at low negative and

high positive bias, reSpectively, while the ring voltage (V ring) was kept grounded. Vinj

iS the bias applied on p +-ring of the adjacent capacitor located around 10µm away,

which forms a p+/n junction and acts as a hole injector. Hole injection into the gate
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stack can be controlled independent of the gate bias by varying Vi nj (Vi nj > V s) for a

given V s , while the energy of the incident carriers can be controlled by varying V.

For low gate bias (V g = —0.75V), the current during SHH injection increases by one

order of magnitude compared to the cold carrier case as shown in Figure 5.19.

Therefore, during SHH stress, gate current mostly comprises of hot holes injected into

the oxide. In addition, the gate current increases when injector bias is increased for a

given V s . These experimental results validate the setup for SHH injection.

Vg(v
Figure 5.19 I-V characteristics under hot and co ld carrier injection conditions.

Flatbnad voltage, AV FB under SHH stress for V s = 4V and 3V is plotted as a

function of Q inj in Figure 5.21. It is obvious from Figure 5.20 that hole trapping

increases Sharply with Qinj. When plotted in log-log Scale, AV FB follows t" power law

dependence with n 0.5 and 0.25 for V s= 4V and 3V, reSpectively as shown in

inset of Figure 5.20. These high values of the exponents are characteristic of bulk

trap generation. Negligible change in the peak value of the G-V plots with stress (not
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shown here) shows that hole trap generation mostly occurred at the bulk high-к and it

strongly dependS on the energy of the incident holeS.

Figure 5.20 AVFB vs. Qinj under SHH injection, applied on ptringed pMOS-C for
V s= — 4V and —3V. (Inset) AVFB follows t" power law dependence.

To understand the energy level and location of the generated traps, SHH stress

with V s = 4V was followed by AVFB recovery periods under different gate bias as

shown in Figure 5.21. Detrapping is negligible at V g = 1V as AVFB shows almost no

change. This indicates that hole trapping does not occur at the valence edge traps

during SHH stress aS field assisted tunneling of the trapped carriers to the high-k
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band edges occurs quickly. Moreover, fast de-trapping from deep defects is

prevented by the tunneling transparency factor aS shown in Equations (1) and (2).

Considerable decrease in IAVFB I is observed at Vg = 1.5V. However, relaxation for a

long period of time (~12 hours) shows that this decrease is due to electron trapping at

the pre-existing deep traps and almost no hole detrapping occurred. Therefore, it is

difficult to achieve fast AV FB recovery, under bias condition, without initiating re-

stressing in the gate stacks as indicated before. This study, however, shows that hole

trapping mostly occurred at deep defects generated within the bulk high-к during

SHH stress.

Figure 5.21 Time-dependent electron de-trapping characteristics under different
post-stress reverse bias conditionS.
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Time and temperature dependent post-stress de-trapping studies, stated earlier,

show that generated defect level lies ~0.4 eV above the Si valence band. Physical

origin has been speculated to be O 'arm' vacancy according as par the match between

incident carrier energy and calculated formation energy. Physical model of trapping

at the stress-induced defect is shown in Figure 5.22.

Figure 5.22 Physical model of trapping at the stress-induced defect under SHH stress
with high Substrate bias.

5.7 Summary

Trapping characteristics of TiN/HfSi xOy based gate stacks under different Stress

conditionS are described in Chapter 5. Trapping at the pre-existing deep electron and

hole traps are primarily responsible for mixed degradation under gate injection. For

substrate injection, precipitation to deep levelS due to negative-U transition and

subSequent movement of charge centroid toward the gate determines the trapping

characteristics.



CHAPTER 6

NEGATIVE BIAS TEMPERATURE INSTABILITY (NBTI)

6.1 Introduction

Negative bias temperature instability (NBTI) is a serious degradation mechanism

observed in modern integrated circuits, which operate at elevated temperature due to

excessive power disSipation, based on SiO2 technology [78]. It is being thoroughly

studied specifically for low dimension devices. For SiO2, interface state generation

triggered by Si-H bond breaking at Si/SiO2 interface is the point of major concern.

One of the widely-used realistic NBTI models is based on reaction-diffusion (R-D)

theory, which basically focus on time dependent net increase in the number of

interface states, Ni t as competing process of bond-breaking and bond-annealing takes

place during gate injection. Although succeSsful in interpreting NBTI phenomena in

SiO2 devices, it cannot fully explain the observed NBTI results in Hf-based high-к

gate stacks [79]482]. Bulk trap generation is reported to exceed that of interface

states in all of the studies [79[482], specifically in the cases of low stress biases.

Aoulaiche reported that both fast and slow states were generated and subsequently

recovered by applying low bias ( —2 V) at elevated temperature on TaN/HfS iON

gate stacks [79]. However, when —1.5V of NBT stress at 125 °C was applied on poly-

Si gate/HfO 2 devices, Such recovery was not observed and it was attributed to

possible generation of hydrogen-related centers within the bulk [87]. Electron

trapping, interface state generation and positive charge build-up were simultaneously

126
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observed when NBT stress bias of —1.5 to —2.5 V was applied on poly-Si gate/

HfSiON devices [79]. Interface state generation was reported to be negligible when

—2 to —3 V of NBT stress was applied on TiN/HfSi xOy devices and VT instability was

attributed on both shallow and deep electron traps within the bulk high-к [80]. It is

obvious that a common NBTI induced degradation scenario has not come out from

the studies, most probably due to diversity in processing conditions. Therefore, NBTI

studies need to be carried out on one-to-one basis on individual gate stacks.

Constant voltage stress with gate bias, V g in the range of —1.5 to —3.5 V was

applied on pMOSFETS with W=10 pm and L= 1 pm at room temperature (RT).

Figure 6.1 shows that for high V g conditions, positive charge trapping dominates. It

is further observed that that AVT finally saturates. For low bias conditions, mixed

degradation occurs due to both positive and negative charge trapping within the bulk

6.2 Stress at Room Temperature

This is consistent with the previous work with the Same gate stacks [81], [82], where

the presence of both deep electron and hole traps within the bulk high-к was reported.

Specifically, for —2 V, electron trapping dominates at RT. Id-Vg plots in Figure 6.2

for —2V shows almost no change in sub-threshold swing, S. As AS α AD,, [80],

interface state generation is negligible at RT for —2 V.

In order to understand the role of holeS in interface State generation during gate

injection in the devices, CVS was applied with and without non-zero substrate bias,
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Vb for Vg = -2.5 V and -3.5 V conditions at RT. For the sake of equivalence, Vb was

kept numerically equal to Vg . Carrier separation technique, as shown in the Figure

6.3(a), shows that impact ionization induced reversal of the polarity of the source or

Figure 6.1 VT vs. stress time for different V g during CVS at room temperature.

drain current, ISm [83], [84] did not occur even under V g / Vb = — 3.5V/ +3.5V stress

Figure 6.2 Id-Vg plots for CVS with V g = —2 V at RT.
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condition. It is consistent with results from p+ -poly gate/n-Si structures, where

Vg = —3.5 V was found to be the threShold for impact ionization [83]. As TiN is a

mid-gap material, threshold in this case is V g ,----- — 4 V.

Increment in 'ga te can be attributed to increased hole trapping at the pre-

exiSting or stress-induced hole traps. Increase in trap-assisted tunneling (TAT) due to

Figure 6.3 (a) Carrier separation technique as CVS is applied with negative gate and
nonzero substrate bias. (b) Current vs. stress time showing electron and hole
injection during CVS with nonzero substrate bias.
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stress-induced traps may be another cause of increase in gate current. Increase in IS/D

can be also attributed to increased TAT.

Figures 6.4(a) and (b) show AS/S0 and AVT during CVS under both zero and

non-zero bias conditions. It is obvious from Figure 6.4(a) that enhanced presence of

holes due to Vb > 0 increases interface state generation. It is further observed from

log-log plots that AS/S0 follows t" power-law dependence. The value of exponent, n

0.2 for Vg = -2.5 V under both Vb = 0 V and Vb = 2.5 V conditions in this case.

This value of n is related to Si-H bond breaking in the presence of low energy holes

[85]. Dominance of hot holes results in, 0.2 < n < 0.5 [85]. This is consistent with

the earlier conclusion that impact ionization induced hot holes were not generated

during gate injection. For V g 0.5 V, initial increase in interface state generation was

significant. However, absence of hot holes retarded Si-H bond breaking rate under

Vb = 0 V condition. Consequently, large increase in interface State generation

required to sustain n 0.2 was not possible. Hence, it initially increased with n --- 0.1

and finally tended to saturate. Nevertheless, n 0.2 could be retained due to the

presence of increased number of low energy holes under Vb = 3.5 V condition. It

may be noted that these observations are also supported by the previous work with

MOS capacitors [86], where it was shown that for V g = — 4 V under CVS and Vb = 4

V under SHH streSs, AVFB increased with n 0.5, which iS characteristic of hot hole

generation.
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Figure 6.4 (a) AS/S0 and (b) AVT for both zero and non-zero substrate bias
conditions during CVS at RT.
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It can be observed from Figure 6.4(b) that IAVT I also follows tn power-law

dependence under all stress conditions. For V g = — 2.5 V stress level, n for AVT is

greater than that found for AS/S0 under both zero and non-zero Vb conditions. This

indicates that besides interface States, positively charged bulk trap generation also

take places [87]. For V g = — 3.5 V stress level, however, n for IAVT f iS lower than

that for AS/S0 under both Vb conditions. Besides interface states and positively

charged bulk trap generation, electron trapping may be slowing the increase of IAVT I,

So that finally it saturates. This is consistent with the earlier studies [86], where it

was observed that electron trapping at deep electron tarps was significantly high for

high negative bias stress levels.

6.3 Stress at Elevated Temperatures

For stress at elevated temperature of 398K (125 °C), it can be observed from Figure

6.5 that AVT shows saturation for high bias conditions. However, for low bias

conditions mixed degradation is still obvious.

To understand temperature dependence on degradation further, streSS was

carried out for both low and high stress conditions for extended period of time at

different Elevated temperatures. It is obvious from Figure 6.6(a) that positive charge

trapping is thermally activated for —2V. Initially positive charge trapping increases

with time for each temperature condition; however it reaches saturation after ~300

secs of stress. Similarity in the patterns in FigureS 6.6(a) and (b) suggests that
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interface state generation and AVT are highly correlated at elevated temperature

conditions.

Figure 6.5 AVT vs. Stress time for different Vg at 398K (125 °C) applied on
pMOSFETS.

Figure 6.6 (a) AVT and (b) AS/S0 for CVS with —2 V of stress level at elevated
temperatureS.
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Figure 6.7 (a) AVT and (b) AS/S 0 for CVS with —3.5 V of Stress level at elevated
temperatures.

For —3.5 V, positive charge trapping reaches Saturation earlier at elevated

temperatureS of 373K (100°C) and 398K (125°C), but initially it shows temperature

dependence as shown in Figure 6.7(a). AS/S 0 also Shows a Similar behavior (Figure

6.7(b)), which further implies the effect of the interface State generation on AVT.
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It is obvious from Figures 6 and 7 that at the initial stage of the stress, AV T and

AS/S0 not only depends on stress level but also temperature. In order to further

underStand these effects, AVT and AS/S0 are plotted as a function of electric field

(E0x) for different elevated temperature conditions in Figures 6.8(a) and 8(b). Here,

E0 = (V g - VFB -ψS)/EOT, where Ts iS the surface potential. AVT and AS/S0 were

measured after 100s of uninterrupted CVS.

Figure 6.8 (a) AVT and (b) AS/S0 vs. E0,, after initial 100s of CVS under different
elevated temperatureS conditions. [Inset of (a)] AVT vs. E0x at 423K (150°C).
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Figure 6.9 AVT vS. time during CVS at 423K (150 °C) with V g = —3.5 V and —2.5 V,
and post-stress recovery under different positive gate biaS conditions.

For each field and temperature condition, a fresh device was used (total: 9). It

can be observed that AVT Strongly depends on field and temperature conditions,

specifically during the initial period of streSs. Inset of Figure 6.8(a) shows that AVT

shows EOX m power-law dependence and for 423K, m ~ 4. For other temperatureS, m is

in the same range.

To understand post-stress recovery, injection of substrate electrons was done at

different positive biases as shown in Figure 6.9. But it fails to neutralize lAV TI for

both —2.5 V and —3.5 V stresS conditions, which suggests that H-species may be

responsible for positively charged trap generation within the bulk 1871.
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Arrehnius plots of ANT for different negative gate bias is shown in Figure

6.10. AVT was measured after initial 100s of CVS with different stress level. For a

particular stress and temperature condition, a fresh device was used to avoid the

effects of the residual trapping. It is obvious that positive charge trapping is

thermally activated in the gate stack, specifically at the initial stage of stress. For V g

= —3.5 V stress level, saturation of AVT took place at less elevated temperatures.

However, as temperature is raised thermal activation of positive charge build-up

became obvious. Activation energies were found to be lying within 0.2 to 0.3 eV

range.

Figure 6.10 Arrhenius plots of AVT for different gate biaS. AVT was measured after
initial 100s of CVS.
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6.4 Application of Reaction-Diffusion Model

Reaction-diffusion model of NBTI is based on net positive increment of interface

states, Ni ( as two competing proceSses of Si-H bond breaking and annealing occur

simultaneously [78]. The following equation describes this [78]:

Figure 6.11 Ni t vs. stress time as predicted by R-D model.
Source: [78]

Here, kf / kr: bond breaking/annealing rate, No: number of Si-H bond denSity prior to

degradation, NH (°): H-species density at S i/S iO1 interface. Si-H bond

breaking/annealing at the presence of holes is shown by the following

electrochemical reaction:

Recent studies [85] show that energy of hole plays a role in bond-breaking and

post-stresS bond-annealing. For low energy holes, it is mostly Si3=Si-H bondS are

broken, and ANi t increases with a power-law exponent, n 0.2 as stated earlier.
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Moreover, a fraction of the broken Si3=Si- bonds anneal after stress. For hot holes,

besides Si3=Si- species, =Si-O- defects are generated, which does not anneal after

stress and raise the value of n to 0.2 to 0.5.

A closer inspection of R-D model, as shown in Figure 6.11 [78], reveals that

initially (i) Ni t increases by t ¹ as No >> Ni t. (ii) When bond-breaking = bond-

annealing, Ni t increases by to. (iii) When H-species diffusion into the oxide dominates,

Ni t increaSes by tn. (iv) Finally, when Ni t = No, interface state generation stops.

It is also possible to explain time, temperature and field dependence of AV T in a

compact form, specifically for region (iii) in Figure 6.11. Phenomenological

description of this dependence can be expressed in the following way [871:

Here, C is a constant and k B is Boltzmann's constant. For Si/SiO2, it was found that

m ~ 3 - 4, Ea ~ 0.1- 0.2 eV and a ~ 0.2 - 0.25. Comparison with the experimental

results shows excellent match. This is why R-D model may be explored to interpret

NBTI effects in these devices.

Initially the devices may not be in region (i) of Figure 6.11 since the initial Dit

~ 1×10 ¹² (cm-².eV-¹). The experimental results in Figure 6. 4(a) show that initially the

devices reside in region (iii). Moreover, it iS supported by phenomenological model

in Equation (3). While in region (iii), AVT increases initially due to Si-H bond

breaking, which results in both interface states and diffused H-species induced bulk
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trap generation. Finally, however, AVT tends to saturate. Migration to region (iv) due

to usurping of all available Si-H bonds may be considered. But, Figure 6.7 shows

that if stress-time is increased, more bond-breaking may occur, which increases both

AS/S0 and AVT for Vg = -3.5V at 398K. Therefore, breaking of all Si-H bonds may

not be the cause of saturation.

As stated earlier, lack of hot holes during CVS results in higher post-stress

anneal of broken bonds [85], which may limit increase of AM, that is, AS/S0 and

AVT. It was experimentally observed that signatures of impact ionization induced hot

Figure 6.12 AVT vs. stress time for CVS applied on pMOSFETs with TiN/HfO2
based gate Stacks under different negative bias and temperature (RT and 398 K)
conditions. (Inset) AVT vs. stress time plots for CVS under zero and non-zero
substrate bias conditions at RT.
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hole generation are absent even under the extreme stress conditions studied in this

specific work. Moreover, the value power-law exponent, n 0.2 for AS/S0 also

implies that low energy hole induced Si-H bond breaking dominate in this case.

Based on this, it may be argued that bond-annealing due to low energy hole induced

Si-H bond breaking, the number of which declines with the progress of stress, is

possibly the cause of the tendency of AS/S0 and AVT to saturate under a particular

bias temperature stress condition.

To further understand the results CVS was applied on ALD deposited

TiN/HfO2 based gate stacks (with 26A HfO2 and 11A of IL) at room and elevated

(398 K) temperatures. It is obvious from Figure 6.12 that dependence of AVT on

stress time follows the power-law with exponent ~ 0.1. This low value of n may be

due the increased negative charge trapping within the bulk oxide. Moreover, AVT

depends on temperature and gate bias, i.e., electric field conditions. Furthermore,

inset of Figure 13 Shows that positive charge trapping increases with non-zero

substrate bias. These resultS conform to the earlier observations of the NBTI effects

on TiN/Hf-silicate based gate stacks.
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6.5 Summary

NBTI effects under different bias and temperature conditions were studied for

TiN/HfSi xOy (20% SiO2) based high-k gate stacks. For low bias conditions, mixed

degradation due to both electron and hole trapping within the bulk high-к mostly

dominates AVT. Interface state generation, observed from change in sub-threshold

slope, AS/S0, was found to be negligible. For moderately high to high stress levels,

initially Si-H bond breaking induced interface sates and diffused H-species induced

bulk trap generation dominates. Initial temperature, time and oxide electric field

dependence shows excellent match with that of R-D based NBTI model. Carrier

separation technique shows that impact ionization induced hot hole generation,

signature being the reversal of the polarity of source/drain current during stress, was

not observed. This possibly results in higher bond-annealing/bond-breaking ratio as,

with the progress of the stress, less number of bonds are available to be broken at the

presence of low energy holes. This may be responsible for the observed saturation of

interface State generation and AV T under high bias temperature stress conditions.



CHAPTER 7

BREAKDOWN CHARACTERISTICS OF GATE STACKS

7.1 Introduction

In order to understand the breakdown mechanisms under substrate injection, ramped

and constant voltage stress (RVS and CVS) were applied on atomic layer deposited

(ALD) TiN/HfO2 based nMOS devices in inversion regime. To determine relative

roles of IL and high-k layer in TZBD and TDDB, three lots of samples with splits of

different IL and high-k thickness (tI L and tH - K ) combinations [lot 1: variable tIL (0 .7

nm/1.1 nm) and tH-K (2.6/2.7/3.3 nm); lot 2: for fixed tH-K (3nm), different tIL

(0.7/1.1/2.1 nm); lot 3: for fixed tIL (1.1 nm), different t H-K (3/5/7/10 nm)] were used.

Moreover, IL breakdown field, EBD IL is compared for samples with and without pre-

deposition surface treatment with NH3 (lot 2), and different IL growth conditions [lot

2: HF-last and in-situ steam generated, ISSG; lot 3: chemically grown SiO x and

ISSG]. In order to compare EBDH-K and EBD IL with BD fields of high-k and SiO2

films, respectively, RVS was also applied on HfO²-based MIM

(metal/insulator/metal) structures [4 nm ALD HfSi xOy (10% SiO2²)] and SiO2 based

MOS devices (1.6 nm ISSG) with TiN metal gateS and equivalent processing

conditions. The major points reported in Chapter 7 are (1) for thin high-к layer (5_ 3.3

nm), IL controls TZBD; otherwise, high-к layer controls it, (2) for a fixed tIL, EBD IL

does not depend on pre-deposition surface treatment, however, its value degrades in

the following order: 2.1 nm ISSG, 1.1 nm ISSG, 1.1 nm chemical SiO x , 0.7 nm ISSG,

143
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and HF-last, (3) four regimes of degradation are observed under CVS with high gate

bias condition: charge trapping/defect generation, soft breakdown (SBD),

progressive breakdown (PBD), and hard breakdown (HBD), (4) the degradation of IL

triggers the breakdown of the entire gate stack, and (5) the quality of IL strongly

affects time-to-breakdown (TBD) of Hf-based high-к gate stacks.

7.2 Calculation of EBD IL and EBDH-K

Ramped voltage stress was applied on n +-ringed nMOS-C from lots 1, 2 and 3 to

determine EBD IL and EBDH-K. For a given gate bias condition, fields across I L and

high-к layer are calculated from the following Equations [88]:

Here, VoX is the voltage across the gate stack, EH-K and EIL are fields across, TH-K and

TEL are the physical thickness, and EOTH-K  and EOTIL are the effective oxide

thickness of high-к and interfacial layers, respectively.

Interfacial layer quality depends on the growth condition and thickness

188]-1891. In particular, the IL к value was found to increase due to an influence of

the high-к film and gate electrode. High-field (~ 1 MV/cm) mobility plots of high-к

gate stacks show a considerable dispersion from the universal mobility plot of SiO2 as
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depicted in Figure 7.1. It was reported in [90]494] that thiS diSperSion increases as IL

quality decreases.

200

8 	 10 	 14, 	 16 	 18, 	 20 	 22 	 24 	 26

EOT of entire gate stack (from C- V) (A)

Figure 7.1 High-field (~1 MV/cm) mobility vs. final EOT of TiN/3nm HfO 2/IL/p-Si
gate stacks for different IL growth conditions.

Moreover, for the Same physical thickneSs of IL and high-к layer, EOT of the entire

gate stack, found from NCSU CVC program [4], is shown to decrease with the

inferior IL quality. The EOT valueS of ILs were determined by subtracting EOTH-K

(Final EOTgate stack = Final EOTIL + EOTH-K), which were determined for these high-

к films in the previouS studieS: In all splits (beSideS 2.1 nm ISSG), IL re-grew to the

final post-proceSsing thickness of 1.1 nm, aS verified by HRTEM [3]. An exception

is the getterred IL of 0.7 nm, whose thickness remained unchanged [3], because the
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Table 7.1 Physical Thickness and Effective Oxide Thickness (EOT) for Different
Interfacial Layers (IL) Growth Conditions

scavenging of O from IL was done after high-к deposition. It is, therefore, concluded

that EOT of IL is significantly different from SiO 2 and it depends on growth

condition and thickness [95] as shown in Table 7.1. The table also shows the final

physical thickness of IL. The higher the EOT the more stoichiometric is the SiO2

layer and, presumably, the better the IL quality.

For given bias and split conditions, EH-K and E IL (Figure 7.2 inset) can be

calculated from Equatios (7.1) and (7.2) by using the values from Table 7.1. As an

example, calculated E14-K and E IL for three splits of fixed tIL but different tH-K from lot

3 are plotted with respect to the gate bias in Figure 7.2. It is obvious from the Figure

7.2 that for a given increment in V g , increment in E l" and E IL is higher for lower

tH-K.
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Figure 7.2 Distribution of fieldS across IL (E n) and high-к layer (EH-K ) for a given
StreSS biaS. (Inset) Band diagram of the gate stack under positive gate bias condition.

7.3 EBD of SiO2 based MOS and HfO2 based MIM Structures

To study TZBD characteriSticS of TiN/ HfO2 based gate StackS field strength of both

IL and high-к layer need to be understood. For comparison purpoSes, field strengths

of SiO 2 and high-к can be experimentally found directly from SiO2 based MOS and

HfO2 baSed MIM Structures of equivalent thickness, and growth and anneal

conditionS. MIM-Capacitors (MIM-C) are particularly chosen to avoid the presence

of the interfacial layer associated with Si substrate [96].

Figure 7.3 Shows I-V characteriStics for RVS applied on ntringed nMOS-C

under inverSion condition (Substrate injection). The ntring was grounded to avoid

the minority carrier shortage. Instantaneous increase of I g by an order of magnitude is
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considered as hard breakdown (HBD). Voltage across oxide, V OX = V g — VFB Os,

where Os is the surface potential. For bulk doping density 10 17 cm-³, VFB -0.7 V

(determined from NCSU CVC program [4]), and breakdown voltage, VBD 3.0 V,

EBDSiO² 17 MV/cm, which is comparable to the theoretical value of 15 MV/cm

[97].

Figure 7.3 I-V characteristics under ramped voltage StreSS (RVS) applied on SiO²
baSed ntringed nMOS-C.

Figure 7.4 showS TZBD characteristicS of MIM-C with 4 nm HfSi xOy (10%

SiO ²) aS insulating materiel. EBD 6.5 MV/cm, which is comparable to the

theoretical value of 7 MV/cm for HfSiON [89]. McPherson showed that EBD

α K -4).5 [1]. For Hf-silicate, к 10 to 15 1891, and for HfO2, K 25; consequently,

EBDHfO² may be expected to be from 4 to 5 MV/cm in these films. This is within the

theoretical limits of 3.9 to 6.7 MV/cm [89]. In Section 7.4, experimentally observed

values of EBDIL and EBDH-K  will be shown for the various gate Stacks, and compared

with, EBDSiO²  and EBDHfO².
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Figure 7.4 I-V characteristics under RVS applied on HfSi xOy (10% SiO2) based
MIM capacitors. EBD = 6.5 MV/cm is comparable with the theoretical value of ~ 7
MV/cm.

7.4 TZBD Characteristics

7.4.1 Lot 1

For lot 1, I-V characteristics of devices from split 1 (tH-K/tIL : 2.6 nm/1.1 nm) of lot 1

were plotted for different gate areas in Figure 7.5(a). The excellent scaling of gate

current density, J g with area, which is also observed for all the other splits, indicates

the good uniformity of the gate oxide, and the absence of the peripheral current [95].

The 50% failure value of VBD is shown in Figure 7.5(b) for different area and split

conditions of lot 1. VBD is observed to decrease with increase in area, specifically for

splits 1 (2.6 nm/ 1.1 nm) and 3 (3.3 nm/ 1.1 nm). It may due to the uniform

distribution of weak spots with respect to area. For the rest of the experiments,

devices with the smallest areas were used.
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Figure 7.5 (a) I-V characteristics under RVS applied on ntringed nMOS-C with
gate stacks from split 1 of lot 1 (2.6 nm HfO 2  / 1.1 nm IL) for different area
conditions. (b) 50% failure value of breakdown voltage, VBD vS. area for different
splits of lot 1:

Figure 7.6 Cumulative failure distribution of VBD for different splitS in lot 1 under
inversion and accumulation conditions.
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To understand the effect of the polarity on VBD, RVS was applied under both

inversion and accumulation regimes for the devices in lot 1. Cumulative % failure

distribution plots of VBD are Shown in Figure 7.6 for different splits of lot 1. Little

dispersion in the distribution of a given gate stack under a given polarity supports the

earlier observation regarding the uniformity of the gate stacks as far as thickness and

growth conditions are concerned. Moreover, uniform failure distribution also implies

that BD iS intrinSic. For the gate stacks, V OX Vg — 0.4 V under inversion, and

VOX = Vg + 0.5 V under accumulation. Therefore, to maintain the same BD fields in

each layer under both of the polarities, VBD,accumulation VBD,inversion. A negligible

diSpersion in VBD between accumulation and inversion conditions, observed for splits

1 (2.6 nm/ 1.1 nm) and 3 (3.3 nm/ 1.1 nm), supports this. Dispersion, however, is

observed for split 2 (2.7 nm/ 0.7 nm). This may be due to the presence of a large

Figure 7.7 Fifty percent failure value of (a) EBD IL and (b) EBDH-I under inversion for
different splits of lot 1. High-к layer BD occurs first followed by IL, which triggers
gate stackS BD.
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number of weak spots, which poSsibly is responsible for the weak area scaling of the

devices from split 2.

Under inversion condition, EBDIL and EBDH-K were calculated, as shown in

Figure 7.7(a) and (b), respectively, for the splits in lot 1 by using VBD values at 50%

cumulative distribution in Figure 7.6. Similarly, EBD IL and EBDH-K were calculated for

the splits in lot 1 by using VBD values in Figure 7.6 and are shown in 7.8(a) and (b),

respectively. For all splits specifically under inversion condition, it can be easily

Figure 7.8 Fifty percent failure value of (a) EBD IL and (b) EBDH-K under accumulation
for different splitS of lot 1.

observed that both EBD IL and EBDH-K  are almost equal to or above the

experimental/theoretical valueS. It may, therefore, be concluded that BD of both the

layers occur as gate stackS breakdown. AS far as inversion and accumulation regimes

IL and EBDH-K are concerned, for splits 1 (2.6 nm / 1.1 nm) and 3 (3.3 nm/ 1.1 nm) EBD



show negligible differences. But, significant differences are observed for split 2 (2.7

nm/ 0.7 nm).

Thermochemical model of breakdown, explained in Equation 7.3, was shown

to succesSfully predict EBD for different dielectric materials [89]:

where, AH0 * is the activation energy of bond-breaking in the abSence of the

externally applied field, po is the active molecular dipole-moment component

oppoSite to the applied field, and к is dielectric constant. If there is a weak molecular

bond then field-enhanced thermal breakage of the bond becomes much easier and

faster [90]. The capture of a hole further weakens the weak bond with an energy

level much above the nominal valence band. Thus, hole capture effectively reduces

AH0 * [90], which gives rise to an even easier bond breakage under high field

conditionS.

For high-к nMOS-C with metal gate under inversion, anodic hole injection

does not occur. As a result, BD is mostly field driven. Under accumulation, hole

injection from the substrate Side cannot be ruled out for the thin gate stackS. For split

2 ( 2.7 nm/ 0.7 nm), Significant presence of weak bonds in both IL and high-к layer

may be responsible for the low BD fields. For this reason, VBD under inversion

conditions are used henceforth to analyze the field strengths of the layers in the high-

к gate stacks. VBD under accumulation, on the other hand, can be probed to

understand the quality of gate stacks.



It is obvious from Figure 7.7(a) that EBD IL varieS according to the quality of

IL, EBD of ISSG (split 1) being better than getterred IL (splits 2 and 3). EBD IL is

almost same for the SplitS with the equivalent IL. For the Same quality of high-к,

however, such uniformity in EBDH-K  iS not observed. EBDH-K iS quite different for the

almost equivalent high-к layerS of splitS 1 (2.6 nm/ 1.1 nm) and 2 (2.7 nm/ 0.7 nm).

This implies that the high-к layer possibly breaks first as E" -1( reaches the critical BD

value of ~ 4 MV/cm due to the specificS of voltage division. This, however, does not

immediately breaks the entire gate stack as at that instance, EIL= EBD IL. As Vg is

ramped further, E IL reaches EBD IL, which triggerS BD of the gate stack.

7.4.2 Lot 2

In order to understand the effects of IL quality and thickness, and PreDA conditions

on TZBD characteristics of the high-к gate stacks, RVS was applied on devices from

Figure 7.9 Fifty percent failure value VBD vS. area for different Splits of lot 2 with
PreDA. Strong area dependence is observed.
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the different splits in lot 2. 50% failure value of VBD for splits with PreDA conditions

(splits 2, 4, 6 and 7) shows good uniformity in weak spots distribution as depicted in

Figure 7.10 Fifty percent failure value of (a) EBD IL and (b) EBDH-K under inversion
for different splits of lot 2.

Figure 7.9. For splits without PreDA, similar characteristics are observed (not shows

here). EBD IL and EBDH-K under inversion are plotted in Figures 7.10(a) and (b),

respectively for all the splits. The observed split-to-split trend of the EBDIL values iS

again conSistent with the IL quality, 2.1 nm ISSG being the best followed by 1.1 nm

ISSG, 0.7 nm ISSG and HF-last. Since VBD values are recorded when both IL and

high-к layer are broken, data in Figure 7.10 indicates that even at EH-K > EBDH K

(intrinsic), breakdown is not observed until IL breaks (assuming similar high-к

quality for the same tH-K). In the case of thin high-к, IL controls the TZBD

breakdown voltage since EH K reaches the critical EBDH K value first (before E IL

reaches EBDIL while BD is not observed until E IL > EBD IL) due to the specifics of the
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voltage division between the high-к and IL in the gate stack. Therefore, it is

concluded that high-к breaks first followed by IL. It may be further noted that pre-

deposition surface treatment has no effect on the strength of the breakdown fields as

far as inversion condition is concerned.

To understand the effect of PreDA on IL further, cumulative failure

distributions of splits under accumulation and inversion conditions are plotted for

cases of without and with PreDA in Figures 7.11(a) and (b), respectively.

Irrespective of whether PreDA was performed or not, dispersion between

accumulation and inversion conditions is small for 1.1 nm ISSG and 0.7 nm ISSG;

whereas large dispersion is observed for the case of HF-last. It is expected because

dispersion is a signature of IL quality. It is obvious that PreDA has almost no effect

in reducing diSpersion or increasing field strength, i.e., improving the quality of IL.



Figure 7.11 Cumulative failure distribution of VBD for splits of lot 2, having (a) no
PreDA, and (b) PreDA.
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7.4.3 Lot 3

In order to understand the effects of high-к thickness on TZBD characteristics of the

gate stacks with both ISSG and chemical SiO x IL, RVS was applied on the devices

from lot 3. EBD IL and EBDH-K are plotted for all the splits in Figures 7.12(a) and (b),

Figure 7.12 Fifty percent failure value of (a) EBD IL and (b) EBDH-K under inversion
for different splits of lot 3.

respectively. Even under different t H-K conditions, EBDH-K  is almost equal to the

critical BD value of ~ 4 MV/cm for all splits. Slightly higher value of E BDH-K  is

expected for thinner layers because TZBD characteristics of HfO2 based MIM

capacitors show a diScernible decrease in BD field with increase in tH-K (to be

published elsewhere by Krishnan et al.). For the same tIt, condition, EBD IL decreases

with tH-K. ThiS is consistent with the observation that IL quality decreases with



159

increasing tH- K [95]. For split 2 (3nm HfO2/1.1 nm ISSG IL), EBD IL = 16 MV/cm,

Figure 7.13 Cumulative failure distribution of VBD for splits of lot 3, having (a)
chemical SiOx, and (b) ISSG IL.
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which is comparable with the equivalent gate stacks in the other lots. It is concluded

that as gate voltage is ramped, EBD reaches critical EB D IL first, which breaks IL.

Further application of the ramp voltage gives rise to an almost uniform EBD H-K at hard

breakdown instance, and, thus, gate stack BD occurs. It can be further observed that

chemical SiOx and ISSG ILs have similar EBD IL for a given tH-K.

Cumulative failure distributions of VBD under accumulation and inversion

conditions are shown for chemical SiOx and ISSG IL conditions in Figures 7.13(a)

and (b), respectively. Significant dispersion can be observed for all split conditions

under consideration. For lot 1 and 2 PDA was done at 600°C in NT/ ambient; whereas,

for lot 3 it was done at 700°C in NH³ ambient. Comparison of equivalent splits from

the other lots implies that the observed dispersion may be due to the effect of PDA.

7.5 Wear-out Regimes during TDDB

To study TDDB under inversion, CVS was applied with high positive gate gate bias

on n+ -ringed nMOS-C devices from lot 1. I-t characteristics show four regimes of

degradation as shown in Figure 7.14. StresS was periodically interrupted to measure

I-V, which iS plotted in the inset of Figure 7.14. Initially charge trapping at pre-

existing and stress-induced defects dominates, which distorts the internal the internal

electric field and causes gate current to decrease with time [96]. The presence of a

large number of pre-existing electrically active ionic defects in high-к oxides, which

are responsible for transient trapping, is widely known [95], [97], [98]. Relaxation

induced detrapping occurs during periodic interrupts, which results in jump in I g after
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Figure 7.14 I-t characteristics of split 1 of lot 1 under CVS with positive gate biaS.
Different degradation regimeS during TDDB are specified. (Inset) I-V characteristics
during TDDB.

interrupt as shown by arrow in Figure 7.14. But, detrapping could not fully recover I g

as defect generation also took place. This iS further confirmed by the increase in

SILC, i.e., Ig SenSed at low V g (Inset of Figure 7.14) during stress.

Sudden sharp jumps and increased noiSe in I g mark the soft breakdown (SBD)

regime. Temporary percolating pathS are formed; however, they do not stabilize to

fully conducting paths 1991. This is followed by progreSsive breakdown (PBD)

regime, which iS characterized by the continuous increase in I g leading to HBD.

Progressive BD is a well understood phenomena for SiO2 less than 2.5 nm thick.

During PBD the aging of the percolating path occurs due to the defect generation

around it. As Such, percolating path becomes more ohmic and ultimately bridge
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anode and cathode with a stable conduction path, which results in the thermal

runaway current leading to HBD. I-V plots also confirm the catastrophic breakdown.

Figure 7.15 I-t characteristics during TDDB under CVS with different positive gate
bias conditions for (a) split 1 and (b) split 3 of lot 1.

I-t characteristics during TDDB, as far as durations of different degradation

regimeS are concerned, were observed to be affected by the ratio of tIL and tH-K in the

gate stack. Data in Figure 7.15(a) and (b) shows that the duration of the PBD regime

decreases in thinner high-к/thicker IL gate stacks. With thicker high-к/thinner IL,

dominant factor controlling 1g changes from charge trapping to film degradation with

Vstress increase. For equivalent stress bias condition of 3.0 V, EH-K/ EIL is 4.17/12

MV/cm for 2.6 nm H-K/ 1.1 nm IL case; whereas, it is 3.94/ 14.75 MV/cm for 3.3 nm

H-K/ 0.7 nm IL case. ObviouSly, E IL is higher for the latter case. Moreover, IL

quality is inferior for 0.7 nm caSe. TheSe two factors may be responsible for the

comparatively long duration of PBD.
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7.6 Effects of Charge Trapping on Degradation

In order to understand the effects charge trapping on degradation, stress/relaxation

cycles were repeated a few times as shown in I-t plots in Figure 7.16(a).

Considerable Ig rebound induced by the electron detrapping at Vg= —1 V, was

observed. Beside this the gate stack as follows from the SILC data in Figure 7.16(b).

SILC showed only minor relaxation during the de-trapping cycle suggesting that it

mostly reflect effect.

W

Figure 7.16 (a) I-t characteristics of split 1 of lot 1 under stress with 2.8V /
relaxation under -1 V cycles. (b) Corresponding SILC, sensed at V g = 1V w.r.t.
stress/relaxation cycles.
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Figure 7.17 (a) I-t during TDDB. (b) AVT vS. Stress time during TDDB. Each 20 S
of streSs is followed by 20s of relaxation at -1 V. AV T after relaxation period is also
plotted. (Inset) Stress/relaxation cycle during TDDB. (c) AJg/ Jg0 (sensed at V g = 2
V) vs. Stress time during TDDB. Each 20 s of stress is followed by 20s of relaxation
at —1 V. AJ g/ Jg0 after relaxation period is also plotted. (Inset) StreSS/relaxation cycle
during TDDB.

To understand charge trapping effects' further, StreSs/relaxation cycles were

applied to nMOSFETS with 3 nm HM2/ 2.1 nm gate stack from lot 2. During each

stress phase I-t waS measured as shown in Figure 7.17(a). Immediately after each

streSs phase Id—V g/Ig-Vg measurements were taken aS shown in the insets of Figures
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7.17(b) and (c). The same measurements were taken immediately after relaxation

phase. Decrease in I g is followed by PBD regime, which terminates in HBD. Initial

decrease in gate current during TDDB is due to electron trapping as follows from the

increase of AVT, shown in Figure 7.17(b). Detrapping cycles failed to recover AVT

fully as CVS generated defects. AV T vs. stress time characteristics, however, does

not reflect the evolution of the degradation. This suggests that AVT may not be used

as an effective signature of degradation in TDDB studies of the gate stacks. On the

other hand, sharp increase in post-relaxation SILC, measured from AJ g/ Jg0 after

relaxation induced detrapping, coincides with PBD as shown in Figure 7.17(c). This

confirms the earlier suggestion that SILC need to be Studied to understand stress-

induced degradation in the gate stacks during TDDB. It is concluded that the stress-

induced defects, rather than the trapping at the pre-existing defectS, are responsible

for the gradual wear-out of the gate stack leading to SBD, PBD and HBD.

7.7 Effect of IL Degradation on TDDB

To understand defect generation, specifically in IL, and its role in TDDB of the entire

gate stack, variable-frequency charge pumping (CP) measurements were periodically

taken during CVS. Low frequency CP meaSurements were Shown to probe the

defects spatially distributed deep into IL [98]. Young et al. showed that the probing

depth of CP frequency in KHz order is around 1.2 nm from IL/Si interface [98].

Considering that tIL —1.1 nm, CP under the used conditions probes defect primarily

within the IL.
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Figure 7.18 Normalized ANi t (w.r.t. initial Ni t) vs. stress time for split 7 of lot 2.
Plots for CP frequency in 1 KHz to 1 MHz range are shown.

Normalized ANi t, calculated at CP frequency of 1 MHZ to 1 KHz, is plotted

with respect to stress time in Figure 7.18. During the measurement, amplitude of the

pulse was kept at 1.4 V, whereas, the base was varied from -1.3 to 0 V with a step

voltage of 0.1 V. PulSe rise/fall time was 100 ns. Defect generation rate (the slope of

the N it(t) curves) is observed to be independent from the CP frequency, and, this is

why, conStant throughout the thicknesS of IL. This means that the number of

generated defects iS proportional to the defect density, consistent with the suggestion

that the defect generation occurS at the defect precursor within IL. The same

conclusion may be drawn for two other gate stacks of 3 nm HfO2/ 1 nm IL and 7 nm

HfO2/ 1 nm IL, whose normalized N it(t) characteristicS are shown in Figures 7.19(a)

and (b), respectively. Ni t(t) followS t" power-law dependence as obServed from log-
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log plots. The value of exponent, n remains almost constant as CP frequency iS

varied.

Figure 7.19 Normalized AN it (w.r.t. initial N it), measured at different CP frequencieS,
vs. stress time during TDDB for (a) 3 nm HfO2/ 1nm IL and (b) 7 nm HfO2/ 1nm IL
gate stacks.

To understand the nature of SILC, the normalized SILC data sensed at V g = 2

V and normalized AN it extracted at CP frequency of 1 KHz are plotted in a log-log

scale in Figures 7.20(a) and (b), respectively,, which includeS data for three different

stacks from lot 3. Strong correlation between the power-law exponents of SILC and

ANi t for each given gate stack can be readily obServed. The Same correlation iS

observed for Ni t extracted at all other frequencies in FigureS 7.19(a) and (b). Based
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on this correlation, one may conclude that same defects generated within IL are

responSible for both SILC and AN,.

Figure 7.20 (a) SILC vs. stress time and (b) normalized ANi t vs. Stress time for splits
1, 3 and 4 of lot 3. SILC is Sensed at V g = 2 V and Ni t is measured at CP frequency of
1 KHz.

7.8 Breakdown Mechanisms during TDDB

To further understand wear-out during TDDB, Specifically for thick high-к

conditionS, compliance limits on I g were placed while CVS waS applied. Analysis of

CVS data uSing the case of 3 nm HfO2/2.1 nm SiO2 stack is given. Figure 7.21 shows

gate leakage current during CVS in 3nm HfO2/2.1 nm SiO2 gate stack nMOSFET

with current compliance limitS. During the initial CVS Stage, StreSs current has been

decreasing due to electron trapping in the high-к film (V T increased), until the Soft

BD (SBD) event (See inset). Figure 7.22 showS SILC data collected under the current
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compliance limits (as labeled) during the stress preSented in Figure 7.21. Although

the current was limited, wear out continued after SBD, as Seen from the SILC data in

Figure 7.21, until a hard BD (HBD) occurred after ~9.875x10 ³ secS of stress. In spite

of increaSing leakage current compliance limitS, Ilim, SILC did not increase until

reached 500 1,1A.	 Only after then, thermal run away current due to

catastrophic/thermodynamic BD could be observed.

Figure 7.21 I-t characteristics during TDDB under CVS with positive gate bias
condition for split 7 of lot 2. Compliance limits are applied on I g (65 nA to 10 mA)
during CVS. (Inset) SBD, PBD and HBD regimes are Shown.

Figure 7.22 I-V plots during TDDB. Compliance limits on I g during CVS are labeled
and ,thuS, specified.
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Figure 7.23 Shows differential resistance curves for SILC data (smoothed ) in

Figure 7.22. To understand the dynamicS of the BD process, differential reSistance

Rdiff(Vg), from the SILC data and the slope of the differential resistance, SRdiff (for

consistency, at a fixed Vg = 1.5V) are calculated. For pure ohmic conductance,

Figure 7.23. Differential reSistance curveS for SILC data (smoothed) in Figure 7.22.

Rdiff(Vg) = Const (i.e., S Rdiff=0), the slope value SRdiff 4 can be used aS a figure of

merit of ohmic vs. non-ohmic (tunneling, hopping) conductance. ChangeS in Rdiff and

SRdif values during the total stress time are plotted in Figure 7.24.

Figure 7.24 showS streSs-induced evolution of the differential resistance, Rdiff,

and slope of the differential reSistance, SRdiff. Gradual change in, Rdiff and SRdiff

suggest wer-out during defect generation/charge trapping regime. Sharp decrease

signifies SBD and subsequent PBD leading to HBD.
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Figure 7.24 Changes in Rdiff and SRdif values during the total stress time are plotted
as a function of V g .

Figure 7.25(a) showS evolution of the slope of the differential resistance, SRdiff,

and leakage current during CVS prior to SBD. Figure 7.25(b) showS post SBD

evolution of the slope of the differential resistance, SRdiff, and leakage current.

Detailed variations of SRdiff during stress up to the SBD moment are shown in Figure

25(a). Until SBD, the differential reSistance Slightly decreased (due to higher total

current) (Figure 7.24) while conductance (as reflected by SR,diff) remained mostly

unchanged (non-ohmic), which points to the generation of isolated traps as a

dominant degradation mechanism. At SBD, SR,diff abruptly decreased by Several

orders of magnitude indicating that the conductance had qualitatively changed, most

likely due to formation of the percolation conductive path through the dielectric.

Post-SBD evolution of SR,diff (Figure 7.25 (b)) and Rdiff (not shown) demonstrated a

relatively rapid change in conductance towards ohmic, which is indicative of the

continued degradation of the conductive percolation path; i.e., progreSSive BD (PBD).
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ThiS degradation iS primarily driven by streSS time rather than stress current (i.e., it

Figure 7.25 (a) showS evolution of the Slope of the differential resistance, SRdiff, and
leakage current during CVS prior to SBD. Figure 7.20 (b) Shows post SBD evolution
of the slope of the differential resistance, SRdiff, and leakage current.

compliance limit). When the current compliance limit waS raiSed to 1 mA and above,

the runaway current resulted in the formation of a near-ohmic conductive path—

thermal HBD—accompanied by a Several orderS of magnitude drop in the SRdiff and

Rdiff values.

Figure 7.26(a) and (b) show Rdiff and SR,diff as a function of V g during CVS. It

is obvious that conduction becomes leSs ohmic aS stress progresses. Figure 7.27(a)

show the evolution of the differential resistance, Rdiff, and leakage current during

CVS in 5nm HfO2 stack. Similarly, Figure 7.27(b) show the evolution of the

differential resistance, SRdiff, and leakage current during CVS For the 5 nm HfO2/ 1

nm SiO 2 Stack, both Rdiff, and SRdiff demonstrated abrupt decreaseS at the SBD events;

their Subsequent continued decrease (i.e., changes in the conduction mechanism)
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allowed the post-SBD leakage current increase to be classified as a manifestation of

PBD.

Figure 7.26 For 5nm HfO 2/ 1nm IL gate stack, (a) Rdiff and (b) SR,diff  vs. Vg.

Figure 7.27 Evolution of (a) differential reSistance, Rdiff, and leakage current, and
(b) SRdiff, and leakage current, during CVS in 5nm HfO2 stack.



Figure 7.28 Evolution of the 1 KHz CP trap density, Nit, and leakage current during
CVS on 5 nm HfO2 Stack. In the inSet: Ni t vs. stress time for various CP frequencies.

Figure 7.28 showS evolution of the 1 KHz CP trap denSity, N it, and leakage

current during CVS on 5 nm HfO2 Stack. (In the inset) Ni t vs. Stress time for various

charge pumping, CP frequencies are shown. A stress-induced increase in trap

density, Ni t, as measured by CP in a wide range of frequencies, showed a clear

correlation with the leakage current features (SBD and PBD), Figure 7.29, and SILC.

Similar growth rates of SILC and Ni t, observed for each gate stack of a given high-к

thicknesSes in Figure 7.20, indicate that their growth is most likely driven by the same

underlying phySical cause (i.e., by the Same defects). Since the Ni t stress time

dependency (inSert Figure 7.28) was Similar for CP with high and low frequencies,

which probe traps near the interface with the Si substrate and deeper in IL,

respectively, one may conclude that the N it values in Figure 7.28 correspond to the

traps generated primarily within IL. This conclusion iS supported by the simulation

174
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Figure 7.29 Evolution of SILC (sensed @V g = 2V), and leakage current during CVS
on 5 nm HfO2 stack.

of the CP probing depth [98], which, under the conditions used for these CP

measurements, waS estimated to lay within the IL. Higher density of traps in IL with

closer proximity to high-к waS reported to be cauSed by high-к/IL interaction [97].

Therefore, the strong correlation of SILC to Ni t suggests that SILC is moStly

controlled by IL degradation. Since leakage current evolution including BD events,

correlateS with SILC (in particular with to SRdiff and Rdiff), this, in turn, suggests that

BD is triggered by the degradation of the IL. Results on all other investigated gate

stack combinationS agree with this conclusion. PBD iS readily obServed in thicker

gate stackS [Figures 7.30(a) and (b) for 7 nm HfO2 gate stack] while its duration

quickly diminisheS in thinner sampleS [FigureS 7.32(a) and (b), for 3nm HfO2 gate

stack].
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Figure 7.30 Evolution of (a) gate current, (b) Raft and SR,diff during CVS for 7 nm
HfO2 stack.

Figure 7.31 (a) Evolution of gate current during CVS for 3 nm HfO 2 stack. (Inset)
Fast increase in gate current during PBD. (b) Evolution of SR,diff during CVS for 3
nm HfO2 stack. (Inset) Fast decrease of SR,diff during PBD.

To understand breakdown mechanism further, CVS waS applied on TiN/ 4 nm

HfSiO/ TiN based MIM capacitors. DetailS' of this lot can be le arnt from Table 3.1.

These structureS are without IL. As a result, streSs-induced degradation can be

understood solely for the high-к layer. Leakage current vs. stress time is shown for
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the stresS levelS of 2.5 V and 2.7 V in FigureS 7.32(a) and (b), respectively. Very

Figure 7.32 For 4 nm HfSiO baSed MIM capacitors, I-t characteriStics under CVS
applied with stress levels of (a) 2.5 V and (b) 2.7 V. Insets of Figures (a) and (b)
show I-t immediately before HBD.

little increase in Ig iS observed during CVS till BD. For 2.5 V case, 10 hourS of

interr(uap)tion waS provided. This resulted in almost complete recovery of I g , which iS

in contrast with the observations made for the high-к gate Stacks as discusSed above.

InSetS of FigureS 7.32(a) and (b) Show that Ig does not show the signatures of PBD

before HBD, which is alSo different from I-t characteriStics obServed during TDDB of

high-к gate stacks.

To underStand degradation in the oxide I-V meaSurements were periodically

taken till BD. Figures 7.33(a) and (b) show I-V characteristicS for stresS levels of
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2.5 V and 2.7 V, respectively. It is obvious that increase in I g due to stress-induced

defects is not observed. This is also different from I-V characteristics observed for

the high-к gate stacks. Hard BD is manifested in the thermal run away current

Figure 7.33 For 4 nm HfSiO based MIM capacitors, I-V characteristics under CVS
applied with stress levels of (a) 2.5 V and (b) 2.7 V.

observed in Figures 7.33(a) and (b).

To understand SILC during TDDB better, normalized AJ g (AJ g/Jg0), sensed at

Vg = 1 V, 1.5V and 2V is plotted for the stress level of 2.5 V in Figure 7.34. Little

changes in SILC are observed. Interruption of stress for a long period of time shows

almost full recovery. This is also in contrast to the partial recovery and significant

increae of SILC observed in the case of high-к gate stacks.
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Figure 7.34 SILO sensed at different V g .

Differential resistance and SR,diff, found from I-V measurementS in Figure 7.33(a), iS

plotted as a function of Vg during TDDB in Figure 7.35 (a) and (b), respectively.

Figure 7.35 For 4 nm HfSiO based MIM capacitors, (a) Raiff vs. Vg and (b) SR,diff
vs. Vg during TDDB.
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Gradual decrease in Raiff and SR,diff with stress time, which are the signatures

of the significant wear-out in high-к gate stacks, is not observed. Similarly, SRdiff

and Raiff shows no signs of PBD up to BD as shown in Figure 7.36. The proposed

mechanism of the SiO 2 layer wear-out and BD suggeStS that as the density of the

stress-generated traps increases, conductance through the dielectric changes from

Figure 7.36 Evolution of the differential resistance, Raiff, and its slope, SRdiff, during
CVS of MIM capacitors.

trap-assisted tunneling through isolated traps to trap-to-trap tunneling along the

percolation path (post SBD) to hindered hopping (ohmic-like, post HBD) when trap

potentials overlap to create a low barrier path, aS shown in Figure 7.37. Creation of

this path signifies local collapse of the dielectric band gap due to the high density of

the unoccupied localized States aSsociated with the broken Si-O bonds [89].
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Figure 7.37 Schematic of the SiO2 band diagram illustrating conduction mechanism
during the wear-out stage (semi-isolated traps) and breakdown (overlapping traps).

7.9 Effect of IL Quality on TBD and QBD

To understand the effect of the IL quality on time-to-breakdown, TBD and charge-to-

breakdown, QBD, CVS was applied on a large number of devices (~20) belonging to

each split with pre-deposition treatment in lot 2. Weibull plots of TBD and QBD are

presented in Figures 7.38(a) and (b), reSpectively for HF-last condition (with PreDA).

Similar Weibull plots are shown for 0.7 nm and 1.1 nm ISSG (with PreDA) in

Figures 7.39 and 7.40, respectively. Low value of slope of Webull plots, [3 is

consistent with 13 found by other high-к groups [91]494]. For sub-2 nm SiO 2 , it is
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reported that variation in thickness results in a large dispersion in the value of i3 [91].

It is further shown that the larger the number of SBDs, prior to HBD, the higher the

value of 13 [92]. It has been already shown that IL degradation initiates TDDB in the

Figure 7.38 Weibull plot of (a) TBD and (b) QBD for 3nm HfO 2/ 1.1 nm HF-last IL.

Figure 7.39 Weibull plot of (a) TBD and (b) QBD for 3nm HfO2/ 0.7 nm ISSG IL
case for different bias conditions. PreDA was performed for this split.
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Figure 7.40 Weibull plot of (a) TBD and (b) QBD for 3nm HfO2/ 1.1 nm ISSG IL
case for different biaS conditionS. PreDA waS performed for this Split.

gate stackS. It iS found from TEM imageS that 5A of thickneSS variation occurs in

the gate StackS, specifically for ISSG caSes [97]. Moreover, the number of SBDs

before PBD leaSing to HBD iS found to be rather small in the deviceS (see Section

7.8). Slope, p is expected to be low in TDDB studies. For Hf-last case, no Special

processing was done to grow IL. High-к was depoSited after PreDA treatment.

Interfacial layer growth occurred aS an natural extenSion. This iS why thickness

variation in IL can be aSsumed to be low compared to the other growth conditions.

This assumption iS supported by comparatively high value of p. For ISSG caseS, 2

nm of thermal SiO 2 waS grown. Then it was etched back to 0.7 or 1.1 nm or left

untouched. High-к layer was then grown on the top of IL. For the case of 0.7 nm, IL

regrew to 1.1 nm after high-к deposition. Interaction of high-к and IL is a possibility.

As a result, the thicknesS variation iS expected to be quite high for ISSG growth

conditions. Low value of for Splits with ISSG IL Supports this view.
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Sixty-three percent, 63% failure value of TBD, t6³ is extracted from Weibull

plots. In Figure 7.41, t6³ is plotted with reSpect to V g for various IL growth

conditions. Dependence of t63 on IL quality is obvious. Ten-year lifetime projections

are made and found to be highly related to IL quality. It is readily obServed that the

better the IL quality, the higher the operating voltage. Operating V g is observed to be

in 1.5 V to 1.75 V range for IL with tphysical ~ 1.1 nm.

Figure 7.41 Sixty-three percent (63%) failure value of TBD, t6³ vs. Vgate for different
IL growth conditions.

To underStand the dependence of operating fields on IL quality, t6³ vs. E IL and

EH-K, calculated for a given Split and StresS bias condition, are plotted in Figures

7.42(a) and (b), respectively for ILs of different qualities. It is obvious that IL quality

strongly affects TBD. On the other hand, even for the same quality of high-к, Strong
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diSperSion is found in EH -K from split to split. This reaffirms the earlier Suggestion

that IL degradation plays the dominant role in TDDB and conclusion that the quality

of IL Strongly affects the choice of the operating gate voltage.

Figure 7.42 Sixty-three percent (63%) failure value of TBD (t6³) vS. (a) EIL and (b)
EH-K  for splitS with different IL conditionS. PreDA was performed for each split.
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Influence of both field and fluence on the breakdown of the high-к gate Stacks

can be observed from TDDB studies. Sixty-three percent, 63% failure value of QBD

is extracted from Weibull plots. In Figure 7.43, it is plotted with reSpect to V g for

various IL growth conditions. Dependence of QBD on IL quality is obvious. It is

readily obServed that for the Same V g , the better the IL quality, the higher the

charge- to-breakdown.

Figure 7.43 Sixty-three percent (63%) failure value of QBD vs. Vgate for different IL
growth conditionS. PreDA was performed on each split.

In order to underStand the role of fluence in BD better, QBD is plotted with

respect to E LL and EH-K for various IL growth conditionS in Figures 7.44(a) and (b),

reSpectively. It is obviouS that the plots for 1.1 nm and 2.1 nm ISSG are inconsiStent

with the observed IL quality. For the same E IL, QBD iS found to be higher for 1.1 nm
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cases even though 2.1 nm haS a higher quality. For the same high-к, QBD shows a

large disperSion with respect to EH-K . ThiS SuggeStS that IL initiates TDDB and TBD

characteristics are highly consistent with the trend in the IL quality.

Figure 7.44 Sixty-three percent (63%) failure value of QBD vs. (a) E IL and (b)
for splits with different IL conditions. PreDA was performed for each split.



7.10 Temperature Dependence of TBD

Field-driven E and fluence-driven 1/E are two major models that explain field and

temperature dependence of dielectric degradation during TDDB as explained in the

following Equations [89]:

(7.4)

(7.5)

Here, TBD is time-to-breakdown; AH0 is the observed activation energy of the bond

breakage, whereas Ea is the activation energy associated with the current-induced

hole injection and capture into the dielectric; 7 and G are the field acceleration

factors; EOX iS the externally applied electric field and kB is Botzmann constant.

McPherson showed that these two models are actually complementary, i.e,

both the field-induced (E model) and current-induced (1/E model) degradation

mechanisms occur Simultaneously [89]. For metal gate/high-к gate stacks,

specifically under inversion condition, anodic hole injection does not occur. As a

consequence, the field-induced degradation is expected to be significant. It is further
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shown that AH0 and y decreases and increases, respectively with к as shown below

[89]:

Here, AH0* is the activation energy in the absence of field and p0 is molecular dipole-

moment component opposite to local field.

It is obvious that the degradation in the gate stack is significantly high at

elevated temperatures. Degradation of IL triggers gate stacks breakdown. At

elevated temperature and field conditions, degradation may be severe within the high-

к layer as well because AH0 is low. This may change the breakdown mechanism

observed at room temperature.

To understand whether degradation is field or fluence driven, and whether IL

initiates breakdown at elevated temperatures also, TDDB measurements were taken at

different elevated temperatures for a fixed bias condition using a large number of

samples (~20). Weibull plots of TBD are Shown for different temperatures in Figure

7.45(a), (b) and (c). Effect of temperature on TBD is clearly observed. Arrhenius plot

of 63% failure value of TBD, t6³, is plotted for various IL growth conditions in Figure

7.46. It is observed that AH0 ~ 0.5 to 0.6 eV. For SiO2, p o(2+к)/3 = 13 e-Å, where e

is the charge of an electron, is widely reported [89]. It is obvious from Equation 7.6

that AH0* depends on к and EOX, which are the possible sources of errors. Charge
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trapping within the oxide distorts internal electric field and reduces cathode electric

field (Ec) by DES as described in Equations 7.8 and 7.9 [29]:

Figure 7.45 Weibull plots of TBD at different temperatures for (a) HF-last, (b) 0.7
nm ISSG, and (c) 1.1 nm ISSG IL growth conditionS.
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Figure 7.46 Arrhenius plot of t6³ for different IL growth conditions.

Here, ε0 iS the free-space permittivity, εins is the relative permittivity of the insulating

material, N t is trapped charge denSity, x t iS the diStance of charge centroid from

cathode, tins is inSulator thickness, C' OX is oxide capacitance density.

Table 7.2 Corrected AH 0 * for Different IL Conditions
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Corrected AH0 for different IL conditions are depicted in Table 7.2 by

assuming AEOx AE I . The values of к and E0„ are corrected for different IL and

stress bias conditions. The values of EOT are found from Figure 7.1 for different IL

conditions. It is observed that AH0 * 2 — 3 eV, which is within the activation energy

range reported for the field-driven TDDB of SiO2 [89]. For the fluence-driven TDDB

of SiO2, AH0 * 0.3 eV, since it is not aSsociated with the bond breakage [89].

Therefore, under inversion regime, IL degradation triggers the entire gate stacks

breakdown and the wear-out during TDDB is mostly field-driven.

7.11 Summary

TZBD and TDDB characteristics of TiN/HfO2 based gate stacks with varying IL and

high-к layer thickneSs conditions were studied in this work. IL quality was also

varied to Study its effect on the breakdown characteristics. It is shown that for the

thin high-к layer, TZBD is triggered by IL, whereas, for thick high-к layer, it itself

initiates the gate stacks breakdown under RVS. Four regimes of degradation can be

observed during TDDB: charge trapping/defect generation, SBD, PBD and HBD.

The duration of each regime, specifically charge trapping/defect generation and PBD,

depends on the relative combination of IL and high-к layer thickness. Strong

correlation between SILC and defectS generated within IL implies that IL breakdown

triggers TDDB of the gate stack. Statistical studies of TBD and QBD suggest the

influence of both the field and fluence in TDDB. It is experimentally found the

quality of IL, specifically for thin high-к layer, not only affects its breakdown field
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but also plays the dominant role in determining TBD of the gate stack. Temperature

dependent TBD shows that IL degradation triggers the entire gate stacks breakdown

and the wear-out during TDDB is mostly field-driven.



CHAPTER 8

CONCLUSIONS

Different reliability issues of Hf-based high-к gate stacks are addressed in this

research work. To this end mostly MOCVD TiN/Hf-silicate and ALD TiN/HfO2

based gate stacks are used. High-к and interfacial layer thickness, and pre deposition

anneal, post deposition anneals and IL growth conditions are varied to

comprehensively analyze the reliability of the gate stacks.

Formation of electrically active ionic defects like charged bulk

(V++/V+N°/V¯/V¯¯) and 'arm' (Hf-V++-Si/ Hf-V°-Si) O vacancies is energetically

favorable in Hf-based oxides due to its predominantly ionic bondings. The defect

levels have been experimentally observed for the first time in the gate stacks from

low temperature, leakage, and time and temperature dependent characteristics of de-

trapping from stress-induced defects.

Excellent match between experimental and calculated defect levels provide

information about their physical origins. Substrate hot electron (SHE) stress with

incident carrier energy, Einc above the bulk charged O vacancy formation threshold

results in a Strong correlation between slow transient trapping and trap assisted

tunneling, which is characteristic of negative-U transition of V' levels. Moreover,

SHH Stress with Ei nc above 'arm' O vacancy formation threshold reSults in stress-

induced deep hole level lying within Si band-gap range, which is characteristic of

Hf-V++-Si level. Thus, the presence of O vacancies in these films is considered to be
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confirmed. Their roles in transport mechanisms under different polarity and band

bending conditionS have been determined. For gate injection, transport through mid-

gap states dominates. Under Substrate injection, conduction through mid-gap states

for low gate bias (Vg~0.5V), trap-assisted tunneling via negative-U transitions for

moderate V g(~2V), and transport through shallow traps for high V g(~2V) dominate.

Based on transport mechanisms and defect levels, effective physical models

have been formulated to explain trapping characteristics under different stress

conditions. Under gate injection, trapping at deep electron and hole levels,

reasonably speculated to be V ° and Hf-V++-Si, leads to slow transient trapping and

causes a turn-around effect for a given gate bias condition. Under substrate injection,

lateral distribution of deep trapping causes turn-around effect as far as stress levels

are concerned.

Negative bias temperature instability, NBTI effects under different biaS and

temperature conditions were studied for TiN/Hf-silicate based pMOSFETs. For low

bias conditions, mixed degradation due to both electron and hole trapping within the

bulk high-к mostly dominates AVT . Interface state generation, observed from change

in sub-threshold slope, AS/S0, was found to be negligible. For moderately high to

high stress levels, initially Si-H bond breaking induced interface sates and diffused

H-specieS induced bulk trap generation dominates. Initial temperature, time and

oxide electric field dependence shows excellent match with that of R-D based NBTI

model. Carrier separation technique shows that impact ionization induced hot hole

generation, signature being the reversal of the polarity of source/drain current during
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stress, was not observed. This possibly results in higher bond-annealing/bond-

breaking ratio as, with the progress of the stress, less number of bonds are available to

be broken at the presence of low energy holes. This may be responsible for the

observed Saturation of interface State generation and AVT under high bias temperature

stress conditions.

Time-zero breakdown, TZBD characteristics of ALD TiN/HfO2 based gate

stacks are comprehensively analyzed in this paper. Effects of IL and high-к

thickness, IL growth, PreDA and PDA conditions on TZBD are analyzed in this

work. Cumulative failure distribution of VBD, obServed by applying RVS on

ntringed nMOS-C devices from all the splits of different lots under both inversion

and accumulation regimes, suggests intrinsic BD. Breakdown fields, observed from

SiO2 and HfO2 based MOS and MIM structures, respectively, show good match with

theoretical values. EBD IL and EBDH-K , calculated by considering the effects of the IL

quality on its EOT, are found to be within the theoretical and experimentally observed

limits. Under inversion condition, for thin high-к layers (< 3.5 nm), IL triggers BD;

otherwise, high-к layer initiates it. As far as the dependence of EBD IL on growth and

thickness conditionS related IL quality is concerned, 2.1 nm ISSG is found to be the

best. For the equivalent high-к layer, it is followed by 1.1 nm ISSG, 0.7 nm

getterred, 1.1 nm chemical SiO x , 0.7 nm ISSG and HF-last. For the same IL and

thick high-к layers, both EBDH K and EBD IL decrease as high-к thickneSS increases.

PreDA does not change the quality of IL. Difference in VBD under inverSion and
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accumulation, being a signature of the quality of the gate stack, depends on PDA. For

equivalent gate stacks, it is higher for PDA in N2 at 600°C compared to NH³ at 700 °C.

Four regimes of degradation can be observed during TDDB: charge

trapping/defect generation, SBD, PBD and HBD. The duration of each regime,

specifically charge trapping/defect generation and PBD, depends on the relative

combination of IL and high-к layer thickness. Strong correlation between SILC and

defects generated within IL suggests that IL breakdown triggers TDDB of the gate

stack. Stress-time evolution of the differential resistance and its slope, calculated

from SILC data, iS found to correlate strongly with the gate leakage current features,

in particular SBD and HBD, and to identify progressive BD. It is experimentally

found the quality of IL, specifically for thin high-к layer, not only affects its

breakdown field but also plays the dominant role in determining TBD of the gate

stack. Arrhenius plots of temperature dependent TBD for different IL growth

conditions shows that activation energy of bond breakage Shows an excellent match

with that for SiO2 based oxides. This further suggests that IL degradation triggers the

entire gate stacks breakdown under inversion, and the wear-out during TDDB is

mostly field-driven.
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8.1 Impact and Limitations

Future of high-k implementation in CMOS technology depends on further optimizing

the processing conditions to reduce charge trapping in the gate stack with a view to

enhancing reliability. In this research work, the defect energy levels within Hf-based

high-к have been determined, and their roles in NBTI/PBTI and transport have been

investigated. This will help to decide on the correct biasing conditions of high-к

based CMOS circuits. Experimental results, gleaned from TZBD and TDDB studies,

will go a long way in deciding the optimized IL thickness and processing conditions

for a given Hf-based high-к layer so that operating voltage meets 10-year life-time

projections.

The impact of the reliability studies performed in this research could have been

broadened further if effect of different metal gates (e.g., fully silicided) and anneal

conditions (e.g. PDA in D2 ambient) on the reliability of Hf-based high-к gate stackS

had been incorporated. Similar reliability studies of the gate stacks, which includes

high-mobility channelS, would have enlarged the prospects of this work further.
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8.2 Future Work

Reliability studies, performed in thiS research, suggest that trapping at and transport

through pre-existing defects are the primary issues for performance and long-term

reliability of Hf-based high-к gate stackS. Further characterization of these defects

can be carried out by conducting deep level transient spectroscopy (DLTS) studies,

which are essential to understand not only activation energies of defects but also

capture cross section, trapping efficiency etc. of the dominant traps. This research

further shows that temperature dependent wear-out is significant in metal gate/high-k

gate stacks, specifically under substrate injection. To understand effects of

temperature on breakdown mechanisms, extensive temperature dependent TDDB

studies need to be performed to understand how temperature affects regimes of

degradation like SBD and PBD. To enhane performance further, specifically electron

mobility, alternative channel materials like SixGe 1 ,, GaAs are being seriously

conSidered to replace Si in high-к gate stackS. Reliability studieS of these gate stacks

appear to be a reasonable extension of this work into future.
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