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ABSTRACT

AUTOMATIC PHYSICAL DATABASE DESIGN: RECOMMENDING
MATERIALIZED VIEWS

by
Wugang Xu

This work discusses physical database design while focusing on the problem of selecting

materialized views for improving the performance of a database system. We first address

the satisfiability and implication problems for mixed arithmetic constraints. The results

are used to support the construction of a search space for view selection problems. We

proposed an approach for constructing a search space based on identifying maximum

commonalities among queries and on rewriting queries using views. These commonalities

are used to define candidate views for materialization from which an optimal or near-

optimal set can be chosen as a solution to the view selection problem. Using a search space

constructed this way, we address a specific instance of the view selection problem that

aims at minimizing the view maintenance cost of multiple materialized views using multi-

query optimization techniques. Further, we study this same problem in the context of a

commercial database management system in the presence of memory and time restrictions.

We also suggest a heuristic approach for maintaining the views while guaranteeing that

the restrictions are satisfied. Finally, we consider a dynamic version of the view selection

problem where the workload is a sequence of query and update statements. In this case, the

views can be created (materialized) and dropped during the execution of the workload. We

have implemented our approaches to the dynamic view selection problem and performed

extensive experimental testing. Our experiments show that our approaches perform in most

cases better than previous ones in terms of effectiveness and efficiency.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Nowadays, databases are used very frequently in software applications. Enterprises store in

their databases not only transactional data for a single department, but also historical data

for the whole enterprise. This need for storing large amount of data led to the introduction

of data warehouses [141, 23, 74, 15O]. At the same time, the queries are getting more

complex (e.g., queries involving roll-up and drill down operations and top-k queries) [18,

129, 23, 58]. They include not only online transaction processing (OLTP) queries, but

also online analytical processing (OLAP) queries. These latter queries are more complex

in structure and usually take a longer time than OLTP queries to execute [88]. Both data

warehousing and OLAP queries are essential elements of decision support applications

[12], which have increasingly become the focus of the database industry [23].

Designing and tuning a decision support system in the presence of large data sets

and complex queries is very challenging for database designers and administrators. The

traditional techniques such as normalization [32, 115, 48], index selection [52] and query

plan optimization [77] are not sufficient to satisfy these new challenge, even with the

increasing computing power of the hardware. Many techniques have been proposed, such

as data partitioning (both horizontal [19] and vertical [39]), parallel computing [1O7] and

view materialization [24, 148]. Among all the suggested techniques, the materialization

of views is the most important one, and has the most significant effect on the performance

of the underlying database systems. Benchmarks and applications show that the use of

materialized views can improve the response time of decision support queries by several

orders of magnitude [151].
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Creating and using materialized views generalizes that of indexes. Both indexes and

materialized views are redundant structures that speed up query execution, compete for the

same resources such as storage, and incur maintenance overhead in the presence of updates.

On the other hand, a materialized view is much richer in structure than an index since it

may be defined over multiple tables, and can involve selections, grouping and aggregations

over multiple columns. In fact, an index can be logically considered a special case of a

single-table projection-only materialized view. This richness of structure of materialized

views makes the problem of selecting views for materialization significantly more complex

than that of selecting indexes [8]. This work focuses on selecting materialized views.

The performance of a database depends heavily on its continuous tuning by the

database administrators. With the use of view materialization techniques, the task of the

database administrators becomes more complex. For this reason, most current commercial

database management systems focus on providing tools to help database designers and

administrators to design and tune databases by automating the selection of materialized

views and indexes (e.g., Oracle [4O], Microsoft SQL Server [25, 26, 8, 7], IBM DB2

[14O, 153, 154]). These tools recommend indexes and materialized views in the presence

of a storage constraint. However, M. P. Consens et al. [38] show that there is a large margin

of improvement for these tools in recommending indexes and materialized views.

1.2 Background

Inn this section, we provide a brief introduction to the background of the view selection

problems.

Platform configuration is the hardware and software configuration that affects the

performance of a database system. Examples include the speed and number of CPUs, the

access speed and size of memory and disks, the disk management schemes of the operating

system, etc. A platform configuration may affect the selection of indexes and materialized

views. For instance, the disk space may determine the space available for materialization
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which may affect the views and indexes that will be materialized. In the following chapters,

it is assumed that the platform configuration is fixed when indexes and materialized views

are recommended.

Logical database design refers to the logical schema of the database such as the

relations, integrity constraints, normalization information, etc. A logical database design

has a significant effect on the performance of the application queries and updates. For

example, implementing a data warehouse as a snowflake [23] or cascaded-star [149] instead

of a star [23] by normalizing dimensional relations may affect the overall performance of

the database system. However, the logical database design is visible to the applications that

use the database. Whenever a logical database design changes, the corresponding queries

and update statements upon this database may also need to be rewritten to adapt to these

changes. For this reason, the logical database design is rarely modified in an operational

database. In the following chapters, it is assumed that the logical database design is fixed

when indexes and materialized views are recommended.

Physical database design refers to physical access structures and table storage choices

used in the database that can be understood by the state-of-the-art optimizers. For example,

table clustering, bitmap indexes, horizontal partitioning and materialized views are physical

design options. The work in this dissertation focuses on recommending materialized views.

Therefore, the physical database design refers to the recommended indexes and materialized

views used in a database. These indexes and views are usually the output of a general

physical configuration recommender in a current database management system.

Workload refers to a collection of query and update statements issued against the

underlying database. A workload can be considered as a set if the order of statements is of

no significance. Otherwise, it is considered as a sequence of a specific order. Sometimes,

only a partial order of the statements in a workload is needed. For example, in order to keep

the semantic consistency of statements in a workload with mixed statements of queries and

updates, a partial order is sufficient. For another example, in a workload of queries with
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different priorities, no order needs to be specified among queries with the same priority.

In most contexts, a workload of a database can be decided by the applications that use the

database or are collected by a monitoring tool of the database system.

Constraint is a condition that has to be satisfied by the database system. Many

constraints can be characterized as either space constraints or time constraints. An example

of a space constraint is the following: the size of the recommended indexes and materialized

views should not exceed the size of the space available for materialization. An example of

a time constraint is the following: the time needed to update the recommended indexes and

materialized view should not exceed a given time window (e.g., the time at night, when

the database is not used). Sometimes a constraint may be a combination of both a space

constraint and a time constraint. There are also constraints that are not related to time or

space. Such an example is a constraint that requires all the queries to be answerable from

the selected materialized views without accessing the base relations.

Optimization goal is the minimization (or maximization) of a function by selecting

a set of indexes and/or materialized views. Usually, the function is a time and/or space

measurement. For example, an optimization goal may be the minimization of the total

evaluation cost of a workload. Another optimization goal may be the minimization of the

total size of the selected physical structures.

1.3 Problem Formulation

The problem of recommending materialized views can be defined as follows using the

concepts introduced above:

Given a platform configuration, a logical database design, a workload

of statements, a constraint, and an optimization goal, find a physical

database design such that the constraint is satisfied and the optimization

goal is achieved.



This problem is also referred to as a "view selection problem." There are many

variations of this problem based on different logical database designs, workloads, constraints

and optimization goals. For instance, the data warehouse design problem is a variation

of the view selection problem where the workload is a set of queries, the constraint is

a restriction on the total size of the materialized views, and the optimization goal is the

minimization of the combination of the query evaluation and view maintenance cost.

If the selected physical structures can be only created before the execution of the

statements in the workload, the view selection problem is called static view selection

problem. If the selected physical structures can be created and dropped during the execution

of statements in the workload, the view selection problem is called dynamic view selection

problem. For the static view selection problem, the order of statements in the workload

is of no importance. In contrast, this order affects several versions of the dynamic view

selection problem.

1.4 Outline

Chapter 2 addresses the issues of maintaining materialized views and answering queries

using materialized views. Chapter 3 is a review on the view selection problem. In Chapter

4, preliminary theoretical results on arithmetic constraints are provided. These results are

used in the following chapters. In Chapter 5, we suggest a method for constructing search

spaces for general versions of the view selection problems. An extension of this method

is presented in Chapter 6. Chapter 7 addresses an instance of the view selection problem

in which a set of views is selected in order to maintain multiple materialized views using

multi-query optimization techniques. Chapter 8 discusses how the approach of maintaining

multiple views using multi-query optimization techniques can be applied to a commercial

database management system. Chapter 9 considers a dynamic view selection problem

with space constraints where the workload is a sequence of queries and update statements.

Chapter 1O concludes the whole work.



CHAPTER 2

VIEW MATERIALIZATION

In order to use materialized views for improving the performance of a database system, two

central issues need to be addressed: (1) The set of materialized views must be synchronized

with the updates of base tables upon which these views are defined [67, 23, 143]; (2)

The queries in the workload must be rewritten using materialized views [96, 126]. In this

chapter, previous work on the problem of view maintenance and the problem of rewriting

queries using views is reviewed.

2.1 View Maintenance

A materialized view gets "dirty" whenever the underlying base tables are modified. The

process of updating a materialized view in response to changes to the underlying data is

called view maintenance or view refreshing.

There are different view refreshing policies. The view refreshing may occur after

every single update at any data source, or it can be done periodically, e.g., daily or monthly.

View refreshing can also be performed on demand, according to the needs of the end users,

or after the occurrence of triggering events. Obviously, "when to refresh" is a trade-off

between consistency and time, the size of the window of opportunity, the capacity of the

OLTP systems that may be impaired by the propagation of data, etc. View refreshing can

be applied in an on-line or off-line mode. On-line refreshing allows the applications to

continue functioning while the refreshing is performed. However, the integrity of the data

should be guaranteed. If an update is propagated from a base table to a materialized view

and aggregates have been built on this materialized view, the refreshing process should

include updating both the materialized view and its aggregates in one ACID transaction.

Otherwise any user query that interleaves with the refreshing process and performs drill-

6
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downs/roll-ups on the materialized view and its aggregates might perceive an inconsistency.

As mentioned earlier, application dependent correctness criteria (e.g., the significance of

inconsistency) might need to be taken into account. For off-line refreshing, all applications

should be stopped when the refreshing is performed.

View maintenance techniques fall into two categories: re-computation from scratch

and incremental view maintenance. The former technique answers the queries on which the

materialized views are defined and then inserts the results into the view tables. To apply this

view maintenance technique on a database system, one needs the definition of materialized

views and the content of the base tables after the updates [94]. The latter technique uses the

heuristic of inertia (only part of the view changes in response to changes in base relations).

Thus, one can compute only the changes in the materialized views and combine them with

the old materialized views. To apply this technique, more information is usually required

in addition to the definition of the materialized views. For example, the original contents of

the materialized views are necessary. Depending on the types of updates to the base tables,

some other information such as the updates to the base tables is also required [67].

2.1.1 View Maintenance by Re-computation

In most cases it is less cost-effective to re-compute materialized views from scratch than

to maintain views incrementally, especially if the source data is less volatile in nature.

However there are some cases when the re-computation approach is cheaper. For example,

if an entire base table is deleted, it may be cheaper to re-compute a view that depends on the

deleted table (if the new view will quickly evaluate to an empty table) than to compute the

changes to the view. Generally the re-computation approach is preferable when changes to

base tables are relatively large compared to the original contents of the base tables [67]. For

legacy systems or flat files or for the initial materialization of views, this re-computation

approach might be the only choice.
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The view maintenance using the re-computation approach can be optimized using

multi-query optimization techniques. The cost to maintain a view using re-computation

includes the cost of answering the query on which the view is defined and the cost of

inserting the results into the view table. The writing cost is fixed for a given instance of the

database and the changes to base tables. Then, the problem of maintaining a set of views

is reduced to the problem of answering a set of queries. W. Lehner et al. [94] propose an

algorithm to refresh a set of materialized views using multi-query optimization techniques.

Similar work can be found in [1O6, 144]

2.1.2 Incremental View Maintenance

There is an extensive body of work on incremental view maintenance. A. Gupta et al. [67]

classify this problem based on the following dimensions:

• Information Dimension: what is the amount of information available for maintenance?

• Modification Dimension: what modifications to the base tables can be handled by
the view maintenance algorithms?

• Language Dimension: what language is used to specify the definition of the materialized
views?

• Instance Dimension: does the view maintenance algorithm work for all instances or
only for some instances of the database?

When all base tables and materialized views are available during the maintenance

process, A. Gupta et al. [68] propose a counting algorithm for maintaining non-recursive

views. The views may or may not have duplicates and they may be defined using UNION,

negation and aggregation. The basic idea in the counting algorithm is to keep a count

of the number of derivations for each view tuple as extra information in the view. Other

approaches using counting algorithms include [124, 16, 119]. R. Paige [1O9] proposes

an algebraic differencing algorithm. X. Qian et al. [114] apply it in view maintenance.

They differentiate algebra expressions to derive the relational expressions that compute the



9

changes to an SPJ view without doing redundant computation. T. Griffin et al. [59] extend

the algebraic differencing algorithm to a multi-set algebra with aggregations and multi-set

difference. S. Ceri et al. [2O] propose an algorithm that derives productions to maintain

selected SQL views - those without duplicates, aggregation, and negation, and those where

the view attributes functionally determine the key of the base relation that is updated.

Most of the work on maintaining recursive views has been in the context of Datalog.

A. Gupta et al. [68] propose the DRed algorithm that applies to Datalog or SQL views,

including views defined using recursion, UNION, and stratified negation and aggregation.

However, SQL views with duplicate semantics can not be maintained using this algorithm.

J. V. Harrison et al. [76] propose a propagation/filtration algorithm that is similar to the

DRed algorithm [68] except that it propagates the changes made to the base relations on

a relation-by-relation base. V. Kuchenhoff [91] propose an algorithm that derives rules

to compute the difference between consecutive database states for a stratified recursive

program. T. Urpi et al. [139] propose an algorithm that derives transition rules for stratified

Datalog views showing how each modification to a relation translates into a modification to

each derived relation, using existentially quantified subexpressions in Datalog rules. Other

approaches relating to incremental maintenance of recursive views include [44, 43, 96, 142]

It is possible that only a subset of the underlying base tables involved in a view

is available to maintain this view. This is referred to as view maintenance with partial

information. Because a view may be maintained with partial information for some kinds

of modifications, some of the previous papers focus first on checking whether the view

can be maintained and then on how the view can be maintained. There is a lot of work on

optimizing view maintenance by determining when a modification leaves a view unchanged

[16, 15, 47, 99]. This is known as the problem of "irrelevant updates." All these papers

provide checks to determine whether a particular modification will be irrelevant. No base

relation information is needed for this check. In the presence of key and foreign key

constraints, views that can be maintained using only the materialized views are called
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self-maintainable views [66]. Several results on the self-maintainability of SPJ and outer-

join views for insertions, deletions and updates are presented in [66]. For insertions and

deletions only, a database-instance specific self-maintenance algorithm for SPJ views is

discussed in [136]. There are also cases where all materialized views and base relations

except the modified relations are available for view maintenance. Such an example is a

chronicle view. Techniques to specify and maintain such views efficiently are presented in

[79].

2.2 Answering Queries Using Views

The problem of answering queries using views [73] (also known as rewriting queries using

views) has received significant attention because of its relevance to a wide variety of data

management problems: query optimization, maintenance of physical data independence,

data integration and data warehouse design. Informally speaking, the problem is the following.

Given a query Q over a database schema, and a set of view definitions V1 , . . . , 14, over

the same schema, is it possible to answer the query Q using only the views VI, . . . , V.?

Alternatively, what is the maximal set of tuples in the answer of Q that can be obtained

from the views? If both the views and the database relations are accessible, what is the

cheapest query execution plan for answering Q?

A lot of approaches have been proposed to incorporate materialized views into query

optimization. The focus of these algorithms is to judiciously decide when to use views

to answer a query. The output of the algorithm is an execution plan for the query. The

approaches differ depending on which phase of query optimization was modified to consider

materialized views. 0. G. Tsatalos et al. [137] describe the storage of the data using

GMAPs (generalized multi-level access paths), expressed over the conceptual model of

the database. S. Chaudhuri et al. [24] analyze the problem of optimizing queries using

materialized views and provide a comprehensive solution. They consider

select-project join queries with bag semantics which may include arithmetic comparison predicates. J.
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Goldstein et al. [54] describe an algorithm for rewriting queries using views This algorithm

is implemented in the transformational optimizer of Microsoft SQL Server. M. Zaharioudakis

et al. [151] describe how view rewriting is incorporated into the query rewriting phase

of the IBM DB2 optimizer. This algorithm operates on the Query Graph Model (QGM)

representation of a query [72], which decomposes the query into multiple QGM boxes,

each corresponding to a select-project-join or grouping/aggregation block. A. Deutsch et

al. [42] use a transformational approach to uniformly incorporate the use of materialized

views, specialized indexes and semantic integrity constraints. All of these are represented

as constraints. L. Popa et al. [111] describe an implementation of this framework and

experiments that prove its feasibility. R. G. Bello et al. [14] describe a limited use of

transformation rules to incorporate view rewriting algorithms into the Oracle 8i DBMS.

Several papers consider the problem of answering queries using views in the presence

of grouping and aggregation: a set of transformations in the query rewriting phase are

considered in [65]. A semantic approach is suggested in [126]. The authors present

conditions for a view to be usable for answering a query in the presence of grouping and

aggregation, and a rewriting algorithm. The work described in [151] extends the results

on grouping and aggregation to multi-block queries and to multi-dimensional aggregation

functions such as cube, roll-up, and grouping sets [126]. Several approaches [36, 6O, 61]

consider the formal aspects of the problem of answering queries using views in the presence

of grouping and aggregation. They present cases in which a rewriting algorithm is complete

in the sense that it finds a rewriting if one exists.

The above work focuses on extending query optimizers to accommodate the use

of views. They were designed to handle cases where the number of views is relatively

small (i.e., comparable to the size of the database schema), and cases where an equivalent

rewriting of the query is required. In contrast, in the context of data integration, a large

number of views are considered since each data source is being described by one or more

views. In addition, the view definitions contain many complex predicates, whose goal is



12

to express fine-grained distinctions between the contents of different data sources. The

algorithms of answering queries using views that were developed specifically for data

integration are reviewed in the following paragraphs. These algorithms include the bucket

algorithm developed in the Information Manifold system [98, 57], the inverse rules algorithm

[113, 46] which was implemented in the Info Master System [45], and the MiniCon algorithm

[112]. It should be noted that unlike the algorithms of answering queries using views for

the query optimization problem, the output of these algorithms is not a query execution

plan, but rather a query referring to the view relations. The goal of the bucket algorithm is

to reformulate a user query that is posed on a mediated (virtual) schema into a query that

refers directly to the available data sources. Both the queries and the sources are described

by conjunctive queries that may include atoms of arithmetic comparison predicates. The

inverse-rules algorithm is also developed in the context of a data integration system. The

key idea underlying this algorithm is to construct a set of rules that invert the view definitions,

i.e., rules that show how to compute tuples for the database relations from tuples of the

views. The MiniCon algorithm addresses the limitations of the previous algorithms. The

key idea underlying this algorithm is a change of perspective: instead of building rewritings

by combining rewritings for each of the query subgoals or the database relations, the

authors consider how each of the variables in the query can interact with the available

views.

Some theoretical work on answering queries using views is shown below. A. Y. Levy

et al. [96] show that when a query does not contain a comparison predicate and has n

subgoals, there exists an equivalent conjunctive rewriting of the query using a view only if

there is a rewriting with at most n subgoals. It is also shown that the problem of finding

a rewriting is NP-hard for two independent reasons: (1) the number of possible ways to

map a single view into the query, and (2) the number of ways to combine the mappings

of different views into the query. C. Chekuri et al. [29] exploit the close connection

between the containment and rewriting problems, and show several polynomial-time cases
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of the rewriting problems, corresponding to analogous cases for the problem of query

containment. The question of finding all certain answers is considered in detail in [2,

57]. In their analysis they distinguish the case of the open-world assumption from that

of the closed-world assumption. The open-world assumption is especially appropriate in

data integration applications, where the views that describe sources may be incomplete.

Under the open-world assumption, [2] shows that in many practical cases, finding all

certain answers can be done in polynomial time. However, the problem becomes co-NP-

hard (in the size of the view extensions) as soon as union in the language is allowed for

defining views, or predicate is allowed in the query language. Under the closed-world

assumption the situation is even worse. Even when both the views and the queries are

defined by conjunctive queries without comparison predicates, the problem of finding all

certain answers is already co-NP-hard. The closed-world assumption is appropriate for the

context of query optimization and maintaining physical data independence, where views

have actually been computed from existing database relations. The hardness of finding

all certain answers provides an interesting perspective on formalisms for data integration.

The result entails that when views are used to describe the contents of data sources, even

if only conjunctive queries are used to describe the sources, the complexity of finding all

the answers to a query from a set of sources is co-NP-hard. In contrast, using a formalism

in which the relations of the mediated schema are described by views over the source

relations, the complexity of finding all the answers is always polynomial. Hence, this result

hints that the former formalism has a greater expressive power than formalism for data

integration. It is also interesting to note that the work in [57] also considers the case where

the views may either be incomplete, complete, or contain tuples that do not satisfy the

view definition (referred to as incorrect tuples). It is shown there that without comparison

predicates in the views or the query, when either all the views are complete or all of them

may contain incorrect tuples, finding all certain answers can be done in polynomial time

in the size of the view extensions. In other cases, the problem is co-NP-hard. The work in
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[1O3] considers the query rewriting problem in cases where bounds exists on the soundness

and/or completeness of the views. Finally, [1O5] considers the problem of relative query

containment, i.e., whether the set of certain answers of a query 1 is always contained in

the set of certain answers of a query Q2. The paper shows that for the conjunctive queries

and views with no comparison predicates, the problem is IE-complete, and the problem is

still decidable in the presence of access pattern limitations.



CHAPTER 3

THE VIEW SELECTION PROBLEM

In this chapter, we review previous work done on the view selection problem formally

defined in Chapter 1. As stated in Chapter 1, there are a lot of variants for this problem.

We start by providing a categorization of these variants based on a number of dimensions.

Then, we discuss previous work. Finally, we identify some new variants of the problem

which have not been addressed previously. Some of them are studied in the subsequent

chapters.

The view selection problem can be the classified according to the following dimensions.

1. The type of access structures to select. There are four cases to consider:

• Indexes on base tables.
• Materialized views.
• Indexes on base tables and materialized views.
• Materialized views and indexes on base tables and materialized views.

2. The time of creation and deletion of physical access structures. Two cases should be
considered:

• Static case: all selected physical access structures are created at once during the
execution of the workload, usually at the beginning of the execution. They may
be dropped after the execution of statements in the workload. This is referred
to as static view selection problem.

• Dynamic case: each physical access structure is created or dropped at a specific
point during the execution of statements in the workload. This is referred to as
dynamic view selection problem.

3. The constraint. Different constraints have been considered for the view selection
problem. The two most commonly considered constraints are space constraints and
time constraints:

• Space Constraint. The disk space to accommodate the selected physical access
structures is often a constraint for the view selection problem.
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Figure 3.1 Space of view selection problems.

• Time Constraints. The time for maintaining the selected physical structures
is usually constrained by the time window available for maintenance. For the
updates, the system can adopt incremental or re-computation strategies.

4. The optimization goal. The most common optimization goal for the view selection
problem is the minimization of the weighted execution time of the workload. Some
other optimization goals have also been considered. The most commonly considered
ones are the following:

• Minimizing the total execution time of a workload.
• Minimizing the total maintenance time of the selected physical access structures.
• Minimizing a combination of the execution time of a workload and the mainten-

ance time of the selected physical access structures.
• Minimizing the total space occupied by the selected physical structures.

Most of the previous work addresses the static view selection problem. However, in

some cases, considering the dynamic nature of the problem can lead to better solutions.

This chapter first describes previous work on the static view selection problem. Then it

reviews some previous work which addresses dynamic view selection problems.

The research space of the view selection problem is shown in Figure 3.1. Three

dimensions of the view selection problem are considered in this figure, namely, the physical

access structure type dimension, the constraint dimension and the optimization goal dimension.
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Each point defined by the three dimensions refers to a possible instance of the view selection

problem.

There are also some other possible dimensions which make the categorization of the

view selection problem more complex: (1) The schema of the database (multi-dimensional

schemas, star-schemas, normalized relational schemas, etc.); (2) The type of the workload

(workload consisting only of queries, consisting of only of updates, or consisting of both);

(3) The language used to express queries (select-project-join queries, general SQL queries

with grouping aggregation, OLAP query languages, etc.). Figure 3.1 shows only three of

the possible dimensions for simplicity. In this chapter, all the dimensions described above

are considered in characterizing different view selection problems.

3.1 Static View Selection Problems

For the static view selection problem, the configuration of physical access structures is

decided before the execution of the workload and never changes afterwards.

3.1.1 Index Selection

The problem of index selection has been studied long before decision support queries

and data warehousing because of its significant effect on the performance of database

systems. New index structures are still being proposed by the database community [11].

M. P. Consens et al. [38] show that a configuration with only single column indexes can

outperform configurations with both indexes and materialized views recommended by most

commercial DBMSs. This result shows not only the large improvement space for the

current recommendation tools, but also the significant effect of indexes on the performance

of a database.

There are three kinds of approaches for recommending indexes. The first one takes

the semantic information such as key constraints, referential integrity constraints and rudim-

entary statistics (e.g., "small" versus "big" tables) and produces a configuration design.
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This is the basic approach presented in textbooks [11O]. This rule-based index selection

approach does not take into account the workload, complex constraints, and the optimization

goal. It defines indexes based on the schema definition and can reach in general a reasonable

performance. However, the outcome of this approach may not be feasible because it

violates space constraints. It may also perform poorly because it ignores the workload

information.

The second approach for recommending indexes adopts an expert-system-like method

where the knowledge of "good" design is coded in the form of rules used to create a

configuration design. Such an approach can take into account workload information but

does not exploit the system optimizer [25]. Without the ability to access the system optimizer

during the recommendation of indexes, this approach does not estimate the benefit of

indexes which is important in selecting indexes. Thus, it may select indexes that will never

be considered by the system optimizer during the execution of the workload.

The third approach for recommending indexes uses the system optimizer's cost estim-

ation to compare the "goodness" of the alternative candidate configurations of indexes

[5O, 25, 14O]. The advantage of this approach is that the cost estimation for queries in

a given workload under different configurations is made by the DBMS engine itself which

is also used to find the optimal evaluation plan for each query. This makes the estimation

relatively accurate and the corresponding recommended configurations more suitable for

the underlying database and workload of queries. The disadvantage of this approach is that

the system optimizer has to be called multiple times to estimate query evaluation costs

under different configurations, which is expensive when there are many queries in the

workload or when queries in the workload are complex or when there are many candidate

indexes to consider.

Most current commercial DBMSs provide index recommendation tools based on the

last approach. S. Chaudhuri et al. [25] propose a tool which can recommend indexes for

Microsoft SQL Server. They consider the index selection problem where the number of
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indexes is constrained to be less than or equal to k. To reduce the number of calls to the

system optimizer, they adopt several heuristics. The first heuristic deals with the selection

of candidate indexes to be considered by the selection tool. It restricts the candidate indexes

to those that belong to the best configurations of at least one query in the workload. Another

heuristic deals with the cost estimation of queries in the workload. Based on the concept

of atomic configuration [5O], this heuristic does not need to call the system optimizer to

estimate the cost for each query under each configuration. Instead, it derives the costs

for some configurations from the cost estimation of some other configurations. The last

heuristic deals with the generation of multi-column indexes. They adopt an iterative approach

for taking into account multi-column indexes of increasing width. In the first iteration,

they only consider single-column indexes. Based on the single-column indexes picked

in the first iteration, they select a set of admissible two-column indexes. This set of two-

column indexes, along with the "winning" single-column indexes, becomes the input for the

second iteration. Along with the above heuristics, they propose a two-step Greedy(m,k)

algorithm. In the first step, the m best indexes are exhaustively selected from the candidate

indexes. In the second step, the last k — m indexes are selected in addition to the first

m selected indexes in a greedy manner by selecting each time the locally best index. By

adjusting the value of m from 0 to k, the database administrator can control the balance

between the performance of this index selection tool and the quality of the selected indexes.

G. Valentin et al. [14O] propose a tool which can recommend indexes for IBM DB2.

Instead of constraining the number of selected indexes as in [25], they constrain the space

available for accommodating selected indexes. In order to compute the candidate indexes,

they propose an approach called SAEFIS enumeration algorithm which can provide wider

indexes than those of [25]. To recommend indexes, they also design a two-step algorithm.

In the first step, the candidate indexes are sorted in the order of their benefit/size ratio to the

workload estimated by the optimizer. Then, they select indexes with the biggest benefit/size

ratio, one at a time, until the space constraint is reached. In the second step, they adopt a
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random try-and-replace strategy to improve the quality of selected indexes until a given

time constraint is reached. Unlike the work of [5O, 25] where the index selection tools are

external to the DBMS engine, they use the system optimizer to estimate the cost of the

queries in the workload; this tool is internal to the DBMS engine itself. With this strategy,

not only do they leverage the existing optimizer and thus avoid maintaining two distinct

optimizers, but they also reduce the number of calls to the system optimizer. For example,

if there is only one query in the workload, this tool needs only one optimizer invocation

while the previous one [25] needs multiple invocations depending on how many indexes

there are in the candidate index set.

3.1.2 Selection of Materialized Views and Indexes

Space Constraint. As mentioned in Chapter 1, the use of materialized views can be

considered as an extension to that of indexes. Although indexes have been studied since

the beginning of relational databases, view materialization become popular mainly because

of data warehousing and OLAP in the last decade. The problem of selecting views for

materialization is initially studied in the area of multi-dimensional databases (MDDBs)

with OLAP queries.

V. Harinarayan et al. [75] address the view selection problem for MDDB where all

queries in the workload and all candidate views are data cubes [58]. They consider the view

selection problem with the space constraints and an optimization goal of minimizing the

total execution time of a given workload. As pioneers in this area, they made the following

contributions:

(a) They propose a lattice framework to describe the hierarchies of MDDB schemas and
the dependencies between data cubes.

(b) They prove the NP-hardness of the view selection problem and propose a greedy
heuristic with a guaranteed lower bound on the optimality.
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The lattice is defined as a DAG with the vertices to be all cubes and edges showing

whether one vertex cube can be used to answer the other one. It models not only the

hierarchies of each dimension, but also the inter dependence of all vertices, which represents

all the queries and candidate views. With the lattice framework, the authors provide the

following algorithm for selecting views:

This algorithm is for the view selection problem that is constrained by the number

of selected views. The time complexity for this algorithm is kn^2 where k is the number of

views to be selected and n is the total number of data cubes in the lattice. [75] proves that

this greedy algorithm finds a solution with a guaranteed lower bound of 63% of the optimal

solution. For a space constraint, the lower bound of the algorithm is reduced to 0.63 — f

where f is the ratio of the biggest views in size to that of the total size of the search space.

For this greedy algorithm proposed by Haranrayan and Ullman, H. Karloff and M.

Mihail [87] prove that the view selection problem is inapproximable. Hence, studies of this

problem should focus on special cases of practical significance, such as hyper cubes and

on experimental comparison of heuristics.

Jingni Li et al. [1O1] consider the same view selection problem using the same lattice

framework as [75]. Instead of using a greedy algorithm, they present a transformation

Algorithm 1 Harinarayan et al. Greedy Algorithm
Input: A lattice of queries and views

Output: A set of selected views

1: S = {Top View} (of the lattice)

2: for i = 1 to k do

3: select the view v from the remaining views which has the biggest benefit with respect

to the set of selected views

4: S = S U {v}

5: end for

6: Result S is the greedy selection of views
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of this problem to an Integer Programming (IP) problem and then solve it with Integer

Programming techniques. Their experimental results show that this algorithm produces a

better view set than [75].

A. Shukla et al. [125] propose another heuristic called pick by size (PBS). It picks

views in increasing size until the space limit is reached. If the queries are not uniformly

distributed, the sorting key is the size of the view divided by the number of queries that are

best evaluated by it. This algorithm selects the same set of views as the one above [75] in

time complexity of O(n log n) given that the lattice is size restricted, i.e., the size of each

view is at least k + 1 times larger than the size of its largest child (where k is the number of

its children). For non-uniform query distributions, the weighted view sizes have to follow

the same rule. If this rule does not apply, the method does not give a quality guarantee for

the picked selection.

H. Gupta [7O] extends the lattice framework to represent both views and indexes on

views. With this extension, this paper proposes algorithms to select not only materialized

views, but also indexes on materialized views. Two algorithms, r-greedy algorithm and

Inner-Level greedy algorithm are proposed. The former algorithm increases the performance

guarantee when increasing the time complexity of the algorithm (increase r). For example,

when r increases from 1 to 2, 3 and 4, the performance guarantee increases from O to O.39,

O.49 and O.53, respectively. The increase diminishes exponentially when r increases until

the performance guarantee is O.63. Because there is a knee for the increase of performance

at r = 4, usually 4-greedy algorithm is selected. Unlike the r-greedy algorithm which

presents a different optimality guarantee for different values of r, the Inner-Level greedy

algorithm presents a fixed performance guarantee of O.49.

While these algorithms have a polynomial time complexity in the number of candidate

views, it does not scale well with the complexity of the database. This is because the

number of candidate views is exponential in the number of attributes in dimension tables.

The condition is even worse when both views and indexes are considered for selection. M.
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Baralis et al. [13] extend the lattice framework with a formal definition of it in the context

of the view selection problem. More importantly, they provide approaches to reduce the

search space of candidate views to views that are related to the queries in the workload

before the view selection algorithm. Qiu and Ling [122] further investigate this issue.

They propose two methods, called the functional dependency filter and the size filter, to

eliminate redundant or insignificant views.

Considering the scaling problem of the lattice framework, Z. Chen [31] et al. propose

a totally new heuristic for the view selection problem which does not construct the lattice

at all, but selects views by merging queries in the workload in a bottom-up way. This

algorithm scales quite well on the number of group-by attributes. Empirical results show

that it generates results of good quality.

H. Gupta [69] generalizes the view selection problem from multi-dimensional data

cubes to general relational databases. Instead of constructing the search space of views

using the lattice framework, he assumes the existence of AND/OR graphs of candidate

views (or indexes) as input for the view selection problem. For the special cases of AND

graphs and OR graphs, he proposes greedy algorithms with polynomial time complexity.

He also proves the existence of a lower bound for the optimality of these algorithms. For

the general AND/OR graph, he proposes an AO-greedy algorithm and a multi-level greedy

algorithm with the following theoretical results:

For a query-view graph without updates and a quantity S as the space constraint,

the AO-greedy algorithm produces a solution M that uses at most 25 units of space. The

absolute benefit of M is at least (1 — 1/e) times the optimal benefit achievable using as

much space as that used by M.

For a query-view graph G and a quantity S as the space constraint, the r-level greedy

algorithm delivers a solution M that uses at most 2S units of space. The benefit of M is at

least 1 — ( V .63r of the optimal benefit achievable using as much space as that used by M

assuming that no view occupies more than S units of space. The r-level greedy algorithm
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takes O((kn)2r) time excluding the time taken at the final level. Here k is the maximum

number of views that can fit in S units of space.

The view selection problem with space constraints has been supported by most modern

commercial database systems [8, 154]. Microsoft SQL Server [8] utilizes a pruning technique

to select a set of candidate views that is syntactically relevant to the workload of queries.

It first finds the table set upon which the potentially valuable views are defined. Then it

exploits the query optimizer to find the most valuable view configuration for each single

query. Lastly, it gets more views by merging existing views. Once the candidate view

set is decided upon, it utilizes the Greedy(m, k) algorithm similar to that used in [25]

to find the set of views to materialize. IBM DB2 [154] uses a method that generates

a candidate view set. It employs a multi-query optimization technique which generates

common sub-expressions among queries. Then it adds to the view set indexes on tables

and on the candidate views. Based on a knapsack-like algorithm it selects the views and

indexes that bring most benefit per unit of space under the constraint that indexes on views

bring no benefit at all if the corresponding view is not selected. Further, it utilizes a swap

algorithm to tune the selection of views/indexes for a better performance. Lastly it filters

out those views/indexes that are never used during the execution of the workload because

a better plan can be obtained based on other selected views/indexes.

Most of the current approaches to the view selection problems choose their view

set in a bottom-up way. This means they start with an empty view set and add into it

some selected views or indexes based on some greedy heuristic until the space constraint

is reached. To handle large workloads and multiple kinds of physical structures, these

techniques have become increasingly complex: they exhibit many special cases, shortcuts,

and heuristics that make it very difficult to analyze and extract properties. N. Bruno et

al. [17] propose a totally different framework for the space constrained view selection

problem. This new framework first finds an optimal physical structure set for the view

selection problem without space constraint. Then, it relaxes the space of the optimal set
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by deleting or replacing some structures in the set until the space constraint is satisfied.

The experimental results show that this approach could result in comparable (and, in many

cases, considerably better) recommendations than state-of-the-art commercial alternatives.

More importantly, with this relaxation-based approach, a curve of estimated cost of the

workload to the size of selected physical structures is easily obtained as a by-product in

one execution of the algorithm. This curve is quite important for the system administrator

to decide whether to increase the disk capacity for the selected view to achieve a significant

improvement on the performance of the workload.

Update Constraint Though the papers mentioned above have offered significant insights

into the nature of the view selection problem, the constraints considered therein make the

results less applicable in practice because disks are very cheap in real life. In practice,

the real constraining factor that prevents materializing everything at the warehouse is the

maintenance time incurred in keeping the materialized views up to date. Usually, changes

to the source data are queued and propagated periodically to the warehouse views in a

large batch update transaction. The update transaction is usually done overnight so that

the warehouse is available for querying and analysis during the day time. Hence there is a

constraint on the time that can be allotted to the maintenance of materialized views.

How materialized views are maintained is also important for the view selection problem

under a maintenance constraint. Different maintenance techniques suggest different ways

for tackling the view selection problem. There is a lot of work on the view maintenance

problem [94, 51, 144]. Incremental update of views is discussed in [51]. Complete refreshing

using multi-query optimization techniques is discussed in [94, 144], which itself is an

instance of the view selection problem.

The view selection problem under a maintenance constraint is more difficult than the

view selection problem with a space constraint. In the case of a space constraint, as the

benefit of a view never increases with the materialization of other views, the benefit per
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unit space of a non-selected view always decreases monotonically with the selection of

other views. This is defined formally as the monotonicity property of the benefit function

in [69].

H. Gupta et al. consider the view selection problem under a maintenance constraint

[71]. Because of the difficulty, only the case of OR view graphs is considered. This paper

proposes an algorithm (Inverted Tree Greedy Algorithm) for an OR view graph which can

give a guarantee of 63% of the optimal solution with up to two times of the maintenance

cost constraint. Although the algorithm has an exponential worst case time complexity for

general OR view graphs, it has a polynomial time complexity for view graphs of the format

of balanced binary trees. It also runs efficiently when the view graph is sparse. The result of

this algorithm is compared to that of an C* algorithm, which can give an optimal solution

for general AND/OR view graphs. The latter algorithm is much slower than the former one

for OR view graphs and it requires exponential space.

Because the essential difficulty of the view selection problem under a maintenance

time constraint, most approaches consider a variation of the problem which considers

maintenance statements into the workload weighted by the relative frequency of the update

statements [154, 9].

K. A. Ross et al. [118] consider the view selection problem with view maintenance

statements combined into the workload. Instead of using the view maintenance time as a

constraint, they include it into the optimization goal. Thus, the problem involves selecting

a set of additional views to materialize during the maintenance of a given set of views in

order to minimize the total maintenance time. H. Mistry et al. [1O6] consider a similar

problem. However, instead of materializing all selected views permanently, they choose

transient materialized views which are materialized only during the maintenance of the

given views.



27

Minimizing the Total Size of Views R. Chirkova et al. [33] consider the view selection

problem in a distributed database system. The bottleneck in this case is the transmission

time of data through the network. This motivates the following problem: given a set of

queries (a query workload) and a fixed database, define and compute a set of intermediate

results (views) such that these views can be used to compute the answer to each query in the

workload. In addition, the total size of selected views should be minimized on the given

database. This is also an instance of the view selection problem where the constraint is

the answerability of the queries using exclusively the selected views and the optimization

goal is the minimization of the total size of selected views. The authors prove that the

problem is NP-hard and they propose two strategies to tackle it. The first strategy is based

on an exhaustive algorithm. Using pruning techniques, this algorithm can get a view set of

good quality with a reasonable performance. The second strategy uses both bottom-up and

top-down heuristics.

3.2 Dynamic Management of Physical Structures

Materialized views represent a set of redundant entities in a data warehouse that are used

to accelerate On-Line Analytical Processing (OLAP) queries. The problem is to select

an appropriate set of views such that the total execution time of the workload can be

minimized. The amount of redundancy added is controlled by the data warehouse administr-

ator who specifies the space to be allocated for the materialized data. Given this space

constraint and, if available, a description of the workload, these algorithms suggest a set of

views to materialize for improving the query performance.

This static selection of views, however, contradicts the dynamic nature of decision

support analysis applications. In particular for ad-hoc queries, where the expert user is

looking for interesting trends in the data repository, the query pattern is difficult to predict.

In addition, as the data and the trends are changing over time, a static selection of views

might very quickly become outdated. This means that the administrators should monitor
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the query pattern and periodically re-calibrate the materialized views by rerunning these

algorithms. This task for a large data warehouse where many users with different profiles

submit their queries is rather complicated and time consuming.

For the static view selection problem, the input of a workload is always a set of

queries which may also include update statements. But for a dynamic view selection

problem, the input workload can take several different formats. This affects the problem

significantly. For example, if the input is an unknown sequence of queries, then the view

selection problem is a cache problem [41, 9O]. If the input is a specific sequence of queries,

then the problem is a configuration transformation problem [9]. If the workload is a set of

queries, then the problem is a space constrained multi-query optimization problem.

If the input is unknown, there is no prediction on what structures will be used by

future queries. There are two critical problems here. The first is how to answer queries

using cached structures, either partially or completely. The other is which structures to

cache for the use of future queries. P. M. Deshpande et al. consider the first problem

by introducing "chunks" [41] in a multi-dimensional database schema. In that paper,

they propose a chunk based scheme that addresses these problems by dividing the multi-

dimensional query space uniformly into chunks and caching these chunks. The results of

a query are contained in an integral number of chunks, which form a "bounding envelop"

about the query result. (If the query boundaries do not match the chunk boundaries, the

chunks in this bounding envelop may contain tuples that are not in the answer of the query.)

Since chunks are at a lower granularity than query level caching, they can be reused to

compute the partial result of an incoming query. By using a fast mapping between query

constants and chunk numbers, the set of chunks needed for completely answering a query

can be determined. The authors partition this set of chunks into two disjoint sets such that

the chunks in one partition can be found in the cache while the others are computed using

the back end relational engine. A consequence of partitioning the chunks is the intended
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query decomposition. Since query results are an integral number of chunks, unlike query

level caching, the replacement policy can take advantage of the "hotness" of the chunks.

Yannis Kotidis et al. [9O] study a dynamic view selection problem for data warehousing.

They present "DynaMat", a system that dynamically materializes information at multiple

levels of granularity in order to match the demand (workload). Both the maintenance

constraint and the space constraint are taken into account in their approaches. DynaMat

unifies the view selection and the view maintenance problems under a single framework

using a novel "goodness" measure for the materialized views. It constantly monitors

incoming queries and materializes the best set of views subject to the space constraint.

During updates, DynaMat reconciles the current materialized view selection and refreshes

the most beneficial subset of it within a given maintenance window. The dynamic view

management of Dynamat is separated into two phases: the online phase and update phase.

During the on-line phase, the goal of the system is to answer as many queries as possible

from the pool, because most of them will be answered much faster from caches than from

the base relations. At the same time, DynaMat will quickly adapt to new query patterns

and efficiently utilize the system resources. The second phase of DynaMat is the update

phase, during which updates received from the data sources get stored in the warehouse

and materialized results in the Pool get refreshed. With a dynamic management of selected

physical structures, Dynamat can not only outperform the optimal solution of the static

view management, but also quickly adapts to changes in the workload or in the constraint

or in both.

S. Agrawal et al. [9] formally define the problem of recommending physical structures

for workloads that are sequences of statements and suggest a dynamic management of the

selected physical structures. By exploring the information in the order of the statements,

the system can create and drop physical structures at different points of the execution of

the sequence so that the total benefit of these structures is maximized. The paper first

introduces an exhaustive approach of an exponential time complexity to the number of
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candidate physical structures. It also provides a cost-based pruning technique which can

reduce the search space significantly while maintaining the optimality of the solution. By

introducing the concept of disjoint sequence, it suggests a heuristic approach that applies

splitting and merging techniques. This approach first finds an optimal solution to each

disjoint sequence of statements and then merges those solutions to get the solution for

the original sequence of statements. After merging, if the configurations satisfy the space

constraint at each point of the sequence, the result is optimal. Otherwise, another heuristic

is applied to the solution to remove or replace physical structures until the sequence satisfies

the space constraint at each point. The resulting solution may be sub optimal. Although

this paper focuses on indexes, the results hold for materialized views and indexes on

materialized views.

3.3 Strategies for the View Selection Problem

As described above, most of the previous work on the view selection problem focuses

on greedy algorithms. The advantage of this strategy is that it usually outputs a result of

good quality. But because the complexity of the problem itself [87], there is no optimal

lower bound guarantee for the algorithms proposed in the general view selection problem.

Most of the algorithms with greedy strategy have poor performance. Although this is not

a problem for many instances of the static view selection problem, it is a critical issue

for some dynamic instances of the view selection problem where the time window for the

selection of views is much more restrictive than that of static instances. For the static view

selection problem, it is also important to improve the performance of the algorithms for

view selection when the size of the instance is large. For this reason some faster strategies

based on restrictive genetic algorithms and randomized algorithms are proposed in the

literature.

The genetic algorithm (GA), first proposed by Holland in 1975, is an approach that

mimics biological processes for evolving optimal or near optimal solutions to problems.
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Horng et al. [82] propose a genetic algorithm to select the appropriate set of views for

minimizing the query and view maintenance cost. The input to the problem is an AND/OR

DAG. The genetic algorithm might generate some unfeasible solutions such as a set of

views that exceeds the given space constraint. In this paper, a penalty function is used

to punish the fitness of these unfeasible solutions. W. Y. Lin and I. C. Kuo extend the

work of [82] by considering as input to the problem a lattice of data cubes instead of

an AND/OR DAG of views. To deal with unfeasible solutions, they use a greedy repair

method to correct them. Among the papers on view selection problems that use genetic

algorithms, [152] recommends an optimal set of processing plans for multiple queries

instead of recommending a set of views and indexes.

As genetic algorithms, randomized algorithms are another strategy for optimization

problems which do not require the exhaustive check of the states in the search space.

Randomized algorithms have long been used in query optimizations [128, 78, 53]. In

traditional applications, however, the demand for query optimization using randomized

search is limited, since queries that involve more than 10 joins are seldom used. In contrast,

in OLAP applications it is common to have 10-15 dimensions, resulting to 2 1° —2 15 views.

Therefore, a randomized search for sub-optimal view sets becomes the only practical optimi-

zation method [84].

The search space of an optimization problem can be thought of as an undirected

graph, where nodes correspond to candidate solutions. Each node (also called a state)

has a cost assigned to it and the aim of the optimization process is to find the one with

the minimum cost. For the view selection problem, each state corresponds to a set of

views which meet the space or time constraint. An edge of the graph defines a move (or

transition) from one state to another after applying a simple transformation. The move

is called downhill if the destination state has a lower cost than the starting one. In the

opposite case, it is called uphill. A state from which no moves are downhill is called local

minimum. The local minimum with the minimum cost is called the global minimum. The
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graph should be connected, i.e., there should be at least one path of transitions between any

two states. Randomized algorithms start from a random initial state and apply sequences

of transformations trying to detect the global minimum [84].

P. Kalnis et al. [84] propose four randomized algorithms in view selection problems

considering either space constraint or maintenance constraint. Iterative improvement (II)

starts from a random initial state (called seed), performs a random series of moves and

accepts only downhill ones, until a local minimum is detected. This process is repeated until

a time limit is reached, each time with a different seed. Simulated annealing (SA) follows

a procedure similar to II; however, it also accepts uphill moves with some probability.

This probability is gradually decreased with time and finally the algorithm accepts only

downhill moves leading to a good local minimum. Random sampling (RA) selects states

randomly and returns the state with the minimum cost from those visited given a limited

time limit. Two-phase optimization (2P0) is a hybrid randomized algorithm. It combines

II and SA and can be more efficient than both algorithms. This method uses II to quickly

locate an area where many local minimums exist, and then applies SA with a small initial

temperature to search for the global minimum in this area. P. Kalnis et al. [84] compare the

systematic algorithms [75, 125] and randomized algorithms under both space constraints

and maintenance time constraint. Among the four randomized algorithms, the 2P0 algorithm

always performs better than other random algorithms. For the view selection problems

under space constraints, the systematic algorithms get better results than randomized algo-

rithms, but also require much more time. For view selection problem under maintenance

constraint, both quality and performance of the randomized algorithm outperform that of

systematic algorithms.

Michael Lawrence et al. [1O4] consider using randomized algorithms for a dynamic

view selection problem. The distribution of queries in the workload changes over time;

thus the selected view set must be updated online to better serve the incoming queries.

Considering the better quality of a systematic algorithm and the better performance of a
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randomized algorithm, the author propose a hybrid algorithm which combines these two

strategies. They use a systematic algorithm to compute an initial set of views statically

when a bigger time window is available for the initialization. Then they utilize randomized

algorithms to update the view set dynamically due to changes of the distribution of queries

when the time window for the view set change is much more restrictive. This combination

of systematic and randomized strategy is not new. In [69, 154], a randomized replacement

approach is used to improve the quality of a selected view set after it has been computed

using a systematic algorithm.

3.4 Applications

Among many applications of view selection problems, the following main class of applications

is considered in this work, based on different dimensions.

• Data warehouse

• Multi-query optimization

• View maintenance

D. Theodoratos et al. [133] summarize the data warehouse design problem as follows:

In the data warehousing approach to the integration of data from multiple information

sources, selected information is extracted in advance and stored in a repository. A data

warehouse (DW) can therefore be seen as a set of materialized views defined over the

sources. When a query is posed, it is evaluated locally, using the materialized views,

without accessing the original information sources. The applications using DWs require

high query performance. This requirement is in conflict with the need to maintain in the

DW updated information. The DW configuration problem is the problem of selecting a set

of views to materialize in the DW that answers all the queries of interest while minimizing

the total query evaluation and view maintenance cost. With the trend that databases are

getting bigger in size and queries getting more complex, most DBMSs start supporting data
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warehouse features in regular database systems. Thus recommending physical structures

for a database system is essentially a data warehouse problem.

Multi-query optimization techniques were considered too expensive in the past when

the database was not very big and queries were not very complex. The most important

difference between single query optimization and multi-query optimization techniques is

the utilization of common subexpressions among multiple queries. Among all the works on

multi-query optimization, the most important problem is which common subexpression to

use and how to rewrite the original queries using selected common subexpressions (views)

[121, 1O2, 85, 12O]. No matter whether the selected common structures are stored in

memory or disk space, the multi-query optimization problem is a special application of

view selection problems. But in a multi-query optimization problem, it is not only to select

common subexpressions, but also to recommend the globally optimal evaluation plan for

execution of the multiple queries.

View maintenance problems are a special case of multi-query optimization problem

where all the queries are update statements for a pre-selected set of views [16, 67, 118,

94, 1O6, 144]. Basically two main diagonal techniques to a view maintenance problems

are proposed: incremental maintenance and maintenance using multi-query optimizations.

This view maintenance problem is a complementary problem for view selection problem.

All selected materialized views and indexes have to be updated to keep consistency with

the underlying base tables. How views are maintained has a significant effect on the

view selection problem. This is especially true when maintenance time constraints are

considered or update statements are combined into the query workload.

3.5 Other Problems

Although the view selection problem has been studied for some time now, there are still a

lot of open issues to address.
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The construction of a search space for the view selection problem is a difficult issue.

The reason is that common subexpression among queries need to be identified as candidate

views for materialization, and the queries need to be rewritten using these views. For the

special case of a multi-dimensional database with cube queries, the search space can be

represented in a straightforward way using a lattice framework [75, 13]. The rewriting

of the queries using views is also trivial in this case. However, in the general case of

a relational database with complex queries involving grouping, aggregation and nesting,

the construction of the search space and its use by view selection algorithms is an open

problem.

Maintaining views using multi-query optimization techniques is a special instance

of the view selection problem. In this case, an additional set of views is selected to be

temporally materialized in order to accelerate the view maintenance process. Besides the

selected views, a global maintenance plan that involves these views should be provided as

an output. In practice, memory and time restrictions make this problem more complicated.

A number of problems can be modeled as view selection problems where the input

statements involve both queries and updates and the order of these statements is of importance.

These versions of the view selection problems are more complex since the input update

statements may update the views that are temporarily or permanently materialized and this

cost should be taken into account by the view selection algorithms.



CHAPTER 4

MIXED ARITHMETIC CONSTRAINTS IN DATABASES

Important issues in databases involve the satisfiability, implication and equivalence problems

for arithmetic constraints with inequalities. These problems have been studied in the

area of databases when the domain of the variables (attributes) is exclusively the integers,

or exclusively the reals. Various issues in databases, including optimizing queries with

aggregate functions require solving the previous problems for arithmetic constrains that

involve simultaneously both types of variables (mixed arithmetic constraints). Furthermore,

they need efficient algorithms for computing the maximal range of variables in mixed

arithmetic constraints.

All these problems for conjunctions of mixed arithmetic constraints are addressed in

this chapter. The arithmetic constraint are of the form X0 Y + c or X0 c, where X,Y are

variables of any of the two types, 0 E { <, <, =, , >, >}, and c is a real constant. It is

shown that, as expected, when is involved in the constraints, the corresponding problems

are NP-hard. Using a graph structure for constraints having two types of nodes to account

for integer and real variables, necessary and sufficient conditions for unsatisfiability are

derived. Finally, efficient polynomial algorithms are designed for these problems when

is not allowed to occur in the constraints and their complexity are studied.

4.1 Introduction

Many important problems in various database areas require solving the satisfiability, impli-

cation, and equivalence problems for arithmetic constraints. Arithmetic constraints are

boolean expressions of inequalities of the form X 0 Y + c, or c 0 c, where c and Y are

variables (attributes), c is a constant, and 0 E {<, <, =, , >, >}.

36
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Checking query equivalence and finding equivalent rewritings of queries [37, 35, 3],

checking containment of queries [5, 34], answering queries using (partially or completely)

views [92, 146, 96, 93, 4], optimizing query evaluation using materialized views [137, 24,

6], processing queries in a distributed environment over horizontally fragmented databases

[1O8], optimizing multiple queries concurrently through the detection of common sub-

expressions [8O, 121, 123, 12O, 1O6], maintaining materialized views [15, 67, 1O6, 144],

selecting views for materialization in a warehouse [133, 1O6, 135], enforcing consistency of

rules and triggers [83], evaluating queries in constraint query languages or in the presence

of constraints [86, 1OO] are only some of the traditional or more recent database areas where

the aforementioned problems require an efficient solution.

Because of their importance for databases, these problems have been extensively

studied in the past [116, 89, 138, 15, 127, 63, 62]. All these contributions consider that the

variables in the arithmetic constraints range exclusively over the integers or exclusively

over the reals. In this chapter, these problems by considering, in contrast, arithmetic

constraints where some variables range over the integers, and some variables range over

the reals. Such constraints are called mixed arithmetic constraints

Motivation. Mixed arithmetic constraints can be met in multiple areas in Databases. In

relational databases, the domain of some variables (attributes) in a selection condition can

be the integers, while the domain of other variables in the same condition can be the reals.

For instance, in SQL, the domain of two attributes can be defined to be INTEGER and

REAL, and both attributes can occur in the condition of the WHERE clause of a query.

Thus, the WHERE clause condition of an SQL query can be a mixed arithmetic constraint.

Establishing the unsatisfiability of a WHERE clause condition, guarantees that the query

will have empty answers no matter what the instances of the relations in the FROM clause

are. This information can be obtained without evaluating the query, and therefore, it is very

useful to query optimizers.
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Example 1. Suppose that the domain of the attributes X and Y of the relations R and

S, respectively, is INTEGER and that the domain of attribute Z of relation T is REAL.

Consider the simple SQL query Q:

SELECT *
FROM R, S, T
WHERE R.X < S.Y - 5.5 AND T.Z + 2.4 >= S.Y

AND T.Z < R.X + 3.5;

The WHERE clause condition of this query is a mixed arithmetic constraint. Using the

results in this work one can efficiently check that this constraint is unsatisfiable (i.e. no

assignment of an integer value to X and Y and a real value to Z makes this constraint

true). The answer of Q is empty for any instance of R, S and T. Note however that the

constraint is satisfiable if the domain of all three attributes c, Y, and Z is REAL.

Deciding about the usability of views in answering queries, requires deciding about

the implication of constraints in the WHERE clauses of queries and views [96, 137, 24,

73, 4]. When the domain of some attributes is the reals and that of other attributes is the

integers, and the goal is to choose optimal query evaluation plans that use materialized

views, one is faced with the implication problem of mixed arithmetic constraints.

In recent years, the increased interest of the industry for Data Warehousing and

On-Line Analytical Processing (OLAP) applications [23] has stimulated the research on

issues related to queries (and views) with grouping and aggregation operations [27, 145,

65, 126, 28, 22, 6O, 34]. Such queries in SQL involve aggregate functions (e.g., COUNT,

MIN, AVG) in the conditions of their HAVING clauses, or aggregated attributes (coming

from grouping/aggregation views) in the conditions of their WHERE clauses. Depending

on the case, the SQL aggregate functions return real or integer values. In order to deal

with optimization issues of grouping/aggregation queries, the satisfiability problem for

arithmetic constraints involving aggregate functions (aggregation arithmetic constraints)

need to be solved. The same holds for the implication and equivalence problems but these
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latter ones, as is well known, can be reduced to the satisfiability problem. The satisfiability

problem for different classes of aggregation arithmetic constraints is of high complexity

or even undecidable [117, 97]. However, mixed arithmetic constraints can be used to

efficiently derive sound unsatisfiability results for aggregation arithmetic constraints:

Example 2. Suppose that the domain of the attributes X, Y and Z is REAL. Consider the

following condition C from the HAVING clause of an SQL query:

COUNT (X) + 2 < = SUM (Y) AND AVG ( Z) > SUM (Y) AND
AVG(Z) <= COUNT} (X)

This is an aggregation arithmetic constraint. Notice that the term COUNT(X) takes (not

negative) integer values while the terms SUM(Y) and AVG(Z) take real values. If COUNT(X)

is replaced by an (aggregated) variable X' ranging over the integers, and SUM(Y) and

AVG(Z) by the (aggregated) variables Y' and Z', respectively, ranging over the reals, a

mixed arithmetic constraint C is obtained: X' + 2 < Y' A Z' > Y' A Z' < c'. Using

the results of this work, one can efficiently derive that C is unsatisfiable. Clearly, the

unsatisfiability of condition C implies the unsatisfiability of condition C.

A further approach for obtaining sound unsatisfiability results for an aggregation

arithmetic constraint C uses the range constraints on the aggregation terms in C that can be

derived from C. Examples of such range constraints are COUNT(X) < 3.5 or AVG(Y) > 2.

Range constraints specify a range of acceptable values for the corresponding aggregation

term. Ross et al. [117] provide a polynomial algorithm that directly checks for satisfiability

a conjunction C of range constraints on aggregation terms involving a single variable

(attribute). For instance, this algorithm decides that the constraint MIN(X) > O A COUNT(X) <

10 A MAX(X) < 1000 A SUM(X) > 10000 is unsatisfiable. The conjunction of the derived

range constraints on the aggregation terms of C can be provided as input to this algorithm

to decide a potential unsatisfiability of C.
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Distinction of the problems addressed from other known problems. A question that

arises is whether these problems for mixed arithmetic constraints are subsumed by the

corresponding problems for arithmetic constraints where the variables range exclusively

over the integers, or exclusively over the reals. The next example shows that they are not.

Example 3. Consider the arithmetic constraint C = X<Y+ 3 A X > Y + 2.5. Clearly,

if both variables c and Y range over the integers, there is no assignment of integer values

to c and Y that makes C true. That is, C is unsatisfiable. In contrast, if at least one of

the variables X and Y range over the reals then C becomes satisfiable. For instance, the

assignment X <— 2.6, Y 0 makes C true.

Consider also the arithmetic constraint C' = X < 0.3 A X > —0.3 A Y >

X + O.4 A Y < X + 0.6. If both variables X and Y range over the reals then C' is

satisfiable. For instance, the assignment c <— 0, Y 4- O.5 satisfies C'. In contrast, if Y

is a variable that ranges over the integers, it is not difficult to see that C' is unsatisfiable.

Indeed, C' restricts the values of c in the interval [-0.3, 0.3], and the values of Y in the

interval (0.1, 0.9]. Clearly, there is no integer between 0.1 and 0.9.

The problem. From the previous discussion it becomes clear that, in order to deal with

traditional or more recent important problems in databases, the satisfiability, implication,

and equivalence problems for mixed arithmetic constraints, and the problem of computing

ranges for variables in such constraints need to be solved. These problems have not been

addressed previously for mixed arithmetic constraints.

Contribution and Outline The main contributions of this work are the following:

• Mixed arithmetic constraints are formally introduced. For the class of conjunctive
mixed arithmetic constraints, the following three problems are addressed: the

satisfiability problem, the implication problem, and the problem of computing ranges of
variables in a constraint.
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• It is shown in this chapter that when is allowed to occur in the constraints, the
problem of computing ranges of variables in a constraint is NP-hard. In this case, the
NP-hardness of the satisfiability and implication problems is a direct consequence
of the NP-hardness of the corresponding problems when variables range exclusively
over the integers. Further, we focus on the case where is not allowed to occur in
the constraints.

• A directed graph structure for representing a conjunctive mixed arithmetic constraint
is defined. This graph has two types of nodes to account for variables ranging over
the integers, and for variables ranging over the reals.

• By exploiting the graph structure, sound and complete conditions for all three problems
are derived.

• Polynomial algorithms are provided for checking satisfiability, implication, and for
computing ranges of variables, and the corresponding complexities are studied.

• Besides their utility in traditional database issues, these results are essential in checking
the satisfiability of arithmetic constraints involving aggregate functions.

4.2 Related Work

As a general remark, the complexity of the satisfiability, implication and equivalence pro-

blems increases when is involved in the arithmetic constraints, and when the domain

of the variables is restricted to integers. Rosenkrantz et al. [116] study the satisfiability

and equivalence problems of conjunctions of inequalities of the form X0 Y + c or c0 c,

involving , when the variables range over the integers. They show that these problems

are NP-hard and provide polynomial algorithms for the case where is not allowed in

the constraints. Klug [89] provides a polynomial algorithm for the implication problem

of conjunctions of inequalities of the form X0 Y or c0 c, excluding , when the domain

of the variables is the rationals (these results apply equally to any dense totally ordered

domain e.g., the reals). Ullman [138, subsection 14.2] gives a polynomial algorithm for

implication checking of conjunctions of inequalities of the form X0 Y only, involving ,

when the variables range over the integers. This algorithm applies as well to the case

where the variables range over an infinite totally ordered dense domain. Blakeley et al.

[15] improve the satisfiability checking algorithm of [116] for the case where 	 is not
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allowed in the inequalities, under the assumption that the integer domain of each variable

is finite. Sun et al. [127] studied the following implication problem: decide whether C

implies C', where C, C' are conjunctions and/or disjunctions of inequalities involving ,

and the variables range over the integers. They prove that when C and C' are conjunctions

of inequalities, and is allowed in C, the implication problem is NP-hard. They also

provide a polynomial algorithm for this case when is not allowed to occur in C (and

allowed to occur in C'). Guo et al. [63] addresses the satisfiability and implication problems

of conjunctions of inequalities of the form c 0 Y or X0 c, involving , when the variables

range exclusively over the integers or exclusively over the reals. They provide polynomial

algorithms, and improve the complexity of previous algorithms for the case where the

domain of the variables is the integers and is excluded, and for the case where the domain

of the variables is the reals and is allowed. Guo et al. [64] gives polynomial algorithms

for the satisfiability and implication problems of conjunctions of inequalities of the form

X0 Y + c or X0 c, involving , when the variables range over the reals. Finally, in [86],

different complexity results are provided for the implication problem of conjunctions of

constraints of the form p(Xi , . . . , Xn) 0 0 where p is a polynomial on variables X 1 , . . . , X,-,

and the variables range over the reals.

None of the previous approaches consider the case of conjunctions of inequalities of

the form c 0 Y + c or c0 c, where some variables range over the reals, and some variables

range over the integers, as in here.

4.3 Mixed Arithmetic Constraints

In this section, mixed arithmetic constraints are formally defined. And the class of mixed

arithmetic constraints considered in this chapter is specified.

Syntax. Two types of variables are considered. Variables that range over the reals (real

variables) and variables that range over the integers (integer variables).
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Atomic mixed arithmetic constraints are expressions of the form c 0 Y + c, or c 0 c,

where c and Y are integer or real variables, a is a real constant, and 0 is a comparison

predicate in {<, <, =, , >, >}. More complex mixed arithmetic constraints are built

from atomic arithmetic constraints using conjunction, disjunction, and complementation, as

usual. Mixed arithmetic constraints generalize arithmetic constraints where all the variables

range exclusively over the reals or exclusively over the integers. For simplicity, mixed

arithmetic constraints are also called in the following simply constraints.

Semantics. An assignment 0 to the variables of a constraint is also defined as usual.

An assignment is well typed if it assigns real values to real variables, and integer values

to integer variables. A well-typed assignment satisfies a constraint C if and only if the

expression CO holds. If there is such an assignment, C is satisfiable. Constraint C is

valid if it is satisfied by all well-typed assignments. A constraint C implies a constraint C'

(denoted C C') if every well typed assignment that satisfies C satisfies also C'. Two

constraints C and C' are equivalent (denoted C -,7. C') if C C' and C' C. Since

equivalence is defined in terms of implication, in the following, constraint equivalence

checking is not explicitly addressed.

The class of constraints considered. A constraint C can be equivalently transformed to

a disjunction of conjunctions of atomic constraints. Further, negations can be eliminated

by appropriately changing the comparison predicate (e.g., —,(X Y + c) can be replaced

by X = Y + c, and — X < Y + a) can be replaced by X > Y + c). Then, in order to check

C for satisfiability it suffices to check each disjunct (conjunction of atomic constraint) in

the transformed C separately. In the worst case though, this transformation may cause

the number of atomic constraints to grow exponentially. In the rest of this chapter, it is

considered that a constraint is a conjunction of atomic constraints.
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4.4 Mixed Arithmetic Constraint Graphs

In this section, a graph representation for mixed arithmetic constraints is introduced. This

representation and related notions introduced here are used in the next sections for studying

satisfiability and implication checking, and variable range computation.

Definition 1. An atomic constraint is in standard from if it is in the form c 9 Y + c, where:

(a) X ,Y are distinct variables, or one of X ,Y is a variable and the other is O,

(b) 0 E {<, <}, and

(c) c is a real constant.

A constraint is in standard form if it contains only atomic constraints in standard form.

For the needs of this section it is considered that constraints are in standard form.

Definition 2. Given a mixed arithmetic constraint C in standard form, the constraint graph

of C is a labeled directed graph Gc  defined as follows:

1. The nodes of Gc are partitioned in two sets of nodes: integer nodes and real nodes.

2. For each integer (real) variable in C there is an integer (real) node in Gc. There is
also in Cc  an integer node for the constant O. In the following we may identify a
node with the variable (or the constant O) it represents.

3. For each atomic constraint X 9 Y + c in C, there is an edge from node X to node Y
labeled by the pair (0, c).

The constraint graph Cc represents the constraint C. Since for each atomic constraint

X 9 Y + c in C, X and Y are distinct, there are no edge-loops in CC.

Example 4. Consider a constraint C which is a conjunction of the atomic constraints in

the following set:

{X1 < Y1 + 3.5, YE < c2 + 2.1, X2 < 0 - 2.1, 0 < Y2 -I- 4, Y2 < X2 ± 2.2, X2 < YE - 2,

X1 < X2 - 3.5, X2 < Y2 - 2.2, Y2 < X4 - 1}.

The Xi s denote real variables, and the Ys integer variables.
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Figure 4.1 Constraint graph Cc  representing constraint C.

Constraint C can be represented by the constraint graph cC shown in Figure 4.1.

Real nodes are represented by white circles while integer nodes are represented by filled

black circles. This constraint graph is used as a running example in this work.

In the following the notions of path and cycle is used in a constraint graph. Paths and

cycles here are supposed to be elementary that is, they do not meet the same node twice.

Integer nodes can be viewed as discontinuity points of the paths in cc. Therefore,

integer paths are introduced below which are paths between integer nodes whose internal

nodes are not integer nodes.

Definition 3. An integer path in cc , is a path from an integer node X to a (not necessarily

distinct) integer node Y that does not include an integer node other than X and Y.

If X and Y coincide, the integer path is a cycle that includes a single integer node.

If a cycle s in a constraint graph includes n, n > 1, integer nodes, it also includes exactly

n integer paths and each of the edges of s are included in one of these integer paths. It is

evident that if s does not include any integer node, it does not include any integer path.

For integer paths, the notion of compound labels is needed, as defined below. This

definition is based on the following remark:

Remark 4.4.1. (a) Suppose that the constraints X < Y + c 1 and Y < Z + c2 hold.
Then, by transitivity, the constraint X < Z + (c1 + c2) holds. Consider now the
constraints c < Y + 1 and Y < Z + c2 . These constraints differ from the previous
ones in that one constraint involves a strict inequality. Then, by transitivity again, the



46

constraint X < Y + (c1 + c2 ) holds. This remark is valid for any type (real or integer)
of variables c, Y, and Z.

(b) Suppose that the constraint X 0 Y + c, where 0 E {<, <}, and X, Y are integer
variables, holds.

(b 1) If c in not an integer, the constraint X < Y + [c] also holds. ( Lx] denotes
the floor function which rounds the value x down to the next integer.) For real
variables X and Y, the constraint X < Y+ Lc] is more restrictive than c 0 Y+c.

(b2) If c is an integer and 0 is <, the constraint X < Y + (c — 1) also holds. For
real variables X and Y, the constraint X < Y + (c — 1) is more restrictive than
X < Y + c.

Remark (b) is valid even if one of X and Y is O.

From the second remark it is also deduced that for integer variables it suffices to

consider atomic arithmetic constraints in the standard form c 0 Y + c, where 0 is < and c

is an integer. For instance, X < Y + 3.4 can be equivalently represented by X < Y + 3,

while X < Y + 3 can be equivalently represented by X < Y + 2.

Definition 4. Let p be an integer path in cC . Bp  is used to denote the multiset of labels of

the edges in p.

The compound label of p is a label (0, c) where:

1. 0 is <.

Intuitively, the label (0, c) of an integer path p from integer node c to integer node

Y expresses that the constraint X 0 Y + c is the most restrictive constraint involving c and

Y that can be derived from the constraint represented by p.

Example 5. Consider the constraint graph Gc shown in Figure 4.1. The path (Y1 , X2, 0)

is an integer path. Its compound label is (<, —1). The path (Y2 , X2, Y1) is an integer path.
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Its compound label is (<, 0). The path (Y2, X2, Y2) is an integer path that is also a cycle.

Therefore, it includes a single integer node. Its compound label is (<, O).

The notion of compound labels is generalized below for paths that are not necessarily

integer paths. These paths can also be cycles.

Definition 5. Let p be a path in GC . C Lp  is used to denote the multiset of compound labels

of the integer paths included in p, and by S Lp  the multiset of labels of the edges contained

in p that are not included in an integer path included in p.

The compound label of p is a label (0, a) where:

1. 0 =

{

< if there is at least one label in S Bp whose first component is <

< otherwise.< otherwise.

2. C = (e i ,q )Es Bp 	 >(<_,c1)ECBp ci •

Clearly, one of SLp and CLp  can be an empty set. Iii, this case only one of the sums

contribute to c. If S SLp is empty, 0 is necessarily <. This is the case if p is a cycle that

includes at least one integer node. According to the previous definition, the compound

label of a cycle is independent of the node considered as initial (and terminal) node of the

corresponding path.

Example 6. Consider the constraint graph cc depicted in Figure 4.i The compound label

of the path (X 1 , Y1, X2, 0, Y2, X4) is (<, 5.5). The compound label If the path (0, Y2, c4)

is (<, 3). The compound label of the path (c2 , Y1 , X2, 0, Y2, c2) (Which is also a cycle) is

(5-, 3).

A relation can be defined on compound labels as follows:

Definition 6. Let (0, c) and (0', c') be two compound labels for paths. j Then, (0, c)	 (0', c' )

if and only if one of the following conditions hold:

(a) c < c' ,
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(b) c = c' and 0' is <,

(c) c = c' and 0 is <.

If (0, c)	 (0', c'), and (0, c)	 (0', c'), then (0, c)	 (0', c').

Clearly, -‹ is a total ordering relation on the set of compound labels for paths. lithe

following, minimality of labels is meant with respect to

4.5 Checking Satisfiability

In this section, the satisfiability problem of mixed arithmetic constraints, which is the

problem of deciding whether a constraint C is satisfiable, is studied.

When is allowed to occur in a constraint, checking satisfiability is not polynomial.

The following theorem is a direct consequence of previous results for arithmetic constraints

involving only variables ranging over the reals.

Theorem 1. Checking satisfiability of mixed arithmetic constraints is NP-hard.

Proof: The satisfiability problem of arithmetic constraints that are conjunctions of

atomic constraints of the form c Y, and X, Y range over the integers is NP-hard [116].

Mixed arithmetic constraints include this class of arithmetic constraints.

In the rest of this section, the attention is restricted to constraints that do not involve

unequality An atomic constraint of the form XθX + a is called trivial atomic

constraint. A trivial atomic constraint is either unsatisfiable (e.g., X < X — 3), or valid

(e.g., X > c — 3). It is not difficult to see that an unsatisfiable atomic constraint is a

trivial atomic constraint. Clearly, a constraint that contains an unsatisfiable atomic formula

is unsatisfiable. Such a constraint is called trivially unsatisfiable. It is also easy to see that a

valid atomic constraint is a trivial atomic constraint. Clearly, a constraint is valid if and only

if all its atomic constraints are valid. Therefore, validity and trivial unsatisfiability of C can

be checked in linear time on the number of atomic constraints in C. If a constraint contains

more than one atomic constraint, a valid atomic constraint in it can be removed to obtain an
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equivalent constraint. An atomic constraint that is not valid or trivially unsatisfiable, can be

equivalently put in standard form. In the first step of algorithm 2, later in this section, it is

shown how a constraint satisfying these restrictions can be put in standard form. Recall that

c and Y in each atomic constraint X 0 Y + c of a constraint in standard form are distinct.

Unless stated differently, it is considered in the remainder of this section that a constraint

is in standard form.

Now necessary and sufficient conditions are provided for the satisfiability of mixed

arithmetic constraints.

Theorem 2. Let C be a mixed arithmetic constraint in standard form that does notinvolved

. Then C is unsatisfiable if and only if there is a cycle in cc whose compound label (0, c)

satisfies the condition (0, c) 	 (<, O).

The proof follows the next example. It is worth noting that if the compound label

(0, c) of a cycle s in cc satisfies the condition (0, c) (<, 0), and there are more than one

integer nodes in s, the sum of the second components of the labels of the edges in s can be

greater than 0. However, if there are only real nodes in s, or if there is exactly one integer

node in s, the condition (0, a) (<, 0) can be satisfied only if this sum is less than or equal

to O.

Example 7. Consider the graph cc of Figure 4.1 representing the constraint C of Example

4. Graph Cc contains exactly two cycles: (Y1, X2, 0, Y2, X3, Y1) and (Y2 , c2, Y2). Their

compound labels are (<, 3) and (<, 0), respectively. Since (<, 3) 	 (<, 0) and (<, 0)

(<, 0), according to Theorem 2, constraint C is satisfiable.

Proof of Theorem 2: Necessity. It is to be proved that if there is a cycle in cc whose

compound label (8, c) satisfies the condition (0, c) --< (<, 0), C is unsatisfiable. Let s be

such a cycle in cc.

First, suppose that there are no integer nodes in s. Let the atomic constraints represented

by s be X1θ1 X2 + c1, ..., Xn-1 θn- 1 Xn + cn-1, Xn θn X1 + 	 n > 2 (recall that since
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C is in standard form a variable cannot appear more than once in an atomic constraint). By

transitivity (see remark 4.4.1(a)), these atomic constraints imply the constraint A 1 O' A1 +

(c1+... + an), where 0' is <if one of the 82 's, i E [1, n], is <, and is < otherwise. Thus, the

constraint A1 0' X1 + (c1 +...+ an ) is implied by the atomic constraints of C represented

by s. By definition (since no integer node is included in s), 0 = 0' and a = 1 + +

Since (0, a) (<, 0), this constraint is unsatisfiable. Therefore, C is unsatisfiable.

Then, suppose that s includes one or more integer nodes. Consider an integer path

p from integer node c 1 to integer node An  in s. c1 and n need not necessarily be

distinct. However, if they coincide, other (real) nodes are also included in path p. A1

and/or An  can be node 0. Let (<, c') be the compound label of the integer path p. Let also

A1 01 ... n-10n-1 n > 2, be the atomic constraints represented by p,

where X2, . Xn-1 are real variables. By transitivity (as above), these atomic constraints

imply the following constraint: A1 Op n (a1 + • • • Cn-1), where θp is < if one of the

9i 's, i E [1, n — 1], is <, and is < otherwise. This constraint implies the constraint A 1 <

An + a', where (<, c') is the compound label of the integer path p (see remark 4.4.1(b)).

Thus, the constraint X1 < cn + c' is implied by the atomic constraints represented by the

integer path p in cycle s. Let Y1 ,...., Ym , m > 1, be the integer nodes in s, in that order,

(<, di ) be the compound label of the integer path from Yi to Yi±i in s, i E [1, m - 1],

and (<, dm) be the compound label of the integer path from Ym to YE in s. Then, the

constraints YE < Y2 + C1, • • • , Ym-1 < Ym + am-i, Ym < Y1 + am are implied by the

atomic constraints represented by cycle s. By transitivity, these atomic constraints imply

the constraint Y1 < Y1 + (a1 + + am ). Thus, the constraint Y1 < Y1 + (c1 + + am )

is implied by the atomic constraints of C represented by s. By definition (since at least one
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integer node is included in s), 9 is < and c = a 1 + . . . + cm . Since (0, a) -< (<, 0), this

constraint is unsatisfiable. Therefore, C is unsatisfiable.

Sufficiency. It is to be proved that if there is no cycle in c c whose compound label (0, c)

satisfies the condition (0, a) -< (<, O), there is a well-typed assignment that satisfies C (that

is, C is satisfiable).

First, a procedure assignment_construction is provided that computes a well-typed

assignment to the variables of a constraint C. This procedure associates intervals of values

to the variables. The upper and lower bounds of an interval can be +oo and —oo, respectively.

The bound of an interval of a real variable can be open or closed. (It is of course open if

it is +/ — oo.) Intervals of integer variables contain integer values and their bounds are

closed (unless the bounds are +/ — oo).

Suppose that an interval of values is associated with each node of Gc. Given a node

Y in cc, let 0„ (01) be < if the upper (lower) bound of node Y is open, and < otherwise;

let au (cl ) be the upper (lower) bound value of Y.

Let b be the value of the closed upper bound of a node X . Propagating the upper

bound value b of c into Gc  , refers to the following process:

For every node Y (distinct than X) in cC such that there is a path from V to X do:

(a) let (Op , ap ) be the minimal compound label of the paths from Y to c.

(b) let 9' = 0p , and c' = b + p . If (0/, c1) -< (0', c') and (0', c') --< (0., au ) then

(C) let the upper bound of Y be open if 9' is <, and closed otherwise; let the upper bound
value of Y be a'.

Let now b be the value of the closed lower bound of a node X . Propagating the lower

bound value b of X into cc , refers to the following process:

For every node Y (distinct than X) in Cc  such that there is a path from X to Y do:

(a) let (θp , cp) be the minimal compound label of the paths from X to Y.
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(b) let 0' = θp , and c' = b — ap .

(c) if (0/, cl) -< (01 , c') and (0', c')	 (0„, cu ) then let the lower bound of Y be open if 0'
is <, and closed otherwise; let the lower bound value of Y be c'.

The procedure that computes a well-typed assignment to the variables of C follows:

Procedure assignment_construction

Initialization

- Associate the interval [0, O] with node O, and the interval (—oo, +oo) with the
rest of the nodes in cc.

- Propagate the lower and the upper bound value 0 of node O into Gc

Main part

- While there is an integer node X whose upper and lower bound values are not
equal do

• Associate with X a closed interval [b, b] such that b is greater than or equal
to the old lower bound of X and less than or equal to the old upper bound
of c. Recall that b must be an integer since c is an integer node.

• Propagate the new lower and upper bound value b of X into cC.

- While there is a real node X whose upper bound is open do

• Associate with X a closed interval [b, b] such that b is greater than the old
lower bound of X (or equal to the old lower bound if the old lower bound
is closed) and less than the old upper bound of X.

• Propagate the new lower and upper bound value b of X into cc.

- Return an assignment that assigns to every variable (node) in Gc its upper
bound value.
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An application of procedure assignment _construction is shown in example 8 below. Notice

that during the execution of procedure assignment _construction, once a closed interval is

associated with a (real or integer) node, it is not modified afterwards. Also, the computed

bound values of the intervals of integer nodes are integers since: (a) integer nodes are

treated first by procedure assignment _construction, and (b) integer bound values are associated

with integer nodes while the second component of the compound label of integer paths is

an integer. Therefore, the returned assignment is well-typed.

Clearly, procedure assignment _construction terminates, and if there is no cycle in Gc

whose compound label (0, c) satisfies the condition (0, c) -< (<, 0), the computed well-

typed assignment satisfies all the atomic constraints in C.

The following example outlines the computation of a well-typed assignment by procedure

assignment construction.

Example 8. Suppose that the constraint graph cc of Figure 4.1 is provided as input to

procedure assignment _construction.

In the initialization phase, first the interval [0, 0] is associated with node 0, and the

interval ( —oo, +oo) is associated with the rest of the nodes in cc . Then the lower and

the upper bound value 0 of node 0 are propagated into Cc , associating intervals with

nodes as follows: O : [0, O], Y1 : [-4, —1], Y2 : [ —4, —1], X1 : (—oo, —6.5), X2 :

(-6.1, —2.1), X2 : [ —6.2, —3), c4 : [ —3, +oo).

In the main part of the procedure, suppose that the integer node Y1 is considered first,

that it is associated with the interval [-4, —4], and that the upper and lower bound value

-4 of Yi  is propagated into GC . The following new associations of nodes with intervals are

produced: Yi  : [-4, —4], -172 : [-4, —4], X 1 : (—oo, —9.5), X2 : [ —6.2, —6).
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Then, performing each of the associations X4 : [-3, -3], X2 : 	 — 6.2], X1 :

[-10, —10], and X2 : 	 —3.5], the corresponding propagations of the lower and upper

bound values into Cc does not alter the rest of the associations.

One can check that the returned well-typed assignment YE 4- —4, Y2 4- —4, X1 4-

-10, X2 4- —3.5, X2 4-- —6.2, X4 4-- —3, assigning to each variable its computed upper

bound value, satisfies constraint C.

An algorithm is provided below for checking the satisfiability of a mixed arithmetic

constraint that does not involve. This constraint need not necessarily be in standard form.

Let Cc denote the number of atomic constraints (conjuncts) in C, and NN denote the

number of distinct variables in C.. Then, the following theorem characterizes the complexity

of algorithm 2.

Theorem 3. The satisfiability problem of mixed arithmetic constraints that do not involve

can be solved in 0(NcIVN) time.

Proof: Steps 1 and 2 of Algorithm 2 can be done in one scan of C which takes

O(Nc ) time. The number of conjuncts and variables in the resulting constraint C3 is also

bounded by O(Nc) and NN, respectively. The construction of Ggcs can be done, in step 3,

in 0(Nc) time. Strongly-connected components in Gccs can be computed in 0(Nci + NN)

time. The cycles in Gcs and their compound labels can be computed using the Bellman-

Ford algorithm for detecting negative-weighted cycles in a strongly connected component

O(NCNN) time. As usual, it is assumed that accessing a node in the adjacency structure

used to represent the graph GCs  takes constant time. Therefore, the complexity of Algorthm

2 is O(NC ).

The results of this section generalize to the mixed arithmetic constraint case previous results

on the satisfiability of arithmetic constraints where all the variables range exclusively over

the integers [116, 15, 63, 64] or exclusively over the reals [63, 64].
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Algorithm 2 Satisfiability checking
Input: A mixed arithmetic constraint C that does not involve

Output: A decision on whether C is satisfiable or not

{* Step 1: Remove trivial atomic constraints *}

1: Remove from C all the valid atomic constraints of the form X θc + c

2: if No atomic condition is left in C then

3: return C is unsatisfiable

4: end if

{* Step 2: Put C in standard form. *}

{Replace all the occurrences of atomic constraints in the resulting constraint as

follows: }

5: Replace an atomic constraint of the from c = Y + c by a conjunction of two atomic

constraints c < Y+a A Y<c—a

6: Replace an atomic constraint of the form c 0 Y + c, where 0 is > or >, by Y 0' X — c,

where 0' is < or <, respectively

7: Replace an atomic constraint of the form X = a by a conjunction of two atomic

constraints X < 0+c AO<X—a

8: Replace an atomic constraint of the form c 0 a, where 0 E {<, <}, by X 0 0 + c

9: Replace an atomic constraint of the form X 0 a, where 0 is > or >, by 0 0' X — a, where

0' is < or <, respectively

{* Step 3: Construct Cc., • *}

10: Construct the constraint graph CC ., representing Cs

{* Step 4: Check satisfiability. *}

11: Detect all the cycles in Gcs and compute their compound labels

12: return "C is unsatisfiable" if a cycle is found whose compound label (a, 0) satisfies the

condition (a, 0) -- (0, <); otherwise, return "C is satisfiable"
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4.6 Checking Implications

In this section, the implication problem of mixed arithmetic constraints is studied, which is

the problem of deciding, given two constraints C and C', whether C 1 C'.

As with satisfiability checking, when is allowed to occur in a constraint, checking

implication is not polynomial. The following theorem is a direct consequence of results for

arithmetic constraints involving only variables ranging over the integers.

Theorem 4. Checking implication of mixed arithmetic constraints is NP-hard.

Proof: The implication problem of arithmetic constraints that are conjunctions of

atomic constraints of the form X Y, and X, Y range over the integers is NP-hard [1271

Mixed arithmetic constraints include this class of arithmetic constraints.

The rest of this section deals with constraints that do not involve .

The implication problem can be solved by solving a number of corresponding satisfia-

bility problems: if C' .--- al A . . . A an ,,, where the a i s are atomic constraints, then C C' if

and only if the constraints C A -1a1 , . . . , C A -'an are unsatisfiable. If some ail is an atomic

constraint involving equality (e.g., X = Y+a) then ---ia i is equivalent to an atomic constraint

involving unequality (e.g., X Y + a). -ia i can be equivalently rewritten as a disjunction

of two atomic constraints ail and a22 involving strict inequalities (e.g., X < Y + a and

c > Y + a). Thus, C A --,ai is unsatisfiable if and only if C A ail and C A ail are both

unsatisfiable. As a consequence, C C' can be decided by checking for satisfiability at

most 2* Arc' constraints, each involving NCB + 1 atomic constraints. Recall that NCB denotes

the number of atomic constraints in C, while Nc' is the number of atomic constraints in C'.

Since these constraints do not involve , Algorithm 2 can be used. The time complexity of

this process is O(NC * Nc').

Below an algorithm is provided with a different complexity that solves the implication

problem without transforming it into the satisfiability problem.

In the remainder of this section, unless differently stated, it is assumed that C and

C' are in standard form. A constraint can be put in standard form if it is not valid or
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trivially unsatisfiable. It is also assumed that C is satisfiable. These assumptions imply

that any variable appearing in C' appears also in C: if C' involves a variable that does

appear in C (and C and C' are in standard form) then, clearly, C C' if and only if C

is unsatisfiable. As mentioned in the previous section, validity and satisfiability of mixed

arithmetic constraints can be checked efficiently. Therefore, there is no loss of generality

with these assumptions.

Now the necessary and sufficient conditions are provided for the implication of mixed

arithmetic constraints.

Theorem 5. Let C and C' be mixed arithmetic constraints in standard form that do not

involve Suppose that C is satisfiable. Then, C C' if and only if, for every atomic

constraint X 0Y + a in C', there is a path from node X to node Y in Gc whose compound

label (0' ,a') satisfies the condition (0' ,c') -< (0, a).

The proof follows the next example.

Example 9. Consider the constraint graph Gc of Figure 4.1 representing constraint C of

Example 4. Let C' be the constraint in standard form: X 1 < X4 - 4 A 0 < X4 + 4. The

compound label (<, —6.7) of the path (X1, X2, Y2, X4) from X 1 to c4 in cc satisfies the

condition (<, —6.7) (<, —4). Also, the compound label (<, 3) of the path (0, Y2, X4)

from 0 to X4 in cC satisfies the condition (<, 3) (<, 4). Therefore, according to

Theorem 5, C 1 C'.

Let C" be the constraint in standard form Y1 < Y2 +0 A Y1 < 0 +3.1. (Y1 , X2, 0, Y2)

is the only path from Y1 to Y2 in Gc . Its compound label (<, 3) satisfies the condition

(<, 3) (<, 0). Therefore, according to Theorem 5, C C".

Proof of Theorem 5: Necessity. Suppose that for every atomic constraint c 0 Y + a

in C', there is a path from node X to node Y in cc whose compound label (0', a') satisfies

the condition (0', c') --< (0, a). Let X 0 Y + c be an atomic constraint in C'. Let p be a

path from X to Y in cc whose compound label (0', c') satisfies the condition (0', c') --<
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(0, c). Let X1 ,..., Xn, n > 1, be the integer nodes in p from X to Y in that order (the

general case is considered where at least one integer node is included in path p between

nodes A and Y; the case where no integer node is included in p can be easily deduced

from the general one). Each of nodes X and Y can be an integer or a real node. Let

(00 , ao ) and (On , cn) be the compound labels of the paths from A to X1 and from An to

Y in p, respectively, and (<, a i), i E [1, n — 1] be the compound labels of the integer

paths from Xi to ci+1 . Then, as shown in the proof of Theorem 2, the atomic constraints

A 00 A1 + ao, A1 < A2 + a1 , • • • , Xn-1 < Xn + Cn-1, An On Y + cn are implied by

the atomic constraints represented by p. By transitivity, these atomic constraints imply the

constraint X 02, Y + (ao + . . . + cn), where θp is <, if one of 00, θn is <, and is < otherwise.

By definition, 0' = 0p , and c' = ao + . . . + cn . Thus, the atomic constraints represented

by p imply the constraint c 0' Y + c'. Since (0', c') -‹ (0, a), X0'Y + c' A 0 Y + a.

Therefore, C X 0 Y + c. Consequently, C implies all the atomic constraints in C', and

therefore, their conjunction (i.e. C C').

Sufficiency. Suppose that C 1 C'. Let A 0 Y + a be an atomic constraint in C'. Then, the

constraint C A -, (X 0 Y + a) is unsatisfiable. The constraint -- , (X 0 Y + c) is equivalent to

the atomic constraint Y 0" A +c" where 0" is <, if 0 is <, and is < otherwise, and a" = —c.

Let C" denote the constraint C A Y 0" A + a". The constraint graph cc, is obtained by

the constraint graph cc by adding a directed edge e from Y to X labeled as (0", c"). Since

C" is unsatisfiable, by Theorem 2, there is a cycle s in Gc whose compound label (θs , c3 )

satisfies the condition (0s , cs) (<, 0). Since C is satisfiable, by Theorem 2, there is no

such cycle in Gc. Therefore, cycle s includes edge e. Let p be the path ins from c to Y,

and (01,, cp ) be its compound label.

First, suppose that s does not include any integer node. By definition, θs is < if one

of Op , 0" is <, and is < otherwise, and cs  = cp + c". Two cases are considered as follows:

(a) θs is <.
Since (0s , cs)	 (0, <), cp + 	 < 0. Then, cp < —a", i.e. cp < a.



59

If 0" is <, then 0 is <. Therefore, (0 29 , cp) < (0, a).
If 0" is <, then 0 is <, and Op is <. Therefore, (0p , cp) < (0, c).

(b) 0, is <.
Since (0,, a,) -< (0, <), cp + a" < 0. Then, cp < —a", i.e. cp < C. Therefore,
(θp , cp) < (0, c).

Then, suppose that s includes one or more integer nodes (node O can be one of them).

Let P0 be the integer path in .s that includes edge e, and (00, ao ) be its compound label. Let

i E [1, n], n > 0 be the rest of the integer paths in s, and (0:', di) be their compound

labels, respectively. n = 0 accounts for the case where there is only one integer node in

s, and consequently, there is only one integer path in s. Let ej, j E [1, m> 0 be the

edges, other than edge e, in Po , and (0j , cj) be their labels, respectively. m = O accounts

for the case where c and Y are integer nodes, and consequently, e is the only edge in the

integer path P0 . By definition,cp

 = 4 + . . . + dm' + c1 + . . . + cn. 	 (1)

By definition, 03 is <, and c, = co + c1 +...+cn . Since (0,, cs) -< (0, <), c0+c1+...+cn <

0. Since ao + c1 + . . . + cn  is an integer, ao + 1 + . . . + n < — 1. 	 (2)

Two cases are considered as follows:

(a) One of 0", 0 /1, i E [1, m], is <, and c" + 	 ... + dm' is an integer.
Then, by definition, c0 = a"+4+. .+din' —1. By (2), c''+c1''+...+c''m +ai+...+C.<
0. Therefore, a7+ ...+ dm' + 1 + ...+ n < --a", i.e. 4+ . . .+ dm' + 1 + < a.
By (1), p < a.
If 0" is <, then 0 is <. Therefore, (θp , cp ) < (0, c).
If 0" is <, then 0 is <, and Op is <. Therefore, (θp , cp) < (0, a).

(b) All of 0",	 i E [1, m], are <, or a" 	 ... + a' is not an integer.
Then, by definition, co = [c"+c1''+. . .+c''m]. By (2), c"+4+. . . +dm' +c1 + • • • + cn <
0. Thus, c'1 + . . . + a' + c1 + . . . + cn < . Using (1), cp < a. Therefore,
(θp , cp ) < (0, c).

Presented below is an algorithm for checking the implication of mixed arithmetic

constraints that do not involve. These constraints need not necessarily satisfy the previous

restrictive assumptions of this section.
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Algorithm 3 Implication Checking
Input: Two mixed arithmetic constraints C and C' that do not involve

Output: A decision on whether C C' or not

{* Step 1: Remove trivial atomic constraints. *}

1: If C contains an unsatisfiable atomic constraint of the form X θX + a then return

C C'.

Remove from C' all the valid atomic constraints of the form X OX + a. If all the atomic

constraints of C' are valid constraints return C 1 C'.

2: If C' contains an unsatisfiable atomic constraint of the form X θc + a then return

CS C'.

Remove from C all the valid atomic constraints of the form X θc + a. If all the atomic

constraints of C are valid constraints return C C'.

{* Step 2: Put C and C' in standard form. *}

3: Put C and C' in standard form as in step 2 of Algorithm 2. Let C 3 and cis , respectively

be the resulting constraints.

{* Step 3: Construct Gcs. *}

4: Construct the constraint graph Gcs representing C,.

{* Step 4: Compute minimal compound labels. *}

5: For each pair of nodes (X, Y) in ccs  , compute the minimal compound label of the

paths from X to Y.

{* Step 5: Check implication. *}

6: If for each atomic constraint X 0 Y + a in C's there is a path from c to Y in Gcs and

the minimal compound label (0', c') of the paths from X to Y satisfies the condition

(0', c') 	 (0, a), return C	 C'.

Otherwise return C C'.
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Let Cc  (Nc') denote the number of atomic constraints, and NN (NN') denote the number of

distinct variables in C (C'). Then, the following theorem about the complexity of algorithm

3 can be stated.

Theorem 6. The implication problem of mixed arithmetic constraints that do not involve

can be solved in 0(N k N c's) time.

Proof: Steps 1 and 2 of Algorithm 3 can be done in one scan of C and C' which

takes O(Nc + Nc') time. The number of conjuncts in the resulting constraints C, and C's

is bounded by 0(Nc ) and O(Nc'), respectively. Because both cc and G'c are connected

graphs, NN and NN' are bounded by O0(Nc) and O(Nc'), respectively. The test is step 3

can be done in NN NN' time. NN is bounded by O(NN), otherwise algorithm 3 returns

C C' in step 3. The construction of Ggcs can be done, in step 3, in O0(Nc ) time. The

number of nodes in Gccs is the number of distinct variables in C (plus 1 if the node 0 appears

in Gcs). The minimal compound label for every pair of nodes in step 4 can be computed by

the Floyd-Warshall algorithm in O (n ) time. Thus, step 4 can be done in 9(n). Since,

n is bounded by Nc, step 4 is also bounded by O (Nb. Step 5 can be done in O(Nc') time

since comparing each atomic constraint in cis takes constant time, and the number of atomic

constraints in Cs is bounded by O(Nc'). As usual, it is assumed that accessing a node in

the adjacency structure used to represent the graph c cs takes constant time. Therefore, the

complexity of Algorithm 3 is 9(lq, + Nc').

The results of this section generalize to the mixed arithmetic constraint case previous results

on the implication of arithmetic constraints where all the variables range exclusively over

the integers [138, 127, 63, 64] or exclusively over the reals [89, 138, 63, 64].

4.7 Computing the Ranges of Variables in Constraints

The range of a variable X in a constraint C is a set of maximal intervals of values from the

domain of X . Intuitively, these are the values X is restricted to by C. In this section, how
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to efficiently compute the range of a variable is studied. As the start, a formal definition is

provided.

Definition 7. Given a constraint C, the range of a variable X in C, 4, is the set of all

the intervals I of values from the domain of c (that is, integer values, if X is an integer

variable, and real values, otherwise) such that:

(a) For every c E I, CA A = c is satisfiable. In other words, if any occurrence of X in

C is replaced by a value c E I, the resulting constraint is satisfiable.

(b) I is maximal with respect to set inclusion on the set of intervals satisfying condition

(a).

Clearly, the range of a variable in a constraint C is empty if and only if C is unsatisfiable.

The upper and lower bounds of an interval can be +oo and —oo, respectively. For intervals

of integer variables, convention similar to that adopted for the compound labels of integer

paths is followed: the bound values are integers and the bounds are closed (unless they are

+/ oo). This is feasible after the remarks of Section 3. By the previous definition, the

range of a variable in a valid constraint contains the unique interval (—cc, +oo).

When is allowed to occur in a constraint C, the range of a (real or integer) variable

in C can contain more than one interval.

Example 10. Consider the constraint, c > 1 A X < 5.1 A X 3. Clearly, if c is a

real variable, its range is the set of the two intervals (1, 3) and (3, 5.1]. If c is an integer

variable, its range is the set of the two intervals [2, 2] and [4, 5].

Consider also the constraint c > 2 A X < 1O A A <Y+3 A Y< 2.5. If A is a

real and Y is an integer variable, it is not difficult to see that the ranges of X and Y are the

intervals [2, 5.5) and (—oo, 2], respectively.

Computing the range of a variable in a constraint that involves is not polynomial,

as the next theorem shows.
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Theorem 7. Deciding whether the range of a variable in a constraint equals a given range

is NP-hard

Proof: From Theorem 1, checking the satisfiability of a constraint C is NP-hard. Let

the given range R be the empty set. Then, C is unsatisfiable if and only if the range of a

variable in C equals R. Thus, checking satisfiability of a constraint is reducible to deciding

whether the range of a variable in a constraint equals a given range.

In order to find efficient ways of computation of ranges of variables, in the rest of the

section, the attention is restricted to constraints than do not involve .

As the previous example indicates and the next lemma proves, when does not occur

in a satisfiable constraint C, the range of a variable in C contains a unique interval.

Lemma 4.7.1. The range of a variable in a satisfiable constraint that does not involve

unequalities () contains a unique interval.

Proof: Let C be a satisfiable constraint that does not involve . Suppose that the range of

a variable X in C includes more than one intervals. Since the intervals in 4 are maximal

with respect to set inclusion (definition 7), they cannot have common values. If C is valid,

/=6! contains the unique interval (—oo, +oo), a contradiction. Suppose then that C is not

valid. Let I1 and 12 be two intervals in .li c such that each value in /1 is less than a value 12 .

Consider two values 1 and c 2 such that 1 E /1 and c2 E /2. Since, by definition 7, h and

/2 are maximal, there is a value a such that: (a) c is an integer if c is an integer variable,

and is a real otherwise, (b) a does not belong to any interval in 4, (c) c1 < a < a2 . Let C1,

C2, and C' denote the constraints CA A = c1, CA A = c2, and CA A = c, respectively, in

standard form (these constraints can be equivalently put in standard form since they are not

trivially unsatisfiable or valid). The constraint graph Cc1 of C1 is constructed by adding to

Gc an edge from nodeAto node 0 labeled as (<, c1), and an edge from node 0 to nodec

labeled as (<, —c1 ). The constraint graphs Gc2 and cc ' are constructed analogously. Since

1 E I1 and a2 E 12, CC and C2 are satisfiable. By theorem 2, there is no cycle in Gc1 or
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in 0C2 whose compound label (0' ,c') satisfies the condition (0', c') 	 (<, 0). Therefore,

there is no such cycle in Gc' neither. By theorem 2, C' is satisfiable, that is, c belongs to an

interval in R. This is a contradiction.

Based on the previous lemma, in the remainder of this section, the range of a variable

with the unique interval it contains is confounded.

A constraint of the form X0 c, 0 E {<, <, >, >}, is called range constraint. The

next lemma provides necessary and sufficient conditions for a value to be the upper (or

lower) bound of a range in terms of range constraint implication.

Lemma 4.7.2. Let X be a variable of a satisfiable constraint C that does not involve

Then:

(a) a is the closed upper bound value of the range of X in C if and only if C X < c
and there is no value c' < c such that C X < c'.

(b) c is the open upper bound value of the range of X in C if and only if C 1 X < c
and there is no value c' < c such that C X < c'. (This case applies only to a real
variable X.)

(c) +oo is the upper bound of the range of X in C if and only if there is no value c such
that C X < c.

Values a and c' above are chosen from the domain of X.

Analogous statements hold for the lower bound of the range of X in C.

Proof: (a) Necessity. Suppose that C 	 c < a, and there is no value c' < a such that

C 1 X< c'. Then, since C is satisfiable, C A X = c is satisfiable. Since C 1 X < c,

there is no value c" > a such that C A c = c" is satisfiable. Therefore, c is the closed upper

bound value of the range of X in C.

Sufficiency. Suppose that c is the closed upper bound of the range of X in C. Then,
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CAc=cis satisfiable, and C	 X < a. Since, CAX =c is satisfiable, there is no

value c' < c such that C X < c.

(b)Necessity. Suppose that C X < c, and there is no value c' < c such that C c < c'.

Then, since C is satisfiable, there is a value a" such that c" < c and CAX = c" is satisfiable.

Since C c < c, there is no value c" > a such that C A X = c" is satisfiable. Therefore,

c is the open upper bound value of the range of X in C.

Sufficiency. Suppose that c is the open upper bound value of the range of X in C. Then,

C	 X < c. Let c' be a value such that c' < c and C	 X < c. Since X is a real

variable, there is a value c" such that c' <	 < c, and C A X c" is satisfiable. This is a

contradiction. Therefore, there is no value a' < a such that C X < a'.

(c)Necessity. Suppose that there is no value c such that C J X < c. Since C is satisfiable,

there is a value a' such that C A X = c' is satisfiable. Since for no value c, C	 X < c,

for every value c' > c such that C A X = c' is satisfiable, there is a value a" > c' such that

C A X = c" is satisfiable. Therefore, +oo is the upper bound of the range of c in C.

Sufficiency. Suppose that +oo is the upper bound of the range of X in C. Then, clearly

there is no value c such that C X < c.

The necessary and sufficient conditions in terms of range constraint implication of lemma

4.7.2 are translated to conditions over a constraint graph in the following theorem. This

form facilitates their algorithmic use later on in this section.

A constraint in the following theorem is considered to be in standard form. A

satisfiable constraint can be put in standard form if it is not valid. Validity can be checked

in linear time (Section 5). Obviously, if C is valid, the range of every variable occurring in

it is (—oo, +oo).

Theorem 8. Let X be a variable of a satisfiable constraint C in standard form that does not

involve Then:
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(a) a is the closed upper bound value of the range of X in C if and only if the minimal
compound label of the paths from node X to node 0 in Qc  is (c, <).

(b) c is the open upper bound value of the range of X in C if and only if the minimal
compound label of the paths from node X to node 0 in Cc  is (c, <).(This case applies
only to a real variable c.)

(c) +oo is the upper bound of the range of X in C if and only if there is no path from
node X to node O in Gc.

Analogous statements hold for the lower bound of the range of X in C.

Proof: The proof follows by theorem 5 and lemma 4.7.2.

Example 11. Consider the constraint graph Gc shown in Figure 4.1. Suppose that the range

of the real variable c 1 in C is to be computed. There are exactly two paths from X 1 to 0 in

cc. Their compound labels are (<, —2.5) and (<, —6.5). There is no path from 0 to c 1 in

Gc. Therefore, according to Theorem 8, the range of X 1 in C is (—oo, —6.5).

Suppose also that the range of the integer variable Y i  in C is to be computed. There

is exactly one path from Y1 to 0 and from 0 to Y1 . Their compound labels are (<, —1) and

(<, 4), respectively. Therefore, according to Theorem 8, the range of Yi  in C is [-4, —11.

The following algorithm summarizes the previous analysis for the range of a variable

in a constraint that does not involve 0. This constraint is not required to be in standard

form.

The next theorem characterizes the complexity of Algorithm 4. Let Cc  denote the number

of atomic constraints in C.

Theorem 9. Computing the range of a variable in a constraint that does not involve 0 can

be done in 9(Nclog NN).

Proof: Steps 1 and 2 of Algorithm 4 can be done in 0(Nc ) time as in Algorithm 2.

The number of conjuncts in the resulting constraint C3 is also bounded by 0(Nc/ogNN).

The minimal compound labels in step 3 can be computed using Dijkstra algorithm twice



Algorithm 4 Computing the range of a variable in a constraint
Input: A constraint C that does not involve and a variable A in C

Output: The range RX of A in C

{* Step 1: Remove trivial atomic constraints. *}

1: Remove from C all the valid atomic constraints of the form Y BY + c

2: If C contains an unsatisfiable atomic constraint of the form Y BY + c, return 4' is

empty

3: If all the atomic constraints of C are valid constraints, return 176 is (—oo, +oo)

{* Step 2: Construct Gcs  • *}

4: Put C in standard form as in step 2 of Algorithm 2, Let C 3 be the resulting constraint.

Construct the constraint graph ccs representing Cs .

{* Compute minimal compound labels. *}

5: Compute the minimal compound labels (B, a) and (B', c') of the paths from 0 to c and

from A to O, respectively.

{* Compute the range of A in C. *}

6: if there is no path between 0 and X then

7: return /16 is (—oo, +oo)

8: else if there is a path from 0 to A and there is no path from X to 0 then

9: return RX is (—c, +oo) if 0 is <, return F6-'‘ is [—a, +oo) if 0 is <

10: else if there is a path from c to 0 and there is no path from 0 to c then

11: return 16 is (—oo, a') if 0' is <, return R,'( is (—oo, c' if 0' is <

12: else if there is a path from O to c and a path from c to 0 then

13: return Ii5fc is (—c, c') if 0 and 0' are <, return 4' is [—a, c') if < and 0' is <, return

f6c is (—c, a'] if 0 is < and 0' is <, return Rqc is [—c, c'J] if 0 and 0' are <

14: end if

67



68

from node 0 on Gc and on the graph obtained by reversing the edges of cc . Each one takes

O(NClogNN) time. Thus, step 3 can be done in 9(Nc/ogNN). Step 4 takes constant time.

Therefore, the complexity of Algorithm 4 is 0 (Nc/ogNN).

The results of this section generalize to the mixed arithmetic constraint case the

results of [63] on the computation of the range of a variable in an arithmetic constraint

that is a conjunction of atomic arithmetic constraints of the form X0 Y (without offset) or

X0 c, and the variables range exclusively over the integers or exclusively over the reals.

4.8 Conclusion

Arithmetic constraints with inequalities are very important in different areas of databases.

Problems related to arithmetic constraints have been studied in the past when all the variables

(attributes) range exclusively over the integers or exclusively over the reals. In order to

deal with constraints involving variables of different type (real or integer), very common

in databases, and with arithmetic constraints involving aggregate functions, the mixed

arithmetic constraints is introduced where variables are allowed to range simultaneously

over the integers or over the reals. The satisfiability and implication problems for conjunctive

mixed arithmetic constraints and the problem of computing ranges of variables in a mixed

arithmetic constraint are studied. It is shown in this chapter, as expected, these problems

are NP-hard when unequality () is allowed to occur in the constraints. Using a graph

representation for fixed arithmetic constraints that accounts for both types of variables,

necessary and sufficient conditions for all three problems when is not allowed to occur

in the constraints are provided. Finally, polynomial algorithms for the three problems are

provided and their corresponding complexity .

A motivation (and extension direction) of this work is the exploitation of these results

in studying the satisfiability and implication problems for arithmetic constrains involving

aggregate functions. These problems are hard or undecidable and the present work can be
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used to derive specific subclasses of aggregation arithmetic constraints where they can be

solved efficiently.



CHAPTER 5

CONSTRUCTING A SEARCH SPACE FOR THE VIEW SELECTION PROBLEM

Deciding which views to materialize is an important problem in the design of a Data

Warehouse. Solving this problem requires generating a space of candidate view sets from

which an optimal or near-optimal one is chosen for materialization. This chapter addresses

the problem of constructing this search space. This is an intricate issue because it requires

detecting and exploiting common subexpressions among queries and views. The approach

described in this chapter suggests adding to the alternative evaluation plans of multiple

queries views called closest common derivators (CCDs) and rewriting the queries using

CCDs. A CCD of two queries is a view that is as close to the queries as possible and that

allows both queries to be (partially or completely) rewritten using itself. CCDs generalize

previous definitions of common subexpressions. Using a declarative query graph represen-

tation for queries, both necessary and sufficient conditions for a view to be a CCD of two

queries are provided. The results are exploited to describe a procedure for generating all

the CCDs of two queries and for rewriting the queries using each of their CCDs.

5.1 Introduction

One of the most important issues in Data Warehousing is the design of a Data Warehouse.

This issue can be abstractly modeled as a problem (called materialized view selection

problem) that takes as input a set of queries and a number of cost-determining parameters

(e.g., query frequencies or source relation change propagation frequencies). The output

is a set of views to materialize in the data warehouse that minimizes a cost function

(e.g., query evaluation cost, view maintenance cost, or their combination) and satisfies a

number of constraints (e.g., storage space restrictions or view maintenance cost constraints)

[13O]. Solving the materialized view selection problem involves addressing two main

70



71

tasks: (1) generating a search space of alternative view sets for materialization, and (2)

designing optimization algorithms that select an optimal or near-optimal view set from

the search space. There is a substantial body of work dealing with the second task, often

suggesting elaborate greedy, heuristic or randomized optimization algorithms [75, 13, 147,

7O, 125, 71, 9O, 134, 93, 84]. However, these approaches assume that the search space

is available, usually in the form of multiple common evaluation plans for all the input

queries represented as an AND/OR graph (for the case of general queries) or in the form

of multi-dimensional lattices of views (for the case of star grouping/aggregation queries).

Even though the construction of multidimensional lattices is straightforward [75, 13, 125],

the construction of alternative common plans for multiple general queries is an intricate

issue. The reason is that common sub-expressions [8O] among the input queries need

to be detected and exploited, and the queries need to be rewritten using these common

subexpressions. In this chapter, the problem of constructing a search space for materialized

view selection is addressed. Clearly, this is an important problem since, if the search space

does not include a view selection that is close to the optimal, the optimization algorithms

will fail to produce satisfactory results.

5.1.1 Previous Work

The need to construct evaluation plans for multiple queries by exploiting common sub-

expressions first appeared in the area of multi-query optimization [121]. The goal there is to

determine a global evaluation plan (a plan for all the queries together) that is more efficient

to evaluate than evaluating separately the optimal evaluation plan of each query. Initially

"common subexpression" referred to identical or equivalent expressions [49]. Subsequently

the term included subexpression subsumption [8O, 21, 121]. Later, commonalities between

the queries included the possibility for overlapping selection conditions [3O]. A typical

approach for constructing evaluation plans for multiple queries is to proceed in a bottom-

up way (from the base relations to the roots of the plans) and to combine nodes from
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different plans that are defined over the same set of base relations. Equivalent nodes

are merged, nodes related through subsumption are linked with selection operations, and

overlapping nodes are linked through new nodes that are able to compute the overlapping

nodes. The disadvantage of this approach is that all the alternative plans of the input

queries need to be considered in order to guarantee that the optimal view selection is

included in the search space. Clearly, it is not feasible to generate and combine all the

alternative plans of the input queries. This approach is followed in [1O] where merge

rules are suggested for plans of queries involving selection, projection, join and grouping

aggregation operations. In this chapter, however, node combination is restricted to view

subsumption (node overlapping is ignored) and there are no results as to the completeness

of the suggested rules. [56, 55] propose an algorithm to determine a set of candidate views

for materialization for queries and views that are nested expressions involving selection,

projection, join and grouping/aggregation operations. New views are generated in the

search space by computing the ancestor of two expressions, i.e. the coarsest view using

which both expressions can be completely rewritten [96, 36]. This approach is restricted

to nested queries and views involving star joins over multidimensional star schemas. [133,

131] provide transformation rules for generating candidate views for materialization from

a set of input select-project-join queries. The transformation rules are used by heuristic

optimization algorithms that prune the space of views generated in a cost-based fashion. A

restriction of this work is that self-joins are not allowed in queries and views.

5.1.2 Contributions

The approach presented in this chapter for creating a search space for view selection

consists in adding to the alternative evaluation plans of multiple queries views called closest

common derivators and in rewriting the queries using these closest common derivators. A

closest common derivator of two queries is a view that is as close to the queries as possible

and that allows both queries to be (partially or completely) rewritten using itself. Intuitively,
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a closest common derivator does not involve join operations that are not necessary for

computing both queries. A traditional query optimizer can be used to generate alternative

evaluation plans for a closest common derivator and to choose the cheapest one among

them. It can also be used to access the cost of computing each of the queries using a closest

common derivator by viewing this last one as a base relation. A view selection optimization

algorithm can choose to materialize a closest common derivator and/or any of the nodes

(views) in its alternative evaluation plans in a cost-based manner. It is worth noting that a

closest common derivator is defined using the definitions of the queries, independently of

any of their evaluation plans. Further, a closest common derivator can be determined for

queries that involve several occurrences of the same relation (self-joins) and are not defined

over the same set of base relations.

The main contributions of the chapter are the following:

• A common derivator of two queries as a view that can be used to rewrite both queries
is defined. Based on a closeness relationship on common derivators, the concept of
closest common derivator is formally introduced. This concept generalizes previous
definitions of common subexpressions since the queries can be not only completely
but also partially rewritten using a closest common derivators.

• This chapter shows under what conditions selection and join predicates can be merged
and how their merge can be computed. The merge of two predicates is the least
restrictive predicate that is implied by both predicates, and it is used in the computation
of closest common derivators of queries.

• A declarative graph-based representation of queries and views (query graphs) is
introduced and both necessary and sufficient conditions for a query graph to be a
closest common derivator of two queries are provided in terms of query graphs.

• The previous results are used to outline a procedure for computing all the closest
common derivators of two queries. This procedure can be used within a view selection
algorithm that can decide in a cost-based manner which closest common derivators
to generate and which ones to exclude from generation, thus pruning the search space
of alternative view sets for materialization.
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5.2 Class of Queries Considered and Initial Definitions

5.2.1 Query Language

Queries and views considered in this chapter involves selections, projections, join and

relation renaming operations under set semantics. Base relations can have multiple occurrences

in a query. It is assumed that if a relation has more than one occurrence in a query, every

one of its occurrences is renamed with a distinct name. The notation Rib [R] denotes an

occurrence of a relation R renamed Hi,. The name of a relation occurrence in a query is its

new name, in case it is renamed, or its original name otherwise. Since the names of relation

occurrences in a query are distinct, relation occurrences in a query are referred to by their

name. Attributes range over dense totally ordered domains (e.g., real or rational numbers

or string spaces) I . Relation restrictions in queries are conditions formed as conjunctions

of selection and join atomic conditions. A join atomic condition is an expression of the

form C 9 B + c where C and B are relation attributes from different relation occurrences,

c is an integer or real value, and 9 E {<,<,=,>,>}. A selection atomic condition is an

expression of the form C 0 B + c or of the from C 9 c where C and B are relation attributes

of the same relation occurrence, and c and 0 are as before.

It is well known that this type of queries can be represented by relational algebra

expressions of the form (o -c (R)) where R is the Cartesian product of a number of

relation occurrences; o -c denotes the selection operator with C being a condition involving

attributes from the relations in R; flx denotes a projection operator with A being a nonempty

set of attributes from the relations in R (projected attributes of the query.)

5.2.2 Query Containment and Equivalence

Query 1 contains query Q2 (denoted (Q 1 C Q2) if there is a renaming of the projected

attributes of 1 (or Q2) that makes the answers of the two queries have the same schema

and, for every instance of the base relations, the instance of the answer of Q 1 under the

'However, the results in this chapter equally apply to attributes ranging over discreet totally ordered
domains (e.g., integers)
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common schema be a subset of the instance of the answer of Q2. Two queries Q 1 and Q2

are equivalent (denoted 1 -=-. Q2) if 1 E Q2 and Q2 E Q1.

5.2.3 Class of Queries and Views

It is assumed that queries and views are not equivalent to a query of the form Q 1 x Q2,

where Q 1 and Q2 are queries, and x is the Cartesian product operator. "Pure" Cartesian

products are rarely used in practice and can generate huge relations. If necessary, a query

1 x Q2 can be represented by the two subqueries 1 and Q2.

5.2.4 Query Rewritings

A rewriting of a query Q is a query equivalent to Q. A rewriting Q' of a query Q using

a view V is a query that references V and possibly base relations such that replacing V in

Q' by its definition results in a query equivalent to Q. Query rewritings using views can

also involve attribute renaming operations. If there is a rewriting of Q using V, then Q can

be rewritten using V and this is denoted using Q I- V . A complete rewriting of a query Q

using a view V is a rewriting of Q that references only V (and no base relations.) If there

is a complete rewriting of Q using V then Q can be completely rewritten using V and this

is denoted as Q II- V. A rewriting of Q using V that is not a complete rewriting of Q using

V is called partial rewriting of Q using V . Clearly, a partial rewriting references also base

relations.

5.2.5 Simple Rewritings

A simple rewriting is introduced to describe a rewriting of a query using views where each

view has a single occurrence in the rewriting.

Definition 8. A rewriting Q' of a query Q using a view V is simple if view V has a single

occurrence in Q'.
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If there is a rewriting of a query A using a view V, then there is also a simple rewriting

of A using V. This statement is not necessarily true for complete rewritings. It is possible

that there is no complete simple rewriting of a query A using a view V even if there is a

complete rewriting of A using V.

Example 12. Consider the query A = R1[R] VIRLA<R2.B R2 [R] and the view V = R3[R].

The query Q' = Vi[V] txlvi.A<v2.B V2[V] is a complete rewriting of A using V. Clearly,

there is no simple complete rewriting of A using V.

In the following of this chapter only simple rewritings are considered, and 'rewriting'

means 'simple rewriting'. This assumption concerns both complete and partial rewritings.

Based on the previous definitions the following proposition can be shown.

Proposition 5.2.1. Let 1 and A2 be two queries. If Q1 11- A2 and A2 11-- Ai, 1 -== A2.

5.2.6 Minimal Rewritings

It is also interesting to consider rewritings where the computation done in the view is not

repeated when evaluating the query using the view materialization. To this end minimal

rewritings are introduced.

Definition 9. A rewriting A' of a query Q using a view V is minimal if for every relation

R that has n, n > 0, occurrences in A, R has k, 0 < k < n, occurrences in V and n — k

occurrences in A'. If there is a minimal rewriting of A using V then A can be minimally

rewritten using V, and this can be denoted as A 1-n, V.

Example 13. Consider the query Q = 11R i .A(R1[R]NRi.A<R2.B R2[R] NR2.c<R3.D R2 [R])

and the view V = HR4. A, R5.B, R5. c (R4 [R] IX1R4.A<R5.B R1[R]).

A ' = HV.A(V NV.A<R2 .B R2 [R] NR2 .c<R3 .D R3 [R]) is a rewriting of Q using V that is

not minimal: relation R has three occurrences in A, two in V and two in A'. In contrast,

Q" = HVA(UV.A<V.B(V) NVC<R3.D R3[R]) is a minimal rewriting of A using V.
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Roughly speaking, under the assumptions about redundant relation occurrences stated

below, a minimal rewriting of a query Q using a view V has the minimum number of base

relation occurrences among all the rewritings of Q using V. Notice that there might not

exist a minimal rewriting of a query Q using a view V even if a rewriting of Q using V

exists. This can happen if the attributes required for a minimal rewriting are not projected

out in the view.

Example 14. Consider the query Q = niz 1 .A(Ri[R]MR 1 .A<R2 .B R2 [R] ix11:12.c<R3.D R2 [R] )

of Example 13 above and the view V' = HR4.A, R5. B(R4[R] V1R4. A< R5,B R5 [R]) • View V' is

similar to view V of Example 13 with the exception of attribute R5 .0 which is not projected

out in V'. Query Q' = HIP .A(Vf .A<R2.B R2[R] MR2.c<R3.D R2 [R]) is a rewriting of Q

using V' that is not minimal. One can see that there is no minimal rewriting of Q using V'

since attribute R5 .0 required to join V' with R2 is not projected out in V'.

A minimal rewriting of a query Q using a view V may not exist even if a complete

rewriting of Q using V exists. In this case, the attributes required for a minimal rewriting

are projected out in the view V. Therefore, what prevents the existence of a minimal

rewriting is the number of occurrences of a relation in view V which may be greater than

that of the same relation in query Q.

Example 15. Consider the query Q = [R] ), which has a single occurrence of

R, and the view V = HR2.A, B3. c ( R2 [R] IX1 R2.B<R3.B R3[1: ]), which has two occurrences

of R. Query Q' = IlvA(V) is a complete rewriting of Q using V. Clearly, Q cannot be

minimally rewritten using V.

The next proposition shows that queries that can be minimally rewritten using each

other are equivalent.

Proposition 5.2.2. Let Q19 and Q2 be two queries. If Q19 Fm, Q2 and Q2 Fm Q1 Q1 Q2 •
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5.2.7 Redundant Relation Occurrences

The definition of minimal rewritings above introduces some dependency on the syntax of

queries and views: a minimal rewriting of a query A using a view V might not exist even

if a minimal rewriting of an equivalent query Q' using V exists. Similarly, a minimal

rewriting of a query A using a view V might not exist even if a minimal rewriting of an

A using a view V' equivalent to V exists. The reason is that query A and/or view V may

contain redundant relation occurrences. This dependency is refuted below after formally

defining redundant relation occurrences.

Definition 10. A relation R has a redundant occurrence in a query A, if A can be rewritten

with fewer occurrences of R.

Example 16. Consider the query Q = 11R1 .,4(R1[R] HR1 .B<R2 .B R2 [R] NR2.c<R3.0 R2 [R]

Query A has two redundant occurrences of relation R: the query A' = IIR4 .A(R4[R] ),

which has a single occurrence of R, is equivalent to Q. Consider also the view V =

11R5.A,R6.C(R1[R] lx1R5.B<R6 .B R6 [R]) . It is not difficult to see that view V does not have

any redundant relation occurrences. Query Q" = MV.c=R3.0 R2 ERD is a minimal

rewriting of A using V. Clearly, A' cannot be minimally rewritten using V.

Detecting redundant relation occurrences and minimizing queries, that is, removing redundant

relation occurrences from queries, has been studied in the past for the class of queries

considered here [89]. In the following it is assumed that queries and views do not contain

redundant relation occurrences. This assumption guarantees that minimal rewritings are

independent of the syntax of queries and views.

5.3 Closest Common Derivators of Queries

In this section the concept of closest common derivator of queries is introduced.

Definition 11. Let A 1 and Q2 be two queries and R1, R2 be two sets of relation occurrences

from Q 1 and A2, respectively, that have the same number of relation occurrences of each
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relation. A common derivator (CD) of A 1 and A2 over the respective sets R1 and R2 is a

view V such that there is a minimal rewriting of Q 1 (resp. A2) using V that involves V and

only those relation occurrences of 1 (resp. A2) that do not appear in R 1 (resp. R2.)

Notice that queries A 1 and Q2 need not be defined over the same set of base relations,

and their rewriting using V need not be complete. Clearly, V has as many relation occurrences

of each base relation as they appear in R 1 and R2.

Example 17. Consider the relation schemas U (F, C), R(A, B ,C), S (C D), and T(D , E),

and the queries

A1 	 (U NU.A<R1.A R1[R]lx1 R1.B<R2 .A 0B<3 (R2 [R]) VIR2.c<R3.B ail>4AA<7

(R3[R]) 	 0D>3 (S1[51)), and (22 =11/74.c,R5.A,S3.0 (S2[5 ] VIS2.C<R4.0 0B=3 (R4 [RD

NIR4.c=R5.B 0A>5AA<9 (R5 [R]) I>IR5.c<S3.0 073>3 (S2 [S]) 1>IS3.D.c=T.D T), Query A1 has

three occurrences of relation R and one occurrence of relation S, while query A2 has two

occurrences of relation R and one occurrence of relation S. These schemas and queries are

used as a running example in this section.

The view

V' — R6 [R] 1><IR6.C<R7.B R7[R] is a CD of 1 and A2 over {R2 , R3} and {R4 , R6}. The

views

V" = R6 [R] NR6.c<R7.B 0A>3AA<9 (R7[RD 11:17.c<S4.0 S4[05], V" = 0B<3 (R6[R]) 1R6.c<R7.B

0A>3AA<9 (R7[R)) NR7.C<S4.0 0D>3 (S4[S]),

V = r1R6.A,R6 .B,116.c,R7.A,R7.13,R7.c,S4.D (0B<3 (R6 [R]) MR6 .C<R7 .B 0A>3AA<9 (R7 [R]) NR7.c<S4.0

0D>2 (S4[S})) are CDs of 1 and A2 over {R2, R2, S1} and {R4, R5, S2}.

Both queries have minimal rewritings using each of the views V', V", V'" and V. For

instance, Q 1 and Q2 can be minimally rewritten using V as follows:

= 11R1.B,R6.A,R7.0 (U fl4 Rl R IX1 R1.B<V4.116.A a R6.B<3AR7.C=S4.0 AR7.A>4AR7.A<7 AS4.D>3

(V)), and

= 11R4 .c,R7 .A,S4.0 (S2 [S] l>4 .92.c<V4.R6.0 0R6.c=R7.BAR6.B=3AR6.c=R7.BAR7.A>5AR7.A<9 (V)

T).
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View V has two occurrences of R and one occurrence of S. Rewriting A'1 has one

occurrence of R, while rewriting A I2 has one occurrence of S.

A CD of two queries can be "closer" to the queries than some other CD of the same

queries. This concept of closeness is explained below with an example before providing

a formal definition. Then it is used to define a closest common derivator of two queries.

Roughly speaking, a closest common derivator of two queries is a CD that has as many

relation occurrences as possible, and as few attributes and as few tuples in its answer as

possible.

Example 18. Consider the queries and the CDs of example 17.

• The CD V" = a-R6 .c<R7 .BAR7 .A>3AR7 .A<9AR7 .c<s4 .c (R6[R] X Nil] X S4[S]) is
closer to A 1 and A2 than the CD V' = ef R,6 .C<R7 .B(R6[1:1] x R7 [R]) because:

(a) V' is defined over the relation occurrence sets R' 1 = {R2 , R3} of A 1 and R'2 =
{li4, R5} of Q2 while V" is defined over the relation occurrence sets R" 1 =
{R2 , R3, Si} of A 1 and R"2 = {R4, R5, S3} of A2 and clearly R' 1 C R" 1 and
Rf2 C 1111 2.

(b) V' is not more restrictive than V" on their common relation occurrences (in fact,
V' is less restrictive than V")

Notice that the following conditions are satisfied:

(a) V" I-- V'.

(b) 0R6 .c<R7 .BAR7.c<s4 .c (R6 [R]x R7[R] X S4 [S]) 1Y

0-R6.c<R7.BAR7.A>3AR7.A<9AR7.c<S4.0 (R6 [R] x R7 [R] x S4 [8]).

• The CD VI" = o-R6 .B<3AR6 .c<R7 .BAR7 .A>3AR7 .A<9AR,c<s4 .cAs4 .D>3 (R6[R] x R7[R1
x 84 [S]) is closer to A 1 and Q2 than the CD V" because:

(a) V" and V' are defined over the same relation occurrence sets of Q 1 and A2.

(b) V`" is more restrictive than V" on their common relation occurrences.
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In this case the following conditions are satisfied:

(a) V'" F- V".

(b) Gr R6.B<MR6.c<R7.BAR7.A>3AR7.A<MR7.c<S4.CAS4.D>3 (R6 [R] X R7[R] X S4[51) IF
Cr R6 .c<R7..BAR, T.A>3 ^ R7.A<9AR7.c<S4.C(R6[R] X R7[R] X S4[S]).

(c) V" V".

• The CD V = LTR6.A,R,B,R6 .c,R,A,R,B,R7 .c,s4 .D

(aR6 .B<3AR, .c<R,BAR7 .A>3AR,A<9AR7 .c<s4 .cAs4 .D>3 (R6 [R] X R7[R] X S4 [S])) is
closer to A 1 and Q2 than the CD V"' because:

(a) V' and V are defined over the same relation occurrence sets of Q 1 and A2.

(b) V and V' are equally restrictive on their common relation occurrences.

(c) The set of projected attributes of V is a proper subset of that of V"'.

The following conditions are satisfied:

(a) V I-- V"'.

(b) 0 R6 .B<3AR6.c<R7.BAR7.A>3AR7.A<9AR7.c<S4.0 ^ S4 .D>3(R6[R] x R7 [R] x S 4 [S])
Cr R6.B<3A.116.c<R7.BAR7.A>3AR7.A<MR7.c<S4.0 S4.D>3(R6[R] X R7[R] X S 4[S]) •

(c)	 I,V V.

In general, the names of relation occurrences in two CDs that are related with a

closeness relationship may be distinct even if these CDs are defined over the same relation

occurrence sets.

Definition 12. Let A 1 and A2 be two queries, V = Hx(crc(R)) be a CD of 1 and A2

over R 1 and R2, V' = 11X ' (0-C(RI)) be a CD of Q 1 and A2 over R' 1 and R'2, and let

R1 C R' 1 and R2 C R'2. The CD V' is closer to 1 and A2 than the CD V (denoted

V' -< Q1 ,Q2 V) if the following conditions are satisfied:

(a) V' H V .
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(b) If ac ' (R') IF ac(R) then V I,V V'.

Clearly, two CDs of the same queries may not be related with a closeness relationship,

even if they are defined over the same relation occurrence sets. Now a closest common

derivator of two queries is formally defined as follows.

Definition 13. Let 1 and A2 be two queries. A closest common derivator (CCD) of 1

and Q2 over R 1 and R2 is a CD V of Q 1 and A2 over R 1 and R2 such that there exists no

CD of A1 and A2 that is closer to A 1 and A2 than V.

Often, when referring to CDs and CCDs, the relation occurrence sets over which they

are defined is not explicitly mentioned, if this is not necessary for accuracy.

Example 19. Consider the queries 1 and A2 and the CDs V', V", V"' and V of Example

17. The CDs V', V" and V' are not CCDs of 1 and A2 since, as shown in Example 18,

for each of them there is a CD of Q 1 and Q2 which is closer to Q 1 and Q2. However, it can

be shown that V is a CCD of A 1 and A2.

For queries related through a minimal rewriting the following proposition holds.

Proposition 5.3.1. Let 1 and A2 be two queries. If 1 Fm A2 then Q2 is a CCD of 1

and A2.

Proposition 5.3.1 does not hold for a simple rewriting, even if this is a complete

rewriting. As shown in Example 15, it is possible that 1 V m Q2 (in which case A2 cannot

be a CCD of A 1 and A 2) even if A 1 IF Q2.

Two queries may have several CCDs. The relation occurrence sets of these CCDs for

each query may be disjoint, overlapping or contained.

Example 20. Consider the queries Q 1 and A2 of Example 17. In Example 19 a CDD V

of Q 1 and Q2 over {R2, R2, S1} and {R4, R5, S3} is shown. It can be shown that view

U = lls5.c,S5.D,Rs.A,R8.B,R8.c( 515[5 ] lx1S5.c<R8.0 R8 [R]) is a CCD of 1 and A2 over
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{S1 , R2 } and {S2, R4}, respectively. Set {S1 , R3 } is contained into {R2, R2, S1}, while set

{ S2 , R4 } overlaps with {R4 , R5 , S2}.

In the next sections, a method for computing all the CCDs of two queries along with

minimal rewritings of these queries using each of the CCDs is presented.

5.4 Condition Merging

This section shows how conditions can be merged. Merged conditions are used later to

construct CCDs of queries.

A condition C is consistent if there is an assignment of values to its attributes that

makes C true. A condition that is not consistent is called inconsistent. A condition C is

valid if every assignment of values to its attributes makes C true. For instance, C = C is a

valid condition. Clearly, a condition is valid if it is a conjunction of valid atomic conditions.

A condition CC implies a condition C2 (notation C1 C2) if every assignment of values

to the attributes of CC that makes C1 true, also makes C2 true. Two conditions C1 and

C2 are equivalent (notation CC --=-= C2) if CC C2 and C2 C1. The complexity of the

consistency and implication problems have been studied previously [116, 89, 138, 64, 63]

for attributes ranging over dense totally ordered domains and for attributes ranging over

the integers. Both problems have been shown to be polynomial for the class of conditions

considered here.

A selection operation with an inconsistent condition returns an empty relation, while

a selection operation with a valid condition returns all the tuples of the input relation. In the

following, it is assumed that query conditions are consistent and not valid. Further, it is also

assumed that a query condition C does not include valid atomic conditions (otherwise, the

condition resulting by removing from C all the valid atomic conditions which is a condition

equivalent to C can be considered.)
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Definition 14. Two conditions C1 and C2 are mergeable if there is a non-valid condition

C such that C1 C and C2 C and there exists no condition C', C' C, such that

C1 C' , C2 1 C' and C' C. Condition C is called a merge of C1 and C2.

Figure 5.1 (a) Conditions C2 and C4 (b) mer ge(C3 , C4).

A merge of two conditions C 1 and C2 is unique (otherwise, the conjunction of two

non-equivalent merges C' and C" of CC and C2 is a merge of CC and C2 that implies both

C' and C"). The merge of C1 and C2 as can be denoted as merge(Ci , C2).

Example 21. Let CC be the condition B < D + 1.2 A B > D and C2 be the condition

B < D A E < H. The condition CC A C2 is consistent. It can be shown that CC and C2 are

mergeable and merge(Ci , C2 ) is B < D + 1.2.

Let C2 be the condition C > —5.1 A C < 6 and C4 be the condition C > 7 A C < 9.

The condition C2 A C4 is inconsistent. It can be shown that C2 and C4 are mergeable and

mer ge(C3 , C4 ) is C > —5.1 A C < 9. Conditions C3 and C4 and their merge are depicted

on Figures 5.1(a) and (b).

Let C5 be the condition C > 5 and C6 be the condition D= E + 3 A B < 3. The

condition C5 A C6 is consistent. It can be shown that no non-valid constraint can be implied

by both C5 and C6, and therefore, C5 and C6 are not mergeable.

Let C7 be the condition A < 5 and C8 be the condition C > 7. The condition C7 A C8

is inconsistent. It can be shown that C7 and C8 are not mergeable.

The previous example shows that the mergeability of two conditions and the consistency

of their conjunction are orthogonal properties. The rest of this section shows how the merge

of two conditions can be computed, starting with atomic conditions.
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Example 22. Let the atomic conditions C 1 and C2 be D > E and D > E +3, respectively.

Conditions C 1 and C2 involve the same attributes D and E. They are depicted on Figure

5.2(a). Clearly, C2 Al. Conditions C 1 and C2 are mergeable and merge(Ai, C2) = Al.

Figure 5.2 (a) Mergeable atomic conditions (b) Non-mergeable atomic conditions.

Let the atomic conditions C2 and C4 be D > E and E < 3.5, respectively. Conditions

C2 and C4 do not involve the same attributes: condition C2 involves attributes D and E

while condition C4 involves only attribute E. Clearly, C2 C4 and C4 li C2. One can

see that C2 and C4 are not mergeable.

More generally, a proposition is shown below. For this proposition it is assumed that

atomic conditions do not involve equality (=).

Proposition 5.4.1. Let C 1 and C2 be two atomic conditions that do not involve equality.

Conditions C 1 and C2 are mergeable if and only if C 1 C2 or C2 Al. If C 1 C2,

merge(A i , C2) = C2. If C2 CI, merge(Ai, C2) = Cl.

As shown in Example 22 an atomic condition can imply another atomic condition

that involves the same attributes. This is not the case for atomic conditions that do not

involve the same attributes!

Proposition 5.4.2. Let C 1 and C2 be two atomic conditions that do not involve the same
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Thus, two atomic conditions can be mergeable only if they involve the same attributes.

Let us now consider general conditions. An atomic condition that involves equality

can be equivalently replaced in a condition by the conjunction of two atomic conditions that

involve < and >. For instance, D = E+ 2 can be replaced by D < E+ 2 A D > E+ 2. An

atomic condition C 1 in a condition C is strongly redundant in C, if there is another atomic

condition C2 in C such that C2 Al. For instance, D < E + 2 is strongly redundant

in a condition C if the atomic condition D < E is also present in C. Removing from

a condition C an atomic condition that is strongly redundant in C results in a condition

equivalent to C. Thus, without loss of generality, it can be considered that conditions do

not involve equality and do not include strongly redundant atomic conditions.

In order to determine the merge of two conditions, a form for conditions that directly

represents the atomic formulas that can be implied by the conditions is needed.

Definition 15. A condition C is in full form if:

1. For every atomic condition C i such that C Ai , there is an atomic condition Aj in
C such that Aj C.

2. Condition C does not include strongly redundant atomic conditions.

A query nx (aC (R)) is in full form if its condition C is in full from.

Every condition can be equivalently put in full form in polynomial time by computing

the closure of its atomic conditions [89, 138, 64] and removing strongly redundant atomic

conditions. Note that a condition C in full form may include redundant atomic conditions,

that is, atomic conditions that can be implied by the conjunction of the rest of the atomic

conditions in C.

The following therorem determines whether two conditions are mergeable and shows

how their merge can be computed. By convention, it is assumed that if two conditions C1

and C2 are not mergeable, merge(Ci , C2 ) = T, where T denotes the truth value TRUE.
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Theorem 10. Let C1 and C2 be two conditions in full form that do not involve equality.

Let

.A/1 =	 n	 merge (C i , Aj ).
A; in c1 , Ai in c2

where Ai and Ai denote atomic conditions. If M = T, conditions C1 and C2 are not

mergeable. Otherwise, CC and C2 are mergeable and M = merge(C1,C2).

Example 23. Applying Proposition 1O to the conditions of Example 21 validates the claims

made there.

The merge of two conditions can be computed in polynomial time. Usually the

number of atomic conditions in a query is not large. Therefore, the merging of conditions

can be performed efficiently even for a large number of queries.

5.5 Computing CCDs using query graphs

This section shows how queries can be represented using graphs called query graphs. Then,

both necessary and sufficient conditions for a view to be a CCD of two queries in terms

of query graphs are provided. These conditions are used to compute all the CCDs of two

queries.

Definition 16. Given a query A = lix(aC(R)), a query graph for Q is a node and edge

labeled graph C = (N, E) where:

1. K is the set of nodes of G. Set K comprises exactly one node for every relation
occurrence in R. Every node is labeled by:

(a) the name R of the represented relation occurrence and the name of the corresponding
relation if this last one is renamed, and

(b) the set PR of the projected attributes of the represented relation occurrence
(those attributes of this relation occurrence that appear in X.)

Nodes in G can be uniquely identified by the name of the represented relation occurrence.
In the following a node in c is identified with the represented relation occurrence.
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2. E is the set of edges of Cg.  For every node R in K, if R has an attribute involved
in a selection atomic condition in C, there is a loop edge (R, R) in E labeled by the
conjunction CR of all the selection atomic conditions in C involving attributes of
R. For every two nodes R, S in K that have a join atomic condition in C involving
an attribute of R and an attribute of S, there is an edge (R, 5) in E labeled by the
conjunction CRS of all the join atomic conditions in C involving one attribute of R
and one attribute of S. The conditions CR and CRS are called edge conditions of the
edges (R, R) and (R, 5), respectively.

Example 24. Figure 5.3 shows the query graphs G1 and g2 for the queries 1 and A2 of

Example 17. The names of the nodes are shown by the nodes. The projected attributes of

a node follow the name of the node separated by colon. Edge conditions are shown by the

corresponding edges.

Figure 5.3 (a) Query graph G1  (b) Query graph G2.

In the following, a query is identified with its query graph. The concept of a candidate

CCD of two query graphs can be defined in the following. This definition uses node

mapping functions between two query graphs. If C is a condition, and f is a node mapping

function that maps all the relation occurrences (nodes) of C, f (C) is used to denote the

condition obtained by renaming the relation occurrences in C according to the relation

renaming induced by f . Further, if R.A is an attribute of the relation occurrence Ri , and
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f is a node mapping function that maps H i to a relation occurrence R3 , f (Ri .A) is used to

denote the attribute R3.A.

Definition 17. Let yi =(Ni, E1) and 02 = (N2, 6.2) be the query graphs of two queries in

full form, and R 1 and R2 be two sets of nodes in G1 and 02, respectively (R1 C N1  and

R2 C K2). A query graph G = (A r , E) is a candidate CCD of 01 and 02 over R1 and R2

if and only if there are two one-to-one onto functions A . and 12 from K to R 1 and from N

to R2, respectively, such that:

1. For every node R E K, the nodes R, f1(R) and f2 (R) are relation occurrences of
the same relation.

2. For every (R, 8) E E, (f1(R), MS)) E Єi , i = 1, 2. That is, edges in 0 are mapped
through fib, i = 1, 2, to edges in 0i .

3. For every condition C of an edge (R, 5) E E, the condition f 1 1 (C1 ), where CC  is
the condition of the edge (fi(R), li(S)), and the condition (C2), where C2 is the
condition of the edge ( f2 (R), f2(5)), are mergeable and C = merge(k l (C1), .f2^-1 (C2)) •
That is, each condition of an edge in 0 is the merge of the conditions of the images
of this edge in G1 and 02 under the relation occurrence renamings induced by the
inverse of the node mapping functions.

4. For every node R E K, its set of projected attributes is Ui=1,2 (Yi U Z), where:

(a) Y is the set of attributes R.A such that f1 (R.A) is a projected attribute of fi(R)
in 0i , and

(b) Zip is the set of attributes R.A such that attribute f2(R.A) is involved in an
atomic condition C i of the condition of an edge (fi(R), MS)) of Gib and C

fi^-1(Ai), where C is the condition of the edge (R, 5) of G. Edge (f(R), fi(S))
can be a loop edge, i.e. fi^-1(S) can be identical to fi^-1(R).

5. There is no query graph 0' = (K', E'), and extensions f i = 1, 2, of fib from K' to
R'1, where R C R'i C .M, that satisfy the properties 1 - 4 above.

Example 25. Figure 5.4 shows two candidate CCDs 0 and 0' of the query graphs 0i and

02 of Example 24. Query graph 0 on Figure 5.4(a) is a CCD of GM and 02 over the set of

nodes {R2, R2, S1} and {R4 , R5, S1}. Query graph 0' on Figure 5.4(b) is a CCD of Gi and

02 over the set of nodes {S1, R2} and {S2, R4}.



Figure 5.4 Two CCDs of query graphs (a) GI and (b) G2.

Clearly, a candidate CCD of two query graphs is a CD of these query graphs. Next

how a closeness relationship between two candidate CCDs can be expressed in terms of

query graphs is shown below.

Proposition 5.5.1. Let G1 = (N1 , E1 ) and G2 = (K2, Є2) be the query graphs of two

queries in full form, and R1, R2, R'1 and R' 2 be sets of nodes such that R 1 C R'1 C Ni

and R2 C R'2 C K2 . Let also G = (K, E) be a candidate CCD of G1 and G2 over R1, and

R2 and A' = (Al', E') be a candidate CCD of GI and G2 over R' 1 and R' 2. A' 
-. g1 ,g2 G if

and only if G and g' are not equivalent and there is a one-to-one node mapping function f

from A to A' such that:

1. For every node R E K, the nodes R and f (R) are relation occurrences of the same
relation.

2. For every (R, 8) E E, (l (R), f (S)) E E'.

3. For every condition C of an edge (R, 8) E E, f (C) J C, where f (C) is the
condition of the edge (l (R), f (S)) E E'.

4. If f is an onto function (that is, if Q and A' have the same number of nodes), for
every node R E Al, PR D PR', where PR is the set of projected attributes of node R
and PR' is the set of projected attributes of node R' = 1 (R).

The following theorem provides necessary and sufficient conditions for a query graph

to be a CCD of two query graphs.



91

Theorem 11. A query graph g is a CCD of two query graphs GI and A2 over R1 and R2

if and only if G is a candidate CCD of G1 and G2 over R1 and R2, and there exists no

candidate CCD A' of G1 and G2 over R' 1 and R'2, where R1 C R' 1 and R2 C R'2, such

that A' -. 'gm,g2c-

Theprevious results suggest a process for computing all the CCDs of two queries

which is outlined below.

Input: two query graphs G1 = (N1, E1) and G2 = (N2, E2).

Output: the set C of all the CCDs of G1 and g2

1. Compute the set C of all the candidate CCDs of G1 and g2 by identifying node
mapping functions f from K1 to AG that map an edge (R 1 , S1) E E1 to an edge
(R2 , S2) E E2 such that the condition 1(C1 ), where CC is the condition of (R1, Si),
and the condition C2 of (R2 , S2 ) are mergeable.

2. Remove from C a candidate CCD g of G1 and G2 if there is a candidate CCD g' of
GI and G2 such that G' --`gl ,g2 G*

The previous process can be extended in a straightforward way to generate also

minimal rewritings of the queries using the computed CCDs based on the identified node

mapping functions.

5.6 Experimental Results

This sections shows the complexity of the algorithm of finding all candidate CODs between

two given queries. The performance of this algorithm depends on several factors such as

the number of occurrences, the number of overlapping relations and the number of self-join

occurrences of the pair of queries. Note that in these experiments, when the candidate

CCDs between queries are computed, the rewritings of each query using the candidate

CCDs are generated at the same time.

The number of overlapping occurrences of relations between the two queries has a

significant effect on the time of computing all candidate CCDs between two queries. For
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two queries Q1  and Q2, an overlapping factor OF = 2nc/(nr1 + n„) is introduced to

measure the overlapping between them. n r1 and nr1 represent the number of relations in

Q1 andQ2,respectively. n, is the number of common relations of Q1 andQ2.Figure

5.6 shows the time needed to find all candidate CCDs between two queries when the

number of relation occurrences in each query increases from 4 to 30. Three curves are

shown in Figure 5.6, each corresponding to a specific overlapping factor, 0, 0.5 and 1.0,

respectively. No self-join is allowed in either query of Q 1  and Q2. When OF = 0, there

is no overlapping at all between Q 1  and A2. The algorithm can detect that there is no

candidate CCD between Q 1 and Q2 very fast. When the overlapping factor OF increases

from 0 to 0.5 and 1.0, the running time of finding the candidate CCDs between 1 and

Q2 also increases. When OF = 1, the relation occurrences of Q1 are exactly identical

to that of Q1 . In this case, the algorithm finds all candidate CCDs between Q1 and Q2

in 1 millisecond and 10 milliseconds when there are 1O and 30 relation occurrences in

each query of Q1 and Q2, respectively. The result in Figure 5.6 shows that the running

time finding all candidate CCDs between two queries scales well to the number of relation

occurrences in each query.

The number of self-joins in each query also has a significant effect on the running

time of computing all candidate CCDs between two queries. This is because self-joins

introduce different mappings of relation occurrences of the two queries. A self-join factor

SF = no/n,r is introduces to measure the number of self-joins in a query. nr is the number

of relations in the query. no is the number of relation occurrences in the query. The bigger

a self-join factor is, the more self-joins exists in a query when the number of relation

occurrences is fixed. When SF = 1.O for a query Q, there is no self-join at all in Q.

When SF = 2.0, each relations occurs twice averagely in the query, which represents a

heavily used self-join in the query. Figure 5.6 shows the running time of computing all

candidate CCDs between two queries when the number of relation occurrences in each

query increases from 4 to 32. The overlapping factor is fixed to be 0.5. Three curves are



Figure 5.5 Time of finding candidate CCDs between queries for different overlapping
factors.

shown in Figure 5.6, each corresponding a different self-join factor, 1.O, 1.5 and 2.O. When

there are 30 relation occurrences in each query, the running time of finding all candidate

CCDs between the queries increases from 4 milliseconds to 10 milliseconds when the self-

join factors in each query increase from 1.0 to 2.0 The running time of computing all

candidate CCDs of two queries scales well to the number of self-joins in both queries. This

can be explained as follows: when the two queries are quite similar, there is less possibility

to build many CCDs. This indicates less mappings need to be considered. When the two

queries are not similar, there is less possibility to build big CCDs.

5.7 Conclusion

The problem of constructing a search space for materialized view selection is addressed

in this chapter. This is an intricate problem since it requires the detection and exploitation

of common subexpressions between queries and views. A novel approach which is based

on adding to the alternative plans of the queries CCDs, and on rewriting the queries using

these CCDs is suggested. CCDs are defined using the query definitions and do not depend



Figure 5.6 Time of finding candidate CCDs between queries for different self-join factors.

on a specific query evaluation plan. CCDs generalize previous definitions of common

subexpressions since two queries can be partially rewritten using their CCD. Adding CCDs

to the alternative evaluation plans of the queries generates a search space which is expected

to comprise all the interesting views for materialization since the CCD of two queries is as

close to these queries as possible. A traditional query optimizer can be used to generate

alternative evaluation plans for a CCD. The existence of a CCD in the search space does

not force its materialization by the view selection algorithms, nor does it exclude the

materialization of other nodes (views) in any of its alternative evaluation plans.

CCDs are formally defined based on a closeness relationship on CDs. Using a

declarative query graph representation for queries, necessary and sufficient conditions for

a view to be a CCD of two queries are provided. Based on these results, a process for

computing all the CODs of two queries and for generating minimal rewritings of the queries

using their CCDs is outlined.



CHAPTER 6

AN EXTENDED APPROACH FOR SEARCH SPACE CONSTRUCTION

The previous chapter proposes approaches of finding candidate CCDs of two queries. In

most cases, a candidate CCD of two queries represents all the common computations

of these two queries. The concept of CCD can be further extended to more than two

queries by finding the CCDs of CCDs and other queries or CODs. For a general view

selection problem, the more common computation included in a view, the better this view

be materialized. CCDs of queries can be used to construct the search space of a view

selection problem. In this chapter, the concept of CCD between two queries is further

extended to include some computation of one of the queries. This extension is implemented

and the experimental results shows it brings both some benefit and some overhead to a view

selection problem. Whether this extension is used depends on the specific instance of the

view selection problem.

6.1 Introduction

Current databases and warehouses are getting bigger in size. Also, queries are getting more

complex (e.g., queries involving roll-up and drill down operations and top-k queries) [129]

while the user's requirements on query performance are getting stricter. Traditional query

optimizers based on relations and indices can not satisfy these new needs. Materialized

views have been found to be a very efficient way to speed up query evaluation. They are

increasingly supported by commercial database management systems [14, 151, 8]. A lot

of research work has focused on the problem of view selection, which can be abstractly

modeled as follows: given a set of queries and a number of cost-determining parameters

(e.g., query frequency/importance and source relation update propagation frequencies),

output a set of view definitions that minimizes a cost function and satisfies a number of
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constraints. The cost function can be, for instance, the query evaluation cost, the view

maintenance cost, or a combination of them. A constraint can be a storage space constraint,

or an upper bound on the materialized view maintenance cost [13O]. Depending on the type

of problem considered, the selected views can be permanently materialized (e.g., in the

case of the data warehouse design problem) or transiently materialized (e.g., in the case of

intermediate results during the concurrent evaluation of multiple queries) or both (e.g., in

the case of the maintenance of multiple materialized views where some views are computed

because they are permanently stored while other views are stored transiently as auxiliary

views during the maintenance process, in order to assist the maintenance of multiple other

views [1O6, 144]).

Most the work on view selection problem focuses on data cube operations on multi-

dimensional datasets [75, 13, 125, 85, 1O1, 31]. The reason is not only that this kind of

operations is particularly important in On Line Analytical Processing(OLAP) queries, but

also because the search space for the problem with this simplified class of queries can

be easily modeled and constructed as a multi-dimensional lattice. There are also some

works on view selection problem on general database systems. However these approaches

assume, explicitly or implicitly, the existence of a search space in a form of an AND/OR

graph [118, 69, 71]. However, these AND/OR graphs require the construction of alternative

common plans for multiple general queries and the common subexpressions among input

queries need to be detected and exploited. This is an intricate problem. Further, the original

queries need to be rewritten using the common subexpressions.

In order to determine a search space for a view selection problem, common sub-

expressions among workload queries need to be identified. These common subexpressions

represent part of the work needed to compute a query. When identified they can be computed

only once and the result be used by all queries that share it. This is expected to importantly

save computation time. Depending on the problem, a common subexpression might also be

a good candidate view for storage (e.g., in the case of the data warehouse design problem).
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This chapter provides an extension to the approach of finding common subexpressions of

queries introduced in the previous chapter.

The concept of common subexpression initially referred to identical or equivalent

expressions [49]. Later on, the term included subsumption [81]. Then the term included

overlapping selection conditions [3O]. More generally. the term common subexpression

between two queries refers to a view that can be used in the rewritings of both queries,

either completely or partially [94]. One approach to exploit common subexpressions is on

the query evaluation plan level [121, 12O, 1O6]. This method can give the global evaluation

plan in addition to selecting a set of views to materialize. It requires the enumeration of

all possible evaluation plans for all queries in the workload. Although some heuristics

can be applied to reduce the number of evaluation plans considered, this method is still

too expensive when the number of queries is big or when the queries in the workload are

complex. The resulting search space is also too big for most view selection problems.

Another approach to exploit common subexpressions is on the query definition level[30,

94, 129]. In [3O], all queries in a workload are represented as a global multi-graph. Using

heuristic transformation rules, this multi-graph is transformed to a one where no more

transformations can be applied. This approach can give the common subexpressions as

well as the corresponding rewritings. All the queries in the workload can be considered

together. However, this chapter assumes there are no self-joins in the queries and this

assumption is too restrictive for the queries of current applications. In [94], a general

concept of common subexpression is introduced and some constraints (e.g., key/foreign

key constraints) are considered. An artificial common subexpression (common subsumer)

between a pair of queries is constructed if there is no subsumption relationship between

them. Then rewritings (called compensations) of the original queries using the common

subexpressions are given. This approach considers query pairs that follow some specific

patterns. In [129], common subexpressions between different parts of one single query are

exploited and used to apply multi query optimization on a single query. The algorithm
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to exploit commonalities in this chapter is more on a topology similarity level than on a

predicate level. This is because it is not known in advance which parts of the query need

to considered for comparison. In general, the problem of answering queries using views is

a NP-hard problem [2]. Implementation aspects of this problem, for restricted classes of

queries and views have been addressed in [112, 151].

The previous chapter defines CCDs by matching a relation occurrence in one query

to at most one relation occurrence in the other query. In this chapter, this restriction is

relaxed. It is shown that this relaxation brings more computation in the CCDs. Additionally,

it reduces the size of the search space (by reducing the number of CCDs). Both improvements

are expected to be beneficial to the subsequent application of view selection algorithms.

6.2 Maximum Commonality Between two Queries

6.2.1 Queries and Rewritings

Just as in the previous chapter, the queries considered in this chapter are select-project-join

(SPJ) queries, possibly with self-joins. This class of queries constitutes the basis for

more complex queries that involve grouping aggregation operations. For simplicity of

description, the relational algebra expression Grp (σc(O)) is used to represent a query. O

denotes a set of occurrences representing their Cartesian product. C denotes a set of atomic

conditions (conjunctive queries are assumed). P denotes the set of projected attributes.

Set-theoretic semantics is assumed. Since self-joins are allowed in queries considered, the

same relation may occur more than once in O. Therefore, relation occurrence renaming

may be needed. For simplicity, each occurrence is given a unique name in addition to the

relation name. The expression NCR] is used to represent an occurrence N of a relation

R. For example, O = {R1[R], SOS], ROAR]} is a possible occurrence set. Note that the

occurrence name may be the same as the relation name, but must be unique among the

names in the occurrence set. C represents the predicates to be applied to O. It consists of a

set of atomic conditions of the form C 0 B+c or C 0 c where 0 is an operator from {<, <, =
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, >, >}, C and B are attributes and c is a constant. The latter atomic condition is a selection

condition. The former one is a selection condition when C and B are from the same

occurrence, and it is a join condition when C and B are from different occurrences. For

example, C = {R2.A < S.B + 3, Ri.C = 5, S.0 = R2.C, R2.D < R2.E} are possible

atomic conditions for the previous occurrence set. Note that "pure" Cartesian product is

disallowed in queries. This means that every occurrence in the occurrence set is involved in

at least one atomic join condition. P represents all projected attributes. Attribute renaming

in the projected attribute set is allowed. The expression R2.C 	 C renames attribute R2.A

as C. For example, set P can be {R2.C -4 A, R1.B -> B1 , R2 .B	 B2 }. Note that the

renaming of one attribute to more than one attributes in the projected attribute set is allowed.

For example, one possible projected attribute set may be {R1.A1 -> A1, R1.A -> A2}.

Similarly to relation occurrence names, the new names of the attributes must be unique

among all attribute names in the projected attribute set. An example query follows:

Example 26. Query Q1 :

• SQL

select Rl.E as El' S.A as A, S.B as B1, T.B as B2,
R2.E as E2
from R as R1, S as S, T as T, R as R2
where Rl.E<3 and Ri.A=S.A and S.B=T.B and R2.C<T.D+3

• Relational Algebra expression: 7rp(σc (O))

- P = {R1.E -> E1, S.A -> A,S.B -> B1,T.B -> B2, R2.A}.

- O = {R 1 [R], S[S] , T [T], R2 [R]}

- C = {R2.E < 3, R1.A1 < S.A - 3, S.B = T.B, R2.0 < T.D + 3}

The order of the projected attributes, atomic conditions and relation occurrences are

of no importance. Query rewritings are queries of the same form that involve also at least

one view.



Figure 6.1 Query graph for Q1.

Figure 6.2 Query graph for Q2.

query graphs introduced in the previous chapter is used to graphically represent

queries. Relation occurrences are represented by nodes. Relation occurrence and relation

names along with new and old attribute names are shown by the corresponding nodes. The

query graph of query 1 of the previous example is shown in Figure 6.1. Figure 6.2 shows

the query graph of another query Q2.

6.2.2 Query Commonalities

In the previous chapter, CCDs of two queries are defined by requiring minimal rewritings

of both queries using each CCD. A rewriting is minimal if, for each relation, the sum of

the number of its occurrences in the rewriting and the views of the rewriting equals the

number of its occurrences in the query. Although this requirement simplifies the definition

and computation of a CCD, it also prevents the detection of some commonalities between

queries. Consider the queries Q 1 and Q2 shown in Figures 6.1 and 6.2. Based on the old

definition of a CCD, these queries have two CCDs V1 and V2 shown in Figure 6.3. In

general, an attribute A is called redundant in a query if a condition of the form C = B + c,

where B is another attribute and c is a constant, can be implied from the condition of the

query.
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Figure 6.3 Query graphs of CCDs (a) V1 and (b) V2.

Figure 6.4 Rewritings (a) QC and Q'2 of queries 1 and Q2 using V1 .

11

Figure 6.5 Rewritings (a) QC and (b) Q'2 of queries Q 1 and Q2 using V2 .

Figure 6.6 Common subexpression V' of Q1  and Q2.
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Figure 6.7 Rewritings (a) A'1 and A'2 of queries Q1 and A2 using V'.

Note that in both V1 and V2 , attribute B is not projected from T although it is

projected in both Q1 and A2. This is because the condition in each of V1 and V2 imply

that S.B = T.B. Therefore, only one attribute among S.B and T.B (e.g., in V1 and V2,

S.B is projected) is projected. Then attribute renaming is used twice in the rewriting of the

queries using the CCDs. This is shown in both Figure 6.4 and Figure 6.5. In Figure 6.4, the

two queries Q1 and A2 are rewritten using V1 . In Figure 6.5, they are rewritten using V2 .

However, for the previous two queries Q1 and Q2, a common subexpression V'

shown in Figure 6.6 can be found. Symbol * is an abbreviation for all the attributes of

a relation. Observe that V' has 4 relation occurrences in stead of 3, V' can be used for

rewrite Q1 minimally, but cannot be used for rewriting A2 minimally. This is because V'

contains two occurrences of R while A2 contains only one occurrence of R. Notice though

that V' can be used for rewriting both queries. Figure 6.7 shows rewritings of Q1 and Q2

using V'.

It is possible that V' is smaller than CCD2  and CCD2 . In this case, if the goal

is to reduce the materialization space, it is better to use V' as a materialized view for

rewriting Q1  and A2. Materializing V' will bring more benefit per space unit. Even if V' is

larger than CCD1  and CCD2 , it might be beneficial to consider V' instead of CCD2  and

CCD2 because V' comprises one more join operation. This increases the possibility to find

more useful common subexpressions between V' and other queries in the workload. In the

next section, the definition of CCD introduced in the previous chapter is relaxed so that a

minimal rewriting is not a necessary requirement for a CCD. The goal of the relaxation is

to consider V' as a CCD of the two queries Q1 and A2.
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6.3 Definition and Computation of CODs

In this section, a new definition is provided a CCD based on the relaxation of removing the

minimal rewriting. Then an algorithm to compute CCDs with the new definition is given.

As in the previous chapter, the rewriting of queries using their CCDs can be computed

when the CCDs are computed. Both the CCDs and the corresponding rewritings are used

in a search space construction for a view selection algorithm.

6.3.1 CCD Definition

If a query Q can be rewritten using a view V, the view V is called a subexpression of Q.

Definition 18. A view V is a CCD of queries 1 and Q2 if and only if:

1. V contains no redundant attribute

2. V is a subexpression of Q1 and Q2

3. There exists not another subexpression of Q 1 and Q2, V' such that V is a subexpression
of V while V' is not a subexpression of V.

6.3.2 CCD Computation

To compute the CCDs of two queries, nodes in one query are mapped to nodes of the

other query so that the induced edge mapping associates join edges of the two queries

whose conditions are mergeable. Two join conditions are mergeable if there is another join

condition that is implied by each of them. Clearly this is possible only if a node of one

query is mapped to a node of the other query labeled by the same relation. The mapped

nodes and edges in each one of the two queries should form a connected component. CCDs

correspond to mappings that cannot associate more edges of the two queries. To compute

CCDs according to the definition in the previous chapter, the computation of one-to-one

mappings between the nodes of the two queries is sufficient.

With the definition of CCD in this chapter, one node in a query can be mapped to

more than one node in the other query. This is based on the observation that a query can be
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Figure 6.8 Node splitting.

rewritten equivalently by splitting a relation occurrence. For example, R can be rewritten

as R [x]*=* R. An example of occurrence splitting is shown in Figure 6.8 with query graph.

Note that in this example, a new edge exists between the original occurrence node and the

splitting node with edge condition * = *. This condition denotes a conjunction of equalities

between all attributes with the same names from the two relation occurrences. This edge

is referred as an all-attribute-equal edge. In the following examples of this section, it is

depicted by a dashed line. If there is an edge (S, R) between a node S and the split node

R, then a new edge (S, R') may be added between S and the new node R' with the same

condition as that of edge (8, R).

Before introducing the process of finding CCDs of two queries, the process of how

a common subexpression of them can be extended to contain one more edge is shown. If

this common subexpression can not be extended any more, then it is a CCD.

Assume there is a common subexpression V of queries Q1 and A2. Initial V contains

only one node. For a node N in V, find its corresponding nodes N1 in Q1  and N2 in A2

according to the mapping. For an edge e l = (N1 , NO in Q1, find an edge e2 = (N2 , ND

from A2 that is mergable to e l . Let Cm be the merge condition. Based on whether e l and

e2 have been mapped and whether /V; and M has been mapped, the extension rules are

presented as follows:



Figure 6.9 One to one node and edge mapping.
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Figure 6.10 One to one node and edge mapping.

1. Edges e l and e2 have not been mapped in V:

(a) Rule 1: If M and M have been mapped to the same node N' in V, add the
merging edge (N, N') with condition Cm to V. An example of an application
of this extension rule is shown in Figure 6.9. Initially edges (S, T) and (R, T)
have been mapped and Rule 1 adds edge (S, R) to V.

(b) Rule 2: If neither N1 nor M has been mapped in V, add a new node N' and
map N1 in 1 and M in Q2 to N'. Add a new edge (N, N') with condition
Cm to V. An example of an application of this extension rule for edge (T, R)
is shown in Figure 6.1O.

(c) Rule 3: If N1 has been mapped to N' in V while M has not been mapped,
rewrite Q1 as follows: split node N1 to get a new node N1'', add a virtual edge
(N1 , Ni) and an all-attribute-equal edge (N1 , N1'), remove edge (N 1 , N'1) . After
the rewriting, map edge (N1 , Ni) in the rewriting C4 of Q1 to (N2, ND in A2
with extension Rule 2. An example of an application of this extension rule is
shown in Figure 6.11.

(d) Rule 4: If N1 in Q1 maps to N1 in V and M in Q2 maps to M in V, rewrite A2
as follows: split node M to get anew node M', add the virtual edge (N 2 , N2'')
and the all-attribute-equal edge (M, N2''), remove edge (N2 , M). After the
rewriting, map edge (N1 , NI) in Q1 to (N2, ND in the rewriting q2 of A2 using



Figure 6.11 One node splitting.

Figure 6.12 Two nodes splitting.

extension Rule 3. This will generate a node splitting in Q I similar to that in Q2.
An example of an application of this extension rule is show in Figure 6.12.

2. Edge e l in Q 1 has been mapped to e = (N, N') in V while e2 in Q2 has not been
mapped:

(a) Rule 5: If M in Q2 has not been mapped, rewrite Q11 to Q1 as follows: split node
N1 to get a new node NC , and add to Q 1 an all-attribute-equal edge (M , Ni')
and a virtual edge (N1 , NC). After this rewriting, map edge (N1 , NI') Q11_ to
(N2 , M) in Q2 with extension Rule 2. An example of an application of this
extension rule is show in Figure 6.13.

Q1 	 V 	 Q2

Figure 6.13 One node splitting.
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Q1 	 QC 	 V 	 (4 	 Q2

Figure 6.14 Two nodes splitting.

(b) Rule 6: If N1 in 1 has been mapped to N1 in V, while M in Q2 has been
mapped to M in V, rewrite Q2 to Q'2 as follows: split node M to get a new
node N''2, add to Q2 an all-attribute-equal edge (N'2, NDand a virtual edge
(N2 , ND''), and remove edge (N2 , ND from Q2. After the rewriting, map edge
(N1 , NO in Q1  to (N2 , ND in q2 using extension Rule 3. An example of an
application of this extending rule is show in Figure 6.14.

All the above six extension rules map regular edges and not virtual or all-attribute-

equal edge. There may be cases where mapping those edges with regular edges generates

some useful CCDs. For simplicity here, this kind of mapping is ignored.

Note that extension Rules 1 and 2 apply one to one node mapping; extension Rules 3

and 4 apply one to many node mapping, but only one to one edge mapping; extension Rule

5 and 6 apply one to many edge mapping (and consequently one to many node mapping).

Using the previous extension rules, one can specify the new CCD computation process as

follows:

Using extension rules 1 and 2, one can get CCDs exactly the same as they are defined

in the previous chapter. Using additionally Rules 3-6 makes the process more expensive

since more possible extensions are considered. To reduce the execution time, one possible

heuristic disallows extending rules 3-6 if one common subexpression can be extended using

Rule 1 or 2.
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6.3.3 Rewriting the Queries Using the CCDs

The general problem of rewriting queries using views is NP-hard. This is even true for

simple queries and views such as SPJ queries with self-joins, the case considered in the

previous chapter and in this chapter. However, here in both chapters, only simple rewritings

are considered, which means that queries are rewritten using only one occurrence of a view.

Further, since a mapping function from all occurrence nodes of the view to occurrence

nodes of the query have already been constructed, (generated during the computation of

the CCDs), the rewriting is straightforward. The process is outlined below:

1. Construct the relation occurrence set: Put an occurrence of the CCD to the occurrence
set of the rewritten query. Put also to the occurrence set of the rewritten query all the
relation occurrences in the query which have not been mapped to a node in the CCD.
Note that all occurrence names must be unique in the constructed occurrence set.

2. Construct the projected attribute list: For each relation occurrence in the query which
has been mapped to a node in the CCD, list its projected attributes after the CCD
occurrence. List all other projected attributes in the query after their original relation
occurrences. All projected attributes on occurrences which has a mapped node in
CCD, list the attribute under the occurrence of CCD. Note that in the former case,
one attribute may be derived from another attribute listed in the CCD. In this case,
attribute renaming is needed to recover the projected attribute of the query in the
rewriting.

Algorithm 5 Computation of the extended CCDs
Input: Two queries 1 and A2

Output: A set of views that are CCDs of 1 and A2

1: Put both 1 and Q2 into full form {the same as in the previous chapter}

2: Find all views that are CCDs defined in the previous chapter and put them in a set V

3: for each V E V do

4: extend V in all possible ways using the above extension rules until it can not be

extended anymore. Put V into a set KV

5: end for

6: return KV
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3. Construct the predicate set: For edges between occurrences (join edges) or on one
occurrence (loop edges) in the query that have not been mapped to occurrences in
the CCD, add edges with the same condition between the corresponding occurrences
in the rewriting of the query. For edges between an unmapped occurrence and a
mapped occurrence, add an edge with the same condition between the corresponding
occurrence and the CCD occurrence in the query rewriting. For edges between
mapped occurrences, add a loop edge to the CCD occurrence in the query rewriting
with the same condition. If the edge already exists, just add the condition to the edge.

Figures 6.4, 6.5 and 6.7, show some examples of rewriting queries using views.

6.4 Experimental Results

The extensions of CCDs has been implemented and some experiments are run to show the

effectiveness of the new definition of CCDs. In this section, some experimental results

are shown to compare the some characteristics of CCDs of the previous chapter and of

this chapter. The definition of CCD in the previous chapter is referred as one-to-one CCD

because it is constructed by allowing each occurrence node from one query to be mapped

to at most one occurrence node from the other query. The new definition of CCD in this

chapter is referred as many-to-many because it allows many occurrence nodes from one

query to be mapped to many occurrence nodes of the other query. In the experiments, an

initial schema is generated which includes a set of base relations. Based on this schema,

a series of workload queries (2O queries in each workload) is generated. For a given

workload, all possible CCDs between each pair of queries and the corresponding rewritings

are computed. Then, for each one of the two CCD definitions, the average time for

computing the CODs of a pair of queries, the average number of CCDs generated for a pair

of queries, and the average number of occurrences in each CCD is recorded and compared

for the two CCD definitions. Each workload follows the following rules:

• Each query contains m base relations.
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• Each query contains n relation occurrences, n > m. In general, the larger the
number of occurrences for a fixed number of relations, the higher the number of
node mappings between the two queries.

• Approximately, n/3 of the queries have selection conditions in every workload.

• In order to avoid having query graphs that are too dense or too sparse, each one of
them has in it slightly over 2O% of all possible edges in the query graph.

In the first experiment, n is fixed to be 8 and m varies from 7 down to 5. The result

is shown in Figure 6.4. In the second experiment, the difference of n and in is fixed to 3 n

varies from 6 to 10. The result is shown in Figure 6.4. One can see that for the same values

of m and n, the number of many-to-many CCDs is less than the number of one-to-one

CCDs, and the number of occurrences per many-to-many CCD is larger than the number of

occurrences per one-to-one CCD. These remarks show that the new CCD incorporates more

operations. This is expected to improve the overall cost of evaluating all the input queries

together. Further, the many-to-many CCD gives less options to view selection algorithms

since less CCDs are generated. Therefore, the many-to-many CCD is expected to increase

the speed and accuracy of view selection algorithms in determining the optimal solution.

When the ratio of relations to occurrences of relation is high (75% or higher), the

computation time of the CCDs for the two approaches is similar (e.g., column sets 1 and

2 in Figure 6.4(a), and column set 3 in Figure 6.4(a)). When this ratio drops bellow 75%

the computation time of the many-to-many CCD is much higher (e.g., column set 3 in

Figure 6.4(a), and column sets 1 and 2 in Figure 6.4(a)). However, this loss in CCD

computation time might be compensated by the important gains in the time of the view

selection algorithm (due to the reduction in the number of many-to-many CCDs - Figure

6.4(b) column set 3 and Figure 6.4(b) column sets 1 and 2).Therefore, when the ratio drops

bellow 75%, the type (e.g., greedy, heuristic) and the speed of the employed view selection

algorithm will determine whether the one-to-one or the many-to-many CCD definition is

preferable.



Figure 6.15 Effectiveness of CCD definitions.

Figure 6.16 Effectiveness of CCD definitions.

6.5 Conclusion

In this chapter, the definition of CCD is extended. CCDs are uesd for constructing search

spaces for view selection problems that involve multiple queries. The new definition

extends the previous one to allow many to many mappings of relation occurrences in

queries. It is particularly useful for query workloads that involve also self-joins. An

experimental evaluation shows that the new approach produces CCDs that involve more

relational occurrences. Therefore, it increases the chances for these CCDs to be exploited

in computing other input queries. It also reduces the size of the search space to be exploited

by cost based view selection algorithms.
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CHAPTER 7

APPLYING CCDS IN VIEW MAINTENANCE PROBLEMS

The previous two chapters discusses how to define and compute CCDs (common sub-

expressions of some specific characteristics) of two queries. Because CCDs of queries

include most common computations of queries, they can be used to construct search spaces

for general view selection problems. In this chapter, CCDs are applied to a specific instance

of the view selection problem: maintaining multiple materialized views while a set of views

can be transiently materialized. View maintenance problem is a complementary problem to

view selection problem. All materialized views must be updated automatically or manually

by database administrator once there are changes to the underlying base relations. These

updates can be incremental update whenever base tables upon which the materialized views

change, or complete re-computation of the whole materialized views from base tables when

there are big changes to the underlying base tables. Because all materialized view are

updated as a batch, multi-query optimization techniques can be utilized in both kinds of

updates to materialized views.

7.1 Introduction

Selecting materialized views has been proposed as an effective strategy for improving the

performance of database application. It is especially important when the database is very

big and the queries of the workload are complex [23]. Two critical issues need to be solved

here: The optimizer must know how to rewrite queries using materialized views. The

materialized views must be updated to keep consistency with the underlying base tables

upon which the materialized views are defined.

Maintenance of views has a significant effect on the view selection problem. Consider

a view selection problem with maintenance time constraint [71], the more efficient the
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maintenance algorithm is, the more views can be materialized. This means more benefit is

got for the workload of queries. If the update statements are combined into the workload

[154], then the maintenance cost is combined into the workload execution time as a minimi-

zation goal. A more efficient method of maintaining materialized views directly reduces

the total execution time of the whole workload. Although an incremental view maintenance

approach may performs better than a complete re-computation approach, the strict conditions

(e.g., the percentage of updated records in the base relations must be relatively small

comparing to the original data, both the old data and the new data in each updated base

relations must be available, etc.) it requires prevent it from being applied in general view

materialization problem. In this chapter, a complete re-computation approach is applied in

the view maintenance problem.

The process of a complete re-computation approach for a view maintenance problem

can be described in two steps: in the first step, the queries on which the materialized views

are defined are computed from base tables; in the second step, the results of the previous

step are inserted into into the view tables. To improve the performance of maintaining

multiple views using the complete re-computation approach, multi-query optimization tech-

niques can be applied [94, 1O6]. To speed up the maintenance of a set of input materialized

views, some additional views can be materialized transiently during the view maintenance

process. This approach of view maintenance itself forms an instance of the view selection

problem.

The most important difference between Multi-query optimization and single query

optimization is whether to find and utilize common subexpressions among multiple queries.

By materializing some of the common subexpressions, some expensive common operations

execute only once in the common subexpressions and then more than one queries can be

answered from them instead of from base tables [121, 12O, 1O2, 85, 31]. Q. Zhu et al.

consider the exploitation of common subexpressions inside a single query and utilize them
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in query optimization for very complex queries [129]. Although it is applied to single

query, we still consider it as an application of multi-query optimization technique.

7.2 View Maintenance Using CCDs

The view maintenance problem can be defined as follows: given a set V of materialized

views defined over a database instance, find a maintenance plan for these views that minimizes

the overall maintenance cost. We assume that views are maintained by complete

recomputation.

As mentioned in the above section, multi-query optimization techniques are employed

to maintain multiple views in which common subexpressions are exploited to derive a

global evaluation plan (that is, a plan that computes all the views together). The goal is to

minimize the cost of this plan. A global evaluation plan usually needs to materialize a set of

views V'. These views are materialized transiently during the execution of the plan and are

dropped once the "permanently" materialized views in V are updated. Different evaluation

plans materialize different sets of views. Therefore, the maintenance problem of multiple

views using multi-query optimization techniques can be formulated as a view selection

problem: given a set V of permanently materialized views, find a set V' of additional views

so that the cost of the global evaluation plan that transiently materializes the views in V' is

minimized. The optimal global evaluation plan can also be computed as a by-product of

the computation of the optimal view set V'.

Because there are a lot of views for a set of materialized views to be maintained,

the search space for such a view selection problem can be huge if every possible view is

considered for materialization. Instead of considering all possible views, it is assumed that

only CCDs of views can be considered as the candidate views to be selected in the view

maintenance problem. An advantage of the use of CCDs is that the views in the search

space are restricted in a non cost-based manner to views that are expected to be useful.

Further, as discussed in the previous sections, this approach also generates rewritings of



115

the queries using materialized views when CCDs are computed. These rewritings can be

exploited directly in constructing the global evaluation plan that uses the selected materialized

views (CODs).

Assume that there is a set V of materialized views to maintain through complete

re-computation. The maintenance cost mc(V) of a view V in V is the cost of evaluating

the view V from base relations and writing the answer to the disk. The view V can be

rewritten using the views in a set V' and base relations (partial rewriting of V using the

views in V'), or using exclusively the views in a set V' (complete rewriting of V using

the views in V'). In this case, the maintenance cost of V, denoted ma(V, V'), is the cost

of evaluating V using the views in V' and the cost of writing the answer to the disk. In

computing this cost, assume that the views in V' are materialized and they are viewed

as base relations. The maintenance cost of a view (using or without using other views)

can be computed by a DBMS optimizer. Current DBMS optimizers are able to assess the

cost of evaluating queries using materialized views [7, 154]. The total cost MC(V) of

maintaining a view V equals to mc(V) if V if evaluated from base relations, or equals to

mc(V, V') + ΣviЄv’MC(Vi)  if V is evaluated using views in set V'. The views in V' may

also be rewritten using other views in V'. In this case, MC(Vi) recursively reflects this fact.

Note that trivial rewritings are not allowed for the views in V'. Therefore, the rewritings

define a hierarchy for the views in V'. This hierarchy reflects the order of materialization

of views in V'.

This technique can be extended to multiple views. The total cost of maintaining a set

V of materialized views using another set V' of views is computed as follows: MC(V) =

EviЄvMV(Vi) + ΣviЄv’MC(Vi).

Adding a new view V into set V' will increase the second component of MC(V) since

this view needs to be maintained. However, this addition might reduce the first component

of MC(V) since it might allow cheaper rewritings of the views in V using V'. If this gain

in the evaluation time for the views in V is larger than the maintenance cost of V, it is
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beneficial to add V to the set of transiently materialized views V'. In our approach, the

views in V' are CCDs of other views.

Example 27. Assume that there is a set V of two views V1 = R [x]A=B S [x]C>D+3^E≤F T

and V2 = U [x]GBH S [x]c>D^E<F T to be maintained Let's also assume that the optimizer

has found the optimal plans for materializing V1 and V2 which are shown in Figures 7.1 and

7.2. The total cost of maintaining views in V using base relations is MC(V) = mc(V1) +

mc(V2). The discussion in the previous sections suggests that there is only one CCD of V 1

and V2, V = S [x]c>D^E≤F T. Our approach computes also the rewritings of each one of

V1 and V2 using V. These rewritings are provided as input to the optimizer. The optimizer

can find the optimal evaluation plans for materializing V and for materializing V 1 and V2

using V. Let's assume that these are the evaluation plans shown in Figure 7.3. Note that the

optimal plan for a view evaluated over the base relations and the optimal plan of the same

view evaluated using a view do not necessarily employ the same join order. The total cost of

maintaining the views in V using the view set V' = {V} is MC (V , {V}) = mc(V2, {V}) +

mc(V) + mc(V1, {V}). The benefit of materializing V is M C (V) — M C (V , {V}). If this

benefit is positive, it is worthy using V for maintaining V1 and V2. Our approach also

outputs an optimal global evaluation plan for V1 and V2 . This is the plan resulting by

merging the three nodes labeled by V of the optimal evaluation plans of Figure 7.3.

Figure 7.1 Optimal maintenance plan 	 Figure 7.2 Optimal maintenance plan
for V1 .	 for V2.
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Figure 7.3 Optimal maintenance plans for V1 and 1/ using V.

When many materialized views need to be maintained, the problem becomes complex

because even if the candidate views are restricted to CCDs of views, there might still be too

many candidate views to consider for transient materialization. An additional problem is

that the benefit of a view depends on other views selected for materialization. Therefore, it

might need to be recomputed for multiple candidate views whenever a new view is selected

for materialization. In the next section, a general approach of constructing a search space

for the view maintenance problem using CCDs is introduced.

7.3 Construct Search Spaces for View Maintenance Problems Using CCDs

As mentioned in the previous chapters, CODs can be used to construct the search space

for a view selection problem. Although the strategy of considering only CCDs reduces

the search space of the view maintenance problem significantly, it is still not practical

to consider all CCDs of views to maintain a big number of materialized views. Further

pruning techniques can be applied to generate a search space of CCDs for the view selection

problem with reasonable size. Using the cost model introduced in the above section, the

benefit of a CCD can be changed when other CCDs are selected. In the following, a

level-based algorithm is introduced to construct the search space for the view maintenance
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problem using CCDs. In this algorithm, new CCDs of views are introduced level by level.

Only CCDs that can bring positive benefit are kept. The algorithm is described as follows:

Algorithm 6 Construct search space for the view maintenance problem using CCDs
Input: A set of views V to be maintained

Output: A set of views V' which are CCDs of views in V

1: Let set V' =

2: Let set G = v

3: Let set K contains all CCDs of views in Gv.

4: while AT O do

5: Compute the benefit of each CCD in K and remove those without positive benefit

6: while There are more CCDs in K do

7: Remove from K the CCD with the highest benefit and add it into V'

8: Recompute the benefit of each CCD in K with respect to the CCDs in V' being

materialized and remove those CCDs without positive benefit

9: end while

10: Let K contains all CCDs between each CCD C E V' and each view V E G where

C is not a CD of V

11: Let Q = Q U V'

12: Let V'=θ

13: end while

This algorithm starts by considering CCDs of each pair of views in V in the first

level. The benefit of each CCD is computed as in the previous section. CODs are selected

one by one based on their benefit. The benefits of the CCDs not selected are recomputed

with respect to the selected CCDs if necessary. Selected CCDs and CCDs without positive

benefits are remove. This process terminates when there is no CCDs left in this level. Then

in the next level, the CCDs considered are those of the selected CCDs of the previous levels

and view in the input set of views V. This process continues level by level until no more
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CCDs can be found in the next level. The set of views selected in this process comprise a

search space for maintaining views in V

Figure 7.4 demonstrates how this algorithm works to generate a search space of

maintaining a set V = {Von, V1, V2, V2, V4, V2 } of six views

1. In Step 1, all CCDs of each pair of views in V are constructed. The optimizer can be
used to compute the benefit of each CCD. The algorithm selects CODs 03 , q1 , q3,
C25, C25 in a specific order such that each time the CCD with the highest benefit is
selected. Note that after each selection, the benefit of the left CCDs are recomputed
with respect to the selected CCDs if necessary. For example, after selecting the CCD
C1 23, the benefit of the CCDs CI , C25, C25 may be recomputed because all of them
are CODs of the view V2 which can be answered by the selected CCD C23.

2. In Step 2, all CCDs of each CCD selected CCDs in Step 1 and the views in V are
constructed. With the assumption that all CCDs selected in Step 1 also need to be
maintained as well as views in V, the benefit of the new CODs can be computed in
the same way as in Step 1. A similar process as in Step 1 selects CODs Co12, q35 ,
C224 and C345

3. In Step 3, all CCDs of each CCD select in Step 2 and Step 1 and the views in V are
constructed. With the assumption that all CCDs selected in Step 1 and Step 2 also
need to be maintained, the benefit of the new CCDs can be computed. A similar
process select CODs C °2345 and C2345.

4. Because no more CCDs can be found of CCDs selected in Step 3 and those in
previous steps and views in V, the process terminates in Step 4 with the search space
for maintaining the views in V being CCDs selected in Step 1, Step 2 and Step 3.

Note that the algorithm not only output a set of views, but also gives the hierarchy

of the views that tells which view can be used to answer other views. This is similar

to an AND/OR view graphs introduced [69]. The algorithms introduced in [69] can be

used directly for the view maintenance problem. Specifically, if it is restricted that each

view should be maintained using at most one transiently materialized view, the output

hierarchy is an OR DAG which simulates the lattice framework introduced in [75]. The

algorithm introduced in [75] can be applied to this view maintenance problem with a light

modification.



Figure 7.4 Constructing search space for maintaining six views.
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Although the above approach of generate a sound search space for the view selection

problem such that some previously introduced algorithms can be applied easily, it is not

practical in most cases when the number of view to be maintained is big. This is because

that the algorithm 6 is very expensive. Whenever a CCD is selected in a specific level,

the benefit of all other CCDs in that level need to be recomputed, which involves a cost

estimation of each selected CCDs or input views.

Instead of applying some heuristics on the algorithm of constructing search space

for the view maintenance problem, heuristics are introduced in the next section which

combines the process of constructing a search space and selecting materialized views for

the view maintenance problem.

We present now heuristic approaches for selecting views (CCDs) for the multiple

view maintenance problem. Our first heuristic approach, called single-level CCD selection

greedy approach, proceeds as follows: first we compute the CCD Cij of every pair of input

views V and Vi . The rewritings of the views V and V.; using Cij are also computed at this

time. Then, we compute the benefits of the CCDs, and we rank the CCDs in descending

order of their benefits. Note that some (or all) CCDs might have a negative benefit. If all

the views have a negative benefit, we we do not select any view for materialization as no

candidate view can contribute to the reduction of the view maintenance cost of the input

views. We select for materialization the CCD, say CC; , with the highest benefit. We exclude

from consideration the input views V and V and every other candidate view that is a CCD

of input view V or Vi and some other view. We iteratively repeat this process until no

more CCDs with positive benefit is left. This approach considers only candidate views that

are CCDs of the input queries. It is in line with previous approaches for multiple query

optimization techniques [94, 8]. If we consider a logical plan for multiple input views that

shows their dependence from candidate views and base relations for their computation,

then the candidate views considered by the this approach all lie at the same single level of

the logical plan. This feature explains the name of this approach.
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Even though the single-level greedy approach is fast because it considers a restricted

number of candidate views, it has a limitation: it considers for materialization only CCDs

among the input views. To overcome this limitation, we present below a multi-level CCD

selection greedy approach. A key feature of this approach is that it considers for materializa-

tion also CCDs between CCDs and input views and CCDs between CCDs selected for

materialization. By doing so this approach can identify and exploit common subexpressions

among multiple input views. Algorithm 7 implements the multi-level CCD selection greedy

approach. We assume we have an optimizer that can find optimal plans of views from the

base relations and optimal plans of views using possibly other views.

The algorithm is described in Algorithm 7:

We give below an example that shows how the multi-level greedy CCD selection

approach proceeds. We assume we have a set V = {V0 ,V1 , V2 , V2, V4, V5} of six views to

maintain. For simplicity, we assume that there is at most one CCD for each pair of views.

The views and their CCDs are shown in Figure 7.5(a). Only CCDs with positive benefit are

shown. Some view pairs do not have a CCD either because they do not have an overlapping

or because a CCD between them exists but has negative benefit.

1. Figure 7.5(a) represents the state after the CCDs of each pair of views are constructed.
Note that not all pairs of queries have a CCD. For example, there is no CCD between

Vo0andV2.We assume that the CCD Co1has the highest benefit among the CCDs and
is chosen for materialization. A CCD selected for materialization is shown shadowed
in the figures.

2. We select C0 1 and form the logical plan for Vo and V1 using Vol. We then remove all
other CCDs that involve Vo or V1 and add new CCDs between C0l and views other
than V0 and V1 . The new CODs are Co12 and C012. This state is shown in Figure
7.5(b). A black node denotes a materialized CCD. Note that because there is no
CCD between Vo and V4, there is no CCD between C01 and V4 either. We assume
that CCD C24 has the highest benefit and it is shown shadowed in Figure 7.5(b).

3. We materialize CCD C24 and form the logical plan for V2 and V4 using C24. We then
remove all other CCDs that involve V2 and V4 and add new CCDs between C24 and
all the materialized CCDs and the input views other than Vo, V1 , V2 and V4. This state
is shown in Figure 7.5(c). We assume that CCD C224 has the highest benefit and it is
shown shadowed in Figure 7.5(c).



Figure 7.5 Logical maintenance plan list for six queries
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4. We materialize CCD C224 and form the logical plan for V2 and C24 using C224. We
then remove all other CCDs that involve V2 and C24 and add new CCDs between
C224 and all materialized CCDs other than C24 and between C224 and all input views
other than V0 , V1 , V2 , V2 and V4. We assume no CCD can be added. The resulting
state is shown in Figure 7.5(d). Since no CCD is left for consideration, the process
terminates. We are left with a set of materialized CCDs V' = {Col, C24, C224} and a
global logical plan for maintaining the six input views.

5. We use a query optimizer on the logical maintenance plan to produce a global mainte-
nance plan for all the six queries. The total maintenance cost for V is: MC(V) =

mc(C01) + MC(V0, {C01 }) + mc(Vi, {Col}) + mc(C224) + mc(C234, {C224}) +

mc(V2, {c224}) + mc(V2, {c24}) + mc(V4, {c24}) + mc(V2)

Algorithm 7 Multi-level greedy algorithm for Multiple View Maintenance
Input: A set V of input views to be maintained

Output: A set V' of views to be transiently materialized and a global view maintenance

plan that uses views in V'

1: Construct the global logical plan for all the views in V where every view is computed

from base relations

2: Initially let V' = 0

3: Let set VS contain all CCDs of all pairs of views in V

4: while VS 0 do

5: Remove the CCD C from VS with the highest benefit and add it into V'. Assume

that C is a CCD of views V1 and V2 .

6: Modify the global logical maintenance plan so that V1 and V2 are maintained from

C

7: Remove from VS all views which are CCDs of V1 (or V2 ) and some other view

8: Add to VS new CCDs between C and each view in V U V'; CCDs between C and

views in V' that are ancestors of C in the logical plan do not need to be considered

9: end while

10: Use the query optimizer to compute a global global view maintenance plan using a

single query optimizer
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7.4 Experimental Evaluation

We have implemented our approach for using CODs in the maintenance of multiple materia-

lized views. We have run experiments to measure the performance of our approach in

maintaining multiple materialized views, and the quality of the solutions returned.

The experiments were conducted on a machine with a 2.4 GHz Intel Pentium 4

processor running a 2.6 Linux kernel. The machine has 512MB main memory and 8O

GB hard disk. We used Java as the programming language for the whole experiment

implementation.

We created a relational database schema and we recorded meta data about it. This

setting allowed us to control easily a number of features useful for the experiments including

condition selectivity, condition implication, relation instance cardinalities etc. For the

experiments, we generated different workloads of queries and view defined on this schema.

Selecting only CCDs (and not other types of views) to be transiently materialized

when maintaining multiple materialized views reduces the search space of the view selection

problem significantly and makes possible solving the problem for a large number of views.

For measuring the performance of our approaches and the quality of the solutions returned,

we run experiments on sets of materialized views which contain from 1O to 12O views.

We evaluated both approaches introduced in the previous section, the single-level view

selection approach and the multi-level view selection approach.

As discussed in the previous section, in order to evaluate our approaches we need

a query optimizer to find a global maintenance plan of a set of materialized views based

on a logical maintenance plan. The logical maintenance plan indicates for every view V

what other views need to be used for its maintenance (if any). It also provides a rewriting

of V using the other views (and possibly base relations). The optimizer should have the

following properties:

1. The optimizer should be able to find the optimal maintenance plan of a view from
the base relations and return its cost.
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2. If the logical plan shows that a view V should be maintained using other views, the
optimizer should be able to find the optimal maintenance plan of V using the other
views.

Modern database management systems have these properties'. Note however that

our approaches are independent of the cost model and the optimizer used. For simplicity

and flexibility, in our experiments we implemented a simple optimizer. Our cost model

measures I/O time which is usually a dominant factor of the query evaluation cost. Our

single query optimizer pushes all selection operations down as much as possible and enume-

rates all possible join sequences to select one with the least cost. Choosing a more sophisti-

cated optimizer is not of great importance for the experiments since our goal is to provide

a comparative presentation of different approaches.

In our first experiment we compare the quality of the solutions returned by the

two approaches. The quality of the solution returned is represented by the maintenance

cost of the solution. This in turn is measured as a percentage of the maintenance cost

of the solution returned by the naive maintenance plan where no views are transiently

materialized. Clearly, the lower this percentage is, the better the quality of the solution

is. We ran both algorithms on a workload W2. Workload W2 contains 120 views. Each

view contains six occurrences of four relations, two selection conditions and seven join

conditions. The selection and join conditions are not necessarily atomic and the views are

cyclic. From each relation occurrence a random number of O to 4 attributes are projected.

The average number of mergeable (join and selection) conditions of a pair of views in the

workload W2 is 4. We ran the two view maintenance algorithms, the single-level view

selection greedy algorithm and the multi-level view selection greedy algorithm on a set of

views which contains the first n views of W2 where 11 varies from 1O to 12O.

The result is shown in Figure 7.6. Both algorithms return better solutions than

the naive approach. For any number of views to be maintained, the multi-level view

'IBM DB2 has the required ability through the EXPLAIN utility, while Microsoft SQL Server
provides a similar feature with the WHAT-IF utility.
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Figure 7.6 Quality vs. number of views for both algorithms

selection greedy algorithm returns better solutions than the single-level view selection

greedy algorithm. When the number of views to be maintained increases, the quality of

the solutions returned by both algorithms increases too. For example, when the number of

views to be maintained increases from 10 to 120, the maintenance cost of the plan generated

using the single-level view selection greedy algorithm ranges from 77% to 67% of the cost

of the naive plan. The maintenance cost of the plan generated by the multi-level view

selection algorithm ranges from 60% to 21% of the cost of the naive plan. This is expected

because when the number of views increases, the number of common subexpressions

between them increases too, and so does the possibility to find common subexpressions

(CCDs in our case) that can bring substantial benefit to the view maintenance cost. Note

also that when the number of views to be maintained increases, the improvement of the

multi-level view selection greedy algorithm is more important than that of the single-level

view selection greedy algorithm. This demonstrates that the multi-level view selection

greedy algorithm can better identify and exploit the overlapping of the views.

To further investigate the effect of query overlapping on the quality of the solution

returned, we ran the two algorithms on four workloads that differ on the overlapping



128

Figure 7.7 Quality vs. number of views for the single-level greedy algorithm

between the views. The overlapping is measured by the number of mergeable (join and

selection condition) edges between views in the workload. We generated three workloads

W1, W2 and W4 in addition to workload W2. Workloads W1, W2 and W4 are similar to

W2 in terms of the characteristics of the queries. Only the overlapping of views is different

in these workloads: workload W1 has 5 — 6 mergeable conditions for each pair of views,

W2 has 3 — 5 mergeable conditions, W2 has 1 — 4 mergeable conditions and W4 has O — 3

mergeable conditions. The results are shown in figures 7.7 and 7.8. One can see that for

both algorithms the higher the overlapping is, the better the quality of the solution is. This

is due to the fact that when we increase the overlapping, we also increase the probability

for the algorithms to find common subexpressions that bring substantial benefit to the view

maintenance cost.

In our third experiment, we compared the execution time of the two view selection

algorithms when the number of views to be maintained increases. We considered the

workload W2 and we varied the number of views to be maintained from 10 to 12O. The

result is shown in Figure 7.9. Note that the measured time is higher than what we can obtain

in practice. This is due to the simplicity of our query optimizer. Nevertheless, this does
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Figure 7.8 Quality vs. number of views for the multi-level greedy algorithm

not affect the comparison between the two approaches. One can see that the single-level

greedy performs better than the multi-level greedy algorithm. Both approaches scale well

(they are almost linear) on the number of views.

The choice between the two algorithms is a trade off between the quality of the

solution sought and the available computation time.

7.5 Conclusion

In this chapter, we propose an application for the concept of CCD: view maintenance

using multi-query optimization techniques. We propose two algorithms of multi-query

optimization for the view maintenance problem using CCDs. The first one considers

materializing only CCDs between queries while the second one also considers CCDs between

queries and CCDs and even CCDs between CCDs. Experimental results show that both

algorithms scale well to the number of queries we consider in a workload. While the first

algorithm performs better on optimization time, the second one generate maintenance plans

of better quality. This quality difference gets larger when we have more similarity in the

workload. When the database is not big in size and there is not too much similarity in
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Figure 7.9 Running time vs. number of views for the two algorithms

the workload, the first algorithm may perform better. Otherwise, the second algorithm is

preferred.



CHAPTER 8

HEURISTIC VIEW SELECTION FOR MULTIPLE VIEW MAINTENANCE IN

IBM DB2

Materialized views (MVs) are used in databases and data warehouses to improve query

performance. In this context, a great challenge is to exploit commonalities among the

views and to employ multi-query optimization techniques in order to derive an efficient

global evaluation plan for refreshing the MVs concurrently. IBM® DB2® Universal

Database™ product (DB2 UDB and DB2 9) provides two query matching techniques,

query stacking and query sharing, to exploit commonalities among the MVs, and to construct

an efficient global evaluation plan. When the number of MVs is large, memory and time

restrictions prevent one from using both query matching techniques in constructing efficient

global plans. An approach that applies the query stacking and query sharing techniques in

different steps are suggested in this chapter. The query stacking technique is applied first,

and the outcome is exploited to define groups of MVs. The number of MVs in each group

is restricted. This allows the query sharing technique to be applied only within groups in

a second step. Finally, the query stacking technique is used again to determine an efficient

global evaluation plan. An experimental evaluation shows that the execution time of the

plan generated by this approach is very close to that of the plan generated using both query

matching techniques without restriction. This result is valid no matter how big the database

is.

8.1 Introduction

The advent of data warehouses and of large databases for decision support has triggered

interesting research in the database community. With decision support data warehouses

getting larger and decision support queries getting more complex, the traditional query

131
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optimization techniques, which compute answers from the base tables, cannot meet the

stringent response time requirements. The most frequent solution used for this problem is

to store a number of materialized views (MVs). Query answers are computed using these

materialized views instead of using the base tables exclusively. Materialized views are

manually or automatically selected based on the underlying schema and database statistics

so that the frequent and long-running queries can benefit from them. These queries are

rewritten using the materialized views prior to their execution. Experience with the TPC-D

benchmark and several customer applications has shown that MVs can often improve the

response time of decision support queries by orders of magnitude [151]. This performance

advantage is so big that TPC-D [1] had ceased to be an effective performance discriminator

after the introduction of the systematic use of MVs [151].

Although this technique brings a great performance improvement, it also brings

some new. problems. The first one is the selection of a set of views to materialize in

order to minimize the execution time of the frequent queries while satisfying a number of

constraints. This is a typical data warehouse design problem. In fact, different versions of

this problem have been addressed up to now. One can consider different optimization goals

(e.g., minimizing the combination of the query evaluation and view maintenance cost) and

different constraints (e.g., MV maintenance cost restrictions, MV space restrictions, etc.).

A general framework for addressing those problems is suggested in [13O]. Nevertheless,

polynomial time solutions are not expected for this type of problem. A heuristic algorithm

to select both MVs and indexes in a unified way has been suggested in [154]. This algorithm

has been implemented in the IBM DB2 design advisor [154].

The second problem is how to rewrite a query using a set of views. A good review of

this issue is provided in [73]. Deciding whether a query can be answered using MVs is an

NP-hard problem even for simple classes of queries. However, exact algorithms for special

cases and heuristic approaches allow one to cope with this problem. A novel algorithm that

rewrites a user query using one or more of the available MVs is presented in [151]. This
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algorithm exploits the graph representation for queries and views (Query Graph Model -

GM) used internally in DB2. It can deal with complex queries and views (e.g., queries

involving grouping and aggregation and nesting) and has been implemented in the IBM

DB2 design advisor.

The third problem is related to the maintenance of the MVs [95]. The MVs often

have to be refreshed immediately after a bulk update of the underlying base tables, or

periodically by the administrator, to synchronize the data. Depending on the requirements

of the applications, it may not be necessary to have the data absolutely synchronized. The

MVs can be refreshed incrementally or recomputed from scratch. This chapter focuses

on the latter approach for simplicity. When one or more base tables are modified, several

MVs may be affected. The technique of multi-query optimization [121] can be used to

detect common subexpressions [135] among the definitions of the MVs and to rewrite the

views using these common subexpressions. Using this technique one can avoid computing

complex expressions more than once.

An algorithm for refreshing multiple MVs in IBM DB2 UDB is suggested in [94].

This algorithm exploits a graph representation for multiple queries (called global QGM)

constructed using two query matching techniques: query stacking and query sharing. Query

stacking detects subsumption relationships between query or view definitions, while query

sharing artificially creates common subexpressions which can be exploited by two or more

queries or MVs. Oracle 1 Og also provides an algorithm for refreshing a set of MVs based

on the dependencies among MVs [51]. This algorithm considers refreshing one MV using

another one which has already been refreshed. This method is similar to the query stacking

technique used in DB2 UDB. However, it does not consider using common subsumers for

optimizing the refresh process (a technique that corresponds to query sharing used in DB2

UDB). This means they may miss the optimal evaluation plan.

When there are only few MVs to be refreshed, one can apply the method proposed

in [94] to refresh all MVs together. This method considers both query stacking and query
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sharing techniques, and a globally optimized refresh plan is generated. However when

the number of MVs gets larger, a number of problems prevent this method from being

applied. The first problem relates to the generation of a global plan. When there are

many MVs to be refreshed, too much memory is required for constructing a global QGM

using both query sharing and query stacking techniques. Further, it may take a lot of

time to find an optimal global plan from the global QGM. The second problem relates to

the execution of the refresh plan. There are several system issues here. The process of

refreshing MVs usually takes a long time, since during this period, MVs are locked. User

queries which use some MVs either have to wait for all MVs to be refreshed, or routed to the

base tables. Either solution will increase the execution time. Another system issue relates to

the limited size of the statement heap which is used to compile a given database statement.

When a statement is too complex and involves a very large number of referenced base

tables or MVs considered for matching, there may not be enough memory to compile and

optimize the statement. One more system issue relates to transaction control. When many

MVs are refreshed at the same time (with a single statement), usually a large transaction

log is required. This is not always feasible. Further if something goes wrong during the

refreshing, the whole process has to start over.

To deal with the problems above, the following approach is proposed. When too

many MVs need to be refreshed and the construction of a global QGM based on query

stacking and query sharing together is not feasible, the MV set is partitioned into smaller

groups based on query stacking alone. Then, query sharing technique is applied to each

group independently. Consequently, the execution plan is separated into smaller ones,

each involving fewer MVs. Intuitively, by partitioning MVs into smaller groups, query

sharing are restricted to views within groups while query stacking are restricted to views of

different groups. In this way MVs from the lower groups are potentially exploited by the

groups above. An implementation and experimental evaluation of this approach shows that
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this method has a comparable performance to the approach that uses a globally optimized

evaluation plan while at the same time avoiding the aforementioned problems.

The next section presents the QGM model and the two query matching techniques.

Section 3 introduces the MV partition strategy. Section 4 presents the experimental setting

and results. Section 5 concludes and suggest future work.

8.2 Query Graph Model and Query Matching

In this section, we introduce the concept of QGM model which is used in DB2 UDB to

graphically represent queries. First the QGM model for a single query is introduced. Then

it is extended to a global QGM model for multiple queries. This extension requires the

concept of query matching using both query stacking and query sharing techniques.

8.2.1 Query Graph Model

The QGM model is the internal graph representation for queries in the DB2 UDB database

management system. It is used in all steps of query optimization in DB2 UDB such as

parsing and semantic checking, query rewriting transformation and plan optimization. An

example is shown next to demonstrate how queries are represented in the QGM model.

A query in the QGM model is represented by a set of boxes (called Query Table Boxes —

QTB) and arcs between them. A QTB represents a view or a base table. Typical QTBs are

select QTBs and group-by QTBs. Other kinds of QTBs include the union and the outer-join

QTBs.

Below, a query with select and group-by operations is given in SQL.

select c.c3, d.d3, sum(f.f3) as sum
from c, d, fact f
where c.c1 =f.fl and d.d1 = f.f2 and c.c2 = 'Mon' and d.d2 > 10
group by c.c3,d.d3 having sum > 100

Figure 8.1 shows a simplified QGM representation for this query.
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8.2.2 Query Matching

To refresh multiple MVs concurrently, a global QGM for all of the MVs is generated using

the definitions tied together loosely at the top. All QTB5 are grouped into different levels

with the base tables belonging to the bottom level. Then, from bottom to top, each QTB is

compared with another QTB to examine whether one can be rewritten using the other. If

this is the case, it is called that the latter QTB subsumes the former QTB. The latter QTB is

called the subsumer QTB while the former is called the subsumee QTB. A rewriting of the

subsumee QTB using the subsumer QTB may also be generated at the time of matching,

and this aditional work is called compensation. The comparison continues with the parent

QTB5 of both the sumsumer and subsumee QTB5. This process continues until no more

matches can be made.

If the top QTB of one MV subsumes some QTB of another MV, then the former

MV subsumes the latter MV. This kind of matching is called query stacking because it

Figure 8.1 QGM graph for query Q1.
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ultimately determines that one MV can be rewritten using the other and the subsumee MV

can be "stacked" on the subsumer MV.

In some cases, it is possible that one may not find a strict subsumption relationship

between two MVs even if they are quite close to having one. For instance, a difference in

the projected attributes of two otherwise equivalent MVs will make the matching fail. The

matching technique of DB2 UDB is extended in [94] to deal with this case. In some cases

when there is no subsumption relationship between two MVs, an artificially built common

subexpression (called common subsumer) can be constructed such that both MVs can be

rewritten using this common subsumer. Because this common subsumer is "shared" by

both MVs, this matching technique is called query sharing. With query sharing, matching

techniques can be applied to a wider class of MVs.

In Figure 8.2, examples of query matching techniques are shown. In Figure 8.2(a),

the matching using query stacking only is shown. In this example, there are three queries

m0, m1 , m2 . For each query pair, their QTBs are matched from bottom to top until the

top QTB of the subsumer query is reached. Since there is a successful matching of the top

QTB of query m 1 with some QTB of query m 2 , there is a subsumption relationship from

Figure 8.2 Query matching.
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m 1 to m2 (m 1 subsumes m 2). This is not the case with queries m 0 and m1 . The matching

process defines a query subsumption DAG shown in Figure 8.2(a). In this DAG, each node

is a query. Since query m 1 subsumes query m 2 , a directed line can be drawn from m 1 to

m2 . In Figure 8.2(a), the subsumption DAG for queries m 0 , m 1 and m2 is shown. There is

one subsumption edge from m 1 to m2 while query m0 is a disconnected component. This

subsumption DAG can be used to optimize the concurrent execution of the three queries.

For example, one can compute the results of m0 and m 1 from base tables. Then, query m2

can be computed using m 1 based on the rewriting of m2 using m 1 , instead of computing

it using exclusively base tables. Query m2 is "stacked" on m 1 since it has to be computed

after ml.

In this example, it is also observed that although m 2 can be rewritten using m 1 , m0

can not be rewritten using m 2 or vise versa. one cannot even find a successful match of the

bottom QTBs of m0 and m2 based on query stacking. This is quite common in practice.

When trying to answer m 0 and m2 together, and a subsumption relationship between them

cannot be found, one can try to create a new query, say t 1 , which can be used to answer both

queries mo and m2 . This newly constructed query is called common subsumer of the two

queries m0 and m2 because it is constructed in a way so that both queries m 0 and m2 can

be rewritten using it. Although the common subsumer is not a user query to be answered,

its answer can be computed and then used to compute the answers of both queries m0 and

m2 . As a "common part" between m0 and m2, t 1 is computed only once, and therefore,

its computation might bring some benefit in the concurrent execution of m0 and m2. In

the example of Figure 8.2(b), there is no subsumption edge between m 0 and m2 . However,

after adding a common subsumer t 1 of m0 and m2 , there are two subsumption edges: one

from t 1 to m0 and one from t 1 to m2.

The subsumption relationship graph is a DAG because there is no cycle in it. In most

cases, if one MV subsumes another one, the latter one cannot subsume the former one.

Nevertheless in some cases, two or more MVs may subsume each other, thus generating
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a subsumption cycle. The DB2 UDB matching techniques will ignore one subsumption

relationship randomly, when this happens, to break any cycles. This will guarantee the

result subsumption graph to be a real DAG. In drawing a subsumption DAG, if m 1 -- m2,

and m2 --4 m2, no transitive subsumption edge is shown in the DAG such as m1 —i m 2 .

However, this subsumption relationship can be directly derived from the DAG, and it is of

the same importance as the other subsumption relationships in optimizing the computation

of the queries.

8.3 Group Partition Strategy

If there are too many MVs to be refreshed then, as we described above, one may not be

able to construct the global QGM using both query stacking and query sharing techniques.

The goal is to partition the given MV set into groups that are small enough so that both

query matching techniques can be applied, and the problems mentioned in the introduction

is not an issue. The approach introduced in this section first creates a subsumption DAG

using query stacking only which is a much less memory and time consuming process.

This subsumption DAG is used for generating an optimal global evaluation plan. The

different levels of this plan determine groups of materialized views on which query sharing

is applied.

Building an Optimal Plan Using Query Stacking Given a set of MVs to be refreshed,

a global QGM using only query stacking is constructed. Then, a subsumption DAG as

described in the previous section is created . The query optimizer is applied to choose an

optimal plan for computing each MV using either exclusively base relations or using other

MVs in addition to base tables as appropriate. The compensations stored in the global

QGM of a MV using other MVs are used to support this task. The optimizer decides

whether using a MV to compute another MV is beneficial when compared to computing

it from the base relations. These optimal "local" plans define an optimal global plan for

refreshing all the queries. Figure 8.3(a) shows an example of a subsumption DAG for ten
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MVs. Transitive edges are ignored for clarity of presentation. Figure 8.3(b) shows an

optimal global evaluation plan.

Groups are defined by the views in the optimal plan. If one group is still too big

for the query sharing technique to be applied, it can be divided into suitable subgroups

heuristically based on some common objects and operations within the group or possibly

randomly.

Adding also Query Sharing By considering the query stacking technique only, some

commonalities between queries may be missed which can be beneficial to the refreshing

process. Therefore, both query matching techniques, query stacking and query sharing, are

enabled within each group to capture most of those commonalities. This process is outlined

below.

1. Apply query stacking and query sharing techniques to the MVs of each group. Even
though no subsumption edges will be added between MVs in the group, some common
subsumers may be identified and new subsumption edges will be added from those
common subsumers to MVs in the group.

2. Apply the query stacking technique to the common subsumers of one group and the
MVs of lower groups. Lower groups are those that comprise MVs from lower levels

Figure 8.3 Query stacking based refreshing.
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of the optimal global plan. This step might add some new subsumption edges from
MVs to common subsumers in the subsumption DAG.

3. Using a common subsumer induces additional view materialization cost. However, if
this cost is lower than the gain obtained in computing the MVs that use this common
subsumer, it is beneficial to materialize this common subsumer. Such a common
subsumer is called a candidate common subsumer. The use of a candidate common
subsumer may prevent the use of other candidate common subsumers. Heuristics
are applied to retain those candidate common subsumers such that no one of them
prevents the use of the others and together yield the highest benefit. This process is
applied from the bottom level to the top level in the subsumption DAG.

4. Have the optimizer to create a new optimal global plan using the retained candidate
common subsumers. Compared to the optimal global plan constructed using only
query stacking, this optimal global plan contains also some new MVs, in the form of
the retained candidate common subsumers.

During the refreshing of the MVs, a common subsumer is first materialized when it

is used for refreshing another MV and it is discarded when the last MV that uses it has been

refreshed.

Figure 8.4 shows the construction of an optimal global plan taking also query sharing

into account. Figure 8.4(a) shows the subsumption DAG of Figure 8.4(b) along with some

common subsumers. Dotted directed edges indicate subsumption edges involving common

subsumers. Among the candidate common subsumers, some of them are retained in the

optimal global plan. Such an optimal global plan is shown in Figure 8.4(b). This optimal

global plan will have a better performance than the one of Figure 8.3(b).

8.4 Performance Testing

For the experimental evaluation a database with a star schema is considered. Also a number

of MVs to be refreshed (16 in the test) are considered. The number of MVs are kept

small small enough so that, in finding an optimal global evaluation plan, both the query

stacking and query sharing techniques can be applied without restrictions. The performance

comparison test is not feasible when there are too many MVs. The goal is to compare the
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Figure 8.4 Query sharing based refreshing.

performance of different approaches. The performance of four kinds of MV refreshing

approaches are compared for different sizes of databases. These approaches are as follows:

1. Naive Refreshing(NR): Refresh each MV one by one by computing its new state using
the base tables referenced in the MV definition exclusively. This approach disallows
any multi-query optimization technique or other already refreshed MV exploitation.

2. Stacking-Based Refreshing(STR): Refresh each MV one by one in the topological
order induced by the optimal global plan constructed using the query stacking tech-
nique only (for example, the optimal global plan of Figure 8.3(b)) in the previous
section. This approach disallows query sharing. With this approach some MVs are
refreshed using the base relations exclusively. Some other MVs are refreshed using
other MVs if they have a rewriting using those MVs that are in lower groups in the
optimal global plan.

3. Group-Sharing-Based Refreshing(SHR): Refresh each MV in the topological order
induced by the optimal global evaluation plan constructed using query stacking first
and then query sharing only within groups (for example, the optimal global plan of
Figure 8.4(b)).

4. Unrestricted-Sharing-based Refreshing(USR): Refresh all MVs together based on
an optimal global plan constructed using, without restrictions, both query matching
techniques.

The test schema consists of one fact table and three dimension tables. Each dimension

table has 1O,OOO tuples, while the number of tuples of the fact table varies from 1OO,OOO to

1O,OOO,OOO. The set of MVs are refreshed with each one of the four refreshing approaches
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mentioned above, and the overall refreshing time is measured. The following table shows

the platform on which this experiment is run configuration.

Model OS Memory CPUs rPer f Database

P640-B80 AIX 5.2 MLO6 8 GB 4 3.59 DB2 V91

Figure 8.5 shows the experimental results to refresh a set of views using the above

schemes. For any size of the database, the unrestricted-sharing-based approach always

has the best performance since it allows unrestricted application of both query stacking

and query sharing techniques. The group-sharing-based approach has the second best

performance because, even though it exploits both query matching techniques, they are

considered separately in different steps and query sharing is restricted only within groups.

The stacking-based approach is the next in performance because it cannot take advantage

of the query sharing technique. Finally, far behind in performance is the naive approach

which does not profit of any query matching technique. As can be seen in Figure 8.5

the group-sharing based approach is very close to the unrestricted sharing approach. This

remark is valid for all database sizes and the difference in those two approaches remains

insignificant. In contrast, the difference between the naive and the pure stacked approach

compared to other two grows significantly as the size of the database increases. In a

real data warehouse, it is often the case that MVs have indexes defined on them. The

group-sharing-based refresh may outdo the unrestricted approach if there is occasion to

exploit the indexes of MVs when used by the refreshing of the higher group MVs.

8.5 Conclusion

The problem addressed in this chapter is to refresh concurrently multiple MVs. In this

context, two query matching techniques, query stacking and query sharing, are used in DB2

to exploit commonalities among the MVs, and to construct an efficient global evaluation

plan. When the number of MVs is large, memory and time restrictions prevent from being

used both query matching techniques in constructing efficient global plans. An heuristic
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Figure 8.5 Performance test result for different refreshing method.

approach that applies the two techniques in different steps is suggested. The query stacking

technique is applied first, and the generated subsumption DAG is used to define groups

of MVs. The number of MVs in each group is smaller than the total number of MVs.

This will allow the query sharing technique to be applied only within groups in a second

step. Finally, the query stacking technique is used again to determine an efficient global

evaluation plan. An experimental evaluation shows that the execution time of the optimal

global plan generated by our approach is very close to that of the optimal global plan

generated using, without restriction, both query matching techniques. This result is valid

no matter how big the database is.

The approach can be further fine-tuned to deal with the case where the groups of MVs

turn out to be too small. In this case, merging smaller groups into bigger ones may further

enhance the potential for applying the query sharing technique. Although it is assumed that

a complete re-population of all MVs in our approach for simplicity is applied, the approach

can actually be applied to incremental refreshing of MVs. In a typical data warehouse

application, there usually exist indexes on MVs. The approach can be extended to adapt
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to this scenario. Actually, because the existence of indexes increases the complexity of the

global QGM, the approach may achieve better performance.



CHAPTER 9

A DYNAMIC VIEW MATERIALIZATION SCHEME FOR SEQUENCES OF

QUERY AND UPDATE STATEMENTS

9.1 Introduction

In a data warehouse design context, a set of views is selected for materialization in order

to improve the overall performance of a given workload. Typically, the workload is a set

of queries and updates. In many applications, the workload statements come in a fixed

order. This scenario provides additional opportunities for optimization. Further, it modifies

the view selection problem to one where views are materialized dynamically during the

workload statement execution and dropped later to free space and prevent unnecessary

maintenance overhead. The problem of dynamically selecting and dropping views when

the input is a sequence of statements in order to minimize their overall execution cost

under a space constraint is addressed in this chapter. It is modeled as a shortest path

problem in directed acyclic graphs. Then a heuristic algorithm is provided that combines

the process of finding the candidate set of views and the process of deciding when to create

and drop materialized views during the execution of the statements in the workload. The

experimental results show that this dynamic approach performs better than previous static

and dynamic approaches.

Data warehousing applications materialize views to improve the performance of work-

loads of queries and updates. The queries are rewritten and answered using the materialized

views [73]. A central issue in this context is the selection of views to materialize in order

to optimize a cost function while satisfying a number of constraints [132, 148]. The cost

function usually reflects the execution cost of the workload statements that is, the cost

of evaluating the workload queries using possibly the materialized views and the cost of

applying the workload updates to the affected base relations and materialized views. The

146
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constraints usually express a restriction on the space available for view materialization

[75], or a restriction on the maintenance cost of the materialized views [71], or both [1O6].

Usually the views are materialized before the execution of the first statement and remain

materialized until the last statement is executed. This is the static view selection problem

which has been studied extensively during the last decade [75, 133, 71]. Currently most

of the commercial DBMSs (e.g., IBM DB2, MS SQL Server, Oracle) provide tools that

recommend a set of views to materialize for a given workload of statements based on a

static view materialization scheme [153, 7, 4O].

If a materialized view can be created and dropped later during the execution of the

workload, we face a dynamic version of the view selection problem. A dynamic view

selection problem is more complex than its static counterpart. However, it is also more

flexible and can bring more benefit since a materialized view can be dropped to free useful

space and to prevent maintenance overhead. When there is no space constraint and there

are only queries in the workload, the two view materialization schemes are the same: any

view that can bring benefit to a query in the workload is materialized before the execution

of the queries and never dropped.

Although in most view selection problems the workload is considered to be unknown

or a set of statements without order, there are many applications where the workload forms

a sequence of statements. This means that the statements in the workload are executed in a

specific order. For example, in a typical data warehousing application, some routine queries

are given during the day time of every weekday for daily reports; some analytical queries

are given during the weekend for weekly reports; during the night the data warehouse is

updated in response to update statements collected during the day. This is, for instance, a

case where the workload is a sequence of queries and updates. Such a scenario is shown in

Figure 9.1. The information on the order of the statements in the workload is important in

selecting materialized views.
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Figure 9.2 Output of the problem.

The solution to the view selection problem when the input is a sequence of statements

can be described using a sequence of create view and drop view commands before the

execution of every statement. An alternative representation determines the views that

are materialized during the execution of every statement. Figure 9.2 shows these two

representations. +V (—Vi) denotes the materialization (de-materialization) of view V.

This chapter addresses the dynamic view selection problem when the workload is a

sequence of query and update statements. This problem is more complex than the static

one because not only which views to materialize, but also when to materialize and drop

them with respect to the workload statements need to be decided. The main contributions

of this chapter are as follows:

1. The problem is exploited as a shortest path problem in a directed acyclic graph (DAG)
[9]. Unlike that approach, the approach presented in this chapter generates the DAG
in a dynamic way. Therefore, it is autonomous in the sense that it does not rely on
external modules for constructing the DAG.

2. In order to construct the nodes in the DAG, The "maximal" common subexpressions
of queries and/or views are extracted and utilized. The rewritings of the queries
using these common subexpressions are produced at the same time thus avoiding the
application of expensive processes that match queries to views.

3. A heuristic approach that controls the generation of nodes for the DAGs is based on
nodes generated in previous steps suggested.
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4. The new approach is implemented and an extensive experimental evaluation conducted.
The results show that the new approach performs better than previous static and
dynamic approaches.

9.2 Related Work

In order to solve a view selection problem, one has to determine a search space of candidate

views from which a solution view set is selected [135]. The most useful candidate views

are the common subexpressions on queries since they can be used to answer more than

one query. Common subexpression for pure group-by queries can be determined in a

straightforward way [75]. In [56] this class of queries is extended to comprise, in addition,

selection and join operations and nesting. In [3O] the authors elaborate on how to common

subexpressions of select-project-join queries without self-join can be found. This results

are extended in [135] to consider also self-joins. Currently, most major commercial DBMSs

provide utilities for constructing common subexpressions for queries [8, 151]. More impor-

tantly, they provide utilities to estimate the cost of evaluating queries using materialized

views. The What-If utility in Microsoft SQL Server [7] and the EXPLAIN utility in IBM

DB2 [154] are two such examples.

One version of the dynamic view selection problem has been addressed in the past in

[41] and [9O]. Kotidis et al. [9O] show that using a dynamic view management scheme, the

solution outperforms the optimal solution of the static scheme. Both approaches focus on

decomposing and storing the results of previous queries in order to increase the opportunity

of answering subsequent queries partially or completely using these stored results. However,

both approaches are different to ours since they assume that the workload of statements is

unknown. Therefore, they focus on predicting what views to store in and what views to

delete from the cache.

Agrawal et al. [9] consider a problem similar to ours. They model the problem as

a shortest path problem for a DAG. However, their approach assumes that the candidate

view set from which views are selected for materialization is given. This assumption
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is problematic in practice because there are too many views to consider. In contrast,

our approach assumes that the input to the problem is a sequence of queries and update

statements from which it constructs candidate views by identifying common subexpressions

among the statements of the sequence.

9.3 Problem Specification

It is assumed that a sequence S = (Ai , 82, ..., An ) of query and update statements is

provided as input. The statements in the sequence are to be executed in the order they

appear in the sequence. If no views are materialized, the total execution cost of S includes

(a) the cost of evaluating all the queries in S over the base relations, and (b) the cost

of updating the base relations in response to the updates in S. If the materialized views

are created just before the execution of statement Si and dropped before the execution of

statement Si , then the total execution cost includes (a) the cost of evaluating the queries

in (Ai , ..., Si_i ) and in (Ai , ..., An ) over the base relations, (b) the cost of materializing

view V (i.e., the cost of computing and storing V), (c) the cost of evaluating all queries

in (Ai ,..., Sj_i) using the materialized view V (V is used only if it provides some benefit),

(d) the cost of updating view V in response to the changes of the base relations resulting

by the update statements in S i ,..., Si_1 ), and (e) the cost of updating the base relations in

response to the updates in S. For simplicity the cost of dropping the materialized view V

is ignored. The total execution cost of S when multiple materialized views are created and

dropped on different positions of sequence S is defined in a similar way. Since the cost

of updating the base relations in response to updates in S is fixed, it is considered as an

overhead cost, and is ignored in the following.

The problem addressed in this chapter can be now formulated as follows. Given a

sequence of n queries and updates (A 1 , A2, ..., An ) and a space constraint B, find a sequence

(O1, O2, ..., On ) of sets of "create view" and "drop view" statements such that (a) the total

execution cost of S is minimized and, (b) the space used to materialize views during the
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execution of S does not exceed B. Each create view statement contains also the definition

of the view to be created. The set O il of create view and drop view statements is executed

before the execution of the statement 8 i

The output of this dynamic view selection problem can also be described by a sequence

of sets of views 1 = (C1, C2, ...,Cn. Each set Cif contains the views that have been

created and not dropped before the evaluation of the statement 8i . 1 is called a solution

to the problem. Further, if the views to be materialized can only be selected from a set of

candidate views V, 1 is called a solution to the problem for the view set V.

9.4 Modeling the Dynamic View Selection Problem

This section shows how the dynamic view selection problem for a sequence of query and

update statements can be modeled as a shortest path problem on a directed acyclic graph

following the approach introduced by [9]. That approach assumes that the set of candidate

views (i.e., the pool from which views can be chosen to be materialized) is given. The

approach presented in this chapter is different. As shown later in this section, the candidate

views are dynamically constructed from the workload statement by considering common

subexpressions among them.

S. Agrawal et al. [9] show how to model the problem assuming that a candidate set

of views V is given and contains only one view V. There are only two options for each

statement Si in the workload: either the view V is materialized or not. Those two options

are represented as CI) = {} and Ci = {V}, respectively, in a solution where Cif is the set

of views that are materialized before the execution of 8 i . Now the process of constructing

a directed acyclic graph (DAG) can be described as follows:

1. For each statement Si in the workload, create two nodes N1 3 and Nil which represent
the execution of statement Si without and with the materialized view V, respectively.
Create also two virtual nodes N0 and N+1 which represent the state before and after
the execution of the workload, respectively. Label the node ME) by the empty set {}
and the node N1 by the set {V}.
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Figure 9.3 Directed acyclic graph for candidate view set {V}.

2. Add an edge from each node of 8 i to each node of Si+i to represent the change in
the set of materialized views. If both the source node and the target node are labeled
by the same set, then label the edge by a empty sequence "()". If the source node is
labeled by {} and the target node is labeled by {V}, then label the edge by a sequence
(+V) to represent the operation "create materialized view V". If the source node is
labeled by {V} and the target node is labeled by {}, then label the edge by (—V) to
represent the operation "drop materialized view V".

3. Compute the cost of each edge from a node of 8i to a node of S+i  as the sum of (a)
the cost of materializing V, if a (+V) labels the edge, (b) the cost of dropping V, if
(—V) labels the edge, and (c) the cost of executing the statement S i+i using the set
of views that label the target node of the edge.

Figure 9.3 shows the DAG constructed the way described above. Each path from the

node N0 to the node Nn+1 represents a possible execution option for the workload. The

shortest path among them represents the optimal solution for the dynamic view selection

problem. The labels of the edges in the path denote the solution represented as a sequence

of "create view" and "drop view operations". The labels of nodes in the path denote the

solution represented as a sequence of sets of materialized views.

For a candidate set V of m views, one can construct a DAG in a similar way. Instead

of having two nodes for each statement in the workload, 2' nodes are created, one for each
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subset of V. Again, the shortest path represents the optimal solution for the dynamic view

selection problem.

The shortest path problem for a DAG can be solved by well known algorithms in

linear time on the number of edges of the DAG. Therefore the complexity of the process is

O(n • 22') where m is the number of candidate views and n is the number of statements in

the workload. To compute the cost of each edge, an optimizer can be used to assess the cost

of executing the target statement using the corresponding set of materialized views. This is

too expensive even for a small number of candidate views. In practice, the set of candidate

views is expected to be of substantial size. The dynamic view selection problem is shown

to be NP-hard [9]. Therefore, a heuristic approach must be employed to efficiently solve

this problem.

In practice, it cannot be assumed that the set of candidate views is given. It has to be

constructed. Tools that suggest candidate views for a static view selection problem [9] are

not appropriate for determining candidate views for a dynamic view selection problem. Our

approach constructs candidate views which are common subexpressions of queries in the

workload and of views. More specifically, subexpressions are considered of two queries

which represent the maximum commonalities of these two queries as these are defined

in [135]. An additional advantage of this approach is that the rewritings of the queries

using the common subexpressions are computed along with the common subexpressions.

These rewritings can be fed to the query optimizer to compute the cost of executing the

queries using the materialization of the common subexpressions. If a view V is defined as

a common subexpression of a set of queries Q, each query Q E Q is called a parent of

the V. Every Q E Q can be answered using V. Only rewritings of a query Q using its

common subexpression with other queries and views are considered. A major advantage

of this approach is that one do not have to check whether a query matches a view (i.e.,

check if there is a rewriting of the query using the view) which is in general an expensive

process. In the following, rewriting of a query using a common subexpression is ignored if
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the cost of evaluating this rewriting is not more than the cost of evaluating the query over

base relations.

The process of finding a solution for the dynamic view selection problem cab be

further simplified as follows. Assume a view V is the only view in the candidate view set.

Let {Q1 , Q1 } be the parent view set of V where Q 1 and Q1  are the first and last parent

query of V appearing in the sequence of the workload. If there are no update statements

in the workload, we can get the solution directly by creating V before the execution of Q1

and drop it after the execution of Q1 . If the cost of this solution is less than the cost of the

solution that does not materialize V, then it is optimal. If there are update statements in the

workload, the shortest path algorithm has to be applied to determine the optimal solution.

During the construction of the DAG, one does not need to consider materializing V before

Q1 and after Q1 . If there are multiple candidate views, this simplification still applies. This

process reduces the total number of nodes in the DAG.

To solve the dynamic view selection problem, one can generate different views that

are common subexpressions of subsets of the queries in the workload. Finding the solution

for this problem using the shortest path algorithm is expensive because of the large number

of candidate views and the large number of nodes in the DAG. The next section introduces

a heuristic approach that combines the process of generating candidate views with the

process of selecting views for a solution of the view selection problem.

9.5 A Heuristic Approach

The heuristic approach starts by considering that there are only queries in the workload.

The next section discusses how this approach can be extended to the case where there are

also update statements in the workload.

The heuristic approach described in 9 uses two solution merging functions Merge1

and Merge2. Each function takes as input two solutions to the dynamic view selection

problem, each one for a specific set of candidate views, and outputs a new solution.
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Consider two solutions / 1 = (C1- , C2 , CD and /2 = (0, ..., 0), for the

candidate view sets V1 and V2, respectively. Function Merge1 is analogous to function

UnionPair [9]. It first creates a DAG as follows: for each statement 8i in the workload,

it creates two nodes, one labeled by the other labeled by C?. If the new view set

Cif= CoilU C2 satisfies the space constraintB,it also creates another node labeled by Ci. In

addition it creates two virtual nodes representing the starting and ending states. Finally it

creates edges as explained earlier from nodes of query 8 i to nodes of query 8i+1. Once the

DAG is constructed, it returns the solution corresponding to the shortest path in the DAG.

Function Merge1 does not add new views to the set of candidate views. Instead, for

each statement, it might add one more alternative which is the union of two view sets. In

Algorithm 8 Function Merge2
Input: solution 1 1 , solution 12, space constraint B

Output: solution 1

1: Create a list of solutions G which initially contains / 1 and /2

2: for each view V1 in / 1 and each view V2 in /2 do

3: Find the set of common subexpressions V12 of V1 and V2

4: for each view V E V12 do

5: Find the solution for the candidate view set {V} and add it into

6: end for

7: end for

8: Find the solution 1 from with the lowest execution cost and remove it from

9: for all solutions in G do

10: Find the solution /' with the lowest execution cost and remove it from

11: 1 = Mergel(l,l')

12: end for

13: Return /
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Algorithm 9 A heuristic algorithm for the dynamic view selection problem
Input: list of queries S, space constraint B

Output: solution 1

1: Create a set of solutions L which is initially empty

2: for each pair of queries Si and 8i E S do

3: Find the set of common subexpressions Vij of Si and 8i

4: Find the solution for each view set V = {V} where V E Vij and add it into L

5: end for

6: Find the solution 1 from L with the lowest execution cost and remove it

7: for all solutions in L do

8: Find the solution l' lowest execution cost and remove it from L

9: 1 = Merge2(1,1')

10: end for

11: Return the solution /

contrast, function Merge2 shown in the previous page introduces new views into the set of

candidate views.

The heuristic approach for the dynamic view selection problem is implemented by

Algorithm 9 shown above using function Merge2. Algorithm 9 first generates an initial

set of candidate views which are common subexpressions of each pair of queries. For each

view, it finds a solution. Then, it uses Function Merge2 to introduce new views into the

set of candidate views. At the same time it further refines the solution using the views.

9.6 Considering Update Statements in the Sequence

In general, an update statement that involves updating more than one base relations can be

modeled by a sequence of update statements each of which updates one base relation.

The update statements are evaluated using the incremental view maintenance strategy.

Thus one can abstract an update statement as (R, P) where R is a relation and P is the
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percentage of tuples in R to be updated. The evaluation cost of an update statement U for

a materialized view V can be computed as the materialization cost of V multiplies P if

V contains occurrences) of R. Otherwise, it is 0. For example, for a materialized view

V = R D4 S D4 T with its materialization cost ma(V ), the evaluation cost of an update

statement (R, 1O%) is mc(V) * 10%.

Assume that a view V contains an occurrence of the base relation R, and an update

statement U in the workload updates R. Then, if V is materialized when U is executed, V

has to be updated. This incurs a maintenance cost. An optimizer can assess the cost for

maintaining U. Roughly speaking, the unaffected part of a view V with respect to an update

U can be defined to be the set of subexpressions of V resulting by removing R from V. If

an expression of the unaffected part of a view is materialized or if it can be rewritten using

another materialized view, the maintenance cost of V can be greatly reduced. For example,

the unaffected part of a view V = R [x] σ A>10(S) D4 ac=o(T) with respect to R is the view

V' = σA>10(S) r>1 ac=0(T). View V can be maintained in response to changes in R either

incrementally or through re-computation much more efficiently if V' is materialized.

If there are update statements in the sequence, the heuristic approach still starts

with a set of candidate views which are common subexpressions of pairs of queries in the

workload sequence. Then, for each view and each update statement, add to the candidate

set of views the unaffected parts of the view with respect to the updates. If two update

statements update the same base relation, only one is used to generate the unaffected parts

of a view. Finally the heuristic algorithm is applied using the new set of views as a candidate

view set.

9.7 Experimental Evaluation

The heuristic algorithm for the dynamic view selection problem for a sequence of query and

update statements is implemented. In order to examine the effectiveness of our algorithm,

a static view selection algorithm similar to the one presented in [153] is also implemented.
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Further, the greedy heuristic algorithm GREEDY—SEQ presented in [9] is also implemented.

Provided as input to GREEDY — SEQ is a set of candidate views recommended by the

static view selection algorithm. Select-Project-Join queries are considered. The "maximal"

common subexpressions of two queries are computed using the concept of closest common

derivator as is defined in [135]. In order to deal with update statements, the unaffected parts

of the views with respect to update statements are considered. A cost model is utilized that

assesses the cost of a query (or an update statement) when this is rewritten completely or

partially using one or more materialized views.

We measure the performance of each approach as a percentage using the percentage

of the total execution cost of a workload using the set of materialized view suggest by

the approach to the execution cost of the same workload without using any view. For

each experiment, we consider three schemes, Static (the static view selection approach),

Dynamic (the view selection approach presented in this paper), GREEDY-SEQ (the

algorithm in [9] fed with the result of Static).

First, the effect of the space constraint on the three algorithms is studied. Two

workloads W1 and W2 are are considered, each of which consists of 25 queries (no updates).

The queries in W1 have more overlapping than that of W2. The space constraint varies from

1 to 10 times the total size of the base relations. The results are shown in Figures 9.4 and

9.5 for W1 and W2, respectively. When the space constraint is restrictive, the dynamic

view selection schemes have better performance than the static one. This superiority is

the result of the capacity of these approaches for creating and dropping materialized views

dynamically. As expected, when the space constraint relaxes, all view selection schemes

generate similar results. Among the two dynamic view selection approaches, Dynamic

performs better than the GREEDY — SEQ algorithm. This shows that a statically selected

view set is not appropriate for a dynamic view selection scheme. The new approach does

not suffer from this shortcoming since its set of candidate views is constructed dynamically.
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Figure 9.4 Performance vs. space 	 Figure 9.5 Performance vs. space
constraint, workload W1. 	constraint, workload W2.

Then, the effect of update statements on the three approaches is studied. Two series

of workloads WS1 and WS2 are considered, each workload contains the same 25 queries.

However the number of update statements in each workload varies from 1 to 10. Each

update statement updates 3O% tuples of base relation chosen randomly. In the workloads

of WW1 , all the update statements follow all the queries. In the workloads of WS2 , the

Figure 9.6 Performance vs. number of
update statements (workload Wsi ).

Figure 9.7 Performance vs. space
constraint (workload Wsip).
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update statements are interleaved randomly with the queries. The space constraint is fixed

to 10 times the total size of the base relations. The results are shown in Figures 9.6 and

9.7, respectively. In all cases, when the number of update statements in the workload

increases, the dynamic view selection approaches perform better compared to the static

one. This is expected since the dynamic algorithms can drop materialized views before

the evaluation of update statements and save the maintenance time of these views. The

static view selection scheme does not depend on the order of query and update statements

in the workload. Thus, for both workload series, the static view selection scheme performs

the same. The dynamic view selection scheme depends on the order of query and update

statements in the workload. When the update statements follow the queries, the dynamic

view selection schemes perform better. The reason is that materialized views that are

needed for queries are dropped after the queries are executed and therefore do not contribute

to the maintenance cost. In any case, the Dynamic outperforms the GREEDY — SEQ.

9.8 Conclusion

This chapter addresses the problem of dynamically creating and dropping materialized

views when the workload is a sequence of query and update statements. The problem is

modeled as a shortest path problem in DAGs where the nodes of the DAG are dynamically

constructed by exploiting common subexpressions among the query and update statements

in the workload. A heuristic algorithm is proposed that combines the process of finding the

candidate set of views and the process of deciding when to create and drop materialized

views during the execution of the statements in the workload. An experimental evaluation

of our approach showed that it performs better than previous static and dynamic ones.
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CONCLUSION

The problem of selecting views for materialization in current database applications is an

important one mainly for reasons of performance. In this dissertation, we provide a compre-

hensive study of this problem focusing on performance.

We initially provided a framework for the view selection problem by studying the

related issues of maintaining materialized views, computing common sub-expressions of

queries, and answering queries using other materialized views.

We proposed a new methodology for generating a search space for the view selection

problem. A search space is essentially a structure which represents alternative candidate

view sets for materialization. Most previous approaches generate sets of candidate views

by making the queries in the workload less specific. That technique increases the possibility

of using views to answer queries by sacrificing some common operations in the candidate

views. Instead, our approach generates candidate views by finding common subexpressions

among queries that involve all their common operations. Thus all common operations are

kept in the candidate view set. Our approach is general enough to allow the generation

of search spaces for different view selection problems. These search spaces can be used

by specific cost-based view selection algorithms that take into account the specificities of

a given view selection problem to find the solution. Our approach can generate a search

space dynamically. Therefore, it can be applied in cases where a statically generated search

space is not appropriate. Our experimental results showed that the new approach creates

smaller search spaces and exploits more commonalities among queries. In this dissertation,

we have applied our method to different instances of the view selection problem.

We studied the problems of satisfiability and implication for mixed arithmetic cons-

traints. We characterized the complexity of the problems and suggested polynomial algori-
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thms for particular cases. We used these theoretical results for computing common sub-

expressions of queries and search spaces for view selection problems.

As an application of the new method for constructing search spaces for view selection

problems, we studied the problem of maintaining multiple view using multi-query optimiza-

tion techniques. Our approach for this multiple view maintenance problem is based on

exploiting maximum commonalities among queries and on rewriting queries using views.

Our experimental results showed that our approach significantly reduces the overall view

maintenance cost.

We also addressed the same view maintenance problem in the context of a commercial

database management system (IBM DB2), in the presence of memory and time restrictions.

We proposed a heuristic approach for this problem that guarantees the satisfaction of the

restrictions. Our experimental results showed that our approach under memory and time

restrictions has a performance which is comparable to that of approaches operating without

restrictions.

Finally we exploited our approach for constructing candidate views to study a dynamic

version of the view selection problem where the workload is a sequence of query and

update statements. We proposed a method that dynamically creates and drops materialized

views during the evaluation of the workload. An experimental evaluation showed that our

approach outperforms previous static and dynamic view selection algorithms.
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