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ABSTRACT

INTERACTION OF METHOXYETHYL METHYL IMIDAZOLIUM-BASED
IONIC LIQUIDS WITH URANIUM AND ITS EFFECT ON

BIOREDUCTION OF URANIUM

by
Hao Wang

Ionic liquids (ILs) are new materials with unique properties such as non-measurable

vapor pressure, low melting point below 100 °C and tunable physical-chemical properties.

These liquids demonstrate tremendous potential applications in many fields, including

nuclear waste treatment.

In this study, new MOEMIM (methoxyethyl methyl imidazolium)-based ionic

liquids were synthesized. Their properties were characterized by UV-Vis spectroscopy

(UV-vis), Fourier transform infrared spectroscopy (FTIR), mass spectroscopy (MS) and

NMR (Nuclear magnetic resonance). The interaction between ILs and uranium has been

explored by various analysis techniques, including pH, potentiometric titration, UV-vis,

MS and EXAFS (extended x-ray absorption fine structure). Among all the ILs studied

here, MOEMIMBF4 demonstrated a strong complexation with uranium, while others

showed weak interaction.

Next, the effect of ILs on the bioreduction of uranium by clostridium sp. was

explored. The result revealed that, in presence of MOEMIMBF4, most of the U(VI) and

reduced U(IV) can be maintained in the aqueous phase for long time, while most of

uranium precipitates out very quickly in presence of other ILs. This could be explained

by the formation of uranium complex associated with MOEMIMBF4 . However, the

complexation reduced bioavailability of uranium, resulting in the decreased bioreduction

efficiency. The effect of different concentration of MOEMIMBF 4 was also investigated



in this study. The results disclosed that the elevated concentration could diminish the

bioredution percentage, which may result from the raised toxicity.

In addition, toxicity of a variety of ILs on clostridium sp. was also examined here.

Optical density (OD), pH and gas production were determined. The result revealed that

the anion plays a very important role on toxicity. The more fluorine atoms the anion

contains, the more toxic the IL is. Furthermore, the EC50-amour of each IL on clostridium

sp. was determined, and the partition coefficient (Kow) between octanol and water was

measured, and also the ELUMO was calculated by Sparton'02. Based on these data, a series

of QSAR models were developed to predict the toxicity of ILs.

Besides, the biodegradation of pyridium-based ILs by urealyticum bacteria in

presence of low concentration uranium was explored in this study. The bacteria growth

was monitored by OD, pH, UV-vis, and the biodegradation products were determined by

HPLC (high performance liquid chromatography) and MS, and the concentration of

uranium in the solution was measured by KPA ( kinetic phosphorescence analyzer). The

result revealed that uranium under low concentration doesn't exert much inhibition on

bacterium growth, but it formed complex with the biodegradation intermediate, leading to

the elevated uranium concentration in the solution. After the intermediate was further

consumed by bacterium, uranium was released again and precipitated out of the solution.

Later, with the pH decrease because of the acids produced from biodegradation, uranium

came back to solution again. The biodegradation pathway is similar to that in absence of

uranium examined in previous work by Zhang (2006).



INTERACTION OF METHOXYETHYL METHYL IMIDAZOLIUM-BASED
IONIC LIQUIDS WITH URANIUM AND ITS EFFECT ON

BIOREDUCTION OF URANIUM

by
Hao Wang

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and Rutgers,
The State University of New Jersey - Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Environmental Science

Department of Chemistry and Environmental Science

August 2007



Copyright © 2007 by Hao Wang

ALL RIGHTS RESERVED



APPROVAL PAGE

INTERACTION OF METHOXYETHYL METHYL IMIDAZOLIUM-BASED
IONIC LIQUIDS WITH URANIUM AND ITS EFFECT ON BIOREDUCTION OF

URANIUM

Hao Wang

Dr. Sanjay V. Malhotra, Dissertation Advisor 	 Date
Assistant Professor of Chemistry and Environmental Science, NJIT

Dr. Arokiasamy J. Francis, Committee Member 	 Date
Group Leader of Molecular Environmental Science at Brookhaven National Laboratory,
Associate Director of Center for Environmental Molecular Science at Stony Brook
University / Brookhaven National Laboratory

Dr. Tamara Gund, Committee Member 	 Date
Professor of Chemistry and Environmenl Science, NJIT

Dr. Normal Loney, Committee Member 	 Date
Associate Professor of Chemical Engineering, NJIT

Dr. Daniel J. Warts, Committee Member	 Date
Executive Directly of Otto H. York Center for Environmental Engineering and Science,
Panasonic Professor of Sustainabilitv. NJIT

n -
Dr. Some 

c
Mita, Committee Member 	 Date

Professor o C

t
 emistry and Environmental Science, NJIT



BIOGRAPHICAL SKETCH

Author:	 Hao Wang

Degree:	 Doctor of Philosophy

Date:	 August 2007

Undergraduate and Graduate Education:

• Doctor of Philosophy in Environmental Science,
New Jersey Institute of Technology, Newark, NJ, 2007

• Master of Environmental Science,
Beijing Normal University, Beijing, P.R.China, 2003

• Bachelor of Environmental Engineering,
Beijing Industry and Business University, Beijing, P.R.China, 1999

Major:	 Environmental Science

Presentations and Publications:

Hao Wang, Cleve J. Dodge, Arokiasamy J. Francis and Sanjay V. Malhotra,
"Interaction of methoxyethyl methyl imidazolium tetrafluoroborate with uranium
and its application on uranium bioreduction,"
231 th ACS National Meeting, Chicago, March 2007

Hao Wang, Vineet Kumar, Arokiasamy J. Francis and Sanjay V. Maihotra,
"Toxicity study of methoxyethyl methyl imidazolium-based ionic liquids,"
231 th ACS National Meeting, Chicago, March 2007

Chengdong Zhang, Hao Wang and Sanjay V. Malhotra,
"Enzymatic synthesis of dipeptides in ionic liquids," (Submitted to Advanced
Synthesis and Catalysis).

Hao Wang, Cleve J. Dodge, Arokiasamy J. Francis and Sanjay V. Maihotra,
"Investigation of interaction between uranium and 1-methoxyethyl-3-methyl
imidazolium based ionic liquids," (in preparation).

iv



Hao Wang, Cleve J. Dodge, Arokiasamy J. Francis and Sanjay V. Malhotra,
"Effects of ILs on bioreduction of U(VI) to U(IV) by Clostridium sp.," (in
preparation).

Hao Wang, Arokiasamy J.Francis and Sanjay V. Malhotra,
"Biodegradation of pyridium tetrafluoroborate in presence of uranium," (in
preparation).

v



To those who care about me and those I am concerned about

vi



ACKNOWLEDGMENT

First of all, I would like to give my most sincere appreciation to my advisor, Dr. Sanjay

V. Malhotra. He not only directed my research, but also always stood by and supported

me. He gave me encouragement when I felt frustrated; he lent me a hand when I needed

help; and he advised me when I was in a dilemma.

I would also express my greatest gratitude to Dr. Arokiasamy J. Francis for his

directing my research and countless help. Most of my experiment was done in his lab at

Brookhaven National Laboratory (BNL). He was always very kind and gave me plenty of

important suggestions. His valuable insight and knowledge will benefit my whole life.

I am also really grateful to Dr. Tamara Gund, Dr. Norman Loney and Dr. Daniel

Watts for serving as committee members and actively participating in my research.

I also want to give special thanks to Dr. Cleveland J. Dodge and Dr. Chengdong

Zhang for helping in my experiment, to Dr. Vineet Kumar for the synthesis of ILs, and to

Dr. Jeff B. Gillow, Dr. Weimin Gao for their help when I stayed in BNL.

I am obliged to the following individuals for their help in these years: Gayle Katz

(secretary of the department), Ying Xiao, Bin Wang, Ornthida Saekhow, Da Jeong Shim

and Yuhong Chen (fellow graduate students).

Also, I appreciate the help from Dr. Ronald S. Kane and Ms. Clarisa Gonzalez-

Lenahan for thesis review, as well as help from Mr. Jeffrey W. Grundy in the

International Students and Faculty Office.

Finally, particularly thanks to my family. Without their endless support, I could

have done nothing.

vii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION AND OBJECTIVES 	 1

1.1 Ionic Liquids  	 1

1.1.1 Ionic Liquids 	 1

1.1.2 Properties of Ionic Liquids 	 3

1.1.3 Application of Ionic Liquids in Industry 	 3

1.2 Radioactive Waste  	 8

1.3 Current Treatment Methods for Nuclear Waste 	 9

1.3.1 Plutonium and Uranium Recovery by Extraction 	 9

1.3.2 Electrorefining of Metals 	 10

1.3.3 Bioremediation 	 11

1.4 Objectives 	 12

2 SYNTHESIS AND CHARACTERIZATION OF IONIC LIQUIDS 	  14

2.1 Introduction 	 14

2.2 Synthesis and Characterization of Ionic Liquids  	 15

2.2.1 [MOEMIM] [BF4] 	 15

2.2.2 [MOEMIM][PF6]  	 18

2.2.3 [MOEMIM][ CF3COO] 	  21

2.2.4 [MOEMIM][Tf2N]  	 23

2.2.5 [MOEMIM][OMS] 	  26

2.2.6 [MECOOMIM][CH3C00] 	  29

2.3 Properties of Ionic Liquids  	 31

viii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.3.1 Status at Room Temperature 	 31

2.3.2 Density 	 31

2.3.3 Miscibility 	 31

3 CHARACTERIZATION OF URANIUM ASSOCIATED WITH IONIC LIQUIDS 32

3.1 Introduction 	 32

3.2 Materials and Methods 	  33

3.2.1 Preparation of Uranium-ILs Mixture 	 33

3.2.2 Characterization of Interaction 	 33

3.3 Results and Discussion 	 36

3.3.1 [MOEMIM][BF4] and Uranium 	  36

3.3.2 [MOEMIM][CF3C00] and Uranium 	  49

3.3.3 [MOEMIM][PF6] and Uranium 	  53

3.3.4 [MOEMIM][0MS] and Uranium 	 58

3.3.5 [MOEMIM][Tf2N] and Uranium 	 62

3.3.6 [MECOOEMIM][CH3C00] and Uranium 	  66

3.4 Summary 	  71

4 EFFECTS OF IONIC LIQUIDS ON BIOREDUCTION OF U (VI) TO U(IV) BY 72
Clostridium sp. 	

4.1 Introduction 	 72

4.2 Materials and Methods 	  73

4.2.1 Chemicals 	 73

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.2.2 Bacterium 	 73

4.2.3 Analysis of U(VI) and U(IV) 	 74

4.2.4 Determination of Total U in Solution 	 75

4.2.5 Determination of U(IV) and Total U in Precipitate  	 75

4.2.6 Experiment Methods 	 75

4.3 Results and Discussion 	 76

4.3.1 Effects of Various ILs on U Bioreduction 	 76

4.3.2 Effects of Various Concentrations of [MOEMIN4][BF4] on Bioreduction 	 81

4.4 Summary 	 86

5 TOXICITY STUDY OF IONIC LIQUIDS ON Clostridium sp 	  87

5.1 Introduction 	 87

5.2 Materials and Methods 	 88

5.2.1 Ionic Liquids  	 88

5.2.2 Bacterium  	 88

5.2.3 Methods  	 88

5.2.4 Indicators of Growth to Be Measured 	 89

5.3 Results and Discussion 	 89

5.3.1 Effects of [BMIK[BF4] on Clostridium sp. Growth 	 89

5.3.2 Effects of [MOEMIM][BF4] on Clostridium sp. Growth 	 93

5.3.3 Effects of [MOEMIIVI][OMS] on Clostridium sp. Growth 	 96

5.3.4 Effects of [MOEMIIVI][CF3C00] on Clostridium sp. Growth 	 100



TABLE OF CONTENTS
(Continued)

Chapter	 Page

5.3.5 Effects of [MOEMIM][PF6] on Clostridium sp. Growth 	 103

5.3.6 Effects of [MOEMIM][Tf2N] on Clostridium sp. Growth 	  106

5.3.7 Summary 	  109

5.4 Comparison of Toxicity of Different Ionic Liquids 	  110

6 QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) FOR
PREDICTION OF THE TOXICITY OF IONIC LIQUIDS 	  113

	

6.1 Introduction    113

6.2 Materials and Methods 	  114

6.2.1 Chemicals 	  114

	

6.2.2 Bacterium    115

	

6.2.3 Descriptors Used in QSAR Modeling    115

	

6.3 Results and Discussion    119

6.3.1 K., Values  	 119

	

6.3.2 The Lowest Unoccupied Molecular Orbital (ELumo)   119

6.3.3 EC50-48hr 	 120

6.3.4 QSAR Modeling of [MOEMIM]-Based ILs 	  123

6.3.5 QSAR Modeling of [BMIM]-Based ILs 	  124

6.3.6 QSAR Modeling of Both [MOEMIM]-Based and [BMIM]-Based ILs 	  125

6.4 Conclusion  	 127

7 BIODEGRADATION OF EtPyBF4 IN PRESENCE OF URANIUM 	  128

7.1 Introduction 	 128

xi



TABLE OF CONTENTS
(Continued)

Chapter	 Page

7.2 Materials and Methods 	  129

7.2.1 Bacterium 	 129

7.2.2 Culture Medium 	  129

7.2.3 Ionic Liquid 	 129

7.2.4 Uranium 	 129

7.2.5 Methods  	 130

7.3 Results and Discussion  	 131

7.3.1 Optical Density  	 131

7.3.2 UV-vis Absorption  	 132

7.3.3 pH 	 134

7.3.4 HPLC 	 134

7.3.5 Uranium in Solution  	 136

7.3.6 Effects of BF4 - Anion on Uranium Solubility  	 140

7.3.7 Mass Spectrometry 	 141

7.3.8 Degradation Pathway 	 144

7.4 Summary 	 146

8 CONCLUSIONS AND RECOMMENDATIONS 	  147

8.1 Conclusions  	 147

8.2 Recommendations 	  148

REFERENCES 	  150

xii



LIST OF TABLES

Table Page

1.1 Summary Production Statistics of U.S.Uranium Industry-1993 to
2005  8

2.1 Density of Ionic Liquids 	 31

3.1 pH Changes of [MOEMIM][BF 4]:U Mixture 	 36

3.2 EXAFS Structure Parameters for U and U-[MOEMIM][BF4] Mixture 	 47

3.3 pH Change in [MOEMIM][CF3COO]:U Mixture 	 49

3.4 EXAFS Structure Parameters for U and [MOEMIM][CF3C00]:U
Mixture 	 53

3.5 pH Change of [MOEMIM][PF6]:U Mixture 	 53

3.6 EXAFS Structure Parameters for U and U-[MOEMIM][PF6] Mixture.... 57

3.7 pH change of [MOEMIM][0MS]:U mixture 	 58

3.8 EXAFS Structure Parameters for [MOEMIM][0MS]:U Mixture 	 61

3.9 pH Change of [MOEMIM][Tf2N]:U Mixture 	 62

3.10 EXAFS Structure Parameters of U and U- [MOEMIM][Tf2N] 	 66

3.11 pH Change of [MECOOMIM][CH3C00]:U Mixture 	 67

3.12 EXAFS Structure Parameters of U and U- [MOEMIM][CH3C00] 	 71

3.13 Summary of Determination of Complexation by Different Methods 	 71

6.1 Partition Coefficient of Ionic Liquids   119

6.2 Energy of Lowest Unoccupied Molecular Orbital of Ionic Liquids 	 119

6.3 EC50-48hr of Ionic Liquids 	 123

7.1 Composition of Control and Sample 	 130



LIST OF FIGURES

Figure Page

1.1 Commonly used cations and anions in ionic liquids 	 2

2.1 Ionic liquids used in this study 	 15

2.2 Two-step synthesis of [MOEMIM][BF4] 	 15

2.3 UV-vis spectrum of [MOEMIM][BF4] 	 16

2.4 FTIR spectrum of [MOEMIM] [BEd 	 16

2.5 Mass spectra of [MOEMIM] [BEd 	 17

2.6 Structure of [MOEMIM][BF4] 	 18

2.7 UV-vis spectrum of [MOEMIM][PF 6] 	 19

2.8 FTIR spectrum of [MOEMIM][ PF6] 	 19

2.9 Mass spectra of [MOEMIM][ PF6] 	 20

2.10 UV-vis spectrum of [MOEMIM][CF3C00] 	 21

2.11 FTIR spectrum of [MOEMIM] CF3C00] 	 22

2.12 Mass spectra of [MOEMIM][ CF3COO] 	 23

2.13 UV-vis spectrum of [MOEMIM][ Tf2N] 	 24

2.14 FTIR spectrum of [MOEMIM][ Tf2N] 	 25

2.15 Mass spectra of [MOEMIM][ Tf2N] 	 25

2.16 UV-vis spectrum of [MOEMIM][0MS] 	 27

2.17 FTIR spectrum of [MOEMIM][0MS] 	 27

2.18 Mass spectra of [MOEMIM][0MS] 	 28

2.19 UV-vis spectrum of [MOEMIM][CH3C00] 	 30

xiv



LIST OF FIGURES
(Continued)

Figure Page

2.20 Mass spectra of [MOEMIM][CH3C00] 	 30

3.1 Potentiometric titration of U and U-NOEMIMIIBF4] mixture 	 37

3.2 UV-vis spectra of 5mM U in: (a) 1:1 and (b)2:1 [MOEMIM][BF4] —U
Mixture 	 39

3.3 Mass spectra of uranyl nitrate solution at pH 3 	 40

3.4 Mass spectra of [MOEMIM][BF4]-U at pH 2 	 42

3.5 Normalized XANES spectra of various U-ILs mixtures 	 43

3.6 Molecular structure of UO2(NO3)2.2H20 	 44

3.7 EXAFS spectra of uranyl nitrate at the U LH' edge 	 45

3.8 EXAFS spectra of U-[MOEMIM][BF4] at the U LII1 edge 	 46

3.9 Proposed complex structure of U-NOEMIMM3F4] 	 48

3.10 Potentiometric titration of [MOEMIM][CF3C00]:U mixture 	 49

3.11 UV-vis spectra of [MOEMIM][CF3COO]:U mixture 	 50

3.12 Mass spectra of [MOEMIK[CF3C00]:U mixture at pH 3 	 51

3.13 EXAFS spectra of U-[MOEMIK[CF3C00] at the U LIR edge 	 52

3.14 Potentiometric titration curve of [MOEMIM][PF6]:U mixture 	 54

3.15 UV-vis spectra of [MOEMIM][PF6]:U mixture 	 55

3.16 Mass spectra of [MOEMIM][PF6]:U mixture at pH 3.5 	 55

3.17 EXAFS spectra of U-[MOEMIM][PF6] at the U Lill edge 	 57

3.18 Potentiometric titration curve of [MOEMIM][OMSFU mixture 	 59

xv



LIST OF FIGURES
(Continued)

Figure Page

3.19 UV-vis spectra of [MOEMIM][0MS]-U mixture 	 59

3.20 Mass spectra of [MOEMIM][OMS]:U mixture at pH 3.5 	 60

3.21 EXAFS spectra of U-[MOEMIM][OMS] at the U L111 edge 	 61

3.22 Potentiometric Titration of [MOEMIM][Tf2N]:U mixture 	 63

3.23 UV-vis spectra of [MOEMIM][Tf2N]:U mixture 	 64

3.24 Mass spectra of [MOEMIM][Tf2N]:U mixture at pH 3 	 64

3.25 EXAFS spectra of U-[MOEMIM][Tf2N] at the U L 111 edge 	 65

3.26 Potentiometric titration of [MECOOMIM][CH3COO]:U mixture 	 67

3.27 UV-vis spectroscopy of [MECOOMIM][CH3COO]:U mixture 	 68

3.28 Mass spectra of [MECOOMIM][CH3COO]:U mixture at pH 2.3 	 69

3.29 EXAFS spectra of U-[MOEMIM][CH3COO] at the U Lm edge 	 70

4.1 Concentrations of U(VI) and U(IV) in various ILs solution 	 77

4.2 Mass balance of U in different ILs after reduction 	 78

4.3 Percentages of U reduction and U in solution in presence of various ILs 79

4.4 UV-vis absorption of U in presence of various ILs 	 80

4.5 Concentrations of U(VI) and U(IV) in [MOEMIM] [BF4] with various
concentrations 	 82

4.6 Mass balance of U in different ILs after reduction 	 83

4.7 Percentages of U reduction and U in solution in various concentrations
of [MOEMIK[BF4] solution 	 84

5.1 Bacteria growth in presence of [BMIM][BF41 	 90

xvi



LIST OF FIGURES
(Continued)

Figure Page

5.2 Effects of [BMIM][BF 4] on pH change during incubation 	 90

5.3 Effects of [BMIM][BF 4] on gas production during incubation 	 91

5.4 Mass spectra of medium containing [BMIM][BF4] (0.1%) 	 92

5.5 Bacteria growth in presence of [MOEMIM][BF4] 	 93

5.6 Effects of [MOEMIM][BF4] on pH change during incubation 	 94

5.7 Effects of [MOEMIM][BF4] on gas production during incubation 	 94

5.8 Mass spectroscopy of medium containing [MOEMIM][BF4] (0.1%) 	 96

5.9 Bacteria growth in presence of [MOEMIM][0MS] 	 97

5.10 Effects of [MOEMIM][0MS] on pH change during incubation 	 97

5.11 Effects of [MOEMIM][0MS] on gas production during incubation 	 98

5.12 Mass spectroscopy of medium containing [MOEMIM][0MS] (0.1%).... 98

5.13 Bacteria growth in presence of [MOEMIM][CF3C00] 	 100

5.14 Effects of [MOEMIM][CF3C00] on pH change during incubation 	 101

5.15 Effects of [MOEMIM][CF3COO] on gas production during incubation 	 101

5.16 Mass spectroscopy of medium containing [MOEMIM][CF3C00] 	 102

5.17 Bacteria growth in presence of [MOEMIM][PF6] 	 103

5.18 Effects of [MOEMIM][PF6] on pH change during incubation 	 104

5.19 Effects of [MOEMIM][PF6] on gas production during incubation 	 104

5.20 Mass spectroscopy of medium containing [MOEMIM][PF6] (0.1%) 	 105

5.21 Bacteria growth in presence of [MOEMIM][Tf2N] 	 106

xvii



LIST OF FIGURES
(Continued)

Figure Page

5.22 Effects of [MOEMIM][Tf2N] on pH change during incubation 	 107

5.23 Effects of [MOEMIM][Tf2N]on gas production during incubation 	 107

5.24 Mass spectra of medium containing [MOEMIM][Tf2N] (0.1%) 	 108

5.25 Comparison of optical density in media with different ILs 	 110

5.26 Comparison of gas production in media with different ILs 	 111

5.27 Linear regression of number of F atoms of ILs and toxicity 	 112

6.1 Apparatus for K0  measurement 	 115

6.2 Regression analysis of cell number and optical density 	 118

6.3 Regression curve of growth percentage against IL concentration 	 120

6.4 Plot of observed toxicity against toxicity predicted from Eq. (9) 	 126

7.1 Optical density of bacteria growth 	 131

7.2 UV-vis spectroscopy of [EtPy][BF4] at different
time 	 132

7.3 UV-vis absorbance of EtPyBF4 at 259nm 	 133

7.4 Degradation of EtPyBF4 and bacteria growth 	 133

7.5 pH change during bacteria growth 	 134

7.6 Peak area of biodegradation products and pH change as function of time. 135

7.7 Uranium concentration in solution 	 136

7.8 Biodegradation products determined by HPLC and the U concentration
in solution 	 137

7.9 LC-MS analysis of intermediate 	 138

7.10 Mass spectrum of 50-hour degradation products in negative mode 	 139

xviii



LIST OF FIGURES
(Continued)

Figure Page

7.11 Mass spectroscopy of degradation products in positive mode 	 141

7.12 MS/MS analysis of 192 (m/e) at 30% collision energy 	 142

7.13 Mass spectrum of degradation products between 50-200(m/e) in
positive mode after 180 hours 	 143

7.14 Mass spectra of degradation products in negative mode 	 143

7.15 Suggested degradation pathway 	 145

xix



CHAPTER 1

INTRODUCTION AND OBJECTIVES

1.1 Ionic Liquids

1.1.1 The Development of Ionic liquids (ILs)

Ionic liquid is liquid that contains only ions (http://en.wikipedia.org/wikillonic_liquid) .

This term is used to refer to molten salts, such as liquid sodium chloride over 800 °C.

However, today, this term is defined as salts that melt below about 100°C. Particularly,

the salts are called room-temperature ionic liquids if they are liquids at room temperature.

Room temperature ionic liquids are not new. Ethylammonium nitrate, which is

liquid at room temperature, was first described in 1914 (Walden, 1914). In the late 1940s,

N-alkylpyridinium chloroaluminates were studied as electrolytes for electroplating

aluminium. These systems were reexamined by the groups of Hussey (1983), Robinson

(1979) and Wilkes (1982) in the late 1970s. The first examples of ionic liquids based on

dialkylimidazolium cations were reported in the 1980s by Wilkes and coworkers. They

contained chloroaluminate anions (A1C14 - or Al2C17") and proved to be useful

catalysts/solvents for Friedel—Crafts acylations. However, the chloroaluminate anion's

high reactivity to water was prohibitive to the wide scale use of these ionic liquids. In

1992, Wilkes and Zawarotko reported the preparation of ionic liquids with alternative

anions like hexafluorophosphate ([PF6I) and tetrafluoroborate ([BEI] -), which allowed for

a greater range of ILs applications (Wilkes, et al. 1992). Since then, various, new,

moisture- stable, neutral ionic liquids were developed, attracting significant interest from

the scientific community.

Figure 1.1 shows some commonly used cations and anions of ionic liquids.

1



Figure 1.1 Commonly used cations and anions in ionic liquids.
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1.1.2 Properties of Ionic Liquids

Properties of ILs are summarized below.

• They have no measurable vapor pressure. Compared with traditional organic
solvents that are highly volatile and toxic, ILs are non-volatile, can be used in
high vacuum systems and are easily contained. In addition, they are
environmentally friendly and, therefore, called 'green' solvents.

• They generally have reasonable thermal stability. While tetraalkylammonium
salts have limited thermal stability, owing to decomposition via the Hoffmann
elimination, [EMIM][BF4] is reported to be stable up to 300 °C and
[EMINI][(CF3S02)21■1] up to 400 °C (Bonhote, et al., 1996). In other words, many
ionic liquids have liquid ranges of more than 300 °C, compared to the 100 °C
liquid range of water.

• Since ILs only consist of ions, they possess a large electrochemical window (up to
7ev).

• On the one hand, they are good solvents for many organic, inorganic and
organometallic compounds. On the other hand, they are immiscible with some
organic solvents (e.g. alkanes) and therefore can be used in two-phase systems.
Similarly, lipophilic ionic liquids can be used in aqueous biphasic systems.

• They are tunable solvents. Different combinations of cations and anions can form
different ionic liquids that possess various physical chemical properties. For
example, a suitable choice of cation/anion cans readliy affect polarity and
hydrophilicity/lipophilicity.

Due to their unique characteristics, ILs are considered to be one of the most

promising green solvents anticipated to replace traditional toxic organic solvents.

1.1.3 Application of ILs in Industry

Separation and Extraction Due to their special properties such as non-volatility

and good solvation for many inorganic and organic chemicals, ILs are considered an

alternative to organic solvents in Liquid-Liquid extraction. Liquid —liquid extraction of

heavy metal ions in ILs has become increasingly attractive. Visser et al. (2001) have

reported the applications of functionized ILs as the extractant in a liquid/liquid extraction
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of Hg2+ and Cd2+ and uranium. They explored the applications of PAN (1-(pyridylazo)-2-

naphthol), TAN (1-thiazoly-lazo)-2-napthol), Cif, SCN- and halides extractants

for the partition of a metal cation between an ionic liquid phase and an aqueous phase.

Wei et al. (2003) used dithizone as a metal chelate to form neutral metal-dithizone

complexes with heavy metal. They proposed that ionic liquids may be participating in a

liquid ion exchange process in which [PF 6] - is replaced by a more hydrophobic metal-

anion complex formed in the aqueous phase. Hirayama et al. (2005) reported the high

extraction performance of [BMIM] [PF6], [HMIK[PF6] and [OMIN][PF6] for divalent

metal cations with 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione (Htta). In addition, ILs

have been used as co-extract solvents for actinide extractions from radioactive waste.

Organic Synthesis in ILs Many synthesis reactions have been tested in ILs.

Friedel-crafts acylation has been examined in pyridinium based ILs (Xiao, et al. 2005).

The reactions were found to proceed under relatively mild conditions with excellent

conversions, and ILs were recycled and reused effectively. A study of Diels-Alder

reaction was carried out by Welton and co-workers (1999). They investigated the rate and

selectivity between cyclopentadiene and methyl acrylate in a number of neutral ILs. It

was found that the ratio of `endo' and `exo' decreased slightly as the reaction proceeded,

and were dependent on reagent concentration and ILs. The first example of an

electrophilic nitration in an ionic liquid was performed by Wilkes and co-workers

(Wilkes et al. 1987). A number of aromatic compounds were nitrated with KNO3 and

dissolved in chloroaluminate (III) ionic liquids. Lee et al.(2001) have studied the Lewis

acid-catalyzed three-component synthesis of a-amino phosphorate in [BMIM][PF6],

[BMIM] [OTf], [BMIM][BF 4] and [BMIM][SbF6], finding the reaction gave good yields
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in ILs with Lewis acids. The reaction was also performed in [BMIM][PF6] with

Sm(OTf) 3 as the catalyst, which gave a yield of 99% (compared with 70% for the

reaction in dichloromethane).

Transition Metal Catalysis in ILs ILs shows promising applications in transition

metal catalysis. Many transition metal complexes dissolve readily in ionic liquids,

enabling their use as solvents in transition metal catalysis. Depending on the coordinative

properties of the anion, and on the degree of the cation's reactivity, the ILs can be

classified into four types: (1) "innocent" solvent: ILs with weakly coordinating and inert

cations and anions, can be looked on as innocent solvents in transition metal catalysis. In

this case, ILs just provide a more or less 'polar medium' for feedstock and products; (2)

solvent and co-catalyst: ILs formed by the treatment of a halide salt with a Lewis acid

generally act both as solvent and as co-catalyst; (3) solvent and ligand/ligand precursor:

both the cation and anion of ILs can act as a ligand or ligand-precursor for a transition

metal complex dissolved in ILs; (4) solvent and transition metal catalyst: for example,

acidic chloroalluminate ILs act as both solvent and catalyst for reactions conventionally

catalyzed by A1C13, such as catalytic Friedel-Crafts alkylation (Wasserscheid, 2003).

Suarez et al.(1995) firstly investigated the Rh-catalyzed hydrogenation of cyclohexene in

[BMIM][BF4]. They found the reaction rate in ILs was faster than for the comparable

reaction in acetone. Moreover, that all ionic catalyst solutions tested could be reused

repeatedly. Ley et al. (2001) reported on the oxidation of alcohols catalyzed by an

ammonium perruthenate catalyst dissolved in [Netd[Br] and [EMIM][PF6]. Gaillion and

Bedioui (2001) investigated the electro-assisted activation of molecular oxygen by

Jacobsen's epoxidate catalysts dissolved in [BMIM] [PF 6] and were able to provide
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evidence for the formation of the highly reactive oxomanganese(V) intermediate which

was not detectable in organic solvents.

Biocatalysis Biocatalysis represents the process in which a starting material is

converted into the desired product in just one step. This can be achieved either by whole

cells or purified enzymes. Biocatalysis in nature tends to perform optimally in aqueous

environments such as pH 7 and temperatures below 40 °C. Sometimes, however, the

solubility of substrate or product is so low that it inhibits microorganism activity. This

problem can be overcome by the addition of organic solvents or ILs, thus increasing the

solubility of the substrate or product while maintaining the activity of the cell or enzyme.

ILs have been recently studied as biocatalysts in enzymatic systems, wherein the ILs

work as a pure or co-solvent in an aqueous phase, or as a two-phase system together with

other solvents (Kragl et al., 2001). The merits of using ILs as biocatalysts include: 1) an

increased solubility of hydrophobic substrates and/or products; 2) an inhibition of water-

dependent side reactions; 3) an extension of enzyme activity in polar solvents; 4) an

increase of enzyme stability and enantioselectivity; 5) the increase of recyclability

without changing biocatalytical functions; 6) compared with conventional organic

solvent, ILs have no measurable vapor pressure and are "greener".

Early in 1984, Magnuson et al. (1984) investigated the influence of

ethylammonium/water mixtures on enzyme activity and stability. They observed an

increased activity of alkaline phosphatase at low concentrations of [H3NEt][NO3].

Erbeldinger et al. (2000) reported the use of the protease thermolysin for the synthesis of

the dipeptide Z-aspartame. The results demonstrated reaction rates comparable to those

found in conventional organic solvents, and improved enzyme stability in ionic liquids.
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The ILs were recycled several times. Laszlo and Compton (2001) used the protease a-

chymotrypsin for transesterification reactions in [OM1M][PF6] and [BMIM][PF6], and

compared the results with those in organic solvents (e.g. cetonitrile or hexane). They

found that, for both ILs and organic solvents, the reaction rates were of the same order

and magnitude. Iborra et al. (2001) examined the transesterification of N-acetyl-L-

tyrosine ethyl ester in different ILs and compared their stabilizing effect relative to that

found with 1-propanol as the solvent. Although the enzyme activity was inhibited to only

10 to 50% of the value in 1-propanl, the higher yield was obtained due to the increase in

stability.

Lipases are the most studied enzymes as biocatalysts in ILs. Sheldon and co-

workers (2000) were the first group to study the potential use of lipase in ILs. They

investigated the reactivity of Candida antarctica lipase in ILs such as [BMIM][PF 6] and

[BMIM][BF4]. Their comparison of the reaction rate in ILs and in organic solvents

confirmed the similarity for all of the reactions. The kinetic resolution of (R, S)-1-

phenylethanol and of eight lipases and two esterases in ten ILs have been explored by

Kragl et al. (2001). No reaction was observed for the esterase, but for the lipases from

Pseudomonas sp. and Alcaligenes sp., an improved enantioselectivity was found in

[BMIM][(CF3S02)2] as solvent, in comparison with MTBE.

However, there is still a long way to go before ILs can become commonly used

in biocatalysis. This will require: 1) a demonstration of stability and recyclability over

prolonged periods of time under the reaction conditions applied; 2) an investigation of

mass transport limitations for biocatalysts immobilized on heterogeneous supports; 3) the

development of suitable methods for product isolation if they are not volatile.
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1.2 Radioactive Waste

The United States is the world's largest supplier of commercial nuclear power. In 2005,

there were 104 U.S. commercial nuclear generating units that are fully licensed to

operate. Together, they provide about 20% of the Nation's electricity (Energy

Information Administration, http://www.eia.doe.gov/fuelnuclear.html) . According to

preliminary EIA data, in July 2006, nuclear generation rose to 72,186 billion kilowatt

hours. The increase of nuclear power generation correspondingly requires more uranium

production. Table 1.1 summarizes the production statistics of the U.S. Uranium Industry

from 1993 to 2005.

Table 1.1 Summary Production Statistics of U.S. Uranium Industry from 1993 to 2005
Items 	 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005E

Exploration and Development

Surface Drilling
(million feet) 	 1.1 	 0.7 	 1.3 3.0 4.9 4.6 2.5 1.0 0.7 W W 1.2 1.7

Drilling
Expenditures a
(million dollars) 	 5.7 	 1.1 	 2.6 7.2 20.0 18.1 7.9 5.6 2.7 W W 10.6 16.4

Mine Production of Uranium

(million pounds
U308) 	 2.1 	 2.5 	 3.5 4.7 4.7 4.8 4.5 3.1 2.6 2.4 E 2.2 2.5 3.0

Uranium Concentrate Production

(million pounds
U308) 	 3.1 	 3.4 	 6.0 6.3 5.6 4.7 4.6 4.0 2.6 E 2.3 E 2.0 2.3 2.7

Uranium Concentrate Shipments

(million pounds
U308) 	 3.4 	 6.3 	 5.5 6.0 5.8 4.9 5.5 3.2 2.2 3.8 E 1.6 2.3 2.7

Employment

(person-years) 	 871 	 980 	 1,107 1,118 1,097 1,120 848 627 423 426 321 420 638

a Expenditures are in nominal U.S. dollars.
W=Data withheld to avoid disclosure. E = Estimate - The 2003 annual amounts were
estimated by rounding to the nearest 200,000 pounds to avoid disclosure of individual
company data. The 2005 annual amounts contain limited imputation for missing data.
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With the drastic increase of uranium production, there is increasing concern about

contamination by uranium waste of the air, soil and groundwater. Uranium, its decay

products, and associated trace elements create human health and environmental hazards

due to their radioactivity. High levels of radon and uranium in domestic drinking water or

indoor radon has been found to turn up in areas known to be uranium-enriched. How to

safely and cost-effectively dispose of these radioactive wastes from mining sites and

nuclear power plants is a great challenge for us.

1.3 Current Treatment Methods for Nuclear Waste

Various physical, chemical and biological technologies have been attempted to recover

and remediate nuclear waste, including Ion-exchange (Gu, et al. 2005), electrosorption

(Xu, et al., 2000), photodegradation (Dodge, et al. 2002), biosorption (Sar, et al., 2004),

and chemical reduction (Jeon, et al., 2005). Here are some of the more prominent

methods.

1.3.1 Plutonium and Uranium Recovery by Extraction (PUREX)

PUREX (www .wikipedia.com) is the process for the reprocessing of spent nuclear fuel to

separate uranium and plutonium from the fission products. Following the dissolution of

the irradiated fuel in aqueous nitric acid, uranium and plutonium are transferred to an

organic phase by vigorous mixing with an organic solvent extraction, 30 percent tributyl

phosphate (TBP) in kerosene is used as organic solvent, while the fission products remain

in the aqueous nitric phase. Further process steps enable the subsequent separation of

uranium and plutonium from one another. The efficient actinide purification is based
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upon a detailed understanding of the coordination chemistry, hydrolytic behavior, and the

valence state control of f-element ions and complex dissolved in aqueous solutions.

However, the disadvantage is obvious. It needs a large amount of organic solvent

for the extraction, which is hazardous and not environmentally friendly. As an

alternative, ILs could replace the organic solvent in the liquid-liquid extraction to greatly

reduce this risk since it is nonvolatile and shows good salvation for actinides.

1.3.2 Electrorefining of Metals

Electrorefining is the electrodeposition of metals from their ores that have been put in

solution or liquefied. Most metal ore occurs in nature in an oxidized form and thus must

be reduced to its metallic forms. The ore firstly is dissolved following some

preprocessing in an aqueous electrolyte or in a molten salt and the resulting solution is

electrolyzed. Then the metal is deposited on the cathode while the anodic reaction is

usually an oxygen evolution (www.wikipedia.com). This process has also been used to

process spent nuclear fuel as it has the capacity to separate heavy elements such as

uranium, plutonium, and fission products such as cesium and strontium.

However, it also has some disadvantages. Cd is commonly used as the cathode,

which is toxic. In addition, this process may be energy costly as it often requires high

amounts of energy to obtain molten salt. ILs are a reasonable alternative to molten salt

because they are liquid at room temperature, and contain high ion conductivity and high

thermal stability.
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1.3.3 Bioremediation

The actinides exist in various oxidation states, which play an important role on their

solubility in aqueous phase. However, under appropriate conditions, the oxidation state

can be changed by direct or indirect microbial action including: (i) oxidation-reduction

reactions; (ii) changes in pH and redoxpotential; (iii) chelation or the production of

specific sequestering agents; (iv) biosorption by biomass and biopolymers; (v) formation

of stable minerals; (vi) biodegradation of actinide-organic complexes (Francis, 1998).

Based on these mechanisms, some bioremediation methods have been developed: (1)

Bioaccumulation: an active process in which metals are taken into living cells and

sequestered intracellular by complexation with specific metal-binding components or by

precipitation; (2) Biosorption: both living and dead microorganisms have abundant

functional groups like carboxyl, hydroxyl and phosphate on their surface, upon which

metals can bind.; (3) Bioprecipitation or biomineralization: the process in which metal

precipitates and minerals by bacterial metabolism; (4) Bioreduction: as mentioned above,

different oxidation states may affect the solubility of metals, resulting in dissolution or

precipitation. For instance, U(VI) is highly soluble in water, while U(IV) is not.

However, the reduction of soluble U(VI) by Clostridium s.p resulted in precipitation of

U(IV); (5) Biodegradation: Metal-organic complex could also be degraded by

microorganism, which may result in metal solubility changes.

Among these technologies, bioremediation is considered to be a simple,

environmentally-friendly, cost-effective alternative for the cleanup of uranium

contamination. Unlike PUREX and electro refining, it doesn't need an organic solvent

and high energy. It is a promising method to deal with low-level radioactive waste.
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1.4 Objectives

There is growing interest in the use of ionic liquids in actinide separation chemistry.

Allen et al. (2002) screened a series of ILs, such as 1-butyl-3-methyl imidazolium nitrate,

and 1-ethyl-3-methylimidazolium chloride, for their radiochemical stability towards

alpha, beta and gamma irradiation. The results show ILs are comparable to benzene in

terms of overall stability, and much better than mixtures of TBP and kerosene. Visser and

Roger et al. (2001) reported that addition of [C4_8mim][PF6] to the extractant like CMPO

(octylphenyl-N,N-di-isobutyl carbamoylphosphine oxide)/TBP(tri-n-butyl phosphate) can

significantly enhance the partitioning of actinides to these ILs. A patented process

demonstrates the dissolution of nuclear fuel cladding with [BMIM] [NO3] with additional

PUREX processing to recover uranium and plutonium. Warrant et al. (2002) at Los

Alamos National Lab have investigated the potential application of ILs containing cyclic

quaternary ammonium cations with [N(SO2CF3)2] - anion in actinide electro-processing.

They were found to combine favorable viscosity and conductivity properties with

excellent electrochemical stability. Visser et al (2001) have introduced task-specific ionic

liquids incorporating specific extracting moieties linked to the imidazolium part of the IL,

which exhibit very high distribution ratios for Hg 2+ and Cd2+ when functionalized with

sulfur containing moieties, and for Pu4+ and UO2 2+ when functionalized with

carbamoylmethylphosphine oxide moieties.

These studies, however, have not provided any information about the mechanics

of 'why' and 'how' ILs have the ability to enhance the partitioning of actinides and other

metals. Also, understanding the interaction between ILs and actinides is critical as it can

help in better designing of ILs and treatment of U and other actinides. In addition, there is
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no report about the application of ILs in bioremediation of actinides in waste and

contaminated soil. Can some ILs improve the bioremediation of nuclear waste, such as

bioreduction of uranium? Furthermore, although ILs are regarded as "green" solvents,

currently there is little information about the toxicity of ILs. What plays an important role

in toxicity of ILs? How do the cation and anion influence the toxicity?

Due to the lack of critical information, I worked to seek some of the answers to

these questions. The objectives of my work include:

• To Synthesize and characterize the new [MOEMIM] based ILs.

• To Study the interaction between Uranium and ILs.

• To Investigate the effect of interaction of U-ILs on bioreduction of U(VI) to
U(IV) by Clostridium sp.

• To examine the toxicity of ILs.

• To Develop a Quantitative Structure-Activity Relationship (QSAR) model to
predict toxicity of ILs.

• To explore the effect of uranium on biodegradation of ILs by new cultured

bacterium.



CHAPTER 2

SYNTHESIS AND CHARACTERIZATION OF IONIC LIQUIDS

2.1 Introduction

Concern about the toxicity of ILs and the potential for large quantity industrial spills

harmful to the environment, prompt the desire to design new ILs which are less toxic and

easier to biodegrade in nature. Boethling (1996) identified three factors which are

important in the design of biodegradable compounds: (1) the presence of potential sites of

enzymatic hydrolysis, such as esters and amides; (2) the introduction of oxygen in the

form of hydroxyl, aldehyde or carboxylic acid groups; (3) the presence of unsubstituted

linear alkyl chains and phenyl rings, which represent possible sites for attack by

oxygenases. Based on these principles, Gathergood et al. (2004) has reported the study on

biodegradable ILs that was incorporated with the ester and amide functionality into the

cation side chain. The introduction of a group susceptible to enzymatic hydrolysis greatly

improved the biodegradation as compared with the commonly used dialkyimidazolium

ILs.

Based on toxicity studies from this literature, a new series of functionized ILs

have been synthesized in this study. These new ILs incorporate either an ether or a

carboxylic group into the cation side chain, with various anions. They are expected to

possess less toxicity to bacteria, and also to be more easily biodegraded by bacteria. The

structures of these ILs are shown in Figure 2.1.
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Figure 2.1 Ionic liquids used in this study: (a) 1-methoxyethyl-3-methyl imidazolium
(MOEMIM)-based ILs; (b)3-methyl-1-(ethoxycarbonylmethyl) imidazolium
(MECOOMIM)-based ILs.

2.2 Synthesis and Characterization of Ionic Liquids

2.2.1 1-methoxyethyl-3-methyl imidazolium tetrafluoroborate ([MOEMIM][BF4])

2.2.1.1 Synthesis.
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Figure 2.2 Two-step Synthesis of [MOEMIM][BF4].

1-methylimidazole was first reacted with chloroethyl methyl ether for 48 hours at

85°C to get 1-methoxyethyl-3-methyl imidazolium chloride ([MOEMIM] [C1]). Then

[MOEMIM] [C1] (0.243 mol, 43 g) was taken in acetone (200 ml) in a conical flask and

added to NaBF4 (0.319 mol, 35 g). The reaction mixture was stirred at room temperature

for 48 hours and then the NaC1 precipitate was filtered through celite and the filtrate was

concentrated on rotavapor under vacuum. The product obtained was diluted with CH2C12
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and passed through a silica gel column. The filtrate was concentrated, dried in vacuum

oven to give the desired product (39.21 g, 70.6% yield).

2.2.1.2 Characterization.

UV-Vis Spectrometry [MOEMIM] based ILs have characteristic absorption at

211nm, which is due to the absorption of imidazolium ring. After 240nm it is transparent.
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Figure 2.3 UV-vis spectrum of [MOEMIM][BF 4].

Fourier Transform Infrared Spectroscoy (FTIR) FTIR was shown in Figure2.4,

and the absorption wavelength was listed below.

CM

Figure 2.4 FTIR spectrum of [MOEMIM][BF4].
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IR (film, neat): 3164, 3123, 2941, 2902, 1576, 1455, 1356, 1287, 1172, 1059,

834, 756, 654, 624 cm -1 . The peaks at > 3100 cm -1 are attributed to the ring C-H stretch,

while those around 3000 cm -1 resulted from C-H aliphatic stretches. The peak at around

1100 cm -1 is contributed to the C-0 stretch from the ester group.

Mass Spectrometry (MS) Mass spectrum was displayed in Figure 2.5 below.
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Figure 2.5 Mass spectra of MOEMIK[BEI]: (a) positive mode; (b) negative mode.

141(m/e) in positive mode corresponds to [MOEMIM] cation, and 87(m/e) refers

to [BF4] anion, confirming this IL is [MOEMIM][BF4].
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Nuclear Magnetic Resonance (NMR) Structure of [MOEMIM] [BF4] was shown

in Figure 2.6, and both 1 14 and 13C NMR data are also shown here.

5 4

2' 	 k ir) rk 13 BF4

0 	 iv 1 Nr
2

Figure 2.6 Structure of [MOEMIMJ[BF 4].

'H NMR (300 MHz, Acetone-d6): 83.33 (3H, s, OCH 3), 3.79 (2H, t, J = 5.0Hz, C-

2'Hs), 4.40 (3H, s, N3-CH3), 4.47 (2H, t, J = 4.9Hz, C-1 'Hs), 7.64 (1H, t, J = 1.75Hz, C-

4H), 7.67 (1H, t, J = 1.75Hz, C-5H), 8.85 (1H, s, C-2H).

13C NMR (75.5 MHz, Acetone-d6): 836.37(OCH3), 50.00 (C-2'), 58.69 (N3-CH3),

70.60 (C-1'), 123.64 (C-4), 124.27 (C-5), 137.72 (C-2).

2.2.2 1-methoxyethyl-3-methylimidazolium hexafluorophosphateaMOEMI1111[PF6])

2.2.2.1 Synthesis. [MOEMIM][C1] (19.97 g, 0.113 mol) was taken in acetone (100 ml)

in a conical flask and added to KPF 6 (25.09 g, 0.136 mol). The reaction mixture was

stirred at room temperature for 48 hours and then the KC1 precipitate was filtered through

celite and the filtrate was concentrated on rotavapor under vacuum. The product obtained

was diluted with CH2C12, washed three times with water, dried over NaSO4, concentrated

under vacuum and finally dried in a vacuum oven to give the desired product (27.82 g,

86% yield).

2.2.2.2 Characterization.

U V- Vis UV-vis spectrum was shown in Figure 2.7. As it can be seen,

[MOEMIK[PF6] has the same absorption as that of [MOEMIK[BF4] because they have

the same cation. The anion doesn't have an effect on UV absorption.
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Figure 2.7 UV-vis spectrum of [MOEMIM][PF6].

FTIR Figure 2.8 displays the FTIR of [MOEMIM][PF 6].
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Figure 2.8 FTIR spectrum of [MOEMIM][PF6].

IR (film, neat): 3700, 3171, 3126, 2943, 2903, 1577, 1568, 1454, 1171, 1123,

1084, 837, 741, 653, 624 cm -1 . It is similar to the spectrum of [MOEMIM][13F4] in Figure

2.4.
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Mass Spectrometry MS in both positive and negative mode as shown in Figure

2.9. 141(m/e) in positive mode is [MOEMIM] cation, and 145(m/e) in negative mode

represents [PF6] anion; proving this IL is [MOEMIM][PF6].
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Figure 2.9 Mass spectra of [MOEMIM][PF6]: (a) positive mode; (b) negative mode.
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NMR 1 H NMR (300 MHz, Acetone-d6): 83.34 (3H, s, OCH3), 3.79 (2H, t, J =

5.0Hz, C-2'Hs), 4.00 (3H, s, N3-CH3), 4.45 (2H, t, J = 4.9Hz, C-1 'Hs), 7.57 (1H, t, J =

1.75Hz, C-4H), 7.62 (1H, t, J = 1.75Hz, C-5H), 8.76 (1H, s, C-2H).

13C NMR (75.5 MHz, Acetone-d6): 836.41(OCH3), 50.16 (C-2'), 58.73 (N3-CH3),

70.51 (C-1'), 123.67 (C-4), 124.22 (C-5), 137.52 (C-2).

2.2.3 1-methoxyethyl-3-methyl imidazolium trifluoro acetate-IMOEMIMI[CF3C00]

2.2.3.1 Synthesis. [MOEMIK[C1] (0.113 mol, 20 g) was taken in acetone (150 ml) in a

conical flask and added to CF3COONa (0.181 mol, 24.63 g). The reaction mixture was

stirred at room temperature for 48 hours and then the NaC1 precipitate was filtered

through celite and the filtrate was concentrated on rotavapor under vacuum. The product

obtained was diluted with CH2C12 and passed through a silica gel column. The filtrate

was concentrated, dried in a vacuum oven to give the desired product (25 g, 87% yield).

2.2.3.2 Characterization.

UV- Vis [MOEMIM][CF3C00] also shows the same UV spectrum as

[MOEMIM][BF4] and [MOEMIK[PF6].
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Figure 2.10 UV-vis spectrum of [MOEMIM][CF3COO].
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FTIR IR (film, neat): 3227, 3153, 3102, 2942, 2903, 1689, 1575, 1454, 1419,

1202, 1173, 1124, 828, 801, 719, 655, 625 cm -1 . This spectrum is different from those in

Figure 2.4 and 2.8 because it displays a broad, intensive band centered around 3500 cm -1 ,

which is attributed to the 0-H stretch. The broad shape is due to the hydrogen bonding

interaction between the cation and aion.

Figure 2.11 FTIR spectrum of [MOEMIK[CF3C00].

MS MS is shown in Figure2.12. 141(m/e) in positive mode corresponds to

MOEMIM cation. Although there are some other peaks present in negative mode, the

base peak is 113(m/e) that represents the CF3COO anion, indicating the IL is

[MOEMIM][CF3C00].

NMR 1 H NMR (300 MHz, Acetone-d6): 63.30 (3H, s, OCH3), 3.79 (2H, t, J =

5.0Hz, C-2'Hs), 4.03 (3H, s, N3-CH3), 4.54 (2H, t, J = 4.9Hz, C-1'Hs), 7.77-7.79 (2H, m,

C-4H, C-5H), 9.46 (1H, s, C-2H).

13C NMR (75.5 MHz, Acetone-d6): 636.39 (OCH3), 50.00 (C-2'), 58.73 (N3-CH3),

70.95 (C-1'), 118.26 (q, J = 295.8Hz, CF3C00) 123.82 (C-4), 124.45 (C-5), 138.53(C-

2), 161.55 (q, J = 33.0Hz, CF3C00).
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Figure 2.12 Mass spectra of [MOEMIM][CF3COO]: (a) positive mode; (b) negative
mode.

2.2.4 1-methoxyethyl-3-methyl imidazolium bis-trifluoromethane sulfonamide

([MOEMIIVI][Tf2N])

2.2.4.1 Synthesis. [MOEMIM][C1] (10.4g, 0.059 mol) was dissolved in water (50 mL) in

a conical flask and added to LiTf2N (20.29g, 0.077 mol). The reaction mixture was stirred
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at room temperature for 6 hours to give the product as a viscous layer at the bottom. The

water was decanted off and the product was dissolved in CH2C12 and further washed three

times with water, dried over NaSO4, concentrated on rotavapor and finally dried in a

vacuum oven to give the desired product (22.04 g, 88.9% yield).

2.2.4.2 Identification and Characterization.

UV- Vis UV spectrum was shown in Figure 2.13. It is the same as those of all

other [MOEMIM] based ILs.
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Figure 2.13 UV-vis spectrum of [MOEMIM][Tf2N].

FTIR ER. (film, neat): 3160, 3124, 2940, 2904, 2841, 1575, 1568, 1454, 1352,

1199, 1138, 1058, 740, 654, 617 cm-1.
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Figure 2.14 FTIR spectrum of [MOEMIM][Tf2N].

MS Mass spectrum is shown in Figure 2.15.
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Figure 2.15 Mass spectra of [MOEMIM][Tf2N]: (a) positive mode.
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Figure 2.15 Mass spectra of [MOEMIM][Tf2N]: (b) negative mode (Continuted).

NMR 1 H NMR (300 MHz, Acetone-d6): 63.35 (3H, s, OCH3), 3.79 (2H, t, J =

4.8Hz, C-2'Hs), 4.04 (3H, s, N3-CH3), 4.49 (2H, t, J = 4.9Hz, C-1 'Hs), 7.63 (1H, t, J =

1.8Hz, C-4H), 7.67 (1H, t, J = 1.8Hz, C-5H), 8.90 (1H, s, C-2H).

13 C NMR (75.5 MHz, Acetone-d6): 636.63 (OCH3), 50.40 (C-2'), 58.86 (N3-CH 3 ),

70.71 (C-1'), 120.92 (q, J = 321.24Hz, 2 x CF3SO3) 123.89 (C-4), 124.43 (C-5), 138.67

(C-2).

2.2.5 1-methoxyethyl-3-methyl imidazolium mthane sulfonate QMOEMIM110MS1)

2.2.5.1 Synthesis. [MOEMIM][C1] was taken in acetone in a conical flask and added to

NaOMS. The reaction mixture was stirred at room temperature for 48 hours and then the

NaC1 precipitate was filtered through celite and the filtrate was concentrated on rotavapor
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under vacuum. The product obtained was diluted with CH2C12 and passed through a silica

gel column. The filtrate was concentrated, dried in a vacuum oven to give the product.

2.2.5.2 Characterization.

UV- Vis UV spectrum was given in Figure2.16. It is the same as UV spectra of

other ifs.
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Figure 2.16 UV-vis spectrum of [MOEMIM][0MS].

FTIR Figure2.17 displays the FTIR of [MOEMIM][OMS].
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Figure 2.17 FTIR of [MOEMIIVI][0MS].
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MS Mass spectra [MOEMIM] [OMS] is shown in Figure 2.18. The 141 (m/e)

represents MOEMIM cation in positive mode, and 95(m/e) corresponds to OMS anion in

negative mode, proving this IL is [MOEMIM][OMS].
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Figure 2.18 Mass spectra of [MOEM1114][0MS]: (a) positive mode; (b) negative mode.
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2.2.6 3-methyl-1-(ethoxycarbonylmethyl) imidazolium acetate-[MECOOMIM]1AC]

2.2.6.1 Synthesis.

Stepl. Synthesis of [MECOOMIMJ[BrJ To a stirred solution of 1-

methylimidazole (4.1g, 40m1, 50mmol) in THF (50m1) at room temperature was added

dropwise ethyl bromoacetate (10g, 6.7m1, 60mmol). The reaction mixture was stirred

vigorously for 4 hours. The THF top phase was decanted and the IL washed with diethyl

ether (3x 10m1). Then residual solvent removed in vacuum. The product was dried at 60°C

at 0.01mmHg for 72 hours to give a little bit yellow viscous hydroscopic oil.

Step 2. Exchange of Anion Add 1.745g [MECOOMIM][Br] and 0.516g

CH3COONa to an elementary flask containing 30m1 acetonitril. Stir vigorously for 3

days. Then decant the solid, and remove the acetonitril by vacuum rotation. The residue

was dissolved in 200 ml of Dichloromethane and eluted through silica gel column. The

column was eluted 4-5 times. The eluent was collected and the dichloromethane was

removed by vacuum rotator to get the desired IL.

2.2.6.2 Characterization.

UV- Vis [MECOOMIN4][CH3C00] shows a very different UV spectrum from

[MOEMIM] based ILs. It has absorbance before 240nm, but there is no characteristic

absorbance at 211nm as shown in [MOEMIM] based ILs.
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Figure 2.19 UV-vis spectrum of [MECOOMIM][CH3C00].

MS 169(m/e) in positive mode represents [MECOOMIM] +, while 62(m/e) in

negative mode refers to [CH3COO] -, confirming this IL is [MECOOMIM][ CH3COO].
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Figure 2.20 Mass spectra of [MECOOMIK[CH3C00]: (a) positive mode; (b) negative

mode.

2.3 Properties of Ionic Liquids

2.3.1 Status at Room Temperature

All ILs studied here are liquid at room temperature.

2.3.2 Density

All these ILs are yellow oily liquids and have a greater density than water.

Table 2.1 Density of ILs (g/ml) 
MOEMIM MOEMIM MOEMIM MOEMIM MOEMIM MECOO

BF4 	PF6	 CF3C00 	 OMS 	 Tf2N 	 MIMAC

Density
(g/ml) 	 1.267 	 1.404 	 1.302 	 1.216 	 1.476 	 1.229

2.3.3 Miscibility

[MOEMIM] [PF 6]and [MOEMIM][Tf2N] are hydrophobic, while all others are

hydrophilic.



CHAPTER 3

CHARACTERIZATION OF URANIUM ASSOCIATED WITH IONIC LIQUIDS

3.1 Introduction

Actinides and lanthanides partitioning is achieved through solvent extraction from

aqueous solutions. A large quantity of volatile or semi-volatile organic solvents has been

widely used in the liquid/liquid extraction process to recover the radionuclides from low-

level radioactive waste in an aqueous phase. Extractant/solvent miscibility problems or

third-phase formation often happen during the liquid-liquid extraction. There is a real

need for the exploration of new solvents that can replace the organic solvents and also

enhance the liquid-liquid extraction.

Room temperature ionic liquids (RTILs) seem very promising substitutes for the

traditional organic solvents used in the PUREX process to recover low-level U and Pu

from waste. Visser and Roger et al. (2001) reported that the addition of [C4_8mim][PF6]

to an extractant like CMPO (octylphenyl-N,N-di-isobutyl carbamoylphosphine

oxide)/TBP(tri-n-butyl phosphate) can significantly enhance the partitioning of actinides

in these ILs. Also, a patented process demonstrated the dissolution of nuclear fuel

cladding with [BMIM] [NO 3] with additional PUREX (Plutonium and Uranium Recovery

by Extraction) processing to recover U and Pu.

However, there is little understanding of the mechanics by which partitioning-

ability of actinides and other metals enhances. Therefore, it is important to investigate the

interaction between the actinides and ILs. Choppin et al. (2003) have explored the uranyl

32
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coordination environment in hydrophobic ionic liquids, and observed different inner-

sphere coordination environments for the uranyl nitrate complex formed in organic

solvent and in ILs. Gaillard et al. (2005) from Germany also investigated the uranyl

complexation in different types of fluorinated acids. They found [BEd - and [PF 6I can

form monodentate complex with U(VI), while [Tf2N did not complex with U(VI).

However, the limitation on this study is the complexation-ability of an anionic part

cannot be considered the same as the ILs, since ILs may behave as ion pair in aqueous

solution and may not completely dissociate. In order to understand the coordination of

ILs with actinides, in this study, I investigated the coordination chemistry of U(VI) and

[MOEMIK-based ILs.

3.2 Materials and Methods

3.2.1 Preparation of Uranium-IL mixture

Ionic liquids used in this study were synthesized and purified according to the methods

described in chapter 2. Uranium was introduced as uranyl nitrate, UO2(NO3)2.6H20. The

final concentration of U(VI) in the mixture was 5mM. Uranium and IL mixture consisting

of 1: 1 and 1:2 molar ratio were prepared and equilibrated for 24 hours. All solutions

were prepared with ultra-pure de-ionized water (Milli-Q plus, Millipore).

3.2.2 Characterization of the Interaction of Ionic Liquids with Uranium

pH change pH change during equilibration provides information on protonation

or deprotonation, which indicates the interaction between uranium and ILs. In this study,
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the pH change was determined by measuring the pH at the beginning of mixing and after

24 hours using Mettler Toledo MP 220 pH meter.

Potentiometric titration Complex formation was determined by potentiometric

titration. Difference between titration curves from uranium and U-ILs mixture indicates if

there is complexation between them. In this study, before titration, 1 ml aliquot of the

mixture was added to 19m1 of 0.1M KCI to adjust the ionic strength. In addition, the

sample and 0.01N NaOH solution were purged with pure nitrogen gas to keep it free of

CO2. The final U concentration in the solution was 0.25mM, and the initial pH was

between 4 and 6. The change in pH of the mixture during the addition of 0.01N NaOH

was determined by Mettler Toledo DL57 titrator. The glass electrode was calibrated

before titration with three standard buffer solutions in the order of pH 10, pH 7 and pH 4.

UV-vis spectrometric analysis Uranium has a characteristic UV-vis absorption

between 300nm and 500nm. The UV-visible spectra of uranium and the U in the ILs

mixture were determined by a Hewlett Packard 8453 diode array scanning UV-vis

spectrophotometer. A 1 cm square cuvette made of quartz was used here. The U(VI)

concentration in the mixture was 5mM.

Mass spectrometric analysis Mass spectrometry has the ability to determine the

ratio of mass over charge of a molecule, from which molecular mass can be obtained. MS

was used here to detect the complex molecules. Samples were analyzed by LCQ

Advantage EIS-MS using electrospray ionization mass spectrometry, (Thermo-Finnigan

Inc.) under the following conditions: sheath gas, nitrogen; spray voltage, 4.5kV; capillary

temperature, 325°C; capillary voltage 35V.



35

Speciation of U-ILs by X-ray absorption spectroscopy (XAS) Molecular

speciation of uranium associated with ILs was determined using X-ray absorption near-

edge spectroscopy analysis (XANES) and extended x-ray absorption fine structure

(EXAFS) analyses. XANES determines the oxidation state of the central atom by

measuring the shift in absorption edge compared to a known standard. EXAFS measures

the X-ray absorption as a function of energy and determines the local arrangement of

atoms around a given absorbing atom. Analysis of the EXAFS allows obtaining the type,

number of neighboring atoms, and the distance from the scattering atom.

Equimolar (20mM) of U-ILs mixture was prepared and equilibrated overnight. An

aliquot of the mixture was sealed in a 5 x4cm plastic bag made of polyethylene. Uranium

was analyzed on beam line X1 1 A at the National Synchrotron Light Source (NSLS) in

Brookhaven National Laboratory at the U-L1 11 absorbance edge (1 7.1 66kev) using

fluorescence detection. Six scans were collected and averaged to minimize the signal-to-

noise ratio. The XANES spectra were background-subtracted and normalized to the edge

jump, and the oxidation state of uranium in the samples determined by comparing the

energy position at the inflection point with that from tetravalent uranium dioxide and

hexavalent uranyl nitrate. Fourier transformed EXAFS data, a pseudo-radial distribution

function representing the radial coordination shells of the near-neighbor atoms

surrounding the metal, were obtained using a multi-step data analysis procedure, which

included background subtraction and normalization to the edge-jump's height followed

by Fourier transformation of the k3-weighted EXAFS spectra. The theoretical EXAFS

modeling code FEFF6 was used to calculate the back-scattering phase and amplitude

information for individual neighboring atoms.
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3.3 Results and Discussion

3.3.1 [MOEMIM] [BEd and Uranium

3.3.1.1 pH change. Change of pH is displayed in Table 3.1. It is noted that pH change

in both U and [MOEMIM][BF 4] after 24 hours are negligible, but the decrease in both 1:1

and 2:1 mixture was significant, i.e., 0.89 and 0.99 respectively. This indicates proton

release, which may result from the strong interaction between [MOEMIM] [BF 4] and U.

As is known, [BEd - can hydrolyze to give out [BF 3 (OH)f and HF, resulting in pH drop

(Mousa et al.,1997). To avoid the effect of hydrolysis, before using, [MOEMIM] [BF4]

solution was stored for a few days until the hydrolysis was completed. Therefore the pH

drop in the UtMOEMIMRBF 4] mixture was just due to the complexation.

Table 3.1 pH Changes of [MOEMIM][BF4]:U Mixture

[MOEMIM] MEd :U U IMOEMIMIIBF41
1:1 2:1

0 hr 3.22 2.99 3.05 4.23

24hr 2.33 2.00 3.06 4.19

Difference 0.89 0.99 0.01 0.04

3.3.1.2 Titration. Figure 3.1 shows the titration curves of U solution and U-

[MOEMIM] [BF4] mixtures. Titration curve of U exhibited one sharp inflection point at

3mM 011 -/mM U at around pH 7.5, which means one uranyl needs three OFF, as

indicated by the equation below.

[u0 2 (NO 3 )3]_ + H 2 O —>[UO 2 (NO 3 )2(OH)F +[NO 3 ] - + II + (3.1)

W02 (NO3 ),(OH)] - + H2 0 —>[UO2 (NO3 )(OH),I +[NO,I + H + (3.2)

[u0 2 (NO 3 )(49102} - + H 2 O --3 [uo,(orod - +[NO 3 ] - + H+ (3.3)
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[UO2(NO3)3] - is the major speciation in the solution, which has been confirmed by

mass spectrometry. During the addition of NaOH, [OH] - started to replace the [NO 3 ] - that

was associated with uranyl. And finally 3 [NO3] - can be substituted by 3 [OH] - .

MOEMIMBF
4

	U
MOBF4:U=1:1
MOBF4:U= 2:1

0 	 2 	 4 	 6 	 8	 10

mM 01-1/mM U

Figure 3.1 Potentiometric titration of U and U-[MOEMIM][BF4] mixture.

Compared with the titration curve of uranyl nitrate, two inflection points were

observed in both 1:1 and 2:1 mixtures. The first inflection point is considered as the result

from the hydrolysis of BF4 -, as described below, and the second is caused by the

hydrolysis of uranyl, as described above.

Wamser (1948) carried out kinetic and equilibrium studies on the fluoroborate

species in solution, and suggested the four ions BF4 - , BF3 011 - , BF2 (OH)2 - and BF(OH)3 -

were formed by succession hydrolysis steps, as shown here:

BF4- + H2 O II BF3 011 - + HF	 (3.4)

BF3 011 - + H2 O E BF2 (OH) 2 - + HF	 (3.5)

BF2 (OH) 2 - + H2 O 1 BF(OH) 3 - + HF	 (3.6)

11

10

0_
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The first hydrolysis step is slow while the subsequent steps are relatively fast. In

1:1 IL:U mixture, the first inflection was observed at 1.5mM OH-/mM U at pH 6, which

was due to the hydrolysis of BF4", and the second one came up at around 4.5mM Off/

mM U at pH 7.6, which resulted from the hydrolysis of uranyl. The same thing happened

to the 2:1 IL-U mixture, which displayed the first inflection point at 3mM OH-/ mM U at

pH 5.5, and the second showed up at 6mM OH-/ mM U at pH 8. It is notable that, the

first inflection point for 1:1 mixture was shown at 1.5 mM OH-/ mM U, while that for 2:1

mixture was displayed at 3 mM OH-/ mM U. This could be due to the addition of one

more fold BF I", which caused enhanced hydrolysis. That is, in 1:1 mixture, the hydrolysis

is not accomplished through the 3 steps, but in 1:2 mixture the hydrolysis was completed.

Anbar and Guttmann (1960) studied the effect of acidity on the hydrolysis of BF4 - ,

disclosing that the increased acidity can enhance the hydrolysis of BF4 -, due to the

enhancement of the first hydrolysis step (1). In addition, from the first inflection point to

the second, the both needed 3 more Off, indicating the complete hydrolysis of uranyl.

3.3.1.2 UV-vis. Figure 3.2 shows the UV-vis spectra of uranium and [MOEMIM][BF 4]-

U mixtures. A characteristic absorbance of U (VI) is in the range between 350nm and

480nm.The absorption spectrum of U (VI) exhibits a maximum peak at 413nm, with two

side shoulders at 403nm and 426nm, respectively. Another small peak is around 367nm.

The spectra of both 1:1 and 2:1 [MOEMIM][13F4]-U mixtures display the similar

characteristic absorption, but the phase change is obvious. The maximum absorption peak

shifted from 413nm to 418nm and the two shoulders also correspondingly shifted to
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Figure 3.2 UV-vis spectra of 5mM U in: (a) 1:1 and (b)2:1 [MOEMIM][BF4] -U
mixture.

408nm and 429nm. In addition, the right shoulder that is originally at 426nm becomes

unobvious. All the difference indicates the change of environment surrounding uranium

atoms, indicating the formation of complex.
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3.3.1.4 MS. ESI-MS was used to determine the molecular mass of the the complex

molecule. Both positive and negative modes were monitored. Figure 3.3 shows the MS of

uranyl nitrate solution at pH 3, and Figure 3.4 shows the MS of U-[MOEMIM][BF4]

mixture.

Figure 3.3 Mass spectra of uranyl nitrate solution at pH 3.
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In positive mode, [UO2(NO3)2(H20)3-1 -1] ± at 448(m/e) is dominant. In negative

mode, [UO2(NO3)3] - at 456(m/e) is predominant, and [UO2(NO3)2(OH)f at 410(m/e) is

another major speciation.
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Figure 3.4 Mass Spectra of [MOEMIM][BE]-U at pH 2: (A) positive mode between 50-
1000(m/z); (B) positive mode between 200-1000(m/z); (C) negative mode between 50-
1000(m/z); (D) negative mode between 460-1000(m/z).

Positive mode A displays the MS between 50-1000(m/z), in which the 141(m/e)

that represents the [MOEMIM] + cation is dominant since it doesn't complex with uranyl.

Positive mode B shows MS between 200 and 1000(m/e), in which 368(m/e) is the

majority that corresponds to [UO2(NO3)(H20)2] ± . However, two complex molecules are
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also found in B, one of which is shown at 391(m/z), representing [UO2(BF4)(H20)2] + ,

and the other is shown at 463(m/e), corresponding to [UO2(BF4)2(H20)] ± .

In negative mode C, MS is shown between 50-1000(m/e), uranyl nitrate ions are

still predominant, and before 460(m/e) no complex is found. However, in negative mode

D, MS is displayed between 460-1000(m/e), and two complex molecules are found in

764(m/e), which could be RUO2)2(BF4)2(OH)3I, and the other found in 721(m/e) a

possible result from the [(UO2)2(BF4)(NO3)(OH)2].

As we can see, in the pH 3 solution, the complexes are not the predominant

speciation in both positive and negative modes, but we do find some uranyl complex

associated with [BEd -, suggesting the formation of complex.

3.3.1.5 XANES. As discussed before, XANES can determine the oxidation state of the

central atom by measuring the shift in the absorption edge compared to a known

standard. Figure 3.5 revealed that the uranium in all the mixtures has the same absorption

edge energy (17166ev) as does the uranyl nitrate standard, indicating the speciation of U

in the mixture was present as U (VI) (Dodge et al. 1994).

MEAC:U

MOEMIMOMS:U

MOEMIMTf
2 
N:U

MOEMIMCF 3COO:U

MOEMIMPF e :U

MOEMIMBF4:U :

- Uranyl Nitrate (VI) -

1.71 10 4 	1.72 10 4 	1.73 10 4 	1.74 10 4

Energy (ev)

Figure 3.5 Normalized XANES spectra of various U-ILs mixtures.

0
1.7 10 4
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3.3.1.6 EXAFS. The structure of UO2(NO3)2.2H20 is shown in Figure 3.6
(www.3Dchem. corn).

H
N 	 0 /\p ,\1 	 H

H —0 0
I .	 0

H 	 0

Figure 3.6 Molecular Structure of UO2(NO3)2.2H20.

The core uranium atom is surrounded by oxygen atoms. The first shell consists of

two axial oxygen (O.) with a radius about 1.76A. The second shell consists of 5 or 6

equatorial oxygen (Oeq), with the radius about 2.4 A, provided by NO3 - or H2O (Kelly, et

al., 2002; Antonio, et al, 2001). It has to be mentioned that the NO3 - can form either a

monodentate or bidentate with uranyl, and the number of water molecules can vary.

EXAFS is a useful method to measure the X-ray absorption as a function of

energy. This helps to determine the local arrangement of atoms around a given absorbing

atom, therefore, providing information about the type, number of neighboring atoms, and

the distance from the scattering atom.

EXAFS spectra of uranyl nitrate at pH 3 and U-[MOEMIM] [BF4] at pH 2 were

displayed in Figure 3.7 and 3.8, respectively. Figure 3.7(a) presents the raw k 3-weighted

data over the range of 2.1 — 13.2 A at the U-L111 edge for uranyl nitrate, and Figure 3.7(b)

represents the Fourier transformed spectra of EXAFS. In Figure 3.7(b), the first peak

corresponds to the axial shell at 1.76 A, representing the scattering from the two collinear

axial oxygen ligands. The second peak refers to the equatorial shell at about 2.41 A,

scattering from the equatorial oxygen atoms surrounding the uranium.

O
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Figure 3.7 EXAFS spectra of uranyl nitrate at the U LI11 edge: (a) k3-weighted EXAFS
spectra (2.5-1 3.2A-1 ); (b) Fourier transform of EXAFS. Experimental data (-); theoretical
fit (--).
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Figure 3.8 EXAFS spectra of U-[MOEMIM][BF4] at the U L111 edge: (a) k3-weighted
EXAFS spectra (2.5-13.2A-1 ); (b) Fourier transform of EXAFS. Experimental data (-);
theoretical fit (--).

Comparision of Figure 3.7 and 3.8 shows that the first peak of U-

[MOEMIM] [BFI] is the same as the first peak of uranyl nitrate, indicating that the axial
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shell is not influenced. However, it is obvious that the second peak of U-

[MOEM[M][BF4] is split into two peaks instead of one peak as shown in uranyl nitrate.

This gave a hint that there is another bond formed in the equatorial shell. The new bond

formed will most likely be the U-BF4 bond. A fitting model has been made using FEFF6,

and the results are shown in Table 3.2.

Table 3.2. EXAFS Structure Parameters for U and U-[MOEMIM][BF4] Mixtures

ce (Az) 	 R factor

0.002
0.010

0.009
0.0029

	

0.0068 	 0.009
0.0075
0.004

	

0.007 	 0.021
0.011

(N) coordination number, (R) interatomic distance, (a 2) disorder parameter, (R factor) reliability
factor.
* Axial oxygen fixed at 2.
a n(U-F) = 5 — n(U-O)
1 - data from Gaillard et al. (2005)
2 - data from this study

The fitting model for uranyl nitrate shows the presence of 2 axial oxygen (O ax) at

1.76A, and 5 equatorial oxygen (Oeq) at 2.42A, that result from hydration and the nitrate

anion. These data are consistent with those in literature (Allen et al., 1997; Gaillard et al.,

2005), in which 2 Oax was found at 1.76A and about 5 Oeq at 2.41 A.

In the modeling of U-[MOEMIM] [BF4], a U-F path was included. Since the

number of F was unknown, it was assumed the total equatorial number (NF + No) is equal

to 5. The best fitting model consists of 2 Oax at 1.77A, 1 F at 2.26A, and 4 Oeq at 2.49A.

The bond distance of U-O ax is pretty close to that of uranyl nitrate and in

agreement with the data in literature. The bond distance of U-F, on the other hand, is a

little longer than the 2.24A that is commonly found in uranyl fluoride solid compounds

Sample Shell N R (A)

U-Oax* 2 1.760.005
2U ranyl Nitrate

U-Oeq 50.1 2.420.014
U-Oax 2 1.77

1 UO2241HB F4 U-F 1 2.24
U-Oeq 4 2.44
U-Oax* 2 1.770.008

2UO22+/[MOEMIM][13F U-F 1±0.23a 2.260.038
4] U-Oeq 4 2.490.033
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(Mak, T. et al., 1985). As we know, the distance of one molecule to uranyl depends

strongly on the number and the nature of the other molecules in this sphere. Fluoride can

interact strongly with uranyl due to its strong electro-negativity. Compared with F ., BE4-

is much less electro-negative because the charge is much more diffuse. As a result, the

attraction between uranyl and BF4 - is reduced, leading to the increase of bond distance.

Furthermore, 2.49A was found for the U-O eq bond distance in U-

[MOEMIM][BF4], which is 0.07A longer than that in uranyl nitrate. It is hypothesized

that the [BF4f associated with UO22+ can form a hydrogen bond with the H2O that is also

associated with the UO22+ nearby thus forming a six-membered ring with uranyl, and

resulting in the longer U-O eq bond distance. This has been proposed by Gaillard et al.

(2005) when investigating the uranyl complexation in fluorinated acids, including HF,

HBF4 , HPF6 and HTf2N, by Time-resolved emission spectroscopy (TRES) and EXAFS.

Their data is also shown in Table 3.2, and the structure is displayed in Figure 3.9.

It has to be mentioned that, in Gaillard's study HBF4 acid was used to examine

the coordination environment of uranyl, while in my study a [MOEMIM][BF4] ionic

liquid solution was used. Since the cation and anion are not associated to each other in

solution and only an anion can form complex with uranyl, the cation seems unlikely to

influence the complexation.

Figure 3.9 Proposed complex structure of U-[MOEMIM][BF4].
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3.3.2 [MOEMIM][CF3C00] and Uranium

3.3.2.1 pH change. As is shown in Table 3.3, pH change is negligible in both 1:1 and

2:1 mixtures.

Tabel 3.3 pH Change in [MOEMIM][CF 3 C00]:U Mixture

[MOEMIM][CF 3C00]: U

1:1 	 2:1 U
[MOEMIM]
[CF3C00]

0 hr 3.17 3.23 3.05 6.09

24hr 3.09 3.16 3.06 6.02

Difference 0.08 0.07 0.01 0.07

3.3.2.2 Titration. Titration curves of both 1:1 and 2:1 mixtures are similar to that of U,

showing only one inflection point around 3mM OH] mM U where the hydrolysis of

uranyl took place. There is no complex found from titration.

0
	

2 	 4 	 6
	

8
	

10

mM OH7mM U

Figure 3.10 Potentiometric titration of [MOEMIM][CF3C00]:U mixture.
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3.3.2.3 UV-vis spectrum.

Figure 3.11 UV-vis spectra of [MOEMIM][CF3C00]:U mixture.

Compared with the spectrum of uranyl nitrate, the absorbance intensity reduces a

little bit in both 1:1 and 1:2 mixtures, but the phase and shape are almost the same,

indicating the weak interaction between them.
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3.3.2.4 MS. Mass spectrum of [MOEMIM][CF 3 C00]:U is shown in Figure 3.12. In

positive mode, only the cation, [MOEMIM] + was observed, and no complex was found.

However, in negative mode, possible complex molecules were observed at 507(m/e) and

558(m/e), representing [UO2(NO3)2(CF3C00)T

respectively.
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Figure 3.12 Mass Spectra of [MOEMIM][CF3C00]:U mixture at pH 3.
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Figure 3.13 EXAFS spectra of U-[MOEMIM][CF3COO] at the U L111 edge: (a) k3 -
weighted EXAFS spectra (2.5-13.2k 1 ); (b) Fourier transform of EXAFS. Experimental
data (-); theoretical fit (--).
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Comparison of the U and U-IL spectra shows no change, indicating they have

similar near-range structures and the interaction between them was weak. The structure

data of fitting model was given in Table 3.4.

Table 3.4 EXAFS Structure Parameters for U and [MOEMIM][CF3C00]:U Mixture.

Sample	 Atom type	 N	 R(A)	 a2 	 R factor

U+[MOEM I M][CH 3C00] 	 U-Oax* 	 2 	 1.76±0.006 	 0.002 	 0.015

U-Oeq 	 5 	 2.42±0.0 	 0.008 
* Axial oxygen fixed at 2.

Two 0.x atoms were found at 1.76A, and 5 Oeq at 2.41A, which is almost the same

as uranyl nitrate. No complexation information was provided by EXAFS.

3.3.3 [MOEMIM][13F6] and Uranium

3.3.3.1 pH change. pH changes are shown in Table 3.5. From this table we can see the

pH change in both mixtures is negligible, indicating little to no interaction between them.

Table 3.5 pH Change of [MOEMIM][PF 6]:U Mixture

[MOEMIM][PF6] : U

1:1 	 2:1
[MOEMIM][PF6] U

0 hr 3.36 3.48 5.79 3.05

24hr 3.33 3.49 5.74 3.06

Difference 0.03 -0.01 0.05 0.01

3.3.3.2 Titration. The titration curves of the three were very similar and their inflection

points overlapped. No complexation information could be obtained from the titration.
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Figure 3.14 Potentiometric titration curve of [MOEMIM][PF6]:U mixture.

3.3.3.3 UV-vis Spectrometry. The UV-vis spectrum of 1:1 mixture overlapped with the

spectrum of uranyl nitrate. Moreover, the spectrum of 2:1 mixture was similar ( except

for the slightest decrease of intensity). No complexation evidence was found.
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Figure 3.15 UV-vis spectra of [MOEMIM][PF6]:U mixture.

3.3.3.4 Mass Spectroscopy. MS was displayed in Figure 3.16. In positive mode,

141(m/e) ([MOEMIM] ±) was the base peak. In negative mode, 145(m/e)([PF6] -) was

dominant and another major peaks resulted from the uranyl ions. No uranyl complex

associated with PF6 - was found in either mode.
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Figure 3.16 Mass spectra of [MOEMIM][PF 6]:U mixture at pH 3.5: (a) positive mode;
(b) negative mode.

3.3.3.5 EXAFS.
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R(A)

(b)

Figure 3.17 EXAFS spectra of U-[MOEMEVI][PF 6] at the U L 111 edge: (a) k3-weighted
EXAFS spectra (2.5-13.2k 1 ); (b) Fourier transform of EXAFS. Experimental data (-);
theoretical fit (--).

The EXAFS spectra were displayed in Figure 3.17, and the best fitting model was

given in Table 3.6.

Table 3.6 EXAFS Structure Parameters for U and U-[MOEMIM][PF6] Mixture

Sample	 Atom type 	 N 	 R(A) 	 cr2 	 R factor

U+[MOEMIM][PF6] 	 U-Oax 	 2 	 1.77±0.007 	 0.003 	 0.015

U-Oeq 	 4 	 2.45±0.02 	 0.012

Attempts to use a fit model with two equatorial shells (U-0 and U-F) for this

sample did not lead to a coherent fit. Therefore only one equatorial shell (U-0) was used

in a fit model. Two axial oxygen atoms were found at 1.77A, similar to those in U

solution. 3 equatorial oxygen atoms were observed at the second shell, with a bond length

of 2.45A. Gaillarde et al.(2005) reported [PF interacts with uranyl quite similarly in
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strength to water molecules, that is, there is competition of complexing with uranyl. The

formation of a complex UO2PF6 + was evidenced by TRES but could not be observed by

the EXAFS technique, which requires higher uranium and [PF6Iconcentnrations. In our

study, we didn't find the complexation information from the EXAFS data either.

3.3.4 IMOEMIMHOMS] and Uranium

3.3.4.1 pH change. No significant pH change was found in 1:1 mixture after 24 hours,

as shown in Table 3.7.

Table 3.7 pH Change of [MOEMIK[OMS]:U Mixture

[MOEMINI][OMSFU

1:1 2:1 [MOEMIM][OMS]

0 hr 3.33 3.52 4.28 3.05

24hr 3.35 3.50 4.34 3.06

Difference -0.02 0.02 -0.06 0.01

3.3.4.2 Titration. The titration curve was exhibited in Figure 3.18. The three titration

curves are very similar. They all have only one inflection point at 3mM Off/mM U and

no complexation information was found here.

3.3.4.3 UV-vis. UV-vis spectra of both uranyl nitrate and [MOEMIMJ[OMS]:U were

shown in Figure 3.19. Obviously, in both 1:1 and 2:1 mixtures, they all look very similar.

No complexation information was found here.
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Figure 3.18 Potentiometric titration curve of [MOEM11\4][0MS]-U mixture.

Wavelength/nm

Wavelength/nm

Figure 3.19 UV-vis spectra of [MOEMIM][0MS]-U mixture.
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3.3.4.4 Mass Spectroscopy.
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Figure 3.20 Mass spectra of [MOEMIM][0MS]:U mixture at pH 3.5.
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No complex was found in positive mode. However, in negative mode, three

complex molecules at 555(m/e), 522(m/e) and 489(m/e) were found, corresponding to

[UO2(0MS)3] - , [UO2(0MS)2(NO3)I and [UO2(OMS)(NO3)2f, respectively.

3.3.4.5 EXAFS EXAFS spectra were shown in Figure 3.21, and the structure parameters

of a fitting model are given in Table 3.8.

Table 3.8 EXAFS Structure Parameters for [MOEMIM][0MS]:U Mixture

Sample 	 Atom type 	 N 	 R(A) 	 a2 	 R factor

U+[MOEMINA][OMS] 	 U-Oax 	 2 	 1.76±0.005 	 0.003 	 0.007

U-Oeq 	 4 	 2.42±0.011 	 0.006 

The Fitting model discloses that two Oax atoms were found at 1.76A, and 4 Oeq at

2.42A. These structure data are similar to those of uranyl nitrate, except that there are

only about 4 Oeq in the second shell.
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K(A-1 )
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U-MOEMIMOMS:

0.5 	 1 	 1.5
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(b)

0 3

8

Figure 3.21 EXAFS spectra of U-[MOEMIIVI][0MS] at the U L111 edge: (a) k3 -weighted
EXAFS spectra (2.5-13.2A 1 ); (b) Fourier transform of EXAFS. Experimental data (-);
theoretical fit (--).

3.3.5 [MOEMIM][Tf2N] and Uranium

3.3.5.1 pH Change. pH changes in both 1:1 and 2:1 mixtures are negligible.

Table 3.9 pH Change of [MOEMIM][Tf2N]:U Mixture

[MOEMIM][Tf2 NFU

1:1 	 2:1
U MOEMIMTf2N

0 hr 3.41 3.46 3.05 5.89

24hr 3.32 3.32 3.06 5.72

Difference 0.09 0.14 0.01 0.17
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3.3.5.2 Titration.
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Figure 3.22 Potentiometric titration of [MOEMIM][Tf2N]:U mixture.

Titration curves of the three are almost the same and all of them have the same

inflection point at 3mM OH7mM U. No complex information was found here.

3.3.5.3 UV-vis. Similarity of UV-vis spectra indicates no interaction or weak interaction

happens between them.
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Figure 3.23 UV-vis spectra of [MOEMIM][Tf2N]:U mixture: (a) 1:1; (b) 2:1.

3.3.5.4 Mass Spectroscopy.
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Figure 3.24 Mass spectra of [MOEMIM][Tf2N]:U mixture at pH 3.

In positive mode, 141 represents the [MOEMIM] +, and 585 could be

[UO2(Tf2N)(H20)2] ± . In negative mode, 280 represents the [Tf2N] - , and 848 could result

from UO2(Tf2N)2(H20).

3.3.5.5 EXAFS.
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Figure 3.25 EXAFS spectra of U-[MOEMIM][Tf2N] at the U L111 edge: (a) k 3-weighted
EXAFS spectra (2.5-13.2k 1 ); (b) Fourier transform of EXAFS. Experimental data (-);
theoretical fit (--).

Figure 3.25 displays the EXAFS spectra of U-[MOEMIM][Tf2N]. The structure

data of the best fitting model was given in Table 3.10.

Tabel 3.10 EXAFS Structure Parameters of U and U: [MOEMIM][Tf21\1]

Sample 	 Atom type 	 N 	 R(A) 	 a2 R factor

U-0„

U -Oeq

U+[MOEMIM][Tf2 N] 2 	 1.76±0.006 	 0.003 	 0.008

4 	 2.42±0.013 	 0.006

U and [MOEIVIIM] [Tf2N]:U have very similar structure data, except that the

former has 5 Oeq while the latter contains 4 O eq . In Gaillard's study, they found that Tf2N -

can not complex with uranyl.

3.3.6 [MECOOMIM][CH 3C00] and Uranium

3.3.6.1 pH Change. A significant pH change was found in both the 1:1 and 2:1

mixtures, indicating a proton released during the interaction between them.
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Table 3.11 pH Change of [MECOOMIM][CH3COO]:U Mixture
[MECOOMIM][AC] and U

1:1 	 2:1
U [MECOOMMAC]

0 hr 3.06 3.03 3.05 4.78

24hr 2.38 2.19 3.06 4.77

Difference 0.68 0.86 0.01 0.01

3.3.6.2 Titration. The inflection point of U, the 1: lmixture and 1:2 mixtures are 3mM

OH-/ mM U, 3.28mM OH-/ mM U and 3.56mM OH-/ mM U, respectively. The shift of

inflection points to the right indicates the proton was released in the mixtures, as a result

of the interaction of [MECOOMIM][CH3COO]:U.

0 	 2 	 4 	 6
	

8 	 10

mM OH -/mM U

Figure 3.26 Potentiometric titration of [MECOOMIM][CH3COO]:U mixture.

3.3.6.3 UV-vis. UV-vis spectra are given in Figure 3.27. Compared with the U standard,

the absorption intensity decreased a little bit in both 1:1 and 2:1 mixture, but no phase

shift was observed. No conclusive complex information can be obtained here.
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Figure 3.27 UV-vis spectroscopy of [MECOOMIK[CH3C00]:U mixture.

3.3.6.4 Mass Spectroscopy. Peak 169 in positive mode represents the [MECOOMIN]+ .

Another peak 490 corresponded to RUO2)(MECOOMIM)(OH)2(H20)I. It is noteworthy

that, there is an ester group in the cation side chain, and that the oxygen in carbonyl
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contains lonely pair electrons; furthermore, this has the affinity to uranyl and capability to

form the complex.
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Figure 3.28 Mass spectra of [MECOOMIM][CH3C00]:U mixture at pH 2.3.
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3.3.6.5 EXAFS. EXAFS spectra are exhibited in Figure 3.34, and the structure data of

the fitting model is given in Table 3.14.

U-MECOOMIMCH COO
3

Figure 3.29 EXAFS spectra of U-[MOEMIM][CH3COO] at the U L 111 edge: (a) k3 -
weighted EXAFS spectra (2.5-13.2k 1 ); (b) Fourier transform of EXAFS. Experimental
data (-); theoretical fit (--).
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Table 3.12 EXAFS Structure Parameters of U and U: [MOEMIM][CH3C00]

Sample 	 Atom type 	 N 	 R(A) 	 a2 	 R factor

U+[MOEMIM][CH3C00] 	 U-Oax 	 2 	 1.760.009 	 0.003 	 0.013

U-Oeq 	 4 	 2.430.009 	 0.007 

The best fitting model has 2 axial oxygen atoms at 1.76A, and 4 equatorial

oxygen atoms at 2.43A, similar to those of uranyl nitrate.

3.4 Summary

Experimental results are summarized in Table 3.13. Positive (+) means there is

complexation between U and the ILs, and negative (-) represents no complexation found

between them.

Table 3.13 Summary of Determination of Complexation by Different Methods

pH
1:1 2:1 UV-vis Titration MS EXAFS

[MOEMIM][CF3C00] + +

[MOEMIM][BF4] + + + + + +

[MOEMIKPF6]

[MOEMIM][OMS] + +

[MOEMIM][Tf2N] +

MECOOMIMAC + + + +

Among all of the ILs studied here, only [MOEMIK[BF4] shows positive to all

different analytical methods, indicating complexation associated with uranyl. Other ILs

show positive to some methods, but negative to the rest, hence there is no conclusion that

can be drawn. However, there is no one method that can single-handedly determine

complexation evidence.



CHAPTER 4

EFFECTS OF IONIC LIQUIDS ON BIOREDUCTION OF U(VI) TO U(IV) BY
CLOSTRIDIUM SP.

4.1 Introduction

U (VI) is highly soluble in water while U (IV) is insoluble in water. However, soluble U

(VI) can be reduced by microorganism to U (IV) and can precipitate out of an aqueous

phase. Several microorganisms have proven to be able to convert U (VI) to U (IV). These

bacteria include the Fe (III)-reducing Geobacter sp. and Shewanella sp. (Lloyd, et al.,

2002), the Fe (III)- and sulfate-reducing Desulfotomaculum sp. (Pietzsch, et al., 1999),

the sulfate-reducing Desulfovibrio sp. (Yong, et al., 2002), and the fermentative

anaerobic Clostridium sp (Francis, et al., 1994).

Both organic and inorganic ligands can form a complex with uranium, thus

increasing their solubility and leaching capability. In addition, different ligands play an

important role in the biotransformation of uranium. A study by Robinson et al. (1998)

disclosed that, among the complexes of uranium with acetate, oxalate or citrate, the

reduction rate of the acetate-complexed uranium was the fastest while the reduction rate

of the citrate-complexed uranium was the slowest. Francis et al. (2000) also found that

the bidentate complex of citric acid and uranium was much less bioreducible than

monodentate complex. In addition, Tucker et al. (1998) demonstrated an elevated NO3 -

and/or SO42- concentration can decrease the bioreduction of U (VI) by Desulfovirio.

Markich et al. (2002) investigated the effect of uranium complex with various inorganic

ligands and humic substances on the bioreduction of uranium. Reduced bioreduction was

observed in this experiment.

72
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After studying the physic-chemical interactions between uranium and ILs, we

were curious about how bioreduction could be affected by the interaction of U-ILs. The

results of our experiments are reported here.

4.2 Materials and Methods

4.2.1 Chemicals

Ionic liquids used in this study include [MOEMIM][BF4], [MOEMIK[CF3C00],

[MOEMIM] [OMS], [MOEMIM] [PF6] and [MOEMIM] [CH 3C00]. The uranium used

here is a uranyl nitrate solution.

4.2.2 Bacterium

Clostridium sp. is an anaerobic fermentative bacterium that is gram positive stained and

rod-shaped. This bacterium is able to reduce Fe (III) to Fe(II), Mn(IV) to Mn(II), Tc(VII)

to Tc(IV), and U(VI) to U(IV) (Francis, et al., 1994; 1998; 2002).

A mineral salts medium composed of glucose (5.0g), glycerol phosphate (0.3g),

MgSO4.7H20 (0.2g), FeSO4.7H20 (2.8mg), CaC12 (0.5g), Peptone (0.1g), and yeast

extract (0.1g) was used to culture Clostridium sp. All the ingredients were dissolved in

1000 ml of distilled water, and the pH was adjusted to 6.5. The medium was pre-reduced

by the process of boiling and purging with N2 gas for 15min to remove dissolved oxygen.

During the purging process the mixture was allowed to cool down. Once complete, it was

moved to a glove box to dispense. A 40m1 medium was dispensed into a 60m1 serum

bottle. The bottle was then sealed by a butyl rubber stopper with an aluminum cap and

autoclaved.



74

4.2.3 Analysis of U(VI) and U(IV)

Determination of U (IV) in solution U (IV) in solution is measured by the

colorimetric method based on the reaction below.

U4+ + 2Fe' —' U 6+ + 2Fe2+

Fe2+ + o — phenanthroline —> red color

The ferric ion can re-oxidize U(IV), reduced by clostridium sp., to U(VI), and

produce a ferrous ion. A ferrous ion forms a complex with o-phenanthroline to give a red

color solution. The concentration of ferrous complex was determined by UV

spectrometer at 510 nm. A calibration curve can be obtained by ferrous standards with

different concentrations. The uranium concentration was half of the concentration of

ferrous complex.

Preparation of color development mixture 14ml of 1 mM FeC1 3 solution

containing concentrated HC1 (6.4 ml/liter mixture) was mixed with 3 ml of 10 mM o-

phenanthroline and 3 ml of 1M acetate buffer (pH 5).

Sample measurement Sample preparation was carried out in a glove box. An

aliquot of 0.25 ml filtered sample was added to the cell containing 0.25 ml of de-oxided,

de-ionized water and 0.5m1 of color development mixture. It was placed in a dark

chamber for 2 hours for color development. Subsequently, the UV-vis absorbance was

measured at 510nm. Standards containing 0.01, 0.025, 0.05 and 0.07 mM ferrous ion

were used to prepare a calibration curve. The culture solution without uranium was

utilized to eliminate any background ferrous ion in the medium and/or any ferrous ion

released by the metabolism of bacteria.
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4.2.4 Determination of Total U in solution

After U(IV) was determined, an aliquot of this sample was taken and diluted. The total

U(VI) in solution (after the U(IV) was re-oxided to U(VI) )was then measured by KPA

(Kinetic Phosphorescence Analyzer). The difference between the total U (VI) determined

by KPA, and the U (IV) measured by colorimetric method, yields the un-reduced U (VI).

4.2.5 Determination of U(IV) and Total U in precipitate

A 40 ml sample was centrifuged at 10,000 rpm for 20min and washed three times with 5

ml of pre-reduced 20mM KC1. 10 ml of 5mM citric acid was then added to extract both

U (IV) and U(VI). The sample was kept in darkness to avoid the photo degradation of the

citric acid. Both U (IV) and U(VI) were determined by the methods described above.

4.2.6 Experiment Methods

Effect of Different ILs on Bioreduction A certain amount of uranyl nitrate

solution and ILs were added to a cell and diluted with pre-reduced DI water to 3m1. The

mixture was kept overnight and allowed to reach equilibrium. It was then added to an 18-

hour-old Clostridium sp. culture, giving a final concentration of 0.235mM for Uranium

and 10mM for the ILs. Two sets for each IL were prepared: 1) for kinetic study and 2)

for a study of the mass balance. For the kinetic study, an aliquot was withdrawn

periodically for up to 42 hours. The sample was filtered with a 0.451.1m membrane and the

concentrations of U (IV) and U(VI) in solution were determined. For the mass balance

study, however, the other set of sample was kept intact for 48 hours. An aliquot was then

taken from the solution to determine the U(IV) and U(VI) concentrations. The remains
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were centrifuged and washed three times with 20mM KC1. Citric acid was added to

extract all the uranium in the precipitate in order to determine the concentrations of

reduced U(IV) and unreduced U(VI) therein.

Effect of Different Concentration of [MOEMIMJ[BF4J on Bioreduction Five

different concentrations of [MOEMIM] [BF4] (OmM, 1mM, 5mM, 10mM and 20mM)

were tested to determine the best in bioreduction efficiency. Two sets were prepared: one

for kinetic study and the other for a mass balance calculation. The concentrations of both

U(IV) and U(VI) were measured by the method described above.

4.3 Results and Discussion

4.3.1 Effects of Various ILs on U Bioreduction

4.3.1.1 Kinetic Study. A Kinetic study conducted for 24 hours is shown in the Figure 1.

The original U(VI) concentration was 0.235mM and ILs concentration was 10mM. In a

BC1 medium containing only uranium nitrate and no bacteria, the uranium precipitated

out of the solution quickly, due to the formation of uranium phosphate and a hydroxyl at

pH of 6.5. As shown in Figure 4.1, in all cases except for [MOEMIM][BF4], the U(VI) in

solution decreased very quickly for the first 4 hours (from 0.235Mm to about 0.05mM),

and then continued to drop down gradually to below 0.01mM. Comparatively, the

concentration of U(IV) in solution increased rapidly for the first 6 hours (from 0 up to

0.05mM), and then decreased gradually. It is noteworthy that in the presence of

[MOEMIM] [BF4], bioreduction showed distinctive differences from the samples: 1) the

U(VI) in solution did not decrease as much compared with other ILs. After 42 hours,

about 0.115mM U(VI) was still present in the solution; 2) there was a higher
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concentration of U(IV) in the solution. After 42 hours, it reached about 0.7mM, which

was 5 times more than that in other ILs. (Figure 1(b) ).

Figure 4.1. Concentrations of U(VI) and U(IV) in various ILs solutions: (a) Control, (b)
[MOEMIM][BF4], (c) [MOEMIM][PF6], (d)[MOEMIM][CF3C00], (e)
[MOEMIM][0MS], (1) [MECOOMIM] [CI-13C00].
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In addition, we observed that, even after 72 hours, the solution with [MOEMIM][BF4]

was still cloudy, indicating most of the bacteria suspending in the solution, while the

solutions with other ILs were clear and most of the bacteria precipitated out at the

bottom.

As discussed in chapter 3, [MOEMIM] [BF 4] can form a strong complex with

uranium thus enhancing the solubility of both U(VI) and U(IV) in an aqueous phase. As a

result, more uranium is present in the solution. However, other ILs can only form weak

complexes with uranium and have no effect on its solubility.

4.3.1.2 Mass Balance of U Speciation in Presence of Various ILs.

MASS BALANCE

U 	 MOEMIMBF4 MOEMIMPF6 MOEMIMTFA MOEASMOMS MECOOMIMAC

Figure 4.2 Mass Balance of U in different ILs after Reduction.

The U(IV) and U(VI) concentrations in both solution and precipitation were

determined and the percentage for each was calculated. Figure 4.2 displays the

distribution of uranium speciation in the presence of various ILs. Based on the data, we

found that: 1) U(IV) in precipitate predominated, except in presence of the
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[MOEMIM] [BF4], accounting for more than 80% of total U; 2) U(VI) made up the

second major part of the precipitate (from 9% to 20%); (3) there was little of either U(VI)

or U(IV) present in the solution except in the presence of [moovirm] [BEd ; 4) over 92%

of the total U (36% from U(VI) and 56% from U(IV)) was in the aqueous phase in the

presence of [MOEMIM][BF4], and no U (IV) was observed in precipitate.

U 	 MOEMIMBF4 MOEMIMPF6 MOEMIMTFA MOEMIMOMS MECOOMIMAC

Figure 4.3 Percentage of U reduction and U in solution in presence of various ILs.

The percentage of bioreduction and total U in solution were calculated (Figure

4.3). As for bioreduction, the addition of 10mM of any ILs other than [MOEMIM] [BEd

bore no effect on bioreduction efficiency. For example, U was reduced 86% in the

absence of any IL, while 85% with [MOEMIM] [PF6], 81% with [MOEMIM][CF3C00],

and 80% with [MOEMIM][OMS]. However, in the presence of 10mM

[MOEMIM][BF4], the bioreduction was inhibited and dropped to about 55%. This could

result from the complexation of U and [MOEMIM][BF 4] as discussed before. After the



I

-s- U
-*- MOEMIMPF6 	 -
--x-MOEMIMCF3C00
	 MEAC
--A- MOEMIMOMS

400
	

500
	

600
	

700
	

800

80

formation of a complex, it becomes difficult for bacteria to approach UO2 + , and, therefore,

the availability of UO2 + is reduced; thus leading to the overall decrease in U reduction.

Based on these results, it is obvious that [MOEIVIIIVI] [BF4] is able to keep more

than 90% of its total U in the aqueous phase, whereas, other ILs can only maintain less

than 10% of their total U in solution. As we discussed in 3.1.1, the increase in solubility

of U is due to the formation of a complex in the solution.

4.3.1.3 UV-vis Spectrometry.

UV-Vis absorption before bioreduction
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Figure 4.4 UV-Vis absorption of U in presence of various ILs.
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UV-Vis spectra of U before and after bioreduction are given in Figure 4.4.

Comparison of Figs. 4 (a) and (b) shows that the maximum absorbance of uranium has

shifted from 413nm to 663nm, which is the characteristic absorbance for U (IV), thus

proving that U(VI) has been reduced to U(IV). In addition, it should be noted that the

absorbance for [MOEMIMJ[BF4] after reduction was very weak. This is because most of

U was maintained in the solution and not in the precipitate. Therefore, the U

concentration in the citric acid used as the extractant for the U was very low.

4.3.2 Effects of Various Concentrations of [MOEMIM] [BF4] on Bioreduction

[MOEMIM][BF4] demonstrates a unique ability to increase the solubility of both U(IV)

and U(VI) in solution. Further study was carried out to determine at what concentration

[MOEMIM][BF4] was optimized for both bioreduction efficiency and enhanced

solubility.

4.3.2.1 Kinetic Study. The kinetic study results of five different concentrations of

[MOEMIM][BF 4] are shown in Figure 4.5. As can be seen here, U(VI) concentration in

solution decreased quickly, from 0.235mM to 0.02mM within 4 hours when no

[MOEMIM][BF4J was present, while the U(IV) concentration increased from 0 to

0.04mM. An addition of 1mM [MOEMIM] [BF4] slowed down the rate of the U(VI)

decrease while increasing the U(IV) concentration a little, (from 0.02mM to 0.03mM).

However, in the presence of 5mM [MOEMIM][BF 4], the U(VI) in solution was

maintained as high as 0.12mM (10 times higher than the control) after 24 hours. At the

same time, the U(IV) increased to 0.12mM, (6 times more than the control). In the
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presence of 10mM of [MOEMIM] [BF4], 0.135mM U(VI) stayed in solution while

0.1mM U(IV) maintained in solution. With the addition of 20Mm of [MOEMIM][BF 4],

the concentration of U(VI) continued to increase to 0.15mM while the concentration of

U(IV) dropped a little to 0.09mM.

Based on the data above, it can be concluded that: 1) an increase of

[MOEMIM][BF 4] concentration can lead to the continuous increase of the U(VI)

concentration in solution. This could be due to the formation of a complex as described

before; 2) along with the rise of [MOEMIM] [BF 4] concentration, U(IV) in solution

increases first, and then decreases a little. It is hypothesized that, on the one hand, the

elevated concentration of [MOEMIM][BF4] improves complexation and leads to the

increase of U(IV) in solution; while on the other hand, a raise in concentration enhances

the toxicity of [MOEMIM][BF4] to bacteria, resulting in less U(VI) converted to U(IV).

4.3.2.2 Mass balance of U after bioreduction in the presence of [MOEMIM] [BF4l

with various concentrations.

MASS BALANCE
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Figure 4.6 Mass Balance of U in different ILs after reduction.
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Based on the data shown in Figure 4.6, we can say that: 1) in the absence of

[MOEMIM][BF4] solution, about 92.5% U precipitated out of solution, (83% U(IV) /

9.5% U(VI) ). However, in the presence of [MOEMIM] [BEd, both U(IV) and U(VI) in

solution increased. For instance, in a 1mM [MOEMIM] [BF4] solution, the U(IV) in

solution reached 82.3% of the total U, (almost 31 times the U(IV) percentage in 0mM

[MOEMIM][BF4] solutions). Also, 13% U(VI) was present in solution, (about 3 times

higher than the U(VI) percentage in the 0mM [MOEMIM] [BF4] solution); 2) the U(IV)

in solution increased at the beginning, and then decreased when the [MOEMIM] [BF41

concentration increased. There was only 2.6% U(IV) in the 0mM [MOEMIM] [BF4]

solution, but it increased to 82.3% in 1mM [MOEMIM] [BF4] solution, and then

subsequently decreased to 56% in 10mM of [MOEMIM][BF4] solution. When the

concentration reached 20mM, only about 11.5% U (IV) was maintained in the solution;

3) as the [MOEMIM][BF4] concentration increased, so did the unreduced total U(VI) in

both solution and precipitate.
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Figure 4.7 Percentage of U reduction and U in solution in various concentrations of
[MOEMIM][BF4] solution.
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The total bioreduction percentage (for both in solution and precipitate) and total

the uranium percentage in solution (for both U (VI) and U (W)) were concluded as

shown in Figure 4.7.

As for the reduction percentage, we found that the ability (or inability) of

[MOEMIN] [BF4] to effect bioreduction efficiency depends on its concentration. In the

control, 86% reduction was achieved. The addition of 1mM [MOEMIM][BF4] could

maintain the same reduction efficiency as 87%. However, the addition of 5mM and/or

10mM [MOEMIM][BF 4] inhibits bioreduction capability about 50%. Moreover, when

the concentration reached 20mM, only about 28% reduction was obtained.

As to the U percentage in solution, there's no doubt that [MOEMIN] [BF4] could

improve the solubility of total U in solution. Compared with 8% of the total U in 0mM

solution, 59% of the total U was kept in a 1mM solution, while 100% and 92% of total U

were maintained in 5mM and 10mM solutions respectively.

As described before, [MOEMIM][BF 4] is able to form a complex with uranium in

solution, leading to the increase of uranium solubility in an aqueous phase. This explains

why the addition of [MOEMIM][BF 4] caused more uranium to remain in solution. Both

U(IV) and U(VI) were increased in the solution, indicating that [MOEMIM] [BF 4] can

form a complex with both of them. In addition, the elevated concentration inhibited the

activity of bacteria due to the increased toxicity associated with the increased

[MOEMIM][BF4], thus leading to the decrease of bioreduction.
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4.4 Summary

Different ILs have different effects on the bioreduction of U(VI).

• Except [MOEMIM][BF 4], other ILs form no or weak complexes with uranium,
and produce little effect on overall bioreduction efficiency at low concentrations.

• [MOEMIM][BF4] can form a strong complex with uranium, leading to the
significant increase of both U(VI) and U(IV) solubility.

• At the concentration of 1mM, [MOEMIM] [BF4] can maintain as much
bioreduction efficiency as in the absence of [MOEMIM] [BF4], while also
maintaining about 60% of the total U in solution. With the increase in
[MOEMIM][BF4] concentration, more U can be maintained in solution, but the
toxicity also increases, inhibiting the activity of bacteria and thereby decreasing
bioreduction efficiency.



CHAPTER 5

TOXICITY STUDY OF IONIC LIQUIDS ON CLOSTRIDIUM SP.

5.1 Intordution

Although Ionic Liquids have been extensively studied recently, information about the

toxicity for most ILs remains scarce. In the existing science a few important discoveries

should be highlighted. For example, it has been discovered that the structure of

imidazolium ILs is similar to that of biologically active plant growth regulators (or

cationic surfactants) which have known destructive impact on the Environment. Also,

Docherty and co-workers (2005) have observed the antimicrobial properties of ILs. They

examined the antimicrobial effects of 1000 ppm of butyl, hexyl and octyl imidazolium

and pyridinium-based ionic liquids on the growth of a group of microorganisms.

Generally speaking, hexyl and octyl imidazolium and pyridinium ILs exhibited higher

inhibitive effects than those ILs containing a butyl chain. In addition, Pernak et al. (2004)

also found that ILs exhibit antimicrobial activities, and that the alky chain length plays an

important role in toxicity. The longer the alky chain, the more toxic the ionic liquid.

Ranke et al. (2003) also studied the biological effects of imidazolium ILs with varying

chain lengths in acute vibrio fischeri and WST-1 cell viability assays. The concentrations

of ILs used in their study were generally of some orders of magnitude lower than the

toxicity of conventional solvents like acetone, acetonitrile, and methanol. They also

demonstrated the linear relationship between toxicity and alky chain length.

Building on these studies, we continued our research into ILs and toxicity. In our

study, we used MOEMIM-based ILs with various anions to further examine the toxicity

87



88

to bacterium. In order to compare the toxicity with other ILs, BMIM-based ILs also were

investigated here. Both the cation and anion effects on toxicity were examined.

5.2 Materials and Methods

5.2.1 Ionic Liquids

The Ionic liquids used for this study include [EtPy][CF3C00], [BMIM] [BF4],

[BM[M][CF 3C00], [MOEMIM][BF4], [MOEMIIVI][PF6], [MOEMIM][CF3C00],

[MOEMIM][0MS], [MOEMIM][Tf2N] and [MOEMIK[CH3C00]. For each of the ILs,

four concentrations were examined, including 0.10%, 25%, 0.5% and 1% (volume of

IL/volume of water).

5.2.2 Bacterium

Clostridium sp. was studied for toxicity. A BC1 medium was used to culture Clostridium

sp.,

5.2.3 Method

Ionic liquid was dispensed to the autoclaved BC1 in a glove box. For each concentration,

two parallel samples were prepared; one was used for kinetic study, the other was kept

intact for measurement of the gases produced by Clostridium sp.

Clostridium sp. was cultured in BC1 medium without any ILs for 18 hours to

reach logarithm period of growth. 2m1 of culture was then transferred to each bottle.

Samples were withdrawn in intervals to determine the growth of Clostridium sp.
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5.2.4 Indicators of Growth to be Measured

Optical density (OD) --- is proportional to the amount of cells, measured at

600nm by UV-Vis spectrometer.

pH pH change indicates the metabolism of bacteria. Here because Clostridium

sp. consumes glucose, acid is released during growth. The lower pH, the greater bacteria

growth.

Gases Produced by Bacteria Some gases, mainly carbon dioxide and hydrogen,

will be generated during growth. The pressure was measured by gas gauge and the

volume was calculated

Mass Spectroscopy After filtrated with 0.25um filter membrane, the sample was

analyzed using LCQ Advantage ESI-MS to determine the production of metabolism.

5.3 Results and Discussion

5.3.1 Effects of [BMIM]113F4] on Clostridium sp. growth

5.3.1.1 Optical Density (OD). The Kinetic study of OD values is shown in Figure 5.1.

Obviously, addition of [BMIM][BF 4] inhibited the bacteria growth. The higher

concentration led to lower growth. For example, in the control (without ILs), bacteria

grew very well and OD reached to 0.73, while in the medium with 0.25% (v/v)

[BMW] [BF4], the OD dropped to 0.22. When the concentration increased to 0.5%,

almost no cell growth occurred.

5.3.1.2 pH. pH change (along with the time duration) was displayed in Figure 5.2.

During growth, Clostridium sp. consumed glucose and produced lots of acids by

metabolism, which resulted in the significant pH decrease. Generally speaking, the more
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[BMIM] [BE4] in the medium, the less the pH decrease (due to the [BMIM][BF 4]'s

prohibition of cell metabolism).
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Figure 5.1 Bacteria growth in presence of [BMIM][BF4].
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Figure5.2 Effects of [BMINI][BF4] on pH change during incubation.
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Figure 5.4. Mass spectra of medium containing [BMIM][BF 4] (0.1%)(Continued).

5.3.2 Effects of [MOEMIM] [BF 4] on Clostridium sp. Growth

5.3.2.1 OD. OD was shown in Figure 5.5.
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Figure 5.5 Bacteria growth in presence of [MOEMIM][BF4].

OD decreased as the [MOEMIM] [BF 4] concentration increased. The higher

concentration led to the lower growth rate of bacteria. In 1% [MOEMIM] [BF4] medium,

almost no bacteria grew.
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5.3.2.2 pH. As it is shown in Figure5.6, the higher concentration of [MOEMIM] [BF4]

resulted in less of a pH change, indicating the inhibiting factors of [MOEMIM][BF4] on

bacteria growth.
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Figure 5.6 Effects of [MOEMIM] [BEd on pH change during incubation.

5.3.2.3 Gas Production.
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Figure 5.7 Effects of [MOEM11\4][BF4] on gas production during incubation.
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It is obvious in Figure 5.7 that gas production decreased with the increase of

[MOEMIK[BF4].

5.3.2.4 Mass Spectroscopy. MS of 0.1% [MOEMIM] [BF4] was displayed in Figure 5.8.

141(m/e) in positive mode represents [MOEMIM], while 86 in negative mode

corresponds to [BEd - . Based on MS data, [MOEMIM][BF4] was not degraded by

bacteria.

Figure 5.8 Mass spectroscopy of medium containing [MOEMIM][BF 4] (0.1%).
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5.3.3 Effects of [MOEMIM][OMS] on Clostridium sp. Growth

5.3.3.1 OD.	 It is obvious in Figure 5.9 that, compared with other ILs,

[MOEMIM][OMS] did not prove very toxic to bacteria. In the medium with 0.5%

[MOEMIM][OMS], bacteria grew as well as bacteria in the control. Even in the 1%

[MOEMIM][OMS] medium, OD can reach 0.48. Compared with other ILs, it is much

less toxic.

i•
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Figure 5.9 Bacteria growth in presence of [MOEMI1V1][0MS].

5.3.3.2 pH. pH change during inoculation was displayed in Figure 3.10. It proves that

[MOEMIWOMS] is much less toxic compared with other ILs. Except in the medium

with 1% [MOEMEVI] [OMS], pH values remained very close to each other and the

control. This indicates that the activity of bacteria was not much inhibited by its presence.
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Figure 5.10 Effects of [MOEMIM][0MS] on pH change during incubation.
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5.3.3.3 Gas Production. Figure 5.11 revealed that, up to 0.5% [MOEMIM][OMS], there

is little difference in gas production as compared with the control, indicating much less

inhibition on the clostridium s.p's activity. Even at 1%, bacteria can still grow well.
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Figure 5.11 Effects of [MOEMIK[OMS] on gas production during incubation.
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5.3.4 Effect of [MOEMIM][CF3C00] on Clostridium sp.

5.3.4.1 OD. [MOEMIM][CF3C00] did inhibit the growth of Clostridium sp. In the

presence of 0.1% [MOEMIM][CF3 C00], the OD value after 48 hours was just 0.28,

while that of the OD control was 0.65. At 1% concentration, 0.12 was observed for OD.
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Figure 5.13 Bacteria growth in presence of [MOEMIM][CF3COO].

5.3.4.2 pH. After 48 hours, the pH in the control dropped from 5.5 to 2.6, while the

pHs in the 0.1%, 0.5% and 1% media are 3.3, 3.5 and 3.8 respectively, indicating this

ionic liquid's influence on metabolism.
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Figure 5.14 Effects of [MOEMIK[CF3C00] on pH change during incubation.

5.3.4.3 Gas Production.
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Figure 5.15 Effects of [MOEMIM][CF3C00] on gas production during incubation.

5.3.4.4 MS. MS is shown in Fig 5.16. 113 (m/e) corresponds to [CF3COO] anion. There

is no degradation of this IL found in MS.
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Figure 5.16 MS of medium containing [MOEMIM][CF 3 C00] (0.1%)(Continued).

5.3.5 Effects of [MOEMIM][PF6]on Clostridium sp.

5.3.5.1 OD. [MOEMIM][PF6] showed high inhibition to bacteria. With 0.1% of

[MOEMIM][PF6] in the medium, the OD value only reached 0.2, (0.48 less than the OD

of the control). There was almost no growth observed in 1% medium.
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Figure 5.17 Bacteria growth in presence of [MOEMIM][13F6].
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5.3.5.2 pH. Compared with the control, after 48 hours, the pH in 1% medium only

decreased to 4.7, much higher the pH 2.9 in the control This is contributed to the high

toxicity of the [MOEMIM][PF 6].
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Figure 5.18 Effects of [MOEMIIVI][PF6] on pH change during incubation.

5.3.5.3 Gas Production. Figure 5.19 displays the gas volume generated by bacteria. The

volume of gas generated by bacteria decreased drastically. When the concentration

reached 1%, there was no measurable gas production further showing the strong toxicity.
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Figure 5.19 Effects of [MOEMIM][PF6] on gas production during incubation.
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5.3.5.4 MS. MS was displayed in Figure 5.20.
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Figure 5.20 MS of medium containing [MOEMIM]{PF 6] (0.1%).
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Figure 5.20 MS of medium containing [MOEMIM][PF6] (0.1 %)(Continued).

In positive mode, [MOEMIM] achieved base peak after 49 hours. In negative

mode, [PF6] was still the base peak after 49 hours. No biodegradation occurred.

5.3.6 Effect of [MOEMIM][Tf2N] on Clostridium sp.

PF6

5.3.6.1 OD.
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Figure 5.21 Bacteria growth in presence of [MOEMIM][Tf2N].
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Compared with other ILs studied here, [MOEMIM][Tf2N] exerted the highest

inhibition to bacteria. No bacteria growth was observed in 0.5% medium.

5.3.6.2 pH. The pH change (and duration) were shown in Figure 5.22. In 0.5% and 1%

media, almost no pH change occurred, indicating the metabolism of bacteria was

completely inhibited. It proved [MOEMIM][Tf2N] is more toxic to the bacteria.
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Figure 5.22 Effects of [MOEMIM][Tf2N] on pH change during incubation.

5.3.6.3 Gas Production. Figure 5.23 displays the gas production in presence of

[MOEMIM][TF2N]. 
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Figure 5.23 Effects of [MOEMIM][Tf2N] on gas production during incubation.
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Gas production also decreased drastically with increase of the concentration,

indicating the strong toxicity.

5.3.6.4 MS. Mass spectra data was given in Figure 5.24, which revealed that

[MOEMIM] [Tf21\11 was not degraded by Clostridium sp.
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Figure 5.24 Mass spectra of medium containing [MOEMIM][Tf2N] (0.1%).
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Figure 5.24 Mass spectra of medium containing [MOEMIM][Tf2N] (0.1%)(Continued).

5.3.7 Summary

To varying extents, all ILs studied here negatively affected the growth of

Clostridium sp. Throughout, both OD and gas production decreased with an increased

concentration of ILs. However, different ILs showed different inhibitory effects on

bacteria. For [BMIM][BF4], at 0.5% concentration, the bacteria were hard to grow. For

[MOEMIM] [BF4], part of bacteria grew at 0.5% while fewer bacteria grew at 1%. As for
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[MOEMIK[CF3C00], more inhibition was found. At 0.1% concentration, OD was just

0.28 after a 48-hour incubation. The [MOEMIM][PF 6] was even more toxic than

[MOEMIMi[ CF3C00]. Compared with the all above, [MOEMIMJ[Tf2N] showed itself

to be the most prohibitive to bacteria growth. At 0.25% concentration, OD was less than

0.1. [MOEMIM][OMS], however, distinguished itself as the least inhibitive to bacteria.

Even at 1%, after 48 hours, the OD can reach 0.48.

5.4 Comparison of toxicity of different ILs

In order to compare the toxicity of still different ionic liquids, one control (without ILs)

and 20mM of each ionic liquid was prepared. The same experiment was repeated, and

OD, gas production were determined and displayed in figure 5.25 and 5.26.
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Figure 5.25 Comparison of optical density in media with different ILs.
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Figure 5.26 Comparison of gas production in media with different ILs.

Both the OD and gas production displayed the same trend of toxicity in ILs. The

toxicity order of ILs from highest to lowest is as below:

[MOEMIM][Tf2N] > [BMIMB] [F4] > [MOEMIM] [PF6] > [MOEMIM] [BF4] >

[BMIM][CF3C00] > [MOEMIM][CF3C00] [MOEMIK{CH3C00] >

[MOEMIWOMS] > Control

Based on the data shown above, it may be concluded that:

• The Anion has an important effect on toxicity. With the same cation,
[1140EMIM] +, different anions show different inhibitory capabilities. The order of
inhibition from highest to lowest was:

[Nf2T]" > OPF61 -> [BEd" >ICF3COOF > [OMS]"

• It is noteable that the more fluoric atoms the anion contains, the higher the ionic
liquid's toxicity. The linear regression of the number of F atoms and toxicity is
shown in Figure 5.27 (LogEC50-48hour was obtained in Chapter 6). As shown, the
R2 is 0.996, indicating the good linear relationship between them.

• The side chain of the cation also plays an important role in toxicity. For example,
with the same anion, [BF4]", toxicity of [MOEMIM][BF4] is less than that of
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[BMIM] [BF4]. Also, with the same anion [CF3C00] - , [MOEMIM] + shows less
toxicity than [BMIM]+ . As we mentioned before, the length of the alky chain
plays an important part. The longer the side chain, the higher the toxicity of the
ILs. In addition, the functionized side chain can also render toxicity. In this study,
compared with BMIN4 + whose side chain is butyl, we found the toxicity decreases
when a methoxyl ethyl group is added to the cation side chain. It may be due to
the increase of hydrophilic property of the cation and hence the decrease of its
lipophilic character.
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Figure 5.27 Regression of number of F atoms of ILs and toxicity.



CHAPTER 6

QUANTITATIVE STRUCTURE-ACTIVITY RELATIONSHIP (QSAR) FOR
PREDICTION OF THE TOXICITY OF IONIC LIQUIDS

6.1 Introduction

For the past decade, Ionic liquids (ILs) have been studied to uncover their unique

properties. They are known to be nonvolatile, have high chemical and thermal stability,

have good solubility for both organic and inorganic compounds, and so on. Therefore,

they are regarded as promising 'green' replacements for conventional organic solvents. It

is believed, moreover, that ILs will be widely used by both the chemical and

pharmaceutical industries in the future (Wasserscheid, P. and Welton, T., 2003). So far,

however, little is known about the toxicity of ILs and research has not been extensive. As

a result, with the rapid development of application of ILs, it is important and necessary to

study the toxicity of ILs.

While experimentation on each chemical is the most reliable way to obtain

toxicity data, such testing is time consuming, demanding of resources, and unsuitable for

the screening of large numbers of chemicals. Alternatively, the toxicity of chemicals can

be predicted with an understanding of the relationship between their structure and activity

(Cronin et al., 2003). In fact, the quantitative structure-activity relationship (QSAR)

model has proven to be a reliable tool for the toxicity assessment of organic chemicals

(Huang, et al., 2003; Wang, et al., 2006; Papa, et al., 2004). QSAR relates the toxicity of

chemicals to their molecular structures and physical chemical properties, and offers the

advantage of higher speed and lower costs. In recent years, QSAR has been applied to

113



114

study the toxicity of certain chemicals to environmentally important microorganisms (Lu,

et al., 2001; Netzeva, et al., 2005).

Presently, however, there is little reported about using the QSAR model to predict

the toxicity of ILs. As we know, ILs are new solvents that differ from organic

compounds. The former consists of only ions, while the latter consists of molecules.

Since the study of ILs is fairly recent, there is very little physical or chemical information

available in literature. For example, there is not much information about the partition

coefficient of ILs. This makes it difficult to study its toxicity. According to our

knowledge, only one paper is available in literature for the QSAR of ILs toxicity. Ranke

et al. (2004) investigated the biological effects of imidazolium ionic liquids with varying

chain lengths in acute Vivrio fischeri and WST-1 cell viability assays, in which the clear

influence of the alkyl chain length on toxicity was quantified by linear regression

analysis. In our study, we determined the partition coefficient of ILs (K.), the

electrophilicity of cations and anions of ILs (E Lumo), as well as the 50% effective

inhibition concentration in 48 hours (EC50-480• Based on this limited data, we built a

QSAR model to predict the toxicity of ILs, and causally have an insight into the

relationship of toxicity and ions. This is the first trial to use QSAR modeling to predict

toxicity of ILs.

6.2 Materials and Methods

6.2.1 Chemicals

The ILs used in this study include two series: one is 1-methoxyethyl-3-methyl

imidazolium GMOEMINC) based ILs; the other is 3-methy- 1-butyl imidazolium
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([BMIIV1] ±) based ILs. Both have with a variety of anions, including [BE] -, [PF6r,

[CF3COOT, [OMSI and [Tf2N] -. All of the ILs were synthesized and purified in our lab.

The synthesis methods have been illustrated in Chapter 2.

6.2.2 Bacterium

Toxicity data (EC 50_480 was obtained from the bacterium clostridium sp.

6.2.3 Descriptors used in QSAR modeling

6.2.3.1 Partition coefficients of ILs in 1-octanollwater (K 0w). The octanol-water

partitioning coefficient is a physicochemical descriptor that is widely used in QSARs.

Octanol is used to mimic properties of the cell membrane. Kow indicates the ability of a

chemical to partition between the aqueous phase and the cell membrane. IC. is the most

important parameter related to biological activity. The higher the Kow value, the stronger

the hydrophobicity, and therefore the easier a compound is bioconcentrated in an

organism.

( 	 alio,/ 1 I . sampling

Water/11 sampling

Octanol
Phase

Water
Phase

Figure 6.1. Apparatus for Kow measurement.
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Kow is determined by slow-stirring method, which is a direct method for

measuring KoW. This method yields accurate results over a wide range of values (without

the need for complex equipment). The experiment apparatus was configured as shown in

Figure 1. 10[1.1 of the IL was added to 5m1 of water saturated with octanol in a 40m1 vial.

After the ionic liquid was completely dissolved, 5m1 of octanol saturated with

water was slowly added to this vial in order to minimize the stagnant diffusion layer

between the phases while preventing emulsification. Then the vial was sealed tightly to

prevent the evaporation of water and octanol. The vials were shaken slowly in a shaker to

prevent emulsification and were maintained at room temperature. Samples were taken

from the octanol phase by penetrating the septum with a syringe. Samples were

withdrawn from the water phase using a syringe inserted directly through the tubing into

the aqueous phase in order to prevent octanol contamination (see Figure 6.1.). Sampling

ceased when the concentrations in both phases stabilized. The concentrations of IL in

each phase were measured by UV-vis spectrometry at 212nm wavelength. To ensure that

the measured absorbance was below 1, samples taken from the vials were diluted if

necessary. The Kc,,, value was obtained by dividing the concentration of IL in octanol

by the concentration of IL in water.

6.2.3.2 The lowest unoccupied molecular orbital (ELUMO)• ELUMO is indicative of the

electrophilicity of chemicals. It appears as directly proportionate to the electronic

affinity of the compound. This may play an important role in the re-ox reaction between

the chemical and the cell membranes. The lower the E LUMO values, the stronger the

electrophilicity (Wang et al., 1981). All ELUMO values were calculated by quantum
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chemical software, Spartan '02, using equilibrium geometry at ground state with the

semi-empirical AM1 molecular orbital method.

As we mentioned before, ionic liquids differ from molecular solvents in that they

consist only of ions. We cannot calculate the ELUMO of the ionic compounds as we

calculate the ELUMO of whole organic molecules. In order to use QSAR modeling, the

ELUMO of the cation and anion has to be calculated separately.

6.2.3.3 Toxicity data (EC50-ahr)• For each IL, five concentration gradients were carried.

The space in the concentrations between the gradients was variable, depending on the

toxicity. Two replicates were used for each concentration and control. An aliquot of IL

was added to culture the medium and reach equilibrium. 2m1 of bacterium culture in a

logarithmic growing period was inoculated into a 40m1 culture medium in a glove box

under anaerobic conditions. This was then incubated in the incubator. The temperature

was 25±2°C. After 48 hours, the optical density of each sample was measured by UV-vis

at 600nm.

In order to calculate the EC50-48h of each IL, a regression equation of the cell

number as a function of the IL concentration must be obtained. The cell number can be

found by directly counting the cells under a fluorescent microscope. To simplify the task

of cell counting, a regression equation of the cell number as a function of the optical

density is determined. In this way the number of cells can be calculated indirectly.

A BC1 medium without ILs was used to determine the relationship between the

optical density and cell number. After inoculation, about 3m1 of the sample were

withdrawn at different intervals until 48 hours. After the optical density for each sample

was determined, 0.5m1 of aldehyde was added to kill the bacteria and prevent further
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growth. Then bacteria was filtered onto a 0.25um film and dyed with a fluorescent

chemical. The cell number was counted and calculated by direct counting method under

fluorescent microscopy.

The regression curve and equation were both obtained by excel and shown in

Figure6.2. The R2 was 0.969, indicating the fitting is good. With this regression equation,

we could then easily obtain the cell number by simply measuring the optical density and

calculating.

Regression of Cell Number and OD
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Figure 6.2. Regression analysis of cell number and optical density.

6.2.3.4 Statistic Analysis. Multiple linear regression models were gained using

MINITAB 15. Log(1/EC50-48hr) values reported as mill moles were used as the dependent

variable, while log(K0 ) and ELUMO acted as independent variables.

log(  1  ) = a log Kow + bE Lumo + c
EC50



[BMIM] + [MOEMIM] + 	[BE4] - [PF6f 	 [CF3COO]- 	 [OMSJ - Ff2Nr

-4.53 	 -4.29 	 10.3 	 7.9 	 6.87 	 6.32 	 0.76
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6.3 Results and Discussion

6.3.1 Kow values

Kow values were shown in Table 1 above. Different ionic liquids possess different Kow

values. Basically they can be classified into two groups: hydrophobic ILs and hydrophilic

ILs. Of all the ILs studied here, ILs with [PF6I or [Tf2Nr anion are hydrophobic, while

ILs with [BEd -, [CF3COOT and [OMST are hydrophilic. It is obvious that the

hydrophobic ILs have a larger 1(0w than hydrophilic ILs. For instance, the Kow of

BMIMTfN is as large as 0.667, while the Kow of [MOEMIM][OMS] is only 0.0406.

Table 6.1. Partition Coefficient of Ionic Liquids

[MOEMIM][BEd EMOEMIAMPF6][MOEMIKCF3C00][MOEMIKOMS]  [MOEMIM][Tf2N]

	

0.066 	 0.218 	 0.067 	 0.052 	 0.284

BMIMBF4 	BMIMCF3C00	 BMIMOMS 	 BMIMPF6 	 BMIMTf2N

	

0.08 	 0.095 	 0.0406 	 0.4 	 0.667

6.3.2. ELUMO

ELUMO values of cation and anion of ILs were calculated by Spartan'02 (Wavefunction

Inc.), and the results are exhibited in Table 6.2.

Table 6.2. Energy of Lowest Unoccupied Molecular Orbital of Ionic Liquids/ev

It is noted that ELUMO was negative for cation while positive for anion.
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The regression curve for each ILs was exhibited in Figure 6.3.
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Figure 6.3 Regression curve of growth percentage against IL concentration.
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Figure 6.3 Regression curve of growth percentage against IL concentration (continued).
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EC50-48h of each ILs is given in Table 6.3.

Table 6.3 EC50-48h of Ionic Liquids (mM)

[MOEMIM][BF4] [MOEMIM][PF6] [MOEMIM][CF3C00][MOEMIM][OMS][MOEMIM][Tf2N]

1.36 0.26 3.52 	 27.54 0.312

BMIMBF4 BMIMPF6 BMIMCF3C00 	 BMIMOMS BMIMTf2N

0.328
	

0.397
	

4 	 20.45 	 0.36

6.3.4 QSAR Modeling of [MOEMIM]-Based ILs

The correlation between toxicity and hydrophobicity was examined and described in

equation (6.1):

Log(1/ EC50-480 = 1.88 + 2.15log(K0w)
	

(6.1)

n = 5, R2 = 76.5%, s = 0.467, F = 9.75, P = 0.05

• n: the number of samples.

• R2 : Percentage of response variable variation that is explained by its relationship
with one or more predictor variables. In general, the higher the R2 , the better the
model fits your data. R2 is always between 0 and 100%.

• s: The square root of the mean square of error that indicates the uncertainty in
QSAR. It is the standard deviation of the data about the regression line.

• F: Mean square ratio

• P-value: Determines the appropriateness of rejecting the null hypothesis in a
hypothesis test. P-values range from 0 to 1. The smaller the p-value, the smaller
the probability that rejecting the null hypothesis is a mistake. Before conducting
any analyses, determine your alpha (a) level. A commonly used value is 0.05. If
the p-value of a test statistic is less than your alpha, you reject the null hypothesis.

In regression equation (6.1), R2 is 76.5%, which indicates the predictor (log(Kow))

explains 76.5% of the variance in toxicity. The P-value is 0.05, indicating the model is

significant at a a-level of 0.05. In another words, the K ow value plays an important role in

toxicity of ILs.
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The linear relationship between toxicity and electrophilicity was also examined

and described in equation (6.2).

Log(1/ EC50-48h) = -0.149 — 0.009 ELUMO-ANION 	(6.2)

n = 5, R2 = 0.2%, s = 0.961, F = 0.00, P = 0.949

Since all the ILs included in this model have the same cation, the ELUMO of cation

was skipped, and only ELUMO of anion was included in modeling. In this model, R 2 is only

0.2%, and P is 0.949, indicating poor fitting of the data. This shows there is no linear

relationship between toxicity and electrophilicity. As compared with ELUMO, the Kow

contributes much more in the determination of the toxicity of ILs.

In addition, the linear relationship between toxicity and hydrophobicity as well as

electrophilicity was examined and described in equation (6.3).

Log(1/ EC50-48h) = 1.83 + 2.81 log(K ow) + 0.107 ELUMO-ANION 	(6.3)

n = 5, R2 = 89.8%, S = 0.376, P = 0.102

As we can see, after taking both K. and ELUMO into consideration in modeling,

the R2 increased to 89.8% compared with 76.5% in equation 1, indicating a better fitting

of data.

6.3.5 QSAR Modeling of 113MIA-Based ILs

The linear relationship between toxicity and hydrophobicity was examined. It is

described in equation (6.4). R 2 is only 52.6%, indicating the fitting model is not so fitting.

Log(1/ EC50-48h) = 0.792 + 1.13 log(Kow)
	

(6.4)

n = 5, R2 = 52.6%, S = 0.641 , F = 3.33, P = 0.165
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Also the linear relationship between toxicity and electrophilicity was determined.

It is shown here in equation (6.5).

Log(1/ EC50-480 — - 0.094 - 0.003 ELUMO-ANION 	(6.5)

n = 5, R2 = 0.0%, S = 0.931, F = 0.00, P = 0.981

R2 is 0.0%, showing the modeling doesn't fit the data at all, which means the

linear relationship doesn't exist at all.

Finally, the linear relationship among the toxicity, hydrophobicity and

electrophilicity was examined as shown in equation (6.6).

Log(1/ EC50-480 = 0.356 + 1.61 log(K0 ) + 0.129 ELUMO-ANION 	(6.6)

n = 5, R2 = 74.4 % , S = 0.577, F = 2.90, P = 0.256

As compared with R2 in equation (6.4), R2 increased from 52.6% to 74.4%, This

indicats that the model fit better after the two predictors were included.

6.3.6 QSAR Modeling of both [MOEMIM]-Based ILs and [BMIM]-Based ILs

In this part, MOEMIM based ILs and BMIM based ILs were put together to do the

modeling.

Initially, the linear relationship between toxicity and hydrophobicity was

examined.

Log(1/ EC50-48h = 1.08 + 1.40 log(Kow)
	

(6.7)

n= 10, s = 0.533 R2 = 57.9% , F = 11, P = 0.011

Then, the correlation between toxicity and electrophilicity of anions was

examined.

Log(1/ EC50_48h) = 0.019 - 0.0281 ELUMO-ANIION 	 (6.8)
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n= 10, s = 0.816 R2 = 1.4% F = 0.12, P = 0.741

Finally, both hydrophobicity and electrophilicity were considered to yield a linear

regression equation (This included both ELUMO-ANION and ELUMO-CATION).

log(1/ EC50_48h)=16.8+1.90 log(K ow)+0.104 ELUMO-ANION+3 .69 ELUMO-CATION (6.9)

n = 10, s = 0.498 R2= 72.4%, F = 5.24, P = 0.041

Based on equation 6.7, 6.8 and 6.9, it can be concluded: (1) Kow alone shows

somewhat the linear relationship with toxicity. The R2 and P-value are 57.9% and 0.011

respectively; (2) ELumo alone does not have a linear relationship with toxicity. Its R 2

value is only 1.4%; (3) The model fitting improves when both Kow and Elumo are

included in the model, in which the R 2 increases to 72.4% and P-value is 0.041.

Piot of observed toxicity against toxicity predicted

Figure 6.4 Plot of observed toxicity against toxicity predicted from equation 6.9.

The regression of both observed toxicity and predicted toxicity were calculated by

equation 6.9. They are described in equation 6.10. The plot was shown in Figure 6.4

above.

log(1/EC5o_ob s .) = - 0.003 + 0.999log(1/EC 50-	 )pred • , (6.10)



127

n = 10, s = 0.432 R2 = 72.4%, F = 20.98, P = 0.002

R2 is 72.4% and P is 0.002, indicating a good fitting between the observed and

predicted toxicity.

6.4 Conclusion

A series of QSAR models are formed to predict toxicity (EC50-48h), hydrophobicity (Kow),

and electrophilicity (ELumo). The results show that: 1) The K0  values of ILs play an

essential role in toxicity. These always show a linear correlation to EC50-48h, 2) The

ELumo alone doesn't have a linear relationship with toxicity since the R2 is very low;

3) Better modeling can be obtained when the both K 0  and ELUMO values are considered.

Since we only have a very limited resource of different kinds of ILs, we feel that

these samples are not enough for an accurate fitting. If a greater number of varying ILs

could be added to this kind of modeling, we feel a broader (and better) result would be

obtained.



CHAPTER 7

BIODEGRADATION OF ETPYBF4 IN PRESENCE OF URANIUM

7.1 Introduction

Ionic liquids are considered 'green' solvents because they possess many environmentally-

friendly qualities. Most importantly they are said to be benign, non-volatile and

recyclable. Therefore, ILs are potentially good alternatives for conventional organic

solvents that are volatile and hazardous. The application of ILs in industry is promising.

However, little is known about their toxicity, biodegradability, or their persistence and

fate in the environment. Only a few studies on their biodegradation have been reported.

Kumar et al. (2006) studied the biodegradation of BMIMBF4 by soil microorganisms,

waste water microorganisms and E.coli. They verified that BMIMBF 4 is biodegradable

and identified the biodegradation products. Gathergood et al. (2004) designed new ILs

containing ester or amide groups in the alkyl side chain, and studied their

biodegradability. They demonstrated that the introduction of a group susceptible to

enzymatic hydrolysis greatly improves the biodegradation as compared with the

commonly used dialkylimidazolium ILs.

Zhang et al. (2006) in our lab studied the biodegradation of ethyl pyridium

tetrafluoroborate (EtPyBF4). She cultured a new bacterium from garden soil that displays

an excellent ability to degrade this ionic liquid. EtPyBF4 can be decomposed completely

in 24 hours. The new cultured bacterium consists of gram positive rods, and has been

identified as urealyticum by Accugen Laboratories, Inc. In this study, we are interested in

how the biodegradation of EtPyBF4 will be influenced in presence of uranium in solution.
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7.2 Materials and Methods

7.2.1 Bacterium

The bacterium used in this study was cultured and isolated from garden soil. It is a rod-

shaped, gram positive, aerobic bacterium, identified as corynebacterium urealyticum.

7.2.2 Culture Medium

A mineral salt medium (MSM) was utilized for the culture. It contained: K2HPO 4 , 1 g/L;

KC1, 0.25g/L; MgSO4.7H20, 0.25g/L; trace element solution, 1 ml (Houghton et

al.,1972). The trace element solution contained (per liter): FeSO4 . 7H20, 40mg;

MnSO4 .4H20, 40mg; ZnSO4 . 7H20, 20mg; CuSO4 . 5H20, 5mg; CoC12 . 7H20, 4mg;

Na2Mo04 . 2H20, 5mg; CaC12 . 6H20, 0.5mg; NaC1, lg. Several drops of concentrated HC1

were added to the solution to prevent precipitation. The final pH was adjusted to 6.5 with

HC1 or NaOH. 1L of MSM was dispensed to 25 125m1 flasks with cotton plugs, and then

autoclaved at 250F ° for 30 minutes.

7.2.3 Ionic Liquid

EtPyBF4 was synthesized in our lab according to the method afore described. It is a

colorless liquid at room temperature and a portion of it crystallizes. In this study, it is

used as the sole carbon and nitrogen source for growing bacteria.

7.2.4 Uranium

1,000ug/1 uranyl nitrate standard solution was used as stock solution. The concentration

studied here is 3.8ppm (0.016mM).
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7.2.5 Methods

7.2.5.1 Sample preparation. Controls and samples are listed in the Table 7.1. Each

control and sample was carried out in triplicate.

Table 7.1 Composition of Control and Sample

Control 1(C1) 	 Control 2(C2) 	 Control 3(C3) 	 Control 4(C4)
	

Sample(S) 
MSM 	 + U+MSM 	 +

U + MSM 	 U + MSM + U + MSM + EtPyBF4 	+ EtPyBF4	 +
EtPyBF4 	 Bacteria 	 Bacteria 	 Bacteria

A certain amount Uranium and an aliquot of 20u1 of EtPyBF4 were added to an

elementary flask containing 40m1 MSM. The final concentration of EtPyBF4 was 3.2mM

and the concentration of U was 0.016mM. After equilibration, a 2m1 culture at logarithm

phase was transferred to the medium, and inoculated at 26.5 °C. 3m1 of sample was

withdrawn at intervals, and the optical density, UV-Vis absorbance, pH, HPLC and

uranium concentrations in solution were measured.

7.2.5.2 Parameters to be determined.

• Optical density (OD) --- It is proportional to the amount of cells, measured at
600nm by UV-Vis spectrometer.

• pH --- pH change indicates the metabolism of bacteria.

• UV-Vis Spectrometry --- Degradation can be monitored by UV-Vis analysis.
(The Pyridium ring has a characteristic absorbance at 259nm. After
biodegradation, the ring will be broken down, due to the absorption's
completion.).

• Electronic Spray Ionization Mass Spectrometry (ESI-MS) --- It can be used to
identify the biodegradation products.

• High performance liquid chromatography (HPLC) --- Biodegradation products
can be separated and monitored by HPLC. A Bio-rad organic acid analysis
column was used here (300mmx7.8mm), with 0.003M sulfuric acid, there was
flow rate of 0.7m1/min in mobile phase. Biodegradation products were monitored
by UV detector at 210nm.
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• Kinetic Phosphorescence Analysis (KPA) 	 KPA was used to determine the
U(VI) concentration in solution. KPA is a proven technique for rapid, precise,
and accurate determination of uranium in aqueous solutions. 0.1ng/1
determination limit can be reached by KPA.

7.3 Results and Discussion

7.3.1 Optical Density

Figure 7.1 displays the growth of bacteria along with the duration. The OD of C4 reached

0.25 after 70 hours. Bacteria in S also grew well, and OD reached 0.22, indicating that, at

this concentration, uranium did not limit the bacterium's activity very much.

Optical Density
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100

Time/hour

Figure 7.1 Optical density of bacteria growth.

It is noted that bacteria in C3 (without IL) also had a little growth and OD reached

0.02. This was because the 2m1 culture transferred from previous culture contained a little

bit of the carbon source; the carbon source was used by the bacteria for growth. However,

because of the limited amount of the source carbon, a high OD was not reached.
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7.3.2 UV-vis Absorption
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UV-vis Absorption

Wavelength/nm

Figure 7.2 UV-vis spectroscopy of [EtPy] [BF 4] at different times.

Figure 7.2 displays the UV absorption between 190-350nm during

biodegradation. There are two characteristic absorptions, one at 210nm and the other at

259nm, resulting from the pyridium ring. The absorption was strong at the beginning, and

then started decreasing. After 90 hours, the two absorptions disappeared, indicating the

complete biodegradation of EtPyBF4. Figure 7.3 shows the UV absorption at 259nm

along with the time. It is clear that, without bacteria present, degradation did not take

place. This was proved by the absence of UV absorbance changes in C2. The UV

absorbance of S and C4 decreased in time, dropping to 0.05 after 98 hours. In addition,

the UV absorption in S was almost the same as that in C4, indicating that bacteria activity

in the presence of uranium was not affected much.
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UV Absorbance
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Figure 7.3 UV-vis absorbance of EtPyBF4 at 259nm.

A Biodegradation percentage was calculated based on UV absorbance, and shown

along with the OD in Figure 7.4. It is obvious that the OD increased with the

disappearance of EtPyBF4. At around 98 hours, the biodegradation reached 98%.
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Figure 7.4 Degradation of EtPyBF4 and bacteria growth.
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7.3.3 pH

Figure 7.5 shows the pH change during bacteria growth. A significant pH drop in both S

and C4 was observed, from 6.5 to 4.6 after 100 hours, which indicated acids were

released during biodegradation. Therefore the majority of the biodegradation products

should be acids. No pH drop was found in C 1 and/or C3 because no bacteria grew. A

small pH change took place in C2, due to a small amount of bacteria growth, as described

in 3.1.
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Figure 7.5 pH change during bacteria growth.

7.3.4 HPLC

After filtering by 0.45um filter paper, an aliquot of sample was injected to HPLC to

determine the biodegradation products. The products that eluted out of the column at

different retention times were plotted along with the inoculation times in Figure 7.6. The
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pH change was also plotted. The Y1 represents the area account of peak. Y2 represents

the pH.

pH and HPLC

Figure 7.6 Peak area of biodegradation products and pH change as function of time.

At the beginning, there is only one peak showing at 5 min in HPLC, which is the

peak of EtPyBF4 and some inorganic salts. These did not interact with the column and

eluted out quickly .

After 20 hours, a peak at 34 min appeared, and the area increased gradually,

reaching its maximum at around 50 hours. Soon thereafter, however, the 34-min peak

started to drop, and in about 75 hours disappeared completely. Throughout, new peaks

appeared and increased gradually ( 20.5min, 24min, 48min and 19min respectively).

We hypothesize that the 34-min peak was a major intermediate resulting from

first-step biodegradation. The bacteria first used [EtPy] + as their carbon and nitrogen

sources to produce this intermediate. After all the [EtPy] + was consumed, the bacteria

then started to utilize the intermediate as their carbon and nitrogen sources, further
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degrading it into the other smaller molecules. The final products are supposed acids since

the pH decreased substantially.

7.3.5 Uranium in Solution

The U concentration added to the medium was 0.016mM (3.8ppm), while the

concentration of EtPyBF 4 was 3.2mM. The ratio of U to EtPyBF4 was 1:200. However,

after reaching equilibrium but before adding bacteria, the uranium concentration in S was

just about 7.5ppb, and no concentration for Cl, C2 and C3 was detectable.

As we know, the mineral salt medium contained high levels of concentrated

phosphate with a pH of 6.5. Under these circumstances, most of the uranyl nitrate formed

uranyl phosphate and hydroxide. These precipitated out or suspended in solution, due to

the very low solubility of the uranium salts.

Uranium speciation in this condition was determined by PHREEQC. The result

revealed part of U precipitated out as (UO2)2(PO4)3.4H20 and Mg(UO2)2(PO4)2. In the

solution, the major uranium species were UO2PO4 - and UO2HPO4.
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Figure 7.7 Uranium concentration in solution.
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Figure 7.7 displays the change of U concentration in time. The error bar is also

shown. Throughout the duration of the experiment, there was no detectable uranium in

CI and C2, indicating the concentration was below 0.1ppb (the detect limitation for

KPA).

In C3, there was no uranium detected by KPA at 0 hour. However, after some

time, part of the uranium came back to the solution, and the concentration stayed almost

constant all the time. This was because some bacteria still grew here, drawing on the

trace amount of carbon sources from the transferred culture. Due to bacteria activity, a

small amount of acid may be produced during metabolism, leading to the increased

solubility of the uranium.

However, in the S, from 0 to 50 hours, the U concentration first increased (from

7.5ppb to 600ppb), and then dropped quickly (to 200ppb) in the next 10 hours. After that,

it started to gradually increase again, reaching around 700ppb after 180 hours.
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Figure 7.8 Biodegradation products determined by HPLC and the U concentration in

solution.
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HPLC and U concentrations were plotted together in Figure 7.8. It is noteworthy

that during the first 70 hours, the increase and decrease of U concentration coincided with

the appearance and disappearance of the 34-min peak in HPLC. Before 50 hours, both

increased, while after 50 hours, both decreased and finally disappeared. We hypothesize

that the increase of U in solution resulted from the 34-min intermediate. The mechanism

could be explained by the formation of a complex. As we know, many organic

compounds can form a complex with uranium, leading to a solubility change in an

aqueous phase.

At the beginning, most of the U existed in precipitate in the form of phosphate

and hydroxide. After 34-min, the intermediate was generated; it could form a strong

complex with uranium, and attract the U from the phosphate and hydroxide salts, causing

the re-dissolution of U into the solution.

In order to determine a possible complex formed between U and the intermediate,

LC-ESI/MS was used to identify the intermediate that eluted out at 34 min from HPLC.

The mass spectrum was shown in Figure 7.9.

Figure 7.9 LC-MS analysis of intermediate.
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The intermediate was identified to be 4-(carboxyamino)butyl-3 enoic acid, whose

molecular weight was 145. It has to be mentioned that normally, in the ESI-MS, the m/z

value is ± 1 of the actual molecule weight because of the gaining or losing of one H +. An

MS sample at 50 hours was completed to see if any complex molecule formed.
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Figure 7.10 Mass spectrum of 50-hour degradation products in negative mode.

The base peak at 505(m/e) was found in mass spectrum, corresponding to

complex molecule UO2(Intermeidate)(H20)5, proving the complexation between UO2 ÷

and the 34-min intermediate.

In Figure 7.8, after 50 hours, the 34-min intermediate peak started decreasing due

to the further degradation by bacteria and disappeared completely at 75 hours. As a result,

the uranium complexed with the intermediate was released again. However, this time, the

pH was still as high as 6, therefore, this released uranium then reformed uranium
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phosphate and hydroxide which again precipitated out of the solution, leading to the

decrease of uranium concentration.

Additionally, some new peaks appeared such as 20.5-min, 24-min and 48-min

peaks, following the disappearance of the 34-min peak, and increased gradually. With the

generation of new biodegradation products, the U in solution started increasing again,

reaching 700ppb after 180 hours. Also, the pH dropped to about 4.5. This re-increase of

U in solution could be due to the pH decrease resulting from the production of acidic

molecules from biodegradation. As a result, the solubility of uranium salts increased with

the pH decrease.

7.3.6 Effects of BFI" anion on U Solubility

The ratio of U to BF4 - in solution was 1:200. The concentration of BFI - was much higher

than the concentration of U. U could form a complex with EtPyBF4 , and maintain more

uranium in solution. This has been illustrated by prior studies.

In this study, however, in the presence of a phosphate with a pH under 6.5, a

complex with uranium was more apt to form precipitate due to the very low solubility.

This is why there was no detectable uranium in the solution at the beginning (even if

there was much BFI - present). In addition, the increase of U in solution was contributed

to the organic acids produced by bacteria instead of the complexation with BE4-, thus

indicating the organic acids generated here have a stronger affinity to uranium than to

BF4-.



T 7 72 	 .1 W.. 4.21 7.11

05

07

gi

so

IX A7

25

141

7.3.7 Mass Spectrometry

Mass spectra of the sample at different times are displayed in Figure 7.11. At the

beginning, in positive mode, the two major peaks were 108(m/e) and 80(m/e),

corresponding to [EtPy] + and pryidium cation after losing the ethyl group, respectively.
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Figure 7.11 Mass spectroscopy of degradation products in positive mode.
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Peak 108(m/e) and 80(m/e) disappeared after 180 hours; while a new peak at

354(tn/e) then became the base peak. This peak couldn't arise from the complex between

uranium and biodegradation products since it had also appeared in the control that didn't

contain uranium. It may have resulted from the products associated with the bacteria's

metabolism. Furthermore, it was not one of the biodegradation products because its

molecular weight exceeded too far beyond 108. Another two major peaks were 192(m/e)

and 174(m/e). They were the biodegradation products from [EtPy] +, shown in Figure

7.11.
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Figure 7.12. MS/MS analysis of 192 (m/e) at 30% collision energy.

MS/MS of peak at 192(m/e) at 30ev is displayed in Figure 7.12. Obviously, the

peak at 174(m/e) came from 192(m/e) with an OH group lost.

Figure 7.13 displays the MS range of 50-200(m/z) after 180 hours. Many acids

with small molecular weight were found, confirming that the major final biodegradation

products were acids.
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mode after 180 hours.
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Figure 7.14 Mass spectra of degradation products in negative mode (Continuted).

At the beginning, there were many peaks present due to the salts in the medium.

After 180 hours, BF4 - (which can not be degraded) was prevalent in negative mode.

However, acetic acid was found at peak 61.8(m/e), indicating it was one of the final

biodegradation products formed.

7.3.8 Degradation Pathway

Based on the MS, a possible degradation pathway has been suggested in Figure7.15

(b).The initial degradation started by the opening of the ring between C2 and C3 during

oxidation. This step happened quickly. Then one ethyl group connected to the

heterocyclic nitrogen was lost, forming the intermediate product. This also happened fast.

The next step, however, carried out very slowly. The intermediate first accumulated in

the medium reaching its maximum. It then started to further degrade by losing NH3 and

HCOOH to produce maleic acid. The maleic acid continued to degrade generating other

smaller acidic molecules like acetic acid, propionic acid and butyric acid.
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In another research, Zhang (2006) has studied the biodegradation pathway of

[EtPy][BF4] in the absence of uranium, and proposed very similar pathway

(Figure7.15(a)). Therefore, it can be concluded that the presence of uranium at this

concentration level does not influence the biodegradation pathway.

7.4 Summary

[EtPy][BF4] can be completely decomposed by urealyticum cultured from soil. Compared

with the control containing no uranium, the presence of 0.016mM uranium doesn't exert

much toxicity on bacteria; it still grows very well. At the beginning, there is no detectable

uranium in solution as almost all the uranium exists in precipitate in the form of

phosphate and hydroxide salts. During biodegradation, an intermediate is produced,

which can form a strong complex with uranium, leading to the increase of uranium in

solution. Once the intermediate is degraded, the uranium in the solution decreases and

precipitates out again. With the production of other acids, the pH drops, and the uranium

in solution increases again. The final biodegradation products are all organic acids

including butyric acid, propionic acid and acetic acid. Moreover, the biodegradation path

in presence of uranium is the same that Zhang (2006) has disclosed in the absence of

uranium, indicating that uranium does not affect the pathway of biodegradation.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

8.1 Conclusion

1. Six different ionic liquids were synthesized in this study, including 1-

methoxyethy1-3-methyl imidazolium tetrafluoroborate ([MOEMIM][BF4]), 1-

methoxyethy1-3-methylimidazolium hexafluorophosphate ( [MOEMIM][PF6]),

1-methoxyethy1-3-methyl imidazolium trifluoro acetate ([MOEMIM][CF3COO]),

1-methoxyethy1-3-methyl imidazolium bis-trifluoromethane sulfonamide

(NOEMIMliTf2ND, 1-methoxyethy1-3-methyl imidazolium mthane sulfonate

([MOEMIM][OMS]), and 3-methyl-1-(ethoxycarbonylmethyl) imidazolium

acetate [MECOOMIM][CH3C00]. They were characterized by UV-vis (UV-

visible spectroscopy), FTIR (Fourier transform infrared spectroscopy), MS (mass

spectroscopy) and NMR (nuclear magnetic resonance).

2. The interaction between uranium and ILs was characterized by UV-vis, titration,

MS, EXANES (X-ray near edge spectroscopy), as well as EXAFS (extended X-

ray absorption fine structure analysis). Of all these ILs, [MOEMIM] [BF4]

demonstrates strong complexation with uranium, while others show weak or no

complexation. The proposed uranyl complex associated with [MOEMIM][BF4] is

a monodentate.

3. Complexation of uranium with [MOEMIM][BF4] enhanced the solubility of

U(VI) and U(IV), and maintained most of the uranium in aqueous phase.

147
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4. Complexation of uranium with [MOEMIM][BF 4] decreased the bioavailability of

uranium, which resulted in the lower bioreduction of U(VI) to U(IV) by

clostridium sp.

5. Comparison of the toxicity of various ILs disclosed that both the cation and anion

play an important role. In the case of the same cation, the toxicity increases along

with the increase of F atoms in the anion. That is to say, the more F atoms an

anion contains, the more toxic it is. On the other hand, with the same anion, if a

hydrophilic function group is present on the side chain (e.g. ether, ester, or a

carboxylic group), the toxicity could be rendered less.

6. QSAR modeling was used for the first time to predict the toxicity of ILs. The

linear regression equation was obtained as log(1/ LC50.480= 16.8 + 1.90

log(Kow)+ 0.104 ELUMO-ANION + 3.69 ELUMO-CATION, in which n = 10, s 0.5 R 2=

72.4%, F = 5.24, P = 0.041.

7. The biodegradation of [EtPy][BF 4] experiment results showed that in the

presence of uranium, a complex could be formed with an intermediate, thus

leading to the increase of uranium solubility. The [EtPy][BF4] can still be

completely degraded by the bacteria, however. The degradation pathway is the

same as that in absence of uranium.

8.2 Recommendation

1. The interaction between ILs and other actinides, such as plutonium, could be

explored. In addition, the bioreduction of plutonium in the presence of ILs should

be examined.
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2. Only the interactions between uranium and low concentrated IL/water solutions

were examined in this study. It is also important to investigate the interaction of

uranium with high concentrated IL/water solutions (or even pure ILs), because

ILs may behave differently in higher concentrations.

3. Since [MEOMEIM][BF4] can enhance the solubility of both U(VI) and reduced

U(IV), its potential applications in bioseparation in the presence of U, other

actinides, or heavy metals could be useful.

4. Imidazolium-based ionic liquids are resistant to complete biodegradation. Since

they have been widely used in most ionic liquids, their potential environmental

risk now becomes a major concern. Their toxicity and biodegradability should be

explored through further investigation.
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