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ABSTRACT

DESIGN AND IMPLEMENTATION OF SPLIT TCP IN THE LINUX
KERNEL

by
Rahul Jain

The Transmission Control Protocol (TCP) was designed for reliable communication

between computers over networks of unpredictable quality. It has admirably succeeded

in satisfying the needs of the growing Internet. Yet, there are combinations of network

problems too bad even for TCP. In particular, in the situation of simultaneously very

high delay (e.g. a satellite link) and high loss or even fading (a low quality earthlink

or wireless link) on the same connection TCP can break down.

A known solution is "Split TCP" where one or more proxies (called Helper

Boxes) are introduced to break the end-to-end connection into few (almost) independent

legs. Each of the legs has its own feedback, error control, congestion control etc.

mechanism. Preferably, connections are split into legs having high RTT or high loss,

but not both.

The main contribution of this dissertation is the design and implementation of

"Split TCP" using the Netfilter System in the Linux kernel, and the use of IP over IP

for transport. The dissertation also gives a mathematical guarantee for improved TCP

performance with Split TCP. By analyzing the mathematical result, this dissertation

concludes that localizing network problems one per leg will guarantee the maximum

improvement possible with Split TCP. Through experiments conducted over an actual

network, this deduction is proven to hold true.

The kernel implementation reduces overhead. The implementation used leaves

TCP packets and flags intact, thus allowing use of SSH (etc) over a Split TCP

connection. The implementation lets the helper box negotiate, for "inter-HB legs" ,

performance enhancing options like window scaling and Explicit Congestion Notification



(ECN) support irrespective of the end-host capabilities. This allows a pair of helper

boxes to have improved performance, thus increasing the throughput of the overall

connection. Depending on the configuration of an end host, these options will also

be negotiated between the end host and the HB. The use of IP over IP allows use of

several helper boxes in a connection and makes it easier to achieve transparency for

the original end-hosts.

The results of the experiments have been very promising. For example, with

various drop probabilities, a connection with 1 helper box was, on an average, 9.5

times faster in comparison than one without. For a similar experiment with 3 HB's

a Split TCP connection is on an average 8.29 times faster than a regular TCP,

with the factor of improvement increasing with increasing drop probability. These

results met the theoretical expectations of large improvements in situations with

higher and asymmetric drop probabilities. The implementation was also tested in a

heterogeneous environment where high loss and high delay are inherent in the wireless

leg of the connection. The results have also shown the solution to be scalable.

The primary area of use is for internet connections, irrespective of the user

application and the medium of connection, wired or wireless. This is unlike other

proxies which are either application dependent or do not support certain applications

(e.g.: interactive).
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CHAPTER 1

INTRODUCTION

Over the past few decades, we have witnessed the monumental success of the Internet.

What once started as a laboratory experiment, has become an integral part of almost

all aspects of ones daily life. The network environment has extended from a single

Local Area Network (LAN) to multiple Wide Area Network (WAN)s, with many

routers in between the end hosts. And with the introduction of the IEEE 802.11

standard the Internet took a big leap forward, since the network environment can

now be a mix of wired and wireless connections or wireless connections altogether.

Irrespective of the distance and medium of communication, the Transmission Control

Protocol (TCP) still remains the widely accepted means of communication between

computers. Under favorable conditions of small Round Trip Time (RTT), negligible

probability of loss etc., like those offered in a LAN, the TCP performance is known

to be good. However, if the computers are connected through network environments

having unfavorable conditions like large RTT and high loss probability, the performance

of a TCP connection can be poor. This dissertation proposes use of the Split TCP

mechanism to improve TCP performance under such network conditions wherein,

the end-to-end connection is broken down into multiple, almost independent, TCP

connections.

1.1 Problem Statement

Under favorable conditions of low RTT and negligible probability of packet loss, TCP

has proven good performance. However, large RTT and high probability of packet

loss are known to affect TCP performance. The "Square Root Law" [1, 2] gives a

theoretical argument why. Section 2.2 provides a mathematical proof for the same.

To get a practical perspective of how the RTT and probability of packet loss affect the

1
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TCP performance, one can look at the results of the PingER project [3] of the Internet

End-to-end Performance Monitoring (IEPM) group. For example, in February 2006,

between a host in California and India, the minimum packet loss was 2.242% with an

average RTT of 316.204 ms and a maximum TCP throughput of 246.715 kbps. For

the same set of computers, in February 2007, the values changed to 1.081%, 403.052

ms and 278.707 kbps respectively. Similarly, in February 2006, between a host in

California and a host in New York (New York University), the minimum packet

loss was 0% with an average RTT of 77.752 ms and a maximum TCP throughput of

25,391.915 kbps. For the same set of hosts, in February 2007, the values were 0.007%,

78.042 ms and 18,216.284 kbps respectively.

The example of a host in California and a host in India was picked up to reflect

the current network conditions of an environment that is of primary interest for this

dissertation. Such a network environment will have a high quality, high RTT leg, say

one containing a satellite link between USA and a third world country, followed by

a low quality, low RTT, high drop (and possibly even fading) leg in the third world

country.

Measurements and theory indicate that the larger the RTT and probability of

loss, the lower is the TCP throughput. There is a well known explanation for the

problem. The congestion control mechanism (congestion avoidance plus fast recovery

and retransmit) of TCP is used to prevent packet loss and/or recover from one. The

TCP engine recognizes a packet loss with the receipt of 3 duplicate acknowledgments

or by timing out while waiting for an acknowledgment. In general, the minimum

of the advertised window and the congestion window governs the TCP throughput.

During the congestion avoidance phase, the congestion window grows by 1 Maximum

Segment Size (MSS) per RTT (or 1 MSS per 2 RTT's, if delayed acknowledgments

are used). Because of the large RTT (for example, a satellite link), the congestion

window grows slowly. And because of the high probability of loss (and of fading)
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in the "final 100 or so miles" , a TCP connection will spend a significant amount of

time in recovery (fast or not) and even in time-outs, with the large RTT making the

time-out periods even longer. This results in poor performance that TCP experiences.

Long distance networks connected on a 622 Mbps dedicated transoceanic link have

also experienced the same [4].

1.2 Contributions

In this dissertation "Split TCP" is studied, enhanced and implemented as a solution

for the problem stated in the previous section. This dissertation describes the design

and implementation of "Split TCP" in the network stack of the Linux kernel. The

results from [3] were used to choose the network parameters (RTT and drop probability)

in the investigations of the actual TCP performance.

Split TCP has been extensively researched [5, 6, 7, 8, 9] and shown to improve

the performance of TCP in Mobile Networks. It works by breaking the end-to-end

connection into two or more "legs" as shown in Figure 1.1. In this dissertation, the

term "legs" is used to describe a path that may go through several routers. It could

be the path either between an end host and a helper box or the path between two

helper boxes.

Figure 1.1 A Split TCP connection.

By breaking the connection into legs, Split TCP isolates the network problems

of one leg from another. This results in legs with shorter RTT and fewer network

problems when compared with the end-to-end connection. Hence, the end hosts

experience improved TCP performance. This is proved in Chapter 2. The novelty

of work in this dissertation is the design and implementation of Split TCP in the
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network stack of the Linux kernel. The implementation of Split TCP is done at the

kernel level. When compared with a Link Layer implementation, the approach has an

advantage of a much larger buffer at the intermediate nodes (which are called Helper

Boxes). When compared with the User Level implementation, the approach has the

advantage of being able to work directly with packets. This gives direct access to all

the fields of the packet headers including the TCP flags, which are kept unchanged.

The approach also saves time on no repacketization and no to and fro copying of data

bytes to the hard disk.

A Helper Box (HB) acts as a proxy for the source while communicating with

the destination host, and vice-versa. In this dissertation, the end host from which the

HB received the first SYN packet is denoted as the source host for that TCP flow.

In the approach described, each leg is made self sufficient and almost independent of

the others. For this, the HB maintains, parameters for flow control, RTT estimation,

error control and congestion control, for each leg that it is connected to. A property

of the design is that Split TCP is completely transparent with respect to end hosts.

Hence, no modifications are required in the network stack or in the user applications

of the end hosts. Another contribution of the design is a guarantee that each data

packet will pass through the same sequence of HBs. This is guaranteed by using IP

over IP for sending data packets between the HBs. This is important for the correct

bookkeeping at the HB which ensures the proper flow of data packets between the

end hosts.

The implementation of Split TCP chosen in this dissertation allows use of any

number of HBs for an end-to-end TCP flow. It thus can be used to guarantee that

any leg has at most one network problem to deal with. Measures specialized for the

network problem at hand can then be activated in the two HBs of that leg, without

the need to modify the end hosts. So different pairs of HBs on a leg can have different

special measures active.
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Among such special measures are window scaling [10], SACK [11], and those

already known in satellite communication [12,13]. Slightly more ambitious would be

the use of ECN [14]. The use of ECN would require cooperation between operators

of HBs and operators of key routers. Once such cooperation exists, it can be used

for joint optimization of congestion dependent probabilistic marking in routers and

window size modifications in HBs in reaction to marking in acknowledgments.

Another possibility is to give HBs the option of setting the ECE bit in an

acknowledgment being sent, even if no recently arriving data packet had the CE

bit set. It might be possible to this way achieve more than can be achieved by

manipulating the advertised window.

All TCP/IP features of the HB design were tested successfully with the exception

of the ECN option. For the ECN mechanism to work successfully, the following two

operations need to work: Marking of the appropriate packet at the router (IP layer or

lower) and the processing of such marked packet at the end hosts (TCP layer). Such

processing involves reducing the congestion window (if required) and setting of the

relevant ECN flags in the TCP header of the outgoing packet. While testing the ECN

mechanism, unexpected behavior was observed when the Linux boxes were used as a

router. For a given queue configuration and respective heavy traffic load, the router

almost never marked a packet. It is our conclusion that the implementation of ECN

marking in the Linux kernel (version 2.6.10) is defective. This is discussed further in

Chapter 6.

1.3 Additional Situations of Interest

Although the solution developed in this dissertation is primarily for the environment

discussed in Section 1.1 and 2.3, it can be applied and used in other situations as

well.
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One such environment is the heterogeneous network. With the wireless technology

becoming an acceptable and preferred means of communication, heterogeneous networks

are becoming a part of life. However the wireless link of these networks pose some

problems. Although the available bandwidth of the wireless link has increased from

2Mbps to 56Mbps over the years, the inherent problem of a random Bit-Error Rate

(BER) can prevent TCP from utilizing the whole bandwidth. This is a direct result

of TCP being unable to distinguish between a loss due to congestion and a random

packet loss in the wireless link. Hence the TCP congestion window algorithms reduce

the Congestion Window (cwnd), decreasing the net throughput. The situation gets

worse for links with high BER and frequent disconnects or fading [15].

The solution proposed in this research work can be used to separate the problems

of the wireless link from the problems of the wired leg. The design was tested in a

network having an actual wireless link and the corresponding results are presented in

Chapter 6.

Another environment that is of potential interest is interplanetary communication.

An interplanetary communication link has many interesting network problems to

deal with, the most intuitive of which is the high RTT. For example, the speed-of-

light delay between Earth and Mars ranges from 4 minutes to 20 minutes. Other

problems include maintaining continuous connectivity among the end hosts which

is questionable because of the orbital nature of the planetary bodies. Also, just

like the wireless link, the communication link of these networks suffer from a low

Signal to Noise Ratio (SNR), thus triggering the TCP congestion window algorithm

unnecessarily. Depending on the network architecture, there might be asymmetric

data rates among the links [16].

Split TCP is a good fit as a solution for such networks. By employing several

HB's, as explained earlier, each of the above mentioned network problems can be
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isolated. Since this network environment has a very large RTT, having very large

buffers in the HB will greatly improve the TCP performance.

1.4 Organization of Dissertation

The rest of the dissertation is organized as follows. Chapter 2 starts off by explaining

the theory behind Split TCP, the topic of this dissertation. This is followed by a

mathematical proof that shows why Split TCP will improve the TCP performance

for the network situation described above. Finally, an example network scenario

which is used for discussion and experiments is described in detail.

Chapter 3 presents related work along with the pros and cons of each method.

Chapter 4 describes the network stack of the Linux kernel in great detail. This

study was done to understand how the kernel handles a packet. This knowledge was

then used to design and implement the Split TCP mechanism in the Linux kernel. The

chapter first discusses the important structures of the network stack. The processing

done by the kernel at the link layer, Internet Protocol (IP) layer and TCP layer for an

incoming packet is described next. This is followed by a discussion of the processing

done by the kernel for an outgoing packet. Finally, the Netfilter system, which is at

the core of the Split TCP design, is explained.

Chapter 5 discusses the design of Split TCP developed in this dissertation.

Various design options and questions that needed to be answered are discussed in

this chapter.

This is followed by the implementation level details in Chapter 6. This includes

description of the important structures and functions, the revised TCP state diagram

etc. It also discusses the algorithm used to process the different types of TCP packets.

The various TCP/IP features implemented in the HB are also presented.

In Chapter 7 the result and analysis of the various experiments are presented.

The implementation described in Chapter 5 is tested against wired LAN and heterogeneous
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networks. Experiments showing the overhead of the implementation with respect to

CPU time and memory are also presented. The experiments also show that the design

described is scalable.

Chapter 8 provides the conclusions of this dissertation research. It also lists

some possible enhancements and future avenues of research with respect to Split

TCP.



CHAPTER 2

SPLIT TCP

Split TCP is a well known technique that has been around since the early 1990's. It

is also known as "TCP with Boosters" , "TCP with proxies" etc. Some research has

been done on evaluating the benefits of this technique in Mobile Networks, including

cellular data networks. See [5,6,7,17,8,9]. Also see references in [18]. [19] shows that

a cellular service provider has implemented a form of Split TCP within its network.

However, the details of their design and implementation are unknown.

2.1 Theory Behind Split TCP

A classical TCP connection has always been an end-to-end connection. It consists of

two end hosts, which even though TCP allows bidirectional traffic, for convenience

of presentation are called, Source (S) and Destination (D). For the purpose of this

dissertation, the end host from which the first SYN packet originates is considered to

be the source host. TCP mechanisms of flow control, error control, congestion control

etc and other TCP processing for a classical TCP flow are as always done by the end

hosts. Also, the routers connecting the end hosts do not process the packets beyond

the Internet Protocol (IP) layer.

While using Split TCP, this classical TCP connection is broken down into a

sequence of TCP connections. Specialized routers, called HB in this research, are

introduced within the path of the flow for this. Depending on the network architecture

and the requirements, there may be one or more HB's in the path. Figure 2.1 shows

a Split TCP connection with one HB within the path.

As shown in Figure 2.1, the end-to-end TCP connection is broken down into two

legs; one from S to HB and the other from HB to D. HB intercepts and acknowledges

any incoming data packet from S pretending to be D (Acknowledgment Spoofing).

9
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Figure 2.1 Split TCP connection with one HB.

It then becomes responsible for making sure the data packet is delivered to D.

Theoretically speaking, acknowledgment spoofing can either be done for each data

packet or for every 2 data packets, if delayed acknowledgments are desired. The

current implementation of Split TCP does not support delayed acknowledgments.

The HB maintains a buffer used to cache the data packets. It also maintains, for

each of the legs, various TCP parameters that are used for flow control, error control,

congestion control, and RTT estimation. These parameters along with the buffer help

the HB in forwarding and in retransmission of the data packets to their respective

destination hosts. HB behaves in a similar manner for data packets in the opposite

direction. In other words, the HB acts as a proxy for the source host while talking

with the destination host and as a proxy for the destination host while talking with

the source host.

By splitting the connection, Split TCP is able to isolate the network problems

of the legs. Each leg will now have a lower RTT and fewer or no network problems

to deal with. It is evident that the throughput of the end-to-end TCP connection

will be less when compared to the potential TCP throughput of each of the separate

legs. This isolation and localization of network problems one per leg also results in

the overall increase in performance of the split connection when compared to the

end-to-end TCP connection. A mathematical proof is given in Section 2.2 to support

this theory. For this reason, the HB is often termed as a "Performance Enhancing

Proxy" [18].

Depending on the working environment and the requirements, there might be

a need for more than one HB along the path between the two end hosts as shown
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in Figure 2.2. Most commonly HB's are introduced to handle the mismatch in TCP

capabilities of the end hosts or to make use of a customized protocol within a leg [18].

For example, in Figure 2.2, a new protocol or a modified TCP or a specific TCP option

(like window scaling) could be used between H1 and H2 to increase the performance

of that leg. This allows for the development of protocols and techniques that will

increase TCP performance of legs with either high RTT or high loss. These, when

introduced in the HB, can be selected dynamically depending on the network problems

of the leg. One such example is the congestion control mechanism proposed in [20].

For these options, once again, no modifications are required in the networking code

of the end hosts.

Figure 2.2 Split TCP connection with multiple HBs.

2.2 Does Split TCP Improve Performance?

If all is well for a TCP connection, the performance benefit due to a HB will be

minimal or none. However if the TCP connection has the problem that is being

addressed, HB's will surely help. Consider the scenario in Figure 2.3 to prove the

statement.

Figure 2.3 Split TCP connection with leg parameters.
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In the scenario depicted, there is one HB between the end hosts. The leg between

S and D, "Leg 1" , has low loss with drop probability of p i and a large RTT, RTT1 .

This leg is similar to that of a leg having a satellite or transoceanic link. The leg

between the HB and D, "Leg 2", has high loss with drop probability of p2 and a short

RTT, RTT2 . This leg is similar to the final 100 or so miles of the TCP connection in

a third world country.

Under normal circumstances, the throughput, T hp, of a TCP connection is

given as

Flight Size
Thp = 	

RTT

where "Flight Size" is the number of data packets, expressed in bytes, that the

source has sent but for which no acknowledgment has been received yet. The flight

size can always be determined as

Flight Size = min(Advertised Window, cwnd) 	 (2.2)

Using the "Square Root Law" [2, 1], 2.2 can be re-written as

•

Flight Size = min(Advertised Window, MSS)(p)^-.5

Thus substituting 2.3 for flight size in 2.1, the throughput of a TCP connection

is given as

Thp = min
(Advertised Window MSS

RTT 	 ' RTT * V Ii

(2.1)

(2.3)

(2.4)

For the network environment under consideration i.e. one having a large RTT

and a high drop probability, it is quite evident from 2.4 that cwnd will be the
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bottleneck. Hence the rest of the discussion concentrates around cwnd and the

throughput is re-written as

(2.5)

where cwnd: Congestion Window

RTT: Round Trip Time

MSS: Maximum Segment Size and

p: Probability of packet loss

This is true as long as the source host has plenty of data to send and the

congestion window is the only limit on the packets in flight and the probability, p, is

not too large.

Hence, the maximum possible throughput for Leg 1 would be

(2.6)

(as long as the buffer in HB never fills). Similarly, the maximum possible

throughput for Leg 2 would be

(2.7)

(as long as the buffer in HB never empties).

If the drop probabilities p i and p2 are independent of each other, the total drop

probability of the end-to-end connection is

(2.8)
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As long as at least one of p1 and p2 is small, we have p1 * p2 << p1 + p2. Hence

we can write 2.8 as

(2.9)

Hence, if there were no HB in Figure 2.3, the maximum possible end-to-end

throughput would be

(2.10)

However, in the situation as shown in Figure 2.3, if either one of Thp1 and Thp2

is considerably larger than the other or if the buffer in HB is quite large, the effective

end-to-end throughput would be

(2.11)

so an improvement is mathematically assured. The improvement is more pronounced

in the situation described, with

(2.12)

and

(2.13)
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(for example, a clear satellite link to a third world country followed by a high

loss link within that country). This explanation shows that the "one helper box"

solution requires the HB to be placed in the third world country.

More generally: HBs should be placed in such a way that each leg has either

low RTT or low drop probability (or both).

Hence it can be concluded that using Split TCP for TCP connections having

large RTT and high drop probability will result in greater performance. It should be

noted that the throughput of (2.11) holds true when the HB has a large buffer. There

might be situation where both the legs are fading but at non-overlapping intervals.

In that situation an adequately large buffer is expected to make a large difference.

2.3 Split TCP Design Environment

In this research work, Split TCP has been designed primarily for the following

network environment: There is a "campus A" in the USA and a "campus B" in

an underdeveloped country, say in Africa. There is a leg from "reasonably close to

campus A" to "reasonably close to campus B" that has high RTT and low packet

loss. This leg could be a satellite link or a transoceanic link. From (say) the satellite

earthstation on there is a leg of questionable quality in the underdeveloped country.

The theory of Section 2.2 shows that in the one HB situation, the optimal

position of the HB is the place where the high RTT leg meets the high loss, low

RTT leg in the underdeveloped country. One can think of that as in or close to the

satellite earthstation in the underdeveloped country. However, this leaves a significant

problem: How to guarantee that all the traffic between campus A and campus B

flows through the HB, and that only traffic that is intended to be intercepted is

indeed intercepted. These guarantees are required for maintaining the correct flow

semantics, leading to improved performance, of the TCP connection at the HB.
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The solution proposed in this dissertation is as follows: Place a second HB

(HBA) in campus A and a third HB (HBB ) in campus B. Call the HB at the distant

earthstation HBI (I for Intermediate). Give campus A a network address a.b.c.d/n

and give campus B a network address w.x.y.z/m as shown in Figure 2.4. The IP

address of all interfaces of HB/ must neither be in w.x.y.z/m nor in a.b.c.d/n.

Figure 2.4 Sample real world setup using HB's.

In campus A, route all traffic destined for w.x.y.z/m through HBA. In HBA ,

embed all data packets (TCP and UDP) to w.x.y.z/m in an IP packet (IP over IP)

with destination address that of HBI. When this data packet reaches HBO/, remove

the outer IP header and encapsulate the original data packet in another IP packet

with destination address HBB . At HBB , take out the original data packet and forward

it to the actual destination host within campus B. Thus, except the first and the last

HB, all other HB's along a given path replace the incoming outer IP header with a

new, modified IP header. Traffic in the opposite direction is handled similarly.

This mechanism guarantees that all the traffic between the two campuses will

flow through the same sequence of HB's. This allows the HB to maintain the correct

flow semantics and also prevents it from wrongfully registering a bypassed data packet,

as a lost packet. Also, this mechanism still has the advantage that the original

end hosts do not need any modifications, while at the same time between the HB's

modified versions of TCP (which in this situation are implemented at the IP layer in
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the Linux kernel) can be used. This design will work for any number of HB's and

campuses. At each HB a table mapping the destination address to either the "next

HB address" or the "original destination" is maintained. This mechanism works even

when packets pass through the same router or even HB twice: once unencapsulated

and once encapsulated.

This mechanism will work even if the end hosts use the Authentication Header

[21] of the IPsec suite of protocols [22] for authenticating the end hosts. IPsec is a

commonly used mechanism for providing security services for traffic at the IP layer.

It employs two security protocols: Authentication Header (AH) and Encapsulating

Security Protocol (ESP) both of which could be used either in the "Transport Mode"

or "Tunnel Mode" . The Split TCP design that has been proposed can be used if the

AH security protocol is being used.

The ESP security protocol encrypts the IP payload (TCP header + data), thus

denying Split TCP direct access to the TCP header which is required for maintaining

the state of the split TCP flow. For this reason, the design proposed in this dissertation

will not work with the ESP security protocol.

The only changes necessary are in the forwarding tables of the routers within

campus A and campus B. In case a campus uses static routing, new routes will need

to be introduced in the routers (intermediate and/or gateway) and the end hosts

(if need be). However, if a campus uses a routing scheme like Open Shortest Path

First (OSPF) or Routing Information Protocol (RIP) (likely case), no modifications

are required in any of the routers and the end hosts. The HB, say HBA , can list itself

as a router and advertise, within campus A, a very cheap route for campus B. Same

can be done with HBB , in campus B. A similar scheme is even possible for Border

Gateway Protocol (BGP). With BGP, the HB, say HBA , can list itself as the speaker

node for the autonomous system to which the destination hosts belong.



CHAPTER 3

RELATED WORK

Over the years, researchers have presented work that highlighted the advantages of

using Split TCP in Mobile Networks. In a mobile network, the network connection

between the Fixed Host (FH) and the Mobile Host (MH) can be broken down into

2 connections. A wired connection between the FH and the base station (also know

as Mobile Support Routers (MSR)) and a wireless connection between the MSR

and the MH. TCP performs rather poorly in mobile networks because one of the

assumptions of the TCP design is violated. TCP considers a packet drop to be an

indication of congestion within the network. However this is not always true in case

of a mobile network where, for example, environmental factors may cause packet

drops. Irrespective of the cause, TCP will trigger the congestion avoidance phase

thus reducing its current transmission rate.

Various techniques have been proposed from preventing the sender side TCP

from invoking its congestion control mechanism for every dropped packet. Most of

these techniques work at the physical layer. The IEEE 802.11b standard allows for

the use of Media Access Control (MAC) layer acknowledgments and retransmissions.

Thus a dropped packet is retransmitted by the MAC layer a specific number of times

(called the retry limit) after which TCP sees the loss. Another technique used for

the IEEE 802.11a standard was the use of Forward Error Correction (FEC). FEC

was added to the standard to enable the receiver to identify and correct the errors

made during transmission. For this, the sender would send additional data along with

the primary data packet, thus eliminating the need to retransmit data packet by a

substantial amount.
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Most of the related work concentrate on the same principal of preventing the

sender side TCP from invoking its congestion control for every packet drop. The

problems of the wireless connection are separated from the wired connection by

splitting the connection at the MSR. Most of the methods introduce a new protocol

at the MSR and few changes in the MH. In this chapter the different methods are

summarized along with their advantages and disadvantages.

An aspect of most of the protocols discussed is that they have concentrated

on the network problems due to the wireless link (link between the MSR and MH).

Though these problems do affect the overall performance, the network problems over

the wired leg (leg between the FH and MSR) should not be discarded. This work

presents a Split TCP design irrespective of the networking environment, i.e. wired or

wireless. The design does not require any code modifications in the end hosts, thus

making it completely transparent.

3.1 MTCP

In MTCP [17] the connection between the FH and the MH is split at the MSR by

introducing a new session layer protocol. Two approaches were proposed to implement

this protocol. The first approach makes use of TCP over the wireless link while the

second approach uses Selective Repeat Protocol (SRP) over the wireless link. The

SRP approach is similar to the SACK mechanism. A disadvantage of this method is

that the network code in the MH needs to be modified.

3.2 I-TCP

In the I-TCP [5] approach, the MH sends a request to the MSR to establish a

connection on its behalf with the FH. The I-TCP library is used by the MH to

communicate with the MSR. One of the problems with this approach is that the

applications at the MH need to be relinked with the I-TCP library. In addition to
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this, the networking code (kernel level) needs to be changed in the MSR to make use

of the special system calls defined in the library. The I-TCP implementation also

needs an I-TCP deamon running at the MSR for it to function properly. Lastly, this

approach is not completely transparent with respect to the end hosts.

3.3 Snoop Protocol

The Snoop protocol [7] was the first attempt to maintain the TCP semantics by

having end-to-end acknowledgments. TCP performance was increased by caching

data packets at MSR for retransmission over the wireless link. However, not all

data packets are cached at the MSR, creating occasional situations when the sender

needs to retransmit. The Snoop protocol works well when FH acts as the sender. In

order to experience comparable performance when MH acts as the sender, Selective

Acknowledgement (SACK) is implemented in the MH. Because, the ACKs are end-

to-end the senders window would grow slowly resulting in a low transmission rate. In

order for the Snoop protocol to work, the routing code at the MH was modified by

adding a new module. It also requires modifications in the TCP code of the MH in

case the MH wants to initiate data transfer.

3.4 M-TCP

M-TCP [8] is meant for cellular environment and is focused on solving the problem

of frequent cell exchange in addition to the bit-error rate of the wireless link, by

proposing a 3-layer architecture for the mobile network. A new layer of supervisor

hosts (SH) was introduced for this. A SH manages several base stations which in turn

manage several mobile hosts. The connection is split at the supervisor host.

In M-TCP, a cell switch is defined as the migration of the mobile host from one

supervisor domain to another. This helps curb the frequent cell exchange problem

that may arise in mobile networks. M-TCP maintains the end-to-end semantics by
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passing the ACKs between the MH and the FH. However, to ensure that the sender

does not go into the error control mechanism of TCP and reduce the congestion

window during a disconnection period (or while switching cells), the SH does not

forward the ACK for the last byte received. This forces TCP into persist mode in

contrast to error control, thus not reducing the congestion window.

The main disadvantage of this protocol is the restructuring of the mobile network

to accommodate the layer of Supervisor Host (SH)s. It also requires code modifications

in the mobile hosts.

3.5 Mobile-TCP

Mobile-TCP [9] proposes to introduce a new protocol over the wireless link of the

connection. Mobile-TCP advocates the use of a new compressed TCP header for

data packets transmitted over the wireless link. The MSR relieves the MH from its

buffer and timer management. This is done so as to reduce the processing load at

the MH. The MSR also employs a different scheme for transport layer error recovery

mechanism over the wireless link. On detection of a lost packet over the wireless link,

the MSR retransmits all data packets sent from the lost packet on. However the error

recovery mechanism of the MH remains unchanged.

This protocol also has the disadvantage of making modifications in the networking

code of the MH. The MSR also incurs more software overhead by creating a timer for

each outstanding data packet.

3.6 TCP Splice

TCP Splice [23], though similar to the approach being proposed in this dissertation,

is not quite the same. TCP Splice concentrates on increasing the performance of web

proxies by relaying the data packets at the kernel level as opposed to through the

user space. The connection setup, including user authentication, between the client
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and the server is performed by the web proxy. The feedback, congestion control and

error control mechanisms are performed by the end hosts. Hence a setup with TCP

Splice may still suffer poor performance if the network conditions are as discussed in

this dissertation.

3.7 Postcards from the Edge

Postcards from the Edge [24] is a "Cache and Forward" architecture designed to be

used in a mobile environment. The central idea of the project is to exploit the memory

at each node in the network. The project introduces the concept of a Post Office (P0)

node. Each MH is associated with a PO which caches all the files destined for that

MH. The PO might also cache and forward files destined for other MH's. The authors

justify the need for extra storage and higher processing power because of the declining

prices of the two. In order to use PO nodes, the project proposes to introduce a scheme

similar to Domain Name System (DNS) that would provide a map between the MH

and their respective POs.

The authors envision the project to be implemented at the transport layer.

The implementation will also require addition of new protocols or modifications of

existing protocols for link layer communication, link management, routing etc., that

will enable the use of POs.

The approach being proposed in this dissertation uses Split TCP to overcome

the network performance by providing each leg with its own feedback, congestion and

error control mechanisms. Also, the connection setup including user authentication

is done end-to-end. This also ensures the availability of the end hosts to each other.

Routing the data packets becomes an important issue when considering a Split

connection with multiple HB's. For Split TCP to function correctly, it is important

that all data packets are routed through the same set of HB's in each direction. One

solution is to introduce host specific entries in the forwarding table of the routers.
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Another solution, one which was explored and used, is to make use of IP over IP

for HB-HB communication. This will ensure that all data packets travel through

the same set of HB's. It will also give an opportunity to use a customized protocol

between the HB's.



CHAPTER 4

LINUX KERNEL NETWORK INTERNALS

For the correct and complete design and implementation of Split TCP, it is essential

to know and understand how a TCP/IP packet (both incoming and outgoing) is

processed by the kernel. Because Split TCP provides TCP functionalities at the IP

layer, this knowledge is very important and allows for the ease in duplicating, with

required modifications, the relevant TCP mechanisms. It also helps find out which

functions within the kernel can be called directly from the Split TCP module. It is

also the goal of this dissertation to provide a complete guide for implementing and

enhancing the Split TCP mechanism, for which the contents of this chapter are very

useful. The chapter also acts as a good resource for someone wanting to learn about

the network stack of the Linux kernel.

Since, in this dissertation, Split TCP has been implemented in the Linux kernel,

a study of the network stack of the Linux kernel is provided in this chapter. The

network stack of the Linux kernel constitutes nearly 20% of the total kernel code [25].

However, it still remains the least documented part of the kernel.

In this chapter the journey of a packet through the Linux kernel network stack is

explained. It first explains the important data structures with respect to the network

stack. This is followed by a description of the processing done by the various layers

for an incoming TCP packet. The journey of a TCP packet through the various layers

on its way out is then explained. The Netfilter hooks, used in the design of Split TCP,

are also described in some detail. This information has largely been gained by reading

and documenting the Linux kernel. For the purpose of this chapter, the findings were

verified against [26]. Additional references are given in specific sub-sections.
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Unless otherwise specified, the kernel source tree is assumed to be located at

/usr/src/linux-n where n is 2.6.10. For the sake of discussion, it is also assumed that

the kernel is processing a TCP packet.

Over the years, the Linux kernel has gone through many revisions. It started

with version 1.0 and has advanced to the current stable version of 2.6.21.3. Through

each revision of the kernel, known bugs are removed, new capabilities are added and

the kernel code in general is fine tuned. The project was started on version 2.4.18

and then migrated to the 2.6 family. Quite a few problems were faced during this

migration primarily because of changes in structure definition, variable name, function

declaration, kernel API, modification of old code, addition of new code, etc. to name

a few.

In this chapter, the terms data link layer, layer 2 and L2 are used interchangeably.

Similarly the terms network layer, layer 3 and L3, and the terms transport layer, layer

4 and L4 are used interchangeably.

4.1 Key Data Structures

This section describes the most critical and the most referenced data structure in the

network stack, struct sk_buff. sk_buff is short for "socket buffer" , also referred

to as skb within the kernel. This structure is used to store various packet details.

The kernel creates an instance of struct sk_buff per packet received. The packet

itself is stored in a separate buffer called the packet buffer. The packet buffer is

used by all the layers of the network stack to store and retrieve protocol headers and

payload (data) information. struct sk_buff is declared in include/linux/skbuff.h

and contains variables that represent a tremendous amount of information regarding

the packet buffer and the network protocols that will process the data. Since the

kernel is customizable, the structure also contains variables that are used only when
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a particular feature is compiled in. Figure 4.1 shows the relation between a sk_buff

and its respective packet buffer.

Figure 4.1 Relation between sk_buff and packet buffer.

Starting at the TCP layer, the byte stream from the application layer is broken

into packets. The TCP layer creates a new sk_buff and reserves memory for it by

calling the alloc_skb() function. As this buffer passes down the layers, space needs

to be reserved for adding the various protocol headers. This is achieved by calling the

skb_reserve 0 function at the start of each layer. The actual header is then added

to the buffer space by making a call to the skb_push() function. For an incoming

packet, starting at Layer 2, each layer needs to strip off its header before the packet is

sent to the next higher layer. This is achieved by calling the skb_pull 0 function at

the start of each layer. It is worth mentioning here, that in order to save CPU cycles,

the skb_reserve, skb_push and skb_pull functions manipulate pointers declared

within sk_buff as opposed to manipulating memory slabs. These functions, along

with a few others, will be discussed in more detail later in this section.
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The various variables of struct sk_buff can be classified into the following

three categories:

• Layout Fields

• General Fields

• Protocol Specific Fields

The term sk_buff and packet are used interchangeably from now on.

•

4.1.1 Layout Fields

Some of the fields of the structure are used for easy access and arrangement of the

packets within the kernel. The kernel arranges the sk_buf f 's as a doubly linked

list. At a given time there might be more than one (for example, for receiving, for

transmitting, per CPU, etc) such linked list within the kernel. Each of these lists is

identified by the head node of the list which is of type struct sk_buff_head. This

structure is declared in include/linux/skbuff.h and looks as follows:

struct sk_buff _head {

/* These two members must be first. */

struct sk_buff *next;

struct sk_buff *prev;

__u32 	 glen;

spinlock_t 	 lock;

};

The first 2 fields next and prey, have the conventional meaning with respect

to a linked list and are used to point to the next and previous node within the list

of packets. q_len represents the current number of packets in the list. The variable

lock is used to prevent simultaneous access to the list.
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The first 2 fields of struct sk_buff are the same as that of struct sk_buff_head,

i.e. next and prey. This allows for the easy casting of sk_buff_head into sk_buff

without loss of information. In order to identify the list to which a packet belongs

to, struct sk_buff contains a variable list of type sk_buff head. Each sk_buff

within a given list initializes this variable to point to the head node of the list. See

Figure 4.2 to understand the organization of sk_buff's as a doubly linked list within

the kernel.

Figure 4.2 sk_buff's as a doubly linked list.

The following 4 fields represent the different lengths that are associated with a

sk_buff.

unsigned int len

It represents the length of the packet as perceived by a layer. This includes
the main payload, data in the fragments and all the protocol headers that have
been included up to that layer. For example, at the IP layer,

len = IP header + TCP header + TCP payload + Additional data fragments

where either header might include options. As the packet moves across the
layers, the variable is updated to represent the current relevant length.

The additional data fragments refers to the scattered memory locations that
are used to store the data (payload) in case the original packet buffer had
insufficient space. The kernel sometimes uses this option to add additional data
in an existing packet as opposed to the method of getting a fresh chunk of
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continuous memory and then moving all the data to the new location. The
additional data fragments do not correspond to IP fragments.

unsigned int data_len

It represents the number of data bytes that are stored in the additional data
fragments.

unsigned int mac_len

It represents the length of the MAC header.

unsigned int truesize

It represents the total size of the buffer that was allocated when alloc_skb was
called.

The following 4 pointers are used to mark the various boundaries of the packet.

unsigned char *head,
*data,
*tail,
*end;

The head and end pointers point to the start and end location of the buffer
allocated for the packet. The tail pointer marks the location of the last byte
of the packet, whereas the data pointer marks the location of the first byte of
the packet with respect to a given layer.

Once the buffer has been allocated, the head and end pointers are not updated
as the packet moves across the layers. However, the data pointer is updated
as the headers are either stripped off or added to the packet. See Figure 4.3 to
understand the locations marked by these pointers.

As shown in Figure 4.3, the space between the head and data problem is known

as the "headroom" and the space between the tail and end pointers is called the

"tailroom". The various protocol headers are added in the headroom. Each layer

can extend the headroom, by calling the function skb_realloc_headroom in case it is

smaller than its header. After validating the sk_buff against a couple of error checks,

the skb_realloc_headroom function calls the pskb_expand_head function to extend

the headroom if there is insufficient space in the packet buffer. The pskb_expand_head

function, creates a new sk_buff with the required headroom and then copies the bits

of the old sk_buff to the new one.
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Figure 4.3 Pointers marking the boundaries of a packet.

4.1.2 General Fields

Some of the other important fields declared in sk_buff are as follows:

atomic_t users

This fields stores the number of references that have been made to an sk_buff.
The purpose of this field is to prevent freeing of the sk_buff structure while
someone is still using it. The memory allocated for the packet is freed when the
value of this variable is 0.

This variable only covers reference count for the sk_buff data structure. There
is a similar variable, dataref, that accounts for the number of processes referring
a packet buffer.

struct sock *sk

This field represents the socket the packet belongs to. This field is initialized at
the start of the TCP layer processing, as will be explained later in this chapter.
The field is NULL when a packet is merely being forwarded.

struct timeval *stamp

This field stores the time when the packet was received by the kernel.

struct net_device *dev

This field has a two fold use. For packets that are received by the kernel, this
field stores the information of the interface on which the packet was received.
For packets that are generated locally or the ones that need to be forwarded,
the field points to the interface through which the packet will be sent out.
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struct net_device *input_dev

This field points to the interface on which the packet was received. Hence, it is
NULL for packets that are generated locally.

struct dst_entry *dst

The details of this field are filled in by the routing algorithm of the kernel.
It contains protocol independent information that is needed by the routing
algorithm. The fields within dst_entry are used by the network layer to decide
the course of action for the packet i.e. for an incoming packet, should it be
routed or should it be sent to the transport layer. Similarly, it is used to store
the routing details like MAC address of an interface, which function needs to
be called next etc., for an outgoing packet.

Apart from these fields, there are many more fields that impart useful information

regarding a sk_buff. For example, variables that are used to specify the priority of

the packet, the type of packet, the function to be used as the destructor function for

the buffer etc.

4.1.3 Protocol Specific Fields

The following fields are used to store protocol specific information for a packet.

unsigned short protocol

This field is used to decide which layer 3 protocol needs to process the packet.
The value for this field comes from the list of protocols declared in include/linux/iLether.h.
The most common values are that for IP and Address Resolution Protocol
(ARP).

union{...} h
union{...} nh
union-L..1 mac

These unions are used to store the header information for layer 4, layer 3 and
layer 2 respectively. Within them are declared variables for the protocol headers
for the different layers of the network stack. For example, within union h is
declared a variable of type struct tcphdr for the TCP header. As the packet
moves across the layers, the appropriate header within the respective union is
populated.

char cb [40]

This field is like a scratch pad that can be used by each layer for storing layer
specific information. It might be used to transfer information across the layers,
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although its main purpose is to be used within a layer. It is heavily used by
the TCP code of the kernel. For example, for a received packet, the TCP code
stores a copy of various TCP related sequence numbers in this buffer.

4.1.4 Supporting Functions

In the kernel are defined many support functions that are used for manipulating,

retrieving information and management of sk_buf f's. In this section, some of the

support functions that are used in Split TCP are described.

alloc_skb

This is the main function used to allocate memory for the packet. As seen in
Figure 4.3, a packet consists of the main data buffer (packet buffer) and the
sk_buff data structure. A call to this function will allocate memory for both
of them. The packet buffer returned by this function has no headroom and a
tailroom equivalent to the size of the buffer as shown in Figure 4.4. It is defined
in net/core/skbuff.c.

Main Data Buffer

Figure 4.4 Allocating memory for a new sk_buff through alloc_skb().

skb_c opy

This function is used to copy an entire packet i.e. the sk_buff data structure,
the packet buffer and fragmented data if any. The copy created by the function
is private to the process that called it and can be modified at will. The function
is rather expensive in term of CPU cycles and should be used only when a
private copy of the packet is absolutely necessary. The function is defined in
net/core/skbuffc.
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pskb_copy opy

This function is similar to the skb_copy function. The only difference is that
the fragmented data remains shared between the original packet and its copy.
This function is preferred over the skb_copy function since it uses less CPU
cycles. The function is defined in net/core/skbuff.c

skb_clone

A sk_buff data structure can be cloned using this function. The function
creates a copy of only the sk_buff structure. The packet buffer is shared
between the two sk_buff's. The relevant reference count in the original sk_buff
is incremented to reflect this situation. This function is useful when a process
does not need to modify the packet buffer. The function is defined in net/core/skbuffc.

skb_reserve

This function is used to reserve some amount of space in the headroom of the
packet buffer. This is done by manipulating the data and tail pointers. For
example, while creating a TCP packet this function is called as skb_reserve (skb ,
MAX_TCP_HEADER) . The outcome of this call is shown in Figure 4.5. The function
is defined in include/linux/skbuffh.

Main Data Buffer

Figure 4.5 Creating headroom in the sk_buff through skb_reserve().

skb_push

This function is used to add data at the start of the data area of the packet
buffer. The function manipulates the data pointer thus reducing the available
headroom. For example, Figure 4.6 shows the outcome of adding the TCP
header, by calling this function, to the packet buffer of Figure 4.5. The function
is defined in include/linux/skbuffh.
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Figure 4.6 Pushing data in the sk_buff through skb_push().

skb_pull

This function does the exact opposite of the skb_push function. It removes the
requested amount of data from the start of the data area of the packet buffer.
The function manipulates the data pointer thus increasing the headroom. For
example, the buffer in Figure 4.6 will look like the buffer in Figure 4.5 after
skb_pull (skb , sizeof (TCP Header) ) is executed. The function is defined in

include/linux/skbuff.h.

kfree_skb

This function is used to release the memory being used by a sk_buff. However,
the function frees the memory only when the user count is 1, else it simply
decrements the number of users by 1. The function is declared in include/linux/skbuff.h.

4.2 Incoming Packet Flow through the Kernel

The Linux kernel makes use of the layer structure, defined by the Open Standards

Interconnect (OSI) model, for processing a packet. Before processing, each layer first

checks the packet for errors like bad checksum. Once the packet passes all the tests, it

is processed by the layer depending on the type of packet, the options that it carries,

the state of the flow in case of TCP etc. This section describes the journey of an

incoming packet through the network stack of the Linux kernel, starting at the Data

Link layer and ending at the Transport layer. This knowledge was used for designing
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the flow of a packet through the Split TCP code. It also gave useful insights on the

implementation of various layer specific features within the HB. One such example is

the RTT estimation code.

4.2.1 First Step - Data Link Layer

The journey of an incoming packet starts at the Data Link layer or the device driver

code within the kernel. The driver code used for this study is drivers/net/sundance.c.

For the kernel to provide support for the various NIC's, many manufacturer specific

network drivers are present in the kernel source tree. Even though it has not been

verified, the basic algorithm for processing and handing over the packet to the next

layer is the same for all of them.

The driver continuously polls the interface for incoming packets. This is done

by the rx_poll function. Once the packet passes the error checks, a new sk_buff

is created and stored in the "ring buffer". The driver calls the eth_copy_and_sum

function, defined in include/linux/etherdevice.h, to copy the entire packet into the

packet buffer. The ring buffer is a doubly linked list where sk_buff's are stored as

they wait to be picked up by the higher layer. The maximum number of packets that

can be stored in the ring buffer is 32.

The skb_reserve and skb_pull functions are used to reserve and add data

into the newly created packet buffer. The driver also records the incoming interface

in the field sk_buff ->dev. It then calls the function eth_type_trans (defined in

net/ethernet/eth.c) to find out the L3 protocol which will process the packet and

stores this information as shown:

skb->protocol = eth_type_trans(skb, dev);

The sk_buff is now ready to be handed over to the kernel code for further

processing. For the purpose of this discussion, kernel code is any code that does not
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directly interact with the NIC. Driver code is the code that directly interacts with

the interface.

4.2.2 Second Step - Intermediate Layer

The netif_rx function (defined in net/core/dev.c) is the entry point for the packet

inside the kernel code. At this point, the L3 protocol that should process the packet

is known. What is not known is the function which serves as the entry point for

that protocol. Also, if there are multiple processors in the host, the kernel needs

to allocate a processor for processing the packet. These and other operating system

related tasks are handled by the functions in net/core/dev.c which form a transparent

layer between the data link layer and the network layer.

Once the net if _rx function is called, the packet (sk_buff and the packet buffer)

leaves the driver code and enters the kernel. It then becomes the kernel's responsibility

to store the packet so that it can be found by the network layer. For this reason,

with each processor is associated a buffer (input queue). The head node of the queue

is of type sk_buff_head and is declared in the sofnet_data data structure. The

sofnet_data structure is declared in include/linux/netdevice.h and looks as follows:

struct softnet_data

{

int throttle;

int cng_level;

int avg_blog;

struct sk_buff_head input_pkt_queue;

struct list_ head poll_list;

struct net_device *output_queue;

struct sk_buff *completion_queue;
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struct net_device backlog_dev; 	 /* Sorry. 8) */

};

The first thing that net 	 does is to get a reference to this input queue.

If there is space within the queue (the queue can hold a maximum of 300 packets),

the packet is enqueued at the tail of the queue. netif_rx calls net

function, defined in the same file, before exiting.

The main task of net 	 is to schedule an interrupt, Software

Interrupt Request (SoftIRQ), to reflect the reception of the new packet in the softnet_data

input queue. At regular intervals, the CPU polls the interrupts to see whether a

SoftIRQ has been scheduled. If one has been scheduled, the packet at the head of the

queue is picked up by the CPU for further processing. Before going further with the

discussion, its worth finding out how interrupts are handled by the kernel.

There are 2 types of interrupts in the Linux kernel, Hardware Interrupt Request

(HardIRQ) and SoftIRQ. Out of these, the SoftIRQ interrupts are used within the

network stack. Hence the following discussion describes the SoftIRQ interrupt mechanism

in some detail. The kernel provides the provision of defining 32 SoftIRQ's, some

of which are defined in include/linux/interrupt.h. The kernel operates the SoftIRQ

interrupts in what is called the "bottom halve" . Bottom halves is the oldest mechanism

within the kernel for scheduling work that does not need immediate attention. For

packet reception and transmission, the kernel makes use of two SoftIRQ's, NET_RX_SOFTIRQ

and NET_TX_SOFTIRQ respectively.

The kernel polls for pending SoftIRQ's by making use of the following code in

kernel/softirq.c:__do_softirq().

do {

if (pending & 1) {

h->action(h);
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rcu_bh_qsctr_inc(cpu);

}

h}};

pending >>= 1;

} while (pending) ;

where h is a pointer to an array of type struct softirq_action and pending

is an integer. The 32 bits of the integer variable pending are used to represent the

32 SoftIRQ's, one per bit. A value of 1 at the nth bit of pending indicates that the

nth SoftIRQ is pending, where 1 < n < 32. struct softirq_action consists of a

function pointer action which points to the function within the kernel that will act

as the Interrupt Service Routine (ISR) for the respective SoftIRQ. A SoftIRQ calls

the open_softirq to populate the fields of the softirq_action structure during

registration. For example, for NET_RX_SOFTIRQ and NET_TX_SOFTIRQ, the call to

open_softirq looks as follows:

net/core/dev.c:net_devinit()

open_softirq(NET_TX_SOFTIRQ, net_tx_action, NULL);

open_softirq(NET_RX_SOFTIRQ, net_rx_action, NULL);

The functions net_tx_action and net_rx_action are registered as the ISR's

for NET_TX_SOFTIRQ and NET_RX_SOFTIRQ respectively. Thus when the kernel gets

around to processing the pending NET_RX_SOFTIRQ raised on the receipt of a packet,

the net_rx_action function is called. This functions main purpose is to see if a new

packet can be picked up for processing. If there are no packets waiting to be processed

or the ISR has used more than 10 ms of CPU time, the function raises the SoftIRQ

interrupt and exits. Else, it will dequeue a packet, find the relevant network layer

function and hand over the packet to that function. These 3 tasks are done by 2

functions, process_backlog and netif_receive_skb, both of which are defined in

net/core/dev.c.
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The main task of the process_backlog function is to dequeue the packet from

the softnet_data input queue and to call the netif_receive_skb function. It keeps

performing these tasks as long as there are more packets in the input queue and the

total time that it has been executing is less than 1 jiffie (10msec). As the packets

get processed by netif_receive_skb, process_backlog updates the variables that

maintain the state of the backlog packets.

The main task of the netif_receive_skb function is to find the function that

serves as the entry point for the relevant L3 protocol. To understand the working of

this function, one needs to first understand how a network protocol is registered with

the kernel. The packet_type data structure, declared in include/linux/netdevice.h,

is used to register an L3 protocol with the kernel.

struct packet_type {

__bel6 	 type;

struct net_device 	 *dev ;

int 	 (*func) (struct sk_buff *,

struct net_device *,

struct packet_type *,

struct net_device *);

struct sk_buff 	 *(*gso_segment)(struct sk_buff *skb,

int features);

int 	 (*gso_send_check)(struct sk_buff *skb);

void 	 *af_packet_priv;

struct list_head 	 list;

1;

The main fields of this structure are type and *func. The field type stores the

protocol identifier of the protocol being registered and the field *func is a function

pointer pointing to the function that will serve as the entry point for that protocol.
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The protocol identifiers that the kernel supports are declared in include/linux/if_ether.h.

Each protocol registered with the kernel is added to the hash ptype_base which is

declared at the start of net/core/dev.c as

static struct list_head ptype_base [16] ;

For the hash ptype_base, the kernel uses a very simple hash function, nt ohs (type) &15.

As seen from the declaration, the kernel has support for 16 network protocols. Each

protocol creates a variable of type packet_type with the relevant information and

registers itself at boot time by calling the function dev_add_pack, defined in net/core/dev.c,

on that variable. For example, the IP protocol registers itself as follows:

net/ipv4/aLinet.c

static struct packet_type ip_packet_type = {

.type = __constant_htons(ETH_P_IP),

.func = ip_rcv ,

. gso_send_check = inet_gso_send_check,

gso_segment = inet_gso_segment ,

};

dev_add_pack(&ip_packet_type);

In addition to ptype_base, the kernel defines another variable, ptype_all,

which is used to handle all types of packets. This is useful for packet sniffers

which need to process all types of packets. Hence, while processing the packet,

netif_receive_skb first runs the packet through the ptype_all list. If any protocol

of type ETH_P_ALL is registered with ptype_all, their respective functions are first

executed. The function then searches the ptype_base variable for the network protocol
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whose identifier is stored in sk_buff ->protocol. Once found, the function pointed

to by the function pointer *func is executed, which in case of IPv4 is ip_rcv. In case

sk_buff ->protocol does not match with any of the registered protocols, the packet

is dropped.

4.2.3 Third Stop - Network Layer

The type of the packet determines the network layer protocol that will process the

packet. Since a TCP/IP packet is being considered for the purpose of this discussion,

the network layer processing will be done by the IPv4 protocol. As stated in the

previous section, the ip_rcv function, defined in net/ipv4/ipinput.c, is the entry

point for the IPv4 protocol.

The functions starts by performing some basic checks for the IP header. These

include: (from net/ipv4/ipinput.c:ip_rcv())

1. Length of the packet is at least the size of an IP header.

2. Version in the IP header is 4.

3. Checksums are correct.

4. The various length fields (of sk_buff and IP header) are not bogus.

Once the packet passes all these checks, it enters the Netfilter system through

the call to the NF_HOOK macro (defined in include/linux/netfilter.h). Since the Netfilter

system is explicitly used by the Split TCP implementation, Section 4.4 is dedicated

to it.

The Netfilter system calls the ip_rcv_finish function which is defined in

net/ipv4/ipinput.c. This function decides the course of action i.e. should the packet

be forwarded or should it be sent to the L4 protocol for further processing. The

function calls upon the routing algorithm of the kernel to make this decision. The

decision is then stored in the variable dst, which is of type struct dst_entry, of the

sk_buff.
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As mentioned earlier, the dst variable is used by the routing algorithm to store

protocol independent information. This consists of a pointer to the outgoing interface

(if applicable), a variable of type struct neighbour which stores the information of

the next hop, and function pointers, input •and output, to the function that needs

to be called next, etc. Depending on whether the packet needs to be forwarded or

whether it needs to be sent to the transport protocol, the function pointer input

points to either ip_forward or ip_local_deliver respectively. This function pointer

is called from within the ip_rcv_finish function, thus executing either of the above

mentioned functions.

Anticipating whether the packet in question needs to be routed, the kernel

branches off to the ip_forward function. The journey of the packet through the

ip_local_deliver function and into the transport protocol is explained in Section

4.2.5.

4.2.4 Fourth Stop - Forwarding the Packet

Once it has been decided that the packet needs to be routed, the ip_forward function,

defined in net/ipv4/ip_forward.c, is called upon. This function performs the following

tasks - check the packet against the IPSec policies that are in place (if any), decrease

the Time To Live (TTL) field of the IP header and forward the packet to the function

registered at the NF_IP_FORWARD hook. The function also does some error checking

before forwarding the packet. For example, if the original value of TTL is 1, it calls the

icmp_send function to create and send an Internet Control Message Protocol (ICMP)

time exceeded packet back to the source.

The kernel code registers the ip_forward_finish function, defined in net/ipv4/ip_forward.c

at the NFIP_FORWARD hook. This function processes IP options (if any) and then

calls the function pointed to by the function pointer output in the dst variable of the

packet. For the packet path currently being discussed, the function pointer output
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points to ip_output function which is defined in net/ipv4/ip_output.c. Depending

of the size of the packet and the Maximum Transfer Unit (MTU) of the output

link, ip_output calls either ip_fragment to handle packet fragmentation or calls

ip_finish_output to go on to the next stage of the packet path.

The ip_finish_output function, defined in net/ipv4/ip_output.c, is a very small

function. It updates the outgoing interface information in the packet and sets the

protocol field of the packet to IPv4. It then calls the function ip_finish_output2

that is registered at the last hook of the Netfilter system, NF_IP_POST_ROUTING.

The ip_finish_output2 function is the last function to process the packet at

the network layer, after which the data link layer takes over. The main task of the

function is to append the data link layer header to the packet. For this it first checks

to see whether the sk_buff has enough headroom space for another header. If need

be, the headroom is increased. As is known from the basics of networking, a network

host relies on the ARP mechanism to find the details, like MAC address, of the next

hop. The kernel is no different. The details of each reachable next hop are then stored

in a variable of type struct neighbour, declared one per next hop. Within struct

neighbour is stored the basic information as well as a huge array of statistics regarding

a neighboring host. This structure consists of a variable hh of type struct hh_cache

which is used to stored the data link layer header. The fields of this variable are filled

in after the host receives the response message for the ARP request that it might

have sent. The hh variables, which are one per neighboring host, are saved in a linked

list by the kernel. This list is known as the "L2 header cache". Since the hh variable

stores the entire data link layer header in its original form, the ip_finish_output2

function first traverses the header cache to find a match. This technique helps save

CPU time. If a match is not found, it calls the neigh_resolve_output function,

pointed to from struct neighbour, to invoke the ARP protocol.
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Irrespective of how the kernel gets the data link layer header, the packet is

next sent to the dev_queue_xmit function. The dev_queue_xmit function, defined in

net/core/dev.c, is the entry point into the data link layer when the packet is on its

way out. The main task of this function is to put the packet in the queue from where

the device driver picks them up and transmits them on the wire. This queue is part of

the Queueing Discipline (qdisc) subsystem of the kernel which serves as an interface

between the network stack and the device driver. See Figure 4.7.

Figure 4.7 The Queuing Discipline interface.

The qdisc interface was introduced in the kernel to add advanced routing (e.g.

Split access and load balancing over multiple interfaces) and traffic control capabilities

(e.g. bandwidth control, policing etc) within it. This subsystem allows the use of the

various queuing disciplines (First In First Out (FIFO), Stochastic Fairness Queuing

etc) and traffic control algorithms (Token Bucket Filter etc) that have been proposed

over the years. One can always write code to add one's own queuing discipline in

the kernel. Using the qdisc interface, one can attach a single or multiple queues,
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where each queue may have a different queuing discipline, to a single interface. The

multiple queues are arranged as a tree structure. The qdisc interface eventually calls

the tx_poll function of the device driver which puts the packets on the wire. For

more information on how qdisc are employed and used in the kernel, see [27].

Figure 4.8 shows the flow of an incoming TCP packet through important functions

of L2 and L3 layer. The path of both a forwarded packet and a packet that is sent

to a user program, is shown in the figure.

4.2.5 Alternate Fourth Stop - Local Delivery

In the previous section, it was assumed that the packet needs to be forwarded.

However, if the routing algorithm determines that the packet is destined for this host,

the kernel calls the ip_local_deliver function. The ip_local_deliver function,

defined in net/ipv4/ip_input.c is a wrapper for the function registered at the Netfilter

hook, NFIP_LOCAL_IN. It starts by doing IP fragment reassembly (if required)

followed by a call to the ip_local_deliver_finish function. The ip_local_deliver_finish

function, defined in net/core/ip_input.c, has 2 main tasks: prepare the packet for the

transport layer protocol, TCP in this case, and hand the packet to the function (also

called as protocol handler) that acts as the entry point into TCP.

Before the packet is handed off to the protocol handler, the data pointer of the

sk_buff needs to be adjusted so that it is pointing to the start of the L4 header.

ip_local_deliver_finish achieves this by calling the __skb_pull function. It then

uses the protocol field of the IP header to find the appropriate protocol handler as

shown in the code abstract:

net/ipv4/ipinput.c:ipiocal_deliver_finish()

hash = protocol & (MAX_INET_PROTOS - 1)
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Figure 4.8 Flow of TCP packet till network layer.
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if ((ipprot = rcu_dereference(inet_protos[hash]) != NULL) {

ret = ipprot->handler(skb);

}

As seen from the code abstract, the kernel maintains an array, inet_protos,

of the L4 protocols that it supports. The inet_protos is an array of type struct

net_protocol and is declared in net/ipv4/protocol.c. It is used by the kernel to

register a maximum of MAX_INET_PROTOS (=256) L4 protocols. The inet_add_protocol

function is called by the L4 protocol to register itself with inet_protos. The following

code abstract, taken from net/ipv4/af_inet.c:inet_init(), shows the User Datagram

Protocol (UDP) and the TCP protocol being registered with the kernel:

if (inet_add_protocol(&udp_protocol, IPPROTO_UDP) < 0)

printk(KERN_CRIT "inet_init: Cannot add UDP protocol\n");

if (inet_add_protocol(&tcp_protocol, IPPROTO_UDP) < 0)

printk(KERN_CRIT "inet_init: Cannot add TCP protocol\n");

The inet_add_protocol function, defined in net/ipv4/ip_input.c, takes 2 input

parameters - a variable of type struct net_protocol and a variable containing the

protocol ID of the L4 protocol. The net_protocol structure is used to record the

function that will be used as the protocol handler. The following code abstract,

taken from net/ipv4/af_inet.c:inet_init(), shows the values of net_protocol structure

for TCP.
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static struct net_protocol tcp_protocol = {

.handler = 	 tcp_v4_rcv,

.err_handler = tcp_v4_err,

.no_policy = 	 1,

1;

Thus when the kernel makes a call to the protocol handler for the TCP protocol,

the control is shifted to the tcp_v4_err function.

4.2.6 Fifth Stop - Transport Layer

The tcp_v4_rcv function, defined in net/ipv4/tcp_ipv4.c, starts off by running the

packet through a few error checks like proper and consistent header length, correct

checksum etc. From the protocol headers, it then notes some bookkeeping information

about the TCP flow in the cb field of the sk_buf f structure. Since the packet is

being processed by the TCP protocol, it is understood that the final destination of

the packet either is an application program or a service daemon. Both make use

of sockets in order to send and receive data. Hence the tcp_v4_rcv function calls

the __t cp_v4_lookup function to find the socket associated with the destination port

number in the TCP header. The socket could either be in the established state or the

listening state depending on whether it belongs to an application process or a service

daemon respectively.

The __tcp_v4_lookup function, defined in net/ipv4/tcp_ipv4.c, is shown below.

static inline

struct sock *__tcp_v4_lookup(u32 saddr, u16 sport,

u32 daddr, u16 hnum, int dif)

{

struct sock *sk = __tcp_v4_lookup_established(saddr, sport,

daddr, hnum, dif);



49

return sk ? : tcp_v4_lookup_listener(daddr, hnum, dif);

}

As is seen from the code abstract, the function first calls the __tcp_v4_lookup_established

function. This function traverses the list of established sockets to find a socket to

which the packet needs to be sent. It calls the tcp_v4_lookup_listener function if

a match was not found. The tcp_v4_lookup_listener function traverses the list of

listening sockets to find a match. This sequence of function calls is even followed for

an original SYN packet. Both these functions are defined in net/ipv4/tcp_ipv4.c.

If __tcp_v4_lookup does not return with a reference to a socket, tcp_v4_rcv

sends a TCP reset back to the source and then frees the memory by calling kfree_skb.

However, if the function did return a reference to a socket, tcp_v4_rcv checks if the

packet can be processed now or at a later time. It calls tcp_v4_do_rcv if the packet

can be processed now or calls sk_add_backlog to add the packet to the backlog queue

for later processing.

Depending on the state of the socket, which is stored in the field sk_state of

struct sock, the tcp_v4_do_rcv function branches off its execution into the TCP

state machine. The kernel handles the TCP_ESTABLISHED state in a separate function

as compared to the other states of the TCP state machine, which are collectively

handled by one function. Within tcp_v4_do_rcv function, the kernel first calls the

tcp_rcv_established function which is used to handle the UDP_ESTABLISHED state.

The tcp_rcv_established function, defined in net/ipv4/tcp_input.c, is divided into

two paths - fast path and slow path. The "fast path" is used when the TCP flow does

not need to handle any special case like loss of packets, processing data with URG

flag set, etc. During the fast path the following operations are performed in sequence

1. Processing of the timestamp option and calculation of the RTT based on it.
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2. Processing TCP packets that have the ACK flag set. This involves updating
the TCP bookkeeping variables, removing acknowledged data from the queue
and advancing the congestion window if allowed.

3. Copy the payload of the TCP packet into the receive buffer of the socket to be
sent to the user application.

4. Update the window that will be advertised to the remote host.

5. Schedule and/or send a TCP ACK packet (might be a delayed acknowledgment).

The "slow path" is taken by the kernel if any of the following conditions are true.

Taken from the comments in net/ipv4/tcpinput.c as it is

- A zero window was announced from us - zero window probing

is only handled properly in the slow path.

- Out of order segments arrived.

- Urgent data is expected.

- There is no buffer space left

- Unexpected UDP flags/window values/header lengths are received

(detected by checking the UDP header against pred_f lags)

- Data is sent in both directions. Fast path only supports pure

senders or pure receivers (this means either the sequence number

or the ack value must stay constant)

- Unexpected TCP option.

However, if the state of the socket is anything other than UDP_ESTABLISHED,

the tcp_rcv_state_process function is called upon. The t cp_rcv_state_process

function, defined in net/ipv4/tcp_input.c, starts off by checking whether the current

packet is a part of the 3-way handshake for establishing a connection. If the packet is

a connection request, the appropriate connection request handler is called, which in

case of TCP is tcp_v4_conn_request (defined in net/ipv4/tcp_ipv4.c). If the packet

has the ACK flag set, then the function processes the TCP_SYN_RECV , UDP_FIN_WAIT1,
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Figure 4.9 Flow of incoming TCP packet through TCP layer.

UDP_CLOSING and UDP_LAST_ACK states. While processing the TCP_SYN_RECV state, the

kernel changes the state of the TCP flow to TCP ESTABLISHED.

At the end of tcp_v4_do_rcv the packet is guaranteed to have gone through the

TCP state machine and resulted in a positive outcome, like sending the data to the

user application, or in a negative outcome, like a RST packet being send back to the

source by the TCP state machine.

Figure 4.9 shows the flow of an incoming TCP packet through important functions

of the TCP layer.



52

4.3 Outgoing Packet Flow Through the Kernel

The previous few sections concentrated on the journey of an incoming TCP packet.

This section will describe the journey of a transmitted TCP packet i.e. an outgoing

TCP packet.

4.3.1 First Stop - Transport Layer

The transport layer (TCP) receives the data from the user program or socket as

a byte stream. Hence, one of the tasks of the L4 layer is to create packets i.e.

allocate memory to and create data packets and sk_buff's for those data packets out

of the byte stream. This task is taken care by the tcp_sendmsg function defined in

net/ipv4/tcp.c. The sk_buff's, once created, are stored in the queue, sk_write_queue,

associated with the socket. While creating packets, the kernel can either append

the data into an existing packet buffer or it could fill the data in a new packet

buffer. For the former option, the tcp_sendmsg function checks the last packet in

sk_write_queue to see if the buffer has room for additional data. For the latter case,

the sk_stream_alloc_pskb function is called upon to create and allocate memory to

a new packet buffer and its corresponding sk_buff.

Once a reference to the appropriate packet buffer has been attained, tcp_sendmsg

gets busy with copying the data into the packet buffer by calling the skb_copy_to_page

function, defined in include/net/sock.h. It also updates the various pointers and

counters of the sk_buff. Once the packet has been created, the __tcp_push_pending_frames

function, defined in include/net/tcp.h, is called upon to check if it or any of the packets

enqueued before it can be transmitted. If enabled, __tcp_push_pending_frames

controls the flow of the TCP packets through Nagel's algorithm. The outcome of

the algorithm is stored in the bookkeeping flags. These flags are then used by the

tcp_write_xmit function. The tcp_write_xmit function, defined in net/ipv4/tcp_output.c

and called from __tcp_push_pending_frames, traverses the sk_write_queue in sequence
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and picks packets for transmission if allowed by Nagel's algorithm and by the window.

Since the queue is maintained and works in a FIFO manner, tcp_write_xmit has a

while loop that always picks up the packet at the head of the queue for transmission.

If selected, it calls the tcp_transmit_skb function and advances the pointer that

points to the head of the queue.

The main task of the tcp_transmit_skb function, defined in net/ipv4/tcp_output.c,

is to create and populate the TCP header for the packet being processed. For a TCP

data packet, it calls the tcp_select_window function to calculate the window that

will be advertised and the tcp_build_and_update_options functions to update (if

required) and append any TCP options that have been negotiated for the TCP flow.

tcp_transmit_skb gets called any time the kernel needs to transmit a TCP packet

(normal transmission, retransmission, probing etc).

Once the TCP header has been populated, tcp_transmit_skb hands the packet

off to the L3 layer by calling the respective protocol handler. This protocol handler

is pointed to by the function pointer

tp->af_specific->queue_xmit

where tp is of type struct tcp_opt and af_specific is of type struct tcp_func.

For IPv4, queue_xmit points to the function ip_queue_xmit as shown in the following

code abstract:

net/ipv4/tcp_ipv4.c

struct tcp_func ipv4_specific = {

.queue_xmit 	 ip_queue_xmit,

.send_check 	 tcp_v4_send_check,

.rebuild_header = 	 tcp_v4_rebuild_header,

. conn_request 	 = 	 tcp_v4_conn_request ,

.syn_recv_sock = 	 tcp_v4_syn_recv_sock,
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.remember_stamp = 	 tcp_v4_remember_stamp,

.net_header_len = 	 sizeof(struct iphdr),

.setsockopt 	 = 	 ip_setsockopt ,

.getsockopt 	 = 	 ip_getsockopt,

.addr2sockaddr = 	 v4_addr2sockaddr,

.sockaddr_len 	 = 	 sizeof(struct sockaddr_in),

};

4.3.2 Second Stop - Network Layer

As mentioned in the previous section, the protocol handler for IPv4 is the ip_queue_xmit

function. The ip_queue_xmit function, defined in net/ipv4/ip_output.c, starts off by

checking if the packet is routable. If it is, ip_queue_xmit calls the ip_route_output_flow

function to invoke the routing algorithm of the kernel and populate the dst field of

the packet with the route details. The next step is to create, populate and add

the IP header to the headroom in the packet. The ip_options_build function is

called to add details of any IP options that are being used by the TCP flow. Once

the IP header has been created, the kernel enters the Netfilter system through the

NF_IP_LOCAL_OUT hook. Depending on the type of packet, the routing algorithm

registers the appropriate function at the NF_IP_LOCAL_OUT hook. For example, for a

multicast packet the ip_mc_output function is registered at the hook, whereas for a

regular TCP packet, ip_output function, is registered at the hook.

The ip_output function, defined in net/ipv4/ip_output.c, performs just one

task. If the length of the packet is more than the MTU of the outgoing link, the

function calls the ip_fragment function to perform IP fragmentation. Else, it calls

the ip_finish_output function, which as discussed in Section 4.2.4, prepares the

packet to be sent to the function registered at the NF_IP_POST_ROUTING hook. From

this point on, the packet follows the same path as described in Section 4.2.4.
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Figure 4.10 Flow of outgoing TCP packet through TCP layer.

Figure 4.10 shows the flow of an outgoing TCP packet through important

functions of the TCP layer after which it follows the flow an outgoing TCP packet as

shown in Figure 4.8.

4.4 Netfilter System

The material in this sub-section was gathered by studying the kernel code. It has

also been verified against [28].
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The Netfilter subsystem of the Linux kernel is used to load the Split TCP code

in a HB. The purpose of the Netfilter system is to intercept the network traffic at

various points within the network layer to perform network operations like packet

filtering, Network Address Translation (NAT) and connection tracking. This is

possible through the strategically placed "hooks" in the network layer. The hooks

are placed so as to intercept the traffic flowing through the 3 possible paths in the

network layer viz. packets destined for this host, packets that will be routed and

packets that are generated locally. See Figure 4.11. These hooks are places where the

kernel can, either compiled in or in the form of a loadable module, register functions

to be called at the occurrence of specific network events. For IPv4, Netfilter defines

5 hooks as shown in Table 4.1. Figure 4.11 shows the Netfilter hooks as they appear

and work within the Linux kernel.

Table 4.1 Netfilter Hooks for IPv4

Hook Name Network Event

NF_IP_PRE_ROUTING Before routing decisions are made

NF_IP_LOCAL_IN If the packet is destined for this host

NF_IP_FORWARD If the packet needs to be forwarded

NF_IP_LOCAL_OUT Packets coming from a local socket

NF_IP_POST_ROUTING Before packet is sent on the wire

As mentioned earlier, the function associated with a particular hook could either

be compiled in the kernel source tree or can be loaded at a later time as a kernel

module. For the first option, at the occurrence of the network event, the kernel calls

the NF_HOOK macro which takes 2 input parameters - the name of the function that

should be called at the occurrence of a network event and the name of the hook
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Figure 4.11 Netfilter subsystem for IPv4.

associated with that network event. Shown below is an example call to this macro

from the ip_rcv function.

return NF_HOOK(PF_INET, NFIP_PRE_ROUTING, skb, dev, NULL, ip_rcv_finish);

Here ip_rcv_finish is the function to be called for the NF_IP_PRE_ROUTING

hook. For the latter option, the function should be explicitly registered with the

hook in question. The nf_register_hook function, defined in net/core/netfilter.c, is

used for this purpose. This function takes as an input a variable of type struct

nf_hook_ops. This structure is declared in include/linux/netfilter.h and has the

following declaration.

struct nf_hook_ops
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struct list_head list;

nf_hookfn *hook;

struct module *owner;

int pf;

int hooknum;

int priority;

1;

Apart from the field list all others are initialized by the user and are explained

below:

hook

This is a function pointer initialized to the function that needs to be executed
when the network event related to the hook occurs.

owner

This field points to the module from where the nf_register_hook function is
being called.

pf

This field represents the protocol family for which the hook is being registered.
As mentioned earlier, the Netfilter subsystem can be used by any network layer
protocol.

hooknum

In this field is stored the hook for which the function is being registered.

priority

This field represents the priority of the function being registered. The Netfilter
subsystem allows multiple functions to be registered with a single hook. At the
occurrence of the respective network event, these functions are executed one by
one in ascending order of their priority.

Once the module is registered for a particular hook, for each packet passing

through the hook the callback function is called. At the completion of its execution
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the module returns a verdict for the future of the packet to the kernel. The possible

return values are shown in Table 4.2.

Table 4.2 Possible Return Values for a Module

Return Value Meaning

NF_ACCEPT Continue with normal kernel processing

NF_DROP Drop the packet silently. Do not process it anymore

NF_STOLEN The module has taken over the packet. Do not process it anymore

NF_QUEUE Enqueue the packet to userspace

NF_REPEAT Repeat or call this hook again

When multiple functions are registered with a hook, the kernel calls upon the

of _iterate function, defined in net/core/netfilter.c to iterate through the functions

and execute them in ascending order of their priority.

The HB is designed to be dual functional i.e. depending on the packet, it can

either act as a regular router or it can provide Split TCP processing. This decision

needs to be made for each packet received by the HB. As seen from Fig. 4.11, of the

5 hooks defined for IPv4, the function registered at the NF_IP_PRE_ROUTING hook

will be executed for each incoming packet. Thus making the NF_IP_PRE_ROUTING

hook the ideal location to place the Split TCP code in the Linux kernel. Hence the

Split TCP design proposed in this research works at the network layer, IP in this

case.
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DESIGN OF SPLIT TCP

This chapter describes the design details of the Split TCP mechanism in the HB.

It also discusses the pros and cons of various viable design options, as well as the

reasoning behind the design that was chosen.

As mentioned before, the Split TCP mechanism at the HB splits the end-to-

end TCP connection into 2 almost independent TCP connections. It intercepts

all TCP/IP and TCP/IP over IP (IPIP) traffic between the source hosts and the

destination hosts, irrespective of the direction of data flow. For the purpose of Split

TCP discussion, a source host is defined as the host from which the HB receives the

first SYN packet. The Split TCP mechanism caches the data packets and forwards

them to their respective destination hosts while at the same time sending ACK packets

back to the source host. For each of the legs, Split TCP maintains the feedback, error

control and congestion control TCP mechanisms.

Figure 5.1 shows the network scenario used for describing the Split TCP mechanism.

It also shows the terminology used in this and the following chapters.

Figure 5.1 Assumed network scenario.

60
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5.1 Split TCP Design Options

Before starting with actual implementation of the Split TCP mechanism in the HB,

the following questions need to be answered:

1. Whether to implement a "Cache and Forward" mechanism or a mechanism
which processes the packets on individual legs in parallel.

2. Whether to implement the connection establishment and tear down phase of a
TCP connection end-to-end or on individual legs.

3. Whether to implement the Split TCP mechanism at the User level or the Kernel
level.

A Split TCP like mechanism in the HB could work in several ways. In a very

naive strategy, a file being transferred between the two end hosts could be transferred

in its entirety over the first leg before it can be forwarded onto the next leg. This

strategy will force the mechanism to wait for the FIN and FIN-ACK exchange of the

previous leg, Leg 1, before the HB forwards the data on the next leg, Leg 2. It will

break most of the services that have an interactive component in them. Even FTP

will be broken since it has an interactive component in its control channel (port 21).

For Split TCP to work in this mode, the HB will need to maintain a large buffer for

transferring large files.

This strategy is also known as "Cache and Forward". An example of this

strategy is the "Postcards from the Edge" project [24] which is geared more towards

the mobile environment. In this project each MH is associated with a PO which

caches all the files destined for that MH. At the same time a PO might also need to

cache and forward files destined for other MH's. The need for the extra storage and

higher processing power is justifiable because of the declining prices of the two.

The implementation chosen in this dissertation is more intuitive and performance

based. In this strategy, the two network events of receiving and forwarding of a

data packet are overlapped. The Split TCP mechanism will process an incoming

data packet on Leg 1 (e.g. remove acknowledged packets from the buffer, do RTT
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calculations etc) while at the same time forward data packets on Leg 2 if the buffer is

not empty and if allowed by the various windows (advertised window and congestion

window). Since these operations are being performed in parallel, this strategy results

in better performance while using less buffer space as compared to the previous

approach. However, having a large buffer is still preferred for handling temporary

mismatches in transmission rates of the legs, possibly due to high drop probabilities

or fading channels. The mechanism should calculate the advertise window based on

the free buffer space to prevent the HB from getting overwhelmed with data packets.

This approach is also friendly to services having an interactive component.

A second design question that needs to be answered is whether to implement

the connection establishment and tear down phase of a TCP connection end-to-end

or individually over each leg. In the former approach, the HB will act like a regular

router and shall simply forward the SYN and FIN packets between the end hosts. In

the latter case, for each leg, the HB can negotiate special TCP options depending on

the network conditions of that leg. The Split TCP mechanism designed in this work

combines the two approaches to get maximum performance improvement. During the

connection establishment phase, the mechanism mostly makes the HB act as a regular

router. Thus, the connection establishment takes place end-to-end. During this phase

the SYN and SYN-ACK packets are simply forwarded, but with some modifications.

These modifications include negotiation of performance enhancing TCP options like

window scaling and ECN and calculation of minimum possible MSS for the entire

path. The end-to-end SYN exchange also allows for appropriate reaction in case

the connection is refused (e.g.: destination or port unreachable). This is explained in

more detail in Section 6.1. Unlike the connection establishment phase, the connection

tear down is done over individual legs, independent of each other. Thus the TCP

connection of Leg 1 may potentially close before the TCP connection of the Leg 2.
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A third design question, one which is also raised in [18], that needs to be

considered is whether to design Split TCP at the user level or at the kernel level.

Each of these options has their own merits and demerits. Because of readily available

resources on network programming, the user level design is more intuitive and easier

to implement. It has the advantage of having a large buffer space for the Split TCP

mechanism to work with. This buffer space is only limited by the available hard disk

space in the HB. However, a serious drawback is that the design is not very suitable

for services having an interactive component. The design will also waste time (CPU

cycles) undoing and redoing packetization (copying to and from the user space) and

hence may not be considered real time. There might also be a need for handling

(reading, storing and writing) TCP flags of each TCP packet.

The kernel level design, although difficult, is more efficient and is the chosen

approach. This approach allows the Split TCP mechanism to work with packets as

compared to byte streams. Thus, there is no need for repacketization of data, thus

saving CPU time. This approach also helps in preserving the TCP flags at no extra

effort. It also preserves packet boundaries between different legs. This is important,

for example, when the URG or PSH flag is set. The only limitation of this approach is

the buffer space, which is limited by the available main memory in the HB. The Split

TCP mechanism uses the main memory to store the data packets and the bookkeeping

information for each TCP flow that it splits.

An advantage of the Split TCP design of this work is that it is completely

transparent with respect to end hosts. Hence, no code modifications are required

at the end hosts. The design can be extended to include special TCP mechanisms

between the HB's (if > 2 in a connection).

In this research, the Split TCP mechanism has been designed to run at the

kernel level in Linux. The Split TCP software resides at the Network layer in the

network stack of the HB as shown in Figure 5.2.
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mechanism has been implemented as a Linux Kernel Loadable

is registered at the Netfilter hook, NF_IP_PRE_ROUTING.

be discussed in more detail in Section 6.1.

5.2 Helper Box Design and Features

The main component of the Split TCP mechanism is the HB. The design chosen frees

the end hosts of any code modifications and ensures minimal configuration changes

(if any) in the end hosts and the networks to which they belong. For the HB to

function properly, all TCP packets of a flow between the end hosts should be routed

through it. This helps the HB in maintaining an accurate state of the TCP flow. As

mentioned in Chapter 2, the HB makes use of IP over IP to communicate with other

HB's to guarantee this.

The HB's were chosen to be Linux computers that satisfy the following two

criteria: First, they have enough real time capacity to handle a sizeable number of

connections between the campuses. And second, they should also have a large amount
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of main memory to handle such large number of flows. A large main memory also

helps in buffering data packets in case Leg 2 is congested or if there is a mismatch in

the network capabilities of Leg 1 and Leg 2. The available buffer space of each flow

is used by the HB to calculate the window to be advertised in the acknowledgments,

thus implementing back pressure.

The HB is designed to intercept all network traffic (i.e. TCP, ICMP, UDP, etc)

passing through it. Every IP packet whose source and destination address belongs

to the special IP address pools of the campuses, are picked up for special processing.

All other packets are simply routed by the HB as if it were a regular router. This

ensures that all traffic other than the one requiring Split TCP processing does not

get dropped by the HB. In other words, the HB's are designed to be dual functional,

thus reducing the need for additional components within the network.

For each TCP flow that the HB splits, it sets aside a pair of packet queues, one

per direction of data flow. These queues are used to cache the TCP data packets in

the respective direction until they are forwarded and acknowledged by the destination

host. In addition to the data queues, the HB also maintains the state of the TCP flow

in each direction. This is necessary for the accurate operation of the HB. In Section

6.1 the details of these design option are discussed.

An important feature that needed to be designed for the HB was Error Recovery.

As mentioned previously, the HB acts as a proxy for both the source host and the

destination host (or previous or next HB). Hence it needs to simulate the error

recovery mechanism of both. When acting as a proxy for the source host, the HB

maintains the Retransmission Timeout (RTO) timer and does the necessary RTT

calculations. The expiration of the RTO timer indicates a lost packet, forcing the HB

to retransmit the data packet and enter the error recovery phase. The TCP NewReno

algorithm [29] has been implemented to handle the congestion avoidance phase of the

HB.



66

However, there can be a packet loss in the backward leg of the Split TCP

connection. The ability to accept data packets after the lost packet has been introduced

in the HB. Just like a destination host does, the HB keeps sending duplicate acknowledgments

until it receives the lost packet(s) that increase the acknowledgment number. The

HB has been designed not to forward any data packet that lies after a lost packet in

the packet queues. Thus, a HB is designed to re-order or re-sequence the data packet,

transmit them in order and retransmit as needed.

A lacking feature of the current Split TCP implementation is that it cannot

handle overlapped packets. In the current implementation, if the starting sequence

number of the packet is less than the sequence number that the HB is expecting, the

packet is dropped, even if the packet contains new data.

5.3 Design Components

The TCP protocol has different functions and mechanisms that are specifically defined

for the source and the destination host. For an end-to-end connection, these mechanisms

work at the respective end hosts. Since the HB acts as a proxy for the source host

and the destination host, the source specific and destination specific TCP mechanisms

needed to be integrated and made to work together in the HB. The following four

components were designed to accomplish this:

1. Flow Tracker

2. Packet Queues

3. Statekeeper

4. TCP Finite State Machine

These components collectively maintain the state of an end-to-end TCP connection

at the HB. For each TCP connection that the HB splits, it creates an instance of the

Flow Tracker. The Flow Tracker, as the name suggests, is used to track the end-to-end
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TCP connection. It contains within itself a pair of Statekeepers, one for Leg 1 and

one for Leg 2. Similarly, the Flow Tracker contains a pair of Packet Queues, one per

leg.

The Statekeeper contains variables that represent the state of the various TCP

mechanisms at any given moment. For example, it contains variables for the sliding

window protocol, RTT calculation, RTO estimation, window scaling, etc.

The Packet Queues buffer data packets for a particular direction of data flow.

This helps the HB to re-sequence or re-order the data packets before they are forwarded

towards the destination host. At any given time, the Packet Queues contains data

packet that have been received but not forwarded yet as well as packets that have

been forwarded but not acknowledged as of yet.

These will be discussed in more detail in the next chapter, Chapter 6.



CHAPTER 6

KERNEL IMPLEMENTATION OF SPLIT TCP

This chapter describes the kernel level implementation details of the Split TCP

mechanism in the HR As mentioned before, Split TCP has been implemented as a

Linux Kernel Loadable Module (LKLM) which is registered at the NFIP_PRE_ROUTING

hook of the Netfilter system in Linux. The chapter also discusses the algorithm that

is used to process the different type of TCP packets.

The terminology shown in Figure 5.1 is used in this chapter while discussing

the implementation details of the Split TCP mechanism.

6.1 Helper Box Implementation

The Split TCP mechanism can be implemented on any operating system whose

network stack can be modified. Since most of the operating systems (like Microsoft,

Cisco etc) are proprietary, Linux was chosen for implementing Split TCP. Hence, all

the HB's are Linux boxes. The networking code of Linux has been around for several

years now and the author, like several others, found it to be a stable platform, both

for experiments and regular use. One can look at the results at [30] to quantify the

stability of the Linux kernel. Moreover, the source code for Linux kernels is freely

available at [31] and the author does have experience in modifying the Linux source

code. All these factors favored Linux as the ideal choice for this work.

The Split TCP mechanism implemented at the HB consists of 3 files. The main

algorithm is implemented as a LKLM. The other 2 files contain supporting function

and variable declarations and are compiled in the kernel source tree. These 3 files are

described below:

• split _helper . h

68
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This file contains the declaration of various bookkeeping variables that are used
to maintain the state of various TCP mechanisms like feedback, error control,
congestion control etc at the HB. It also contains the definition of the buffer
structure that caches the data packet in flight. Various data structures that are
used to organize multiple split TCP flows in the HB are also defined here.

This file is located at /usr/src/linux/include/linux/.

• split_helper.c

This file contains various function that are used to ease the use of the data
structures defined in split_helper.h. These function implement various operations,
like initialization, enqueue, insert, dequeue, search and memory cleanup. Some
accessor and mutator functions are also implemented.

This file is located at /usr/src/linux/net/ipv4/.

• ip_inintercept.c

This file is the LKLM and contains all of the TCP/IP related packet processing
required for the Split TCP mechanism. It is registered at the NF_IP_PRE_ROUTING
hook of the Netfilter subsystem. The LKLM makes use of the data structures
and functions defined in the previous 2 files along with the ones defined in the

• kernel.

This file can be located anywhere with the file system. However, since its a
LKLM, the users home directory is the best place.

As mentioned previously, since the LKLM is registered at the NFIP_PRE_ROUTING

hook, the HB is able to intercept and process (insofar required) all packets before they

are handed to the IP and TCP layers. The LKLM implementation was chosen for its

ease in integrating with the kernel without the need to recompile the entire kernel.

The LKLM is ,,,3200 lines of C code, while the 2 kernel files together are ,,,750 lines

of C code.

To help with the proper functioning of the HB and the ease of data organization,

4 components were designed and implemented. These are the Flow Tracker, Packet

Queue, State Keeper and the TCP State Machine. Each of these components will be

described in detail in the later sections.

The general operation of the HB is shown as a timing diagram in Figure 6.1.

In the current implementation of the HB, a TCP flow from the source end host
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(in campus A or campus B) to the destination end host (in campus B or campus

A respectively) is split into 2 independent TCP flows at the HB. At the receipt of

each non-duplicate "original SYN" packet, the HB creates an instance of the "Flow

Tracker" component, thus creating an instance per TCP flow that it splits. The

HB caches the SYN packet in the respective "Packet Queue" before forwarding a

copy toward the destination host. As shown in Figure 6.1, the HB does not send a

SYN-ACK packet back to the source host on behalf of the destination host. However

it waits for the SYN-ACK packet from the destination host, which when received,

is forwarded to the source host. From this moment on, the HB starts acting as a

proxy for either host thus sending and acknowledging the last ACK of the connection

establishment phase. Once the connection has been established on Leg 1 and Leg

2, the HB acknowledges, caches and forwards the data packets from the end hosts.

Buffering of the data packet helps in possible retransmission and data rate mismatch

if any. From each data packet received, the HB extracts information that is used

to update the variables in the respective "State Keeper". Once the source host has

sent all the data packets, it initiates to close the connection by sending a FIN packet.

The HB caches the FIN packet and responds with a FIN-ACK packet. This allows

the TCP flow in either leg to close irrespective of the state of the other. At a later

time, when all the data packets have been forwarded, the HB will forward the FIN

packet thus initiating to close the connection of Leg 2. At the receipt of the FIN-ACK

packet, the HB frees the memory occupied by the various components for the split

TCP flows.

In the following sections the 4 components designed for the HB are explained.

6.1.1 Flow Tracker

All information concerning a flow between the end hosts is stored in this component.

The HB creates an instance of this component for each non-duplicate original SYN
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Figure 6.1 Timing diagram of HB operation.

packet that it receives for the supported end hosts IP address pool. The HB deletes

an instance of the flow tracker and frees the memory associated with it, once all data

packet including the FIN packets have been forwarded and acknowledged by the end

hosts. Thus, an instance of the flow tracker is associated with each TCP flow that

the HB splits. All such instances are arranged in a doubly linked list as shown in

Figure 6.2.

Within the code, the flow tracker node is represented by struct split_flow_inf o.

The linked list shown in Figure 6.2 is organized similar to the way linked lists are

organized in the kernel i.e. the first node of the linked list acts as the head of

the list and contains almost no useful information. The head of this list is called

sf i_list_head within the code. Starting from node '1' the nodes within the list
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Figure 6.2 Arrangement of flow tracker nodes in the HB.

represent the TCP flows that the HB has split. For each TCP packet that the HB

picks for processing, it traverses the list to search for an existing flow tracker node. If

found, a pointer to the node is returned else the HB creates a new instance and adds

the node to the tail of the list. Currently there is no limit on the maximum possible

length of this list. Thus, there is no upper bound within the code to the number of

TCP flows that the HB can split.

The structure split_flow_info is declared in split_helper.h and is shown below.

struct split_flow_info {

struct split_flow_info *next;

struct split_flow_info *prev;

struct flow_detail *i2r_flow,

*r2i_flow,

*rep_in_flow;

struct skbuff_list *i2r_queue;

struct skbuff_list *r2i_queue;

struct tcp_opt *prev_tp_opt;
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struct ethhdr *prev_flow_hw;

struct ethhdr *fwd_flow_hw;

struct tcp_state *lhs_tcp_state;

struct tcp_state *rhs_tcp_state;

int buff_clamp;

int buff_curr;

};

In addition to the pointer variables next and prey, which have the traditional

meaning with respect to linked list, the rest of the variables fall under 4 categories.

Of type struct flow_detail

This structure, as the name suggests, contains information that is used to
identify a TCP flow. A TCP flow can be identified using the source host IP
address, destination host IP address, source port number and destination port
number.

As is seen from the declaration, the flow tracker consists of a pair of variables
of type flow_detail. The variable i2r_flow contains the flow details for Leg
1 while the variable r2i_flow contains the details for the TCP flow of Leg 2.

This structure is declared in split_helper.h.

Of type struct ethhdr

This structure represents the Ethernet header of a packet. The main detail
stored in this structure are the next hop source and destination MAC address
of a leg. These values are used by the packet processing code while creating
and appending the Ethernet header to the packet.

The flow tracker consists of a pair of variables of type ethhdr, one per leg. The
variable prev_flow_hw contains the Ethernet header details for Leg 1 while the
variable fwd_flow_hw contains the Ethernet header details for Leg 2.

This structure is declared within the kernel at include/linux/if_ether.h.

Of type struct skbuff_list

An instance of this structure represents a packet within the Split TCP mechanism.
As will be explained later, within skbuff_list is a variable that points to the
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actual sk_buff. Instances of this structure are arranged in a doubly linked list
to form the packet queues.

Since a TCP connection can potentially be bi-directional, each flow tracker
node consists of a pair of variables of type skbuff_list. This pair represents
the head node of the packet queues. The variable i2r_queue is the head node
for the packet queue for Leg 1 and the variable r2i_queue is that for Leg 2.

This structure is defined in split_helper.h. the data packets.

Of type struct tcp_state

This structure is used to record and maintain the bookkeeping information
for the various TCP mechanisms. The variables declared within it maintain
the right sequence numbers, congestion window, advertised window, RTO logic,
identify duplicate ACK's etc. This structure represents the statekeeper component
of the HB design.

The flow tracker consists of a pair of variables of type tcp_state. The variable
lhs_tcp_state maintains the TCP semantics for the backward leg and the
variable rhs_tcp_state maintains the TCP semantics for the forward leg.

This structure is defined in split_helper.h.

In addition to these variables, the flow tracker contains two variables, buff_clamp

and buff_curr, that represent the amount of free memory available for the per leg

TCP flow. The variable buff_clamp stores the total memory that will be allocated

for a TCP flow and the variable buff_curr represents how much of that memory is

currently being used. This memory is used while caching the data packets and does

not account for the memory being used by the various structures.

Figure 6.3 represents a flow tracker node at any given instance. As can be seen

from the figure, the flow tracker node acts like a container and contains instances of

the packet queues and the statekeepers within it.

6.1.2 Packet Queues

As shown in Figure 6.3, for each TCP flow that the HB splits, a pair of buffers, called

Packet Queues, are created. One queue is used to store the data packets sent from

the source host to the destination host and the second queue is used to store the data

packets in the opposite direction. A copy of each new data packet handled by the
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Figure 6.3 An instance of flow tracker.

HB is created and added to the respective queue. The HB traverses these queues

and forwards the data packets to the destination host. It keeps a copy of the data

packet until it receives an acknowledgment for the data in the packet from the next

HB or end host. Any data packet that has been acknowledged by the next HB or the

end host can, and soon will, be deleted from the buffer. In case the HB receives 3

duplicate acknowledgments or there is a time out, it retransmits the packet from the

buffer. This approach of buffering helps the HB to isolate the network problems of

Leg 1 from Leg 2.

The packets within the buffer are arranged as a circular linked list and work in

the FIFO manner. The packet queue organization is similar to that shown in Figure

6.2. Within the code, the head node of the packet queues are labeled i2r_queue (for

data flowing from source host to destination host) and r2i_queue (for data flowing

from destination host to source host). All the nodes within the list, including the head

node, are of type struct skbuff_list. This structure is declared in split_helper.h

and is shown below.

struct skbuff_list {

struct skbuff_list *next;
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struct skbuff_list *prey;

struct skbuff_list *pkt_bfr_hole;

struct sk_buff *sb_pkt;

struct tcp_state *tps_ptr;

__u32 snd_tstamp;

int hole_in_queue;

int pkt_state;

int pkt_count;

rwlock_t lock;

};

Some of the important variables of this structure are explained below:

sb_pkt

This variable stores the copy of the data packet that needs to be cached in
the buffer. Except the head node, for each node within the packet queue this
variable points to an instance of a sk_buff. The variable is initialized to NULL
for the head node.

pkt_state

This variable is used by the HB to figure out whether a packet has been
forwarded or not. The value of the variable can either be SENT or NOT_SENT.
The variable is manipulated for each node within the packet queue except the
head node. For the head node, the variable in initialized to SENT.

hole_in_queue

This is a Boolean variable which is set (=1) if there are non-contiguous packets
in the buffer. A packet is considered to be non-contiguous if the following
condition holds true for it

Current Packet Sequence Number >
Previous Packet Sequence Number + Previous Packet Data Bytes

If this condition is found to be true for any data packet in the queue, the
hole_in_queue variable of the head node of that packet queue is set to 1. Thus,
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the Split TCP mechanism needs to check the value of hole_in_queue for only
the head node to see whether there is a hole in the packet queue.

The hole_in_queue variable of all other nodes within the packet queue is
untouched.

pkt_bfr_hole

This variable points to the packet just before the first lost packet (packet hole)
within the buffer. Thus it helps speed up the processing (finding the right place
to insert within the buffer) of an incoming data packet after a lost packet. As is
the case for the hole_in_queue variable, the pkt_bfr_hole of only the head node
of a packet queue shall contain a valid pointer. Thus the Split TCP mechanism
will read the pkt_bfr_hole variable of only the head node of a packet queue to
get a pointer to the packet just before the lost packet.

The pkt_bfr_hole variable of all other nodes within the packet queue is initialized
to NULL and remains untouched.

pkt_count

pkt_count is an integer variable and stores the number of data packets present
in the packet queue. The value of this variable is incremented by 1 for each
data packet added to the queue and decremented by 1 for each data packet
that is acknowledged and released from the queue. The pkt_count variable is
manipulated only for the head node of the packet queue.

Since each node of the packet queue contains a copy of the sk_buf, f , the packet

boundaries and the TCP flags are maintained. As mentioned earlier, this enables the

use of Split TCP even for interactive applications. At any given time, a queue will

contain data packets that have arrived but have not been forwarded yet, as well as

packets that have been forwarded but not acknowledged by the next HB or destination

host.

6.1.3 Statekeeper

The Statekeeper is used to maintain the state of a TCP flow that the HB splits.

Like the packet queues and as shown in Figure 6.3, there is a pair of statekeepers

for each end-to-end TCP flow (one statekeeper for each direction of data flow). To

enable the HB act as a proxy for both the source host and the destination host, many

TCP mechanisms have been implemented. Each of these mechanisms rely on various
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variables for them to operate correctly. Within the statekeeper are stored all such

variables. Variables specific to Split TCP were also introduced in the statekeeper.

The statekeepers and the packet queues work together to maintain the transparency

of the HB with respect to the end hosts.

Within the code, the statekeeper is represented by struct tcp_state. The

structure is declared in split_helper.h. The corresponding structure within the Linux

kernel is tcp_opt.

Figure 6.4 shows the traffic flowing in one direction i.e. from the host in campus

A to the host in campus B. A similar setup exists for the traffic in the opposite

direction. However, for simplicity of language only one direction of traffic is discussed.

max_rcv_byte

From source
Campus A

rcv_next

0 0
snd_next	 snd_una

To destination in
Campus B

Figure 6.4 Packet Queue instance and important statekeeper variables.

The above figure also shows some of the variables that are used to implement

the flow control mechanism of TCP. An important variable that is updated while

receiving data packets from the source host is

rcv_next

The rcv_next variable corresponds to the sequence number of the byte that the

HB is next expecting from the source host. This helps the HB in sending correct

acknowledgments to the source host. It also helps in identifying an out of sequence

data packet. This variable is accessed by the HB when acting in the capacity of a

destination host.



79

Important variables that the HB maintains for forwarding the data packets

while acting in the capacity of a source host are

snd_next, snd_una

snd_next contains the sequence number of the byte that needs to be forwarded

next to the destination host. snd_una contains the sequence number of the oldest

byte unacknowledged by the destination host. For a classical TCP connection, these

3 variables are associated with the receive queue at the destination host and the send

queue at the source host respectively. However for Split TCP, these 3 variables are

associated with the same packet queue within the HB. The se variables ensure the

proper exchange of data packets between the end hosts and the HB [32].

Another variable, specific to Split TCP, that the HB maintains is

max _rcv _byte

max _rcv _byte contains the sequence number of the highest byte that the HB

has received from the source host. It helps when the HB is dealing with lost packets

from the source host. It also helps in maintaining the correct sequence number in the

acknowledgments once the HB receives all the lost packets.

These variables are declared in struct tcp_state as shown below.

__u32 rcv_next;

__u32 snd_next;

__u32 snd_una;

„u32 max_rcv_byte;

Another important TCP functionality is the congestion control mechanism.

Over the years many algorithms have been suggested. In this work, the NewReno

algorithm [29] is chosen to implement the congestion control mechanism of TCP. The

variables
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cwnd, ssthresh

of the statekeeper are used to control the flow of data during the congestion

phase of TCP. The variable cwnd is increased once per RTT during the congestion

avoidance phase. The variable ssthresh is initialized to 4 times the negotiated MSS

for the TCP flow, as stated in [32], and then modified during fast recovery. The

variable

recover

is introduced to implement the NewReno modification for the Fast Recovery

algorithm [29]. These variables are declared in tcp_state as shown below.

__u16 ssthresh;

__u32 cwnd;

__u32 recover;

The RTO and RTT estimation algorithm is another source end TCP functionality

that helps in dealing with lost packets. The RTT estimation algorithm proposed by

V. Jacobson is implemented [33]. The following variables, declared in tcp_state are

used to estimate the RTT and RTO.

__u32 rtt_seq;

__u32 srtt;

__u32 mdev;

__u32 mdev_max;

__u32 rttvar;

__u32 rto;

struct timer_list rto_timer;
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Of the many TCP options, the window scaling option is implemented in this

work. As mentioned in Chapter 2, for the scenario under consideration, the throughput

of the TCP connection largely depends upon the advertised window and the congestion

window and is often the minimum of the two. The advertised window is calculated

based on the free buffer space available for the TCP flow. Since the TCP header

field window is 16 bits long, the advertised window cannot grow beyond 65535

( 2 16 _ 1). Thus for networks that support large data rate and offer favorable network

conditions, the advertised window becomes the limiting factor, resulting in lower TCP

throughput. The window scaling option was designed to remove this constraint and

it allows the advertised window to grow up to 1 Gbyte. The following variables,

declared in split_helper.h, are used to implement the window scaling option.

char wscale_ok;

__u8 snd_wscale;

__u8 rcv_wscale;

wscale_ok is a Boolean variable which when set (=1) allows the use of the

window scale option between the end hosts of a particular leg. It is set (or unset)

during the connection establishment phase. For a given leg, snd_wscale stores the

window scaling factor used by the remote host (end host or HB), while rcv_wscale

stores the window scaling factor used by this HB. The HB's are configured to use the

window scaling option by default.

Another TCP/IP mechanism that is implemented in the HB is Explicit Congestion

Notification (ECN). A classical TCP connection gradually increases the window size

thus allowing the queue at the bottleneck router to grow. Once the queue is full, the

router will start dropping packets thus causing the end hosts to half their congestion

window. The ECN mechanism promotes the idea of marking the packets as opposed

to dropping them as the queue at the router builds up. This timely feedback from the

router allows the end hosts to gradually slow down its sending rate thus proactively
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avoiding network congestion. The following variables, declared in split_helper.h,

implement ECN in the HB.

int ecn_capable;

int ece;

int cwr;

int ce;

int ecn_flags;

int demand_cwr;

int do_cwr;

int prev_do_cwr;

These variables provide ECN functionality for both ____ in which the HB operates

i.e. while acting as a proxy for the source host and while acting as a proxy for the

destination host.

ecn_capable is a boolean variable which when set (=1) provides ECN capability

for a particular leg (HB to HB or HB to an end host). The variables ece, cwr and

ce correspond to the ECN-Echo (ECE), Congestion Window Reduced (CWR) and

the Congestion Experienced (CE) bits of the TCP and IP headers. demand_cwr is a

boolean variable and is used when the HB acts as a proxy for the destination host.

If set (=1), the CE bit is marked in all packets being forwarded (data packets) or

being send (ACKs) towards the source host. Similarly, do_cwr is a boolean variable

and used when the HB acts as a proxy for the source host. If set (=1), the congestion

window for the forward leg, Leg 2 in case of a 1 HB scenario, is reduced and the

CWR bit is set in packets being forwarded (data packets) or sent (ACKs) towards

the destination host.

As explained in Chapter 2, IP over IP is used for transporting the data packets

between two HB's. The following variables, declared in the statekeeper tcp_state,

are used for this purpose.
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__u32 next_hb_addr;

int forwarding_option;

forwarding_option dictates whether the data packets should be wrapped in

another IP header or not. And next_hb_addr contains the IP address of the next hop

HB. As mentioned previously, a statekeeper is used to maintain the semantics of a

particular leg. Hence the next_hb_addr always corresponds to the next hop HB of

the leg whose state is maintained by that statekeeper instance. forwarding_option

is set to IP_OVER_IP and next_hb_addr contains the IP address of that HB. Else it

is set NO_IP_OVER_IP and next_hb_addr to NULL. Because of these two variables,

a HB can have difference next hop HBs for different flows.

A TCP connection goes through various stages during its lifetime. These stages

and the transition between them is governed by the TCP state machine. Split TCP

works in a similar fashion and its state machine closely simulates the classical TCP

state machine. In order to record the current state of the TCP connection of each

leg, the variable

state

is used. The various states of the Split TCP state machine and the use of this

variable will be explained in Section 6.1.4.

6.1.4 Split TCP State Machine

Just like classical TCP, a Split TCP connection works according to a finite state

machine. The finite state machine tracks the various stages of a Split TCP connection.

It also details the events that allow the connection to move between different states.

This helps the HB to execute the proper code while processing a packet. Unlike the

packet queues and the statekeepers, that work on individual legs, the state machine

works on the two legs collectively. It is closely modeled around the classical TCP

state machine, but with fewer states.
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The Split TCP finite state machine is shown in Figure 6.5 and is modeled using

the following 7 states:

• TCP_LISTEN: HB is waiting for a SYN packet.

• TCP_SYN_RCVD: HB received a SYN packet.

• TCP_SYN_SENT: HB forwarded the SYN packet.

• TCP_SYNA_SENT: HB received a SYN-ACK packet.

• TCP_CONNECTED: Each leg has an established connection. Data transfer in
progress.

• TCP_FIN_SENT: HB forwarded a FIN packet.

• TCP_FIN_WAIT: HB waiting on a missing data packet even though it received
a FIN packet

• TCP_CLOSING: Both legs are done with data transfer.

At any given moment, the TCP flow is in one of these states. Here, a TCP

flow is defined as the TCP connection of a leg. Hence it might happen that the TCP

connection between the HB and the source host and the TCP flow between the HB

and the destination host are in different states at a given instance.

For the purpose of this discussion, the TCP flow between the HB and the

source host (or previous HB) is called "Fl" and the TCP flow between the HB and

the destination host (or next HB) is called "F2". It is always assumed that the first

original SYN packet was received by the HB on "F1". Initially, the TCP connection

of both Fl and F2 is in the TCP_LISTEN state. This is the initial state of a flow

during which the HB is waiting for a non-duplicate SYN packet. When the first

non-duplicate original SYN packet is received on Fl, the state of Fl changes from

TCP_LISTEN to TCP_SYN_RCVD. Once the HB forwards the SYN packet on F2,

the state of F2 is changed to TCP_SYN_SENT. At this moment the HB waits for the

corresponding SYN-ACK packet from the destination host, upon the receipt of which

it sends the last ACK of the connection establishment phase on F2 and changes
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Figure 6.5 Split TCP finite state machine.

the state of F2 to TCP_CONNECTED. After the SYN-ACK packet is forwarded

on Fl, its state is changed to TCP_SYNA_SENT. The state of Fl is changed to

TCP_CONNECTED as soon as the HB receives on Fl, the last ACK packet of the

connection establishment phase. Once both Fl and F2 are in TCP_CONNECTED,

the HB processes and forwards the data packet among the legs. Once the source has

sent all the data packets, it will send the FIN packet. On receipt of a FIN packet,

the HB checks whether all data packets have been received from the source. If yes,

the state of Fl is changed to TCP_CLOSING and the HB sends the FIN-ACK packet
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back towards the source host. However, if there are missing data packets, the state

of Fl is changed to TCP_FIN_WAIT. Once all missing data packets are received, the

HB changes the state of Fl to TCP_CLOSING and sends the FIN-ACK packet to the

source host. After the HB has forwarded all data packets including the FIN packet on

F2, it changes the state of F2 to TCP_FIN_SENT. On receipt of a FIN-ACK packet

on F2, the state of F2 is changed to TCP_CLOSING. When both Fl and F2 are in

the TCP_CLOSING state, the HB frees all the memory that was used to maintain

the end-to-end TCP connection.

6.1.5 Packet Processing

The previous sections discussed about the 4 components that were designed for

implementing Split TCP at the HB. This section describes the algorithm implemented

at the HB for processing the packets of a TCP flow. The HB processes different types

of TCP packets like SYN, SYN-ACK, FIN, FIN-ACK, ACK, RST and data packets.

As mentioned earlier, the entire packet processing code of Split TCP is implemented

as a LKLM (ipinintercept.c) which is registered at the NF_IP_PRE_ROUTING hook

of the Netfilter subsystem. Thus allowing the LKLM to intercept all incoming network

traffic.

The function, ip_in_hook_f liter°, acts as the entry point into the LKLM. It

behaves as the main() function of a C program. The main task of this function is to

filter TCP packets from the incoming network traffic and decide which of these TCP

packets will be processed by the Split TCP code and which ones should be let inside

the kernel for regular network processing. The HB maintains a table of the supported

IP address pools along with the IP address of the next hop HBs for each direction

of flow. This helps in filtering of the relevant TCP traffic. The following tasks are

performed, in order, by the function:

1. Since IP over IP is being used for transporting the data packets, the first check
performed by the function is to find out whether it received a simple IP packet
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or an encapsulated IP packet. The protocol field of the IP header is used for
this. If the packet received is an encapsulated IP packet, the function checks
whether the source IP address in the header belongs to a supported network IP
pool and whether the destination IP address in the header corresponds to one
of its own IP addresses. If yes, it removes the outer IP header and updates the
data pointer of the sk_buff to point to the start of the inner IP header before
processing any further.

It must be noted that the HB will skip this step and directly go to the next one
in case the packet received does not contain an encapsulated IP packet.

2. The HB then consults the table containing the supported IP address pools once
again to check if the packet being processing is supported by checking the source
and destination IP address from the IP header. If it is, the packet is processed
by the LKLM else it is forwarded to the kernel for normal network processing.
It also determines the direction of flow of the packet i.e. is the packet flowing
from the source host to the destination host or in the opposite direction. This
is important while updating the variables of the relevant statekeeper.

3. If the packet belongs to a supported TCP flow, the HB traverses the flow tracker
linked list to find the appropriated flow tracker instance. If this search fails for
any packet other than the SYN packet, the packet is dropped by the HB and a
RST is sent in the direction of the source of the packet.

However, if the search fails for a SYN packet, which will happen for a non-
duplicate SYN packet, the HB creates an instance of the flow tracker and
enqueues it.

4. Next the MAC header details are extracted from the incoming packet. This
helps the HB bypass the kernel ARP mechanism while sending ACK packets to
the source of the data packets.

Any packet filtered for Split TCP processing is next forwarded to the function

process_in_pkt 0 . For the filtered packets, the LKLM returns NF_STOLEN to the

kernel. For all other packets it returns with NF ACCEPT.

The process_in_pkt 0 function is the heart of the packet processing code. The

function is responsible for identifying the different type of TCP packets and invoking

the appropriate packet processing code. Since the kernel module works at the IP layer,

the function starts off by populating the TCP header of the sk_buff. The function

then calls the tcp_parse_option to process any TCP options that are present in the
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TCP header. Depending on the value of the TCP flags the function processes the

packet as follows:

SYN packets: A non duplicate SYN packet is enqueued in the appropriate packet

queue without performing any checks. The receipt of the SYN packet is used to

initialize the TCP variables of one leg, say Leg 1 (or Fl), of the TCP connection

at the HB. The HB checks for the MSS, window scaling and ECN option. If set, it

updates the respective variables of the statekeeper. Depending on the source of the

packet, end host or another HB, a flag is updated to indicate if the packets flowing

towards the source need to be encapsulated or not.

Before forwarding the SYN packet on Leg 2 (or F2), the HB first finds the IP

address of the next hop HB, if any. This information is used while processing the

data packets. The function then calls the prepare_tcp_syn function to forward the

SYN packet towards the destination host. It also initializes the window parameters

for the Sliding Window protocol of TCP. The HB ensures that IP over IP, if it will

be used, is reflected in the MSS option of a given direction of data flow.

SYN-ACK packets: At the receipt of a SYN-ACK packet, the HB initializes the

variables of Leg 2 of the TCP connection. It checks the TCP options that are being

negotiated and updates the respective variables for the MSS, window scaling and

ECN option. It also updates a flag to indicate if the packets flowing towards the

destination host need to be encapsulated or not.

Before forwarding the SYN-ACK packet, the HB first finds the IP address of

the next hop HB, if any. This information is used while processing the data packets.

The function then calls the prepare_tcp_synack function to forward the SYN-ACK

packet towards the source host. It also calls the prepare_tcp_ack function to send

the last ACK of the connection establishment phase back to the destination host. It

also initializes the window parameters for the Sliding Window protocol for Leg 2.
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Data and ACK packets: These type of packets are received when the TCP

connections of Leg 1 and Leg 2 are in the established state. The data and ACK

packets require similar processing and hence the process_in_pkt function treats them

as a single case.

The receipt of both data and ACK packets is an opportunity to forward unsent

data packets sitting in the packet queues. The ACK for a corresponding data packet is

always piggybacked on an outgoing data packet, if there is one. The prepare_fwd_data()

function, which will be described later, is called to process and forward data packets.

The prepare_tcp_ack() function is called to create and send out the ACK packet if

there is no data packet to piggyback it on.

FIN and FIN-ACK packets: These packets indicate the teardown of a TCP

connection. However, there is a possibility that a FIN packet contains some data.

Hence it is treated as a data packet by the HB. Depending on the TCP state of the

leg on which the FIN (FIN-ACK) packet was received, the HB processes it as follows.

If the packet received is the first FIN packet, the state of that leg is changed

to TCP_CLOSING provided there are no missing data packets. Else the HB changes

the state of the leg to TCP_FIN_WAIT and calls the prepare_tcp_ack() function to

inform the source host of the missing data packets.

The receipt of a FIN-ACK packet indicates that the next host (HB or destination)

has received the FIN packet and is ready to close the connection. The HB changes

the state of the leg to TCP_CLOSING from TCP_FIN_SENT. It calls upon the

prepare_tcp_ack() function to send out the last ACK of the connection. It deletes

the RTO timers for both the legs and initiates the TIME_WAIT timer as required

by [32].
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A task common while processing SYN and SYN-ACK packets is to calculate, if

required, the window scale factor for the respective legs. This task is performed by

the function calc_rcv_wscale as shown in the following code abstract:

void calc_rcv_wscale

(int __space, __u32 mss, __u32 window_clamp, int wscale_ok, __u8 *wscale)

{

unsigned int space = (__space < 0 ? 0 : __space);

if(window_clamp == 0)

window_clamp = (65535 << 14);

space = min(window_clamp, space);

(*wscale) = 0;

if(wscale_ok) {

while (space > 65535 && (*wscale) < 14) {

space >>= 1;

(*wscale)++;

}

}

}

The rcv_calc_wscale function calculates the window scale facotr based on the

values of the __space and window_clamp parameters. __space represents the available

buffer space. Since this function is called during the connection establishment phase,

the entire buffer of 1MB is available. Hence __space is always initialized to 1MB.

window_clamp represents the upper limit for the acceptable advertised window. If

no value is passed for it, window_clamp is initialized to the theoretically maximum
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possible value (65535 << 14 = 2 3° ). See [10] for an explanation of why 14 is the

upper limit for the shift count. Based on the value of __space and window_clamp,

the window scale factor is calculated in the while loop. This logic was adapted from

the function that calculates the window scale factor in the Linux kernel.

A common task while processing all of above types of packet is to update the

variables of the Sliding Window protocol viz. snd_next, snd_una, rcv_next and

mac_rcv_byte. This is important as these variables dictate the flow of the data stream

in a given direction. This task, among others, is performed by the process_tcp_ack()

function. This function is called for each of the packet types listed above. Another

task common for most of the packets is to queue them in the respective packet

queues while at the same time release the data packets that have been acknowledged.

These 2 tasks are performed by the enqueue_packet and prepare_fwd_data functions,

respectively. These functions will be described later in this section.

The process_tcp_ack() function starts off by finding the direction of flow of

the packet being processed. It is then able to retrieve the values of the right variables

that were updated by the previous packet in the same direction of flow. The function

executes the following steps in order:

1. If the acknowledgment sequence of the packet is less than the snd_una variable,
the packet is not processed any further. Such a packet corresponds to an out of
order ACK packet.

2. The ECN flags are processed next by the function. The 3 ECN flags are
combined into one variable as shown below

tp->ecn_flags=((tp->ce << 2) I (tp ->ece << 1) 1 (tp->cwr));

where tp is a pointer to the respective statekeeper. process_tcp_ack then
calls the function process_ecn_flags, which uses the variable ecn_flags to
determine if the HB needs to reduce the congestion window or ask the previous
host (HB or source host) to reduce its congestion window or both or none.

3. If the starting byte of the received packet is less than rcv_next, the packet is not
queued in the respective packet queue. Since the current implementation cannot
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handle packets containing overlapped data bytes, such a packet corresponds to
an out of order retransmission of a data packet. Hence the HB drops the packet
(frees memory used by the packet) and sends back an ACK packet to help the
previous host (HB or source host) to keep up to date with the current status of
the data stream.

If the starting byte of the received packet is greater than or equal to rcv_next,
process_tcp_ack calls the enqueue_packet 0 function to queue the packet in
the respective packet queue.

4. The function then checks whether the received packet is a duplicate ACK or
not. If it is, it increments the duplicate ACK counter by 1. The duplicate
ACK counter is used while forwarding data packets to the next host (HB or
destination host).

As mentioned earlier, the NewReno algorithm is implemented for fast retransmission
and fast recovery. Hence for every good ACK, if the TCP connection was in fast
recovery, the HB checks if the ACK is a partial ACK or one that acknowledges
all outstanding data packets. In either case, the duplicate ACK counter is
initialized to 0. The congestion window is updated accordingly by calling the
tcp_update_cwnd 0 function.

5. The last task performed by the function is to update the state of a TCP
connection, if need be. If the TCP connection is in the TCP_SYN_SENT or
TCP_SYNA_SENT state, the function releases the first packet from the packet
queue. Since neither of the legs is in the TCP_CONNECTED state, the first
packet in the packet queues will either be a SYN or a SYN-ACK. The function
then updates the state of the connection to TCP_CONNECTED. If the TCP
connection is in the TCP_CLOSING state and there are holes in the packet
queue (missing data packet), the function updates the state to TCP_FIN_WAIT.
On the other hand, if the TCP connection is in the TCP_FIN_WAIT state and
has received all missing data packets, it updates the state to TCP_CLOSING.

Thus, the process_tcp_ack function makes sure that a split TCP connection
follows the Split TCP state machine by changing its state.

Another task common for all packets, except pure ACK's, is to queue the packet

in the right packet queue. The function, enqueue_packet, is responsible for this task.

Since the HB reorders and forwards the data packets, enqueue_packet is designed to

not only place the data packet in the right queue, but at the correct position within

the queue. As mentioned previously, the packet queues are designed to work as a

FIFO queue. Hence, in the best case scenario a data packet is enqueued at the tail of

the queue. However if the data packet is about to create a packet hole or fill one, extra
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processing needs to be done. The hole_in_queue and the pkt_bfr_hole variables are

used by the function to process data packets arriving after a lost data packet. The

hole_in_queue variable is initialized to 0 indicating that there no holes in the queue

and the pkt_bfr_hole variable is initialized to NULL.

The enqueue_packet function starts off by finding out the sequence number

and the amount of data bytes of the last packet in the packet queue. This helps in

deciding whether the packet is in sequence or is a missing data packet or is about to

create a hole in the packet queue. enqueue_packet performs the following steps in

order:

1. If there are no packets in the queue and the starting byte of the packet is equal
to rcv_next, the packet is enqueued without performing any further checks.
This scenario occurs when all the previous data packets have been forwarded
and acknowledged and the current data packet is in sequence. However, if the
starting byte is not what the HB is expecting, the packet is considered to be
out of sequence. The function jumps to the code that handles data packets that
create holes in the queue (Step 2, Case 2).

As mentioned previously, the original SYN and SYN-ACK packets are blindly
enqueued in their respective packet queues.

2. If there are data packets already present in the queue, the function first reads the
value of the hole_in_queue variable. Depending on the value of this variable,
there are 2 possible cases that the function handles:

Case 1: There are no holes in the queue i.e. hole_in_queue = 0

This case implies that either all the data packet received so far have been in
sequence or the previous out of sequence data packets have been taken care
of. Hence the new data packet could either be in sequence or it might create a
hole in the queue. The packet will create a hole in the queue if the following
condition is true.

Startingbyte of packet > Previouspacketsequence
+ Previouspacketdatabytes

If the condition is true, the variables hole_in_queue, pkt_bfr_hole and max_rcv_byte
are updated. The hole_in_queue variable is set to 1 to indicate the presence
of a hole. pkt_bfr_hole is made to point to the packet currently at the tail
of the queue. And max_rcv_byte is set to the last data byte of the packet
being processed. The packet is then enqueued in the packet queue. Figure 6.6
illustrates this scenario.
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Figure 6.6 Representation of a packet queue containing packet holes.

Case 2: There is a hole(s) in the queue i.e. hole_in_queue = 1

Handling of a data packet when there are holes in the packet queue can be
tricky. A point worth noting here is that in this scenario there is at least one
hole in the packet queue. Also, the variable pkt_bfr_hole always points to the
packet just before the first hole, in sequence, within the packet queue. There
following 3 sub-cases are consider.

In the simplest of case, the starting byte of the current packet is equal to
max_rcv_byte + 1. The packet is in sequence and hence is queued at the tail
of the packet queue. The max_rcv_byte variable is updated to reflect this.

It is possible that the current data packet is the missing data packet that will
advance rcv_next. In this case, the data packet is inserted just after the packet
pointed to by pkt_bfr_hole. Since there might be additional packet holes,
enqueue_packet calls the f ind_new_hole_update function to find the next hole
in sequence and update the pkt_bfr_hole and rcv_next variables accordingly.

As a final case, it is possible that the current packet fills another hole within the
packet queue. It must be recalled that the pkt_bfr_hole variable of only the
head node of a packet queue contains a valid pointer. Hence at any given time,
the Split TCP code can find the packet before the first hole in one operation.
However, if there are additional holes, like in this sub-case, the code will traverse
the packet queue starting at the packet pointed to by pkt_bfr_hole. The
find_hole_and_enqueue is called by enqueue_packet to perform this task and
insert the new data packet at its correct position. No variables are updated for
this case.

Figure 6.7 illustrates the 3 possibilities discussed above.

After the packet has been enqueued, the next step for the HB is to forward it

towards the destination host. The prepare_fwd_data function is responsible for this

task. As mentioned earlier in this section, prepare_fwd_data is called on receipt of a

data packet as well as at the receipt of a pure ACK packet. Hence there are two tasks
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Figure 6.7 Possible positions to insert the data packet in a packet queue containing
holes.

performed by the function - do ACK related processing for the current packet and do

the processing related to forwarding a data packet. prepare_fwd_data performs the

following steps in order:

I. The prepare_fwd_data function starts by releasing all data packets that the
packet currently being processed acknowledges. As long as there are packets in
the queue, the function will always pick the packet at the head of the queue
to check if it is being acknowledged. If yes, the packet is released. This
process is repeated for all data packets that have been forwarded or until the
acknowledgment sequence number of the packet being processed is less than the
starting sequence number of the packet currently at the head of the queue. The
buffer space and congestion window are updated accordingly.

For the packet whose sequence number is equal to the ACK sequence number of
the packet being processed, the RTT estimation and RTO update logic is called
upon. However, the ACKs for data packets that were sent during the congestion
avoidance phase are not considered for the RTT estimation and RTO update
logic.

Once all acknowledged data packets have been released, the snd_una variable is
updated.

2. The function then checks if any data packets can be forwarded towards the
destination host. It finds the minimum of the congestion window and the
advertised window and compares this value with the current number of packets
in flight. This value is expressed in packets as opposed to bytes.

3. The function then checks whether there is a need to retransmit a data packet.
The prepare_fwd_retrans_data function is responsible for retransmitting lost
data packets. The function is called from prepare_fwd_data for the following
3 scenarios - the duplicate ACK count is equal to 3 and the TCP connection is
not in fast recovery or the TCP connection is in fast recovery but the packet
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corresponds to a partial ACK or the ECE flag in the IP header is set. While
dealing with partial ACK's, the congestion window is updated.

The prepare_fwd_retrans_data is called when the RTO timer expires. This
functionality is implemented using the timer_list structure of the kernel.

4. The function is now ready to forward data packets, if allowed. It finds the first
non-sent in sequence data packet that lies before a packet hole. If the data
packet is being forwarded to another HB, the function encapsulates the original
packet in an IP packet. The encapsulated data packet replaces the original
packet that was queued in the packet queue. This saves processing time if the
packet needs to be retransmitted. For all data packets being forwarded, the
ACK sequence value is replaced by the current rcv_next value for the TCP
flow.

The HB treats a FIN packet like a data packet. Once received, it is enqueued

in the appropriate packet queue and forwarded once all the data packets in front of

it have been forwarded.

The HB also contains functions for generating various types of TCP packets.

The functions are named as prepare_tcp_x where "x" corresponds to the type of

packet and could be either syn, synack, ack, finack, probe or reset. These functions

start off by creating a new sk_buff. Once the TCP, IP and MAC headers have been

populated, the HB forwards the packet to the kernel function dev_queue_xmit for

putting it on the wire.



CHAPTER 7

EXPERIMENTS AND RESULTS

The Split TCP implementation in the HB was tested against two modes of operation

- bulk transfer and real time user response. Telnet and SSH were used to conduct real

time response test while files of varying sizes were transferred for the bulk transfer

mode. Each experiment was conducted twice, one with the Split TCP mechanism

enabled in the HB and one without. The findings for the Telnet and SSH experiments

are discussed towards the end of this chapter.

The implementation of Split TCP is done on desktop computers consisting of

either a Pentium 4, 2.4 GHz processor or an AMD Athlon XP 1700+/2000+ processor.

The Linux kernel version on these computers varied from 2.4.20 to 2.6.15. These were

the HB's. All computers had 512 MB of RAM. 100 Mbps Ethernet links were used

for communication.

The implementation was tested under various scenarios by varying the network

parameters, HB capabilities or the location of the HB in the network. The network

parameters of RTT and drop probability were implemented using NistNet [34]. The

individual experiments are discussed below.

7.1 1 HB Scenario

The first set of experiments were performed with 1 HB between the source and

destination host. Figure 7.1 shows the setup used for these experiments.

For the first experiment, the network parameters were chosen so as to reflect

a HB that is placed at the worst location within the network. Measurements were

taken with R772 >> RTT1 and p2 > p i . For this scenario, Section 2.2 predicts that

Split TCP will do only marginally better than the end-to-end TCP connection. This

is indeed what was found.

97
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Figure 7.1 1 HB network setup.

The network parameters chosen for this experiment are as follows: RTT1  =

10ms, p 1 = 0%, RTT2 = 100ms and p2 = 5%. Various files were transferred between

the source and destination host to take measurements. The file size varied from 25

MB to 450 MB with increments of 25 MB. Each file was transferred 3-5 times to

get a good approximation of the transfer time. Figure 7.2 compares the average

transfer times of the files with Split TCP and with classical TCP. In the graph, the

X-axis represents the size of the file being transferred, while the Y-axis represents the

average transfer time in minutes. Though Split TCP does better than classical TCP,

the factor of improvement is rather low and ranges between 1.26 and 1.54.

0 	 50 	 100 	 150 	 200 	 250 	 300 	 350 	 400 	 450
File Size (in MB)

Figure 7.2 Measurement for RTT2 >> RTT1 and p 1 < 292.
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For the second experiment, only minor modifications were made to the setup for

the first experiment. All network parameters except p 1 were kept the same. p 1 was

set to 5%, equal to p 2 . The same experiment was performed. Figure 7.3 compares

the transfer times of the files under these conditions. Once again, Split TCP does

marginally better than classical TCP. The factor of improvement ranged from 1.16

and 2.55.

Figure 7.3 Measurement for RTT2 >> RTT1 and p1 = p2 .

7.2 Varying Drop Probability Scenario

For the previous two experiments, all the network parameters were kept constant

during the course of the experiment. In this experiment, the drop probability of the

leg near the destination was varied. The experiment was conducted to find the drop

probability at which the performance of Split TCP would start to degrade.

The setup of Figure 7.1 was used for the experiment. The network parameters

were set to the following values: RTT1 = 200ms, p 1 = 0% and RTT2 = 10ms.

The value of p2 was varied from 5% to 20% in increments of 1. This resembles the

situation involving 1 HB placed near the earthstation of the developing country which
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is considered to be a "good HB location". A 100 MB file was transferred between the

end hosts.

Figure 7.4 compares the average transfer time of the 100 MB file with Split

TCP and with classical TCP. As seen from the graph, a flow with Split TCP does

much better and the factor of improvement ranged from 6.18 to 12.70.

The three experiments just described, prove the hypothesis stated in Section 2.2

i.e. the factor of improvement is largest when the network problems are localized one

per leg. To state it explicitly, in the first experiment, the factor of improvement for a

100 MB file transfer was 1.48. This is very small when compared to 12.54, the factor

of improvement observed in this experiment for the same file and network parameters

(P2 = 5%).

Figure 7.4 Measurements for varying drop probability in 1 HB setup.

7.3 3 HB Scenario

This scenario reflects the campus scenario discussed in Section 2.3. The network

setup of Figure 7.5 was used for conducting this experiment. The drop probability

between HBI  and HBB is varied from 5% to 15% in increments of 1. A 100 MB file

was transferred between the end hosts.
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Figure 7.5 3 HB network setup.

Figure 7.6 reports the measurements obtained for this experiment. It compares

the average transfer time of a 100 MB file for Split TCP and classical TCP. The factor

of improvement increased with increasing drop probability and ranged from 2.60 to

6.54. One can expect larger difference at higher drop probabilities.

Figure 7.6 Measurements for varying drop probability in 3 HB setup.

An interesting observation is the flat line characteristic of Split TCP with

increasing drop probability. This implies that a TCP connection with Split TCP

is almost independent of the drop probability. It also means that there is a good

possibility that the new bottleneck is either the advertised window of one of the legs

or the linkspeed of one of the legs. A study of the tcpdump [35] outputs showed

that the bottleneck was the advertised window (without window scaling: at most

65535 bytes) between HBA and HB/ (i.e. the window advertised by HB/ to HBA).



102

This indicates that use of the window scaling option between the HBs will improve

performance of Split TCP. The next experiment confirms this analysis.

7.4 3 HB Scenario With Window Scaling

In all the previous experiments, the window scaling option was not used. This limits

the effective window to 65535 bytes instead of the higher congestion window. For this

experiment, the window scaling option was used in the HB. Note that the end hosts

need not understand the window scaling option. See Chapter 5 for an explanation of

how the window scale factor was computed. The network setup of Figure 7.5 is used

for this experiment with the drop probability of "Leg 3" fixed at 5%. Various files

were transferred between the source and destination host to obtain the measurements.

The file size varied from 25 MB to 250 MB with increments of 25 MB. Each file was

transferred 3-5 times to get a good approximation of the transfer time.

Each file was transferred under 2 different conditions - One with Split TCP

enabled in the HB and window scaling being used only between the HBs, and one

with Split TCP disabled in the HB and window scaling being used by the end hosts.

Figure 7.7 compares the average transfer times of the files under these 2 conditions.

As seen from the figure, a flow with Split TCP and window scaling option performs

better as compared to a corresponding regular TCP flow with end hosts using window

scaling. The factor of improvement ranged from 2.20 to 5.26.

When compared with the previous experiment, under the same network conditions

(drop probability of 5%), the average transfer time of a 100 MB file with Split TCP

and window scaling improved by a factor of 2.

The previous experiment was conducted for a fixed drop probability of 5% in

"Leg 3" . However, to get a clear understanding of the improvement due to window

scaling, the drop probability of "Leg 3" must be varied, as was done for the experiment

of Section 7.3. Thus for this experiment, the network setup of Figure 7.5 is used with
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Figure 7.7 Measurements with window scaling in 3 HB setup with fixed drop
probability of 5%.

the drop probability of "Leg 3" varying from 5% to 15%. For each drop probability, a

100 MB file was transferred 3-5 times with and without Split TCP. For the end-to-end

TCP connection, window scaling was turned on in both the end hosts. Whereas for

Split TCP, though the HB's used the window scaling option among themselves, it

was turned off at the end hosts.

Figure 7.8 compares the average transfer time of the 100 MB file over various

drop probabilities. As is seen from the figure, the TCP flow with Split TCP once

again out performs regular TCP with the factor of improvement ranging from 4.90

to 12.44. This factor of improvement is twice the factor of improvement that was

obtained for the experiment of Section 7.3.

The use of window scaling option by the end hosts, as anticipated, did not

change the transfer time of the 100 MB file when classical TCP was used. Hence

from Figure 7.6 and 7.8 it can be inferred that as the network conditions worsen

(increasing drop probabilities), the factor of improvement because of Split TCP will

increase and the use of window scaling with make this factor even larger.
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Figure 7.8 Measurements with window scaling in 3 HB setup with varying drop
probability.

Once again, it is interesting to note the flat line characteristic of Split TCP

with increasing drop probability. This implies that Split TCP is independent of drop

probability and that the bottleneck is either the advertised window of one of the legs

or the linkspeed. Looking at the tcpdumps for the experiment, it was confirmed that

the advertised window between the source and HBA was the bottleneck. Since the

window scaling option was not negotiated between the source host and HBA , the

advertised window of this leg could not grow beyond 65535.

7.5 Wireless Network Scenario

This section reports on measurements taken over an actual heterogeneous network.

Figure 7.9 shows the network setup used for this experiment.

Fixed Host (FH) 	 Mobile Host (MH)

Figure 7.9 Wireless network setup with 1 HB.
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As shown in the figure, the HB acts as the base station where the wired and

wireless leg of the end-to-end connection meet. This allows the HB to deal with the

network problems of the wired leg independent of the network problems of the wireless

link and vice versa. In the setup shown, the HB and the destination host (Mobile

Host (MH)) communicate using the IEEE 802.11b protocol and is the only wireless

hop in this experiment. The 802.11 protocols use CSMA/CA (Carrier Sense Multiple

Access with Collision Avoidance) as the basic access mechanism. In CSMA/CA each

host needs to check if the channel is idle before it can start transmission. In case

of contention, an exponential random backoff mechanism is used, at the expiration

of which the host tries to transmit again. The standard also defines MAC layer

acknowledgment, retransmissions and fragmentation which work in addition to the

corresponding mechanisms at the transport layer. For some wireless NIC's, these

MAC layer mechanisms can be enabled, disabled or configured at will.

The destination host was a laptop running Linux, kernel version 2.6.15. It had

an Intel(R)/Wireless LAN PCI Adapter for connectivity. At the HB, an off the shelf

Netgear Wireless NIC having an Atheros chipset was used for communication on the

wireless leg. The HB and the laptop were connected in ad hoc mode at a data rate

of 11 Mbps. For the purpose of the experiment, the laptop was moved within and to

different floors of the GITC building at NJIT. For the leg between the source host

(Fixed Host (FH)) and the HB, the RTT and the drop probability were set to 200ms

and 0% respectively. Since the experiments were taken on an actual heterogeneous

network, the RTT and the drop probability of the wireless link were not under control

and varied drastically. For most of the runs of the following two experiments, wireless

signal loss and TCP disconnects were experienced, both of which added to the drop

probability of the wireless link.

In this dissertation, the results of experiment with and without MAC retransmissions

are reported.
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In the first experiment the MAC retransmission were left enabled. A 50 MB file

was transferred between the FH and the MH. The file was transferred 3 times to get

a good approximation of the transfer time. Figure 7.10 compares the average transfer

time of the file with Split TCP and with classical TCP.

Average Transfer lime vs Drop Probability

Figure 7.10 Measurements for heterogeneous network setup with MAC
retransmissions.

In Figure 7.10, the y-axis represents the average transfer time while the x-axis

represents the drop probability % that was measured from the tcpdump outputs of

the experiment. As seen from the figure, the maximum drop probability achieved

was less that 3%. Also not for all measured drop probabilities, are there comparable

entries for Split TCP and classical TCP. However, for most entries in the figure,

Split TCP does comparably better than classical TCP. It is also interesting to note

that as the drop probability increases and gets close to the ones that were used for

experiments with wired legs, the factor of improvement because of Split TCP starts

to increase.

In the second experiment, MAC retransmissions were disabled. A 100 MB file

was transferred between the FH and the MH. The file was transferred 3 times to get
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a good approximation of the transfer time. Figure 7.11 compares the average transfer

time of the file with Split TCP and with classical TCP.

Figure 7.11 Measurements for heterogeneous network setup without MAC
retransmissions.

In Figure 7.11, the y-axis represents the average transfer time and the x-axis

represents the drop probability % measured from the tcpdump outputs of the file

transfers. As seen from the figure, the maximum drop probability achieved for this

experiment was less that 1%. Once again it is interesting to see that although Split

TCP does not do well for lower drop probabilities, the factor of improvement starts

to increase for larger drop probabilities.

It should be noted that the drop probabilities for the experiments over an

heterogeneous environment were observed to be much smaller than the drop probabilities

used for the experiments over a wired environment.

7.6 Interactive Connections

This section discusses the findings for an interactive connection, like Telnet or SSH,

with Split TCP. This is unlike the previous sections which discussed the findings
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for performance improvement with Split TCP by transferring files of varying sizes

between the end hosts.

The successful SSH connections over Split TCP demonstrates that an interactive

secure channel is not broken because of the introduction of the HB in the network.

Any type of authentication required by SSH is done end-to-end. The results presented

in this section are of subjective qualitative nature.

The network setup of Figure 7.1, is used for this experiment with the following

network parameters: RTT1 = 10ms, p 1 = 0%, RTT2 = 200ms and p2 = 10%.

For these settings, minimal to no improvement was perceived with Split TCP in

place. However, when the drop probability, p 2 , was increased to 20%, a considerable

improvement in the response time of the connection was perceived.

7.7 Scalability

In the previous experiments, at any given time, the HBs were managing 1 end-to-end

TCP connection. Although they have shown to perform well in the previous scenarios,

their performance while handling multiple end-to-end TCP connections was unknown.

The first experiment of this section addresses this matter.

For this experiment the network setup of Figure 7.1 was used. For each concurrent

TCP connection, a 100 MB file was transferred between the source and destination

host. The file was transferred 3 times each to get a good approximation of the transfer

time. Figure 7.12 compares the average transfer time of Split TCP with classical TCP

for increasing number of TCP connections through a HB.

In Fig. 7.12, the x-axis represents the number of TCP flows handled by the

HB and the y-axis represents the average transfer time of a 100 MB file. As is

seen from the x-axis, the number of flows through the HB is increased from 1 to

10. It is interesting to note that while managing 10 flows, the HB performs as if it
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Figure 7.12 HB performance for multiple TCP flows.

was managing 1 end-to-end TCP flow. This experiment shows that with increasing

number of TCP connections, the HB scales well.



CHAPTER 8

CONCULSIONS

8.1 Main Contribution

This dissertation aims at improving the performance of TCP connections under

unfavorable network conditions of large RTT and high loss probability. To improve

TCP performance under such network environments, the dissertation proposes the use

of Split TCP where proxies (called Helper Boxes) are introduced in the network to

split the end-to-end TCP connection into multiple TCP connections. The dissertation

provides a mathematical guarantee for the improvement in TCP performance with

Split TCP. Using the mathematical result, it is deduced that the optimal location

of the HBs along a network path is such that the network problems get localized

one per leg. This guarantees maximum achievable improvement in TCP performance

with Split TCP.

The proposed solution, Split TCP, has been implemented in the Linux kernel

as a Linux Kernel Loadable Module (LKLM) using the Netfilter system. This kernel

level implementation is a first of its kind. The module works at the IP layer and

provides both IP and TCP functionalities. The dissertation also proposes the use

of IP over IP for exchanging data packets between HBs. Various components were

designed which collectively maintain the state of the end-to-end TCP connection at

the HB.

The implementation was tested on an actual network setup. The mathematical

deduction about the optimal position of the HBs was verified through experiments.

The Split TCP mechanism was tested on both wired and heterogeneous network

environments. For all experiments, Split TCP was found to improve the end-to-end

110
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TCP performance with the factor of improvement increasing for worsening network

conditions.

8.2 Lessons Learned

Many challenging problems of varying degree of difficulty were faced and overcome

during the course of this work. This section lists some of the interesting ones.

Since a kernel level implementation of Split TCP was opted for, it became

necessary to find out how the kernel handles incoming and outgoing packets. At the

time when this project was started, there was (and still is quite true) very minimal

documentation regarding the network stack of the Linux kernel. None of them covers

the entire network stack and most of them gives a birds-eye description of specific

parts of the network stack. The only way to overcome this problem was to read the

source code of the network stack of the kernel. This effort has been documented in

Chapter 4 of this dissertation.

The implementation of Split TCP was started on kernel version 2.4.x. As the

newer stable kernel version 2.6.x emerged, the Split TCP code was migrated onto

it. The network stack of 2.6.x is different in many ways when compared with the

one in 2.4.x. This resulted in various issues while compiling and executing the Split

TCP code on a 2.6.x kernel. While the compilation errors were easily taken care

of, the most challenging errors were the kernel panics that occurred while testing

the Split TCP module. A kernel panic or a kernel oops, as called in Linux, is an

error message dumped by the operating system when it encounters an error from

which the operating system cannot recover. An oops message normally consists of

the contents of the register and the function call trace information. Since for most

oops the system freezes, a serial console was used to capture these kernel panics.

Using the offset information displayed in the oops for the faulting function, the faulty
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instruction can be identified in the object file of the concerned C file. obj dump [36]

was used to create the object file of the respective C file.

8.3 Dissertation Summary

The network conditions of large RTT and high drop probability are known to affect

the TCP performance drastically. In Chapter 1 there is an explanation why. These

network conditions are present in various network scenarios like, long range TCP

connections, wireless environment, interplanetary network, etc. This dissertation

proposes Split TCP as the solution for such network environments. Split TCP

works by breaking the end-to-end TCP connection into multiple independent TCP

connections, each of which is called a leg. This is achieved by introducing proxies,

called Helper Box (HB), in the network path. The Split TCP code will reside in these

HBs. The goal is to isolate the network problems one per leg, thus leading to improved

performance. Chapter 2 provides a mathematical proof for the same. The result of

this proof can be used to find out the optimal location of the HB within the network

path. Chapter 2 also describes the design environment that is of primary interest.

This environment consists of two campuses connected through either a transoceanic

link or a satellite link and where one of the campuses is in a third world country.

Split TCP is a fairly known technique and some research has been conducted

to evaluate its benefit for mobile and cellular networks. Chapter 3 discusses some of

the related research work along with their pros and cons. It also compares Split TCP

against other similar techniques, specifically the "Cache and Forward" techniques.

For the purpose of this dissertation, Split TCP was implemented in the Linux

kernel by making use of the Netfilter system. The design allows the HB to act as

a proxy for the destination host while communicating with the source host and as

a proxy for the source host while communicating with the destination host. This

is achieved through acknowledgment spoofing and caching of relevant data packets.
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The design also allows the use of IP over IP for exchanging data packets between the

HBs. This guarantees the flow of data packets through the same sequence of HBs.

This is also discussed in Chapter 2. The proposed design makes the HB completely

transparent to the end hosts. Hence no code modifications whatsoever are required

at the end hosts. The design also supports interactive applications.

A kernel level design is chosen since it allows Split TCP to work with packets

as opposed to byte stream. It also preserves the TCP flags at no extra cost. The

only disadvantage of a kernel design is the memory constraint, which as seen from the

results of Chapter 6, is not a drastic one. Split TCP is designed as mild variant of the

"Cache and Forward" technique. Instead of caching the entire file before forwarding,

Split TCP only caches those packets for which it has not received an acknowledgment

from the destination host.

For the proper functioning of the HB, 4 components were designed: Flow

Tracker, Statekeeper, Packet Queues and TCP State Machine. For each TCP flow

that the HB splits, it creates an instance of the flow tracker component. The flow

tracker node is used to maintain the TCP semantics of the split connection. It

accomplishes this by creating instances of the statekeeper and the packet queues. For

each end-to-end TCP connection, a pair of statekeeper and packet queue are created,

one per leg. The statekeeper is designed to maintain various variables which represent

the state of the TCP connection for a given leg. Whereas the packet queues are used

for caching data packets that will be forwarded to the respective destination host. The

TCP state machine is designed for the proper functioning of the Split TCP engine.

It consists of 8 states and is closely modeled to the classical TCP state machine.

Chapter 5 discusses the details of the actual implementation of Split TCP. Split

TCP is implemented as 3 C files - two of which are compiled in the kernel source tree

and the third one is the kernel module. The 2 files compiled in the kernel contain

supporting functions (initialization, assessor and mutator functions, etc.) and variable
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and structure declarations. The kernel module contains the core packet processing

code which provides TCP functionalities at IP layer. Various TCP features have been

implemented in the Split TCP code. These include, sliding window protocol, sending

acknowledgments back to the source host, RTT estimation, RTO calculation, MSS

option, window scaling option, ECN, etc to name a few.

The Split TCP implementation and its features were tested in a LAN environment

with the two network conditions of large RTT and high loss probability being introduced

through NistNet. Files of varying sizes (in MB) were transferred between the source

host and the destination host. The transfer time was recorded as a measure of

performance. In the 1 HB scenario with varying drop probability the maximum

factor of improvement was 12.70. For a 3 HB scenario (this scenario reflects the

network environment of primary interest) with varying drop probability and without

window scaling, the maximum factor of improvement achieved was 6.54. For the

same setup with window scaling enabled between the HBs, the maximum factor of

improvement jumped to 12.44. It was interesting to note that, in both experiments,

the transfer time with Split TCP was almost independent of the drop probability. The

implementation was also tested in a heterogeneous environment with the leg between

the destination host and the HB being the wireless leg. With MAC retransmissions

disabled at the HB, the maximum factor of improvement with Split TCP was 2.37.

Analyzing the results for the heterogeneous setup was challenging since there was no

control over the drop probability. The maximum drop probability that was achieved

was only 3%. The Split TCP module was monitored and found to introduce less than

10% overhead on the Linux system with respect to CPU and cache usage.

8.4 Possible Enhancements

The current design and implementation of Split TCP duplicates, with required modifications,

various TCP mechanisms. However, the current implementation does not support all
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end host TCP mechanisms. In order to make the Split TCP implementation complete,

one can add the following TCP/IP features:

• The current implementation frees the HB from doing IP fragmentation by
manipulating the MSS option during the SYN exchange. However the intermediate
routers may fragment the data packet which the HB cannot handle currently.

This is because of the lack of TCP headers in all the fragments except the first.
The current implementation assumes that all data packets picked for processing
have all the protocol headers up to the transport layer.

One way of handling the fragmented packets is to maintain a fragment queue at
the HB, one per direction of data flow. All incoming fragments will be placed
in this queue. Once all the fragments that make up a data packet have been
received, the HB can create a new sk_buff that replicates the original data
packet. This data packet can then be inserted at its rightful position in the
respective packet queue.

• In the current implementation, the HB sends an ACK packet for each data
packet received. In other words, delayed acknowledgments have not been implemented.

Delayed acknowledgments help reduce the ACK traffic considerably for unidirectional
data flow. When data flow is bidirectional, the acknowledgment is always
piggybacked on the outgoing data packet.

• The current implementation supports the window scaling and ECN TCP options.
Another TCP option that might be of interest is SACK.

The SACK option helps the destination host clearly convey to the source host
which packets have been lost. This is particularly helpful for connections with
lossy links. Since the network scenario of interest for this dissertation does
contain a lossy leg, it would be interesting to see if the use of SACK in that leg
improves the end-to-end throughput.

In addition to the above mention TCP/IP features, the following features may

also be designed and implemented for completeness:

• Load Balancing: The real world scenario shown in Figure 2.4 contains just
one intermediate HB between the campuses. For large number of Split TCP
flows, it might become the bottleneck. A logical expansion of this scenario is to
have multiple intermediate HBs between the two campuses. For each new TCP
connection, the HBs within the campuses can then select the intermediate HB
with the least load at that moment. This will prevent any one intermediate HB
from being the bottleneck node.
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• Packet Marking: As mentioned previously, the current implementation of
Split TCP has support for the ECN mechanism i.e. a packet containing ECN
flags will be processed appropriately at the IP and TCP layers of the HB.
However, it was found through experiments that the packet marking mechanism
( (RED!) algorithm) in the Linux kernel is faulty. Settings for which the RED
algorithm should have marked at least a few packets, none were actually marked.

Thus a possible enhancement is to design and implement a new packet marking
technique. It can then be loaded either dynamically or statically as a qdisc
discipline for the desired interface. Once the technique has been proven to be
robust, it may also be merged as patch to the main Linux kernel.

8.5 Future Work

This dissertation proposes Split TCP as a solution for network environments having

large RTT and high probability of packet loss. However there are many other network

environments that will benefit from Split TCP. Some of these have been researched

(Mobile and Cellular networks) while some are still open for discussion. This section

presents the possible avenues of future research with Split TCP as a solution.

• Wireless Environment:
Some research has been conducted outlining the advantages of Split TCP in a
wireless environment. Some of this has been through simulations while others
required restructuring the underlying infrastructure. The implementation presented
in this dissertation was tested in a heterogeneous environment containing a
single hop wireless leg. A natural extension is to have multiple wireless hops
in the setup. This will allow the use of HBs within the wireless part of the
connection.

• Interplanetary Network:
Interplanetary network is a new project under taken by NASA with the vision of
exchanging information between earth and terrestrial objects or among terrestrial
objects. The network environment of the interplanetary network has both
the large RTT and high probability of packet loss. Hence, Split TCP is a
natural solution. However, the network environment makes it very difficult to
localize the network problems one per leg. Although there is a mathematical
guarantee of improvement in end-to-end performance with Split TCP, it would
be interesting to find out the actual factor of improvement through experiments.
It will also be interesting to compare the performance of the current design
of Split TCP with a conventional "Cache and Forward" technique for such
scenarios.
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Figure 8.1 Reliable multicast hierarchical delivery tree.
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• Reliable Multicast:
With sharable application getting popular in workplace, various issues concerning
IP multicast have come into light. One of them is how to avoid the ACK
implosion problem while at the same time provide reliable multicast.

The ACK implosion problem is quite prominent in a one-to-many multicast
scenario as shown in Figure 8.1. In the setup shown, the source host, S,
broadcasts a data packet to all the members, receiver hosts R, in the group.
Each member will then send an acknowledgment, for the data packet received,
back to the source. As the number of members increases, the number of ACK
packets destined for the source host increases, thus overwhelming it. This is
known as the ACK implosion problem. Various method have been proposed to
overcome this problem including the use of negative acknowledgments, hierarchical
delivery tree, etc.

Considering a hierarchical delivery tree structure as shown in Figure 8.1, Split
TCP can be used to minimize the ACK implosion problem while providing
reliable multicast. The receivers at "Level 1" can be converted into HBs, thus
greatly reducing the number of ACK packets that the source needs to handle.
In there is a "Level 3" , the receiver hosts at "Level 2" can also be converted
into HBs. The only change required in the current implementation of Split
TCP would be to modify the code that checks the supported destination IP
addresses.

• Mobile TCP/IP:

Currently a lot of research is being focused on mobile TCP/IP over cellular
networks. Cellular networks face the same network problems as wireless networks.
Thus Split TCP can be and has been [2] used to increase the data rate of data
traffic over cellular networks. This is achieved by converting the cell towers (or
access points) into HBs.
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An interesting issue is to provide a reliable data rate even when the MH does
cell switching. The current implementation of Split TCP can be enhanced to
support this feature. An inter HB protocol can be designed to exchange the
state of a TCP connection when the respective MH switches cells. Thus the
new HB will take over the TCP connection and continue to provide an increased
data rate.



APPENDIX A

LIST OF ACRONYMS

cwnd Congestion Window

qdisc Queueing Discipline

skb [sk_buff]Socket Buffer

AH Authentication Header

ARP Address Resolution Protocol

BER Bit-Error Rate

BGP Border Gateway Protocol

BH Bottom Halve

CE Congestion Experienced

CWR Congestion Window Reduced

DNS Domain Name System

ECE ECN-Echo

ECN Explicit Congestion Notification

ESP Encapsulating Security Protocol

FEC Forward Error Correction

FH Fixed Host

FIFO First In First Out
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FTP File Transfer Protocol

HardIRQ Hardware Interrupt Request

HB Helper Box

ICMP Internet Control Message Protocol

IEPM Internet End-to-end Performance Monitoring

IP Internet Protocol

ISR Interrupt Service Routine

LAN Local Area Network

LKLM Linux Kernel Loadable Module

MAC Media Access Control

MH Mobile Host

MSR Mobile Support Routers

MSS Maximum Segment Size

MTU Maximum Transfer Unit

NAT Network Address Translation

OSI Open Standards Interconnect

OSPF Open Shortest Path First

PO Post Office

RIP Routing Information Protocol

RTO Retransmission Timeout
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RTT Round Trip Time

SACK Selective Acknowledgement

SH Supervisor Host

SNR Signal to Noise Ratio

SoftIRQ Software Interrupt Request

SRP Selective Repeat Protocol

TCP Transmission Control Protocol

TTL Time To Live

UDP User Datagram Protocol

WAN Wide Area Network
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APPENDIX B

INSTALLATION MANUAL

This appendix is a HOWTO manual for installing and making use of the Split TCP

software in a Linux system.

B.0.1 Getting the software

The Split TCP software is available in source format at the following webpage:http://web.njit.edu/rbj2

Download the file splittcp. tar.gz.

B.0.2 What does the tar file contain

The splittcp.tar.gz file contains the following 5 files:

1. ipinintercept.c

This file is the kernel module and contains the core packet processing code.

2. split_helper.c

This file contains support functions for the Split TCP code.

3. split_helper.h

This file contains variable and structure declarations used in Split TCP code.

4. Makefile

This is the makefile used to compile the kernel module.

5. README

This file contains the material presented in this appendix.

B.0.3 Installing the software

Unzip and untar the file to any directory in the Linux system, preferably in /home.

Off the 3 C files, the split_helper.* files need to be compiled in the kernel source tree.
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Assuming that the kernel source files are located at /usr/src/linux/, do the following

steps.

1. Copy split_helper.c in /usr/src/linux/net/ipv4/ directory.

2. Modify the Makefile in /usr/src/linux/net/ipv4/ to include "split_helper.o" at
the end of the string for "obj-y".

3. Copy split_helper.h in /usr/src/linux/include/linux/ directory.

4. Compile a fresh copy of the kernel. Unless a change is made to the split_helper.*
files, these steps need to be repeated.

B.0.4 Configuring the kernel module

Currently the Split TCP code works for networks with a

16 subnet mask. This is reflected through the variables DEST_IP_MASK (currently

Oxffffff) and SRCIP_MASK (currently Oxffffff). These variables should be modified

according to the subnet mask of the source and destination network address.

B.0.5 Configuring the Makefile

The Makefile contains the mapping between the end hosts and HBs. It feeds this

mapping as command line arguments to the kernel module. Thus depending of the

network setup, this mapping should be changed. Consider the network setup of Fig.

B.1 to understand the format in which this mapping is written.

Figure B.1 Sample network setup.
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The mapping is stored in a 4x4 table. Each row represents the following fields

in order - source network address, destination network address, next HB IP address

and previous HB IP address. In case there is no next or previous HB, a value of Ox0

is stored instead. The mapping stored at HB 1 is shown below:

neigh_hb_table=0x10a000,0x30a000,0x100020a,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x0,0x 0 ,0x0,0x0,0x0,0x0

where

Source Net ID Destination Net ID Next HB IP address Previous HB IP address

10.1.0.0 10.3.0.0 10.2.0.1 None

OxlOa000

(left shifted by 12)

Ox30a000

(left shifter by 12)

0x100020a 0x0

Similarly the mapping stored at HB 2 is shown below:

neigh_hb_table=0x10a000 , Ox30a000 , Ox0 , 0x200020a , 0x0 , 0x0 , 0x0 , Ox0 , Ox0 , 0x0 , 0x0 , 0x0 ,

0x0 , 0x0 , 0x0 , Ox0



APPENDIX C

SPLIT TCP CODE

This appendix lists the Split TCP code introduced in the Linux system.

C.1 split_helper.c

This file contains variable and structure declarations that are used in the Split TCP

code.

	

1	 /*
	2	 * Created: 	 02/01/2005

	

3 	 *

	

4 	 * Author: 	 Rahul Jain

	

5 	 *

	

6 	 * Filename: 	 split_helper.c

	

7 	 *

	

8 	 * Comment:

	

9 	 * 	 This file contains functions that will manipulate

	

10 	 * 	 the structs defined in split_helper.c

	

11 	 *

	

12 	 */
13

	

14 	 #include <linux/config.h>

	

15 	 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/split_helper.h>

	

18 	 #include <net/inet_ecn.h>
19

	

20 	 /* Global Variable */

	

21 	 struct split_flow_info *sfi_list_head;
22

	

23 	 /*

	

24 	 * 	 Function used to initialize the head_pkt linked
	25	 *	 list.

	

26 	 */
27 void init_skbuff_list(struct split_flow_info *sfi)

	

28 	 {
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29 	 struct skbuff_list *list_head;
30
31 	 /* Initializing the i2r queue */
32 	 sfi->i2r_queue = kmalloc(sizeof(struct skbuff_list),
33 	 GFP_ATOMIC);
34 	 list_head = sfi->i2r_queue;
35 	 list_head->next = list_head->prev = list_head;
36 	 list_head->pkt_state = SENT;
37 	 list_head->hole_in_queue = 0;
38 	 list_head->sb_pkt = NULL;
39 	 list_head->pkt_bfr_hole = NULL;
40 	 list_head->pkt_count = 0;
41 	 list_head->tps_ptr = sfi->rhs_tcp_state;
42 	 list_head->lock = RW_LOCK_UNLOCKED;
43
44 	 /* Initializing the r2i queue */
45 	 sfi->r2i_queue = kmalloc(sizeof(struct skbuff_list),
46 	 GFP_ATOMIC);
47 	 list_head = sfi->r2i_queue;
48 	 list_head->next = list_head->prev = list_head;
49 	 list_head->pkt_state = SENT;
50 	 list_head->hole_in_queue = 0;
51 	 list_head->sb_pkt = NULL;
52 	 list_head->pkt_bfr_hole = NULL;
53 	 list_head->pkt_count = 0;
54 	 list_head->tps_ptr = sfi->lhs_tcp_state;
55 	 list_head->lock = RW_LOCK_UNLOCKED;
56
57 	 }
58
59 	 /*
60 	 * 	 Function used to add a new packet to the list.
61 	 * 	 List is arranged in FIFO manner so the new
62 	 * 	 node is added at the end of the list.
63 	 */
64 	 void enqueue_skbuff_list(struct split_flow_info *sfi,
65 	 struct skbuff_list *newpkt,
66 	 struct skbuff_list *queue_head)
67 	 {
68 	 struct skbuff_list *prev , *next;
69 	 struct skbuff_list *head = queue_head;
70
71 	 prey = head->prev;
72 	 next = head;
73
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74 	 prev->next = newpkt;
75 	 newpkt->prev = prev;
76 	 newpkt->next = next;
77 	 next->prev = newpkt;
78
79 	 newpkt->pkt_state = NOT_SENT;
80 	 ++head->pkt_count;
81 	 }
82
83 	 /*
84 	 * 	 Function used to insert a new packet after the
85 	 * 	 given pointer.
86 	 */
87 	 void insert_skbuff_list(struct skbuff_list *after,
88 	 struct skbuff_list *new_pkt,
89 	 struct skbuff_list *queue_head)
90 	 {
91 	 struct skbuff_list *before = after->next;
92
93 	 after->next = new_pkt;
94 	 before->prev = new_pkt;
95 	 new_pkt->prev = after;
96 	 new_pkt->next = before;
97
98 . 	 new_pkt->pkt_state = NOT_SENT;
99 	 queue_head->pkt_count += 1;

100 	 }
101
102 	 /*
103 	 * 	 Function used to dequeue a packet from the list.
104 	 * 	 The list is arranged in FIFO manner so the node
105 	 * 	 is removed from the head of the list.
106 	 */
107 	 struct skbuff_list*
108 dequeue_skbuff_list(struct split_flow_info *sfi,
109 	 struct skbuff_list *queue_head)
110 	 {
111 	 struct skbuff_list *prev , *next, *ret_node;
112 	 struct skbuff_list *head = queue_head;
113
114 	 prey = head;
115 	 next = head->next->next;
116 	 ret_node = head->next;
117
118 	 prev->next = next;
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119 	 next->prev = prey;
120
121 	 ret_node->prev = ret_node->next = NULL;
122 	 --head->pkt_count;
123 	 return(ret_node);
124 	 }

125
126 	 /*
127 	 * 	 Function used to dequeue and free memory for a
128 	 * 	 packet from the list. The list is arranged in
129 	 * 	 FIFO manner so the node is removed from the
130 	 * 	 head of the list.
131 	 */
132 	 void free_head_skbuff_list(struct split_flow_info *sfi,
133 	 struct skbuff_list *queue_head)
134 	 {
135 	 struct skbuff_list *prev , *next, *ret_node;
136 	 struct skbuff_list *head = queue_head;
137 	 struct sk_buff *skb;
138
139 	 /* Initialize the pointers */
140 	 prey = head;
141 	 next = head->next->next;
142 	 ret_node = head->next;
143
144 	 /* Adjust the pointers */
145 	 prev->next = next;
146 	 next->prev = prey;
147
148 	 /* Update pointers and packet count */
149 	 ret_node->prev = ret_node->next = NULL;
150 	 --head->pkt_count;
151
152 	 /* Unlink the skb from the list and free skb memory */
153 	 skb = ret_node->sb_pkt;
154 	 // if(skb->list)
155 	 // 	 __skb_unlink(skb, skb->list);
156
157 	 /* Taking care of dst_release BUG */
158 	 if(skb->dst) {
159 	 if(atomic_read(&skb->dst->__refcnt) < 1)
160 	 atomic_set(&skb->dst->__refcnt, 1);
161 	 }
162
163 	 kfree_skb(skb);
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165 	 /* Free skbuff_list node */
166 	 kfree(ret_node);
167 	 }

168
169 	 /*
170 	 * 	 This function peeks inside the list and returns
171 	 * 	 the skb at the head of the forward queue.
172 	 */
173 	 struct skbuff_list*
174 head_peek_skb_list(struct skbuff_list *queue_head)
175 	 {
176 	 struct skbuff_list *head = queue_head;
177
178 	 if(head->next != NULL &&
179 	 head->next != head)
180 	 return head->next;
181
182 	 return NULL;
183 	 }
184
185 	 /*
186 	 * 	 This function checks if the forward-queue is empty.
187 	 */
188 	 int get_queue_pkt_count(struct skbuff_list *queue_head)
189 	 {
190 	 return queue_head->pkt_count;
191 	 }
192
193 	 /*
194 	 * 	 Function used to initialize the doubly linked list
195 	 * 	 containing split_flow_info nodes.
196 	 */
197 	 void init_head_sfi()
198 	 {
199 	 sfi_list_head = kmalloc(sizeof(struct split_flow_info),
200 	 GFP_ATOMIC);
201 	 sfi_list_head->prev = sfi_list_head->next
202 	 = sfi_list_head;
203 	 }

204 •
205 	 /*
206 	 * 	 Function returns a pointer to the variable
207 	 * 	 sfi_list_head
208 	 */

129
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209 	 struct split_flow_info* get_head_sfi()
210 	 {
211 	 return sfi_list_head;
212 	 }

213
214 	 /*
215 	 * 	 Function returns a pointer to the member in_flow
216 	 */
217 	 struct flow_detail*
218 	 get_in_flow(struct split_flow_info *node, int flag)
219 	 {
220 	 if (flag == PREV_FLOW) {
221 	 if(node->i2r_flow != NULL)
222 	 return node->i2r_flow;
223 	 }

224 	 else if (flag == FWD_FLOW) {
225 	 if(node->r2i_flow != NULL)
226 	 return node->r2i_flow;
227 	 }

228 	 return NULL;
229 	 }

230
231 	 /*
232 	 * 	 Function returns a pointer to the member
233 	 * 	 rep_in_flow
234 	 */
235 	 struct flow_detail*
236 	 get_rep_in_flow(struct split_flow_info *node)
237 	 {

238 	 if(node->rep_in_flow != NULL)
239 	 return node->rep_in_flow;
240 	 return NULL;
241 	 }

242
243 	 /*
244 	 * 	 Function enqueues a new node to the list. The
245 	 * 	 linked list is arranged as a FIFO, hence the
246 	 * 	 node is added at the tail of the list.
247 	 */
248 	 struct split_flow_info*
249 	 enqueue_sfi(struct split_flow_info *head)
250 	 {

251 . 	 struct split_flow_info *prey, *next;
252 	 struct split_flow_info *new_sfi =
253 	 (struct split_flow_info *)
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254 	 kmalloc(sizeof(struct split_flow_info),
255 	 GFP_ATOMIC);
256 	 new_sfi->lhs_tcp_state = (struct tcp_state *)
257 	 kmalloc(sizeof(struct tcp_state), GFP_ATOMIC);
258 	 new_sfi->rhs_tcp_state = (struct tcp_state *)
259 	 kmalloc(sizeof(struct tcp_state), GFP_ATOMIC);
260
261 	 next = head;
262 	 prey = head->prev;
263
264 	 new_sfi->prev = prey;
265 	 prev->next = new_sfi;
266 	 new_sf i->next = next;
267 	 next->prev = new_sfi;
268
269 	 new_sfi->buff_clamp = 1048576;
270 	 new_sfi->buff_curr = 0;
271
272 	 /* Initialize the state for the connections */
273 	 new_sfi->lhs_tcp_state->state = UDP_LISTEN;
274 	 new_sfi->rhs_tcp_state->state = TCP_LISTEN;
275
276 	 /* Initializing the rto to 3 secs and srtt to 0 */
277 	 new_sfi->lhs_tcp_state->rto =
278 	 new_sfi->rhs_tcp_state->rto = UDP_RTO_INIT;
279 	 new_sfi->lhs_tcp_state->srtt =
280 	 new_sfi->rhs_tcp_state->srtt = 0;
281 	 new_sfi->lhs_tcp_state->ack_seq_tstamp = 0;
282 	 new_sfi->rhs_tcp_state->ack_seq_tstamp = 0;
283 	 new_sfi->lhs_tcp_state->rtt_seq_tstamp = 0;
284 	 new_sfi->rhs_tcp_state->rtt_seq_tstamp = 0;
285 	 new_sfi->lhs_tcp_state->finack_retrans = 0;
286 	 new_sfi->rhs_tcp_state->finack_retrans = 0;
287 	 new_sfi->lhs_tcp_state->in_fast_recovery = 0;
288 	 new_sfi->rhs_tcp_state->in_fast_recovery = 0;
289
290
291
292
293
294
295
296
297
298

new_sfi->lhs_tcp_state->cwnd_cnt = 0;
new_sfi->rhs_tcp_state->cwnd_cnt = 0;
new_sfi->lhs_tcp_state->pkts_in_flight = 0;
new_sfi->rhs_tcp_state->pkts_in_flight = 0;
new_sfi->lhs_tcp_state->first_good_ack = 0;
new_sfi->rhs_tcp_state->first_good_ack = 0;
new_sfi->lhs_tcp_state->probes_out = 0;
new_sfi->rhs_tcp_state->probes_out = 0;
new_sfi->lhs_tcp_state->local_ipip_addr = 0;
new_sfi ->rhs_tcp_state->local_ipip_addr = 0;
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299 	 new_sfi->lhs_tcp_state->data_pkt_seen = 0;
300 	 new_sfi->rhs_tcp_state->data_pkt_seen = 0;
301
302 	 /* Initializing wscale variables */
303
304
305
306
307
308
309
310
311 	 }
312
313 	 /*
314 	 * 	 Function used to dequeue a node from the list.
315 	 * 	 The linked list is arranged as a FIFO, hence
316 	 * 	 the node is removed from the head of the list.
317 	 */
318 	 struct split_flow_info*
319 	 dequeue_sfi(struct split_flow_info *head)
320 	 {
321 	 struct split_flow_info *prev, *next, *ret_node;
322
323 	 prey = head;
324 	 next = head->next->next;
325
326 	 ret_node = prev->next;
327 	 prev->next = next;
328 	 next->prev = prev;
329 	 ret_node->next = ret_node->prev = NULL;
330 	 return(ret_node);
331 	 }
332
333 	 /*
334 	 * 	 This function frees up the memory allocated to
335 	 * 	 a sfi node
336 	 */
337 	 void delete_sfi(struct split_flow_info *sfi)
338 	 {
339 	 struct skbuff_list *skb_curr, *skb_prev;
340
341 	 /* Rearrange the prey and next pointers */
342 	 sfi->prev->next = sfi->next;
343 	 sf i->next->prev = sfi->prev;

new_sfi->lhs_tcp_state->wscale_ok =
new_sfi->rhs_tcp_state->wscale_ok = 0;
new_sfi->lhs_tcp_state->snd_wscale = 0;
new_sfi->lhs_tcp_state->rcv_wscale = 0;
new_sfi->rhs_tcp_state->snd_wscale = 0;
new_sfi->rhs_tcp_state->rcv_wscale = 0;

return new_sfi;
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344 	 sfi->next = sfi->prev = NULL;
345
346 	 skb_curr = sfi->i2r_queue->next;
347
348 	 while(skb_curr != sfi->i2r_queue) {
349 	 skb_prev = skb_curr;
350 	 skb_curr = skb_curr->next;
351 	 kfree_skb(skb_prev->sb_pkt);
352 	 kfree(skb_prev);
353 	 }
354 	 kfree(skb_curr);
355
356 	 skb_curr = sfi->r2i_queue->next;
357
358 	 while(skb_curr != sfi->r2i_queue) {
359 	 skb_prev = skb_curr;
360 	 skb_curr = skb_curr->next;
361 	 kfree_skb(skb_prev->sb_pkt);
362 	 kfree(skb_prev);
363 	 }
364 	 kfree(skb_curr);
365
366 	 kfree(sfi);
367 	 }

368
369 	 /*
370 	 * 	 Function used to search for a split_flow_info.
371 	 * 	 The function returns a 1 on success and -1 on
372 	 * 	 failure. Search is done using the incoming flow
373 	 * 	 details.
374 	 */
375 	 struct split_flow_info*
376 	 search_sfi(struct split_flow_info *head,
377 	 struct flow_detail *fd, int flag)
378 	 {

379 	 struct split_flow_info *curr;
380 	 struct flow_detail *sfi_flow;
381 	 __u32 saddr, daddr;
382 	 __u16 sport, dport;
383
384 	 saddr = fd->saddr;
385 	 daddr = fd->daddr;
386 	 sport = fd->sport;
387 	 dport = fd->dport;
388 	 curr = head->next;



389
390 	 if (flag == PREV_FLOW) {
391 	 while(curr != head) {
392 	 sfi_flow = curr->i2r_flow;
393 	 if(sfi_flow->saddr == saddr &&
394 	 sfi_flow->daddr == daddr &&
395 	 sfi_flow->sport == sport &&
396 	 sfi_flow->dport == dport)
397 	 return curr;
398 	 curr = curr->next;
399 	 }

400 	 }

401 	 else if (flag == FWD_FLOW) {
402 	 while(curr != head) {
403 	 sfi_flow = curr->r2i_flow;
404 	 if(sfi_flow->saddr == saddr &&
405 	 sfi_flow->daddr == daddr &&
406 	 sfi_flow->sport == sport &&
407 	 sfi_flow->dport == dport) {
408 	 return curr;
409 	 curr = curr->next;
410 	 }

411 	 }

412
413 	 printk(KERN_INFO "Search failed\n");
414 	 return NULL;
415 	 }

416
417 	 /*
418 	 * 	 This function frees up the memory allocated to
419 	 * 	 the doubly linked list
420 	 */
421 	 void cleanup_sfi_list(struct split_flow_info *head)
422 	 {
423 	 struct split_flow_info *sfi_curr, *sfi_prev;
424 	 struct skbuff_list *skb_curr, *skb_prev;
425 	 struct tcp_state *tps;
426
427 	 if(head != NULL) {
428 	 sfi_curr = head->next;
429
430 	 while(sfi_curr != head) {
431 	 skb_curr = sfi_curr->i2r_queue->next;
432
433 	 while(skb_curr != sfi_curr->i2r_queue) {

134
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434 	 skb_prev = skb_curr;
435 	 skb_curr = skb_curr->next;
436 	 kfree(skb_prev);
437 	 }

438 	 kfree(skb_curr);
439
440 	 skb_curr = sfi_curr->r2i_queue->next;
441
442 	 while(skb_curr != sfi_curr->r2i_queue) {
443 	 skb_prev = skb_curr;
444 	 skb_curr = skb_curr->next;
445 	 kfree(skb_prev);
446 	 }
447 	 kfree(skb_curr);
448
449 	 /* Deleting the various timers */
450 	 tps = sfi_curr->lhs_tcp_state;
451 	 if(timer_pending(&(tps->rto_timer)))
452 	 del_timer_sync(&(tps->rto_timer));
453
454 	 if(timer_pending(&(tps->tw_timer)))
455 	 del_timer_sync(&(tps->tw_timer));
456
457 	 if(timer_pending(&(tps->probe_timer)))
458 	 del_timer_sync(&(tps->probe_timer));
459
460 	 tps = sfi_curr->rhs_tcp_state;
461 	 if(timer_pending(&(tps->rto_timer)))
462 	 del_timer_sync(&(tps->rto_timer));
463
464 	 if(timer_pending(&(tps->tw_timer)))
465 	 del_timer_sync(&(tps->tw_timer));
466
467 	 if(timer_pending(&(tps->probe_timer)))
468 	 del_timer_sync(&(tps->probe_timer));
469
470 	 sfi_prev = sfi_curr;
471 	 sfi_curr = sfi_curr->next;
472 	 kfree(sfi_prev);
473 	 }

474 	 kfree(sfi_curr);
475 	 }

476 	 }

477
478 	 MODULE_LICENSE("GPL");



479
480 	 EXPORT_SYMBOL(init_skbuff_list);
481 	 EXPORT_SYMBOL(enqueue_skbuff_list);
482 EXPORT_SYMBOL(insert_skbuff_list);
483 	 EXPORT_SYMBOL(dequeue_skbuff_list);
484 EXPORT_SYMBOL(free_head_skbuff_list);
485 EXPORT_SYMBOL(head_peek_skb_list);
486 EXPORT_SYMBOL(get_queue_pkt_count);
487 EXPORT_SYMBOL(init_head_sfi);
488 EXPORT_SYMBOL(get_head_sfi);
489 EXPORT_SYMBOL(get_in_flow);
490 EXPORT_SYMBOL(get_rep_in_flow);
491 	 EXPORT_SYMBOL(enqueue_sfi);
492 EXPORT_SYMBOL(dequeue_sfi);
493 	 EXPORT_SYMBOL(delete_sfi);
494 EXPORT_SYMBOL(search_sfi);
495 	 EXPORT_SYMBOL(cleanup_sfi_list);
496
497 	 /*
498 	 * This code below was written to implement our own ECN
499 	 * marking software. It still needs to be tested to be
500 	 * integrated with the working code of Split UDP
501 	 */
502
503 	 /*******************************************************/
504 	 /* 	 Function for RED Qdisc operation 	 */
505 	 /*******************************************************/
506 	 /* Update: 04/20/07 Temporarily not used. Relying on
507 	 * kernel support for marking */
508
509
510 	 //int packet_count;
511
512 	 /*
513 	 * This function marks the packet ECN style
514 	 */
515 	 /*
516 	 static int split_red_ecn_mark(struct sk_buff *skb)
517 	 {
518 	 if (skb->nh.raw + 20 > skb->tail)
519 	 return 0;
520
521 	 switch (skb->protocol) {
522 	 case __constant_htons(ETH_P_IP):
523 	 if (!INET_ECN_is_capable(skb->nh.iph->tos)) {
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524 	 printk(KERN_ALERT "Flow not ECN capable \n");
525 	 return 0;
526 	 }

527
528 	 if(INET_ECN_is_not_ect(skb->nh.iph->tos))
529 	 IP_ECN_set_ce(skb->nh.iph);
530 	 return 1;
531 	 case __constant_htons(ETH_P_IPV6):
532 	 if OINET_ECN_is_capable(ipv6_get_dsfield(skb->nh.ipv6h)))
533 	 return 0;
534 	 IP6_ECN_set_ce(skb->nh.ipv6h);
535 	 return 1;
536 	 default:
537 	 return 0;
538 	 }

539 	 }*/
540
541 	 /*
542 	 * This function contains the main alogrithm of RED
543 	 * Enqueue packet with or without mark or drop the packet
544 	 */
545 	 //int
546 	 //split_red_enqueue(struct sk_buff *skb, struct Qdisc *sch)
547 	 //{
548 	 // 	 struct split_red_sched_data *q =
549 	 // 	 (struct split_red_sched_data *)sch->data;
550 	 // 	 struct split_red_sched_data *q = qdisc_priv(sch);
551 	 /// psched_time_t now;
552
553
554 	 /* Processing for queue idle time */
555 /* 	 if(TSCHED_IS_PASTPERFECT(q->qidlestart)) {
556 	 long us_idle;
557 	 int shift;
558
559 	 PSCHED_GET_TIME(now);
560 	 us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart,
561 	 q->Scell_max, 0);
562 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
563 	 */
564 	 /* Do avg = (1-Wq) -m * avg here */
565 	 /* 	 index = ;
566 	 shift = q->Stab[index];
567 	 if (shift)
568 	 q->qave <<= shift;
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569 	 }
570 	 */
571 	 /* Queue is not empty */
572 	 // 	 else {
573 	 // 	 q->qave +.
574 	 // 	 (sch->qstats.backlog - q->qave) >> q->Wlog;
575 	 // 	 }
576
577 	 /* Marking decision */
578 	 // 	 if(q->qave <= q->qth_min) {
579 	 /* Enqueue the packet */
580 	 // 	 q->qcount = -1;
581 	 //enqueue:
582 	 // 	 if(sch->qstats.backlog + skb->len <= q->limit) {
583 	 // 	 __skb_queue_tail(&sch->q, skb);
584 	 // 	 sch->qstats.backlog += skb->len;
585 	 // 	 sch->bstats.bytes += skb->len;
586 	 // 	 sch->bstats.packets++;
587 	 // 	 sch->qstats.qlen++;
588 	 // 	 packet_count++;
589 	 // 	 printk(KERN_ALERT "Enqueue blindly \n");
590 // 	 return NET_XMIT_SUCCESS;
591 	 // 	 }
592 	 // 	 q->st.pdrop++;
593 	 // 	 kfree_skb(skb);
594 	 // 	 sch->qstats.drops++;
595 	 // 	 return NET_XMIT_DROP;
596 	 // 	 }
597 // 	 else if(q->qave > q->qth_min &&
598 // 	 q->qave <= q->qth_max) {
599 	 /* Mark the packet with random probability */
600 // 	 printk(KERN_ALERT "minth < gave < maxth \n");
601 	 // 	 if(++q->qcount) {
602 	 // 	 if((((q->qave - q->qth_min)>>q->Plog)/
603 	 // 	 (q->qth_max - q->qth_min))*q->qcount < q->qR)
604 	 // 	 goto enqueue;
605
606 	 // 	 q->qcount = 0;
607 // 	 q->qR = net_random()&q->Rmask;
608 	 // 	 sch->qstats.overlimits++;
609 	 // 	 goto mark;
610 	 // 	 }
611 	 // 	 if(q->qcount == 0) {
612 	 // 	 q->qR = net_random()&q->Rmask;
613 	 // 	 sch->qstats.overlimits++;
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614 	 // 	 }
615 	 // 	 }
616 	 // 	 else if(q->qave > q->qth_max) {
617 	 /* Mark the packet */
618 	 // 	 q->qcount = -1;
619 	 // 	 sch->qstats.overlimits++;
620 	 //mark:
621 	 // 	 if0(q->flags&UD_RED_ECN) 11
622 	 // 	 !split_red_ecn_mark(skb)) {
623 	 // 	 if(!split_red_ecn_mark(skb)) {
624 	 // 	 q->st.early++;
625 	 // 	 goto drop;
626 	 // 	 }
627 	 // 	 q->st.marked++;
628 	 // 	 goto enqueue;
629 	 // 	 }
630 	 //drop:
631 	 // 	 kfree_skb(skb);
632 	 // 	 sch->qstats.overlimits++;
633 	 // 	 return NET_XMIT_CN;
634 	 //}
635
636 	 /*
637 	 * This function requeues the packet
638 	 */
639 	 /*
640 	 int
641 	 split_red_requeue(struct sk_buff *skb, struct Qdisc* sch)
642 	 {
643 	 struct split_red_sched_data *q = qdisc_priv(sch);
644
645 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
646
647 	 __skb_queue_head(&sch->q, skb);
648 	 sch->qstats.backlog += skb->len;
649 	 return 0;
650 	 }

651 	 */
652
653 	 /*
654 	 * This function will dequeue and get a packet ready for
655 	 * transmission
656 	 */
657 	 /*
658 	 struct sk_buff* split_red_dequeue(struct Qdisc* sch)
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659 	 {
660 	 struct sk_buff *skb;
661 	 struct split_red_sched_data *q = qdisc_priv(sch);
662
663 	 skb = __skb_dequeue(&sch->q);
664
665
666 	 if(skb) {
667 	 // 	 if(skb->h.th != NULL) {
668 	 // 	 if(skb->len < 1000 II skb->h.th->fin II skb->h.th->syn II
669 	 // 	 sch->qstats.packets < 10 II sch->stats.qlen > 10) {
670 	 send_packet:
671 	 packet_count--;
672 	 sch->qstats.qlen--;
673 	 sch->qstats.backlog -= skb->len;
674 	 return skb;
675 	 // 	 }

676 	 // 	 }
677 	 // 	 else
678 	 // 	 goto send_packet;
679 	 }

680
681 	 PSCHED_GET_TIME(q->qidlestart);
682 	 return NULL;
683 	 }

684 	 */
685
686 	 /*
687 	 * This function drops the packet
688 	 */
689 	 /*
690 unsigned int split_red_drop(struct Qdisc* sch)
691 	 {
692 	 struct sk_buff *skb;
693 	 struct split_red_sched_data *q = qdisc_priv(sch);
694
695 	 skb = __skb_dequeue_tail(&sch->q);
696 	 if (skb) {
697 	 unsigned int len = skb->len;
698 	 sch->qstats.backlog -= len;
699 	 sch->qstats.drops++;
700 	 q->st.other++;
701 	 kfree_skb(skb);
702 	 packet_count--;
703 	 sch->qstats.qlen--;
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704 	 return len;
705 	 }

706 	 PSCHED_GET_TIME(q->qidlestart);
707 	 return 0;
708 	 }

709
710 	 void split_red_reset(struct Qdisc* sch)
711 	 {
712 	 struct split_red_sched_data *q = qdisc_priv(sch);
713
714 	 __skb_queue_purge(&sch->q);
715 	 sch->qstats.backlog = 0;
716 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
717 	 q->qave = 0;
718 	 q->qcount = -1;
719 	 }

720 	 */
721
722 	 /*
723 	 * This function sets the parameters used by RED
724 	 */
725 	 /*
726 	 int split_red_change(struct Qdisc *sch)
727 	 {
728 	 struct split_red_sched_data *q = qdisc_priv(sch);
729
730 	 packet_count = 0;
731
732 	 sch_tree_lock(sch);
733 	 q->f lags = 0;
734 	 q->Wlog = 9;
735 	 q->Plog = 5;
736 	 q->Rmask = q->Plog < 32 ? ((1<<q->Plog) - 1) : -OUL;
737 	 // q->Scell_log = ctl->Scell_log;
738 	 // q->Scell_max = (255<<q->Scell_log);
739 	 q->qth_min = 5000;
740 	 q->qth_max = 15000;
741 	 q->limit = 75000;
742 	 q->qcount = -1;
743 	 q->qave = 0;
744 	 sch->qstats.backlog = 0;
745 	 sch->bstats.packets = 0;
746 	 sch->qstats.qlen = 0;
747
748 	 if (skb_queue_len(&sch->q) == 0)
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749 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
750
751 	 sch_tree_unlock(sch);
752 	 return 0;
753 	 }
754
755 	 int split_red_init(struct Qdisc* sch, struct rtattr *opt)
756 	 {
757 	 return split_red_change(sch);
758 	 }
759
760 	 int split_red_copy_xstats(struct sk_buff *skb,
761 	 struct tc_red_xstats *st)
762 	 {
763 	 RTA_PUT(skb, UDA_XSTATS, sizeof(*st), st);
764 	 return 0;
765
766 	 rtattr_failure:
767 	 return 1;
768 	 }

769
770 	 int split_red_dump(struct Qdisc *sch, struct sk_buff *skb)
771 	 {
772 	 struct split_red_sched_data *q = qdisc_priv(sch);
773 	 unsigned char 	 *b = skb->tail;
774 	 struct rtattr *rta;
775 	 struct tc_red_qopt opt;
776
777 	 rta = (struct rtattr*)b;
778 	 RTA_PUT(skb, TCA_OPTIONS, 0, NULL);
779 	 opt.limit = q->limit;
780 	 opt.qth_min = q->qth_min>>q->Wlog;
781 	 opt.qth_max = q->qth_max>>q->Wlog;
782 	 opt.Wlog = q->Wlog;
783 	 opt.Plog = q->Plog;
784 	 opt.Scell_log = q->Scell_log;
785 	 opt .flags = q->flags;
786 	 RTA_PUT(skb, UDA_RED_PARMS, sizeof(opt), &opt);
787 	 rta->rta_len = skb->tail - b;
788
789 	 if (split_red_copy_xstats(skb, &q->st))
790 	 goto rtattr_failure;
791
792 	 return skb->len;
793



143

	794	 rtattr_failure:

	

795 	 skb_trim(skb, b - skb->data);

	

796 	 return -1;

	

797 	 }

798

	

799 	 void split_red_destroy(struct Qdisc *sch)

	

800 	 {

	

801 	 }
802

	

803 	 static int __init split_red_module_init(void)

	

804 	 {

	

805 	 return register_qdisc(&split_red_qdisc_ops);

	

806 	 }
807 static void __exit split_red_module_exit(void)

	

808 	 {

	

809 	 unregister_qdisc(&split_red_qdisc_ops);

	

810 	 }
811
812 module_init(split_red_module_init)

	

813 	 module_exit(split_red_module_exit)

	

814 	 MODULE_LICENSE("GPL");
815
816 EXPORT_SYMBOL(split_red_enqueue);
817 EXPORT_SYMBOL(split_red_dequeue);
818 EXPORT_SYMBOL(split_red_requeue);

	

819 	 EXPORT_SYMBOL(split_red_drop);

	

820 	 EXPORT_SYMBOL(split_red_init);

	

821 	 EXPORT_SYMBOL(split_red_reset);

	

822 	 EXPORT_SYMBOL(split_red_destroy);
823 EXPORT_SYMBOL(split_red_change);
824 EXPORT_SYMBOL(split_red_dump);
825 EXPORT_SYMBOL(split_red_qdisc_ops);

	

826 	 */

C.2 splitiielper.c

This file contains various support functions that are used by the kernel module.

	

1	 /*

	

2 	 * Created: 	 02/01/2005

	

3 	 *

	

4 	 * Author: 	 Rahul Jain

	

5 	 *
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6 	 * Filename: 	 split_helper.c
7 	 *
8 	 * Comment:
9 	 * 	 This file contains functions that will manipulate

10 	 * 	 the structs defined in split_helper.h
11 	 *
12 	 */
13
14 #include <linux/config.h>
15 	 #include <linux/kernel.h>
16 	 #include <linux/module.h>
17 	 #include <linux/split_helper.h>
18 	 #include <net/inet_ecn.h>
19
20 	 /* Global Variable */
21 	 struct split_flow_info *sfi_list_head;
22
23 	 /*
24 	 * 	 Function used to initialize the head_pkt linked
25 	 * 	 list.
26 	 */
27 	 void init_skbuff_list(struct split_flow_info *sfi)
28 	 {
29 	 struct skbuff_list *list_head;
30
31 	 /* Initializing the i2r queue */
32 	 sfi->i2r_queue = kmalloc(sizeof(struct skbuff_list),
33 	 GFP_ATOMIC);
34 	 list_head = sfi->i2r_queue;
35 	 list_head->next = list_head->prev = list_head;
36 	 list_head->pkt_state = SENT;
37 	 list_head->hole_in_queue = 0;
38 	 list_head->sb_pkt = NULL;
39 	 list_head->pkt_bfr_hole = NULL;
40 	 list_head->pkt_count = 0;
41 	 list_head->tps_ptr = sfi->rhs_tcp_state;
42 	 list_head->lock = RW_LOCK_UNLOCKED;
43
44 	 /* Initializing the r2i queue */
45 	 sfi->r2i_queue = kmalloc(sizeof(struct skbuff_list),
46 	 GFP_ATOMIC);
47 	 list_head = sfi->r2i_queue;
48 	 list_head->next = list_head->prev = list_head;
49 	 list_head->pkt_state = SENT;
50 	 list_head->hole_in_queue = 0;
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51 	 list_head->sb_pkt = NULL;
52 	 list_head->pkt_bfr_hole = NULL;
53 	 list_head->pkt_count = 0;
54 	 list_head->tps_ptr = sfi->lhs_tcp_state;
55 	 list_head->lock = RW_LOCK_UNLOCKED;
56
57 	 }

58
59 	 /*
60 	 * 	 Function used to add a new packet to the list.
61 	 * 	 List is arranged in FIFO manner so the new
62 	 * 	 node is added at the end of the list.
63 	 */
64 	 void enqueue_skbuff_list(struct split_flow_info *sfi,
65 	 struct skbuff_list *newpkt,
66 	 struct skbuff_list *queue_head)
67 	 {
68 	 struct skbuff_list *prev , *next;
69 	 struct skbuff_list *head = queue_head;
70
71 	 prey = head->prev;
72 	 next = head;
73
74 	 prev->next = newpkt;
75 	 newpkt->prev = prev;
76 	 newpkt->next = next;
77 	 next->prev = newpkt;
78
79 	 newpkt->pkt_state = NOT_SENT;
80 	 ++head->pkt_count;
81 	 }
82
83 	 /*
84 	 * 	 Function used to insert a new packet after the
85 	 * 	 given pointer.
86 	 */
87 void insert_skbuff_list(struct skbuff_list *after,
88 	 struct skbuff_list *new_pkt,
89 	 struct skbuff_list *queue_head)
90 	 {
91 	 struct skbuff_list *before = after->next;
92
93 	 after->next = new_pkt;
94 	 before->prev = new_pkt;
95 	 new_pkt->prev = after;
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96 	 new_pkt->next = before;
97
98 	 new_pkt->pkt_state = NOT_SENT;
99 	 queue_head->pkt_count += 1;
100 	 }
101
102 	 /*
103 	 * 	 Function used to dequeue a packet from the list.
104 . * 	 The list is arranged in FIFO manner so the node
105 	 * 	 is removed from the head of the list.
106 	 */
107 	 struct skbuff_list*
108 	 dequeue_skbuff_list(struct split_flow_info *sfi,
109 	 struct skbuff_list *queue_head)
110 	 {
111 	 struct skbuff_list *prev , *next, *ret_node;
112 	 struct skbuff_list *head = queue_head;
113
114 	 prey = head;
115 	 next = head->next->next;
116 	 ret_node = head->next;
117
118 	 prev->next = next;
119 	 next->prev = prev;
120
121 	 ret_node->prev = ret_node->next = NULL;
122 	 --head->pkt_count;
123 	 return(ret_node);
124 	 }
125
126 	 /*
127 	 * 	 Function used to dequeue and free memory for a
128 	 * 	 packet from the list. The list is arranged in
129 	 * 	 FIFO manner so the node is removed from the
130 	 * 	 head of the list.
131 	 */
132 	 void free_head_skbuff_list(struct split_flow_info *sfi,
133 	 struct skbuff_list *queue_head)
134 	 {
135 	 struct skbuff_list *prev , *next, *ret_node;
136 	 struct skbuff_list *head = queue_head;
137 	 struct sk_buff *skb;
138
139 	 /* Initialize the pointers */
140 	 prey = head;
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141 	 next = head->next->next;
142 	 ret_node = head->next;
143
144 	 /* Adjust the pointers */
145 	 prev->next = next;
146 	 next->prev = prev;
147
148 	 /* Update pointers and packet count */
149 	 ret_node->prev = ret_node->next = NULL;
150 	 --head->pkt_count;
151
152 	 /* Unlink the skb from the list and free skb memory */
153 	 skb = ret_node->sb_pkt;
154 	 // if(skb->list)
155 	 // 	 __skb_unlink(skb, skb->list);
156
157 	 /* Taking care of dst_release BUG */
158 	 if(skb->dst) {
159 	 if(atomic_read(&skb->dst->__refcnt) < 1)
160 	 atomic_set(&skb->dst->__refcnt, 1);
161 	 }

162
163 	 kfree_skb(skb);
164
165 	 /* Free skbuff_list node */
166 	 kfree(ret_node);
167 	 }

168
169 	 /*
170 	 * 	 This function peeks inside the list and returns
171 	 * 	 the skb at the head of the forward queue.
172 	 */
173 	 struct skbuff_list*
174 head_peek_skb_list(struct skbuff_list *queue_head)
175 	 {

176 	 struct skbuff_list *head = queue_head;
177
178 	 if(head->next != NULL &&
179 	 head->next != head)
180 	 return head->next;
181
182 	 return NULL;
183 	 }
184
185 	 /*
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186 	 * 	 This function checks if the forward-queue is empty.
187 	 */
188 	 int get_queue_pkt_count(struct skbuff_list *queue_head)
189 	 {
190 	 return queue_head->pkt_count;
191 	 }
192
193 	 /*
194 	 * 	 Function used to initialize the doubly linked list
195 	 * 	 containing split_flow_info nodes.
196 	 */
197 	 void init_head_sfi()
198 	 {
199 	 sfi_list_head = kmalloc(sizeof(struct split_flow_info),
200 	 GFP_ATOMIC);
201 	 sfi_list_head->prev = sfi_list_head->next
202 	 = sfi_list_head;
203 	 }
204
205 	 /*
206 	 * 	 Function returns a pointer to the variable
207 	 * 	 sfi_list_head
208 	 */
209 	 struct split_flow_info* get_head_sfi()
210 	 {
211 	 return sfi_list_head;
212 	 }
213
214 	 /*
215 	 * 	 Function returns a pointer to the member in_flow
216 	 */
217 	 struct flow detail*
218 	 get_in_flow(struct split_flow_info *node, int flag)
219 	 {
220 	 if (flag == PREV_FLOW) {
221 	 if(node->i2r_flow != NULL)
222 	 return node->i2r_flow;
223 	 }

224 	 else if (flag == FWD_FLOW) {
225 	 if(node->r2i_flow != NULL)
226 	 return node->r2i_f low;
227 	 }
228 	 return NULL;
229 	 }
230
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231 	 /*
232 	 * 	 Function returns a pointer to the member
233 	 * 	 rep_in_flow
234 	 */
235 	 struct flow_detail*
236 get_rep_in_flow(struct split_flow_info *node)
237 	 {
238 	 if(node->rep_in_flow != NULL)
239 	 return node->rep_in_f low;
240 	 return NULL;
241 	 }

242
243 	 /*
244 	 * 	 Function enqueues a new node to the list. The
245 	 * 	 linked list is arranged as a FIFO, hence the
246 	 * 	 node is added at the tail of the list.
247 	 */
248 	 struct split_flow_info*
249 enqueue_sfi(struct split_flow_info *head)
250 	 {
251 	 struct split_flow_info *prev, *next;
252 	 struct split_flow_info *new_sfi =
253 	 (struct split_flow_info *)
254 	 kmalloc(sizeof(struct split_flow_info),
255 	 GFP_ATOMIC);
256 	 new_sfi->lhs_tcp_state = (struct tcp_state *)
257 	 kmalloc(sizeof(struct tcp_state), GFP_ATOMIC);
258 	 new_sfi->rhs_tcp_state = (struct tcp_state *)
259 	 kmalloc(sizeof(struct tcp_state), GFP_ATOMIC);
260
261 	 next = head;
262 	 prey = head->prev;
263
264 	 new_sf i->prev = prey;
265 	 prev->next = new_sfi;
266 	 new_sf i->next = next;
267 	 next->prev = new_sfi;
268
269 	 new_sfi->buff_clamp = 1048576;
270 	 new_sfi->buff_curr = 0;
271
272 	 /* Initialize the state for the connections */
273 	 new_sfi->lhs_tcp_state->state = TCP_LISTEN;
274 	 new_sfi->rhs_tcp_state->state = TCP_LISTEN;
275
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276 	 /* Initializing the rto to 3 secs and srtt to 0 */
277 	 new_sfi->lhs_tcp_state->rto =
278 	 new_sfi->rhs_tcp_state->rto = UDP_RTO_INIT;
279 	 new_sfi->lhs_tcp_state->srtt =
280 	 new_sfi->rhs_tcp_state->srtt = 0;
281 	 new_sfi->lhs_tcp_state->ack_seq_tstamp = 0;
282 	 new_sfi->rhs_tcp_state->ack_seq_tstamp = 0;
283 	 new_sfi->lhs_tcp_state->rtt_seq_tstamp = 0;
284 	 new_sfi->rhs_tcp_state->rtt_seq_tstamp = 0;
285 	 new_sfi->lhs_tcp_state->finack_retrans = 0;
286 	 new_sfi->rhs_tcp_state->finack_retrans = 0;
287 	 new_sfi->lhs_tcp_state->in_fast_recovery = 0;
288 	 new_sfi->rhs_tcp_state->in_fast_recovery = 0;
289 	 new_sfi->lhs_tcp_state->cwnd_cnt = 0;
290 	 new_sfi->rhs_tcp_state->cwnd_cnt = 0;
291 	 new_sfi->lhs_tcp_state->pkts_in_flight = 0;
292 	 new_sfi->rhs_tcp_state->pkts_in_flight = 0;
293 	 new_sfi->lhs_tcp_state->first_good_ack = 0;
294 	 new_sfi->rhs_tcp_state->first_good_ack = 0;
295 	 new_sfi->lhs_tcp_state->probes_out = 0;
296 	 new_sfi->rhs_tcp_state->probes_out = 0;
297 	 new_sfi->lhs_tcp_state->local_ipip_addr = 0;
298 	 new_sfi->rhs_tcp_state->local_ipip_addr = 0;
299 	 new_sfi->lhs_tcp_state->data_pkt_seen = 0;
300 	 new_sfi->rhs_tcp_state->data_pkt_seen = 0;
301
302 	 /* Initializing wscale variables */
303 	 new_sfi->lhs_tcp_state->wscale_ok =
304 	 new_sfi->rhs_tcp_state->wscale_ok = 0;
305 	 new_sfi->lhs_tcp_state->snd_wscale = 0;
306 	 new_sfi->lhs_tcp_state->rcv_wscale = 0;
307 	 new_sfi->rhs_tcp_state->snd_wscale = 0;
308 	 new_sfi->rhs_tcp_state->rcv_wscale = 0;
309
310 	 return new_sfi;
311 	 }
312
313 	 /*
314 	 * 	 Function used to dequeue a node from the list.
315 	 * 	 The linked list is arranged as a FIFO, hence
316 	 * 	 the node is removed from the head of the list.
317 	 */
318 	 struct split_flow_info*
319 dequeue_sfi(struct split_flow_info *head)
320 	 {
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321 	 struct split_flow_info *prev, *next, *ret_node;
322
323 	 prey = head;
324 	 next = head->next->next;
325
326 	 ret_node = prev->next;
327 	 prev->next = next;
328 	 next->prev = prev;
329 	 ret_node->next = ret_node->prev = NULL;
330 	 return(ret_node);
331 	 }
332
333 	 /*
334 	 This function frees up the memory allocated to
335 	 a sfi node
336 	 */

337 	 void delete_sfi(struct split_flow_info *sfi)
338 	 {
339 	 struct skbuff_list *skb_curr, *skb_prev;
340
341 	 /* Rearrange the prey and next pointers */
342 	 sfi->prev->next = sfi->next;
343 	 sfi->next->prev = sf i->prev;
344 	 sfi->next = sfi->prev = NULL;
345
346 	 skb_curr = sfi->i2r_queue->next;
347
348 	 while(skb_curr != sfi->i2r_queue) {
349 	 skb_prev = skb_curr;
350 	 skb_curr = skb_curr->next;
351 	 kfree_skb(skb_prev->sb_pkt);
352 	 kfree(skb_prev);
353 	 }

354 	 kfree(skb_curr);
355
356 	 skb_curr = sfi->r2i_queue->next;
357
358 	 while(skb_curr != sfi->r2i_queue) {
359 	 skb_prev = skb_curr;
360 	 skb_curr = skb_curr->next;
361 	 kfree_skb(skb_prev->sb_pkt);
362 	 kfree(skb_prev);
363 	 }

364 	 kfree(skb_curr);
365
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366 	 kfree(sfi);
367 	 }

368
369 	 /*
370 	 * 	 Function used to search for a split_flow_info.
371 	 * 	 The function returns a 1 on success and -1 on
372 	 * 	 failure. Search is done using the incoming flow
373 	 * 	 details.
374 	 */
375 	 struct split_flow_info*
376 	 search_sfi(struct split_flow_info *head,
377 	 struct flow_detail *fd, int flag)
378 	 {
379 	 struct split_flow_info *curr;
380 	 struct flow_detail *sfi_flow;
381 	 __u32 saddr, daddr;
382 	 __u16 sport, dport;
383
384 	 saddr = fd->saddr;
385 	 daddr = fd->daddr;
386 	 sport = fd->sport;
387 	 dport = fd->dport;
388 	 curr = head->next;
389
390 	 if (flag == PREV_FLOW) {
391 	 while(curr != head) {
392 	 sfi_flow = curr->i2r_flow;
393 	 if(sfi_flow->saddr == saddr &&
394 	 sfi_flow->daddr == daddr &&
395 	 sfi_flow->sport == sport &&
396 	 sfi_flow->dport == dport)
397 	 return curr;
398 	 curr = curr->next;
399 	 }
400 	 }

401 	 else if (flag == FWD_FLOW) {
402 	 while(curr != head) {
403 	 sfi_flow = curr->r2i_flow;
404 	 if(sfi_flow->saddr == saddr &&
405 	 sfi_flow->daddr == daddr &&
406 	 sfi_flow->sport == sport &&
407 	 sfi_flow->dport == dport) {
408 	 return curr;
409 	 curr = curr->next;
410 	 }
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411 	 }

412
413 	 printk(KERN_INFO "Search failed\n");
414 	 return NULL;
415 	 }

416
417 	 /*
418 	 * 	 This function frees up the memory allocated to
419 	 * 	 the doubly linked list
420 	 */
421 	 void cleanup_sfi_list(struct split_flow_info *head)
422 	 {
423 	 struct split_flow_info *sfi_curr, *sfi_prev;
424 	 struct skbuff_list *skb_curr, *skb_prev;
425 	 struct tcp_state *tps;
426
427 	 if (head != NULL) {
428 	 sfi_curr = head->next;
429
430 	 while(sfi_curr != head) {
431 	 skb_curr = sfi_curr->i2r_queue->next;
432
433 	 while(skb_curr != sfi_curr->i2r_queue) {
434 	 skb_prev = skb_curr;
435 	 skb_curr = skb_curr->next;
436 	 kfree(skb_prev);
437 	 }

438 	 kfree(skb_curr);
439
440 	 skb_curr = sfi_curr->r2i_queue->next;
441
442 	 while(skb_curr != sfi_curr->r2i_queue) {
443 	 skb_prev = skb_curr;
444 	 skb_curr = skb_curr->next;
445 	 kfree(skb_prev);
446 	 }
447 	 kfree(skb_curr);
448
449 	 /* Deleting the various timers */
450 	 tps = sfi_curr->lhs_tcp_state;
451 	 if(timer_pending(&(tps->rto_timer)))
452 	 del_timer_sync(&(tps->rto_timer));
453
454 	 if(timer_pending(&(tps->tw_timer)))
455 	 del_timer_sync(&(tps->tw_timer));



456
457 	 if(timer_pending(&(tps->probe_timer)))
458 	 del_timer_sync(&(tps->probe_timer));
459
460 	 tps = sfi_curr->rhs_tcp_state;
461 	 if(timer_pending(&(tps->rto_timer)))
462 	 del_timer_sync(Ctps->rto_timer));
463
464 	 if(timer_pending(&(tps->tw_timer)))
465 	 del_timer_sync(&(tps->tw_timer));
466
467 	 if(timer_pending(&(tps->probe_timer)))
468 	 del_timer_sync(Ctps->probe_timer));
469
470 .	 sfi_prev = sfi_curr;
471 	 sf i_curr = sfi_curr->next;
472 	 kfree(sfi_prev);
473 	 }

474 	 kfree(sfi_curr);
475 	 }

476 	 }
477
478 MODULE_LICENSE("GPL");
479
480 EXPORT_SYMBOL(init_skbuff_list);
481 	 EXPORT_SYMBOL(enqueue_skbuff_list);
482 	 EXPORT_SYMBOL(insert_skbuff_list);
483 EXPORT_SYMBOL(dequeue_skbuff_list);
484 EXPORT_SYMBOL(free_head_skbuff_list);
485 EXPORT_SYMBOL(head_peek_skb_list);
486 EXPORT_SYMBOL(get_queue_pkt_count);
487 EXPORT_SYMBOL(init_head_sfi);
488 	 EXPORT_SYMBOL(get_head_sfi);
489 	 EXPORT_SYMBOL(get_in_flow);
490 EXPORT_SYMBOL(get_rep_in_flow);
491 	 EXPORT_SYMBOL(enqueue_sfi);
492 EXPORT_SYMBOL(dequeue_sfi);
493 	 EXPORT_SYMBOL(delete_sfi);
494 EXPORT_SYMBOL(search_sfi);
495 	 EXPORT_SYMBOL(cleanup_sfi_list);
496
497 	 /*
498 	 * This code below was written to implement our own ECN
499 	 * marking software. It still needs to be tested to be
500 	 * integrated with the working code of Split TCP

154
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501 	 */
502
503 	 /*******************************************************/
504 /* 	 Function for RED Qdisc operation 	 */
505 	 /*******************************************************/
506 	 /* Update: 04/20/07 Temporarily not used. Relying on
507 	 * kernel support for marking */
508
509
510 	 //int packet_count;
511
512 	 /*
513 	 * This function marks the packet ECN style
514 	 */
515 	 /*
516 static int split_red_ecn_mark(struct sk_buff *skb)
517 	 {
518 	 if (skb->nh.raw + 20 > skb->tail)
519 	 return 0;
520
521 	 switch (skb->protocol) {
522 	 case __constant_htons(ETH_P_IP):
523 	 if (!INET_ECN_is_capable(skb->nh.iph->tos)) {
524 	 printk(KERN_ALERT "Flow not ECN capable \n");
525 	 return 0;
526 	 }

527
528 	 if(INET_ECN_is_not_ect(skb->nh.iph->tos))
529 	 IP_ECN_set_ce(skb->nh.iph);
530 	 return 1;
531 	 case __constant_htons(ETH_P_IPV6):
532 	 if OINET_ECN_is_capable(ipv6_get_dsfield(skb->nh.ipv6h)))
533 	 return 0;
534 	 IP6_ECN_set_ce(skb->nh.ipv6h);
535 	 return 1;
536 	 default:
537 	 return 0;
538 	 }
539 	 }*/
540
541 	 /*
542 	 * This function contains the main alogrithm of RED
543 	 * Enqueue packet with or without mark or drop the packet
544 	 */
545 	 //int
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546 	 //split_red_enqueue(struct sk_buff *skb, struct Qdisc *sch)
547 	 //{
548 	 // 	 struct split_red_sched_data *q =
549 	 // 	 (struct split_red_sched_data *)sch->data;
550 	 // 	 struct split_red_sched_data *q = qdisc_priv(sch);
551 	 /// psched_time_t now;
552
553
554 	 /* Processing for queue idle time */
555 	 /* 	 if(!PSCHED_IS_PASTPERFECT(q->qidlestart)) {
556 	 long us_idle;
557 	 int shift;
558
559 	 PSCHED_GET_TIME(now);
560 	 us_idle = PSCHED_TDIFF_SAFE(now, q->qidlestart,
561 	 q->Scell_max, 0);
562 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
563 	 */
564 	 /* Do avg = (1-Wq) -m * avg here */
565 	 /* 	 index = ;
566 	 shift = q->Stab[index];
567 	 if (shift)
568 	 q->qave <<= shift;
569 	 }
570 	 */
571 	 /* Queue is not empty */
572 	 // 	 else {
573 	 // 	 q->qave +=
574 	 // 	 (sch->qstats.backlog - q->qave) >> q->Wlog;
575 	 // 	 }
576
577 	 /* Marking decision */
578 	 // 	 if(q->qave <= q->qth_min) {
579 	 /* Enqueue the packet */
580 	 // 	 q->qcount = -1;
581 	 //enqueue:
582 	 // 	 if(sch->qstats.backlog + skb->len <= q->limit) {
583 . // 	 __skb_queue_tail(&sch->q, skb);
584 	 // 	 sch->qstats.backlog += skb->len;
585 	 // 	 sch->bstats.bytes += skb->len;
586 	 // 	 sch->bstats.packets++;
587 	 // 	 sch->qstats.qlen++;
588 	 // 	 packet_count++;
589 	 // 	 printk(KERN_ALERT "Enqueue blindly \n");
590 // 	 return NET_XMIT_SUCCESS;
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591 	 // 	 }
592 	 // 	 q->st.pdrop++;
593 	 // 	 kfree_skb(skb);
594 	 // 	 sch->qstats.drops++;
595 // 	 return NET_XMIT_DROP;
596 	 // 	 }
597 // 	 else if(q->qave > q->qth_min &&
598 // 	 q->qave <= q->qth_max) {
599 	 /* Mark the packet with random probability */
600 // 	 printk(KERN_ALERT "minth < gave < maxth \n");
601 	 // 	 if(++q->qcount) {
602 	 // 	 if((((q->qave - q->qth_min)>>q->Plog)/
603 	 // 	 (q->qth_max - q->qth_min))*q->qcount < q->qR)
604 	 // 	 goto enqueue;
605
606 	 // 	 q->qcount = 0;
607 // 	 q->qR = net_random()&q->Rmask;
608 	 // 	 sch->qstats.overlimits++;
609 	 // 	 goto mark;
610 	 // 	 }
611 	 // 	 if (q->qcount == 0) {
612 	 // 	 q->qR = net_random()&q->Rmask;
613 	 // 	 sch->qstats.overlimits++;
614 	 // 	 }
615 	 // 	 }
616 	 // 	 else if(q->qave > q->qth_max) {
617 	 /* Mark the packet */
618 	 // 	 q->qcount = -1;
619 	 // 	 sch->qstats.overlimits++;
620 	 //mark:
621 	 // 	 if0(q->flags&UD_RED_ECN) II
622 	 // 	 !split_red_ecn_mark(skb)) {

623 	 // 	 if(!split_red_ecn_mark(skb)) {
624 	 // 	 q->st.early++;
625 	 // 	 goto drop;
626 	 // 	 }

627 	 // 	 q->st.marked++;
628 	 // 	 goto enqueue;
629 	 // 	 }
630 	 //drop:
631 	 // 	 kfree_skb(skb);
632 	 // 	 sch->qstats.overlimits++;
633 // return NET_XMIT_CN;
634 	 //}
635
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636 	 /*
637 	 * This function requeues the packet
638 	 */
639 	 /*
640 	 int
641 	 split_red_requeue(struct sk_buff *skb, struct Qdisc* sch)
642 	 {
643 	 struct split_red_sched_data *q = qdisc_priv(sch);
644
645 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
646
647 	 __skb_queue_head(&sch->q, skb);
648 	 sch->qstats.backlog += skb->len;
649 	 return 0;
650 	 }

651 	 */
652
653 	 /*
654 	 * This function will dequeue and get a packet ready for
655 	 * transmission
656 	 */
657 	 /*
658 struct sk_buff* split_red_dequeue(struct Qdisc* sch)
659 	 {
660 	 struct sk_buff *skb;
661 	 struct split_red_sched_data *q = qdisc_priv(sch);
662
663 	 skb = __skb_dequeue(&sch->q);
664
665
666 	 if(skb) {
667 	 // 	 if(skb->h.th != NULL) {
668 	 // 	 if(skb->ien < 1000 II skb->h.th->fin II skb->h.th->syn II
669 	 // 	 sch->qstats.packets < 10 II sch->stats.qlen > 10) {
670 	 send_packet:
671 	 packet_count--;
672 	 sch->qstats.qlen--;
673 	 sch->qstats.backlog -= skb->len;
674 	 return skb;
675 	 // 	 }
676 	 // 	 }
677 	 // 	 else
678 	 // 	 goto send_packet;
679 	 }
680
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681 	 PSCHED_GET_TIME(q->qidlestart);
682 	 return NULL;
683 	 }

684 	 */
685
686 	 /*
687 	 * This function drops the packet
688 	 */
689 	 /*
690 unsigned int split_red_drop(struct Qdisc* sch)
691 	 {
692 	 struct sk_buff *skb;
693 	 struct split_red_sched_data *q = qdisc_priv(sch);
694
695 	 skb = __skb_dequeue_tail(&sch->q);
696 	 if (skb) {
697 	 unsigned int len = skb->len;
698 	 sch->qstats.backlog -= len;
699 	 sch->qstats.drops++;
700 	 q->st.other++;
701 	 kfree_skb(skb);
702 	 packet_count--;
703 	 sch->qstats.qlen--;
704 	 return len;
705 	 }

706 	 PSCHED_GET_TIME(q->qidlestart);
707 	 return 0;
708 	 }
709
710 	 void split_red_reset(struct Qdisc* sch)
711 	 {
712 	 struct split_red_sched_data *q = qdisc_priv(sch);
713
714 	 __skb_queue_purge(&sch->q);
715 	 sch->qstats.backlog = 0;
716 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
717 	 q->qave = 0;
718 	 q->qcount = -1;
719 	 }

720 . */
721
722 	 /*
723 	 * This function sets the parameters used by RED
724 	 */
725 	 /*
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726 	 int split_red_change(struct Qdisc *sch)
727 	 {
728 	 struct split_red_sched_data *q = qdisc_priv(sch);
729
730 	 packet_count = 0;
731
732 	 sch_tree_lock(sch);
733 	 q->f lags = 0;
734 	 q->Wlog = 9;
735 	 q->Plog = 5;
736 	 q->Rmask = q->Plog < 32 ? ((1<<q->Plog) - 1) : - 0UL;
737 	 // q->Scell_log = ctl->Scell_log;
738 	 // q->Scell_max = (255<<q->Scell_log);
739 	 q->qth_min = 5000;
740 	 q->qth_max = 15000;
741 	 q->limit = 75000;
742 	 q->qcount = -1;
743 	 q->qave = 0;
744 	 sch->qstats.backlog = 0;
745 	 sch->bstats.packets = 0;
746 	 sch->qstats.qlen = 0;
747
748 	 if (skb_queue_len(&sch->q) == 0)
749 	 PSCHED_SET_PASTPERFECT(q->qidlestart);
750
751 	 sch_tree_unlock(sch);
752 	 return 0;
753 	 }
754
755 	 int split_red_init(struct Qdisc* sch, struct rtattr *opt)
756 	 f
757 	 return split_red_change(sch);
758 	 }

759
760 	 int split_red_copy_xstats(struct sk_buff *skb,
761 	 struct tc_red_xstats *st)
762 	 {
763 	 RTA_PUT(skb, UDA_XSTATS, sizeof(*st), st);
764 	 return 0;
765
766 	 rtattr_failure:
767 	 return 1;
768 	 }
769
770 	 int split_red_dump(struct Qdisc *sch, struct sk_buff *skb)
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771 	 {
772 	 struct split_red_sched_data *q = qdisc_priv(sch);
773 	 unsigned char 	 *b = skb->tail;
774 	 struct rtattr *rta;
775 	 struct tc_red_qopt opt;
776
777 	 rta = (struct rtattr*)b;
778 	 RTA_PUT(skb, UDA_OPTIONS, 0, NULL);
779 	 opt.limit = q->limit;
780 	 opt.qth_min = q->qth_min>>q->Wlog;
781 	 opt.qth_max = q->qth_max>>q->Wlog;
782 	 opt.Wlog = q->Wlog;
783 	 opt.Plog = q->Plog;
784 	 opt.Scell_log = q->Scell_log;
785 	 opt.flags = q->flags;
786 	 RTA_PUT(skb, UDA_RED_PARMS, sizeof(opt), &opt);
787 	 rta->rta_len = skb->tail - b;
788
789 	 if (split_red_copy_xstats(skb, &q->st))
790 	 goto rtattr_failure;
791
792 	 return skb->len;
793
794 	 rtattr_failure:
795 	 skb_trim(skb, b - skb->data);
796 	 return -1;
797 	 }

798
799 	 void split_red_destroy(struct Qdisc *sch)
800 	 {
801 	 }
802
803 	 static int __init split_red_module_init(void)
804 • {
805 	 return register_qdisc(&split_red_qdisc_ops);
806 	 }
807 	 static void __exit split_red_module_exit(void)
808 	 {
809 	 unregister_qdisc(&split_red_qdisc_ops);
810 	 }

811
812 module_init(split_red_module_init)
813 	 module_exit(split_red_module_exit)
814 	 MODULE_LICENSE("GPL");
815
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816 EXPORT_SYMBOL(split_red_enqueue);
817 EXPORT_SYMBOL(split_red_dequeue);
818 EXPORT_SYMBOL(split_red_requeue);

	

819 	 EXPORT_SYMBOL(split_red_drop);

	

820 	 EXPORT_SYMBOL(split_red_init);

	

821 	 EXPORT_SYMBOL(split_red_reset);
822 EXPORT_SYMBOL(split_red_destroy);
823 EXPORT_SYMBOL(split_red_change);
824 EXPORT_SYMBOL(split_red_dump);
825 EXPORT_SYMBOL(split_red_qdisc_ops);

	

826 	 */

C.3 ip_in_intercept.c

This file contains the main packet processing code and is implemented as a kernel

module.

	

1	 /*

	

2	 *
	3	 * Author: 	 Rahul Jain

	

4 	 *

	

5 	 * Filename: 	 ip_in_intercept.c

	

6 	 *

	

7 	 * Comment:

	

8 	 * 	 04/13: Changed param struct tcphdr to struct

	

9 	 * 	 sk_buff in process_tcp_ack

	

10 	 * 	 11/15: Added code for proc file access. The

	

11 	 * 	 proc file will contain the table for next

	

12 	 * 	 and previous HB IP addr.

	

13 	 */
14
15 #define __KERNEL__
16 #define MODULE
17
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/moduleparam.h>

	

21 	 #include <linux/netfilter.h>

	

22 	 #include <linux/netfilter_ipv4.h>

	

23 	 #include <linux/ip.h>

	

24 	 #include <linux/tcp.h>

	

25 	 #include <linux/if_ether.h>
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26 	 #include <linux/split_helper.h>
27 #include <linux/string.h>
28 	 #include <linux/proc_fs.h>
29 	 #include <asm/uaccess.h>
30 	 #include <net/tcp.h>
31
32 	 /*
33 	 * The netfilter hook variable that will be used to
34 	 * register this hook
35 	 */
36 	 static struct nf_hook_ops nf_ip_in;
37
38 	 /*
39 	 * Global Variables
40 	 */
41 #define DEST_IP_MASK 0xffffff
42 #define SRC_IP_MASK Oxffffff
43 #define DEST_IP_POOL 0xa0a000
44 #define SRC_IP_POOL 0x10a000
45 #define DELAY 	 30
46 #define MAX_SSTHRESH 0xffff
47 #define IPIP_FRAG_OP 0x8000
48
49 	 struct probe_info {
50 	 struct split_flow_info *sfi;
51 	 int flag;
52 	 struct net_device *in_dev;
53 	 };
54
55 	 struct probe_info *pinfo;
56
57 	 /*
58 	 * Command line arguements
59 	 */
60 	 static __u32 neigh_hb_table[16] = {-1,-1,-1,-1,
61 	 -1,-1,-1,-1,
62 	 -1,-1,-1,-1,
63 	 -1,-1,-1,-1};
64 	 static int tbl_cnt;
65
66 module_param_array(neigh_hb_table, int, &tbl_cnt, 0444);
67
68 MODULE_PARM_DESC(neigh_hb_table,
69 	 "Array containing next HB IP address");
70
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71 	 /*
72	 * This array contains the network pools and hb addr
73 	 * Format is :
74 	 *	 src_ip dst_ip nhb_ip phb_ip
75 	 * Network layout to understand next and previous HB:
76 	 * 	 S 	 PHB --- ME --- NHB 	 D
77 	 */
78 	 __u32 nw_hb_table[NW_LIMIT][4];
79
80 static unsigned long curr_proc_buff_len = 0;
81 	 int NW_TABLE_POPULATED = 0;
82
83 	 struct split_flow_info *slh;
84 	 struct timer_list send_time;
85 	 int send_time_first = 1;
86	 int rto_timer_expired = 1;
87
88	 int prepare_fwd_data(unsigned long data, int flag);
89 void prepare_fwd_retrans_data(unsigned long data);
90 void remove_sfi_node(unsigned long data);
91 void prepare_tcp_probe(unsigned long data);
92 	 static void tcp_grow_window(struct split_flow_info *sfi,
93 	 struct tcp_state *tp,
94 	 struct sk_buff *skb);
95
96 	 /*******************************************************/
97 /* 	 Neighbour table processing Functions 	 */
98 	 /*******************************************************/
99 	 int populate_nw_table()

100 	 {
101 	 int i, j;
102 	 char **table_dup;
103 	 char *table_entry;
104 	 __u32 utemp;
105
106 	 for(i = 0; i < 16; i++)
107 	 printk(KERN_ALERT "neigh_hb_table: /ex \n",
108 	 neigh_hb_table[i]);
109
110 	 for(i = 0; i < NW_LIMIT; i++) {
111 	 for(j = 0; j < 4; j++) {
112 	 nw_hb_table[i][j] = neigh_hb_table[(4*i+j)];
113 	 }

114 	 }
115
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116 	 for(i = 0; i < NW_LIMIT; i++) {
117 	 for(j = 0; j < 4; j++) {
118 	 printk(KERN_ALERT "nw_hb_table: %x \n",
119 	 nw_hb_table[i][j]);
120 	 }

121 	 }

122
123 	 if(nw_hb_table != NULL) {
124 	 return 1;
125 	 }

126 	 else
127 	 return 0;
128 	 }

129
130 	 /*
131 	 * This function returns the next HB addr. It requires
132 	 * 1. Flow details
133 	 * 2. Direction of flow
134 	 */
135 	 __u32 get_nexthb_addr(struct flow_detail *fd, int flag)
136 	 {
137 	 __u32 hb_addr = -1;
138 	 __u32 src_addr, dest_addr;
139 	 int i, tbl_index;
140
141 	 if (flag == PREV_FLOW)
142 	 tbl_index = 3;
143 	 else if (flag == FWD_FLOW)
144 	 tbl_index = 2;
145
146 	 src_addr = fd->saddr << 12;
147 	 dest_addr = fd->daddr << 12;
148
149 	 for(i = 0; i < NW_LIMIT; i++) {
150 	 if((src_addr & SRC_IP_MASK) == nw_hb_table[i][0] &&
151 	 (dest_addr & DEST_IP_MASK) == nw_hb_table[i][1])
152 	 hb_addr = nw_hb_table[i][tbl_index];
153 	 }
154
155 	 return hb_addr;
156 	 }
157
158 	 /*
159 	 * This function is used to print the HW addr
160 	 */
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161 	 void uchar_to_hex(unsigned char addr[])
162 	 {
163 	 int i;
164 	 for(i = 0; i < ETH_ALEN; i++) {
165 	 printk(KERN_ALERT la.", addrai);
166 	 }

167 	 printk(KERN_ALERT "\n");
168 	 return;
169 	 }

170
171 	 /*******************************************************/
172 /* 	 Timer Related Functions 	 */
173 	 /*******************************************************/
174 	 /*
175 	 * This function initializes the snd_timer.
176 	 * add_delay is used when the user wants a delay of more
177 	 * than 10msec
178 	 */
179 	 void
180 	 init_send_timer(struct split_flow_info *sfi, int add_delay)
181 	 {
182 	 init_timer(&send_time);
183 	 send_time.expires = jiffies + DELAY + add_delay + 10;
184 	 send_time.data = (unsigned long *)sfi;
185 	 send_time.function = prepare_fwd_data;
186 	 add_timer(&send_time);
187 	 send_time_first = -1;
188 	 return;
189 	 }
190
191 	 /*
192 	 * This function initializes the rto_timer.
193 	 */
194 	 void init_rto_timer(struct skbuff_list *queue_head,
195 	 struct tcp_state *tp, int mult_factor)
196 	 {
197 	 init_timer(&(tp->rto_timer));
198 	 tp->rto_timer.expires = jiffies + tp->rto * mult_factor;
199
200 	 /* Setting the upper bound of 60 secs on the RTO */
201 	 if(time_diff(tp->rto_timer.expires, jiffies) > UDP_RTO_MAX)
202 	 tp->rto_timer.expires = jiffies + TCP_RTO_MAX;
203
204 	 tp->rto_timer.data = (unsigned long *)queue_head;
205 	 tp->rto_timer.function = prepare_fwd_retrans_data;
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206 	 add_timer(&(tp->rto_timer));
207
208 	 return;
209 	 }
210
211 	 /*
212 	 * This function initializes the time wait timer.
213 	 */
214 	 void init_tw_timer(struct split_flow_info *sfi, int flag)
215 	 {
216 	 struct tcp_state *tps, *tps_sibling;
217
218 	 printk(KERN_ALERT "Inside init_tw_timer()....\n");
219
220 	 if (flag == PREV_FLOW) {
221 	 tps = sfi->lhs_tcp_state;
222 	 tps_sibling = sfi->rhs_tcp_state;
223 	 }

224 	 else if (flag == FWD_FLOW) {
225 	 tps = sfi->rhs_tcp_state;
226 	 tps_sibling = sfi->lhs_tcp_state;
227 	 }
228
229 	 init_timer(&(tps->tw_timer));
230 	 tps->tw_timer.expires = jiffies + (TCP_MSL<<l);
231 	 tps->tw_timer.data = (unsigned long *)sfi;
232 	 tps->tw_timer.function = remove_sfi_node;
233 	 add_timer(&(tps->tw_timer));
234 	 printk(KERN_ALERT "Exiting init_tw_timer()....\n");
235 	 return;
236 	 }
237
238 	 /*
239 	 * This function initializes the 0 window probe timer.
240 	 */
241 	 void init_probe_timer(struct probe_info *pi,
242 	 struct tcp_state *tp,
243 	 int mult_factor)
244 	 {
245 	 if(!timer_pending(&(tp->probe_timer)))
246 	 del_timer_sync(&(tp->probe_timer));
247
248 	 tp->probe_timer.expires = tp->rto*mult_factor+jiffies;
249
250 	 if((tp->probe_timer.expires - jiffies) > TCP_RTO_MAX)
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251 	 tp->probe_timer.expires = jiffies + TCP_RTO_MAX;

252
253 	 tp->probe_timer.data = (unsigned long *)pi;
254 	 tp->probe_timer.function = prepare_tcp_probe;
255 	 add_timer(&(tp->probe_timer));
256 	 return;
257 	 }
258
259 	 /*******************************************************/

260 	 /* 	 General Split TCP Related Functions 	 */

261 	 /*******************************************************/

262 	 /*

263 	 * This function returns 1 if the flow is supported for Split TCP
264 	 * processing. It compares the source and destination addr. with
265 	 * those in nw_hb_table. ipip_flag = 1 if the function is called
266 	 * while removing the outer IP hdr else 0.
267 	 */
268 	 int flow_supported(__u32 src_addr, __u32 dest_addr, int ipip_f lag)
269 	 {

270 	 __u32 src_netid, dest_netid;
271 	 int src_net_present, dst_net_present, ret_value;
272 	 int i, j;
273
274 	 src_net_present = dst_net_present = ret_value = 0;
275
276 	 src_netid = src_addr << 12;
277 	 dest_netid = dest_addr << 12;
278
279 	 if(nw_hb_table == NULL)
280 	 return ret_value;
281
282 	 /* Checking if flow is supported */
283 	 for(i = 0; i < NW_LIMIT; i++) {
284 	 if((src_netid & SRC_IP_MASK) == nw_hb_table[i][0])
285 	 src_net_present = 1;
286 	 if((dest_netid & DEST_IP_MASK) == nw_hb_table[i][1])
287 	 dst_net_present = 1;
288
289 	 if(ipip_flag)
290 	 ret_value = (src_net_present II dst_net_present);
291 	 else
292 	 ret_value = (src_net_present && dst_net_present);
293
294 	 if (ret_value == 1)
295 	 break;
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296 	 }
297 	 return(ret_value);
298 	 }

299
300 	 /*
301 	 * This function removes the sfi node from the list.
302 	 * It is called only after the TIME_WAIT period has elapsed. Hence
303 	 * we can safely delete the node.
304 	 */
305 void remove_sfi_node(unsigned long data)
306 	 {

307 	 struct split_flow_info *sfi = (struct split_flow_info *)data;
308 	 struct tcp_state *rhs_tps, *lhs_tps;
309
310 	 rhs_tps = sfi->rhs_tcp_state;
311 	 lhs_tps = sfi->lhs_tcp_state;
312
313 	 if(timer_pending(&(rhs_tps->tw_timer)) II
314 	 timer_pending(&(lhs_tps->tw_timer)) )
315 	 return;
316 	 else {
317 	 del_timer_sync(&(rhs_tps->tw_timer));
318 	 del_timer_sync(&(lhs_tps->tw_timer));
319 	 delete_sfi(sfi);
320 	 }
321 	 return;
322 	 }

323
324 	 /*
325 	 * This function extracts the hardware address of the incoming packet
326 	 * and stores it in the sfi node
327 	 */
328 	 void get_hw_addr(struct sk_buff *skb, struct split_flow_info *sfi,
329 	 int flag)
330 	 {
331 	 struct ethhdr *mac;
332 	 mac = (struct ethhdr *)skb->mac.raw;
333
334 	 if (flag == PREV_FLOW)
335 	 memcpy(sfi->prev_flow_hw, mac , sizeof(struct ethhdr));
336 	 else if (flag == FWD_FLOW)
337 	 memcpy(sfi->fwd_flow_hw, mac, sizeof(struct ethhdr));
338
339 	 return;
340
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341
342 	 /*
343 	 * This function extracts the IP header of the original data packet
344 	 * from the IPIP packet
345 	 */
346 struct iphdr* get_ip_header(struct sk_buff *skb)
347 	 {
348 	 return((struct iphdr*)(skb->data + skb->nh.iph->ihl*4));
349 	 }

350
351 	 /*
352 	 * This function extracts the UDP header of the original data packet
353 	 * from the IPIP packet
354 	 */
355 	 struct tcphdr* get_tcp_header(struct sk_buff *skb)
356 	 {
357 	 struct iphdr *iph;
358 	 iph = (struct iphdr*)(skb->data + skb->nh.iph->ihl*4);
359 	 return((struct tcphdr*)
360 	 (skb->data + skb->nh.iph->ihl*4 + iph->ihl*4));
361 	 }
362
363 	 /*
364 	 * This function creates a new node for the incoming flow in the
365 	 * linked list
366 	 */
367 	 struct split_flow_info*
368 	 create_sfinode(struct split_flow_info *head, struct sk_buff *skb)
369 	 {
370 	 struct split_flow_info *newsfi;
371
372 	 /* Enqueue a new node in the linked list */
373 	 newsfi = enqueue_sfi(s1h);
374
375 	 newsfi->prev_flow_hw = (struct ethhdr *)
376 	 kmalloc(sizeof(struct ethhdr), GFP_ATOMIC);
377 	 newsfi->fwd_flow_hw = (struct ethhdr *)
378 	 kmalloc(sizeof(struct ethhdr), GFP_ATOMIC);
379
380 	 /* Initialize the skbuff_list for this node */
381 	 init_skbuff_list(newsfi);
382
383 	 /* Initialize all the timers for the flow */
384 	 init_timer(&(newsfi->lhs_tcp_state->tw_timer));
385 	 init_timer(&(newsfi->rhs_tcp_state->tw_timer));
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386 	 init_timer(&(newsfi->lhs_tcp_state->rto_timer));
387 	 init_timer(&(newsfi->rhs_tcp_state->rto_timer));
388 	 init_timer(Cnewsfi->lhs_tcp_state->probe_timer));
389 	 init_timer(&(newsfi->rhs_tcp_state->probe_timer));
390
391 	 pinfo = (struct probe_info*)
392 	 kmalloc(sizeof(struct probe_info), GFP_ATOMIC);
393
394 	 return newsfi;
395 	 }

396
397 	 /*
398 	 * This function replicates qdisc_create_dflt() of the kernel
399 	 * Update: 04/20/07 Temporarily not used. Relying on kernel RED
400 	 * for marking support
401 	 */
402 	 /*
403 	 struct Qdisc* assign_qdisc_ops(struct net_device *dev,
404 	 struct Qdisc_ops *ops,
405 	 struct Qdisc *sch)
406 	 {
407 	 // 	 int size = sizeof(*sch) + ops->priv_size;
408
409 	 // 	 sch = kmalloc((sizeof(struct Qdisc) + ops->priv_size),
410 	 // 	 GFP_KERNEL);
411 	 // 	 if (!sch)
412 	 // 	 return NULL;
413 	 // 	 memset(sch, 0, size);
414
415
416 	 skb_queue_head_init(&sch->q);
417 	 sch->ops = ops;
418 	 sch->enqueue = ops->enqueue;
419 	 sch->dequeue = ops->dequeue;
420 	 sch->dev = dev;
421 	 sch->stats_lock = &dev->queue_lock;
422 	 sch->refcnt.counter = 1;
423 	 if (!ops->init II ops->init(sch, NULL) == 0)
424 	 return sch;
425
426 	 kfree(sch);
427 	 return NULL;
428 	 }

429 	 */
430
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431 	 /*
432 	 * This function will change the Qdisc for the given interface on
433 	 * the fly. Used to change the Qdisc of an interface to RED when
434 	 * ECN can be used.
435 	 * Update: 04/20/07 Temporarily not used. Relying on kernel RED
436 	 * for marking support
437 	 */
438 	 /*
439 void change_qdisc(struct net_device *dev, struct Qdisc *sch)
440 	 {
441 	 struct Qdisc *q;
442
443 	 if(dev->qdisc_sleeping->ops != &split_red_qdisc_ops) {
444 	 printk(KERN_ALERT "Changing Qdisc for °As \n", dev->name);
445
446 	 spin_lock_bh(&dev->queue_lock);
447 	 q = assign_qdisc_ops(dev, &split_red_qdisc_ops, sch);
448 	 spin_unlock_bh(&dev->queue_lock);
449
450 	 if (q == NULL) {
451 	 printk(KERN_ALERT "Qdisc change failed in Sp1itUDP \n");
452 	 return;
453 	 }
454 	 printk(KERN_ALERT "Qdisc registeration successful \n");
455
456 	 INIT_LIST_HEAD(&q->list);
457 	 list_add_tail(&q->list, &dev->qdisc_list);
458 	 dev->qdisc_sleeping = q;
459
460 	 spin_lock_bh(&dev->queue_lock);
461 	 dev->qdisc = dev->qdisc_sleeping;
462 	 dev->trans_start = jiffies;
463 	 __netdev_watchdog_up(dev);
464 	 spin_unlock_bh(&dev->queue_lock);
465 	 }
466 	 }
467 	 */
468
469 	 /*******************************************************/
470 /*	 Queue Management Functions 	 */
471 	 /*******************************************************/
472 	 /*
473 	 * This function is responsible for finding new holes in the queue.
474 	 * If a new hole is found, the following tcp_state and skbuff_list
475 	 * variable are updated
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476 	 * 1. rcv_next
477 	 * 2. pkt_bfr_hole
478 	 * The function returns 1 if a new hole is found, else returns -1
479 	 * Change (02/23/2006).
480 	 * 	 - Introduced 4 variables to store the correct tcp and ip
481 	 * 	 headers in case of IPIP
482 	 * 	 - Changed all ref of type
483 	 * 	 {curr/next}_pkt->nh.iph-> to {curr/next}_pkt_iph->
484 	 * 	 - Similar for tcp.
485 	 */
486 	 int find_new_hole_update(struct skbuff_list *queue_head,
487 	 struct tcp_state *tps)
488 	 {
489 	 __u32 curr_seq, next_seq;
490 	 struct skbuff_list *curr_skbl = queue_head->pkt_bfr_hole;
491 	 struct skbuff_list *next_skbl;
492 	 struct sk_buff *curr_pkt, *next_pkt;
493 	 struct iphdr *curr_pkt_iph, *next_pkt_iph;
494 	 struct tcphdr *curr_pkt_th, *next_pkt_th;
495 	 int data_bytes;
496
497 	 if(curr_skbl == NULL)
498 	 return -1;
499
500 	 if(curr_skbl == queue_head) {
501 	 printk(KERN_ALERT
502 	 "pkt_bfr_hole is pointing to the head of the queue\n");
503 	 }
504
505 	 next_skbl = curr_skbl->next;
506
507 	 while(next_skbl != queue_head) {
508 	 curr_pkt = curr_skbl->sb_pkt;
509 	 next_pkt = next_skbl->sb_pkt;
510
511 	 if(curr_pkt != NULL && next_pkt != NULL) {
512 	 /* Get proper TCP and IP header */
513 	 if(curr_pkt->nh.iph->protocol == IPPROTO_IPIP) {
514 	 curr_pkt_iph = get_ip_header(curr_pkt);
515 	 curr_pkt_th = get_tcp_header(curr_pkt);
516 	 }
517 	 else {
518 	 curr_pkt_iph = curr_pkt->nh.iph;
519 	 curr_pkt_th = curr_pkt->h.th;
520 	 }
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521
522 	 if(next_pkt->nh.iph->protocol == IPPROTO_IPIP) {
523 	 next_pkt_iph = get_ip_header(next_pkt);
524 	 next_pkt_th = get_tcp_header(next_pkt);
525 	 }
526 	 else {
527 	 next_pkt_iph = next_pkt->nh.iph;
528 	 next_pkt_th = next_pkt->h.th;
529 	 }

530
531 	 curr_seq = ntohl(curr_pkt_th->seq);
532 	 next_seq = ntohl(next_pkt_th->seq);
533
534 	 data_bytes = ntohs(curr_pkt_iph->tot_len) -
535 	 (curr_pkt_iph->ihl*4) - (curr_pkt_th->doff*4);
536
537 	 //TODO: checking seq properly
538 	 if(next_seq > (curr_seq + data_bytes + (curr_pkt_th->syn II
539 	 curr_pkt_th->f in))) {
540 	 queue_head->pkt_bfr_hole = curr_skbl;
541 	 tps->rcv_next = curr_seq + ntohs(curr_pkt_iph->tot_len) -
542 	 (curr_pkt_iph->ihl*4)-(curr_pkt_th->doff*4);
543 	 return 1;
544 	 }
545 	 }
546 	 curr_skbl = next_skbl;
547 	 next_skbl = curr_skbl->next;
548 	 }
549
550 	 queue_head->pkt_bfr_hole = NULL;
551
552 	 return -1;
553 	 }

554
555 	 /*
556 	 * This function is called when we recieve a packet that fills a hole
557 	 * in the queue. If the packet does not fit anywhere, it is silently
558 	 * dropped.
559 	 * Change (02/23/2006).
560 	 * 	 - Introduced 4 variables to store the correct tcp and ip
561 	 * 	 headers in case of IPIP
562 	 * 	 - Changed all ref of type
563 	 * 	 {curr/next}_pkt->nh.iph-> to {curr/next}_pkt_iph->
564 	 * 	 - Similar for tcp.
565 	 */



566 void find_hole_and_enqueue(struct skbuff_list *queue_head,
567 	 struct sk_buff *skb)
568 	 {
569 	 __u32 curr_seq, next_seq, skb_seq;
570 	 struct skbuff_list *curr_skbl = queue_head->pkt_bfr_hole;
571 	 struct skbuff_list *skbl_node = NULL;
572 	 struct skbuff_list *next_skbl = NULL;
573 	 struct sk_buff *curr_pkt = NULL;
574 	 struct sk_buff *next_pkt = NULL;
575 	 struct iphdr *curr_pkt_iph, *next_pkt_iph;
576 	 struct tcphdr *curr_pkt_th, *next_pkt_th;
577 	 int data_bytes;
578
579 	 if(curr_skbl == NULL) {
580 	 return;
581 	 }
582
583 	 skb_seq = ntohl(skb->h.th->seq);
584 	 next_skbl = curr_skbl->next;
585
586 	 while(curr_skbl != queue_head) {
587 	 curr_pkt = curr_skbl->sb_pkt;
588
589 	 /* Get proper tcp and ip heaer */
590 	 if(curr_pkt->nh.iph->protocol == IPPROTO_IPIP) {
591 	 curr_pkt_iph = get_ip_header(curr_pkt);
592 	 curr_pkt_th = get_tcp_header(curr_pkt);
593 	 }
594 	 else {
595 	 curr_pkt_iph = curr_pkt->nh.iph;
596 	 curr_pkt_th = curr_pkt->h.th;
597 	 }
598
599 	 curr_seq = ntohl(curr_pkt_th->seq);
600 	 data_bytes = ntohs(curr_pkt_iph->tot_len) -
601 	 (curr_pkt_iph->ihl*4)-(curr_pkt_th->doff*4);
602
603 	 //TODD: checking seq properly
604 	 if((curr_seq + data_bytes) <= skb_seq) {
605 	 if(next_skbl != queue_head) {

606 	 next_pkt = next_skbl->sb_pkt;
607
608 	 /* Get proper tcp and ip heaer */
609 	 if(next_pkt->nh.iph->protocol == IPPROTO_IPIP) {
610 	 next_pkt_iph = get_ip_header(next_pkt);

175
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611 	 next_pkt_th = get_tcp_header(next_pkt);
612 	 }

613 	 else {
614 	 next_pkt_iph = next_pkt->nh.iph;
615 	 next_pkt_th = next_pkt->h.th;
616 	 }

617
618 	 next_seq = ntohl(next_pkt_th->seq);
619 	 if(skb_seq < next_seq) {
620 	 skbl_node = (struct skbuff_list *)
621 	 kmalloc(sizeof(struct skbuff_list),
622 	 GFP_ATOMIC);
623 	 insert_skbuff_list(curr_skbl, skbl_node, queue_head);
624 	 skbl_node->sb_pkt = skb_copy(skb, GFP_ATOMIC);
625 	 return;
626 	 }
627 	 }
628 	 else {
629 	 skbl_node = (struct skbuff_list *)
630 	 kmalloc(sizeof(struct skbuff_list),
631 	 GFP_ATOMIC);
632 	 insert_skbuff_list(curr_skbl, skbl_node, queue_head);
633 	 skbl_node->sb_pkt = skb_copy(skb, GFP_ATOMIC);
634 	 return;
635 	 }
636 	 }

637 	 curr_skbl = next_skbl;
638 	 next_skbl = curr_skbl->next;
639 	 }
640
641 	 return;
642 	 }
643
644 	 /*
645 	 * This function will enqueue a sk_buff into the appropriate queue
646 	 */
647 	 int
648 	 enqueue_packet(struct split_flow_info *sfi, struct sk_buff *skb,
649 	 struct skbuff_list *queue_head, struct tcp_state *tps)
650 	 {

651 	 struct skbuff_list *skbl_node;
652 	 struct sk_buff *prev_pkt = queue_head->prev->sb_pkt;
653 	 struct iphdr *prev_pkt_iph;
654 	 struct tcphdr *prev_pkt_tcph;
655 	 int data_bytes;
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656 	 int hole_present, ret_value = -1;
657 	 __u32 prev_pkt_seq;
658 	 __u32 curr_pkt_seq;
659
660 	 curr_pkt_seq = ntohl(skb->h.th->seq);
661 	 if(prev_pkt != NULL) {
662 	 if(prev_pkt->nh.iph->protocol == IPPROTO_IPIP) {
663 	 prev_pkt_iph = get_ip_header(prev_pkt);
664 	 prev_pkt_tcph = get_tcp_header(prev_pkt);
665 	 }
666 	 else {
667 	 prev_pkt_iph = prev_pkt->nh.iph;
668 	 prev_pkt_tcph = prev_pkt->h.th;
669 	 }

670 	 prev_pkt_seq = ntohl(prev_pkt_tcph->seq);
671 	 data_bytes = ntohs(prev_pkt_iph->tot_len)-(prev_pkt_iph->ihl*4)
672 	 - (prev_pkt_tcph->doff*4);
673 	 }
674
675 	 hole_present = queue_head->hole_in_queue;
676
677 	 /* The first if statement will not be needed once the SYN 3-way
678 	 * handshake is done end to end
679 	 */
680 	 /* Copy in queue if packet contains some data or is a FIN */
681 	 if((tps->end_seq - curr_pkt_seq) > 0 II
682 	 skb->h.th->fin II skb->h.th->syn) {
683 	 /* If queue is empty, simple enqueue the packet */
684 	 if(get_queue_pkt_count(queue_head) == 0 ) {
685 	 if(skb->h.th->syn II curr_pkt_seq == tps->rcv_next) {
686 	 ret_value = 1;
687 	 goto enqueue_pkt;
688 	 }
689 	 else if(curr_pkt_seq > tps->rcv_next)
690 	 goto pkt_crt_hole;
691 	 }

692
693 	 /* Case 1: There are no holes in the queue */
694 	 if(!(hole_present)) {
695 	 /* Packet is in order */
696 	 if((prev_pkt_seq + prev_pkt_tcph->syn + data_bytes) ==
697 	 curr_pkt_seq) {
698 	 ret_value = 1;
699 	 goto enqueue_pkt;
700 	 }
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701 	 /* Packet going to create a hole */
702 	 else if(curr_pkt_seq >
703 	 (prev_pkt_seq + prev_pkt_tcph->syn + data_bytes)) {
704 pkt_crt_hole:
705 	 hole_present = 1;
706 	 ret_value = -1;
707 	 queue_head->pkt_bfr_hole = queue_head->prev;
708 	 tps->max_rcv_byte = tps->end_seq;
709 	 goto enqueue_pkt;
710 	 }

711 	 }

712 	 /* Case 2: There are hole(s) in the queue */
713 	 else if(hole_present) {
714 	 /* We got the lost packet */
715 	 if(curr_pkt_seq == tps->rcv_next) {
716 	 /* This is the missing packet, enqueue and update */
717 	 skbl_node = (struct skbuff_list *)
718 	 kmalloc(sizeof(struct skbuff_list), GFP_ATOMIC);
719 	 skbl_node->next = skbl_node->prev = skbl_node;
720
721 	 write_lock(&queue_head->lock);
722 	 insert_skbuff_list(queue_head->pkt_bfr_hole, skbl_node,
723 	 queue_head);
724 	 write_unlock(&queue_head->lock);
725
726 	 skbl_node->sb_pkt = skb_copy(skb, GFP_ATOMIC);
727
728 	 /* Check if more holes present */
729 	 if(find_new_hole_update(queue_head, fps) == 1) {
730 	 // 	 printk(KERN_ALERT "Additional holes \n");
731 	 hole_present = 1;
732 	 ret_value = -1;
733 	 /* rcv_next updated by find_new_hole_update() */
734 	 }

735 	 else {
736 	 hole_present = 0;
737 	 ret_value 	 -1;
738 	 tps->rcv_next = tps->max_rcv_byte;
739 	 /* rcv_next will be updated by tcp_process_ack() */
740 	 }
741 	 goto update_and_ret;
742 	 }

743 	 /* Packet in sequence */
744 	 else if(tps->end_seq >= tps->max_rcv_byte) {
745 	 tps->max_rcv_byte = tps->end_seq;
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746 	 ret_value = -1;
747 	 goto enqueue_pkt;
748 	 }

749 	 /* Lost packet filling another hole */
750 	 else {
751 	 find_hole_and_enqueue(queue_head, skb);
752 	 ret_value = -1;
753 	 goto update_and_ret;
754 	 }
755 	 }

756
757 	 enqueue_pkt:
758 	 /* Charge the buffer and grow the window */
759 	 if(!skb->h.th->syn) {
760 	 data_bytes = ntohs(skb->nh.iph->tot_len)-skb->nh.iph->ihl*4
761 	 - skb->h.th->doff*4;
762
763 	 tcp_charge_buffer(sfi, data_bytes, tps);
764
765 	 if (data_bytes > 128)
766 	 tcp_grow_window(sfi, tps, skb);
767 	 }

768
769 	 skbl_node = (struct skbuff_list *)
770 	 kmalloc(sizeof(struct skbuff_list), GFP_ATOMIC);
771
772 	 write_lock(&queue_head->lock);
773 	 enqueue_skbuff_list(sfi, skbl_node, queue_head);
774 	 write_unlock(&queue_head->lock);
775
776 	 skbl_node->sb_pkt = skb_copy(skb, GFP_ATOMIC);
777 	 }
778
779 update_and_ret:
780 	 queue_head->hole_in_queue = hole_present;
781 	 return(ret_value);
782 	 }

783
784 	 /*
785 	 * This function adds the MAC header and puts it in the device queue
786 	 */
787 	 void add_eth_hdr(struct split_flow_info *sfi,
788 	 struct sk_buff *skb, int flag)
789 	 {
790 	 struct ethhdr *eth_out = (struct ethhdr *)skb_push(skb, ETH_HLEN);
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791 	 struct ethhdr *eth_in = NULL;
792 	 struct ethhdr *dump;
793
794 	 if (flag == PREV_FLOW) {
795 	 eth_in = sfi->prev_flow_hw;
796 	 }
797 	 else if (flag == FWD_FLOW) {
798 	 eth_in = sf i->fwd_flow_hw;
799 	 }

800
801 	 /* Populate the MAC header */
802 	 eth_out->h_proto = eth_in->h_proto;
803 	 memcpy(eth_out->h_dest, eth_in->h_source, ETH_ALEN);
804 	 memcpy(eth_out->h_source, eth_in->h_dest, ETH_ALEN);
805
806 	 /* Put it on the wire now*/
807 	 dev_queue_xmit(skb);
808 	 return;
809 	 }

810
811 	 /*
812 	 * This function adds the IP header.
813 	 */
814 	 void add_ip_and_send(struct split_flow_info *sfi,
815 	 struct sk_buff *skb, int flag)
816 	 {
817 	 struct iphdr *iph;
818 	 struct flow_detail *out_f low = NULL;
819 	 struct tcp_state *tp = NULL;
820
821 	 if (flag == PREV_FLOW) {
822 	 tp = sfi->lhs_tcp_state;
823 	 out_flow = sfi->i2r_flow;
824 	 }

825 	 else if (flag == FWD_FLOW) {
826 	 tp = sfi->rhs_tcp_state;
827 	 out_flow = sfi->r2i_flow;
828 	 }
829
830 	 /* Adding IP hdr at the start */
831 	 iph = (struct iphdr *)skb_push(skb, sizeof(struct iphdr));
832
833 	 /* Filling the fields with values */
834 	 iph->version = 4;
835 	 iph->ihl = 5;
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836 	 if (tp->ecn_capable)
837 	 iph->tos = 0x02;
838 	 else
839 	 iph->tos = 0;
840 	 iph->tot_len = htons(skb->len);
841 	 iph->id = ++tp->ip_id;
842 	 iph->frag_off = htons(IP_DF);
843 	 iph->ttl = IPDEFTTL;
844 	 iph->protocol = IPPROTO_UDP;
845 	 iph->saddr = out_f low->daddr;
846 	 iph->daddr = out_f low->saddr;
847
848 	 skb->nh.iph = iph;
849 	 ip_send_check(iph);
850
851 	 /* Done with IP part. Build MAC header now */
852 	 add_eth_hdr(sfi, skb, flag);
853
854 	 return;
855 	 }

856
857 	 /*******************************************************/
858 	 /* 	 RTO Calculation Functions 	 */
859 	 /*******************************************************/
860 	 /* This function calculates the values for srtt and rttvar.
861 	 * The rto variable is _not_ set in this function.
862 	 * The code was copied from the kernel function tcp_rtt_estimator()
863 	 * The next 3 function deal with the RTT measurement. They should
864 	 * always be called in the order they are defined in.
865 • * All these fns are copied from the kernel. The reason I am not
866 	 * calling the corresponding kernel function is because I am making
867 	 * use of my own structure for tcp_state.
868 	 */
869 	 void tcp_rtt_estimate(struct tcp_state *tp)
870 	 {
871 	 long m;
872
873 	 m = tp->ack_seq_tstamp - tp->rtt_seq_tstamp;
874
875 	 /* The following code was copied from the kernel function
876 	 * tcp_rtt_estimator() */
877 	 if (m == 0)
878 	 m = 1;
879 	 if (tp->srtt != 0) {
880 	 m -= (tp->srtt >> 3); 	 /* m is now error in rtt est */



182

881 	 tp->srtt += m; 	 /* rtt = 7/8 rtt + 1/8 new */
882 	 if (m < 0) {
883 	 m = -m; 	 /* m is now abs(error) */
884 	 m -= (tp->mdev >> 2); 	 /* similar update on mdev */
885 	 if (m > 0)
886 	 m >>= 3;
887 	 else {
888 	 m -= (tp->mdev >> 2); 	 /* similar update on mdev */
889 	 }

890 	 tp->mdev += m; 	 /* mdev = 3/4 mdev + 1/4 new */
891 	 if (tp->mdev > tp->mdev_max) {
892 	 tp->mdev_max = tp->mdev;
893 	 if (tp->mdev_max > tp->rttvar)
894 	 tp->rttvar = tp->mdev_max;
895 	 }

896 	 if (after(tp->snd_una, tp->rtt_seq)) {
897 	 if (tp->mdev_max < tp->rttvar)
898 	 tp->rttvar -= (tp->rttvar-tp->mdev_max)>>2;
899 	 tp->rtt_seq = tp->snd_next;
900 	 tp->mdev_max = UDP_RTO_MIN;
901 	 }

902 	 }else {
903 	 /* no previous measure. */
904 	 tp->srtt = m<<3; 	 /* take the measured time to be rtt */
905 	 tp->mdev = m<<1; 	 /* make sure rto = 3*rtt */
906 	 tp->mdev_max = tp->rttvar = max(tp->mdev, UDP_RTO_MIN);
907 	 tp->rtt_seq = tp->snd_next;
908 	 }

909
910 	 return;
911 	 }
912
913 	 /* This function sets the value of the rto variable
914 	 * Copied from the kernel function with the same name
915 	 */
916 	 void tcp_set_rto(struct tcp_state *tp)
917 	 {
918 	 tp->rto = (tp->srtt >> 3) + tp->rttvar;
919 	 }
920
921 	 /* This function puts an upper bound to the value of rto
922 	 * Copied from the kernel function with the same name
923 	 */
924 void tcp_bound_rto(struct tcp_state *tp)
925 	 {
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926 	 if (tp->rto > UDP_RTO_MAX)
927 	 tp->rto = UDP_RTO_MAX;
928 	 }

929
930 	 /*******************************************************/
931 	 /* 	 Advertised Window Calculation Functions 	 */
932 	 /*******************************************************/
933 	 static int
934 	 __tcp_grow_window(struct split_flow_info *sfi,
935 	 struct tcp_state *tp, struct sk_buff *skb)
936 	 {
937 	 /* Optimize this! */
938 	 int truesize = skb->truesize/2;
939 	 int window = (sfi->buff_clamp>>1)/2;
940
941 	 while (tp->rcv_ssthresh <= window) {
942 	 if (truesize <= skb->len)
943 	 return 2*tp->snd_mss;
944
945 	 truesize >>= 1;
946 	 window >>= 1;
947 	 }

948
949 	 return 0;
950 	 }
951
952 	 static __inline__ void
953 	 tcp_grow_window(struct split_flow_info *sfi, struct tcp_state *tp,
954 	 struct sk_buff *skb)
955 	 {
956 	 /* Check #1 */
957 	 /* Remove the space we committed in our last adv wnd */
958 	 int flow_space = (sfi->buff_clamp>>1) - (int)tp->local_rcv_wnd;
959
960 	 if (tp->rcv_ssthresh < tp->wnd_clamp &&
961 	 (int)tp->rcv_ssthresh < flow_space ) {
962 	 int incr;
963
964 	 /* Check #2. Increase window, if skb
965 	 * with such overhead
966 	 * will fit to rcvbuf
967 	 * in future.
968 	 */
969 	 if(skb->truesize <= skb->len)
970 	 incr = 2*tp->rcv_mss;
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971 	 else
972 	 incr = __tcp_grow_window(sfi, tp, skb);
973
974 	 if (incr) {
975 	 tp->rcv_ssthresh = min(tp->rcv_ssthresh + incr,
976 	 tp->wnd_clamp);
977 	 }

978 	 }

979 	 }

980
981 	 /*
982 	 * This function returns the amount by which we can increase the
983 	 * advertised window.
984 	 * Copied from the kernel function with the same name. Some changes.
985 	 */
986 	 u32 __tcp_select_window_(struct split_flow_info *sfi, int flag)
987 	 {
988 	 struct tcp_state *tps;
989 	 struct skbuff_list *pri_queue, *sec_queue;
990
991 	 if (flag == PREV_FLOW) {
992 	 tps = sfi->lhs_tcp_state;
993 	 /* pri_queue points to the rcv_queue of the flow */
994 	 pri_queue = sfi->i2r_queue;
995 	 sec_queue = sfi->r2i_queue;
996 	 }

997 	 else if (flag == FWD_FLOW) {
998 	 tps = sfi->rhs_tcp_state;
999 	 /* pri_queue points to the rcv_queue of the flow */
1000 	 pri_queue = sfi->r2i_queue;
1001 	 sec_queue = sfi->i2r_queue;
1002 	 }

1003
1004 	 /* MSS for the peer's data. Previous verions used mss_clamp
1005 	 * here. I don't know if the value based on our guesses
1006 	 * of peer's MSS is better for the performance. It's more correct
1007 	 * but may be worse for the performance because of rcv_mss
1008 	 * fluctuations. --SAW 1998/11/1
1009 	 */
1010 	 int mss = tps->snd_mss;
1011 	 __u32 full_space = sfi->buff_clamp >> 1;
1012 	 int window;
1013 	 int priq_pkt_cnt = get_queue_pkt_count(pri_queue);
1014 	 int secq_pkt_cnt = get_queue_pkt_count(sec_queue);
1015 	 int free_space = full_space - priq_pkt_cnt * tps->rcv_mss;
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1016
1017 	 if (mss > full_space)
1018 	 mss = full_space;
1019
1020 	 if (free_space < full_space/2) {
1021 	 if (free_space < mss)
1022 	 return 0;
1023 	 }
1024
1025 	 if (free_space > tps->rcv_ssthresh)
1026 	 free_space = tps->rcv_ssthresh;
1027
1028 	 /* Get the largest window that is a nice multiple of mss.
1029 	 * window clamp already applied above.
1030 	 * If our current window offering is within 1 mss of the
1031 	 * free space we just keep it. This prevents the divide
1032 	 * and multiply from happening most of the time.
1033 	 * We also don't do any window rounding when the free space
1034 	 * is too small.
1035 	 */
1036 	 window = tps->local_rcv_wnd;
1037 	 if (window <= free_space - mss II window > free_space)
1038 	 window = (free_space/mss)*mss;
1039
1040 	 return window;
1041 	 }
1042
1043 	 u32 __tcp_receive_window_(struct tcp_state *tps)
1044 	 {
1045 	 s32 win = tps->rcv_wup + tps->local_rcv_wnd - tps->rcv_next;
1046
1047 	 if (win < 0)
1048 	 win = 0;
1049 	 return (u32) win;
1050 	 }

1051
1052 	 /*
1053 	 * This function selects a new advertised window that can be directly
1054 	 * fed into th->window
1055 	 * Copied from the kernel function with the same name. Some changes.
1056 	 */
1057 	 u16 tcp_select_window_(struct split_flow_info *sfi,
1058 	 struct tcp_state *tps, int flag)
1059 	 {
1060 	 u32 cur_win = __tcp_receive_window_(tps);
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1061 	 u32 new_win = __tcp_select_window_(sfi, flag);
1062 	 int hole_in_q;
1063
1064 	 if (flag == PREV_FLOW)
1065 	 hole_in_q = sfi->i2r_queue->hole_in_queue;
1066 	 else if (flag == FWD_FLOW)
1067 	 hole_in_q = sfi->r2i_queue->hole_in_queue;
1068
1069 	 /* Never shrink the offered window */
1070 	 if(new_win < cur_win) {
1071 	 /* Danger Will Robinson!
1072 	 * Don't update rcv_wup/rcv_wnd here or else
1073 	 * we will not be able to advertise a zero
1074 	 * window in time. --DaveM
1075 	 *
1076 	 * Relax Will Robinson.
1077 	 */
1078 	 new_win = cur_win;
1079 	 }
1080
1081 	 /* Advertise a window of 1 MSS if there is a hole and we are
1082 	 * about to advertise a zero window
1083 	 */

1084 	 if(htons(new_win) <= htons(tps->snd_mss) && hole_in_q) {
1085 	 new_win = tps->snd_mss;
1086 	 }
1087 	 tps->local_rcv_wnd = ntohs(htons(new_win));
1088 	 tps->rcv_wup = tps->rcv_next;
1089
1090 	 return new_win;
1091 	 }
1092
1093 	 /*******************************************************/
1094 /* Initialization & wnd and buffer Update Functions 	 */
1095 	 /*******************************************************/
1096 	 /*
1097 	 * This function initializes the mss and window parameters for a flow
1098 	 * pkt_wnd is set manually to 2.
1099 	 * Change (05/23/2006): Moved wnd_clamp to ip_in_process and
1100 	 * synack function
1101 	 */
1102 	 void tcp_init_mss_wnd(struct tcp_state *tp, __u16 mss, __u16 window)
1103 	 {
1104 	 tp->wnd_curr = ntohs(window);
1105 	 tp->wnd_curr_pkt = tp->wnd_curr / tp->mss_clamp;
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1106 	 tp->rcv_wnd = ntohs(window);
1107 	 tp->rcv_wnd_pkt = tp->rcv_wnd / tp->mss_clamp;
1108
1109 	 /* Setting rcv_ssthresh to 4*mss */
1110 	 tp->rcv_ssthresh = tp->mss_clamp<<2;
1111
1112 	 tp->ssthresh = MAX_SSTHRESH / tp->mss_clamp;
1113 	 tp->cwnd = 2;
1114
1115 	 tp->pkt_wnd = min(tp->cwnd, tp->rcv_wnd_pkt);
1116 	 tp->dup_ack_cnt = 0;
1117
1118 	 return;
1119 	 }

1120
1121 	 /*
1122 	 * This function calculates the window scaling factor that we will
1123 	 * advertise
1124 	 */
1125 	 void calc_rcv_wscale(int __space, __u32 mss, __u32 window_clamp,
1126 	 int wscale_ok, __u8 *wscale)
1127 	 {
1128 	 unsigned int space = (__space < 0 ? 0 : __space);
1129
1130 	 if (window_clamp == 0)
1131 	 window_clamp = (65535 << 14);
1132
1133 	 space = min(window_clamp, space);
1134
1135 	 (*wscale) = 0;
1136 	 if(wscale_ok) {
1137 	 while(space > 65535 && (*wscale) < 14) {
1138 	 space >>= 1;
1139 	 (*wscale)++;
1140 	 }

1141 	 }
1142 	 }
1143
1144 	 /*
1145 	 * Write general description
1146 	 * This function returns 1 if the new packet can be enqueued. Else -1
1147 	 */
1148 	 int tcp_wnd_may_update(struct split_flow_info *sfi, int flag)
1149 	 {
1150 	 struct tcp_state *tp = NULL;
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1151
1152 	 if (flag == PREV_FLOW) {
1153 	 tp = sfi->lhs_tcp_state;
1154 	 }

1155 	 else if (flag == FWD_FLOW) {
1156 	 tp = sfi->rhs_tcp_state;
1157 	 }

1158
1159 	 /* Check if window allows us to accept a new packet */
1160 	 if(((tp->snd_next - tp->snd_una) <= tp->rcv_wnd) &&
1161 	 /* Check if there is space in the buffer */
1162 	 ((tp->end_seq - tp->rcv_next) + sfi->buff_curr <= sfi->buff_clamp) &&
1163 	 /* Check if good ACK */
1164 	 (tp->ack_seq >= tp->snd_una))
1165 	 return 1;
1166
1167 	 return -1;
1168 	 }
1169
1170 	 /*
1171 	 * This function frees the buffer being used by a UDP flow off the
1172 	 * acked data
1173 	 */
1174 	 void tcp_free_buffer(struct split_flow_info *sfi, int data_bytes,
1175 	 struct tcp_state *tps)
1176 	 {

1177 	 sfi->buff_curr -= data_bytes;
1178 	 }
1179
1180 	 /*
1181 	 * This function charges the buffer being used by a UDP flow for the
1182 	 * new data
1183 	 */
1184 	 void tcp_charge_buffer(struct split_flow_info *sfi, int data_bytes,
1185 	 struct tcp_state *tps)
1186 	 {
1187 	 sfi->buff_curr += data_bytes;
1188 	 tps->wnd_curr -= (tps->end_seq - tps->rcv_next);
1189 	 }

1190
1191 	 /*
1192 	 * This function updates the congestion window
1193 	 * For FWD_FLOW, it updates pkt_wnd and removes data bytes from
1194 	 * buff_curr.
1195 	 * For PREV_FLOW, it increases buff_curr and decreases wnd_curr by
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1196 	 * data bytes
1197 	 */
1198 	 void tcp_update_cwnd(struct split_flow_info *sfi, int flag,
1199 	 int pkt_dequeue)
1200 	 {

1201 	 struct tcp_state *tp = NULL;
1202
1203 	 if (flag == FWD_FLOW) {
1204 	 tp = sfi->rhs_tcp_state;
1205 	 }
1206 	 else if (flag == PREV_FLOW) {
1207 	 tp = sfi->lhs_tcp_state;
1208 	 }

1209
1210 	 if (tp->in_fast_recovery) {
1211 	 tp->cwnd +=1;
1212 	 }
1213 	 else if((tp->cwnd <= tp->ssthresh) && (pkt_dequeue == 1)) {
1214 	 tp->cwnd += 1;
1215 	 }
1216 	 else if(tp->cwnd > tp->ssthresh) {
1217 	 if (tp->cwnd_cnt >= tp->cwnd) {
1218 	 tp->cwnd++;
1219 	 tp->cwnd_cnt=0;
1220 	 else
1221 	 tp->cwnd_cnt++;
1222 	 }

1223
1224 	 return;
1225 	 }

1226
1227 	 /************************************************4******/
1228 	 /* 	 Various Packet Generation Functions 	 */
1229 	 /*******************************************************/
1230 	 /*
1231 	 * This function will prepare a UDP probe packet for 0 wnd.
1232 	 * 1. Allocate new skb
1233 	 * 2. Reserve space in skb for headers
1234 	 * 3. Populate tcph fields and then send fwd to IP
1235 	 */
1236 void prepare_tcp_probe(unsigned long data)
1237 	 {
1238 	 struct probe_info *pi = (struct probe_info *)data;
1239 	 struct split_flow_info *sfi = pi->sfi;
1240 	 struct sk_buff *new_skb;



190

1241 	 struct tcphdr *th;
1242 	 struct tcp_state *tp = NULL;
1243 	 struct flow_detail *out_flow = NULL;
1244 	 int tcp_header_size;
1245
1246 	 if(pi->flag == PREV_FLOW) {
1247 	 tp = sfi->lhs_tcp_state;
1248 	 out_flow = sfi->i2r_flow;
1249 	 }
1250 	 else if(pi->flag == FWD_FLOW) {
1251 	 tp = sfi->rhs_tcp_state;
1252 	 out_flow = sfi->r2i_flow;
1253 	 }

1254
1255 	 /* Allocate a new sk_buff */
1256 	 new_skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1257
1258 	 if(new_skb == NULL)
1259 	 goto skb_alloc_fail;
1260
1261 	 /* Reserve space for headers */
1262 	 skb_reserve(new_skb, MAX_TCP_HEADER);
1263 	 tcp_header_size = (sizeof(struct tcphdr) );
1264 	 new_skb->h.th = th = (struct tcphdr *)
1265 	 skb_push(new_skb, tcp_header_size);
1266
1267 	 /* Filling the values in the fields */
1268 	 memset(th, 0, sizeof(struct tcphdr));
1269 	 th->ack = 1;
1270 	 th->source = out_f low->dport;
1271 	 th->dest = out_flow->sport;
1272
1273 	 th->seq = htonl(tp->snd_next) - 1;
1274 	 th->ack_seq = htonl(tp->rcv_next);
1275 	 th->window = htons(tcp_select_window_(sfi, tp, pi->flag));
1276 	 th->doff = (tcp_header_size >> 2);
1277
1278 	 /* Calculate UDP csum */
1279 	 new_skb->csum = 0;
1280 	 th->check = tcp_v4_check(th, new_skb->len,
1281 	 out_f low->daddr, out_flow->saddr,
1282 	 csum_partial((char *)th, new_skb->len,
1283 	 new_skb->csum));
1284
1285 	 new_skb->dev = pi->in_dev;
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1286
1287 	 /* Done with UDP part. Build IP header now */
1288 	 ++tp->probes_out;
1289 	 add_ip_and_send(sfi, new_skb, pi->flag);
1290 	 return;
1291
1292 	 skb_alloc_fail:
1293 	 printk(KERN_ALERT "UDP probe skb alloc problem \n");
1294 	 return;
1295 	 }

1296
1297 	 void prepare_tcp_reset(struct sk_buff *skb, struct net_device *in,
1298 	 int ip_id)
1299 	 {

1300 	 struct tcphdr *th;
1301 	 struct iphdr *iph;
1302 	 struct ethhdr *org_mac, *pkt_mac;
1303 	 struct sk_buff *new_skb;
1304
1305 	 org_mac = (struct ethhdr *)skb->mac.raw;
1306 	 pkt_mac = (struct ethhdr *)
1307 	 kmalloc(sizeof(struct ethhdr), GFP_ATOMIC);
1308 	 iph = skb->nh.iph;
1309 	 th = (struct tcphdr *)(skb->data + iph->ihl*4);
1310
1311 	 /* Allocated sk_buff for new packet */
1312 	 new_skb = alloc_skb(MAX_UDP_HEADER, GFP_ATOMIC);
1313
1314 	 if(new_skb == NULL)
1315 	 goto skb_alloc_fail;
1316
1317 	 /* Reserve space for headers */
1318 	 skb_reserve(new_skb, MAX_UDP_HEADER);
1319
1320 	 /* Push and populate TCP hdr */
1321 	 new_skb->h.th = (struct tcphdr *)
1322 	 skb_push(new_skb, sizeof(struct tcphdr));
1323 	 memset(new_skb->h.th, 0, sizeof(struct tcphdr));
1324 	 new_skb->h.th->doff = sizeof(struct tcphdr)/4;
1325 	 new_skb->h.th->source = th->dest;
1326 	 new_skb->h.th->dest = th->source;
1327 	 new_skb->h.th->rst = 1;
1328
1329 	 if (th->ack)
1330 	 new_skb->h.th->seq = th->ack_seq;
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1331 	 else {
1332 	 new_skb->h.th->ack = 1;
1333 	 new_skb->h.th->ack_seq = htonl(ntohl(th->seq) + th->syn +
1334 	 th->fin + skb->data -
1335 	 (skb->nh.iph->ihl<<2) -
1336 	 (skb->h.th->doff<<2));
1337 	 }
1338
1339 	 new_skb->csum = 0;
1340 	 new_skb->h.th->check =
1341 	 tcp_v4_check(new_skb->h.th, new_skb->len,
1342 	 iph->daddr, iph->saddr,
1343 	 csum_partial((char *)new_skb->h.th,
1344 	 new_skb->len,
1345 	 new_skb->csum));
1346 	 new_skb->dev = in;
1347
1348 	 /* Push and populate the IP hdr */
1349 	 new_skb->nh.iph = (struct iphdr *)
1350 	 skb_push(new_skb, sizeof(struct iphdr));
1351 	 memset(new_skb->nh.iph, 0, sizeof(struct iphdr));
1352 	 new_skb->nh.iph->version = 4;
1353 	 new_skb->nh.iph->ihl = 5;
1354
1355 	 if(ip_id == 0)
1356 	 new_skb->nh.iph->id = th->seq - jiffies;
1357 	 else
1358 	 new_skb->nh.iph->id = ip_id;
1359
1360 	 new_skb->nh.iph->tot_len = htons(new_skb->len);
1361 	 new_skb->nh.iph->ttl = IPDEFTTL;
1362 	 new_skb->nh.iph->protocol = IPPROTO_UDP;
1363 	 new_skb->nh.iph->saddr = iph->daddr;
1364 	 new_skb->nh.iph->daddr = iph->saddr;
1365
1366 	 ip_send_check(new_skb->nh.iph);
1367
1368 	 /* Push and populate the MAC hdr */
1369 	 new_skb->mac.raw = (struct ethhdr *)
1370 	 skb_push(new_skb, sizeof(struct ethhdr));
1371 	 pkt_mac->h_proto = org_mac->h_proto;
1372 	 memcpy(pkt_mac->h_source, org_mac->h_dest, ETH_ALEN);
1373 	 memcpy(pkt_mac->h_dest, org_mac->h_source, ETH_ALEN);
1374 	 memcpy(new_skb->mac.raw, pkt_mac, sizeof(struct ethhdr));
1375
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1376 	 /* Send it out */
1377 	 dev_queue_xmit(new_skb);
1378 	 return;
1379
1380 	 skb_alloc_fail:
1381 	 printk(KERN_ALERT "RST skb alloc problem \n");
1382 	 return;
1383 	 }

1384
1385 	 /*
1386 	 * This function will prepare a UDP ACK.
1387 	 * 1. Allocate new skb
1388 	 * 2. Reserve space in skb for headers
1389 	 * 3. Populate tcph fields and then send fwd to IP
1390 	 */
1391 	 void prepare_tcp_ack(struct split_flow_info *sfi,
1392 	 struct tcphdr *in_th, struct net_device *in,
1393 	 int flag)
1394 	 {
1395 	 struct sk_buff *new_skb;
1396 	 struct tcphdr *th;
1397 	 struct tcp_state *tp = NULL;
1398 	 struct flow_detail *out_flow = NULL;
1399 	 int tcp_header_size;
1400
1401 	 if (flag == PREV_FLOW) {
1402 	 tp = sfi->lhs_tcp_state;
1403 	 out_flow = sfi->i2r_flow;
1404 	 }
1405 	 else if (flag == FWD_FLOW) {
1406 	 tp = sfi->rhs_tcp_state;
1407 	 out_flow = sfi->r2i_flow;
1408 	 }
1409
1410 	 /* Allocate a new sk_buff */
1411 	 new_skb = alloc_skb(MAX_UDP_HEADER, GFP_ATOMIC);
1412
1413 	 if(new_skb == NULL)
1414 	 goto skb_alloc_fail;
1415
1416 	 /* Reserve space for headers */
1417 	 skb_reserve(new_skb, MAX_UDP_HEADER);
1418 	 tcp_header_size = (sizeof(struct tcphdr) );
1419
1420 	 new_skb->h.th = th = (struct tcphdr *)
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1421 	 skb_push(new_skb, tcp_header_size);
1422
1423 	 /* Filling the values in the fields */
1424 	 memset(th, 0, sizeof(struct tcphdr));
1425 	 th->ack = 1;
1426 	 th->source = out_flow->dport;
1427 	 th->dest = out_flow->sport;
1428
1429 	 th->seq = htonl(tp->snd_next);
1430 	 th->ack_seq = htonl(tp->rcv_next);
1431 	 tp->snd_next = ntohl(th->seq);
1432
1433 	 /* ECN related UDP processing */
1434 	 if(tp->ecn_capable) {
1435 	 if (tp->do_cwr)
1436 	 th->cwr = 1;
1437 	 if (tp->demand_cwr)
1438 	 th->ece = 1;
1439 	 }

1440
1441 	 /* Need a way to compute window. This is just a patch up job */
1442 	 th->window = htons(tcp_select_window_(sfi, tp, flag));
1443 	 th->doff = (tcp_header_size >> 2);
1444
1445 	 /* Calculate UDP csum */
1446 	 new_skb->csum = 0;
1447 	 th->check = tcp_v4_check(th, new_skb->len,
1448 	 out_flow->daddr, out_flow->saddr,
1449 	 csum_partial((char *)th, new_skb->len,
1450 	 new_skb->csum));
1451
1452 	 new_skb->dev = in;
1453
1454 	 /* For debugging */
1455 	 new_skb->cb[45] = 'L';
1456
1457 	 /* Done with TCP part. Build IP header now */
1458 	 add_ip_and_send(sfi, new_skb, flag);
1459 	 return;
1460
1461 	 skb_alloc_fail:
1462 	 printk(KERN_ALERT "ACK skb alloc problem \n");
1463 	 return;
1464 	 }

1465
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1466 	 /*
1467 	 * This function will prepare a TCP FIN-ACK.
1468 	 * 1. Allocate new skb
1469 	 * 2. Reserve space in skb for headers
1470 	 * 3. Populate tcph fields and then send fwd to IP
1471 	 */
1472 	 void prepare_tcp_finack(struct split_flow_info *sfi,
1473 	 struct tcphdr *in_th, struct net_device *in,
1474 	 int corr_val, int flag)
1475 	 {
1476 	 struct sk_buff *new_skb;
1477 	 struct tcphdr *th;
1478 	 struct tcp_state *tp = sfi->lhs_tcp_state;
1479 	 struct flow_detail *out_flow = NULL;
1480 	 int tcp_header_size;
1481
1482 	 if (flag == PREV_FLOW) {
1483 	 tp = sfi->lhs_tcp_state;
1484 	 out_flow = sfi->i2r_flow;
1485 	 }
1486 	 else if (flag == FWD_FLOW) {
1487 	 tp = sfi->rhs_tcp_state;
1488 	 out_flow = sfi->r2i_flow;
1489 	 }
1490
1491 	 /* Allocate a new sk_buff */
1492 	 new_skb = alloc_skb(MAX_UDP_HEADER, GFP_ATOMIC);
1493
1494 	 if(new_skb == NULL)
1495 	 goto skb_alloc_fail;
1496
1497 	 /* Reserve space for headers */
1498 	 skb_reserve(new_skb, MAX_UDP_HEADER);
1499 	 tcp_header_size = (sizeof(struct tcphdr) );
1500
1501 	 new_skb->h.th = th = (struct tcphdr *)
1502 	 skb_push(new_skb, tcp_header_size);
1503
1504 	 /* Filling the values in the fields */
1505 	 memset(th, 0, sizeof(struct tcphdr));
1506 	 th->f in = 1;
1507 	 th->ack = 1;
1508 	 th->source = out_flow->dport;
1509 	 th->dest = out_flow->sport;
1510
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1511 	 th->seq = htonl(tp->snd_next + corr_val);
1512 	 th->ack_seq = htonl(tp->rcv_next + 1 + corr_val);
1513 	 tp->rcv_next = ntohl(th->ack_seq);
1514
1515 	 /* snd_next incremented. Next packet will be the last packet of
1516 	 * FIN. This will contain ACK = SEQ + 1. */
1517 	 tp->snd_next += (1 + corr_val);
1518 	 tp->snd_una = tp->snd_next;
1519
1520 	 th->window = in_th->window;
1521 	 th->doff = (tcp_header_size >> 2);
1522
1523 	 /* Have to calculate UDP csum */
1524 	 new_skb->csum = 0;
1525 	 th->check = tcp_v4_check(th, new_skb->len,
1526 	 out_flow->daddr, out_flow->saddr,
1527 	 csum_partial((char *)th, new_skb->len,
1528 	 new_skb->csum));
1529
1530 	 new_skb->dev = in;
1531
1532 	 /* Done with UDP part. Build IP header now */
1533 	 add_ip_and_send(sfi, new_skb, flag);
1534 	 return;
1535
1536 	 skb_alloc_fail:
1537 	 printk(KERN_ALERT "FIN-ACK skb alloc problem \n");
1538 	 return;
1539 	 }
1540
1541 	 void prepare_tcp_synack(struct split_flow_info *sfi, int flag)
1542 	 {
1543 	 struct flow_detail *in_flow, *out_flow;
1544 	 struct tcp_state *tps = NULL;
1545 	 struct tcp_state *prev_tps = NULL;
1546 	 struct skbuff_list *skb_node = NULL;
1547 	 struct sk_buff *org_skb;
1548 	 struct sk_buff *new_skb;
1549 	 struct sk_buff *synack_skb;
1550 	 struct tcphdr *th;
1551 	 struct iphdr *iph;
1552 	 int err, opt_length, tcp_hdr_size;
1553 	 __u32 *ptr;
1554 	 __u8 wscale = 0;
1555 	 unsigned int check_len;
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1556
1557 	 if (flag == PREV_FLOW) {
1558 	 tps = sfi->rhs_tcp_state;
1559 	 prev_tps = sfi->lhs_tcp_state;
1560 	 skb_node = head_peek_skb_list(sfi->i2r_queue);
1561 	 in_flow = sfi->i2r_flow;
1562 	 out_flow = sfi->r2i_flow;
1563 	 }
1564 	 else if (flag == FWD_FLOW) {
1565 	 tps = sfi->lhs_tcp_state;
1566 	 prev_tps = sfi->rhs_tcp_state;
1567 	 skb_node = head_peek_skb_list(sfi->r2i_queue);
1568 	 in_flow = sfi->r2i_flow;
1569 	 out_flow = sfi->i2r_flow;
1570 	 }
1571
1572 	 /* Make copy of pkt that will actually be sent out */
1573 	 if(skb_node == NULL)
1574 	 goto err_skb_list;
1575
1576 	 org_skb = skb_node->sb_pkt;
1577 	 skb_linearize(org_skb, GFP_ATOMIC);
1578
1579 	 /* Check if nh is out of range */
1580 	 if(org_skb->nh.raw < org_skb->head II
1581 	 org_skb->nh.raw > org_skb->tail)
1582 	 goto out_of_range;
1583
1584 	 if(prev_tps->wscale_ok != 1) {
1585 	 synack_skb = alloc_skb(MAX_TCP_HEADER, GFP_ATOMIC);
1586 	 skb_reserve(synack_skb, MAX_TCP_HEADER);
1587
1588 	 tcp_hdr_size = (sizeof(struct tcphdr) + UDPOLEN_MSS +
1589 	 UDPOLEN_WSCALE_ALIGNED);
1590 	 if(tcp_hdr_size < (org_skb->h.th->doff<<2))
1591 	 tcp_hdr_size = org_skb->h.th->doff<<2;
1592
1593 	 synack_skb->h.th =
1594 	 th = (struct tcphdr *)skb_push(synack_skb, tcp_hdr_size);
1595 	 memcpy(th, org_skb->h.th, (ntohs(org_skb->nh.iph->tot_len) -
1596 	 (org_skb->nh.iph->ih1<<2)));
1597
1598 	 synack_skb->nh.iph =
1599 	 iph = (struct iphdr *)skb_push(synack_skb, sizeof(struct iphdr));
1600 	 memcpy(iph, org_skb->nh.iph, (org_skb->nh.iph->ih1<<2));
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1602 	 synack_skb->mac.raw = (struct ethhdr *)
1603 	 skb_push(synack_skb, ETH_HLEN);
1604 	 memcpy(synack_skb->mac.raw, org_skb->mac.raw, ETH_HLEN);
1605 	 }

1606 	 else {
1607 	 /* Get headers */
1608 	 iph = org_skb->nh.iph;
1609 	 th = org_skb->h.th;
1610 	 tcp_hdr_size = th->doff<<2;
1611 	 }

1612
1613 	 /* Store the forwarding flow details */
1614 	 out_flow->saddr = iph->daddr;
1615 	 out_f low->daddr = iph->saddr;
1616 	 out_flow->sport = th->dest;
1617 	 out_flow->dport = th->source;
1618
1619 	 /* Changing relevant TCP hdr fields */
1620 	 if (th == NULL) {
1621 	 goto err_tcphdr;
1622 	 }

1623
1624 	 /* Get the route */
1625 	 if(org_skb->dst == NULL)
1626 	 if( (err = ip_route_input(org_skb, iph->daddr, iph->saddr,
1627 	 iph->tos, org_skb->dev)) )
1628 	 goto bad_route;
1629
1630 	 if(prev_tps->wscale_ok != 1) {
1631 	 synack_skb->dst = org_skb->dst;
1632 	 synack_skb->dev = org_skb->dev;
1633 	 if(org_skb->dst) {
1634 	 if(atomic_read(&org_skb->dst->__refcnt) < 1)
1635 	 atomic_set(&org_skb->dst->__refcnt, 1);
1636 	 }

1637 	 kfree_skb(org_skb);
1638 	 org_skb = synack_skb;
1639 	 }

1640 	 else
1641 	 synack_skb = org_skb;
1642
1643 	 tps->rcv_next = ntohl(th->ack_seq);
1644 	 tps->rcv_wup = tps->rcv_next;
1645 	 tps->snd_next = ntohl(th->seq) + 1;

198
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1646 	 tps->snd_una = tps->snd_next;
1647 	 tps->snt_isn = ntohl(th->seq);
1648
1649 	 /* Adding ECN capability in TCP header */
1650 	 if(tps->ecn_capable && !prev_tps->ecn_capable) {
1651 	 th->ece = 1;
1652 	 }
1653 	 else if (!tps->ecn_capable && prev_tps->ecn_capable) {
1654 	 th->ece = 0;
1655 	 th->cwr = 0;
1656 	 }

1657
1658 	 th->window = htons(dst_metric(org_skb->dst, RTAX_ADVMSS)<< 2);
1659
1660 	 tps->wnd_clamp = 65535U;
1661 	 tps->local_rcv_wnd = ntohs(th->window);
1662
1663 	 tps->snd_mss = min(dst_metric(org_skb->dst, RTAX_ADVMSS),
1664 	 tps->mss_clamp);
1665
1666 	 /* Correcting MSS for IPIP */
1667 	 if(prev_tps->forwarding_option == NO_IP_OVER_IP)
1668 	 tps->snd_mss -= 20;
1669
1670 	 tps->mss_clamp = tps->snd_mss;
1671
1672 	 /* Update TCP options */
1673 	 opt_length = tcp_hdr_size - sizeof(struct tcphdr)-1;
1674 	 ptr = th + 1;
1675 	 (*ptr++) = htonl((UDPOPT_MSS << 24) I (UDPOLEN_MSS << 16)
1676 	 tps->snd_mss);
1677
1678 	 /* Window Scaling considerations */
1679 	 if(tps->wscale_ok == 1) {
1680 	 tps->wnd_clamp = 1048576U;
1681 	 calc_rcv_wscale(sfi->buff_clamp, tps->snd_mss, tps->wnd_clamp,
1682 	 tps->wscale_ok, &wscale);
1683 	 tps->rcv_wscale = wscale;
1684 	 (*ptr++) = htonlUTCPOPT_NOP << 24) I (TCPOPT_WINDOW << 16) I
1685 	 (TCPOLEN_WINDOW << 8) I wscale);
1686 	 }

1687
1688 	 tps->wnd_clamp = min((65535U << tps->rcv_wscale), tps->wnd_clamp);
1689 	 prev_tps->wnd_clamp = min((65535U << prev_tps->rcv_wscale),
1690 	 prev_tps->wnd_clamp);



200

1691
1692 	 /* NUlify all other UDP options */
1693 	 while(opt_length > 0) {
1694 	 *ptr++ = __constant_htonlUTCPOPT_NOP << 24)I(TCPOPT_NOP << 16)1
1695 	 (UDPOPT_NOP << 8) I UDPOPT_NOP);
1696 	 --opt_length;
1697 	 }

1698
1699 	 /* Updating UDP & IP header length for wscale option */
1700 	 if(prev_tps->wscale_ok != 1) {
1701 	 if(tcp_hdr_size > (th->doff<<2)) {
1702 	 th->doff = tcp_hdr_size>>2;
1703 	 iph->tot_len = htons(ntohs(iph->tot_len) +
1704 	 UDPOLEN_WSCALE_ALIGNED);
1705 	 }
1706 	 }

1707
1708 	 org_skb->csum = 0;
1709 	 check_len = ntohs(iph->tot_len) - (iph->ihl*4);
1710
1711 	 th->check = 0;
1712 	 th->check = tcp_v4_check(th, check_len,
1713 	 iph->saddr, iph->daddr,
1714 	 csum_partial((char *)th, check_len,
1715 	 org_skb->csum));
1716
1717 	 err_tcphdr:
1718 	 /* Changing relevant IP hdr fields */
1719 	 tps->ip_id = th->seq - jiffies;
1720 	 iph->id = tps->ip_id;
1721 	 iph->ttl = 16;
1722
1723 	 /* Change the fragmentation option to indicate this
1724 	 * HB's presence */
1725 	 iph->frag_off = org_skb->nh.iph->frag_off I htons(IPIP_FRAG_OP);
1726
1727 	 /* Adding ECN capability in IP header */
1728 	 if(tps->ecn_capable && !prev_tps->ecn_capable)
1729 	 iph->tos = 0x01;
1730 	 else if (!tps->ecn_capable && prev_tps->ecn_capable)
1731 	 iph->tos = 0x00;
1732
1733 	 ip_send_check(iph);
1734
1735 	 skb_node->pkt_state = SENT;
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1736 	 if (tps->wscale_ok)
1737 	 skb_node->sb_pkt = synack_skb;
1738
1739 	 /* Making copy iof sk_buff that will be sent out */
1740 	 new_skb = skb_cloned(org_skb) ? pskb_copy(org_skb, GFP_ATOMIC):
1741 	 skb_clone(org_skb, GFP_ATOMIC);
1742
1743 	 skb_linearize(new_skb, GFP_ATOMIC);
1744 	 if(new_skb == NULL)
1745 	 goto err_skb_alloc;
1746
1747 	 tps->state = UDP_SYNA_SENT;
1748
1749 	 ip_output(new_skb);
1750 	 return;
1751
1752 	 bad_route:
1753 	 printk(KERN_ALERT
1754 	 "Could not get route. Dropping SYN-ACK. err = %d \n", err);
1755 	 kfree_skb(new_skb);
1756 	 return;
1757 	 err_skb_list:
1758 	 printk(KERN_ALERT "Did not get packet from forward queue \n");
1759 	 err_skb_alloc:
1760 	 printk(KERN_ALERT "skb_copy failed for SYN-ACK \n");
1761 	 return;
1762 	 out_of_range:
1763 	 printk(KERN_ALERT "nh is out of range \n");
1764 	 return;
1765 	 }

1766 	 /*
1767 	 * This function prepares a UDP SYN packet for the forward connection
1768 * * 1. Make a copy of the packet from the fwd-q
1769 	 * 2. Make changes in tcphdr - new seq, check, ack
1770 	 * 3. Update rhs_tcp_state variables
1771 	 * 4. Make changes in iphdr
1772 	 * 5. Get route by calling ip_route_input()
1773 	 * 6. Give packet to kernel for putting on wire by calling
1774 	 * 	 ip_forward_finish()
1775 	 * 06/06/2006: Replaced org_skb with syn_skb after creating syn_skb
1776 	 */
1777 	 void prepare_tcp_syn(struct split_flow_info *sfi, int flag)
1778 	 {
1779 	 struct flow_detail *in_flow, *out_flow;
1780 	 struct tcp_state *tps = NULL;
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1781 	 struct tcp_state *prev_tps = NULL;
1782 	 struct skbuff_list *skb_node, *tx_queue = NULL;
1783 	 struct sk_buff *org_skb;
1784 	 struct sk_buff *new_skb;
1785 	 struct sk_buff *syn_skb;
1786 	 struct tcphdr *th;
1787 	 struct iphdr *iph;
1788 	 int err, opt_length, tcp_hdr_size;
1789 	 unsigned int check_len;
1790 	 __u32 *ptr;
1791 	 __u8 wscale = 0;
1792
1793 	 if (flag == PREV_FLOW) {
1794 	 tps = sfi->rhs_tcp_state;
1795 	 prev_tps = sfi->lhs_tcp_state;
1796 	 tx_queue = sfi->i2r_queue;
1797 	 in_flow = sfi->i2r_flow;
1798 	 out_flow = sfi->r2i_flow;
1799 	 }

1800 	 else if (flag == FWD_FLOW) {
1801 	 tps = sfi->lhs_tcp_state;
1802 	 prev_tps = sfi->rhs_tcp_state;
1803 	 tx_queue = sfi->r2i_queue;
1804 	 in_flow = sfi->r2i_flow;
1805 	 out_flow = sfi->i2r_flow;
1806 	 }

1807 	 skb_node = head_peek_skb_list(tx_queue);
1808
1809 	 /* Make copy of pkt that will actually be sent out */
1810 	 if(skb_node == NULL)
1811 	 goto err_skb_list;
1812
1813 	 org_skb = skb_node->sb_pkt;
1814 	 skb_linearize(org_skb, GFP_ATOMIC);
1815
1816 	 /* Check if nh is out of range */
1817 	 if(org_skb->nh.raw < org_skb->head II
1818 	 org_skb->nh.raw > org_skb->tail)
1819 	 goto out_of_range;
1820
1821 	 if(prev_tps->wscale_ok != 1) {
1822 	 syn_skb = alloc_skb(MAX_UDP_HEADER, GFP_ATOMIC);
1823 	 skb_reserve(syn_skb, MAX_UDP_HEADER);
1824
1825 	 tcp_hdr_size = (sizeof(struct tcphdr) + UDPOLEN_MSS +
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1826 	 TCPOLEN_WSCALE_ALIGNED);
1827 	 if(tcp_hdr_size < (org_skb->h.th->doff<<2))
1828 	 tcp_hdr_size = org_skb->h.th->doff<<2;
1829
1830 	 syn_skb->h.th =
1831 	 th = (struct tcphdr *)skb_push(syn_skb, tcp_hdr_size);
1832 	 memcpy(th, org_skb->h.th, (ntohs(org_skb->nh.iph->tot_len) -
1833 	 (org_skb->nh.iph->ih1<<2)));
1834
1835 	 syn_skb->nh.iph =
1836 	 iph = (struct iphdr *)skb_push(syn_skb, sizeof(struct iphdr));
1837 	 memcpy(iph, org_skb->nh.iph, (org_skb->nh.iph->ih1<<2));
1838
1839 	 syn_skb->mac.raw = (struct ethhdr *)
1840 	 skb_push(syn_skb, ETH_HLEN);
1841 	 memcpy(syn_skb->mac.raw, org_skb->mac.raw, ETH_HLEN);
1842 	 }
1843 	 else {
1844 	 /* Get headers */
1845 	 iph = org_skb->nh.iph;
1846 	 th = org_skb->h.th;
1847 	 tcp_hdr_size = th->doff<<2;
1848 	 }
1849
1850 	 /* Store the forwarding flow details */
1851 	 out_flow->saddr = iph->daddr;
1852 	 out_f low->daddr = iph->saddr;
1853 	 out_f low->sport = th->dest;
1854 	 out_flow->dport = th->source;
1855
1856 	 /* Changing relevant UDP hdr fields */
1857 	 if (th == NULL) {
1858 	 goto err_tcphdr;
1859 	 }
1860
1861 	 /* Get the route */
1862 	 if(org_skb->dst == NULL)
1863 	 if((err = ip_route_input(org_skb, iph->daddr, iph->saddr,
1864 	 iph->tos, org_skb->dev)))
1865 	 goto bad_route;
1866
1867 	 if(prev_tps->wscale_ok != 1) {
1868 	 syn_skb->dst = org_skb->dst;
1869 	 syn_skb->dev = org_skb->dev;
1870 	 if(org_skb->dst) {



204

1871 	 if(atomic_read(&org_skb->dst->__refcnt) < 1)
1872 	 atomic_set(&org_skb->dst->__refcnt, 1);
1873 	 }

1874 	 kfree_skb(org_skb);
1875 	 }
1876 	 else
1877 	 syn_skb = org_skb;
1878
1879 	 tps->recover = ntohl(th->seq);
1880 	 th->ack_seq = 0;
1881 	 tps->rcv_next = 0;
1882 	 tps->rcv_wup = tps->rcv_next;
1883 	 tps->snd_next = ntohl(th->seq) + 1;
1884 	 tps->snd_una = tps->snd_next;
1885 	 tps->snt_isn = ntohl(th->seq);
1886
1887 	 /* Adding ECN functionality in UDP header */
1888 	 if(!prev_tps->ecn_capable) {
1889 	 th->ece = 1;
1890 	 th->cwr = 1;
1891 	 }
1892
1893 	 th->window = htons(dst_metric(syn_skb->dst, RTAX_ADVMSS)<< 2);
1894 	 tps->local_rcv_wnd = ntohs(th->window);
1895
1896 	 tps->snd_mss = min(dst_metric(syn_skb->dst, RTAX_ADVMSS),
1897 	 tps->mss_clamp);
1898
1899 	 /* Correcting MSS for IPIP */
1900 	 if(prev_tps->forwarding_option == NO_IP_OVER_IP)
1901 	 tps->snd_mss -= 20;
1902
1903 	 tps->mss_clamp = tps->snd_mss;
1904
1905 	 calc_rcv_wscale(sfi->buff_clamp, tps->snd_mss, 1048576U, 1,
1906 	 &wscale);
1907 	 tps->rcv_wscale = wscale;
1908
1909 	 /* Update UDP options */
1910 	 opt_length = tcp_hdr_size - sizeof(struct tcphdr)-1;
1911 	 ptr = th + 1;
1912 	 (*ptr++) = htonl((UDPOPT_MSS << 24) I (UDPOLEN_MSS << 16)
1913 	 tps->snd_mss);
1914 	 (*ptr++) = htonl((UDPOPT_NOP << 24) I (TCPOPT_WINDOW << 16) I
1915 	 (UDPOLEN_WINDOW << 8) I wscale);
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1916 	 while(opt_length > 0) {
1917 	 *ptr++ = __constant_htonl((TCPOPT_NOP << 24)I(UDPOPT_NOP << 16)1
1918 	 (UDPOPT_NOP << 8) I UDPOPT_NOP);
1919 	 --opt_length;
1920 	 }
1921
1922 	 /* Updating UDP & IP header length for wscale option */
1923 	 if(prev_tps->wscale_ok != 1) {
1924 	 if(tcp_hdr_size > (th->doff<<2)) {
1925 	 th->doff = tcp_hdr_size>>2;
1926 	 iph->tot_len = htons(ntohs(iph->tot_len) +
1927 	 UDPOLEN_WSCALE_ALIGNED);
1928 	 }
1929 	 }
1930
1931 	 syn_skb->csum = 0;
1932 	 check_len = ntohs(iph->tot_len) - (iph->ihl*4);
1933
1934 	 th->check = 0;
1935 	 th->check = tcp_v4_check(th, check_len, iph->saddr, iph->daddr,
1936 	 csum_partial((char *)th, check_len,
1937 	 syn_skb->csum));
1938
1939 	 err_tcphdr:
1940 	 /* Changing relevant IP hdr fields */
1941 	 tps->ip_id = th->seq - jiffies;
1942 	 iph->id = tps->ip_id;
1943 	 iph->ttl = IPDEFTTL;
1944 	 iph->protocol = syn_skb->nh.iph->protocol;
1945
1946 	 /* Change the fragment option to indicate this HB's presence */
1947 	 iph->frag_off = syn_skb->nh.iph->frag_off I htons(IPIP_FRAG_OP);
1948
1949 	 /* Adding ECN capability in IP header */
1950 	 if(!prev_tps->ecn_capable) {
1951 	 iph->tos = 0x01;
1952 	 }
1953
1954 	 ip_send_check(iph);
1955
1956 	 skb_node->pkt_state = SENT;
1957 	 skb_node->sb_pkt = syn_skb;
1958
1959 	 /* Making copy iof sk_buff that will be sent out */
1960 	 new_skb = skb_cloned(org_skb) ? pskb_copy(syn_skb, GFP_ATOMIC)
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1961 	 : skb_clone(syn_skb, GFP_ATOMIC);
1962
1963 	 skb_linearize(new_skb, GFP_ATOMIC);
1964 	 if(new_skb == NULL)
1965 	 goto err_skb_alloc;
1966
1967 	 tps->state = UDP_SYN_SENT;
1968
1969 	 ip_output(new_skb);
1970
1971 	 /* Note time and Start the rto timer */
1972 	 skb_node->snd_tstamp = jiffies;
1973 	 tps->rtt_seq_tstamp = jiffies;
1974
1975 	 init_rto_timer(tx_queue, tps, 1);
1976 	 return;
1977
1978 	 bad_route:
1979 	 printk(KERN_ALERT
1980 	 "Could not get route. Dropping forward SYN. err = %d \n", err);
1981 	 kfree_skb(new_skb);
1982 	 return;
1983 	 err_skb_list:
1984 	 printk(KERN_ALERT "Did not get packet from forward queue \n");
1985 	 err_skb_alloc:
1986 	 printk(KERN_ALERT "skb_copy failed for forward SYN \n");
1987 	 return;
1988 	 out_of_range:
1989 	 printk(KERN_ALERT "nh is out of range \n");
1990 	 return;
1991 	 }
1992
1993 	 /*
1994 	 * This function is used to retransmit a data packet in the FWD_FLOW
1995 	 * No header fields are modified as we just need to retransmit the
1996 	 * data.
1997 	 */
1998 void prepare_fwd_retrans_data(unsigned long data)
1999 	 {
2000 	 struct skbuff_list *queue_head = (struct skbuff_list *)data;
2001 	 struct tcp_state *tps = queue_head->tps_ptr;
2002 	 struct skbuff_list *skb_node;
2003 	 struct sk_buff *skb, *org_skb;
2004 	 struct iphdr *iph;
2005
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2006 	 if(get_queue_pkt_count(queue_head) <= 0)
2007 	 goto sb_pkt_err;
2008
2009 	 skb_node = head_peek_skb_list(queue_head);
2010
2011 	 if(skb_node->pkt_state == NOT_SENT) {
2012 	 goto unsent_pkt_err;
2013 	 }
2014
2015 	 org_skb = skb_node->sb_pkt;
2016 	 skb_linearize(org_skb, GFP_ATOMIC);
2017
2018 	 /* Making copy of sk_buff that will be sent out */
2019 	 skb = skb_cloned(org_skb) ? pskb_copy(org_skb, GFP_ATOMIC)
2020 	 : skb_clone(org_skb, GFP_ATOMIC);
2021
2022 	 if(skb == NULL)
2023 	 goto err_skb_alloc;
2024
2025 	 iph = skb->nh.iph;
2026
2027 	 /* Get the route */
2028 	 if(skb->dst == NULL)
2029 	 if(ip_route_input(skb, iph->daddr, iph->saddr, iph->tos,
2030 	 skb->dev))
2031 	 goto bad_route;
2032
2033 	 /* Giving to kernel to actually send it */
2034 	 ip_output(skb);
2035
2036 	 /* Note the time when the packet was sent */
2037 	 skb_node->snd_tstamp = jiffies;
2038 	 skb_node->pkt_state = RETRANSMIT;
2039
2040 	 /* Setting ssthresh = max(Flight Size / 2, 2 * MSS) */
2041 	 del_timer_sync(&(tps->rto_timer));
2042 	 if(rto_timer_expired == 0) {
2043 	 tps->ssthresh = max(tps->pkts_in_flight/2, 2);
2044 	 tps->cwnd = tps->ssthresh + 3;
2045 	 tps->recover = tps->snd_next;
2046 	 init_rto_timer(queue_head, tps, 1);
2047 	 }
2048 	 else if(rto_timer_expired != 0 && rto_timer_expired != 2){
2049 	 tps->ssthresh = max(tps->pkts_in_flight/2, 2);
2050 	 tps->cwnd = 1;
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2051 	 init_rto_timer(queue_head, tps, 2);
2052 	 }
2053 	 else if(rto_timer_expired == 2)
2054 	 init_rto_timer(queue_head, tps, 1);
2055
2056 	 rto_timer_expired = 1;
2057
2058 	 return;
2059
2060 	 bad_route:
2061 	 printk(KERN_ALERT
2062 	 "Could not get route. Dropping retransmit packet \n");
2063 	 if(skb->dst) {
2064 	 if(atomic_read(&skb->dst->__refcnt) < 1)
2065 	 atomic_set(&skb->dst->__refcnt, 1);
2066 	 }
2067 	 kfree_skb(skb);
2068 	 return;
2069 	 sb_pkt_err:
2070 	 printk (KERN_ALERT
2071 	 "Trying to retransmit when there are no packets \n");
2072 	 return;
2073 unsent_pkt_err:
2074 	 printk (KERN_ALERT
2075 	 "Trying to retransmit a packet that has not been fwded yet \n");
2076 	 return;
2077 	 err_skb_alloc:
2078 	 printk(KERN_ALERT "skb_copy failed for retransmission \n");
2079 	 return;
2080 	 }

2081
2082 	 /*
2083 	 * This function prepares the data packets for the fwd-flow. UDP
2084 	 * handshake has been completed
2085 	 * TO DO: Check if locks need to be added for the fwd-q.
2086 	 */
2087 	 int prepare_fwd_data(unsigned long data, int flag)
2088 	 {
2089 	 struct split_flow_info *sfi = (struct split_flow_info *)data;
2090 	 unsigned long *queue_head_data;
2091 	 struct sk_buff *new_skb, *org_skb, *skb, *ipip_skb;
2092 	 struct skbuff_list *skb_node, *curr_skbl;
2093 	 struct skbuff_list *tx_queue = NULL;
2094 	 struct tcp_state *tps = NULL;
2095 	 struct tcp_state *src_tps = NULL;
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2096 	 struct flow_detail *in_flow = NULL;
2097 	 struct tcphdr *th;
2098 	 struct iphdr *iph, *ipip_iph;
2099 	 __u32 data_bytes, check_len, seq;
2100 	 int first_pkt = 1, restart_rto_timer = 0,
2101 	 pkts_dequeued = 0, ack_retransmit = 0;
2102
2103 	 if (flag == PREV_FLOW) {
2104 	 tps = sfi->rhs_tcp_state;
2105 	 src_tps = sfi->lhs_tcp_state;
2106 	 tx_queue = sfi->i2r_queue;
2107 	 in_flow = sfi->i2r_flow;
2108 	 }
2109 	 else if (flag == FWD_FLOW) {
2110 	 tps = sfi->lhs_tcp_state;
2111 	 src_tps = sfi->rhs_tcp_state;
2112 	 tx_queue = sfi->r2i_queue;
2113 	 in_flow = sfi->r2i_flow;
2114 	 }

2115
2116 	 if(get_queue_pkt_count(tx_queue) <= 0) {
2117 	 if(timer_pending(&(tps->rto_timer)))
2118 	 del_timer_sync(&(tps->rto_timer));
2119 	 goto err_fwdq_empty;
2120 	 }
2121
2122 	 skb_node = head_peek_skb_list(tx_queue);
2123
2124 	 while(tx_queue->pkt_count > 0) {
2125 	 curr_skbl = head_peek_skb_list(tx_queue);
2126 	 skb = curr_skbl->sb_pkt;
2127
2128 	 if(skb->nh.iph->protocol == IPPROTO_IPIP) {
2129 	 iph = get_ip_header(skb);
2130 	 th = get_tcp_header(skb);
2131 	 }

2132 	 else {
2133 	 iph = skb->nh.iph;
2134 	 th = skb->h.th;
2135 	 }

2136
2137 	 data_bytes = ntohs(iph->tot_len) - (iph->ihl*4)
2138 	 - (th->doff*4)
2139 	 + th->fin;
2140 	 seq = ntohl(th->seq) + data_bytes;
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2141
2142 	 if((curr_skbl->pkt_state == SENT II
2143 	 curr_skbl->pkt_state == RETRANSMIT) &&
2144 	 (seq <= tps->ack_seq)) {
2145 	 /* Update pkt_bfr_hole */
2146 	 if((tx_queue->hole_in_queue) &&
2147 	 (curr_skbl == tx_queue->pkt_bfr_hole))
2148 	 tx_queue->pkt_bfr_hole = tx_queue;
2149 	 /* Free the memory */
2150 	 write_lock(&tx_queue->lock);
2151 	 free_head_skbuff_list(sfi, tx_queue);
2152 	 write_unlock(&tx_queue->lock);
2153
2154 	 if(curr_skbl->pkt_state == RETRANSMIT)
2155 	 ack_retransmit = 1;
2156
2157 	 /* Update packets in flight if not first good ack
2158 	 * after dup acks */
2159 	 tps->pkts_in_flight -= 1;
2160 	 pkts_dequeued += 1;
2161
2162 	 /* Free data bytes off the buffer */
2163 	 tcp_free_buffer(sfi, data_bytes, tps);
2164
2165 	 /* Check if we can increase the cnwd */
2166 	 tcp_update_cwnd(sfi, (flag - 1), 1);
2167
2168 	 /* RTT calculations */
2169 	 if(tps->ack_seq == seq) {

2170 	 if(!ack_retransmit) {
2171 	 tps->rtt_seq_tstamp = curr_skbl->snd_tstamp;
2172 	 tcp_rtt_estimate(tps);
2173 	 tcp_set_rto(tps);
2174 	 tcp_bound_rto(tps);
2175 	 }

2176 	 del_timer_sync(&(tps->rto_timer));
2177 	 restart_rto_timer += 1;
2178 	 }

2179 	 }

2180 	 else {
2181 	 /* This is the first packet not acked by the ACK */
2182 	 /* Hence its our new snd_una only if it was sent before */
2183 	 if(curr_skbl->pkt_state != NOT_SENT) {
2184 	 tps->snd_una = seq - data_bytes;
2185 	 first_pkt = 0;



211

2186 	 }
2187 	 break;
2188 	 }

2189
2190 	 /* If fwd-q is empty and PREV_FLOW is closed,
2191 	 * prepare FIN for FWD_FLOW */
2192 	 if(tx_queue->pkt_count == 0) {
2193 	 /* Delete rto timer if its running */
2194 	 if(timer_pending(&(tps->rto_timer)))
2195 	 del_timer_sync(&(tps->rto_timer));
2196 	 goto err_fwdq_empty;
2197 	 }

2198 	 }
2199
2200 	 skb_node = curr_skbl;
2201
2202 	 /* Update how many packets we can send now 	 *
2203 	 * If the packet dequeue logic was used and snd_una was updated,*
2204 	 * then there are packets in flight. Hence we check that 	 *
2205 	 * packets in flight < current rcv_wnd 	 */

2206 	 if(tcp_wnd_may_update(sfi, (flag - 1)) && !first_pkt)
2207 	 tps->pkt_wnd = min(tps->cwnd, tps->rcv_wnd_pkt);
2208
2209 	 /* snd_una was not updated by dequeue logic because 'first_pkt' *
2210 	 * is 1. This means that there are no packets in flight. Hence *
2211 	 * we can update the wnd 	 */
2212 	 else if(first_pkt)
2213 	 tps->pkt_wnd = min(tps->cwnd, tps->rcv_wnd_pkt);
2214
2215 	 if((tps->pkt_wnd * tps->mss_clamp ) > tps->rcv_wnd)
2216 	 goto wnd_overf low;
2217
2218 	 /* Update packets in flight if not first good ack after dup acks*/
2219 	 /* Reset first_good_ack if the ACK ack's all outstanding packet */
2220 . 	 if (tps->first_good_ack && (tps->ack_seq >= tps->recover)) {
2221 	 tps->first_good_ack = 0;
2222 	 }

2223
2224 	 if(tps->pkts_in_flight >= tps->pkt_wnd)
2225 	 tps->pkt_wnd = 0;
2226 	 else
2227 	 tps->pkt_wnd -= tps->pkts_in_f light;
2228
2229 	 if(tps->pkt_wnd <= 0) {

2230 	 /* Do fast retransmit even if window is 0 */
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2231 	 if(tps->dup_ack_cnt == 3 && (!tps->in_fast_recovery))
2232 	 goto prepare_pkt;
2233 	 /* Retransmit if partial ACK in Fast recovery */
2234 	 else if(tps->in_fast_recovery && tps->first_good_ack)
2235 	 goto prepare_pkt;
2236 	 /* Restart timer if there are unacked packets AND *
2237 	 * timer has been deleted 	 */

2238 	 else if(skb_node->pkt_state != NOT_SENT &&
2239 	 (!(timer_pending(&(tps->rto_timer))))) {

2240 	 restart_rto_timer = 1;
2241 	 goto restart_timer;
2242 	 }

2243 	 else
2244 	 goto err_zero_wnd;
2245 	 }

2246
2247 prepare_pkt:
2248 	 skb_node = head_peek_skb_list(tx_queue);
2249
2250 	 if(skb_node->pkt_state != NOT_SENT) {
2251 	 /* Enter Fast Retransmit if allowed */
2252 	 if(tps->dup_ack_cnt == 3 && (!tps->in_fast_recovery) &&
2253 	 (tps->ack_seq >= tps->recover)) {
2254 	 queue_head_data = (unsigned long *)tx_queue;
2255 	 rto_timer_expired = 0;
2256 	 tps->in_fast_recovery = 1;
2257 	 prepare_fwd_retrans_data(queue_head_data);
2258 	 return 1;
2259 	 }

2260 	 /* Dealing with partial ACK's */
2261 	 else if(tps->in_fast_recovery && tps->first_good_ack &&
2262 	 (tps->ack_seq < tps->recover)) {
2263 	 rto_timer_expired = 2;
2264 	 tps->first_good_ack = 0;
2265 	 queue_head_data = (unsigned long *)tx_queue;
2266 	 prepare_fwd_retrans_data(queue_head_data);
2267 	 tps->cwnd -= pkts_dequeued;
2268 	 if(pkts_dequeued > 0)
2269 	 tps->cwnd += 1;
2270 	 return 1;
2271 	 }
2272 	 /* Incoming packet had ECE = 1. Treating it as a lost
2273 	 * packet signal */
2274 	 else if(tps->do_cwr && !tps->prev_do_cwr) {
2275 	 queue_head_data = (unsigned long *)tx_queue;
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2276 	 rto_timer_expired = 0;
2277 	 prepare_fwd_retrans_data(queue_head_data);
2278 	 return 1;
2279 	 }

2280 	 else {
2281 	 /* Find first packet that is not dirty */
2282 	 while(skb_node != tx_queue) {

2283 	 if(skb_node->pkt_state == NOT_SENT)
2284 	 /* We found the first pkt not sent till now */
2285 	 break;
2286 	 skb_node = skb_node->next;
2287 	 }

2288
2289 	 /* Check whether we came out of the loop because all
2290 	 * packets were dirty. If yes, and if the PREV_FLOW has
2291 	 * closed => no more packets to send, return
2292 	 * else fwd_q is empty, init timer
2293 	 */
2294 	 if(skb_node == tx_queue) {
2295 	 tps->pkt_wnd = 0;
2296 	 goto restart_timer;
2297 	 }

2298 	 }

2299 	 }

2300
2301 	 org_skb = skb_node->sb_pkt;
2302
2303 	 /* Check if nh is out of range */
2304 	 if(org_skb->nh.raw < org_skb->head II
2305	 org_skb->nh.raw > org_skb->tail)
2306 	 goto out_of_range;
2307
2308 	 iph = org_skb->nh.iph;
2309 	 th = org_skb->h.th;
2310
2311 	 /* Check if this packet is after a hole */
2312	 if(ntohl(th->seq) > src_tps->rcv_next) {
2313	 prepare_tcp_ack(sfi, th, org_skb->dev, flag);
2314 	 goto err_hole_pkt;
2315 	 }
2316
2317 	 /* Changing relevant TCP header fields */
2318	 data_bytes = ntohs(iph->tot_len) - (iph->ihl*4) - (th->doff*4);
2319	 th->ack_seq = htonl(tps->rcv_next);
2320
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2321 	 if(first_pkt) {
2322 	 tps->snd_una = tps->snd_next;
2323 	 first_pkt = 0;
2324
2325 	 /* Restart the rto timer */
2326 	 if(timer_pending(&(tps->rto_timer)))
2327 	 del_timer_sync(&(tps->rto_timer));
2328 	 restart_rto_timer = 1;
2329 	 }

2330 	 tps->snd_next += data_bytes + th->fin;
2331
2332 	 /* ECN related TCP processing */
2333 	 if(tps->ecn_capable && skb_node->pkt_state == NOT_SENT) {
2334 	 if(tps->do_cwr) {
2335 	 th->cwr = 1;
2336 	 printk(KERN_ALERT "CWR set in outgoing packet \n");
2337 	 }

2338 	 if(tps->demand_cwr) {
2339 	 th->ece = 1;
2340 	 printk(KERN_ALERT "ECE set in outgoing packet \n");
2341 	 }
2342 	 }

2343
2344 	 th->window = htons(tcp_select_window_(sfi, tps, (flag - 1)));

2345 	 org_skb->csum = 0;
2346 	 check_len = ntohs(iph->tot_len) - (iph->ihl*4);
2347 	 th->check = 0;
2348 	 th->check = tcp_v4_check(th, check_len, iph->saddr, iph->daddr,
2349 	 csum_partial((char *)th, check_len,
2350 	 org_skb->csum));
2351
2352
2353 	 /* Changing relevant IP header fields */
2354 	 iph->id = ++tps->ip_id;
2355 	 iph->ttl = IPDEFTTL;
2356 	 iph->protocol = org_skb->nh.iph->protocol;
2357 	 iph->frag_off = org_skb->nh.iph->frag_off;
2358 	 /* ECN related IP processing */
2359 	 if(tps->ecn_capable)
2360 	 iph->tos = 0x02;
2361 	 ip_send_check(iph);
2362
2363 	 skb_node->pkt_state = SENT;
2364
2365 	 if(tps->forwarding_option == IP_OVER_IP) {
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/* Allocate memory
* Copy original packet
* Give values to the new IP header
*/

int new_headroom = skb_headroom(org_skb) + sizeof(struct iphdr);
org_skb = skb_realloc_headroom(org_skb, new_headroom);

/* Adding IP hdr at the start */
org_skb->h.raw = org_skb->nh.raw;
org_skb->nh.raw = skb_push(org_skb, sizeof(struct iphdr));

ipip_iph 	 org_skb->nh.iph;
ipip_iph->version 	 4;
ipip_iph->ihl 	 sizeof(struct iphdr)>>2;
ipip_iph->tos 	 iph->tos;
ipip_iph->tot_len 	 htons(org_skb->len);
ipip_iph->id 	 iph->id;
ipip_iph->frag_off 	 iph->frag_off;
ipip_iph->ttl 	 IPDEFTTL;
ipip_iph->protocol 	 IPPROTO_IPIP;
ipip_iph->daddr 	 tps->next_hb_addr;
ipip_iph->saddr 	 iph->saddr;

ip_send_check(ipip_iph);
skb_node->sb_pkt = org_skb;

}

/* Making copy of sk_buff that will be sent out */
new_skb = skb_cloned(org_skb) ? pskb_copy(org_skb, GFP_ATOMIC)

: skb_clone(org_skb, GFP_ATOMIC);

new_skb->data_len = org_skb->data_len;

skb_linearize(new_skb, GFP_ATOMIC);

if(new_skb == NULL)
goto err_skb_alloc;

/* Get the route */
if(new_skb->dst == NULL)

if(ip_route_input(new_skb, iph->daddr, iph->saddr, iph->tos,
new_skb->dev))
goto bad_route;

/* Giving to kernel to actually send it */
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2411 	 ip_output(new_skb);
2412
2413 	 /* Note the time when the packet was sent */
2414 	 skb_node->snd_tstamp = jiffies;
2415
2416 	 /* Check if forwarding FIN packet */
2417 	 if(th->fin && tps->state != UDP_FIN_RCVD) {
2418 	 tps->state = UDP_FIN_SENT;
2419 	 }

2420
2421 	 /* Update packet window and packets in flight */
2422 	 tps->pkts_in_flight += 1;
2423 	 tps->pkt_wnd -= 1;
2424
2425 	 restart_timer:
2426 	 /* Restart/start the rto timer now */
2427 	 if(restart_rto_timer == 1) {
2428 	 if(timer_pending(&(tps->rto_timer)))
2429 	 del_timer_sync(&(tps->rto_timer));
2430 	 init_rto_timer(tx_queue, tps, 1);
2431 	 restart_rto_timer += 1;
2432 	 }
2433
2434 	 if(tps->pkt_wnd > 0) {
2435 	 goto prepare_pkt;
2436 	 }

2437
2438 	 return 1;
2439
2440 	 err_fwdq_empty:
2441 	 printk(KERN_ALERT "No more packets in fwd-q \n");
2442 	 return 0;
2443 bad_route:
2444 	 printk(KERN_ALERT
2445 	 "Could not get route. Dropping forward packet \n");
2446 	 if(skb->dst) {
2447 	 if(atomic_read(&skb->dst->__refcnt) < 1)
2448 	 atomic_set(&skb->dst->__refcnt, 1);
2449 	 }

2450 	 kfree_skb(new_skb);
2451 	 return 0;
2452 	 err_skb_alloc:
2453 	 printk(KERN_ALERT "skb_copy failed for forward packet \n");
2454 	 return 0;
2455 	 out_of_range:
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2456 	 printk(KERN_ALERT "nh is out of range \n");
2457 	 return 0;
2458 	 wnd_overflow:
2459 	 printk(KERN_ALERT "fwd wnd exhausted. Not sending packet \n");
2460 	 return 0;
2461 	 err_zero_wnd:
2462 	 printk(KERN_ALERT "fwd wnd is 0. Not sending packet \n");
2463 	 return -1;
2464 	 err_hole_pkt:
2465 	 printk(KERN_ALERT "Error: Tried to send packet after hole.\n");
2466 . 	 return 0;
2467 	 }

2468

2469 	 /*

2470 	 * This function processes the ECN flags of the incoming packet
2471 	 * We set demand_cwr and do_cwr here
2472 	 */

2473 	 void process_ecn_flags(struct tcp_state *tps)
2474 	 {

2475 	 int ecn_state;
2476

2477 	 tps->prev_do_cwr = tps->do_cwr;
2478 	 ecn_state = tps->ecn_flags;
2479

2480 	 switch(ecn_state) {
2481 	 case 2:
2482 	 case 3:
2483 	 tps->demand_cwr = 0;
2484 	 tps->do_cwr = 1;
2485 	 break;
2486 	 case 4:
2487 	 case 5:
2488 	 tps->demand_cwr = 1;
2489 	 tps->do_cwr = 0;
2490 	 break;
2491 	 case 6:
2492 	 case 7:
2493 	 tps->demand_cwr = 1;
2494 	 tps->do_cwr = 1;
2495 	 break;
2496 	 default:
2497 	 tps->demand_cwr = 0;
2498 	 tps->do_cwr = 0;
2499 	 break;
2500 	 }
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2501 	 }

2502
2503 	 /*
2504 	 * This function processes an incoming ACK. The ACK can be for fwd
2505 	 * or prey flow.
2506 	 * Updates the proper tcp_state variable
2507 	 * Imp: tp->rcv_next is set here
2508 	 */
2509 	 int process_tcp_ack(struct split_flow_info *sfi, struct sk_buff *skb,
2510 	 int flag)
2511 	 {
2512 	 struct tcp_state *tp = NULL;
2513 	 struct tcp_state *fwd_tp = NULL;
2514 	 struct tcphdr *tcph = skb->h.th;
2515 	 struct iphdr *iph = skb->nh.iph;
2516 	 struct skbuff_list *rcv_queue = NULL;
2517 	 struct skbuff_list *tx_queue = NULL;
2518 	 __u32 ack = ntohl(tcph->ack_seq);
2519 	 __u32 seq = ntohl(tcph->seq);
2520 	 __u32 r_seq;
2521 	 __u32 un_ack;
2522 	 int can_update, no_hole;
2523 	 unsigned long data = (unsigned long *)sfi;
2524 	 int two_way_xfer;
2525
2526 	 if (flag == PREV_FLOW) {
2527 	 tp = sfi->lhs_tcp_state;
2528 	 fwd_tp = sfi->rhs_tcp_state;
2529 	 rcv_queue = sfi->i2r_queue;
2530 	 tx_queue = sfi->r2i_queue;
2531 	 }
2532 	 else if (flag == FWD_FLOW) {
2533 	 tp = sfi->rhs_tcp_state;
2534 	 fwd_tp = sfi->lhs_tcp_state;
2535 	 rcv_queue = sfi->r2i_queue;
2536 	 tx_queue = sfi->i2r_queue;
2537 	 }

2538
2539 	 two_way_xfer = tp->data_pkt_seen & fwd_tp->data_pkt_seen;
2540
2541 	 r_seq = tp->rcv_next;
2542 	 un_ack = tp->snd_una;
2543
2544 	 if (ack < un_ack) {
2545 	 if(tp->state == TCP_CLOSING)
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2546 	 /* Retransmitting the FIN-ACK */
2547 	 prepare_tcp_finack(sfi, tcph, skb->dev, -1, flag);
2548 	 goto uninteresting_ack;
2549 	 }
2550
2551 	 /* Update rcv_wnd using the adv_wnd of the ACK and wscale factor */
2552 	 tp->rcv_wnd = ntohs(tcph->window);
2553 	 tp->rcv_wnd <<= tp->snd_wscale;
2554 	 tp->rcv_wnd_pkt = tp->rcv_wnd / tp->mss_clamp;
2555
2556 	 /* Getting all ECN information from the packet 	 */
2557 	 /* We record ECN info off every packet because - */
2558 	 /* 1. Router marks packet even if its dup 	 */
2559 	 /* 2. No dup packet will have TCP ECN markers 	 */
2560 	 if(tp->ecn_capable && !tcph->syn) {
2561 	 tp->ce = ((iph->tos & 0x03) == 0x03) ? 1 : 0;
2562 	 tp->ece = tcph->ece;
2563 	 tp->cwr = tcph->cwr;
2564
2565 	 tp->ecn_flags = ((tp->ce << 2) I (tp->ece << 1) I (tp ->cwr));
2566
2567 	 process_ecn_flags(tp);
2568 	 }
2569
2570 	 /* Send a ACK if we have already recieved this packet */
2571 	 if (seq < r_seq) {
2572 	 /* Fwd data if you can */
2573 	 if((seq + 1) == r_seq &&
2574 	 rcv_queue->pkt_bfr_hole != rcv_queue &&
2575 	 get_queue_pkt_count(rcv_queue) > 0 &&
2576 	 fwd_tp->rcv_wnd > 0) {
2577 	 prepare_fwd_data(data, flag);
2578 	 }

2579 	 /* Send ACK to give current status to the host */
2580 	 prepare_tcp_ack(sfi, tcph, skb->dev, flag);
2581 	 goto bad_r_seq;
2582 	 }
2583 	 /* New packet. Enqueue it and update window if allowed */
2584 	 else if((can_update = tcp_wnd_may_update(sfi, flag))) {
2585 	 no_hole = enqueue_packet(sfi, skb, rcv_queue, tp);
2586 	 }
2587
2588 	 if (ack >= un_ack) {
2589 	 if((ack == tp->prev_ack_seq) && ((tp->end_seq - seq) <= 0)) {
2590 	 tp->dup_ack_cnt += 1;
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2591 	 tcp_update_cwnd(sfi, flag, 0);
2592 	 }

2593 	 else {
2594 	 /* Charge the buffer and wnd */
2595 	 if(tp->in_fast_recovery) {
2596 	 tp->first_good_ack = 1;
2597 	 if (ack >= tp->recover) {
2598 	 tp->in_fast_recovery = 0;
2599 	 tp->cwnd = tp->ssthresh;
2600 	 tp->dup_ack_cnt = 0;
2601 	 }
2602 	 }
2603 	 else
2604 	 tp->dup_ack_cnt = 0;
2605 	 }
2606
2607 	 tp->prev_ack_seq = ack;
2608
2609 	 if(can_update) {
2610 	 if(no_hole != -1) {

2611 	 tp->rcv_next = tp->end_seq;
2612 	 tp->max_rcv_byte = tp->rcv_next;
2613 	 }
2614
2615 	 if(tp->state == UDP_SYNA_SENT II
2616 	 tp->state == UDP_SYN_SENT) {
2617 	 /* Dequeuing SYN packet from fwd-queue */
2618 	 free_head_skbuff_list(sfi, tx_queue);
2619
2620 	 if(tp->state == UDP_SYN_SENT) {
2621 	 if(no_hole != -1) {
2622 	 tp->rcv_next++;
2623 	 tp->max_rcv_byte = tp->rcv_next;
2624 	 tp->rcv_wup = tp->rcv_next;
2625 	 }
2626
2627 	 if(timer_pending(&(tp->rto_timer)))
2628 	 del_timer_sync(&(tp->rto_timer));
2629 	 }
2630 	 tp->state = UDP_CONNECTED;
2631 	 }

2632 	 else if(tp->state == UDP_CLOSING) {
2633 	 /* Got FIN but there is a hole in the queue */
2634 	 if(no_hole == -1)
2635 	 tp->state = UDP_FIN_WAIT;
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2636 	 else if(two_way_xfer) {
2637 	 tp->state = UDP_FIN_RCVD;
2638 	 }

2639 	 }

2640 	 else if(tp->state == TCP_FIN_WAIT) {
2641 	 /* Got the missing packets. Can send FIN-ACK now */
2642 	 if(no_hole == -1 && rcv_queue->hole_in_queue == 0) {
2643 	 if(two_way_xfer) {
2644 	 tp->state = UDP_FIN_RCVD;
2645 	 }
2646 	 else
2647 	 tp->state = UDP_CLOSING;
2648 	 }

2649 	 }

2650 	 else if(tp->state == UDP_FIN_SENT) {
2651 	 }
2652
2653 	 /* Do we need to probe for 0 window
2654 	 * Is adv_mss < MSS AND
2655 	 * 	 unsent packets in fwd_q AND
2656 	 * 	 sent probes < max probes that can be sent
2657 	 */

2658 	 if((ntohl(tcph->window) < tp->snd_mss) &&
2659 	 (tp->pkts_in_flight < get_queue_pkt_count(tx_queue)) &&
2660 	 tp->probes_out < TCP_RETR2) {
2661 	 if(timer_pending(&(tp->probe_timer)))
2662 	 del_timer_sync(&(tp->probe_timer));
2663
2664 	 if(timer_pending(Ctp->rto_timer)))
2665 	 del_timer_sync(&(tp->rto_timer));
2666
2667 	 pinfo->sfi = sfi;
2668 	 pinfo->flag = flag;
2669 	 pinfo->in_dev = skb->input_dev;
2670
2671 	 init_probe_timer(pinfo, tp, 2);
2672 	 }

2673 	 else if((ntohl(tcph->window) >= tp->snd_mss) &&
2674 	 tp->probes_out > 0) {
2675 	 if(timer_pending(&(tp->probe_timer)))
2676 	 del_timer_sync(&(tp->probe_timer));
2677
2678 	 tp->probes_out = 0;
2679 	 }

2680 	 return 0;
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2681 	 }

2682 	 }
2683
2684 	 bad_r_seq:
2685 	 printk(KERN_ALERT "Incoming seq < rcv_next. Dropping packet \n");
2686 	 return -1;
2687 uninteresting_ack:
2688 	 printk(KERN_ALERT "Incoming ack < snd_una. Dropping packet \n");
2689 	 return -1;
2690 	 }

2691
2692 	 /*
2693 	 * This function process the packet contents.
2694 	 * 1. Pull the UDP hdr and perform basic checks
2695 	 * 2. If from prey flow, enqueue the packet in fwd-q
2696 	 * 3. Calcualte tp->end_seq. This is used to set tp->rcv_next
2697 	 * 4. If an ACK & ! FIN
2698 	 * 	 a. ACK for fwd connection SYN
2699 	 * 	 b. ACK for prey connection SYN-ACK
2700 	 * 	 c. ACK for data packet
2701 	 * 5. If a SYN (assuming SYN's only come from src)
2702 	 * 	 a. prepare SYN-ACK
2703 	 * 	 b. prepare SYN for fwd connection
2704 	 * 6. If FIN (have to handle FIN of fwd connection)
2705 	 * 	 a. prepare FIN for prey connection
2706 	 */
2707 	 void process_in_pkt(struct sk_buff *skb, struct split_flow_info *sfi,
2708 	 int flag)
2709 	 {
2710 	 struct tcp_options_received tp;
2711 	 //struct tcp_opt tp;
2712 	 struct tcp_state *tps = NULL;
2713 	 struct tcp_state *fwd_tps = NULL;
2714 	 struct tcphdr *th;
2715 	 struct iphdr *iph;
2716 • 	 struct Qdisc *qdisc;
2717 	 struct net_device *dev;
2718 	 int ihl = skb->nh.iph->ihl*4;
2719 	 unsigned long data = (unsigned long *)sfi;
2720
2721 	 skb->h.raw = skb->data + skb->nh.iph->ihl*4;
2722
2723 	 if(!pskb_may_pull(skb, sizeof(struct tcphdr)))
2724 	 goto discard_it;
2725
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2726 	 th = skb->h.th;
2727
2728 	 if(th->doff < (sizeof(struct tcphdr)/4))
2729 	 goto bad_packet;
2730
2731 	 if(!pskb_may_pull(skb, th->doff*4))
2732 	 goto discard_it;
2733
2734 	 th = skb->h.th;
2735 	 iph = skb->nh.iph;
2736
2737 	 if (flag == PREV_FLOW) {
2738 	 tps = sfi->lhs_tcp_state;
2739 	 fwd_tps = sfi->rhs_tcp_state;
2740 	 }
2741 	 else if (flag == FWD_FLOW) {
2742 	 tps = sfi->rhs_tcp_state;
2743 	 fwd_tps = sfi->lhs_tcp_state;
2744 	 }
2745
2746 	 tps->end_seq = ntohl(th->seq) + skb->len - (th->doff*4) - ihl;
2747 	 tps->ack_seq = ntohl(th->ack_seq);
2748 	 tps->ack_seq_tstamp = jiffies;
2749
2750 	 tcp_parse_options(skb, &tp, 0);
2751
2752 	 /* Is this a data packet ? */
2753 	 if(!tps->data_pkt_seen) {
2754 	 if ((tps->end_seq - ntohl(th->seq)) > 0) {
2755 	 tps->data_pkt_seen = 1;
2756 	 }

2757 	 }

2758
2759 	 if(th->ack && !th->fin && !th->rst) {
2760 	 /* SYN-ACK packet of fwd connection */
2761 	 if(tps->state == TCP_SYN_SENT) {
2762 	 /* Check if we need to use the default MSS */
2763 	 if(tp.mss_clamp != NULL)
2764 	 fwd_tps->mss_clamp = tp.mss_clamp;
2765 	 else
2766 	 fwd_tps->mss_clamp = 536;
2767
2768 	 /* Check if the packet is coming from end host or previous
2769 	 * helper box */
2770 	 if((ntohs(skb->nh.iph->frag_off) & IPIP_FRAG_OP) ==
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2771 	 IPIP_FRAG_OP)
2772 	 tps->forwarding_option = IP_OVER_IP;
2773 	 else
2774 	 tps->forwarding_option = NO_IP_OVER_IP;
2775
2776 	 if(sfi->i2r_flow != NULL)
2777 	 tps->next_hb_addr = get_nexthb_addr(sfi->i2r_flow, flag);
2778
2779 	 if(process_tcp_ack(sfi, skb, flag) == -1)
2780 	 goto err_ack_proc;
2781
2782 	 /* Checking for window scaling option */
2783 	 if(tp.wscale_ok == 1) {
2784 	 tps->wscale_ok = 1;
2785 	 tps->snd_wscale = tp.snd_wscale;
2786 	 tps->wnd_clamp = 1048576U;
2787 	 }

2788 	 else {
2789 	 tps->rcv_wscale = 0;
2790 	 tps->wnd_clamp = 65535U;
2791 	 }
2792
2793 	 /* Checking for ECN capability and changing to RED qdisc */
2794 	 if(((iph->tos & 0x01) II (iph->tos & 0x02))
2795 	 (th->ece && !th->cwr)) {
2796 	 tps->ecn_capable = 1;
2797 	 }

2798 	 else
2799 	 tps->ecn_capable = 0;
2800
2801 	 /* Forward the SYN-ACK */
2802 	 prepare_tcp_synack(sfi, flag);
2803
2804 	 tcp_init_mss_wnd(fwd_tps, fwd_tps->snd_mss, th->window);
2805 	 tps->rcv_mss = fwd_tps->snd_mss;
2806
2807 	 /* Send back an ACK */
2808 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2809 	 }
2810 	 /* Last packet of handshake */
2811 	 else if(tps->state == TCP_SYNA_SENT) {
2812 	 if(process_tcp_ack(sfi, skb, flag) == -1) {
2813 	 goto err_ack_proc;
2814 	 }
2815
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2816 	 else if(tps->state == UDP_CLOSING) {
2817 	 /* Got last ACK of 3-way connection termination
2818 	 * handshake. Connection terminated. Delete sfi node */
2819 	 if (flag == PREV_FLOW) {
2820 	 if(get_queue_pkt_count(sfi->i2r_queue) > 0)
2821 	 prepare_fwd_data(data, flag);
2822 	 }

2823 	 else if (flag == FWD_FLOW) {
2824 	 if(get_queue_pkt_count(sfi->r2i_queue) > 0)
2825 	 prepare_fwd_data(data, flag);
2826 	 }

2827 	 }
2828 	 /* ACK of data packet */
2829 	 else if(tps->state == UDP_CONNECTED II
2830 	 tps->state == TCP_FIN_WAIT II
2831 	 tps->state == TCP_FIN_RCVD II
2832 	 tps->state == UDP_FIN_SENT) {
2833 	 if(process_tcp_ack(sfi, skb, flag) == -1)
2834 	 goto err_ack_proc;
2835
2836 	 /* Checking if we can piggyback the ACK with data packet */
2837 	 if (flag == PREV_FLOW) {
2838 	 /* Check if the ACK can be piggybacked on a
2839 	 * data packet */
2840 	 if(get_queue_pkt_count(sfi->r2i_queue) > 0) {
2841 	 if(prepare_fwd_data(data, FWD_FLOW) == -1 &&
2842 	 (tps->end_seq - ntohl(th->seq)) > 0 )
2843 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2844 	 }

2845 	 else if(tps->state == UDP_CLOSING)
2846 	 prepare_tcp_finack(sfi, th, skb->dev, 0, flag);
2847 	 else if(tps->state == UDP_FIN_RCVD)
2848 	 tps->state = UDP_CLOSING;
2849 	 else
2850 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2851
2852 	 /* Check if we can fwd any data */
2853 	 if( ((fwd_tps->snd_next - fwd_tps->snd_una) <
2854 	 fwd_tps->rcv_wnd) &&
2855 	 (get_queue_pkt_count(sfi->i2r_queue) > 0) )
2856 	 prepare_fwd_data(data, flag);
2857 	 }

2858 	 else if(flag == FWD_FLOW) {
2859 	 if(get_queue_pkt_count(sfi->i2r_queue) > 0) {
2860 	 if(prepare_fwd_data(data, PREV_FLOW) == -1 &&



226

2861 	 (tps->end_seq - ntohl(th->seq)) > 0 )
2862 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2863 	 }

2864 	 else if(tps->state == UDP_CLOSING)
2865 	 prepare_tcp_finack(sfi, th, skb->dev, 0, flag);
2866 	 else if(tps->state == TCP_FIN_RCVD)
2867 	 tps->state = TCP_CLOSING;
2868 	 else
2869 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2870
2871 	 /* Check if we can fwd any data */
2872 	 if( ((fwd_tps->snd_next - fwd_tps->snd_una) <
2873 	 fwd_tps->rcv_wnd) &&

2874 	 (get_queue_pkt_count(sfi->r2i_queue) > 0) )
2875 	 prepare_fwd_data(data, flag);
2876 	 }

2877 	 }

2878 	 }

2879 	 else if(th->syn) {
2880 	 /* Copy in forward queue */
2881 	 if(tps->state == TCP_LISTEN) {
2882 	 if (flag == PREV_FLOW)
2883 	 enqueue_packet(sfi, skb, sfi->i2r_queue, tps);
2884 	 else if (flag == FWD_FLOW)
2885 	 enqueue_packet(sfi, skb, sfi->r2i_queue, tps);
2886
2887 	 /* Check if we need to use the default MSS */
2888 	 if(tp.mss_clamp != NULL)
2889 	 fwd_tps->mss_clamp = tp.mss_clamp;
2890 	 else
2891 	 fwd_tps->mss_clamp = 536;
2892
2893 	 tps->dup_ack_cnt = 0;
2894 	 fwd_tps->dup_ack_cnt = 0;
2895 	 tps->state = UDP_SYN_RCVD;
2896
2897 	 /* Check if packet is coming from source or previous
2898 	 * helper box */
2899 	 if((ntohs(skb->nh.iph->frag_off) & IPIP_FRAG_OP) ==
2900 	 IPIP_FRAG_OP)

2901 	 tps->forwarding_option = IP_OVER_IP;
2902 	 else
2903 	 tps->forwarding_option = NO_IP_OVER_IP;
2904
2905 	 if(sfi->i2r_flow != NULL)
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2906 	 tps->next_hb_addr = get_nexthb_addr(sfi->i2r_flow, flag);
2907
2908 	 /* Checking for window scaling option */
2909 	 if(tp.wscale_ok == 1) {
2910 	 tps->wscale_ok = 1;
2911 	 tps->snd_wscale = tp.snd_wscale;
2912 	 }
2913
2914 	 /* Checking for ECN capability */
2915 	 if(((iph->tos & Ox01) II (iph->tos & 0x02)) 11
2916 	 (th->cwr && th->ece)) {
2917 	 tps->ecn_capable = 1;
2918 	 }

2919 	 else
2920 	 tps->ecn_capable = 0;
2921
2922 	 /* Forward the SYN to [HB, dst] */
2923 	 prepare_tcp_syn(sfi, flag);
2924
2925 	 tcp_init_mss_wnd(fwd_tps, fwd_tps->snd_mss, th->window);
2926 	 tps->rcv_mss = fwd_tps->snd_mss;
2927 	 }

2928 	 }
2929 	 else if(th->fin) {
2930 	 if(tps->state != UDP_FIN_SENT)
2931 	 tps->state = UDP_CLOSING;
2932
2933 	 if(process_tcp_ack(sfi, skb, flag) == -1)
2934 	 goto err_ack_proc;
2935
2936 	 if(tps->state == UDP_FIN_WAIT II tps->state == UDP_FIN_RCVD)
2937 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2938 	 else if(tps->state == TCP_CLOSING) {
2939 	 prepare_tcp_finack(sfi, th, skb->dev, 0, flag);
2940 	 }

2941 	 else if(tps->state == UDP_FIN_SENT) {
2942 	 if(!(tps->finack_retrans)) {
2943 	 tps->rcv_next += 1;
2944 	 tps->finack_retrans = 1;
2945 	 }
2946
2947 	 /* Got FIN-ACK of FIN sent. Sending last ACK of handshake.
2948 	 Start TIME_WAIT period 	 */
2949 	 prepare_tcp_ack(sfi, th, skb->dev, flag);
2950 	 init_tw_timer(sfi, flag);



2951
2952 	 if(timer_pending(&(tps->rto_timer)))
2953 	 del_timer_sync(&(tps->rto_timer));
2954 	 if(timer_pending(&(fwd_tps->rto_timer)))
2955 	 del_timer_sync(Wwd_tps->rto_timer));
2956
2957 	 tps->state = UDP_CLOSING;
2958 	 }
2959 	 }

2960 	 /* Done with the incoming skb. Free it */
2961 	 if(skb->dst) {
2962 	 if(atomic_read(&skb->dst->__refcnt) < 1)
2963 	 atomic_set(&skb->dst->__refcnt, 1);
2964 	 }
2965
2966 	 if(skb) {
2967 	 kfree_skb(skb);
2968 	 }

2969 	 return;
2970
2971 	 bad_packet:
2972 	 printk(KERN_ALERT "Bad packet format. Send reset \n");
2973 	 /* Will have to write my own function to send a RST.
2974 	 Check /ipv4/netfilter/ipt_REJECT.c:send_reset() */
2975 	 //send_reset(skb, 0);
2976
2977 	 discard_it:
2978 	 printk(KERN_ALERT "Problem pulling UDP header in hook \n");
2979 	 return;
2980 	 err_ack_proc:
2981 	 if(skb->dst) {
2982 	 if(atomic_read(&skb->dst->__refcnt) < 1)
2983 	 atomic_set(&skb->dst->__refcnt, 1);
2984 	 }
2985 	 kfree_skb(skb);
2986 	 return;
2987 	 }
2988
2989 	 /*
2990 	 * This is the hook main function
2991 	 */
2992 unsigned int ip_in_hook_filter(unsigned int hooknum,
2993 	 struct sk_buff **skb,
2994 	 const struct net_device *in,
2995 	 const struct net_device *out,

228
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2996 	 int (*okfn)(struct sk_buff *))
2997 	 {
2998 	 struct sk_buff *sb = *skb;
2999 	 struct iphdr *iph;
3000 	 struct tcphdr *tcph;
3001 	 struct split_flow_info *sfi;
3002 	 struct flow_detail *search_flow;
3003 	 __u32 d_addr, s_addr;
3004 	 int ihl;
3005
3006 	 skb_linearize(sb, GFP_ATOMIC);
3007
3008 	 iph = sb->nh.iph;
3009
3010 	 /* Check if packet is tunnelled */
3011 	 if(iph->protocol == IPPROTO_IPIP) {
3012 	 if(flow_supported(iph->saddr, iph->saddr, 1)) {
3013 	 ihl = sb->nh.iph->ihl*4;
3014 	 sb->nh.raw = (struct iphdr *)(sb->data + ihl);
3015 	 __skb_pull(sb, ihl) ;
3016 	 iph = sb->nh.iph;
3017 	 }

3018 	 }

3019 	 tcph = (struct tcphdr *)(sb->data + iph->ihl*4);
3020
3021 	 d_addr = iph->daddr;
3022 	 s_addr = iph->saddr;
3023
3024 	 /* Check if packet is UDP and it belongs to destination pool */
3025 	 if(iph->protocol == IPPROTO_TCP) {
3026 	 if(flow_supported(s_addr, d_addr, 0)) {
3027 	 /* (src) -> (dst) */
3028 	 /* Get the header for the sfi linked list */
3029 	 if((slh = get_head_sfi()) == NULL)
3030 	 goto head_error;
3031
3032 	 /* Get flow details from packet */
3033 	 search_flow = get_flow_details(sb);
3034
3035 	 /* Search for the node in the linked list */
3036 	 if ((sfi = search_sfi(s1h, search_flow, PREV_FLOW)) == NULL) {

3037 	 if(tcph->syn) {
3038 	 /* Seeing the flow for first time.
3039 	 * Create a new node */
3040 	 sfi = create_sfinode(s1h, sb);
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3041
3042 	 /* Get the MAC header details of the incoming
3043 	 * packet */
3044 	 if(sb->mac.raw != NULL) {
3045 	 get_hw_addr(sb, sfi, PREV_FLOW);
3046 	 }

3047 	 sfi->i2r_flow = get_flow_details(sb);
3048 	 sfi->r2i_flow = (struct flow_detail *)
3049 	 kmalloc(sizeof(struct flow_detail),

3050 	 GFP_ATOMIC);
3051
3052 	 process_in_pkt(sb, sfi, PREV_FLOW);
3053 	 }

3054 	 else {
3055 	 /* Not SYN and no sfi node => send RST */
3056 	 prepare_tcp_reset(sb, sb->dev, 0);
3057 	 goto err_sfi_node;
3058 	 }

3059 	 }

3060 	 else {
3061 	 /* If SYN-ACK, get MAC details and flow details */
3062 	 if(tcph->syn) {
3063 	 /* Get the MAC header details of the incoming
3064 	 * packet */
3065 	 if(sb->mac.raw != NULL) {
3066 	 get_hw_addr(sb, sfi, PREV_FLOW);
3067 	 }

3068 	 }

3069 	 /* sfi contains a pointer to the flow node */
3070 	 process_in_pkt(sb, sfi, PREV_FLOW);
3071 	 }

3072 	 return NF_STOLEN;
3073 	 }

3074 	 else if(flow_supported(d_addr, s_addr, 0)) {
3075 	 /* (dst) -> (src) */
3076 	 /* Get the header for the sfi linked list */
3077 	 if((slh = get_head_sfi()) == NULL)
3078 	 goto head_error;
3079
3080 	 /* Get flow details from packet */
3081 	 search_flow = get_flow_details(sb);
3082
3083 	 if((sfi = search_sfi(s1h, search_flow, FWD_FLOW)) == NULL) {
3084 	 if(tcph->syn) {
3085 	 /* Seeing the flow for first time.
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3086 	 * Create a new node */
3087 	 sfi = create_sfinode(s1h, sb);
3088
3089 	 /* Get the MAC header details of the incoming
3090 	 * packet */
3091 	 if 	 != NULL) {
3092 	 get_hw_addr(sb, sfi, FWD_FLOW);
3093 	 }

3094 	 sfi->r2i_flow = get_flow_details(sb);
3095 	 sfi->i2r_flow = (struct flow_detail *)
3096 	 kmalloc(sizeof(struct flow_detail),
3097 	 GFP_ATOMIC);
3098
3099 	 process_in_pkt(sb, sfi, FWD_FLOW);
3100 	 }

3101 	 else {
3102 	 /* Not SYN and no sfi node => send RST */
3103 	 prepare_tcp_reset(sb, sb->dev, 0);
3104 	 goto err_sfi_node;
3105 	 }

3106 	 }

3107 	 else {
3108 	 /* If SYN-ACK, get MAC details and flow details */
3109 	 if(tcph->syn) {
3110 	 /* Get the MAC header details of the incoming
3111 	 * packet */
3112 	 if(sb->mac.raw != NULL) {
3113 	 get_hw_addr(sb, sfi, FWD_FLOW);
3114 	 }

3115 	 }

3116 	 process_in_pkt(sb, sfi, FWD_FLOW);
3117 	 }

3118 	 return NF_STOLEN;
3119 	 }

3120 	 }

3121
3122 	 return NF_ACCEPT;
3123
3124 head_error:
3125 	 printk(KERN_ALERT "Got bad sfi_head. Dropping the packet\n");
3126 	 err_sfi_node:
3127 	 printk(KERN_ALERT "sfi search failed. There should be a node \n");
3128 	 return NF_DROP;
3129 	 }

3130
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3131 	 /*
3132 	 * Initializing the hook module
3133 	 */
3134 	 int init_module()
3135 	 {
3136 	 /* Populating the nf_ip_in variable */
3137 	 nf_ip_in.hook = ip_in_hook_filter;
3138 	 nf_ip_in.hooknum = NF_IP_PRE_ROUTING;
3139 	 nf_ip_in.pf = PF_INET;
3140 	 nf_ip_in.priority = NF_IP_PRI_FIRST;
3141
3142 	 /* Initializing the sfi linked list */
3143 	 printk(KERN_ALERT "\n\n\n\n\n\n");
3144 	 printk(KERN_ALERT "Going to initialize sfi linked list\n");
3145 	 init_head_sfi();
3146
3147 	 /* Registering the hook */
3148 	 nf_register_hook(&nf_ip_in);
3149
3150 	 populate_nw_table();
3151
3152 	 /*
3153 	 prev_sch = kmalloc(size, GFP_KERNEL);
3154 	 if (!prev_sch)
3155 	 printk(KERN_ALERT "Error during kmalloc of Qdisc \n");
3156
3157 	 fwd_sch = kmalloc(size, GFP_KERNEL);
3158 	 if (!fwd_sch)
3159 	 printk(KERN_ALERT "Error during kmalloc of Qdisc \n");
3160 	 */
3161 	 return 0;
3162 	 }
3163
3164 	 /*
3165 	 * Cleaning up
3166 	 */
3167 	 void cleanup_module()
3168 	 {
3169 	 printk(KERN_ALERT "Freeing up space from the linked list \n");
3170 	 cleanup_sfi_list(s1h);
3171 	 nf_unregister_hook(&nf_ip_in);
3172 	 }
3173
3174 	 MODULE_LICENSE("GPL");
3175 	 MODULE_AUTHOR("Rahul");
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