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ABSTRACT

DESIGN AND APPLICATION OF NEAR INFRARED
TUNABLE FILTER FOR ATST AND NST

by
Jun Ma

This thesis includes the following sections: a general design of the Near Infrared Tunable

Filter (NIRTF) of Advanced Technology Solar Telescope (ATST) project and the Near In-

frared Imaging Magnetograph (BRIM) of the New Solar Telescope (NST), the design of

achromatic waveplates, the narrowband continuum observation of a Sunspot at 1.56 µm

using IRIM instruments, and the coronal hole observation using the Digital Vector

Magnetograph (VMG) at Big Bear Solar Observatory (BBSO).

A near infrared tunable filter system is designed with detailed optical parameters

for each component in the system. Among these components, the achromatic waveplates,

which used to be an obstacle to the design of tunable filter systems, are redesigned using a

Monte Carlo global optimization algorithm. The designs for three sets of such multi-layer

achromatic waveplates are presented in the thesis. Experimental results are also obtained

for three-layer quarter and half waveplates. These results show that the chromatism of

waveplates is reduced to a satisfying level for the filter system in the wavelength range

1000-4800 nm.

A set of narrow band continuum images at 1.56 µm are analyzed for the active

region NOAA 10707 using the Lyot filter in the Near Infrared Imaging Magnetograph

(IRIM) system and high order adaptive optics at National Solar Observatory (NSO), New

Mexico. The analysis shows that the horizontal flow field within umbral region is small,

in the order of 0.3 km. s-1 on average. Also, a narrow ring (370 km) within which the

proper motion of the flow in the sunspot reverses its direction from inward to outward is

identified. For the matured sunspot like the one in NOAA 10707, a gradual shrinking of

spot is found, which suggests that at least in the early stage of the decay of matured active

regions, a reduction of area takes place, instead of decomposing immediately.



A preliminary analysis of the magnetic flux data using the DVMG at BBSO reveals

that, on the photospherical level, the magnetic flux evolves faster in quiet sun regions than

in the coronal hole. Also fewer bipolar features are connected by arch filament (shown in

Ha images) in the coronal hole. In the coronal hole, most of the closed magnetic loops ap-

pear at level lower than 5000 km, while open magnetic loops fill the space above 5000 km

level. This observation suggests that flux cancellation or magnetic reconnection in pho-

tosphere and lower chromosphere may only take place at an atmospheric level lower than

5000 km, instead of the height where fast solar wind is believed to generate (between

500020000 km).

The science deduced based on these observations could be greatly improved by

obtaining accurate measurements of the magnetic field strength (instead of flux density)

and filling factor, which are the primary goals of the newly designed Near Infrared Tunable

Filter system (NIRTF) in this thesis for the ATST and the New Solar Telescope (NST).



DESIGN AND APPLICATION OF NEAR INFRARED
TUNABLE FILTER FOR ATST AND NST

by
Jun Ma

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology and
Rutgers, the State University of New Jersey - Newark

in Partial Fulfillment of the Requirements for the Degree of
Doctor of Philosophy in Applied Physics

Federated Physics Department

August 2007



Copyright © 2007 by Jun Ma
ALL RIGHTS RESERVED



APPROVAL PAGE

DESIGN AND APPLICATION OF NEAR INFRARED
TUNABLE FILTER FOR ATST AND NST

Jun Ma

Dr. Haimin Wang, Dissertation Co-Advisor 	 Date
Distinguished Professor of Physics, Associate Director of the Center for
Solar-Terrestrial Research and Big Bear Solar Observatory, NJIT

Dr. Carsten Denker,Dissertation Co-Advisor	 Date
Assistant Professor of Physics, NJIT

Dr. Philip R. Goode, Committee Member	 Date
Distinguished Professor of Physics, Director of the Center for
Solar-Terrestrial Research and Big Bear Solar Observatory, NJIT

Dr. Dale E. Gary, Committee Member 	 Date
Professor of Physics, Director of the Solar Array
in Owens Valley Radio Observatory, NJIT

Dr. Zhen Wu, Committee Member 	 Dale
Professor of Physics, Rutgers University, Newark



BIOGRAPHICAL SKETCH

Author:	 Jun Ma

Degree: 	 Doctor of Philosophy

Date:	 August 2007

Undergraduate and Graduate Education:

• Doctor of Philosophy in Applied Physics,
New Jersey Institute of Technology, Newark, New Jersey, 2007

• Master of Science in Mechanical Engineering,
New Jersey Institute of Technology, Newark, New Jersey, 2002

• Bachelor of Science in Aerodynamics & Flight Mechanics,
Nanjing University of Aeronautics & Astronautics, China, 1998

Major:	 Applied Physics

Publications:

Ma, J., Denker, C., & Wang, H., Optical Design of Multilayer Achromatic Waveplates by
Simulated Annealing and Their Applications, 2007, submitted to PASP.

Zhang, J., Ma, J., & Wang, H., 2006, Astrophys. J., 649, 464.
Cao, W., Jing, J., Ma, J., Xu, Y., Wang, H., & Goode, P. R. 2006, PASP, 118, 838.
Cao, W., Hartkorn, K., Ma, J., Xu, Y., Spirock, T., Wang, H., & Goode, P. R. 2006,

Sol. Phys., 238, 207.
Xu, Y., Cao, W., Ma, J., Hartkorn, K., Jing, J., Denker, C., & Wang, H. 2005, Astro-

phys. J. Lett., 628, L167.
Ma, J., Wang, J., Cao, W., Denker, C., & Wang, H. 2004, Proc. SPIE, 5523, 139.
Denker, C. J., Ma, J., Wang, J., Didkovsky, L. V., Varsik, J. R., Wang, H., & Goode, P. R.

2003, Proc. SPIE, 4853, 223.
Denker, C., Didkovsky, L., Ma, J., Shumko, S., Varsik, J., Wang, J., Wang, H., & Goode,

P. R. 2003, Astronomische Nachrichten, 324, 332.
Wang, J., Wang, H., Goode, P. R., Spirock, T. J., Lee, C.-Y., Ravindra, N. M., Ma, J., &

Denker, C. 2001, Optical Engineering, 40, 1016.

iv



To My Beloved Parents

v



ACKNOWLEDGMENT

I am very grateful to my advisor, Dr. Haimin Wang, for his mentorship, without which it

would have been impossible for me to complete my thesis. I also want to thank my co-

advisor, Dr. Carsten Denker, for his guidance throughout my research and for showing me

how to explore the natural areas around Big Bear Lake. I extend my gratitude to the other

committee members for their tremendous support on my dissertation: Dr. Philip Goode,

Dr. Dale Gary, and Dr. Zhen Wu.

Special thanks to the scientific staff and operational staff at Big Bear Solar Observa-

tory (BBSO) in California, for their kindness and assistance during my stay. I want to thank

Dr. John Varsik, Sergiy Shumko, Dr. Vasyl Yurchyshyn, Dr. Valentyna Abramenko, Dr.

Wenda Cao, Randy Fear, and Jeff Nenow for their encouragement and advice. In particu-

lar, Dr. Thomas Spirock for his help with the magnetograph and many other instruments at

the BBSO facilities. I also enjoyed the time I rode in his Rubicon wondering around even

though we never had a chance to conquer the John Bull Trail.

I wish to express appreciation to Dr. Jingshan Wang for sharing his expertise on

filter designs and providing valuable suggestions on my dissertation.

My sincere gratitude goes out to Dr. Jun Zhang of Beijing Astronomical Obser-

vatory in China for being a source of inspiration. I was intrigued by our discussions on

magnetic fields distribution, which eventually led to one part of my dissertation. His exten-

sive scientific knowledge and techniques broadened my horizons.

Finally, I want to thank Dr. Weijun Mao of Nanjing Institute of Astronomical In-

strumentation (China) and his staff for manufacturing and testing the waveplates discussed

in my thesis.

This thesis work was supported by NSF under grants ATM 03-42560, ATM 02-

36945, IIS ITR 03-24816, AST MRI 00-79482, and by NASA under grant NNG0-6GC81G.

vi



TABLE OF CONTENTS

Chapter Page

1 INTRODUCTION 	 1

1.1 Sunspot Structure 	 3

1.2 Photospheric Observation of Coronal Hole Magnetic Field 	 6

1.3 Spectropolarimetry and Instrumentation 	 7

1.4 Achromatic Waveplate Design and Algorithm 	 9

2 FILTER SYSTEMS AND INFRARED IMAGING MAGNETOGRAPH 	 11

2.1 Principles of Solar Spectrography 	 11

2.2 NIRTF 	 12

2.2.1 	 Near Infrared Fabry-Perot Etalon 	 14

2.2.2 	 Near Infrared Tunable Birefringent Filter 	 16

2.2.3 	 Tuning Mechanism of a Birefringent Filter 	 19

2.2.4 	 Design Parameters of the Birefringent Filter of NIRTF 	 21

2.2.5 	 Wide-Field Configuration in Birefringent Filter 	 22

2.2.6 	 F-ratio of the Birefringent Filter of NIRTF 	 25

2.2.7 	 Near Infrared Polarize of NIRTF 	 25

2.3 IRIM System 	 26

2.3.1 	 Bandpass Profile of Lyot Filter - Laser Testing 	 28

2.3.2 	 Bandpass Profile of Lyot Filter - Spectrograph Testing 	 29

2.3.3 	 Fabry-Perot Etalon of IRIM 	 31

2.3.4 	 Polarization Analyzer of IRIM 	 31

2.3.5 	 Magnetogram of IRIM 	 31

vii



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

3 DESIGN OF ACHROMATIC WAVEPLATES 	  35

3.1 E&M Wave in Anisotropic Medium 	 35

3.2 Polarization Optics 	 37

3.2.1 Jones Calculus 	 38

3.2.2 Mueller Matrix 	 39

3.3 n-Layer AWP 	 41

3.3.1 Methods 	 41

3.3.2 Optimization Problem of n-layer Achromatic Waveplates 	 42

3.3.3 Markov Chain 	 44

3.3.4 Simulated Annealing 	 45

3.3.5 Digression 	 46

3.3.6 Different Thicknesses, Different Azimuths 	 47

3.4 Properties of Multilayer Achromatic Waveplates 	 49

3.4.1 Normal Incidence 	 49

3.4.2 Polarization Transformation in n-layer Waveplates 	 51

3.4.3 Orientation of the Optical Axes of n-Layer Waveplates 	 54

3.4.4 Off-Axis Effects 	 55

3.4.5 Application - Phase Shifter 	 56

3.5 Laboratory Experiments 	 57

3.5.1 Measurement of Birefringence 	 57

3.5.2 Waveplates For IRIM 	 59

3.5.3 Experiment Results Discussion 	 62

3.6 Conclusions 	 62



TABLE OF CONTENTS

(Continued)

Chapter	 Page

4 A LARGE SUNSPOT AT 1.56 µm CONTINUUM 	  70

4.1 Motivations 	 70

4.2 Observation 	 70

4.3 Data Reduction and Processing 	 72

4.4 Sunspot Decaying of NOAA 10707 	 74

4.5 Fine Structures Inside of Sunspot 	 74

4.6 UC Intensity Observation 	 75

4.7 Horizontal Velocity Map 	 76

4.7.1 	 Calculation of Proper Motion 	 77

4.7.2 	 Velocity Maps 	 78

4.7.3 	 Flow Directions 	 78

4.8 Umbral Dots 	 79

4.8.1 	 Filling Factor of Umbral Dots 	 79

4.8.2 	 Number of Umbral Dots 	 80

4.8.3 	 Morphology of Umbral Dots 	 80

4.9 Conclusions 	 82

5 PHOTOSPHERIC MAGNETIC FIELDS IN CORONAL HOLE 	 84

5.1 Introduction 	 84

5.1.1 	 Small Scale Magnetic Fields 	 84

5.1.2 	 Coronal Hole 	 85

5.2 Comparison of The Fields in a Coronal Hole and a Quiet Region 	 85

5.2.1 	 Data Acquisition 	 85

5.2.2 	 Identification of Ephermal Active Regions 	 87

ix



TABLE OF CONTENTS

(Continued)

Chapter 	 Page

5.2.3 Magnetic Flux Emergence and Disappearance 	  88

5.2.4 Magnetic Flux Distribution 	  90

5.2.5 Is The Distribution An Isolated Case 	  93

5.2.6 Empirical Model of Coronal Hole 	  94

5.2.7 Connection to Solar Wind 	  94

5.3 Conclusions 	  95

6 SUMMARY 	  97

REFERENCES 	  99

x



LIST OF TABLES

Table 	 Page

2.1 Scientific Requirement of NIRTF 	 13

2.2 Observation Modes of NIRTF 	 17

2.3 Specification of the NIR FPI for NIRTF of ATST 	 17

2.4 Design Parameters for Lyot Filter in NIRTF 	 21

2.5 Design of The Birefringent Filter of NIRTF of ATST 	 22

2.6 FOV Designs of Lyot Filter Modules 	 25

2.7 Fabry-Perot Etalon of IRIM (Cao et al. 2006) 	 34

3.1 Examples of Simulated Annealing Algorithm 	 46

3.2 Configurations of the n-Layer Achromatic Waveplates 	 48

3.3 Achromatic Three-Layer Waveplates 	 65

5.1 Setups of The Observations on 14th And 16th 	 87

5.2 Flux Distribution in Coronal Hole And Quiet Sun For Both Polarities 	 91

xi



LIST OF FIGURES

Figure	 Page

2.1 Fabry-Perot etalons. Upper-right is an assembled etalon; lower-left are two
pieces from a single etalon. 	  15

2.2 FPI of NIRTF for ATST, defined in Table 2.3. 	  18

2.3 Concept design of a single stage birefringent filter. 	  20

2.4 Inclined incidence light on a birefringent crystal. 	  23

2.5 Inclined incidence light on a birefringent crystal. 	  25

2.6 IRIM system setup in the Coudē room at BBSO (2004). 	  27

2.7 Mechanical drawings of the Lyot filter used in IRIM 	  28

2.8 Laser testing of TRIM Lyot filter 	  29

2.9 Testing of the LCVRs used in Lyot filter. 	  30

2.10 Spectrograph testing of the Lyot filter of TRIM - Liquid Crystal Tuning. . . . 	  32

2.11 Spectrograph testing of the Lyot filter of IRIM 	  32

2.12 Magnetogram of NOAA AR 10781 obtained (FeI 1564.85 nm) 	  33

3.1 Ellipsoid of wave formals. 	  37

3.2 Diagram of a six-layer waveplate. 	  41

3.3 Measurement of retardance. 	  50

3.4 Ellipticity vs. wavelength. 	  51

3.5 Retardance vs. wavelength (computational), derived from Figure 3.4. 	  52

3.6 Simulated polarization crosstalk of n-layer A /4 waveplate. 	  53

3.7 The errors of Mueller matrices elements. 	  54

ii



LIST OF FIGURES
(Continued)

Figure	 Page

3.8 Evens three-waveplate phase shifter (Evans 1949) using achromatic waveplates
(solid curves). (a) Retardance vs. 0 (azimuth of the half waveplate in the mid-
dle) and (b) the magnitudes of the anti-diagonal elements of the Jones matrices
of the two phase shifters. The dashed curves refers to the corresponding prop-
erties of a phase shifter composed of a set of three waveplates made from
single-layer uniaxial crystals, which are designed to be A /4 or A /2 wave-
plates at 1523.1 nm. The solid curves corresponds to a phase shifter made
of three six-layer achromatic waveplates. The wavelength of the incident light
is A = 1083.3 Om.   58

3.9 Tuning of a single stage of a Lyot filter - single stage. Solid curves: azimuth
of the rotating A/2 waveplate is set at 0; dotted curves: azimuth of the rotating
A /2 waveplate is set to 47r. First row: a cartoon of a single stage; second
row: transmission of the Lyot stage using single crystal waveplates; third row:
using three-layer achromatic waveplates; forth row: using six-layer achromatic
waveplates.   64

3.10 Properties of the near infrared linear polarizers: crossed and parallel. Also, the
profile of the light source is involved in these profiles. 	  66

3.11 Testing results for a normal single-layer half waveplate using the polarizers
and light source mentioned in Figure 3.10. 	  67

3.12 Testing of a three-layer half waveplate in Table 3  3 	   68

3.13 Testing of the two adhered three-layer quarter waveplates in Table 3.3. . . . 	  69

4.1 Region of interests shown on the full FOV of the observation. 	  71

4.2 RMS contrast of the observation. 	  72

4.3 ROI (271px, 32"square) and image processing. The image shown in the figure
is taken at UT 10:21:37 (frame# 607/996) 	  73



LIST OF FIGURES
(Continued)

Figure	 Page

4.4 (Color) Proper motion of the FOV of the observation. Left: the flow direction;
Right: the magnitude of velocity. Note that only the large sunspot at the center
is of special interests with this presentation    75

4.5 Proper motions along several directions. The flow calculated in these two fig-
ures are calculated by a simple LCT routine in IDL  76

4.6 Minimum intensity plots of the umbral core. Data was processed with subsonic
filter with v ph = 4 km/s.   77

4.7 UD filling factor. This factor is the ratio between the total area of UDs and the
corresponding overall area of umbra.   80

4.8 Variation of the number of UDs during the observation period    81

4.9 Umbral dots size histogram of the frame with highest rms-contrast.   82

5.1 BBSO magnetograms in a quiet region (top) and a coronal hole (bottom). The
field of view is 200" x 200". The box in the magnetogram of the quiet sun
outlines a region of ephemeral flux (see Figure 5.2).   86

5.2 Quiet region, September 14th, 2004. From the left to the right, DVMG mag-
netogram, Ha — 0.6Å, Ha + 0.6Å, Ha Dopplergram, and UV 1600ÅTRACE.
The field of view is about 30" x 30". Arrows denote a bipolar ER; dotted line
denote the location and orientation of an arch filament connecting the two po-
larities of the the bipolar ER. See Section 5.2.3 for the discussion.   89

5.3 Flux vs flux density. Top: 30 pairs of ERs in the quiet region; bottom: 17 pairs
of ERs in the coronal hole region. Vertical dotted lines stand for the location of
flux density equals to 20 G; the horizontal dotted lines stand for the flux equal
to 5 x10 18 Mx.   90

5.4 Flux distributions of positive and negative elements in the quiet region (top)
and the coronal hole region (bottom). The dotted straight line represent the
magnetic flux of 10 18 Mx, which is chosen as the threshold to discriminate IN
elements and network elements.   92

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

5.5 Variation of magnetic flux vs. threshold flux density in the field of view of mag-
netograms in Figure 5.1 in the quiet region (top) and the coronal hole (middle).
The bottom panel plots the ratio between the negative flux and the total flux. . . 93

5.6 Schematic view of the magnetic structures in quiet region and coronal hole
region. Solid curves stand for the magnetic field lines that have Ha counter-
parts; the closed lines show arch filaments, and the open-ended lines stand for
macrospicules. The dotted lines indicate the magnetic field structures which
have no Ha counterparts  95

xv



CHAPTER 1

INTRODUCTION

The Sun is the only star that is close enough for scientists to observe in detail to discover

the fine structures. The purpose of these scientific observations are beyond the matter

of curiosity, since the radiation from the Sun not only provides the only energy source

for all lives on the Earth, also it can produce hazardous side effects, for example, space

storms induced by solar eruptions. By recording various solar activities and finding proper

explanations of the driving mechanisms for these activities, it will be possible to predict

future eruption events on the Sun. So that preparations can be made for those events on the

Sun that are hazardous to the human activities on the Earth and in space.

The activities on the Sun are all related to the magnetic fields, which are believed

to be generated by a solar magnetic dynamo (Cowling 1981): electric currents tend to form

while the conducting fluid is moving through an external magnetic field; the generated

currents will produce another magnetic field superimposed on the external magnetic field

and redefine the total magnetic field in space. The dynamics of solar magnetic field are

described by the induction equation (Stix 2002):

(1.1)

where, v is the velocity field of plasma; ŋ is the magnetic diffusivity. In solar plasma,

the induction term (the first term on the right side of equation) outweighs the second term

which represents the Ohmic dissipation. The velocity fields needed to maintain the dynamo

process are provided by convection and differential rotation (Solanki 2003). The flux ropes

generated by the solar dynamo are brought up to the surface of the Sun by convective

motions, and manifest themselves as various visible features (Weiss et al. 1996; Schüssler

& Vogler 2006; Meyer et al. 1974), for example, sunspots, pores and networks.

1
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Solar observations focus on dthe measurement of the properties of these features

and their evolutions, based upon which more precise physical models can be constructed.

Large magnetic features, i.e., sunspots, have been under extensive research for decades

(Parker 1974, 1979; Rimmele & Marino 2006; Thomas et al. 2002). However, the fine

structure of sunspots is always under debate. Among these unsettled arguments are: what

are umbral dots? And what are the physical properties of plasma occupying the darkest

regions in the sunspot? The answers to these questions are the keys towards understanding

the nature of sunspots, and subjects related to global magnetic field evolution on the Sun

(Howard & Labonte 1981; Solanki et al. 2000, 2006).

On the other hand, weak magnetic features, such as those appearing in quiet sun

regions and coronal hole regions, reveal a different view of the solar magnetic activity. It

was recognized that the magnetic flux embedded in these regions contributes the principle

fraction of the total solar flux (Dominguez Cerdeña et al. 2006), and they are magnetic

phenomena that are independent of the global solar dynamo (Petrovay & Szakaly 1993;

Okunev et al. 2005). Furthermore, the photospheric distribution of the flux and field within

coronal holes is correlated with many important questions, such as the origins of solar wind

(Tu et al. 2005).

Better understanding of these subjects relies primarily on the improvements of in-

strumentations used in observation. The greatest improvements in techniques in recent

years are the development of near infrared detectors (Ives & Bezawada 2007), narrow band

tunable filters (Wang et al. 2001; Tritschler et al. 2002; Denker et al. 2003b,a), adaptive op-

tics (Rimmele 2000; Rimmele et al. 2003) and new, large aperture ground-based telescopes,

such as 1.5 m GREGOR (Volkmer et al. 2006), 1.6 m New Solar Telescope (NST) (Did-

kovsky et al. 2003, 2004), 4 m Advanced Technology Solar Telescope (ATST) (Rimmele

et al. 2004, 2005).

ATST is a 4-meter off-axis ground based telescope proposed for observations of

solar fine structures. ATST will achieve an angular resolution of 0 11 .03 (visible), and



3

cover the spectral range from 0.3 to 28 µm (see on-line ATST project documents at:

http://atst.nso.edu/library/specs.shtml) with minimal scattered light and high order adap-

tive optics. Several major focal plane instruments are currently being designed to exploit

the high resolution capabilities of ATST. The Near Infrared Tunable Filter (NIRTF) system

is one of these proposed focal plane instruments, which is designed at Center for Solar-

Terrestrial Research at New Jersey Institute of Technology (NJIT).

Big Bear Solar Observatory (BBSO) is building an 1.6-meter off-axis telescope as

an upgrading of its current 65 cm telescope. A preliminary tunable filter system which has

narrower infrared spectrum coverage, will be integrated into the focal plane instrumentation

of NST as well.

In the following a few subsections, more detailed background research are pre-

sented regarding the subjects mentioned above.

1.1 Sunspot Structure

Several photometric properties of sunspots are of interests: sunspot size variation, penum-

bral flows, umbral topology, penumbra-umbra interaction. These properties directly relate

to the energy transport within active region. Sunspot size variation is related to the de-

caying process of sunspots, i.e., the loss of magnetic flux due to the interaction with the

turbulent plasma motions around the sunspot. The heat flux loss is vividly represented by

the penumbral grains in the model of Evershed flow, in which the penumbral filaments

are bent parallel to the solar surface becoming diffuse at one end (Rimmele & Marino

2006). One explanation for the cooling of the sunspot is that the kinetic energy carried

by the out-going penumbral filaments balance or partially balance the energy loss within

sunspot. The most detailed structures in umbra are the umbral dots (UD). These dots have

excessive brightness with respect to the surrounding umbral region, and possess motions

similar to granulation cells. However, in this case the strong magnetic fields (15003000

G) surrounding the dots suppress the convection motions.
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Two sunspot models have been proposed in the literature decades ago: the clus-

ter model (Parker 1979), and the monolithic flux-tube model (Cowling 1975; Meyer et

al. 1977). Despite years of extensive observations and theoretical calculations, neither

of them can be dismissed confidently. As pointed out by Parker (1979), the explanation

of umbral dots should be accounted for to validate the models. The cluster model inter-

prets UD as convective overstability of field-free gas columns. However, this model could

not explain why these penetrating gas columns appear as isolated dots instead of forming

bright network along the boundaries of bundles of flux tubes. The monolithic flux-tube

model describes the UDs as the overshooting of coherent cellular motions of a length scale

of 250300 km extending over a depth of 1500 km below the visible photospheric layer

(Knobloch & Weiss 1983). The same argument also accounted for the observed umbral os-

cillation and UD oscillation. In addition, the correlation between chromospheric UDs and

photospheric UDs was predicted in Zinn (1974); Loughhead (1974). By comparing the
0 0

observations at Ha (6563 A) and G-band (4308 A), Kitai (1986) proposed that UDs are not

of the same convection origin as granules (Rumba & Suda 1980). The correlation between

chromospheric UDs and photospheric UDs suggested that UDs are of some different and

unique formation mechanism, since it is difficult to accept that the overturning motions are

able to shoot up to τHa = 1 level. Since the apparent difference between the two models

lies in the topological structures of active regions, high resolution observations at different

wavelengthes are critical to discriminate the two models.

The umbra of a sunspot is a highly inhomogeneous region considering the photo-

metric intensity and magnetic field distribution (Severnyi 1965; Abdusamatov & Krat 1969)

within the region. It is now widely accepted that an umbral region is composed of several

subareas according to their brightness and morphology, namely, umbral cores (UCs), light

bridges (LBs), and umbral dots (UDs). UCs are the darker regions in a sunspot, occupied

by very strong magnetic fields. Convective motions in UCs are believed to be suppressed

by such strong magnetic field. Hence the energy emission in UCs is highly reduced and the
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regions appear to be darker. UDs are isolated bright dots embedded in UCs background and

their size (equivalent diameter) ranges from 0".14 up to almost 1" with life time spanning

from several minutes to hours (for example, see the overview by Sobotka et al. (1997a) and

Sobotka et al. (1997b)). The discussion of the convective nature of UDs is also found in

Schüssler & Baumann (2006). LBs are stream-like bright features penetrating the umbra

and are highly stable. High spatial resolution observations reveal that a LB is usually com-

posed of a sequence of well aligned bright dots which are similar to UDs (Sobotka et al.

1994).

Sobotka et al. (1992) found that the apparent intensities of a single UD and its cor-

responding umbral background appear to be highly correlated based on an analysis of 29

well-resolved bright features. UDs have not been reported within darkest UC regions. Ac-

cordingly, they concluded that the stronger the magnetic field is, the deeper the convection

will take place. In one of their later papers (Sobotka et al. 1992), this correlation was

confirmed again based on the analysis of three bright features, including clusters of UDs.

Wiehr (1994) found that the contrast of UDs with respect to the local diffuse background

decreases with increasing geometrical height. This discovery leads to a physical picture in

which the convection flux diminishes with the increase of geometrical height.

Through high resolution spectra analysis, Lites et al. (1991) found that the back-

ground magnetic field strength in an umbra varies between 14002400 Gauss, without

significant reduction by the appearance of central UDs, which is the opposite to the ob-

served decreasing flux in LBs. Tritschler & Schmidt (1997) also observed that both central

UDs and peripheral UDs (dots near the boundary of umbra) are embedded on the back-

ground magnetic field without significantly reduce the field locally.

One way to validate the convective nature of UDs is the vector velocity field. The

diffraction-limited Doppler filtergram obtained by Rimmele (2004) shows that the velocity

of vertical up flows is about 1 km•s -1 in UDs, which is on the same order as the theoretical

value predicated by the cluster model of sunspot Parker (1979). The central UDs are almost
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always static. The peripheral UDs are hardly discriminated from bright spots broken down

from the penumbral grains, which drift inward. Rimmele (2004) suggested that central

UDs and peripheral UDs can be distinguished from each other by observing their proper

motion.

1.2 Photospheric Observation of Coronal Hole Magnetic Field

Solar magnetic field flux density varies largely from 10 Gauss in intra-network up to r3000

Gauss in active regions. One solar magnetic field model shows that the magnetic flux

are buried under the convection zone in quiet regions. The disturbance by supergranular

convection brings the magnetic flux up to the visible surface and forms a great variety

of magnetic features: sunspots, pores, faculae, networks and intranetworks (IN). Due to

the solenoidally of the magnetic field, the field lines often form closed loops. When both

polarities of a loop locate on the solar surface, the loop structure can be clearly seen from,

for example, Η-α 656.3 nm chromosphere images or soft X-ray images from even higher

up atmosphere. The field lines could also stretch into the interplanetary space, and form

open field line regions leaving only one polarity on the solar surface.

Coronal holes are low density regions, in which field lines are open to interplan-

etary space. High energy particles escape from coronal holes easily and turn out to be

the major contributor of the solar wind. Polar coronal holes usually have long lifetimes,

about 8 years and are correlated to the 11-year periodic global magnetic field reversal on

the Sun. The lifetime of nonpolar coronal holes are measured in several solar rotations and

are related to the relics of diffused active regions. Short-lived coronal holes are related to

coronal mass ejections (CMEs) and last for only a few days (Harvey & Recely 2002). The

magnetic field characteristics of coronal holes on the photosphere provide the first step to

the understanding of the mechanism of coronal holes.



1.3 Spectropolarimetry and Instrumentation

Solar observations are usually carried out by utilizing polarimetry instruments, such as

spectrographs, Lyot filters, variable retarders and polarizers (Stix 2002). Filter-based spec-

tropolarimetry instruments use narrow band filters to obtain 2D images, for example, the

Universal Birefringent Filter System (UBF) of NSO (Beckers et al. 1975), Visible Imaging

Magnetograph (VIM) (Denker et al. 2003a) and Infrared Imaging Magnetograph (IRIM)

(Denker et al. 2003b) of BBSO. Spectrograph-based instruments use a spectrograph in-

stead of filters to obtain 1 D images at multiple spectral lines simultaneously, as in the

Zurich Imaging Polarimeter (ZIMPOL) (Gandorfer 1999) for example. Since the narrow

band tunable filters, such as Fabry-Perot etalon and Lyot filter, become more commonly

used, the tunable-filter-based instruments have become more favorable for solar observa-

tion. The obvious advantages of the tunable-filter-based instruments are: larger field of

view (FOV), direct 2D observation, and near-simultaneous multiple-line observation (due

to rapid wavelength tuning and reduction of other instrumental delays).

The basic principle of these instruments is spectropolarimetry, which is an ex-

tremely powerful tool in the measurement of the magnetohydrodynamic motion and fea-

tures on the Sun. Most of the important physical parameters of the solar atmosphere, such

as chemical composition, density, and magnetic field, can be inferred from the spectropo-

larimetry observation. Not only is this information of vast interest to the empirical research

of the solar activity, but also it provides the theoretical astrophysics guidelines and con-

straints to the magnetohydrodynamic models.

Primarily, spectropolarimetry information concerns the measurement of the defor-

mation of spectral lines in solar spectrum. Magnetic-sensitive spectral lines are split in

the presence of magnetic field permeating certain regions in the solar atmosphere. Due to

the limited magnetic field strength in most area of the Sun, usually the splitting is small

compared to the intrinsic line-broadenings due to temperature (Gaussian broadening) and

pressure (Doppler broadening). And instead of a clear splitting, they just show additional



8

line broadening. Α simplified model of such splitting is the Zeeman triplet model: two

σ-components being circularly polarized, and one π-component being linearly polarized.

In this scheme, the shifting between the two σ components is proportional to the magnetic

field strength that induces the splitting. Only within regions supporting strong magnetic

field (for examples, sunspots and pores), can the split profiles of triplet components be dis-

tinguished. When saturation happens, it usually implies that the σ components are shifted

so far apart that one of them or both of them actually move out of the bandpass of the filters

used in observation. Under the weak field assumption, Zeeman splitting can be written as

(Strous 1994):

In order to detect weaker fields, longer wavelengths with greater Landē-g factors are more

desirable.

The polarimetric properties of the Zeeman triplet model make it possible to distin-

guish each component using optics such as phase shifters and polarizers. Such an approach

has been a major focus of solar spectropolarimetry for decades. Two different tracks were

followed: spectrograph based and imaging based. The basic idea of the latter is to select

the spectral line of interest using a prefilter, which has a pass band broad enough to include

the overall split profile of the line. Then the filtered light passes through a polarization

analyzer, and each component of the Zeeman triplet can be selected sequentially. The final

product of this procedure is an array of images of every component of the triplet for a re-

gion of interest (ROI). The spectrograph-based approach utilizes a high spectral resolution

spectrograph to scan the ROI, which can cover many spectral lines at a time. However,

the instantaneous size (field of view) of the ROI is severely limited by the slit of spectro-

graph, which is then scanned spatial across the Sun to enlarge the ROI. This compromise

comes from the basic principle behind any spectrograph. The spectrograph-based approach

can also (usually does) work with a polarization analyzer in order to measure the detailed

polarization signals.
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There are several types of high spectral resolution filters available: Fabry-Perόt in-

terferometer (FPI), and Lyot filter. Compared to the high precision, high resolution, but

mechanically fragile FPI, the Lyot filter has a more robust mechanical structure, and fairly

high resolution, yet also has a relatively low transmittance that will reduce the contrast of

features. Instruments based on the Lyot filter are the primary focus of the current thesis.

Other types of high resolution filter, such as Michelson interferometer, also have applica-

tions in filter based solar observation tasks.

The Lyot filter, sometimes called Lyot-Ohme filter, was named after the French sci-

entists Lyot and Ohme. In principle, it is a birefringent filter, i.e., utilizing the birefringence

of a uniaxial crystal to achieve a narrow spectral bandpass. The term uniaxial crystal refers

to a crystal which has a preferred direction, i.e. the extraordinary axis. An electromagnetic

wave whose amplitude vector is parallel to this direction travels faster (or slower for neg-

ative crystal) than any other directions within the crystal. The difference between the two

travelling speeds introduces a phase delay δ:

(1.3)

where, μ is the dimensionless birefringence, d is the travelling distance in the crystal, and λ

is the wavelength of wave. In later sections, the birefringence will be discussed in details. In

short, on one hand, the wavelength-dependent birefringence is exactly the property needed

for the crystal in a Lyot filter to disperse the spectrum in wavelength; on the other hand, the

phase delay δ of some optical components in the filter are preferred to be independent of

wavelength, i.e., achromatic.

1.4 Achromatic Waveplate Design and Algorithm

The retardance produced by an achromatic waveplate must be independent of the wave-

length of the light passing through. For example, an achromatic quarter waveplate in-



phase difference between the two components of light ray

regardless of the wavelength of the light.

An achromatic waveplate can be obtained by placing thin layers of birefringent

crystals with properly designed thicknesses and azimuthal angles (Pancharatnam 1947).

The design problem is therefore an optimization problem to minimize the chromatism by

manipulating these free parameters, i.e., thicknesses and azimuths. The analysis method

applied in the current thesis is Simulated Annealing (SA), which belongs to the category of

stochastic optimization algorithms.

The underlying mathematical principle of the SA is the Markov chain. This specific

stochastic process has many unique properties. One of the most important properties is that

an irreducible Markov chain will converge to an equilibrium distribution (see later sections

for details) (Otten & van Ginneken 1989). In the physical world, this property corresponds

to the annealing of melted material (Kirkpatrick et al. 1983) — no matter how high the

initial temperature was, as long as the annealing is conducted with certain constraints, the

final inner structure will be arranged in a regular fashion, i.e., crystalline structure.

troduces quarter-wave



CHAPTER 2

FILTER SYSTEMS AND INFRARED IMAGING MAGNETOGRAPH

2.1 Principles of Solar Spectrography

The principles of solar spectral-polarimetry lie in radiative transfer (Unno 1956; Stix 2002).

The polarization of sunlight carries information of the solar atmosphere through which the

radiation passed. The polarization of the radiation is usually described by a Stokes vector:

(I, Q, U, V), a vector independent of any specific coordinate system. The I component car-

ries the information of the total energy flux of the radiation; Q, U components carry linear

polarization energy flux (along two directions of a relative angle 45°); and V component

bears circular polarization energy flux.

The Stokes V component is of particular importance, not only because it is related

to the line-of-sight magnetic field B,,, but also because it is the component that can be

measured with higher accuracy than Q, U components. Stokes V can be written as (Stix

2002):

(2.1)

where, Δλλ is the Zeeman splitting. Given the assumption of weak field, omit higher order

terms and consider Zeeman splitting relation

(2.2)

where, y is the inclination angle of the field vector, c1 is a calibration factor and it is a

function of wavelength λ, g is effective Landē factor. Although usually, more sophisticated

11
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inversion routines are used to find magnetic field strength from the observed Stokes signals

along with other parameters such as filling factor and the flux of the field (see for examples,

Socas-Navarro et al. (2000); Socas-Navarro (2001)). A similar relation can be derived for

Q, U as well for parallel field (Stix 2002):

(2.3)

where, c2 is a calibration factor; Δλ is the offset from line center in Å(Mickey et al. 1996);

g is the effective Landē factor.

The Stokes components are usually measured in combinations. Given two variable

retarders, for example liquid crystal variable retarder, VR1 and VR2, let their retardance

be δ1 and δ2. Usually the retardance is a function of the applied voltage on the variable

retarder. Further, assume that the relative angle between the optical axes of the two variable

retarders is 45°. Then the measurable of the incoming light is

(2.4)

where, Ι is the intensity measurable, 1o, Qo, U0, V0 are Stokes components of the sunlight.

Therefore, pairs of δ1 and 62 can give different combinations of the components of Stokes

vectors. For example, δ1 = λ /4, 2 = —λ /4, the measurable is 2 (Ι — Uo) . Equation 2.4

also can be used to measure the retardance of a retarder, given that one of the two retarder

is an accurately calibrated retarder — for example, a waveplate — and the incoming light

(I0, Qo, U0, V0) is also known.

2.2 NIRTF

The ΝIRTF is designed for the wavelength range from 1.0— 1.7μm according to the scien-

tific requirement of ATST (Rimmele et al. 2004, 2005; Keil et al. 2004). The main chal-
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lenges of designing this filter are: wide wavelength coverage, large field of view (FOV),

narrow bandpass and tunability. A summary of these scientific requirement of NIRTF is

listed in Table 2.2.

The NIRTF consists four optical components: prefilter, polarization analyzer, nar-

row band filter, and NIR imaging array. Prefilter can be interference filters, which utilize

coating techniques to bring several thin films together to form stratified medium and there-

fore interference. The interference pattern is a function of wavelength and usually is broad.

The limitation of the interference filter is that the coating technique can only serve for a

certain wavelength range only. If the two wavelength ranges are far apart, then another

Polarization analyzer can be made of liquid crystal. The functionality of polariza-

tion analyzer is described in Equation 2.4 — to select polarization components of the light.

LOS field measurements require a modulator composed of a near infrared waveplate

(crystalline or liquid crystal) and a liquid crystal retarder (retardance 0 and 180°).

The narrow band filter is the major design subject in NIRTF. Two choices consid-

ered in the design are Fabry-Perot Interferometer (FPI) and Lyot filter. Both of them are ca-

pable of providing high spectral resolution. The mechanism of FPΙ is the multiple-reflection

Table 2.1 Scientific Requirement of NIRTF

Parameters 	 Specs

Spectral coverage range
Spectral resolution

FOV
Bandpass

Spatial resolution
Multi-operational mode

Filter aperture
Tunable over

High throughput
Stray light
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between two mirrors. The advantages of using FPI is that a very high spectral resolution

can be achieved. However, narrower bandpass always comes with smaller free spectral

range (FSR, the distance between two adjacent transmission peaks in spectral space). In

order to select a specific bandpass of FPI, another filter is required. Multiple FPΙs design is

based on such an idea. There has been a recent development of a triple FPI system present

in Gary et al. (2007). In the design of ΝΙRTF, another approach is taken — FPI plus Lyot

filter. In addition to the interference prefilter, a Lyot filter is designed as another prefilter

for FPΙ. The advantage is that Lyot filter has simpler mechanical structure and easy to be

calibrated.

The NIR imaging array had been a problem for years. Recently, there are break-

throughs in the development of NIR detectors. Presently, the NIR detector used at BBSO

is a HgCdTe NIR CMOS designed by Rockwell, Imaging Science Division, and it has high

. The image format taken by this CMOS chip

can be 1024x 1024.

In the following sections, NIR FPI and Lyot filter will be discussed in detail. More

information about polarization analyzers can be found in Spirock (2005). And the design of

NIR imaging array is not included in the current presentation, and only relevant technique

parameters of such imaging array will be included in the following discussion.

2.2.1 Near Infrared Fabry-Perot Etalon

In recent years, Fabry-Perot etalons have gained extensive interest in solar astronomy com-

munity due to the extraordinary performance that a FPI possesses: very high spectral reso-

lution, high throughput, easy wavelength tuning, and large aperture. A typical Fabry-Perot

etalon is shown in Figure 2.1.

The interference pattern of FPI is determined by:

(2.5)



Figure 2.1 Fabry-Perot etalons. Upper-right is an assembled etalon; lower-left are two
pieces from a single etalon.

where n is the refractive index of the medium between two flat mirrors; d is the distance

between the mirrors; Θ is the incident angle; m is the order of the interference fringe; λ is

the wavelength. The transmission is:

(2.6)

where, R is the reflectivity, Α is absorption and scattering losses, δ = 4πnd cos Θ /λ is

the phase difference between successive beams, Ρ stands for transmitted intensity, I is

the intensity of the incident light. Free spectral range (FSR, the distance between the two

15
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(2.7)

(2.8)

adjacent transmission peaks) is:

The width of the bandpass is measured with full width at half maximum (FWHM):

And a special parameter — fineness — is defined as F = FWHM· An example of these

properties of a FPI calculated for aperture 150mm and for 1' FOV is show in Table 2.3.

According to the parameters in Table 2.3, the bandpass properties of the FPI are:

0 	 0 	 0
• At 15648.5A, FSR = 5.5Α; FWΗΜ=0.085A.

0 	 0 	 0
• Αt 10830Å, FSR=2.636Å; FWΗΜ=0.04Å.

The transmission profile of the same FPI can be calculated from Equation 2.6 for these two

spectral regions as shown in Figure 2.2.

2.2.2 Near Infrared Tunable Birefringent Filter

A birefringent filter depends on the interference of the polarized light transmitted through

slabs of birefringent crystals in the direction perpendicular to the plane on which the optic

is known as the birefringent index of the crystal. There

are two kinds of birefringent crystals according to the sign of

quartz) and negative (μ < 0 such as calcite) crystals. Consider a plate of some birefringent

crystal which is cut with its surface parallel to the optical axis of the crystal and perpendicu-

lar to the incident light ray. Its optical axis is 45° with respect to the polarization directions

of the polarizers, placed between two parallel polarizers. The light ray in the crystal will



Table 2.2 Observation Modes of NIRTF

Observing Modes 	 Bandpass 	 FOV 	 Solar Lines (nm) 	 Scientific Interests

Broad band white light
imaging of active regions

Line core/wing images

Line Profiles, Full Stokes
Profiles, Magnetograms,
Velocity maps from
Stokes-V zero-crossing.
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Blocking Filter

Blocking Filter &
Birefringent Filter

Blocking Filter &
Birefńngent Filter &
FPΙ

Table 2.3 Specification of the NIR FPI for NIRTF of ATST

Parameters 	 Values

Clear Aperture
Surface Quality
Wedge Angle

Mirror Spacing
Cavity Tuning Range

Operational Temperature Range
Nominal Finesse

Coating Reflectivity

150 mm
λ / 100 at 633 nm

0 +- 1 fringe
2226 μm (nominal)

> 4.1 μm0°C to 50°C

>60 at 1523 nm
96%ο+ 1 %ο from 1000 to 1700 nm



Figure 2.2 FPI of NIRTF for ATST, defined in Table 2.3.

be split into two rays, one is extraordinary light and the other is ordinary light. The fraction

18

where, d is the thickness of the crystal,

(2.10)
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Usually a birefringent filter is composed of several such units with the only differ-

ence being the thicknesses of the crystals. One setup is to set do = 2d1 = 4d2 = 8d3 = • • • .

The transmittance of the filter is therefore:

(2.11)

The bandpass of such a birefringent filter can be brought down to a fraction of an angstrom.

The FWHM of the filter is determined by the thickest unit, and the FSR of the filter is

determined by the thinnest unit of the filter.

First, use a rotating half waveplate in each stage, as shown in Figure 2.3. The

filter design. It is shown here to illustrate that the phase shifting unit can be treated as an

independent optical instrument in other general applications. The symbols at the bottom

indicate the orientation of the (fixed and variable) optical axes of the optical elements.

(2.12)
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The rotating half waveplate can be set up on a high speed motorized stage. An example

is the Newport RGV 100 Series Motorized Rotation Stage, which has rotation speed of

720 °/s. This rotation speed results in a phase shifting rate of 8 waves/s, i.e., 125 ms/wave.

There are several advantages of using a mechanically rotating half waveplate. 1)

The change in α is linear; 2) The waveplate can be set in silicon oil which is usually applied

in birefringent filter for temperature concerns; 3) The optical quality of the waveplate can

be very high quality for imaging application. The disadvantages are: 1) The waveplate has

to be achromatic; 2) The motorized stage increases the size of the birefringent filter; 3) The

responding time is long (compared to the other tuning method below).

The second approach to tune the bandpass of a birefringent filter is to use liquid

crystal (LC) variable retarder in place of the rotating half waveplate.

(2.13)

where, Δ is the phase change introduced by the LC variable retarder. The advantages of us-

ing LCVR are: 1) More compact design; 2) The response time is quick. The disadvantages

are: 1) Nonlinear phase change introduces challenging calibration procedure; 2) Hard to in-

tegrate the LCVR with waveplates; 3) Non-uniformity due to stress within LCVR degrades
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the image quality.

2.2.4 Design Parameters of the Birefringent Filter of NIRTF

In order to be compatible with FPI, the tuning range of birefringent filter is also from

1000 nm to 1700 nm. The challenges regarding the achromatism of the optical components

concern waveplates and polarizers in the filter. Due to the fact that polarizers and calcites

cannot be made in large size, the clear aperture for the filter is chosen to be 36.0 mm. The

design specifications of the birefringent filter proposed for NIRTF of ATST are as shown

in Table 2.4.

Note that in Table 2.5, the FWHM of the birefringent filter is not the FWHM of

the thinnest module, instead, in combination with the bandpass profiles of other filters, it

is down scaled by a factor of 0.8830.887. FSR is the same as the FSR of the thickest

module. The value of μ(λ, T) for calcite was investigated in Wang et al. (2001):

Table 2.4 Design Parameters for Lyot Filter in NIRTF

Parameters 	 Values
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Due to this temperature sensitivity, birefringent filter is usually housed in a box enclosed

by a temperature controller. The FSR of the birefringent filter requires the bandpass of the

2.2.5 Wide-Field Configuration in Birefringent Filter

Generally, a birefringent filter works better with collimated beams better. The limitation is

due to the fact that any nonzero incident angle can introduce extra phase changes in the

filter, and effect the designed interference pattern. In order to reduce the dependence on the

incident angle, a modified setup of a birefringent filter unit is usually applied due to Evans

(1949). In this setup, the calcite plate is split into two identical plates, with the insertion of

a half waveplate between them.

Consider a single birefringent crystal cut in a way such that its fast axis (optic axis)

lies on the surface. The incident light polarized in a plane of 450 with respect to the fast axis

enters the crystal in the direction (φ, 8), where φ is the angle of incidence angle and θ is the

azimuth of the polarization plane measured from the fast axis (Figure 2.4). The light exits

from the other surface of the crystal in the direction (0, 8) in two polarized components

with polarization closely parallel to the fast axis and slow axis respectively. The retardance

between these two polarizations, 5, can be determined by (φ, θ) and R0, where R0 is the

Table 2.5 Design of The Birefringent Filter of l NIRTF of ATST

Module Thickness (mm) FWΗΜ(Å) FWHM(Å) FSR(Å) FSR(Å) Retardation Retardation Shape/Size
(Octagon/mm)

15648.5Å 10830.3Å 15648.5Å 10830.3Å 15648.5Å 10830.3Å
0 12.560x 2 2.751 1.332 5.502 2.664 2844.0 4046.8 37.00x 37.00
1 6.280x2 5.502 2.664 11.004 5.328 1422.0 2032.4 37.00x 37.00
2 3.140x 2 11.004 5.328 22.008 10.656 711.0 1016.2 37.00x 37.00
3 1.570x 2 22.008 10.656 44.016 21.312 355.5 508.1 37.00x 37.00

Final - 2.43 1.180 44.016 21.312 - - -
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retardance when the incident angle is zero. This can be shown in the following equation:

Figure 2.4 Inclined incidence light on a birefringent crystal.

In the wide field configuration, the optic axes of the two half calcites are crossed

and the optic axis of the inserted half waveplate is 45° with respect to both of the axes of

the calcites. Therefore, given the incident light at (φ, 8), it will incident on the second half
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(2.15)

1
(2.16)

derived

(2.17)

Therefore, for constant retardation

Therefore the curvature of the parabola is flattened in the

dependence is reduced (8 dependence is eliminated!).

For the near infrared birefringent filter designed for NIRTF/ATST, there are four

corresponding incident angles to each module can be tabulated as shown in Table 2.6.

Table 2.6 	 FOV Designs of Lyot Filter Modules

Wavelength (nm) Module Π Module 1 Module 2 Module 3

1042 1°01' 1°27' 2°03' 2°54'
1097 1 °00' 1°26' 2°02' 2°52'
1159 1°01' 1°26' 2°02' 2°53'
1220 1°01' 1°26' 2°02' 2°53'
1273 1°00' 1025' 2°00' 2°52'
1307 1°00' 1°25' 2°01' 2°51'
1497 1°00' 1°25' 2°01' 2°51'
1541 1°00' 1°25' 2°01' 2°51'
1609 1°00' 1°25' 2°01' 2°51'
1682 1°00' 1°25' 2°01' 2°51'

wide field configuration, and the
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2.2.6 F-ratio of the Birefringent Filter of NIRTF

The optical setup can be telecentric as well, see Figure 2.5. In this case, the focal plan of

the incoming light lies within the filter. The incident angles are not small anymore to the

filter, which have two effects: 1) side bands appear; 2) clear aperture reduces.

Figure 2.5 Inclined incidence light on a birefringent crystal.

Assume the clear aperture of the filter is 0 36 mm, the allowed maximum length of

the filter is 21, then

The f/ratio is then:

In practice, the length of the filter is much less than 100 cm, therefore the beam speed can

be set to f/29 and up.

2.2.7 Near Infrared Polarizer of NIRTF

Polarizers are the major sources responsible for large amount of absorption, especially in

near IR spectral range. The traditional thin-film polarizer made by 3M (formerly Polaroid)

has satisfying performance in visible range, but very poor in near IR range — low trans-

mission and low extinction ratio.

Recently, a newly developed nano-technology made it possible to manufacture high
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performance glass polarizer. For examples, Polarcor of Corning (NY/USA); colorPol

of Codixx (Barleben/Germany); SubWave polarizer of Nanoopto (NJ/USA). The major

threshold at this stage is the dimension of these glass polarizers can only be on the order

of 1 to 2 inches square. Currently, the 1500 BC5 colorPol of Codixx holds transmission

from 85% to 89% from 1000 nm to 1700 nm without anti-reflection coating. In the ap-

plication of the birefringent filter, the polarizer with be contacted with silicon oil or grace

in order to match the refractive indices of optical components to reduce surface reflection.

The reflection of the polarizer on each interface is 4% for each surface. Therefore the total

transmission is 93%97%. At the same time, the extinction ration (ER) is > 10000: 1

from 1000 nm to 1700 nm.

The NΙRTF birefringent filter holds four modules — five polarizers in total. The

transmission of the filter can be accounted as follows: 1) For polarized light and ignore

other losses, τ = (93%) 5 69.57% for 93% polarizer, and τ = (97%) 5 85.87% for 97%

polarizer; 2) For unpolarized light, the formerly calculated τ need to be reduced further by

50%.

2.3 IRIM System

The Near Infrared Imaging Magnetograph (IRIM) is a system built at BBSO in 2004. The

system has very similar structure as NIRTF. Only the design goal of IRIM was to look at

the sun at the close vicinity of the wavelength 1565 nm, i.e., the achromatic requirements

in IRiM is not so stringent as in NΙRTF. The setup of the 'RIM system in BBSO coudé

room is shown in Figure 2.6.
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2.3.1 Fandpass Profile of Lyot Filter - Laser Testing

The filter was designed by Wang et al. (2001) and manufactured by Cambridge Research

& Instrumentation, Inc. (CRi). It is a four-module LCVR tuning Lyot filter. Each module

is installed on a cage, and the cages are then linked mechanically, see Figure 2.7. There-

fore, it was possible to dissemble the filter in an optical lab with temperature controller.

This was done at CRT's optical lab. A tunable laser was used to generate a continuously

varying pseudo-monochromatic light for Lyot filter testing. The testing result is shown in

Figure 2.$ The central wavelengths of the testing are 1564.87 nm (top) and 1565.28 nm

(bottom). It was a point-testing, i.e., the diameter of the laser beam is small.

Figure 2.7 Mechanical drawings of the Lyot filter used in IRIM.

At CRi lab, the properties of LCVRs inside of the Lyot filter were also tested, see

Figure 2.9, in which the y-axis unit is in nm. To convert into radians, simply divide the
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Figure 2.8 Laser testing of IRIM Lyot filter.

y-axis by the working wavelength.

2.3.2 Bandpass Profile of Lyot Filter - Spectrograph Testing

After the full assemble at CRi, the filter was further wrapped by a temperature controller.

The need for such a temperature controller is that the birefringence of the crystals are

functions of ambient temperature: μ = μ (Τ, λ) . Also, the LCVRs used for tuning purpose

are also sensitive to the ambient temperature. Therefore, the calibration of the filter can

only be done in a single unit after the temperature controller is installed.

The calibration results are shown in Figure 2.10 ( The overall filter transmission is
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Figure 2.9 Testing of the LCVRs used in Lyot filter.

recoded as a function of the driving voltage (y-axis) of the thickest module and wavelength

(x-axis). The voltage count from 0 to 500 were defected and do not create any response

in LCVR. Ambient temperature is 32 °C. ) and Figure 2.11 ( The spectral lines shown in
o 	 a

the figure are 15648.5λand 15652.9A. Each of the two images on the left is a pair of the

spectrum with/without the Lyot filter. ). Compared with the Figure 2.8, the first order

maximum in the spectrograph tests are much higher than in the laser tests. Note that the

spectrograph was done at CRi in Αpríl/2004, and the laser test was done at NSO/SP in

December/2004. Also, in laser tests, only a few samples on the filter aperture were chosen.

In spectrograph test, however, the intensity profile is an area average over the aperture. The
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non-uniformity of the bandpass over the aperture can introduce this disparity. In fact, the

source of scattering light and higher sideband of the Lyot filter can be identified using ring

like experiment, i.e., every time, only let a ring of the light pass through the aperture.

2.3.3 Fabry-Perot Etalon of IRIM

The FPI used in 'RIM is a 70 mm ΕT70FS-1041 series manufactured by Queensgate In-

struments, Ltd. operated by a controller CS-100 to adjust the mirrors. The properties of the

etalon are listed in Table 2.7.

2.3.4 Polarization Analyzer of IRIM

The analyzer of 'RIM is a traditional composition of a λ /4 waveplate, a LCVR, and a

linear polarizer. The combination serves the purpose of measuring longitudinal field only.

The optic axis of the fixed λ /4 waveplate is parallel to the active direction of LCVR,

and 45°with respect to the active direction of the entrance polarizer of Lyot filter. In the

Zeeman triplet, the two circularly polarizer σ-components are converted to two orthogonal

linear polarizations by the fixed λ /4 waveplate. Presumably there is no photon loss in

this conversion. In order to record the photon flux in the two components, the LCVR is

switched between two states: 0 and λ/2. In doing so, Stokes I + V and I — V is selected.

The linear component π of Zeeman triplet will be blocked by the linear polarizer in the

analyzer.

2.3.5 Magnetogram of IRIM

A sample magnetogram obtained on July 1st, 2005 (BBSO) is shown in Figure 2.12, in

which, left panel is IRΙM high resolution magnetogram (UT 16:02); the right panel is MDI

(UT 16:00). The correlation tracking (CT) system and high-order adaptive optics (AO)

(Ref et al. 2003; Didkovsky et al. 2003; Rimmele 2000; Rimmele et al. 2003) are applied



Figure 2.10 Spectrograph testing of the Lyot filter of IRIM - Liquid Crystal Tuning.
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Figure 2.11 Spectrograph testing of the Lyot filter of IRIM.
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in the observation. Tle CT system holds a 45 mm tip-tilt mirror, operated at 3.3 kHz, and

tilt range of 24". The AO system consists of a 77 mm deformable mirror (DM) operated

by 97 actuators and a Shack-Hartmann wave-front sensor embedded with 76 subapertures.

These systems enable a pleasant diffraction-limit observation at BBSO.

Figure 2.12 Magnetogram of NOAA AR 10781 obtained (Fe' 1564.85 nm).



Table 2.7 Fabry-Perot Etalon of ΙRΙΜ (Cao et α1.2006)
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CHAPTER 3

DESIGN OF ACHROMATIC WAVEPLATES

The simplest form of an electromagnetic wave is a plane wave represented as follows:

(3.1)

where, Ε0 is the vector amplitude of the electric vector E(x, t) of the light. The Εo corre-

sponds to the polarization of the light; k is related to the electromagnetic energy; and ω is

related to the color of the light. The phase velocity νρ = —^̂
 
describes the transportation the

wave pattern; and the group velocity V g = describes the energy transportation (where

k is the module of the wave vector k). The ώ — k diagram is thus an important curve of

medium properties, which depicts what kind of ω — k relation is supported by the specific

medium. According to Fourier theorem, any form (square integrable) of the solutions of

the wave equation can be represented by the summation of Fourier components — plane

waves. Achromatic waveplate is such an optical component that can produce a predefined

phase retardance between two orthogonal components (polarized components) of the am-

plitude vector of the light regardless of the wavelength of the light.

3.1 E&M Wave in Anisotropic Medium

Given the medium is not magnetic active (μ =1 in Gaussian Unit), the medium properties

is uniquely described by its dielectric tensor εik. Therefore, D = εE and B = H. Source

35
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free says j = Ο. According to the monochromatic plane wave representation, operators

(3.4)

(3.5)

(3.6)

The magnitude of the vector n is still termed as refractive index, although a simple refrac-

tion law does not exist for anisotropic medium. Expand this equation and consider D = εΕ,

(3.7)

The condition to have non-trivial solution of Ε requires the secular equation stands:

(3.8)

The secular equation is of the form of an ellipsoid in general. Figure 3.1 shows a wave

normal surface of an uniaxial medium (Born & Wolf 1999). Wave normal surface is derived

from the by utilizing the relation n • s = 1. There is no physical motivation to favor a

normal surface, but for the sake of mathematical clarity only. Normal surface is a surface

of refractive index. s surface is a surface of phase velocity. The correlation relation between

In a summary, the propagation of electromagnetic waves inside anisotropic medium
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Figure 3.1 Ellipsoid of wave normals.

can take maximum three modes. Each mode has a corresponding phase velocity νρ =

w/k = c/n = c • s, which depends on the medium and the frequency of the wave itself.

Note in Figure 3.1, the tip of the s vector can not leave the surface of the ellipsoid.

3.2 Polarization Optics

An optical system is usually considered as a linear system if only certain optical compo-

nents are involved, such as retarders (waveplates), rotators, partial polarizers, etc.. There

are many mathematical formalisms being developed to describe such linear system. The

monograph by Shurcliff (1966) gives a thorough discussion on the subjects of Jones and

Mueller calculus. The connection between these two popular formalisms is called the co-

herence matrix, which is a subject of statistical optics. In this section, these formalisms

will be reviewed briefly for the convenience of later discussion.
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3.2.1 Jones Calculus

Jones calculus was developed in a series of papers (Jones 1941 a,b, 1942, 1947) and the

basics principle of the calculus is that certain optical components can be though of as linear

operators operating on polarized light. In cases where only plane waves are involved,

the transformation can be represented as 2x2  matrices. These matrices are named Jones

matrices after the name of the inventor. The transformation of the E-vectors of the light

can be show as follows:

(3.9)

(3.10)

where, nx , n ),, Mx , єy are assumed to be the principle refractive indices and extinction coeffi-

cients, respectively; d is the geometric length of the light path; λ is wavelength as usual.

Written in matrix form: E' = J • E. Major conclusions developed in a series of papers are

as follows:

• Theorem 1 —The transformation matrices in an optical system including only re-

tarders and rotators are all unitary.

• Corollary 1.1 —Such a system conserves the intensity of the light, i.e., the energy.

• Theorem 2 —Given certain wavelength of light, an optical system including only

retarders and rotators is equivalent to a system composed of one retarder and one

rotator.

• Theorem 3 —Given certain wavelength of light, an optical system including only par-

tial polarizer and rotators is equivalent to a system composed of one partial polarizer

and one rotator.
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• Theorem 4 --Given certain wavelength of light, an optical system including only

retarders, rotators, and partial polarizers, is equivalent to a system composed of four

optics: two retarders, one partial polarizer, and one rotator. In many cases, the rotator

is even not necessary.

A phase retarder can be written as the Jones matrix

(3.11)

where S is the retardance (phase difference) between the x- and y-components of the electric

vector of a linearly polarized monochromatic wave after its passage through a retarder. For

a linear polarizer (projection operator), the Jones matrix is

(3.12)

where Θ is the active direction of the polarizer.

The Jones matrix for a retarder with an arbitrary azimuthal angle Θ is:

(3.13)

(3.14)

3.2.2 Mueller Matrix

A Mueller matrix M is a 4 x 4 real matrix, which represents an optical instrument. In fact, a

Mueller matrix can also describe the optical properties of a medium, such as the atmosphere

of the Sun. Any Jones matrix has a corresponding Mueller matrix. The statement is not
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true vice verse. Given a Jones matrix J, its corresponding Mueller matrix form is:

(3.15)

where

(3.16)

where "¤" denotes the Kronecker product, "*" denotes the operation of complex conjugate,

and superscription "T"denotes matrix transpose.

Furthermore, if the vector representation of the light known to be the Jones vector L

(a complex column vector), then the Stokes vector S for the same light in Mueller algebra

is

S = T (L ®L*) . (3.17)

The applications of Mueller matrix extends to not only the instrumental solar physics,

but some theoretical sections such as radiative transfer equations. Mueller calculus gains

these popularity mainly from its corresponding vector — Stokes vector. The four com-

ponents of the Stokes vector are all observable and real. Usually, the vector is written as

S = {I, Q, U, V } T . This vector will be discussed in more details in later chapters where the

methodology of the magnetic field measurements is discussed.
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3.3 n-Layer AWP

3.3.1 Methods

There are basically two approaches to the optical design of achromatic waveplates: combi-

natorial and structural waveplates. A combinatorial waveplate (see Figure 3.2) is an optical

train of slabs of birefringent materials. Both the thicknesses dk and the azimuth 8k are to be

specified to reduce the wavelength dependence of the retardance. This is the method used in

the current study and will refer to them as "n-layer" or multilayer waveplates. A structural

waveplate is a single layer of material, not necessarily birefringent, but with embedded pe-

riodic surface structures on micron- or nano-scales. Such small structures can produce the

so-called form birefringence (Born & Wolf 1999), which can be used to build achromatic

waveplates, for examples, Flanders (1983); Kíkuta et al. (1997). This approach relies on

semiconductor manufacturing technology, which is beyond the scope of this presentation.

Figure 3.2 Diagram of a six-layer waveplate.

The idea of using three layer of birefringent material to achieve achromatic wave-



42

plate was initiated by Pancharatnam (1947). The methods of developing multilayer achro-

matic waveplate were further developed by various authors. For example, an analytical de-

sign of three-layer achromatic waveplates can be found in Title (1975), in which the author

specified retardance of 115.5°, 180° and 115.5° and azimuth of 0°, 70.6° and 0° for a three-

layer λ/4 waveplate. For a three-layer half waveplate, the retardance are 180°, 180°, 180°

and the azimuth are 0°, 60°, 0°. This analytical method considers the relative frequency

instead of wavelength to simplify the discussion, and try to find universal configurations

for three-layer achromatic waveplates regardless of the specific spectral range. A differ-

ent computational approach of designing six- and ten-layer achromatic waveplates was

presented by McIntyre & Harris (1968), who discussed both numerical and experimental

results. In this unique design, all waveplates have the same thicknesses but different az-

imuth. The achromatic range considered was 400 to 800 nm. Various other designs exist,

which use two different birefringent materials (for example, Beckers 1971, 1972; Hariha-

ran 1995; Guimond & Elmore 2004) or prisms (Filinski & Skettrup 1984). One issue in

these designs is that optic-axes of the assembled waveplates also vary with wavelength.

3.3.2 Optimization Problem of n-layer Achromatic Waveplates

The design of an n-layer waveplates is rather complicated with respect to the computational

burden. Each layer has three free parameters: thickness, azimuth angle and material prop-

erty (birefringence). Therefore, the possible combinations of these parameters increase

exponentially as the number of layers increases.

Multilayer (more than three layers) waveplate discussed in the current paper is

a solution to this issue. Our definition of an achromatic waveplate is that a multilayer

structure which has a constant Jones matrix within a certain wavelength range. The def-

inition implies the equivalency between a Jones matrix and a waveplate. In Figure 3.2,

Jawp = Jι • J2 • J3 • ... • Jn stands for the total Jones matrix of the multilayer waveplate and

Jperfect is the Jones matrix of an ideal waveplate with a predefined retardance. Each Jk
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depends on a set of parameters 8k and δk with k = 1, ... , n, which are the azimuth and retar-

dance of each layer, respectively. The design criterium of an n-layer achromatic waveplate

is to minimize the following merit function

(3.18)

(3.19)

The matrix ΔJ = Jawp — Jperfect represents the Jones matrices difference between an n-layer

waveplate and an ideal waveplate, which has four elements. Note that the linear relation

between δ and λ —1 is only valid for natural crystals such as quartz and calcite. Other

birefringent materials, for example the aforementioned liquid crystals, have nonlinear δ —

λ —1 relations. One way to arrange the summation in Equation 3.18 is to sample a large

number (> 100) of equally spaced points between 1000 to 1800 nm. This arrangement

implies that every sampled wavelength is equally important. If there are any spectral lines

of particular interest, then the merit function can be evaluated only at these locations such

that the final design will be particularly optimized in the vicinity of these spectral lines.

The merit function defined in Equation 3.18 has n x 2 free parameters and is highly

non-linear. A cursory investigation of this function shows that it possesses a large number

of quenches, i.e., local minima. Many of the standard minimization methods for global

optimization problems will fail to locate and rank these local minima. In this study, the

nonlinear optimization problem of minimizing Equation 3.18 is solved by using the simu-

lated annealing (SA) algorithm invented by Kirkpatrick et al. (1983). Title (1975) showed

analytically that, using same uniaxial material, at least three layers are required in order to

form a multilayer waveplate. This conclusion was reconfirmed by observing that a two-

layer waveplate system will not reach a sufficiently low energy state, even if the effective

temperature has been reduced to zero. For a multilayer waveplate with more than two

layers, the energy reduces asymptotically as the temperature decreases.
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3.3.3 Markov Chain

The driving process behind the simulated annealing algorithm is the Markov process, or

Markov chain in the discrete case. A Markov chain can be uniquely described by it transi-

tion matrix Ρ. Transition matrices are so-called stochastic matrices (Otten & van Ginneken

1989).

Definition 1: Given a square matrix Anxn whose matrix elements are aij where,i, j =

1, 2, • • • , n, Αnxn is a stochastic matrix iff each row of the matrix sum up to 1, i.e.,

Σ = Ι
j=1

And each column summation does not vanish:

Σ αίj 0i=1

(3.20)

(3.21)

The matrix is called "reflexive" if a 1 0, and the corresponding Mark chain is called a

"reflexive chain". •

Definition 2: The spectrum of a matrix, σ (A), is the set of all its eigenvalues,

represented by: {λ λi Ε σ (A) , i = 1, • • • , m}. ■

Stochastic matrix always has an eigenvalue equal to 1, i.e., 1 Ε σ (A). Moreover,

λ Ι < 1. Stochastic matrix is always similar to a triangle matrix (upper or lower). The block

corresponding to λ = 1 in the pseudo-diagonal form of a stochastic matrix is diagonal.

Given a transition matrix P of a homogeneous reflexive Markov chain, P° ≡limk Pk =

jdT , where j is an all 1 column vector, and d is the left eigenvector of the transition matrix

corresponding to λ = 1. A Markov chain is reversible iff it satisfies the "detailed balance":

w (μ, t) P (μ, v, t) = w (v, t) P (v, μ, t) 	 (3.22)

where, P (μ, v, t) is the transition probability from state μ to state v at a the present time t.
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Reversible Markov chain always has an ergodic set, i.e., as long as it evolves into the set,

the chain will be trapped within the set while evolving.

A Markov chain which is both reflexive and reversible converges to a certain state

within an ergodic set, and this state is described by the eigenvector (corresponding to the

eigenvalue λ = 1) of the transition matrix P.

These statements and definitions explain the underlying processes from the view-

point of mathematics. However, they do not offer a direct way to solve the problem, i.e.,

how to construct the chain. In reality, the states such as μ or v are so enormous that it is

impossible to list all states, thus to build the transition matrix P and manipulate it is not

possible.

In practice, a Markov chain is generated by using randomly sampling techniques,

which can sample the state space more efficiently, thus reduce the number of states that

need to be walked through. The technique is called variance reduction. One of the vari-

ance reduction techniques is importance sampling, in which the sampling probability of the

state space is biased (non-uniformly) and later the bias is compensated when the statistical

quantities are calculated.

3.3.4 Simulated Annealing

Simulated annealing is a nonhomogeneous random process composed of piecewise homo-

geneous Markov chains. The two adjacent chains have the following connections: (a) the

uniformly decreasing controlling parameter — "temperature"; (b) the ending state of the

leading chain is the starting state of the following chain. It has to be remembered that the

initial state of a Markov chain does not have too much impact on the chain itself. So the

connection (b) is weak.

Since the transition probability between two adjacent states of the chain is deter-

mined by the "temperature" , every single Markov chain is homogeneous, i.e., the transition

matrix is not varying. The reduce of the "temperature" not only introduces a disturbance
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to the current Markov chain, also, a new Markov chain starts after the reduction. Question

is: how to design the reduction process so that the overall simulated annealing algorithm

still converges to the global minimum? What is the constrain that need to be put on the

sampling procedure and temperature reduction?

Geman & Geman (1984) proved that the scheduling has to satisfy certain condition

to guarantee the global minimum to be reached. However, many practitioners do not follow

the constraints provided by Geman & Geman (1984), which is stringent in the reducing

rate of the temperature. In Table 3.3.4, a set of commonly used schemes of algorithm are

listed. The key difference among these algorithms are the controlling of the temperature-

reduction, and sampling probability. The so-called quenching algorithms are usually faster,

but not guarantee to achieve the global optimized state. Practically, this can be overcome

by running the program multiply times to ensure the global optimization is obtained.

3.3.5 Digression

A digression is taken here to briefly go deeper into the mechanism of the simulated anneal-

ing.

Although the Section 3.3.3 depicts the mathematical principles of the random pro-

cesses involved in the simulated annealing, the discussion there did not offer any direct

Table 3.1 Examples of Simulated Annealing Algorithm
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applicable solutions to the design of the annealing process. More advanced math tools are

needed in order to be able design or guide the annealing process. One question frequently

asked in the SA algorithm is when the equilibrium has been reached with each Markov

chain? Classically this is done by measuring certain typical quantities of the system, (such

as the internal energy, or the average) at adjacent time intervals and compare. This primi-

tive routine can be avoided if the converging rate of the Markov chain can be determined in

advance, so that a threshold can be set to determine the number of the steps needed to reach

this threshold. The determination of converging rates of a random process is one of the ma-

jor subjects of the Large Deviation Principle (LDP). The LDP was applied to the random

walk by Mogulskii (1974) and to the Brownian motion by Schilder (1966). However this

subject needs extensive efforts to explore.

3.3.6 Different Thicknesses, Different Azimuths

The most general case of the multilayer achromatic waveplate is that the thickness and

azimuth of every layer are controllable variables. The optimization results are show in

Table 3.2. Note that in the three-layer λ /4 waveplate configuration in Table 3.2, the first

and third layers have very similar parameters. Similarly, all layers of the three-layer 2/2

waveplate have roughly the same retardance. These results agree with the results based

on an analytical method in Title (1975). However there exists quantitative differences be-

tween the computed configurations and analytical counterparts. This is due to the different

definitions of the optimization problem. As defined by Equation 3.18, the error of the

computed configurations are "globally" optimized from 1000 to 1800 nm. The analytical

configurations were optimized locally. In the following section, the optical properties of

the configurations listed in Table 3.2 are discussed based on several computational setups.



Table 3.2 Configurations of the n-Layer Achromatic Waveplates
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Note. — All retardance δ; shall be measured at λo = 1523.1 nm. For a single waveplate, δ « 2, - 1 is assumed, which is
true for natural crystals such as quartz and calcite. Note that throughout the paper, only the properties of λ/4 waveplate
are discussed in details. λ/2 waveplate can be analyzed in a similar way.
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3.4 Properties of Multilayer Achromatic Waveplates

Numerical methods can be helpful before lab experiments can be done. Several important

concerns about the waveplates are: the achromatism; the sensitivity to the light beam speed;

the stability of the equivalent fast axis.

3.4.1 Normal Incidence

Assume the incoming monochromatic light incidents perpendicularly. In the first experi-

ment, waveplates are set up between two linear polarizers, see the experimental arrange-

ment in Figure 3.3 (a six-layer achromatic λ /4-waveplate is shown in the figure.). The

active angle of the first polarizer is set to 45° with respect to the optical axes of the wave-

plates. The second polarizer is rotating along its azimuth axis. If the waveplates are as-

sumed to be perfect λ /4 waveplates, the output intensity shall be identical as the second

polarizer is rotating. However, the computational results shows that the ratio between the

maximum intensity and the minimum intensities, i.e., the ellipticity of the ellipse, is not

necessarily unity — the output light after passing through multilayer λ /4 waveplate is el-

liptically polarized (see Figure 3.4 which is plotted for polarized light passing through a

single crystal, three-layer, six-layer, and ten-layer λ /4 waveplates). Within these designs

of /4-waveplate, the ten-layer achromatic λ /4 waveplate has closest ellipticity to unity

across the entire wavelength region from 1000 to 1800 nm. The curve has three valleys

where the ellipticity is unity, i.e., perfect λ /4 waveplate. At these locations, the multilayer

waveplate resembles a perfect λ /4 waveplate. On the other hand, the larger diversion from

unity of the ellipticity of the testing light beam shown for the three-layer waveplate is ex-

pected from previous studies (Ma et al. 2004; Beckers 1971; Beckers et al. 1975), since

the effective optical axis of a three-layer achromatic waveplate rotates to different angles at

different wavelengths. The performance of the three-layer achromatic waveplate at the two

wavelength He 11083 nm and Fe 11565 nm is better than any globally optimized solutions

for six- and ten-layer cases.
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Figure 3.3 Measurement of retardance.

Given the ellipticity of the testing light obtained in the above mentioned method,

the retardance can be derived by using the method shown in Figure 3.3. The correspond-

ing results are plotted in Figure 3.5, in which the retardance of single-, three-, six-, and

ten-layer quarter waveplates are plotted. Across the wavelength range from 1000 nm to

1800 nm, the maximum error of a ten-layer achromatic λ /4 waveplate is approximately

0.3% wave, or equivalently, 10.  As will be discussed in later sections, the retardance error

in this magnitude is negligible in the application of a birefringent filer or a phase shifter.
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Figure 3.4 Ellipticity vs. wavelength.

3.4.2 Polarization Transformation in n-layer Waveplates

The second experiment is concerned with the polarization transformation properties of n-

layer achromatic waveplates. Let the incoming light be linearly polarized. It can be shown

that the Stokes vector of linear polarized light along a direction α with respect to the x-axis

is

S = [ 1, cost α — sin2 α, 2 sin α cos α, 0] T 	(3.23)

Let Si„ be the Stokes vector of the incoming light. Then, the output is Sout = Mawp • Sin,

where Mawp is the Mueller matrix of an n-layer achromatic waveplate. In Figure 3.6 (see

Table 3.2 for parameters of each layer). The two vertical straight lines indicate the locations

of wavelengthes 1083 nm and 1565 nm. The effective optic axis of the overall stack of the

achromatic waveplates are rotated by 108° (an arbitrarily chosen angle) to the x-axis. The

incident light is linearly polarized and the angle between its polarization axis and the x-axis

is π/5. The corresponding Stokes vector of the light is [1, cost 5 — sin 2 5, 2 cos 5 sin 5 , 0].

This computational simulation shows that, after passing through a λ /4 waveplate, polariza-

tion energy is re-distributed among Q, U, V-components and will cause varying polarization
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Figure 3.5 Retardance vs. wavelength (computational), derived from Figure 3.4.

errors, for instance, in the measurement of the vector magnetic field of the Sun (Kuhn et al.

1994). In measuring solar magnetic fields, the Q- and U-components are directly related to

the transversal magnetic field. The V-component is related to the longitudinal field. There-

fore, the crosstalk of V-component due to the polarization error of waveplates can appear as

spurious magnetic signal in Q-component. This was observed before — in the calibration

of DVMG system at BBSO, the Stokes-V signals can be identified in the Stokes-Q im-

age, when the optical axis and retardance of the ferroelectric crystal (FLC) is not accurate

(Spirock 2005).

In Figure 3.6, the crosstalk due to n-layer waveplate is roughly limited to 2% across

the specified wavelength range. Note that only the linearly polarized light has been consid-

ered in this numerical experiment. In order to fully understand the polarimetric characteris-

tics of n-layer waveplates, the elements of Muller matrices need to be investigated for dis-

tinctive wavelengths and for different azimuth. Only the elements M (í, j) with i, j = 2, 3, 4

are considered, which define the crosstalk between linear polarizations and circular polar-



Figure 3.6 Simulated polarization crosstalk of n-layer λ /4 waveplates.

be the difference between the Mueller matrix of a ten-layer quarter waveplate (Μ 1 0) and an

ideal quarter waveplate (Mid eal). In Figure 3.7, the errors of the Mueller matrices elements

of a ten-layer achromatic λ /4 waveplate with respect to an ideal λ /4 waveplate at a single

wavelength i10 = 1083 nm. Both waveplates are rotating from 0°360°. Scale of all y-axes

is 10-3 . And the x-axis is the azimuth of the waveplates. The first row and first column of

the matrix are omitted, which are all zeros in the current numerical evaluation.

Two features can be read from this figure: (1) the magnitudes of all the elements of

ΛΜ are oscillating with respect to the azimuth of the rotating waveplate, except ΔΜ(4, 4);

and (2) the period of the oscillations are different for some of the elements. The plot shows

how far the performance of a ten-layer achromatic quarter waveplate is different from an

53
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Figure 3.7 The errors of Mueller matrices elements.

3.4.3 Orientation of the Optical Axes of n-Layer Waveplates

The optical axes of Pancharatnam-type achromatic waveplates (Pancharatnam 1947) rotate

to distinctive angles at different wavelengths (Beckers et al. 1975). This issue is minimized

in six- and ten-layer achromatic waveplates. In the criteria of the optimization problem

defined by Equation 3.18, ΔJ is the difference between n-layer waveplate and an ideal

waveplate. Therefore, the minimization of ΔΕ corresponds to finding an n-layer waveplate,

whose Jones matrix is closest to the Jones matrix of an ideal waveplate. The optical axes

of the n-layer waveplate shall overlap with the optical axes of an ideal waveplate across the
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whole wavelength range defined in the optimization problem, which is zero. In Figure 3.4

and Figure 3.7, it is also shown indirectly that the azimuth of optical axes of six- and ten-

layer achromatic waveplates do not change severely within the specified wavelength range.

Direct evaluation of the azimuth of optical axis involves the decomposition of complex

Jones matrices and other complicated algebra operation. An easier way to evaluate the

optical axis is doing lab experiments on these multilayer waveplates.

3.4.4 Off-Axis Effects

Let α be the incident angle, which describes the off-axis effect. For thin crystal slab, the

refraction effects on the interfaces are neglected. Also the convention is adopted that the

principle axis overlapping with its crystallographic axis is defined as the optical axis of the

uniaxial crystal. The effective retardance of an uniaxial slab under off-axis incident light

can be written as (Evans 1949)

(3.25)

where δ0 is the retardance of the birefringent crystal for normal incidence (α = 0) and β is

the angle between the projection of the incident ray on the interface and the principle axis

of the crystal with smaller refractive index. In literatures, this axis is sometimes referred

to as the "fast axis", since the phase velocity along this axis is greater than the other. The

fast axis is not necessarily the optical axis of the uniaxial crystal. For calcite (no > ne), the

fast axis and optical axis are perpendicular and β in the Equation 3.25 has to be replaced

by β + π/2. Consider using quartz as the material of making the n-layer waveplates. The

refractive indices of crystal quartz at different wavelength can be found in Ghosh (1999).

Given α = 1° and let azimuth β vary from 0 to 360°, the maximum of the possible change

on the retardance listed in Table 3.2 is approximately 1' 30" according to Equation 3.25.
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3.4.5 Application - Phase Shifter

Phase shifting unit is an instrument that produces a continuous fractional phase difference

between two perpendicularly polarized light. Evans (1949) discussed several approaches

theoretically to realize a phase shifter. One of these approaches consists of a combination

of one .λ /2 waveplate sandwiched by two λ /4 waveplates, which is particularly interest-

ing due to its flexibility. This approach is discussed by substituting the normal birefringent

crystals with six-layer achromatic waveplates arranged in a fashion of (λ /4 <— /2 H λ /4)

with properly aligned optical axes. The optical axes of both the first waveplate unit (λ /4)

and the third waveplate unit (λ /4) are set to 45 0 with respect to the polarization direction

of the incident light, without loss of generality, it is chosen to be the x-axis. The second

waveplate (λ /2) is sitting on a rotary stage driven by a motor and its azimuthal angle 8 is

measured with respect to the x-axis. In Figure 3.8, elements of the Jones matrices of phase

shifters are examined. The retardance of a phase shifter is derived from the two diagonal

elements of the Jones matrix, see Figure 3.8a. In Figure 3.8b, the amplitude of one anti-

diagonal element (complex number) is plotted. The solid curve represents the phase shifter

made of six-layer achromatic waveplates, which are almost zero. As a comparison, the

Jones matrix anti-diagonal elements of a phase shifter made of three single-crystal wave-

plates (dashed curves) are overplotted on the same figure. The corresponding Jones matrix

has comparatively large anti-diagonal elements. Large anti-diagonal elements of the Jones

matrix usually implies that the optical axis of the retarder is rotated by an undetermined

angle. Figure 3.8a also shows that the retardance of the phase shifter made of achro-

matic waveplates is linearly related to the azimuth of the middle waveplate (λ/2). This

relation has been theoretically derived by Evans (1949, see Equation VI.10). The dashed

curve shows the case of a phase shifter consisting of single-layer waveplates designed at

1523.1 nm, which is not linear at all. Although, it can be shown that a linear relation ex-

ists, if the wavelength of the incident light is exactly 1523.1 nm. In some applications, the

phase shifting rate is also of concern. The Newport RGV l00 Series Motorized Rotation
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Stage has rotation speed of 720 °/s . This rotation speed results in a phase shifting rate of

8 waves/s, i.e., 125 ms/wave. Phase shifters can also be made from liquid crystal, i.e., Liq-

uid Crystal Variable Retarders (LCVR). Meadowlark LCVR response time to a half wave

voltage is 10 ms according to the commercial documentations. The drawbacks of LCVRs

is that the surface LC molecules switch faster than the molecules in the center of the LC

cell depending on the thickness of a specific LC cell (usually a thin LC cell is sandwiched

by two pieces of glass), and the phase change is not linearly controllable. The advantage

of using an achromatic waveplate-based phase shifter other than a LCVR is that the former

is a linear phase shifter, and more stable to hazardous environment, e.g., UV radiation (Ye

2004).

3.5 Laboratory Experiments

3.5.1 Measurement of Birefringence

The scheme shown in Figure 3.3 is one of the method can be used in measuring the retar-

dance of waveplate, assuming the optical axis of the waveplate is known before hand. Since

the light after passing through the polarizer and a λ /4 is elliptically polarizer due to the

imperfectness of the waveplate, the output intensity varies with the azimuth of the analyzer

periodically. The maximum and minimum of the intensity can therefore be selected, which

are proportional to a2 and b2 respectively in Figure 3.3. The ratio of a/b is the ellipticity

shown in Figure 3.4. Notice that another commonly used measure of the elliptical shape,

eccentricity ε, is related to the ellipticity by ε _ „/1 — b2 /a2 .

The retardance δ of the waveplate can be derived from the ellipticity and the incline

angle ψ. The following relations between the angles in Figure 3.3 can be easily obtained

(see, for example, Born & Wolf 1999):

sin 2χ = sin 2α sin δ 	 (3.26)

tan 2 ψ = tan 2α cοs δ 	 (3.27)
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Figure 3.8 Evens three-waveplate phase shifter (Evans 1949) using achromatic waveplates
(solid curves). (a) Retardance vs. Θ (azimuth of the half waveplate in the middle) and (b)
the magnitudes of the anti-diagonal elements of the Jones matrices of the two phase shifters.
The dashed curves refers to the corresponding properties of a phase shifter composed of
a set of three waveplates made from single-layer uniaxial crystals, which are designed to
be λ /4 or λ /2 waveplates at 1523.1 nm. The solid curves corresponds to a phase shifter
made of three six-layer achromatic waveplates. The wavelength of the incident light is
λ = 1083.3 nm.

from which, it can be shown

sin 2α = Sqrt(sin2  2χ + tang 2ψ) /(1 + tan 2 2ψ) 	 (3.28)

where, 0 < α < π/2 by definition. In this relation, ψ can be measured in the experiment,

which is the azimuth of the analyzer while the output intensity is maximum. Also,

(3.29)
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which is related directly to the measurable ellipticity. Therefore, α angle can be found,

and so can the retardance δ. Moreover, a nontrivial caution should be taken due to the

following complications:

0 < < π/2 if 0 < δ < π/2 	(3.30)

π/2<ψ<π if π/2< δ < π 	 (3.31)

In the case of using Equation 3.26 to derive δ, it can be shown:

(3.32)

(3.33)

These two relations were implemented in deriving the plots in Figure 3.5.

3.5.2 Waveplates For IRΙΜ

Another example that needs broadband achromatic waveplates is the Near Infrared Imaging

Magnetograph ('RIM) at Big Bear Solar Observatory (Denker et al. 2003a,b). The  'RiM

system utilizes a Fabry-Pērοt interferometer, two birefringent filters, and a set of wide band

interference filters. The two birefringent filters are designed for He 1 1083 nm and Fe Ι

1565 nm respectively due to the chromatism of optical components, e.g., waveplates, po-

larizers and coating. Optical components of the 1083 nm birefringent filter were designed

to be removable, and therefore normal waveplates can be easily substituted by achromatic

waveplates. The achromatic design of 'RIM is challenging due to the two lines are far away

apart. In order to solve this problem for 'RIM, the merit function is redefined as

(3.34)
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where, Δλ1 = 1083+2 nm and Δλ2 = 1560+2 nm define two achromatic regions, k =

3,6, 10 or any other desirable number of layers. J = Jk is the Jones matrix of the k-layer

waveplate. As shown in previous sections, the three-layer achromatic waveplates usually

possess two local minima. This characteristics can be tested here. Moreover, using the

same crystal material, three is the minimum number of layers that is required to form a

waveplate, and it will be a timesaving task to polish only three slices of crystal material.

The simulated annealing program is ran for this newly defined merit function, and the

following solution (in radians) are found:

A numerical simulation is carried out for the third stage of the Lyot filter used in

IRIM with the same design parameters of the filter calculated by Wang et al. (2001). In this

simulation, the normal single-layer waveplates (half and quarter) are substituted by both

three-layer waveplates designed above and six-layer waveplates in Table 3.2. The transmis-

sion profiles were calculated specifically in the vicinities of 1083 nm and 1565 nm. And

the rotating half-waveplate is adopted as the bandpass tuning mechanism. Two snapshots

are taken when the azimuth of the rotating waveplate are 0 and 4 π. The corresponding

transmission profiles of a single stage Lyot filter are presented in Figure 3.9.

There are two improvements to the bandpass profile of a birefringent filter by using

n-layer achromatic waveplate — the bandpass symmetry and the off-band scattered light

level (Figure 3.9). To summarize,

(a) When single-crystal waveplates are used, the bandpass profile are symmetric only at
the wavelength where the waveplates are designed, in this case, 1083 nm. Far away
from this wavelength, the bandpass profile turns to be asymmetric, but still possesses
certain periodicity. In the right panel of the second row in Figure 3.9, the bandpass
is shown with one period.
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(b) The symmetry has been improved on the third row which is the case of using three-
layer achromatic waveplates. However, it is obvious the scattered light level at both
wavelength ranges are higher even than single-crystal case. The periodicity of the
symmetry of the bandpass are investigated, and it was found that the symmetry is
broken again between 1083 and 1565 nm, although compared with the single-crystal
case, the symmetry is only twisted slightly.
It is still not clear to us why the three-layer waveplates perform so badly in Lyot filter
on the off-band light level. The Jones matrix errors of three-layer waveplates were
minimized at 1083 nm and 1564 nm by simulated annealing procedure. It is expected
to see the bandpass shape in the vicinities of these two wavelengthes should be close
to ideal achromatic waveplates. On the contrary, it can be seen that the scattered light
level is still very high. One known source of error is the wavelength-dependency of
the fast-axis of three-layer waveplates (Beckers et al. 1975).

(c) In the case of using six-layer achromatic waveplates, both the symmetry and the scat-
tering light have been improved. The bandpass profiles are close to the case of using
ideal achromatic waveplates.

From this simulation, the following conclusions can be drawn regarding the appli-

cation of n-layer achromatic waveplates in Lyot filter. The three-layer waveplates can not

be used in Lyot filter due to very high off-band scattered light level. The off-band light is

out of the control of the filter design and therefore, will impair the performance of Lyot fil-

ter and the 'RiM system in an unpredictable way. Six-layer achromatic waveplates can be

a perfect choice for the application in Lyot filter. Exercises using lower number layers than

six are not tried except for three, but the simulated annealing procedure is general enough

to handle any number of layers for the design of n-layer achromatic waveplates.

After the substitution of the waveplates in Lyot filter with six-layer achromatic

waveplates and the elimination of the chromatism on the other optical components, the

working range of the 1083 nm-Lyot filter at BBSO can be expanded to the whole wave-

length range from 1000 nm to 1800 nm. Using the solutions of multilayer waveplates

provided in the current paper, the filter design can be greatly simplified.
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3.5.3 Experiment Results Discussion

A set of multi-layer waveplates were manufactured by Nanjing Institute of Astronomical

Instrumentation (China), according to the parameters shown in Table 3.3. This set of values

for achromatic waveplates belong to earlier version of the design, and the details of the

design such as the reference wavelength, is missing. However, these are the experimental

data available for the current writing of the thesis.

Two calibrated near infrared linear polarizers are used in two combinations: crossed

and parallel. The sample of waveplates are inserted in between with an angle 45° to the

active axis of the first polarizer. Note that a half waveplate can rotate linear polarized

light by 90° if the relative angle between the light and the optic axis of the waveplate is

45°. Given the waveplate inserted is a perfect half waveplate, the output intensity should

be maximum if the polarizers are crossed, and be minimum if the polarizers are parallel.

The three-layer quarter waveplate was not tested as a quarter waveplate. Instead, two such

quarter waveplates were combined together and tested as a half waveplate. Therefore, this

test can only prove the three-layer waveplate is an half waveplate or quarter waveplate, but

did not measure the retardance.

The testing results of a set of three-layer waveplates are plotted in Figure 3.10,

3.11, 3.12, and 3.13. It can be seen from Figure 3.12 and Figure 3.13 that the wavelength

dependence of the waveplate reduced dramatically, if not perfectly. This test proves that

the three-layer waveplates do approach the achromatic waveplate. Increasing the number

of layers is a promising direction to solve the achromatism of waveplates.

3.6 Conclusions

In this study, a numerical procedure is developed based on a Monte Carlo simulate an-

nealing algorithm to design crystalline multilayer achromatic waveplates. The procedure

was applied to three examples of multilayer waveplate, three-, six- and ten-layer wave-

plates, and obtained the parameters given by Table 3.2. Either six- or ten-layer structures
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can produce high quality λ /4 and λ /2 achromatic waveplates in wide wavelength regions.

Specifically, the optical-axis issue in three-layer waveplate is minimized in six- and ten-

layer waveplates (see Figure 3.4). The performance of such n-layer achromatic waveplates

was numerically evaluated by considering the residual errors in Jones/Mueller matrix el-

ements and polarization errors in Stokes vectors. The impact of off-axis light is briefly

considered. Using the six- or ten-layer achromatic waveplates, an achromatic phase shifter

can be constructed based on a simple structure proposed by Evans (1949). This phase

shifter continuously produces fractal phase change from 0 to 2π within the spectral range

considered. Therefore, a reliable tuning solution can be found for many instruments, par-

ticularly, in our case, for the tunable birefringent filters.

It might turn out that thin material with stress birefringence (photo-elastic effect

(Born & Wolf 1999)) is one of the possible choices other than quartz or calcite. Wafers of

stress birefringent materials can be traditional polymers, such as poly-methyl-methacrylate

(PMMA), polyvinyl chloride (PVC) or polycarbonate (PC) (Delplancke et al. 1995). These

polymer materials have different transmission curves in different spectral ranges. There-

fore, the transmission of such materials might not be as high as uniaxial crystals. Moreover,

care should be taken when using these noncrystalline materials. The reason is that the pa-

rameters shown in Table 3.2 are designed based on the assumption that the "retardance

vs. wavelength" relation is Equation 3.19. This relation need to be re-evaluated for non-

crystalline materials. In these cases, the exact δ — λ function has to be known. However,

the SA algorithm is sufficiently flexible to allow the implementation of different δ — λ

functions.
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Figure 3.9 Tuning of a single stage of a Lyot filter - single stage. Solid curves: azimuth of
the rotating λ /2 waveplate is set at 0; dotted curves: azimuth of the rotating λ /2 waveplate
is set to i π. First row: a cartoon of a single stage; second row: transmission of the Lyot
stage using single crystal waveplates; third row: using three-layer achromatic waveplates;
forth row: using six-layer achromatic waveplates.
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Achromatic Three-Layer Waveplates

Half AWP Azimuth Thickness (mm)

1 (thick) 60° 	 9'59" 0.5755 (0.595)
1 (thin) 150° 	 9'59" 0.5000 (0.519)
2 (thick) 118°20'53" 0.5755 (0.595)
2 (thin) 28°20'53" 0.5000 (0.519)
3 (thick) 60° 	 9'59" 0.5755 (0.595)
3 (thin) 150° 	 9'59" 0.5000 (0.519)

Quarter AWP
1 (thick) 62°55' 	 4" 0.5617 (0.561)
1 (thin) 152°55' 	 4" 0.5000 (0.499)
2 (thick) 135°25'22" 0.5924 (0.610)
2 (thin) 45°25'22" 0.5000 (0.519)
3 (thick) 62°55' 	 4" 0.5617 (0.561)
3 (thin) 152°55' 	 4" 0.5000 (0.499)

Table 3.3
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Figure 3.10 Properties of the near infrared linear polarizers: crossed and parallel. Also,
the profile of the light source is involved in these profiles.
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Figure 3.11 Testing results for a normal single-layer half waveplate using the polarizers
and light source mentioned in Figure 3.10.



Figure 3.12 Testing of a three-layer half waveplate in Table 3.3.
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Figure 3.13 Testing of the two adhered three-layer quarter waveplates in Table 3.3.
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CHAPTER 4

A LARGE SUNSPOT AT 1.56 μm CONTINUUM

4.1 Motivations

Infrared observations of sunspots have the following advantages: 1) Zeeman splitting pro-

vides three times the sensitivity at 1.56 μm as at 0.5 μm; 2) Stray light is less of a problem

in the infrared for the reasons that instrumental stray light is usually low, and the effects

of stray light within sunspots are small due to the intrinsic intensity contrast is lower; 3)

Opacity of the solar atmosphere reaches minimum at 1.6 μm, therefore observations at

near infrared discover the sunspot structure on the lowest visible layer (Bruls et al. 1991);

4) It is possible to measure a nearly true continuum intensity and make a straightforward

estimate of temperature (Maltby et al. 1986). More specifically, there is a close correlation

between the continuum brightness at 1.56 μm and the kinetic temperature at the height of

line formation (Vernazza et al. 1976). Therefore, the temperature can be derived from the

continuum brightness using black body radiation — Planck's function.

4.2 Observation

The set of data used in the current chapter was taken at 76 cm Dunn Solar Telescope of

National Solar Observatory (DST/NSO) with the high-order adaptive optics system. It

enabled us to acquire diffraction-limit data sets (0."14 at G-band 430 nm). The time range

presented here is from 10:04:59 UT to 10:31:58 UT on December 2nd 2004. A tunable

near infrared birefringent filter (Wang et al. 2001, 2004) was set up in front of a Rockwell

camera with 1024x 1024 CMOS chip. The passband was shifted to 1.56 sum continuum to

avoid any solar lines. The lab test at Cambridge Research & Instrumentation Inc. (CRi)

showed the band width of the Lyot filter in the vicinity of 1.56 μm is 0.22 nm with a peak

transmission close to 35%. This Lyot filter along with a near infrared pre-filter allow the

70
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exposure time to be set as around 1/10 sec in near infrared. An image selection algorithm

was applied to save one best frame out the ten. The image scale of the data set is 0".12 per

pixel.

Figure 4.1 Region of interests shown on the full FOV of the observation.

Total 996 frames were recorded for the active region NOAA 10707 locate at S17°W24°,

see Figure 4.1. This region is composed of one large sunspot (about 32"in diameter) , one

small sunspot, and several pores. The large sunspot is the target of study in this chapter.

Figure 4.2 shows the RMS contrast of the observation with high-order adaptive

optics at NSO (Rimmele et al. 2003). RMS contrast is defined as:

(4.1)

where ( is the standard deviation of the image intensity; μ is the mean intensity of the
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Figure 4.2 RMS contrast of the observation.

image. Standard deviation evaluates the fluctuation of intensity, which can be biased by

global illuminating. Divided by the mean intensity, such global illuminating can be sup-

pressed, which make it a more objective parameter to evaluate the quality of the image. As

regards to the techniques processing the global illuminating, subsonic filter is used in the

later analysis.

The darker curve shows the RMS contrast evaluated at the center granulation region;

lighter curve shows the granulation at the edge of FOV. Since the high-order adaptive optics

system correct the wavefront distortion according to a reference feature in FOV (in this

case, the large sunspot), it is expected that the neighboring region of the sunspot is corrected

more accurately than the regions further away from the sunspot.

4.3 Data Reduction and Processing

After a routine correction for dark current and flat fielding, the sequence of images were

filtered using subsonic filter (Title et al. 1989) (ν h = 4 km/s) to remove 5-minute oscilla-

tion. Only 200 frames are kept after the filtering. Subsonic filtering defines a cone (u,v,t)

in spatial-temporal frequency space instead of in (u,v) only.
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UDs are identified by a region growing algorithm, see Figure 4.3. The first image is

enhanced by an edge sharpening routine for better demonstration; the second image is the

ROI masked out from original image; local maxima are detected and highlighted in the third

image; finally, UDs detected by a region-growing routine are shown in the last image. Only

those regions enclosing more than four pixels are considered as a real UD. Accordingly this

sets the sensitivity of the detection algorithm. Therefore, not every highlighted point in the

third image has a counterpart in the last image. The following steps are applied to find

UDs: (1)Identify the center of UD. Identified the brightest points of UDs' (every local peak

among a 3 by 3 square is recognized as the center of a UD); (2) Grow a UD region. Starting

from this brightest point, the second-derivative is calculated for each pixel recursively; (3)

Determine the boundary of a UD. There are total 4 components in this derivative: NS, EW,

NW, SE. As long as at least one of these 4 components is greater than zero, the pixel is

recognized as the boundary of current UD.

This algorithm is always "loose" in the sense that only one positive derivative com-

ponent is required. Rigorously, derivative component along radial direction centering at

the brightest point should be positive for boundary pixel. However, due to the noise in the

image, algorithm based on radial derivative can be unreliable. The chance of running into

a premature fake boundary pixel is same for both algorithms.

Although the adaptive optics improved the quality of images, the UDs observation

require even higher image quality. For this reason, only those frames with rms contrast

Figure 4.3 ROI (271px, 32"square) and image processing. The image shown in the figure
is taken at UT 10:21:37 (frame# 607/996).
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(neighboring granulation regions) greater than 2% are selected for the purpose of size and

intensity measurements.

4.4 Sunspot Decaying of NOAA 10707

An intensity threshold of 0.81ρh for umbral region (Figure 4.3) is chosen visually to include

almost all the umbral region, and exclude the penumbra meanwhile. The planar area of

the umbral region is 1.67x 10 6 Mme 1.96x 106 Mme during the observation period. The

umbral region shrunk about 6% in the end of the observation nonlinearly. Due to the limited

time span of the observation, later phase of the active region was not clear.

4.5 Fine Structures Inside of Sunspot

Within the penumbral region, the filamentary structures appear to experience a splitting —

an elongated penumbral grains not only move towards umbra, also outer part of the penum-

bral is moving outward. A direction reverse of the proper motion happens accordingly, see

Figure 4.4 and Figure 4.5. The penumbral grains moving inward also have a Gaussian-

like brightness distribution. However, this does not apply to outward-moving penumbral

grains, many of which move similarly as smoke in the air blown away from umbral region

— streaming with twisting.

The strong light bridge intruding from Ν-Ε sends plasma stream into the umbral

region with a speed as fast as 1 km/s (fastest speed appears near the boundary of light

bridge and umbra.). The intensities of all observed penumbral grains reduce after they

move into umbra, some of them disappear at the boundary of penumbra and umbra.

Inside the umbra, two filamentary links of bright dots can be confidently identified.

During our 27-minute observation, these two links experience only minor changes with

regard to the size of bright dots composing the links and the relative positions between

dots. The region between the two links are the darkest area which has lowest intensity of



75

Figure 4.4 (Color) Proper motion of the FOV of the observation. Left: the flow direction;
Right: the magnitude of velocity. Note that only the large sunspot at the center is of special
interests with this presentation.

06Iph (umbral nucleus). The umbral region in the Ε-Ν is almost isolated by intruding

light bridge, and the brightness of UDs in this region are weak (0.7Ιρh ). Most penumbral

grains dies away quickly after they enter this umbral region, which is an indication that the

convection is inhibited by strong magnetic fields.

4.6 UC Intensity Observation

In Figure 4.6, the minimum intensity of UC is plotted against the observing time. The thick

solid curve is the smoothed data, and the thin curve is for the original subsonic filtered

data. According to the measurements in the Figure 2 in Kopp & Rabin (1992), the field

strength corresponding to such 1.56 μm continuum intensity is around 2650 G. In that

paper, the author also found that there exists a linear relation between the magnetic field

and 1.56 μm continuum intensity, if the intensity is lower than 0.6Iph• If this is verified,

then the fluctuation of the field strength can also be seen from Figure 4.6.

The brightness temperature can also be derived from the continuum observation.

Because the opacity reaches the minimum near 1.6 μm, the brightness temperature is the

maximum, i.e., the deepest layer of the visible sphere of the sun. Due to Wilson effect

(geometrical depression), the observation in a sunspot reaches even lower layer. According
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Figure 4.5 Proper motions along several directions. The flow calculated in these two
figures are calculated by a simple LCT routine in IDL.

to the Planck's law of blackbody, the temperature and observed energy flux density (i.e.,

light intensity) is

4.7 Horizontal Velocity Map

Α continuous time sequence of images can be used to derive the so-called proper motion,

which represents the movements of features in the field of view. Erratic motion could be

produced from the proper motion calculations. For example, the small and fine motions

within an entity could be shadowed by the overall motion of that entity. It can be observed

that the Evershed outflows embedded in the penumbral filamentary structures are moving

with penumbral filaments. Therefore, the proper motion of the pixels within penumbral

filaments do not reflect Evershed flows correctly. However, the proper motion calculation

does show some insights of the flow pattern in a larger scale.
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Figure 4.6 Minimum intensity plots of the umbral core. Data was processed with subsonic
filter with Vph = 4 km/s.

4.7.1 Calculation of Proper Motion

Proper motion is derived from the cross-correlation of pixel intensities of a sequence of im-

ages. It is also called "the optical flow" in many other literatures. Α commonly used method

in observational astronomy to calculate the proper motion was proposed by November &

Simon (1988): "proper motion is defined as the displacement that maximizes the spatially

localized cross correlation between two Images of a scene separated by a sampling time

delay τ that is smaller than the lifetime of tracers in the scene." In an equation form:

(4.3)

where, the window function W (x) defines the spatial resolution of the proper motion cal-

culation; J(x) is the intensity map. This method is used to derive the velocity map in

Figure 4.5 by applying OSLO package in SSW/IDL library.
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4.7.2 Velocity Maps

In Figure 4.5, an 300-second averaged flow map is calculated from a set of subsonic-filtered

(νρ=4 km/s Title et al. (1989)) images. In the overall picture, clear evidence of outflow pat-

tern in penumbral region can be seen, along with an intermediate "region" where the flow

pattern turns inward. The width of this transition region is not uniform even on average, see

Figure 4.5. There is a 370 km wide transition region along certain direction — transition

from outflow to inflow. By inspection of the Figure 4.5, it can be seen that the transition of

the in/outflow of proper motions happens along the boundary between penumbral and its

surroundings.

4.7.3 Flow Directions

The majority of the proper motion within the umbra is inflow, with small amplitudes on the

order of only 100200 m/s. This proves the findings by others (Wang & Zirin 1992, for

example,) in other wavelengths — the UC region is a quiet region as regards to the proper

motion. Since the Doppler map was not obtained for the same region, it is not possible

to deduce the vertical motion of the flow. However, considering the continuity equation

(November 1989):

(4.4)

where, v is the 3D velocity of plasma flow. It was shown that the vertical component

νZ = hr (Vh • vh), vh is the planar velocity approximated by the proper motion; hr is a

scale height. So if the assumption that the flow is not shooting further up, but advect on the

visible plane, the vertical flow is related to the divergence of the planar velocity field. Since

the planar motion with UC is small, one shall expect to detect the vertical velocity field is

also small in magnitude. The picture within the UC is, strong magnetic fields suppress the

plasma flow. This is in good agrement with the magneto-convection model of sunspot in

Rimmele (1997).
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The situation within penumbra is complicated by Evershed flows. The apparent

proper motion is in fact a superposition of the Evershed flow and the movements of the

moving tubes (penumbral filaments). The movie shows that the filaments move inward,

while the material of filaments moving outward. The superposition of the two motions

can produce a dip in the velocity curve shown in Figure 4.5, for example, the curve for

48 °locating at around 12000 km.

4.8 Umbral Dots

Umbral dots (UDs) are isolated bright features embedded on the dark umbra background.

The size of the dots were discovered ranging from 0".1 to 1".4. Note that large UD could

be a cluster of unresolved small UDs. Therefore the real size of each individual UD is even

smaller these numbers.

4.8.1 Filling Factor of Umbral Dots

The total area of UDs, identified by the region growing algorithm, as compared to the over-

all umbra region is also an interesting quantity. The ratio shows how the convective motion

interact with strong magnetic field, and helps to prove the validity of popular sunspot mod-

els: cluster model (Parker 1979), monolithic flux tube (Meyer et al. 1974). In Figure 4.7,

the ratio between the total area of UDs and the overall umbra area is plotted against the ob-

servation time. Discarding the uncertainty inherited from the algorithm identifying UDs,

the ratio is oscillatory. The period is about 5 minutes. Is this just a coincidence with the

5-minute oscillation (Leighton et al. 1962; Ulrich 1970), or the dynamics of the UDs is

correlated to the global oscillation? The answer is not available merely from the current

observation.
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Figure 4.7 UD filling factor. This factor is the ratio between the total area of UDs and the
corresponding overall area of umbra.

4.8.2 Number of Umbral Dots

The total number of UDs observed in 27 minutes oscillates, see Figure 4.8. Α firm period

for this oscillation was not observed. Since the seeing condition can introduce fake fractal

structures in the field of view, one can compare the oscillation with the seeing condition

variation shown in Figure 4.2 and did not find correlation between these two quantities.

Α possible source of the ambiguity comes from the intensity oscillation, such as 5-minute

oscillation, because a constant threshold 0•81ρh is introduced artificially for umbral region.

However, the data set was processed with subsonic filter, νp = 4 km/s. The photosphere

oscillation should not play an obvious role in this scenario. On the other hand, the averaged

number of UDs is 82.

4.8.3 Morphology of Umbra! Dots

UDs observed in NOAA10707 can be classified into two categories by considering the

pattern of formations: UD links and congregated groups. The later are confined by the

former formations. There are at least two UD links can be confidently identified tightly
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Figure 4.8 Variation of the number of UDs during the observation period.

connected, one even with a violent curvature. Probably another one is forming by four

UDs with rather larger distances in between (about 0.25").

Observed UDs are all have a brighter center surrounded by a fading boundary which

is either connected to the fading boundaries of other UDs or outline itself from the local

darker background. The observed shape of UDs are under the influences of instrument

and seeing condition. Therefore, the size of a single UD can not be determined accurately.

Α rough estimate of the averaged UD size in our observation is 0".30 (see Figure 4.9),

and almost all of UDs are of elongated (stretched) shapes. There is also an outstanding

penumbral grains (later a UD) with size of about 0".8 to 1".0, moving fast away from

penumbra, and stalling after entering umbra without experiencing much intensity decreas-

ing (0.87 — 0.95Ιρh) like other survived grains do.

The mean intensity of UDs are found to be primarily limited within 0.620.7 1ρh,

and the corresponding diameter is typically below 0.7". Note that the cutoff of diameter at

0.3"ís determined by the available resolution at 1.56 gm.
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Figure 4.9 Umbral dots size histogram of the frame with highest rms-contrast.

4.9 Conclusions

1. In the decaying sunspot with averaged area 1.83 x 10 6 Mme , the averaged UD number
is 82;

2. In such a sunspot, the area occupied by UDs is around 16% of the overall umbra
region. This ratio oscillates with a period close to 5 minutes;

3. There exists a preferred size range and the corresponding mean intensity range for
UDs: < 0.7 "in diameter and 0.620.7 'ph;

4. The majority of UDs are of size of around 0.3"in diameter according to the current
spatial resolution;

5. The radial inflow dominates the penumbra and umbra regions. The typical inflow
velocity in umbra is only 100200 m/s;
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6. The is a transition belt between inflow and outflow, with a width of about 370 km in
certain direction. The belt locates close to the outer boundary of penumbra;

7. The darkest region in umbra has minimum intensity 0.58  1ρh and varies with time.



CHAPTER 5

PHOTOSPHERIC MAGNETIC FIELDS IN CORONAL HOLE

5.1 Introduction

5.1.1 Small Scale Magnetic Fields

The small scale magnetic fields bear important clues of understanding the magnetic field

evolution on the Sun apart from the large scale 11-year solar cycle. They occur predomi-

nantly in quiet sun regions, especially along the borders of supergranular cells, where the

chromospheric network can be visualized in the filter grams of chromospheric lines. Ac-

cording to their locations and morphology, small scale magnetic fields can be classified

in three categories, namely, network fields (Sάnchez Almeida & Lites 2000; Wang et al.

1996), intranetwork (Lites & Socas-Navarro 2004), and ephemeral region (Harvey & Mar-

tin 1973).

In the first Stokes-V measurement using line ration technique by Keller et al. (1994),

an upper limit on the intrinsic strength of intranetwork (IN) fields was set as 1000 G or

500 G, with 68% probability. The "typical" field strength of 500 G was found by Lin

(1995) using infrared spectropolarimetry. Keeer & Stolpe (1996) presented an image in

which small-scale magnetic elements possess substructure and are dynamical, with gas

flows and magnetic field strength varying in space and time. Meunier et al. (1998) obtained

the fraction of magnetic flux in a weak field form, i.e., with magnitude lower than 1000 G

intrinsic strength in quiet sun. However, Socas-Navarro & Lites (2004); Socas-Navarro et

al. (2004a,b) showed evidence of stronger (1700 G) and weak (<500 G) fields coexisting

within the resolution element in both network and IN regions, with a large fraction of area

occupied by weak fields presenting convective upflows.

In the past, BBSO data were used to determine many important properties of small

scale magnetic features in quiet sun regions. Wang et al. (1996) determined the flux distri-
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bution in the regions, and the mean horizontal velocity fields of IN and network fields were

determined by local correlation tracking; the lifetime of IN elements (Zhang et al. 1998a),

the motion patterns and evolution of IN and network magnetic fields (Zhang et al. 1998b)

were also investigated at BBSO.

5.1.2 Coronal Hole

Coronal holes are cool and low-density regions, which can be observed at both low-latitude

and polar regions of the sun (Chiuderi Drago et al. 1999). They were first observed in X-ray

by Underwood & Muney (1967), in EUV line by Reeves & Parkinson (1970), and in white

light by Altschuler & Perry (1972). The magnetic fields within a coronal hole region are

usually dominated by one polarity and the field lines in the upper atmosphere are open to

the interplanetary region (Bohlin 1977), generating high-speed solar winds that can lead to

geomagnetic storms (Krieger et al. 1973). According to the location and lifetime, there are

three categories of coronal holes: polar, nonpoalr, and transient. Polar coronal holes have

long lifetimes (i8 yr). Nonpolar coronal holes are usually associated with remnants of

active regions and may persist for many solar rotations. Transient coronal holes are asso-

ciated with eruptive events, such as filament eruptions and coronal mass ejections (CMEs)

and have lifetimes of several days (Harvey & Recely 2002). Also, low-latitude coronal

holes may show quasi-rigid rotation, and it has been suggested that magnetic reconnection

must occur continuously at the boundary in order to maintain the integrity of the coronal

holes (Kahler & Hudson 2002).

5.2 Comparison of The Fields in a Coronal Hole and a Quiet Region

5.2.1 Data Acquisition

The data used here was obtained in a joint observation of BBSO and the Transition Region

and Coronal Explorer (TRACE) in the period of September 13-14 2004. The observation
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achieved completed data sets on 14th and 16th, therefore, the data in these two days are of

particular interests to the research of photospherical magnetic fields of coronal hole.

Figure 5.1 BBSO magnetograms in a quiet region (top) and a coronal hole (bottom). The
field of view is 200" x 200". The box in the magnetogram of the quiet sun outlines a region
of ephemeral flux (see Figure 5.2).

The data on 14th was a quiet region at Ν9°W13°; 16th data was a coronal hole at

Ν31 °E 14°. The observation details are listed in Table 5.2.1. The observation in two days

yields 60 magnetograms, 4 magnetograms per hour. Each magnetogram is an integration

of 4096 frames spanning in about 15 minutes. Two samples of the magnetogram are shown
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in Figure 5.1.

The evolution of the magnetic elements and corresponding dynamics are identi-

fied visually by investigating the movies at each wavelength. The first step is to find the

ephemeral regions from the magnetogram and Ηα movies visually. Second, the disap-

pearance rate of magnetic flux in the two regions are studied according to the evolution of

network elements. Third, the magnetic flux distribution is measured in the two areas.

5.2.2 Identification of Ephermal Active Regions

Ephemeral regions (ERs) can be identified as pairs of small, closely-spaced, opposite po-

larity features on the magnetograms, typically having a major axis of about 10,000 km

(Martin & Harvey 1979). From the viewpoint of size only, ERs are hard to be discrimi-

nated from other small features such as network magnetic fields. The way to get around the

misinterpretation is to follow the evolution of the magnetic features. ERs usually survive

for only hours, and appear in pairs with similar magnitudes of flux.

Ephemeral regions are also seen in X-ray (Golub et al. 1981), Ηα (Harvey & Martin

1973; De Pontieu 2002) and EUV (Roussel-Dupre et al. 1984). The X-ray bright points

(XBP) can almost always be found associated with ERs, but not all ERs correspond to

XBPs. The correspondence between ERs and Hα can also be used to ascertain the observed

features.

Table 5.1 Setups of The Observations on 14th And 16th
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In the current research, both Ha and Cατ610.3 nm magnetogram movies are used to

cross-check the features identified are ERs. On September 14 2004, 30 pairs of ERs in the

quiet region are identified visually during a 7-hr observation. However the arch filaments

in Ηα only appear in 7 out of the 30 ERs. On September 16 2004 observation of coronal

hole, only 17 pairs of bipolar ERs are found and one out of the 17 is connected by arch

filament.

5.2.3 Magnetic Flux Emergence and Disappearance

The emergence rate of ERs were researched by various authors. In Hagenaar et al. (2003),

based on six sequences of the full-disk MDI magnetograms from 1999 to 2001, the author

found the emergence rate of ERs is 20 to 35x 10-20 cm-2 day -1 . A similar result was

obtained by Abramenko et al. (2006). However, the magnetogram date sets used in these

observations are all from MDI data, which has detection limit of 17 G. The DVMG data at

BBSO has much high sensitivity, namely 2 G, and the emerging rate found from 14th data

is about 50x 10 -20 cm-2 day-1 . This discrepancy can be understood from the fact that

BBSO data resolves more smaller ERs than MDI.

In the observation on 14th of quiet region, it can be clearly seen that the arch fil-

ament indicated by dotted line in Figure 5.2 connects the bipolar structure (22:49UT of
0

Ha — 0.6Å and 22:49UT of Ηα dopplergram). At the same time, UV bright points corre-

sponding the bipolar ER grow larger. In the end of the observation, the clusters of UV bright

points scatters into many independent points without significantly losing the brightness.

The mean flux of an ER is 8.1 x 10 1g Mx for quiet region, and 3.4x 10 18 Mx for the

coronal hole region.

Figure 5.3 shows that, regarding the flux and flux density distribution, although

there exist similarities between the quiet region and coronal region in general, ERs in coro-

nal tend to possess less number of large flux and flux density. A natural consequence is that

the total flux in the coronal hole region add up to 5.8x 10 19 Mx, as apposed to 2.5x 1020 Mx
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in the quiet region. Therefore, the magnetic flux evolution in the coronal hole region is

much slower than in the quiet region.

The arch filaments only appear in those ERs which have flux higher than 5.0x 10 18 Mx

and flux density greater than 20 G. If arch filament structure of an ER is a closed magnetic

loop, then the flux density of the loops in the observation ranges from 6 to 40 G in the quiet

region, and 6 to 22 G in the coronal hole region.

The disappearance is mainly due to the cancellation of opposite polarity magnetic

elements. The rate can be calculated according to the decrease rate of the total flux. In
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Figure 5.3 Flux vs flux density. Top: 30 pairs of ERs in the quiet region; bottom: 17 pairs
of ERs in the coronal hole region. Vertical dotted lines stand for the location of flux density
equals to 20 G; the horizontal dotted lines stand for the flux equal to 5 x 10 18 Mx.

the quiet region, about 1.7x 1020 Mx (2.1x 1020 Mx) positive flux (negative flux) was lost

during the 7 hr observation. In the coronal hole region, the numbers are 3.5 x 10 19 Mx for

positive polarity (9.6x 10 19 Mx for negative polarity).

5.2.4 Magnetic Flux Distribution

The magnetic flux distribution in quiet regions was presented by Wang et al. (1995); Socas-

Navarro et al. (2004a); Dominguez Cerdeńa et al. (2006). However, the distribution of IN

flux in coronal holes is never revealed in details. Coronal holes lie in regions predominated

by unipolar magnetic fields. Three criteria in Wang et al. (1995) are used to discriminate

the IN elements and network elements. For each region, about 1000 magnetic elements
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are identified and measured. The statistics are listed in Table 5.2. Figure 5.4 shows flux

distributions of all measured magnetic elements. The bin size for IN field is 5.0 χ 10 16 Mx,

and 5.0x 10 17 Mx for the network fields. In the quiet region, the flux distribution of IN and

network elements is similar in both polarities.

The flux distribution in the coronal hole is different. For network fields, there are

no positive elements with a magnetic flux about 4.0x 10 18 Mx. However, for the IN fields,

the number of positive elements is much larger than the number of negative elements. This

indicates that in the coronal hole, one polarity has both stronger flux and population, the

other has weaker flux and less populated.

Another quantity can give insight of the flux distribution is

Φ(Β) =
s
 Bds , (Β ? Β) (5.1)

where Β denotes the threshold flux density, and ds is the area element of integral. Applying

this functional calculation to both the quiet region and the coronal hole region, the plots are

shown in Figure 5.5. As the threshold flux density increases from 2 G (approximately the

noise level) to 30 G, the flux in both polarities decreases uniformly in the quiet region.

In the coronal hole, the positive flux decreases more quickly than the negative flux, with
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Figure 5.4 Flux distributions of positive and negative elements in the quiet region (top)
and the coronal hole region (bottom). The dotted straight line represent the magnetic flux
of 10 18 Mx, which is chosen as the threshold to discriminate IN elements and network
elements.

the increasing threshold flux density (middle panel of Figure 5.5). The ratio plot between

the negative flux to the total flux shows that, for the coronal hole, 73% of the magnetic

fields with a flux density greater than 2 G are negative, and 95% of the magnetic fields are

negative if only the flux density greater than 20 G are integrated. Note that 20 G is the

noise level of a typical magnetogram, non-BBSO-DVMG data. Compared with the quiet

region with the coronal hole region, it can be found that the ratio changes more slowly in

the quiet region.

The result confirms that in coronal hole, stronger fields with one polarity over pop-

ulate weaker fields with the opposite polarity, and with a large margin.
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Figure 5.5 Variation of magnetic flux vs. threshold flux density in the field of view of
magnetograms in Figure 5.1 in the quiet region (top) and the coronal hole (middle). The
bottom panel plots the ratio between the negative flux and the total flux.

5.2.5 Is The Distribution An Isolated Case

The coronal hole data used so far comes only from one day observation. There could be a

bias on an analysis of the distribution merely based on one day observation. However, the

distribution shown in Figure 5.4 is also found in other data sets. For example, the VMG

observation BBSO on June 4th 1992; DVMG observation of BBSO on September 17th

2004; and October 11th 2005. 
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5.2.6 Empirical Model of Coronal Hole

The emergence rate of the bipolar flux in the quiet region exceeds the rate in the coronal

hole by a factor of 3. The scenario implied by this observation is in consistence with Fisk's

model (Fisk 2005). Fisk's model indicates that coronal hole forms at locations where the

rate of new flux emergence is locally minimum and open flux accumulates more easily. On

the other hand, the flux disappearance rate in the quiet region is also twice as large as the

rate in the coronal hole. The direct consequence of the discrepancy is that the magnetic

energy converted to heat and kinetic energy is lowered in the coronal hole region.

The morphology of the magnetic structure in chromosphere is indicated by the Ηα

observation. Many of the observed Ηα filamentary structures connect the bipolar features

in the quiet region. In the coronal hole region, on the contrary, most of the observed Ηα

structures resemble jets, indicating locally open field lines.

Based on these observations, a schematic view of the 3D topology of the magnetic

field can be assumed as shown in Figure 5.6. The loops in coronal holes are on average flat-

ter than those in quiet regions. High and long closed loops are extremely rare, whereas short

and low-lying loops are almost as abundant in coronal holes as in quiet regions (Wiegel-

mann & Solankí 2004).

The observations also hint that IN flux may be topologically connected to the net-

work field (Zhang et al. 1999). It needs to be pointed out that IN flux having the same

polarity as the surrounding network is more likely to be counted as network flux, and they

are more rapidly destroyed either by merging with the surrounding network field with same

polarity or by diffusing. Furthermore, IN flux of the opposite polarity rises in a more con-

centrated fashion, and is more easily detected.

5.2.7 Connection to Solar Wind

Tu et al. (2005) established that the fast solar wind starts blowing out of a coronal hole

at 4900 to 20000 km above the photosphere in magnetic funnels. In the current data on



95

Figure 5.6 Schematic view of the magnetic structures in quiet region and coronal hole
region. Solid curves stand for the magnetic field lines that have Ηα counterparts; the
closed lines show arch filaments, and the open-ended lines stand for macrospicules. The
dotted lines indicate the magnetic field structures which have no Ηα counterparts.

September 16th 2004, most closed magnetic loops were lower than 4900 km, and open

magnetic fields with one polarity filled the space about 4900 km. Therefore, flux cancel-

lation, or a lower magnetic reconnection in the photosphere and lower chromosphere, may

only take place below the atmospheric level of 5000 km, not in the location where the fast

solar wind originates. So the release of magnetic energy and the generation of fast solar

wind take place at different levels.

5.3 Conclusions

Based on the accurate measurement of the magnetogram and other synchronized observa-

tional data, the following conclusion can be drawn about the small-scale magnetic fields



96

in the coronal hole region (Sep 14th 2004) as opposed to the quiet sun region (Sep 16th

2004):

1. The evolution of magnetic flux in the quiet region is much faster than that in the
coronal hole region, as the flux appearing in the form of ephemeral regions in the
quiet region is 4.3 times as fast as in the coronal hole region;

2. More magnetic elements with opposite polarities in the quiet region are connected
by arch filaments, estimating from magnetograms and Ηα images;

3. According to the measurement of roughly 1000 magnetic elements in both observed
regions, for network fields in the coronal hole, there are many more negative elements
than positive elements; for IN fields, there are many more positive elements than
negative elements;

4. In the coronal hole region, the fraction of negative flux obviously changes with a
different threshold flux density: About 73% of the magnetic fluxes with a flux density
larger than 2 G have negative polarity, and the number increases to 95% if only those
fields with flux density greater than 20 G are accounted;

5. In the coronal hole region, stronger fields are occupied by one predominant polarity;
the majority of weaker fields are occupied by the opposite polarity.

For small scale magnetic fields observation, near infrared spectrum is a more suit-

able wavelength range to carry out the observation, due to larger Zeeman splitting and

therefore higher sensitivity, lower scattering light level. Also, other more sophisticated

methods, such as line ratio (Rabin 1992; Lin 1995) method, can be applied to the near in-

frared lines, for examples, Feτλ 1564.8 nm (g=3) and Feτλ 1565.3 nm (g=1.53) (Rueedi et

al. 1995; Solanki et al. 1992, 1990). This task will be one of the most important goals of

the future instruments in solar physics, such as NIRTF and IRIM.



CHAPTER 6

SUMMARY

In this thesis the concept design of a tunable filter system, NIRTF, was developed as part

of the focal-plane instruments for ATST and NST (Chapter 2). The objective of the wave-

length coverage is from 1 µm to 1.8 µm. NIRTF will be a unique and versatile instrument

in future solar observations. Specifically, with an additional polarization analyzer, more

accurate 2D magnetic flux density map can be deducted by the measurement of the line

profiles at multiple spectral lines (Lin 1995).

The improvement of a similar system, IRIM/BBSO, was also discussed in the thesis

(Section 3.5.2). The achromatic issue was not a major part of the original design of IRIM.

This statement specifically refers to Lyot filter used in 'RIM, and its polarization analyzer.

The lack of achromatism of the filter system is primarily due to the waveplates used and

the wavelength coverage of IRIM is limited within a few nanometers around 1564.85 nm.

Therefore, the achromatic waveplate design (Chapter 3) is of critical importance in extend-

ing the capable functionality of IRIM.

The observation results using the Lyot filter in IRIM system are also presented in

the thesis. Due to the opacity reaches minimum at 1.6 µm (Stix 2002), the obtained images

of the sunspot (NOAA 10707) reveals the deepest layer on the photosphere. Fine structures

within the sunspot are analyzed, specifically the horizontal flow pattern and umbra! dots

(Chapter 4).

The magnetic flux density measurement is the next step in the development of 'RIM.

Due to minimum scattering light (both in solar atmosphere and instrumental) (Kopp & Ra-

bin 1992) in near infrared as opposed to visible, IRIM can be setup to measure the magnetic

field within small and weak features such as umbral dots in sunspot. These measurements

can be used to justify the debates (Socas-Navarro et al. 2004a; Schmidt & Balthasar 1994;

Wiehr & Degenhardt 1993) regarding the physical nature of these fine structures within
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sunspots.

Since the infrared lines has definite advantages in observing weak fields (Rueedi

et al. 1995), IRIM (or NIRTF in the future) can provide unique observations on small

scale weak magnetic features in quiet sun and coronal hole, both of which bear important

signatures of the unrevealed underlying mechanisms producing weak magnetic flux on the

sun.

As the first step, the historical DVMG observations of weak magnetic features on

photosphere in quiet sun and a coronal hole are analyzed and very interesting distribution

rules are found for the magnetic flux in these two regions (Chapter 5). And a 3D topo-

logical model is also proposed for the magnetic field structures in these regions. Future

observations using 'RiM or NΙRTF will measure the magnetic flux density instead of only

flux, which can be used to justify the proposed model, and might provide more information

regarding the driving mechanisms in solar plasma.
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