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ABSTRACT

SOLAR ACTIVITY DETECTION AND PREDICTION
USING IMAGE PROCESSING AND MACHINE LEARNING TECHNIQUES

by
Gang Fu

The objective of the research in this dissertation is to develop the methods for automatic

detection and prediction of solar activities, including prominence eruptions, emerging

flux regions and solar flares. Image processing and machine learning techniques are

applied in this study. These methods can be used for automatic observation of solar

activities and prediction of space weather that may have great influence on the near earth

environment.

The research presented in this dissertation covers the following topics: i)

automatic detection of prominence eruptions (PEs), ii) automatic detection of emerging

flux regions (EFRs), and iii) automatic prediction of solar flares.

In detection of prominence eruptions, an automated method is developed by

combining image processing and pattern recognition techniques. Consecutive Ha solar

images are used as the input. The image processing techniques, including image

transformation, segmentation and morphological operations are used to extract the limb

objects and measure the associated properties. The pattern recognition techniques, such

as Support Vector Machine (SVM), are applied to classify all the objects and generate a

list of identified the PEs as the output.



In detection of emerging flux regions, an automatic detection method is developed

by using multi-scale circular harmonic filters, Kalman filter and SVM. The method takes

a sequence of consecutive Michelson Doppler Imager (MDI) magnetograms as the input.

The multi-scale circular harmonic filters are applied to detect bipolar regions from the

solar disk surface and these regions are traced by Kalman filter until their disappearance.

Finally, a SVM classifier is applied to distinguish EFRs from the other regions based on

statistical properties.

In solar flare prediction, it is modeled as a conditional density estimation (CDE)

problem. A novel method is proposed to solve the CDE problem using kernel-based

nonlinear regression and moment-based density function reconstruction techniques. This

method involves two main steps. In the first step, kernel-based nonlinear regression

techniques are applied to predict the conditional moments of the target variable, such as

flare peak intensity or flare index. In the second step, the condition density function is

reconstructed based on the estimated moments. The method is compared with the

traditional double-kernel density estimator, and the experimental results show that it

yields the comparable performance of the double-kernel density estimator. The most

important merit of this new method is that it can handle high dimensional data

effectively, while the double-kernel density estimator has confined to the bivariate case

due to the difficulty of determining optimal bandwidths. The method can be used to

predict the conditional density function of either flare peak intensity or flare index, which

shows that our method is of practical significance in automated flare forecasting.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Space weather describes the geomagnetic and particle conditions in the near-earth

environment. Usually, space weather is of little concern in people's daily lives, but it has

a great influence in many technological systems both in orbit and on the ground, such as

satellites, ground-based power systems, oil pipelines, wireless communication systems,

navigation systems, and also it affects human space exploration and development

activities.

Most effects of space weather can ultimately be traced to solar activities, such as

flares and coronal mass ejections (CMEs). A solar flare is a violent explosion in the

chromosphere releasing up to a total energy of 6*10 25 J. A coronal mass ejection is the

result of a large-scale rearrangement of solar magnetic structure which leads to large

amounts of ejected materials from solar corona (Wang 2005). These solar activities

cause variations in both the solar electromagnetic radiation and the production of solar

wind plasma, and energetic particles, which strongly influence space weather conditions

in the near-earth space environment (Jing et al. 2004; Wang et al. 2004; Webb et al.

2000). Besides, solar flares and CMEs, other solar activities, such as filament

(prominence) eruptions, sunspots, emerging flux regions and so on, are also of scientists'

research interests.

The main purpose of this study is to develop automated tools that can detect and

predict solar activities automatically by using image processing and machine learning

techniques. With the great advance in solar observations, higher quality and large

1
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quantity of solar images, obtained by various space-based and ground-based

observatories, become available. In parallel, the great progress that has been made in

information technologies during the past decades making it possible and essential to

develop automated methods that can process large amounts of solar images efficiently

and effectively. These methods can detect and predict solar activities automatically and

thus can be used for automatic space weather monitoring and prediction in the future.

Much previous work has been done in developing automated methods to detect

solar activities, such as filament (prominence) eruptions, flares, sunspots and CMEs. The

methods of detecting filaments based on Ha full-disk solar images were previously

presented by the NJIT group (Gao et al. 2002; Shih and Kowalski, 2003; Qu et al. 2004).

The methods to detect solar flares from Ha full-disk solar images were discussed by

Veronig et al. (2000), Borda et al. (2001) and Qu et al. (2003, 2005). Turmon et al.

(2002) presented a method based on Bayesian image segmentation to detect sunspots

from MDI magnetograms. The methods to detect CMEs can be found in Wilson (2002,),

Qu et al. (2005) and Shih et al. (2007).

In this dissertation, the methods to detect prominence eruptions and emerging flux

regions are developed by using image processing and pattern recognition techniques.

Also, the method to predict solar flares based on magnetic parameters of active regions is

developed by using statistical machine learning techniques. These methods are reviewed

briefly in the following sections.
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1.2 Prominence Eruptions

Prominences are clouds of relatively cool and dense gas embedded in the chromosphere

and/or in the corona. Usually they are observed as bright features above the solar limb;

while the same objects are observed on the solar disk, they show up in absorption as dark

features, named as filaments. So in fact prominences and filaments refer to the same kind

of physical objects, but they are named differently when observed in different locations.

Prominences are not always quiescent. When the magnetic support of

prominences becomes unstable, the materials would erupt into corona. It has been

recognized that prominence eruptions are usually associated with other solar activities,

such as CMEs, and the relationship between prominence eruptions and CMEs is still an

interesting topic in solar physics. Automated detection of prominence eruptions helps to

understand their relationship and improve the accuracy of space weather prediction.

In this dissertation, a new automated method is developed to detect and

characterize the prominence eruptions. Typically, prominence eruptions are observed in

Ha spectral lines, so Ha full-disk images obtained from Big Bear Solar Observatory

(BBSO) are used as data set. The input to the method is a sequence of consecutive Ha

solar images, of which the time cadence is one minute, and the output is a list of

prominence eruption events detected. The method involves several steps. The first step is

pre-processing, in which each frame is processed individually and the outlier of all the

limb objects in each frame forms a front vector. In the second step, the front vectors of all

the frames are piled up in a time sequence to construct a front-time map, based on which

the prominence detection and tracking can be quickly carried out. In the third step, the

properties of each limb object, such as brightness, angular width, height and rising
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velocity, are measured. Finally, a SVM classifier is applied to classify the limb objects

and identify real prominence eruptions. The characteristics of prominence eruptions, such

as brightness, angular width, radial height and velocity are measured. Experimental

results show that the detection rates for eruptive prominences and non-eruptive

prominence are 93.3% and 93.6% respectively. The method presented in this chapter can

be used in automatic real-time solar activity monitoring and detection.

1.3 Emerging Flux Regions

Emerging flux regions form the first stage of active regions and they usually appear

within or at the borders of existing active regions. A fraction of them evolve to flare- and

CME-productive active regions, while most of the other EFRs evolve through their life-

cycle without producing any major activity. The flare productive active regions are the

most important source of space weather effect. The role of EFRs in triggering flares was

clearly described (Zirin, 1983). Jing et al. (2004) found that in a sample of about 100

CMEs, 70% of them were associated with EFRs, confirming earlier results of Feynman

and Martin (1995) that was based on a smaller sample. Therefore, prediction of flare

production of an active region before the emergence and at early stage of its evolution is

a key topic in the space weather prediction. So it is vitally important to detect EFRs

automatically and in real time.

Usually, the full-disk magnetograms, taken by the Michelson Doppler Imager

(MDI) (Sherrer et al. 1995) at the Solar and Heliospheric Observatory (SOHO), are used

as the data source to study EFRs. In the MDI magnetograms, initially an EFR appears as

a pair of small opposite-polarity magnetic dipoles, and then the dipoles move apart from
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each other. More fluxes are added gradually after their initial emergence. Most regions

stop growing in less than a day, but sometimes the magnetic flux continues to emerge and

a simple bipolar region may grow into a fully-fledged active region (Strous et al. 1996,

1999; Kubo et al. 2003).

In this dissertation, a novel method is presented to detect Emerging Flux Regions

(EFRs) in consecutive Michelson Doppler Imager (MDI) magnetograms. To the best

knowledge of the author, this is the first developed technique for automatically detecting

EFRs. The method includes several steps. First, the projection distortion on the MDI

magnetograms is corrected. Second, the bipolar regions are extracted by applying multi-

scale circular harmonic filters. Third, the extracted bipolar regions are traced in

consecutive MDI frames by Kalman filter as candidate EFRs. Fourth, the properties, such

as positive and negative magnetic fluxes and distance between two polarities, are

measured in each frame. Finally, a feature vector is constructed for each bipolar region

using the measured properties, and the Support Vector Machine (SVM) classifier is

applied to distinguish EFRs from other regions. Experimental results show that the

detection rate of EFRs is 96.4% and of non-EFRs is 98.0%, and the false alarm rate is

25.7%, based on all the available MDI magnetograms in 2001 and 2002.

1.4 Solar Flares

Solar flares are known as short periods of explosive energy release mainly in the

chromosphere and corona. The solar flare is one of the most important solar explosive

phenomena as far as space weather effects are concerned. Although physical mechanisms

of energy buildup and release are not yet fully understood, from the observational point
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of view, flares originate preferentially in magnetic active regions with strong field

gradients and magnetic shear, long polarity-inversion lines and complex polarity patterns

(Falconer 2001; Falconer et al. 2003; Song et al. 2006; Wang et al. 2006; Schrijver

2007).

Forecasting the occurrence of solar flares from the analysis of solar photoshperic

magnetogram data is an important and challenging task in the solar physics research. The

earlier predictions were primarily based on McIntosh classification of sunspots

(McIntosh, 1990) or relying on observer's experience (Zirin and Marquette, 1990). In

recent years, the statistical correlation between a variety of photospheric magnetic

parameters and flares productivity of source regions have been investigated in many

studies, and some parameters are found to be positively correlated with the probability of

a region to produce a major flare (Falconer et al. 2002; Leka & Barnes 2003a, 2003b,

2007; Jing et al. 2006; Schrijver et al. 2005; Schrijver 2007; Song et al. 2007).

The full-disk MDI magnetograms are used as the primary data source to measure

the magnetic parameters of active regions. In this study, the following parameters are

considered: (1) total unsigned magnetic flux and (2) total magnetic energy dissipation in

a unit layer per unit time. These parameters are chosen primarily because they can be

derived directly from the line-of-sight magnetograms and have historically shown their

potential in flare forecasting (Jing et al. 2006; Song et al. 2007).

The main goal of this study is to develop a method to predict the occurrence

probability of each class flare, such as C-, M- and X-class flares based on the magnetic

parameters. This problem is modeled as a conditional density estimation problem, and a

novel two-step conditional density estimator is proposed in this dissertation by combining
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kernel-based nonlinear regression and moment-based density function reconstruction

techniques. The kernel-based nonlinear regression technique is applied first to model the

relationship between magnetic parameters and flare peak intensity or flare index and then

used for predicting the conditional moments. After that, the probability density function

is reconstructed based on the estimated moments.

1.5 Outline of Dissertation

The goal of this study is to develop a suite of methods for automatic solar activity

observation and prediction, including prominence eruptions, emerging flux regions and

solar flares. This work adopts advance image processing, pattern recognition and

machine learning techniques. These methods can be used for processing large-scale solar

data efficiently and effectively, and will also lead to real-time space monitoring and

prediction.

In Chapter 2, a method for automatic detection of prominence eruptions is

presented. Image segmentation, morphological operations and pattern recognition

techniques are applied together. In Chapter 3, the details of a method for automatic

detection of emerging flux regions (EFRs) is presented. In this method, multi-scale

circular harmonic filter is used for detect candidate EFRs, and Kalman filter is used for

tracing each candidate EFR in consecutive frames, while support vector machine (SVM)

is applied finally to identify true EFR objects. In Chapter 4, a novel method for

conditional density estimation is proposed to solve solar flare prediction problem. In this

method, kernel-based nonlinear regression techniques is applied to estimate conditional

moments of the response variable, and moment-based density function reconstruction
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method is applied then to recover the conditional density function of the response

variable. Compared with traditional methods, the proposed method is capable of handling

high dimensional data efficiently, which is essential for solar flare prediction, since

scientists are looking forward to predicting solar flares based on multiple magnetic

parameters.



CHAPTER 2

AUTOMATIC DETECTION OF PROMINENCE ERUPTIONS

2.1 Introduction

Prominence eruptions, one of the major solar activities, have received considerable

attention since late 1800s. Prominences are cool, dense objects that are embedded in the

hot corona. They are held above the Sun's surface by certain magnetic field topology.

Their lifetime could be as long as weeks or even months. Prominences are observed

above the solar limb, while the same physical structures observed on the solar disk are

named filaments. Therefore, prominences and filaments are referred to the same

structures, and in this chapter, limb prominences are of interests. The methods of

detecting filaments were previously studied by the NET group (Gao et al. 2002; Shih and

Kowalski, 2003; Qu et al. 2004).

Prominences are not always quiescent. When the magnetic support of

prominences becomes unstable, their material would erupt into corona. During a

prominence eruption, the materials are ejected outward rapidly, and either stem from a

part of solar surface into a nearby region or leave the Sun completely or partially.

Typically, the events would last for a few minutes or hours. Prominence eruptions are

usually observed in Ha lines. In Ha solar full-disk images, prominences are bright

features above the solar limb against the dark background. As shown in Figure 2.1, a

bright prominence is observed clearly above the right side of the solar limb. It has been

recognized that prominence eruptions are usually associated with other solar activities;

such as flares or coronal mass ejections (CMEs). The relationship between prominence

9
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eruptions and CMEs has been explored (Gopalswamy et al., 2003; Wang et al.. 1998;

Gilbert et al., 2000), but it is still not fully understood yet. Since flares and CMEs have

great influences on space weather, their relationship helps improve the accuracy of space

weather prediction.

It is desirable to develop an automatic detection algorithm, which can detect and

characterize prominence eruptions with little human intervention. Our research is based

on statistics study, so it is essential to collect a large amount of events and measure the

associated properties. The data collection is traditionally conducted by human visual

inspection that is quite labor-consuming. More importantly, it is usually subjective in

selecting events and measuring parameters. On the contrary, the automatic detection

algorithm can work more efficiently, objectively, and accurately.

Figure 2.1 A full-disk Ha solar image and its enlarged prominence observed at the Big
Bear Solar Observatory on April 15, 2001, 22:15:25 UT.
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Gopalswamy et al. (2003) developed an automatic prominence detection

algorithm using microwave images from Nobeyama radioheliograph. Shimojo et al.

(2006) presented an improved version of the algorithm. The major difference between

these two algorithms is the time interval of the images used for detection. In

Gopalswamy's algorithm it is ten minutes, while in Shimojo's algorithm it is three

minutes. Both algorithms detect the enhanced pixels whose values are greater than six

times of their average values of the day, and then trace the center of all the enhanced

pixels in time sequences. If the center location changes persistently over 30 minutes, the

algorithms would report it as a candidate limb event. Finally, all the candidate events are

inspected visually to obtain true prominence eruptions and measure the properties. The

time interval in Shimojo's algorithm is three minutes, which is enough to detect fast

prominence eruption, since the life time of most prominence eruptions should be greater

than this time interval although it is still insufficient to detect the eruptions of the velocity

greater than 400km/s. The algorithms can be used to detect the appearance of prominence

eruptions, but still there are some disadvantages in both algorithms. First, the algorithms

cannot detect slowly eruptive prominences because they would increase the average pixel

values of the day and cause the prominence pixels to be enhanced. Second, since the

algorithms trace the centers of all the enhanced pixels, they cannot detect the prominence

eruptions if they occur simultaneously above the opposite hemispheres. Third, the

algorithms can only detect the existence of a prominence event, but do not check the

direction and speed of the prominence motion, so they cannot characterize the features

automatically.
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In this chapter, a new algorithm is developed to detect and characterize

prominence eruptions automatically. It consists of several steps. The first step is pre-

processing, in which each frame is processed individually and the outlier of all the limb

objects in each frame forms a front vector. In the second step, the front vectors of all the

frames are piled up in a time sequence to construct a front-time map, and based on which

the prominence detection and tracking can be quickly carried out. In the third step, the

properties of each limb object, such as brightness, angular width, height and rising

velocity, are measured. Finally, a support vector machine (SVM) classifier is applied to

classify the limb objects.

The rest of this chapter is organized as follows. The pre-processing techniques are

presented in Section 2.2. The feature extraction and prominence classification are

described in Section 2.3. Experimental results are provided in Section 2.4. Finally, the

conclusions are presented in Section 2.5.

2.2 Pre-processing

Image pre-processing intends to process an image, so the result is more suitable than the

original image for a specific application. First, a 3 x3 median filter is applied to remove

the noise in the captured solar image. Then, the polar transformation is applied onto the

region surrounding the solar disk limb where the prominences reside, and perform image

segmentation based on local contrast to extract bright pixels from dark background.

Finally, the limb structure front is extracted.
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2.2.1 Polar Transformation

The full-disk Ha solar images are observed from the Big Bear Solar Observatory

(BBSO). The images are acquired by a large-format, 2032x2032 pixels, 14-bit Apogee

KX4 CCD camera, manufactured by Apogee Instruments (Denker et al., 1999;

Steinegger et al., 2000), and the time cadence is one image frame per minute. Prior to

further processing, the images have been calibrated to remove the limb darkening, and

the basic image parameters, such as the position and radius of the solar disk, have been

obtained. The technical details pertaining to calibration and parameter measurement were

discussed by Denker et al. (1999).

Since the prominences are observed above the solar limb, the polar transformation

is then applied onto this surrounding region of the solar disk, as shown in Figure 2.2. Let

0 be the center of the solar disk, R o be the radius of the solar disk, and R, be the radius of

the outer circle, which is centered at 0 and tangent to image boundaries. Since the solar

disk is centered during calibration, the two circles are co-centered at 0. The circular

region between the two concentric circles is then transformed into a rectangular (or

angular) image, as shown in Figure 2.3. The radius of the solar disk is typically 900

pixels, and the width of the original image is 2032 pixels. Therefore, the width of the

angular image is approximately 5655 pixels and the height of the angular image is 116

pixels. Let 14), and h1 denote the width and height of the angular image, respectively. In

order to speed up processes, the angular image size is reduced to 2000x 1000 pixels.
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Figure 2.2 The circular region to be transformed between two co-centric circles centered
at 0 with radius Ro and R, .

The relationship of the coordinates (x, y) in the angular image and (x', y') in the

original image can be represented as follows:

r x 1 0	 sin x	 x, x

y' = 0	 cosy	 y y (2.1)

1 0	 0	 1 [l]

where (x„ y c ) denote the coordinates of the disk center in the full-disk image _ The

bilinear interpolation is used to calculate the gray values in the angular image, as shown

in Figure 2.3.

Figure 2.3 The transformed angular image of the Ha solar image observed at the Big
Bear Solar Observatory on April 15, 2001; 22:28:25 UT.
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2.2.2 Image Segmentation

Because the light from the bright limb objects is scattered, their surrounding background

would look brighter than the faint limb objects. The global thresholding method may miss

the faint limb objects or select the bright background pixels. Therefore, the local contrast

method is developed. Let the contrast image C(x, y) be defined as

where /(x, y) is the intensity of pixel (x, y) and IN (x, y) is the average intensity of its

neighborhood. In order to calculate the contrast image, a linear diffusion filter is applied

iteratively onto the angular image. The number of iteration t defines the scale of

resolution at which the image is observed. A small t corresponds to a fine scale and a

large t corresponds to a coarse scale.

Let /0 denote the original image, and / 1 ,12 ,—, /, denote the successive iteration of

the coarse images. In each step, the pixel is coupled to its four neighbors by a force

function F (u) . The linear diffusion filter is defined as

Ai, (x, y) = /1+1 (x, y) — It (x, y)

= G(It (x —1, y) —	 y)) + G(I t ,(x, y —1) — I t (x, y))	 (2.3)

+ G(It (x +1, y)— ,(x, y)) + G(It (x , y +1) — I t (x , y))

where A/, (x, y) is the derivative representing the evolution in the number of iterations.

For rapid processing, a linear force function is used as follows:

G(u) = u	 (2.4)

In each iteration the pixel value of the angular image is updated by adding the

derivative. The number of iterations is determined based on the comparison between

segmented results and visual effects. The value chosen can enable them to be very close.
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If more iterations are applied, the image I N (x, y) would be more blurred and too many

weak features would be picked up. On the contrary, if less iterations are applied, the

image IN (x, y) would be less blurred, but some strong features would not be

distinguishable from background. Based on experimental results, the appropriate iteration

number is set to 20. Figure 2.4 shows the blurred image after applying the diffusion filter

20 times.

Figure 2.4 The blurred angular image of the Ha solar image observed at the Big Bear
Solar Observatory on April 15, 2001, 22:28:25 UT. after applying the diffusion
filter 20 times.

The contrast image, as shown in Figure 2.5, is obtained by using eq. (2.2) with the

angular image and the average local brightness image. It can be observed that the bright

background around the large middle-left prominence is removed. If a pixel is brighter

than its local background, its value is positive; otherwise, its value becomes negative.

7.) I 	 WWWwwwwwwwwwwwwiguw wawa uramwommampumummi

00 	90°	 180° 	 270° 	 360°
Figure 2.5 The contrast angular image of the Ha solar image observed at the Big Bear

Solar Observatory on April 15, 2001, 22:28:25 UT.

Next, a threshold function F(x, y) is applied to segment the contrast image as

follows:

1, if C(x, y) Tf .
0, otherwise.

F(x, y) = (2.5)
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where 1', is a threshold. The T, is set to be slightly greater than 0 (say, 0.045) to avoid

picking up some noisy pixels in dark areas. The value is determined based on the

comparison between segmented results with visual effects. Next, morphological closing

and opening are applied to fill in small gaps and remove small noisy regions (Shih &

Mitchell 1989), respectively. The resulting image is shown in Figure 2.6. By comparing

Figures 2.3 and 2.6, it can be noticed that most bright object pixels are picked up while a

small number of faint objects are missed. It is acceptable since the eruptive prominences

are usually bright and will be seldom missed.

Figure 2.6 The segmented angular image of the Ha solar image observed at Big Bear
Solar Observatory on April 15, 2001, 22:28:25 UT.

2.2.3 Structure Front Extraction

The front of limb objects are of interests, since the movement of the front is a vital

indicator to detect the eruptive prominences. A vector, named front vector, is used to

record the profile of limb objects. By scanning all the columns in the thresholded image,

The front vector V(x) is defined as follows:

V(x) = max {y I F(x,y)=1} , 	 (2.6)

where F(x, y) denotes the thresholded image. Figure 2.7 shows the front vector.

Since the radius of the solar disk may vary in different frames, the front vector is

normalized in order for comparison, which is defined as follows:



where W denotes the width of the original full-disk H a image and h, denotes the height

of the angular image.

Figure 2.7 The front vector of the Ha solar image observed at Big Bear Solar
Observatory on April 15; 2001, 22:28:25 UT.

2.3 Feature Extraction and Prominence Classification

In order to trace the moving limb objects, a front-time image is defined. The major limb

objects are extracted by thresholding. Then, the properties, such as time span, position

angle; angular width, radial height and brightness, are measured. Finally, the pattern

classification is performed.

2.3.1 Limb Object Tracing

The new eruptive prominences may appear at any time, and the existing eruptive

prominences may change the size and shape successively. A front-time image, denoted as

I f (x, y); is constructed by combining the front vectors of all the frames to detect the

appearance and trace the movement. Its size is w f x h i , where w t denotes the width of

the angular image and lit denotes the number of all the frames taken within one day.

Each row corresponds to a front vector at a time instance, and the pixel value indicates
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the height of the corresponding front vector at a certain angular position. The front-time

image i f (x, y) can be represented as

where 17; (x) is the front vector of yth frame. Figure 2.8 shows the front-time image

obtained from all the Ha images taken on April 15, 2001. Note that it is resealed to the

range of [0, 255] for the display purpose.

Since the positions of the limb objects will change very little in the successive

frames, the same limb object should appear as a connected component in the front-time

image in spite of different shape and topological characteristics. A stable limb object

corresponds to a stripe-like component, and an eruptive object corresponds to a spot-like

component. Figure 2.8 shows several bright stripes and a spot-like component. Assume

that each pixel in the front-time image corresponds to at most one limb object. Some

exceptional case may have two or more limb objects overlaid, but it is very rare.

Figure 2.8 The front-time image representing the solar limb activities from April 15,
2001, 20:59:25 UT. to April 15, 2001, 22:56:25 UT.

To extract eruptive limb objects; the image is segmented based on thresholding.

The threshold is defined as H med(x)+ T) , where Hmed(x) is the median gray level of

column x and T) is a threshold. In the experiment, T1 f is 0.013, which corresponds to
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8,970 km. In each column, any pixel whose gray level exceeds the threshold is accepted.

Since the variance of radial height of stable objects will be quite small; the radial height

of stable objects would seldom exceed the threshold. Thus, the stable limb objects will be

eliminated almost completely, and only a few stable objects will be preserved together

with eruptive objects after the segmentation. The eruptive objects will be preserved

because during the eruption the radial height of eruptive objects will be significantly

greater than the threshold. Then the morphological closing by the structuring element of

2 x 5 is applied to merge the disconnected components; and the morphological opening

is performed to remove the small components by using the structuring element of 4 x 5 .

Figure 2.9 shows the resulting image where many stripe-like components are removed

since they correspond to stable limb objects, and the spot-like component is preserved

since it corresponds to the eruptive object.

Figure 2.9 The segmented front-time image representing the solar limb activities from
April 15, 2001, 20:59:25 UT. to April 15; 2001, 22:56:25 UT.

The segmented front-time image is used as a reference to extract eruptive limb

objects. Each connected component corresponds to a limb object in this image because

the angular position of limb objects should not change significantly during the

observation hours. Thus, in the consecutive rows the line segments of the same limb

object would be attached to each other. Both the angular width and time span of the limb
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object can be obtained from the segmented image, since the x-coordinate of the

component corresponds to the angular position axis and the y-coordinate corresponds to

the time axis. After that, the corresponding image segment, which contains the limb

object, are extracted. The limb objects are extracted based on the segmented front-time

image and measure the associated properties from the extracted image segment.

2.3.2 Property Measurement

According to the physical nature of the limb objects, each object is represented by nine

features and use them for classification. The nine features are computed from the angular

image and the segmented image as follows:

a. The time span, denoted as t. It is the lifetime of the object which is determined by
the first time it appears and the last time when it is still detected.

b. The maximum radial height, denoted as h, . The radial height of the object is
computed in each angular image. After processing all the frames, a radial-height-
time function is obtained. It is then convolved by a Gaussian low-pass filter with
the standard deviation 2.0. The maximum value is taken as the feature.

c. The maximum of the median angular widths, denoted as Iv.. From the segmented

image F(x, y) , the angular width of the object is measured from bottom to top,
and then an angular-width-height function is obtained. The median value is
calculated, so a median-angular-width-time function is also obtained after
processing all the frames. Then, it is convolved with the same Gaussian low-pass
filter, and the maximum value is taken as the feature.

d. The shape feature is defined as r =
hr

e. The maximum size of the limb object, denoted as s. The total number of pixels of
the limb object in F(x, y) is computed to form the size-time function which is
then convolved with the Gaussian low-pass filter. The maximum value is taken as
the feature.

f. The maximum average brightness of the object, denoted as b. In each frame, all
the pixels of the object are extracted from the segmented image F(x, y) , and the
average of the corresponding pixel values in the angular image are calculated to
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form the average-brightness-time function. It is then convolved with the Gaussian
low pass filter, and the maximum value is taken as the feature.

g. The average brightness of the object in the key frame, denoted as bk . The key

frame is the frame where the size of the object reaches the maximum. Then, the
average brightness of the key frame is calculated as the feature.

h. The standard deviation of object brightness in the key frame, denoted as δ k  .

i. The maximum rising velocity, denoted as v r . The first derivative of the smoothed
radial-height-time function with respect to time is computed to form the velocity-
time function. After convolving with the Gaussian low-pass filter, the maximum
is taken as the feature. The rising velocity, which is the component projected onto
the sky of the actual velocity vector, provides a distinguishable feature for
classification.

Finally, for each detected limb object, a feature vector v f  is constructed and defined

as v i

2.3.3 Eruptive Prominence Detection

The support vector machine (SVM) is applied to classify the limb objects. The SVM,

introduced by Vapnik (1998), is based on statistics learning theory for the two-class

classification problem. The idea is to map the input patterns to a high dimensional feature

space and construct an optimal hyper-plane to separate all the patterns (Guyon et al.

2000). Different kernel functions can be used, such as linear, polynomial, sigmoid and

radial basis function. The polynomial of degree 2 is used as the kernel function in the

experiment.

The classifier requires training prior to testing. Each pattern in the training set is

represented as a feature vector and associated with a class label. For eruptive prominence

classification, the training samples are first classified by visual inspection. The class label

d is assigned to be 1 for eruptive prominences and -1 otherwise. Then, the SVM
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classifier takes the input patterns and the associated class labels to compute the optimal

decision hyper-plane. After that, the SVM classifier is ready to test an unknown limb

object.

2.4 Experimental Results

The proposed method is implemented in the Interactive Data Language (IDL), developed

by Research Systems Inc., together with the Solar SoftWare (SSW) IDL library (Freeland

et al. 1998). The experimental results are available to the public through the web site

http://filament.nj it.edu/.

The BBSO full-disk Ha solar images are used as the data set for training and

testing. Due to the image availability, The images observed in 475 days from 2001 to

2005 at BBSO are investigated, in which there are 21 days in 2001, 10 days in 2002, 63

days in 2003, 208 days in 2004 and 173 days in 2005. The time cadence is one minute

and the observation hours are eight hours a day. Therefore, there are up to 480 images to

be observed in one day although fewer images in certain days would be obtained due to

bad weather or other reasons. 26 eruptive prominences are identified by visual inspection.

Some ambiguous candidate objects, which are very difficult to classify even by human

eyes, are excluded. By applying our program, 926 limb objects are detected among which

all 26 predefined eruptive prominences are included.

The leave-one-out strategy (Hoffbeck et al. 1996) is adopted to train and test the

SVM. In order to measure the classification rate accurately, the experiment contains 1000

iterations. There are two steps in each iteration. First, 25 eruptive and 500 non-eruptive

prominences are picked up randomly to train the SVM. Second, the remaining eruptive
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prominence and a random non-eruptive prominence are used for testing. After 1000

iterations, the average classification rate is calculated. The experiment is performed five

times and the results are listed in Table 2.1. According to the experimental results; the

detection rates of prominence and non-prominence eruptions are 93.3% and 93.6%

respectively. Since totally there are 26 prominence eruptions and 900 non-prominence

eruptions, it can be expected that 24.3 prominence eruptions would be classified as

prominence eruptions on the average, though another 57.6 non-prominence eruptions

would be also classified as prominence eruptions.

Table 2.1 Experimental Results of Automatic Prominence Eruption Detection

Exp. No. P. E. Non-P. E. 	 Total
1 93.2% 93.9 % 93.6%
2 94.0% 93.9% 94.0%
3 91.9% 92.7% 92.3%
4 94.8% 93.0% 93.9%
5 92.8% 94.5% 93.7%

Average 93.3% 93.6% 93.5%

Most of the misclassification on eruptive prominences happens to be faint

eruptive prominences. Because of their low brightness, they may not be segmented

properly, and the properties, such as angular with and radial height, may not be correctly

measured. Most of the misclassification on non-eruptive prominences happens in two

conditions. One is that their features, such as rising velocity and brightness, are close to

the eruptive prominences. The other is that the measured rising velocity is much higher

than the actual value. The inaccurate measurement may be due to the faint object being

lost in some frames and then coming back in the subsequent frames, though the radial

height is smoothed before the rising velocity is calculated
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From Table 2.1, it is noted that the true positive detection rate of eruptive

prominence detection is 93.3% and the false positive detection rate is 6.4%, which is a

small number. However, if there were a large amount of non-eruptive prominences

detected by the algorithm, there would be a large fraction of detected eruptive

prominences that are not true eruptions. Therefore, it is critical to improve the

performance of the algorithm. There are two aspects can be considered. One is to

improve the image processing techniques; for example, image enhancement techniques

can be applied to enhance faint objects to avoid loss and obtain accurate measurement.

The other is to combine the detection of filament and prominence eruption since the

prominences are the filaments observed above the solar limb. The detection of filament

on the solar disk will determine whether there is a prominence above the solar limb by

taking the rotation of the Sun into consideration. The existence of a prominence and an

eruption detected above the solar limb would be a strong evidence for prominence

eruption.

The IDL program runs on a Dell Dimension 4600 with an Intel Pentium 4

processor (2.8 Ghz) and 1.0 GB memory under Fedora Core Linux 4.0. It takes less than

3 seconds to process a single frame and extract the front vector. The time to process the

front-time image and measure the associated properties depends on the number of frames

taken and the number of limb objects detected. For instance, it took 5 seconds to process

118 images taken between 20:59:25 UT and 22:56:25 UT, April 15, 2001 where seven

limb objects were detected. This means that it spent about 0.04 seconds per frame. The

SVM training is performed off-line. The time to classifying an object takes less than 1
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second. Therefore, it takes approximately less than 5 seconds in each frame, which is

quite efficient.

2.5 Discussion and Conclusions

In this chapter, a method to automatically detect eruptive prominences is presented by

using continuous full-disk H a solar images. The experimental results show that the

method works successfully on the eruptive prominences. Only a few insignificant

eruptive prominences are misclassified.

Currently, the method can only work offline because the front-time image is

defined on all the frames, which is obtained after all the frames are taken. In the future, it

is intended to make improvement in four aspects. First, the alternative properties will be

investigated to improve the detection rate. Second, the image segmentation technique will

be improved to avoid losing faint objects by applying image enhancement techniques and

considering consecutive frames instead of a single frame. Third, it will be interesting to

consider the probability of combining the detection of filament and prominence eruption

to improve the detection rate. Fourth, an online version for real-time detection is going to

be developed. Furthermore, extending the current method to detect other limb objects will

be considered, such as jets, macro-spicules or spiclues, all of which are limb ejections

with visible rising motion.



CHAPTER 3

AUTOMATIC DETECTION OF EMERGING FLUX REGIONS

3.1 Introduction

Emerging Flux Regions (EFRs), which form the first stage of active regions, could

appear within active regions and everywhere in the quiet solar surface. Some EFRs

evolve through their life cycle without producing a major activity, while a fraction of

them evolve to flare and Coronal Mass Ejections (CME) productive active regions. It is

believed that flares and CMEs have great impact on space weather, and EFRs play an

important role in trigging them (Ding et al. 2006). Since the prediction of flare producing

of active regions before emergence is a key topic in space weather prediction, it is vitally

important to detect EFRs automatically and in real time.

The EFR is a bipolar magnetic emergence (Bruzek 1977). Initially; it appears as a

pair of small opposite-polarity magnetic dipoles, and then the dipoles move apart from

each other. More fluxes are added gradually after their initial emergence. Most regions

stop growing in less than a day, but sometimes the magnetic flux continues to emerge and

a simple bipolar region may grow into a fully-fledged active region (Strous et al. 1996,

1999; Kubo et al. 2003). Figure 3.1 (a) shows a full-disk MDI magnetogram on April 18,

2002, with an EFR marked, and (b) shows its evolution within a week from its initial

emergence.

28



Figure 3.1 (a) Full-disk MDI magnetogram on April, 18; 2002, 22:24:01 UT, and (b)
evolution of the marked EFR from April 18, 2002, 00:0Q:01 UT to April 25,
2002, 19:11:01UT.
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It is considered that there is no existing automatic EFR detection algorithm

available. However, there is an automatic algorithm to detect Ephemeral Regions (ERs)

presented by Hagenaar (2001). The ERs, similar to EFRs, are short-lived, small emerging

flux regions (Bruzek 1977; Harvey 1993). Though ERs and EFRs may occur at different

origins, there is no clear cut between them (Harvey et al. 1973; Wang et al. 1992). The

most notable difference appears that EFRs have sunspots, while ERs do not. They can be

also be distinguished based on their properties, such as life time, size, flux, and magnetic

field strength. In the ER detection algorithm (Hagenaar 2001), all the major magnetic

flux concentrations are first extracted by a global threshold. Then, two concentrations of

opposite polarities are determined as a dipole based on the distance between their centers

of gravity and the fluxes in two concentrations. After that, the coherent concentrations are

traced in the consecutive frames.

The basic problem to detect EFRs is to extract the pairs of coherent peaks with

opposite polarities. If applying the ER detection method discussed by Hagennar (2001) to

detect EFRs, there would be a major problem. Because the magnetic concentration may

be scattered within a neighborhood, each magnetic concentration of EFRs will be divided

into a group of discrete fragments in the MDI magnetogram after thresholding. Therefore,

it is difficult to decide the group size and re-group these discrete fragments to form a

complete magnetic concentration. Note that the fragments of the same magnetic

concentration should be considered as a whole instead of individual ones.

In this chapter, a new method is proposed to detect EFRs using pre-processing,

the multi-scale circular harmonic filters, Kalman filter, feature vector, and the SVM

classifier. The method involves several steps. First, the projection distortion on the MDI
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magnetograms is corrected. Second, the multi-scale circular harmonic filters are applied

to the MDI magnetograms to extract bipolar regions. The circular harmonic filter is a

powerful technique and has been widely used in signal detection (Lugt 1964; Hsu et al.

1982). It allows rotation invariance, which is important since the EFRs could be in any

orientation. Third, the extracted bipolar regions are traced as candidate EFRs in the

consecutive MDI magnetograms based on Kalman filter. Fourth, after the complete

observation is available, the candidate EFR is classified based on its time profiles of

properties by the pattern recognition technique.

The full-disk MDI magnetograms are used as the data source in this study. The

bright area on the solar surface indicates the fields with positive magnetic signals, while

the dark area indicates the fields with negative magnetic signals The magnetograms can

measure the magnetic flux density distribution. The size of each MDI magnetogram is

1024x 1024 and the time cadence is 96 minutes.

The remainder of this chapter is organized as follows. The pre-processing method

is presented in Section 3.2 and the processing of single frames in Section 3.3. The tracing

and classification of candidate EFRs are discussed in Section 3.4 and Section 3.5,

respectively. The experimental results are shown in Section 3.6. Finally, the conclusions

are presented in Section 3.7.

3.2 Pre-processing Method

The Sun is a sphere, while the observed MDI magnetograms are two dimensional. Due to

projection effect, the pixels close to the solar limb correspond to a larger area than those

near the disk center in the MDI magnetogram. According to Hagenaar (2001), a pixel at
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the disk center corresponds to an area of S = 2"x2". The scaling factor at a point (x, y) ,

whose coordinates are in the Cartesian coordinate system with the origin at the solar disk

center, depends on its position angle a. As illustrated in Figure 3.2, the position angle a is

the angle between z-axis and the line from the origin to the point (x, y, z) , in which

z = VR2 - x2 - y2 , and R is the radius of the solar disk in pixels.

Figure 3.2 The position angle a at the point (x, y).

Therefore, given a pixel (x, y) , the angle a is calculated as

Since a pixel at angle a corresponds to an area of Sl(a) = S / cos a , the size of each

pixel is multiplied by the factor of 1/ cos a to obtain the actual corresponding area.

The MDI magnetogram measures the magnetic flux density at each pixel, and the

observed magnetic flux density is the line-of-sight component of the actual flux density.

The magnetic flux density perpendicular to the solar surface is needed to evaluate at each

pixel. However, in practice it is impossible to estimate the density, since the orientation

of the flux is unavailable. According to Murray (1992), it is assumed that the magnetic

flux density perpendicular to the solar surface, denoted as BI(x, y) , is related to the
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observed flux density, denoted as B (x ; y) ; in such a way that B(x, y) B(x , y) i cos a

where a is the position angle at (x, y) . Thus, the flux (1) 1 (x, y) is computed as

Note that the correction factor used is 1/ cos 2 a , which is different from the one used

by Hagenaar (2001). The estimated flux (10 1 (x, y) will be used for further processing

to replace the observed flux density.

Similar to Hagenaar (2001), only 0 a 60° is considered, because when

a ?_ 60° the correction 1 cos 2 a 4 , and when a —> 90° , 1/ cos 2 a —> co , both

producing severe geometric distortion of EFRs. Figure 3.3 illustrates the correction of an

MDI magnetogram, in which (a) is the original MDI magnetogram, (b) is the image of

1/ cos 2 a , which is resealed for display purpose, and (c) is the corrected magnetogram

whose pixel value is multiplied by 1/ cos 2 a for 0 a 5 60° .

(a) Original MDI magnetogram taken on 22:24:01 UT, April; 18, 2002.

Figure 3.3 Correction of the MDI image, taken on April, 18, 2002, 22:24:01UT.



(b) 1/ cos 2 a image, rescaled for display purpose.
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(c) Corrected MDI magnetogram.

Figure 3.3 Correction of the MDI image, taken on April, 18, 2002; 22:24:01UT.
(Continued)

3.3 Processing of Single Frames

In this section, the extraction of bipolar regions from the MDI magnetograms in single

frames is presented. The circular harmonic filters are applied to correlate with the MDI

magnetogram. The peaks in correlation indicate the locations where the filter closely



34

matches the enclosed object. To match the EFRs of different sizes, multi-scale filters are

applied, all of which are derived from the same base filter. To ensure high discrimination,

the shape of the filter should be close to the EFRs. The strategy aims to derive the filter

from previously observed EFRs. Therefore, the filter is designed using the circular

harmonic decomposition of EFR samples in consideration of rotation invariance.

Some correlation peaks may appear in positive- or negative- flux dominant

regions. Such peaks are false peaks, because the EFR is a bipolar region, which should

contain both positive and negative magnetic fluxes. Therefore, the local positive to

negative flux ratio (LPNFR) at each pixel within the region covered by the filter is

calculated. If the positive and negative fluxes are approximately balanced, the ratio would

be close to 1; while in the positive or negative flux dominant regions, the ratio

approaches to 0.

Note that some high correlation peaks generated by the filter do not cover the

object completely. In other words, the correlation response is generated based on the

incomplete object, though the correlation intensity could be high. The correlation peaks

generated on the complete object are of interest, instead of the partial object. Therefore,

the relative energy ratio (RER) is defined to evaluate how completely the filter covers the

object. If the filter covers the object completely, the ratio is 1; otherwise, it is smaller

than 1.

The product of correlation, LPNFR and RER is calculated at each pixel. In the

combined response, the peaks located in positive- or negative- flux dominant regions or

based on the incomplete objects are suppressed. After applying the filters of all sizes, a

set of combined responses are generated. The peaks in each combined response are



35

extracted by thresholding. They will be traced in the consecutive MIDI frames by Kalman

filter as candidate EFRs.

3.3.1 Multi-scale Circular Harmonic Filter

As aforementioned, the EFR is a bipolar magnetic region containing both positive and

negative concentrations. Figure 3.4(a) shows a sample EFR image, and (b) shows the 3-D

structure of the EFR, in which two concentrations enclosed by two circles can be

observed clearly.

Figure 3.4 (a) A sample EFR image and (b) the 3-D structure of the EFR.

To allow rotation invariance, the filter is designed based on the circular harmonic

(CH) expansion of EFRs. Let f (r, 0) be a sample image, which can be expressed by the

CH components (Premont & Sheng 1993) as

where the CH function fm (r) is
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The function fm(r,0) is the m-th order CH component. The correlation between the image

g(x,y) and the filter fm(r,0 is defined as

where )1" denotes complex conjugate, and g,,, (r; x, y) denotes the m-th order CH function

of the image g(x, y) expanded at (x, y) . Rotation invariance is verified because the

correlation intensity only depends on the CH functions of the image g(x,y) and the

filter fm (r, 0) .

In the EFR detection, the first order CH component f (r, 8) is chosen as the filter

based on the analysis of energy distribution. The energy function fm(r,0) is defined as

By investigating EFR sample images, it is found that more than 50% of image energy is

concentrated on fl (r, 0) and f 1 (r, 0) , indicating that fl (r , 0) and f 1 (r, 0) have the

most discrimination capability. While the MDI magnetogram is real valued, the real part

of f1(r, , 8) is identical to that of f 1 (r, 0) , and the imaginary part of fl (r , 8) is equal to

the negative imaginary part of f 1 (r, 8) . This means the shapes of ,f;(r,0) and

f 1 (r , 0) are same, and the only difference is the phase. Therefore, f1(r, , 8) is used instead

of f_1(r , 0) .

To achieve the highest correlation peak and rotation invariance, a proper

expansion center is chosen for CH decomposition. The center correlation of the CH filter
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is determined by a correlation peak. A proper expansion center is chosen to ensure the

center correlation to be a peak (Premont & Sheng 1993). In most cases, the proper

expansion center is different from the geometric center of the reference image, and there

are several ways of determining it (Premont & Sheng 1993; Garcia-Martinez et al. 1995).

The proper expansion center is chosen through the CH energy map with the peak to the

correlation energy map. The CH energy map is defined as

The pixel value at each location is the center auto-correlation intensity. The maximum

peak is chosen as the expansion center.

To simplify the computational complexity, the magnitude of f 1 (r) is taken at

each radial location. The phase information is discarded because it is assumed that the

phase of f1(r) at each radial location is identical. The next step is to combine the CH

functions of all the EFR sample images. They can not be combined directly because the

flux magnitude and the size of the CH functions are in different scales. Figure 3.5 (a)

shows the CH functions computed from the EFR sample images. The normalization of

CH functions is performed by Mellin transformation (Ren et al. 2003) before combining

them. It is assumed that all the computed functions are derived from the same base

function, and the differences between these functions and the base function are the

magnetic flux magnitude and size scales. Each computed CH function is defined as

where fm 1(r) is the base function, k1 is the size scaling factor, and k2 is the flux

magnitude scaling factor. Then, the transformation is computed as follows:
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The size scaling factor k, can be normalized by T, /T© , and the flux magnitude

scaling factor k2 can be normalized by To2/T1 . The normalized CH functions are shown

in Figure 3.5(b). The average value is taken at each r instance, which is shown in Figure

3.5(c). Figure 3.5(d) shows the averaged CH function computed from 6000 real EFR

samples, of which the maximum is normalized to 1.

0 	 .52

2.0

1.5

05

00r

Figure 3.5 (a) Original, (b) normalized CH functions, (c) averaged CH function, and (d)
normalized CH function computed from 6000 real EFR samples.
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The filter is defined as: (r, 0)	 l(r)exp( j 0) , where AO is the resulting

averaged CH function obtained in the last step as shown in Figure 3.5 (d). The real and

imaginary parts of the resulting filter are shown in Figure 3.6 (a) and (b), respectively.

(a) Real part of the filter	 (b) Imaginary part of the filter

Figure 3.6 The resulting filter derived from the sample EFRs.

Since the EFRs could be of different sizes, they are matched with multi-scale

similar filters. The sizes of the filters are defined as

s, =16x2 `,4 ;	 (3.11)

where i = 0;1, ... ,10 . The sizes of the filters are from 16 x 16 , 19 x 19 until 90 x 90 . The

filter of size s is defined as

where fr (r , 8) is the filter obtained in the previous step and serves as the base filter, and

fr(r,0;si) is the resealed version of size s,.
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The designed filters of all the sizes are applied onto the MDI magnetogram and

obtain a set of the correlation response images. Figure 3.7 shows the magnitude of the

correlation between the MDI magnetogram shown in Figure 3.1 (a) and the filter of size

32 x 32 . The phase of the correlation, which is not shown in the figure, indicates the

rotation angle between the object and the filter at each pixel location.

Figure 3.7 The magnitude of the correlation between the MDI magnetogram shown in
Figure 3.1(a) and the filter of size 32x 32 .

3.3.2 Local Positive-to-Negative Flux Ratio

Some correlation peaks may happen in the positive or negative flux dominant regions.

Such peaks should be suppressed since each EFR contains both positive and negative

magnetic flux concentrations. Therefore, the local positive-to-negative-flux ratio

(LPNFR), denoted as ro (x, y; s ; ) , is defined at each pixel as
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where (1),(x, y; s ) and (DI_ (x, y; s,) are the total positive and negative fluxes in the

neighboring area represented by {(x', l√(x'—x)2 + (y'—y) 2 s,} . The calculation can be

conducted in the frequency domain for speedup. A sample of the LPNFR map is shown

in Figure 3.8, where the bright parts correspond to the positive and negative flux balanced

regions based on the filter of size 32 x 32 .

Figure 3.8 Positive-and-negative-flux ratio map of the MDI magnetogram shown in
Figure 3.1 (a), with the filter of size 32x 32.

3.3.3 Relative Energy Ratio

The peaks that the correlation is evaluated based on the complete object in the correlation

response image are of interests. However, some peaks are generated even if the filter

covers the object partially. To suppress such peaks; the relative energy ratio (RER),

denoted as rE(x,y;si), is defined as
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where E(x, y; s,) is the energy of the MDI magnetogram in the neighboring area of

(x, y) with size s , and S is a controlling parameter. If a larger g is chosen, the more

correlation peaks are preserved; otherwise more suppressed. According to the

experiments, S is set to 0.1. The E(x, y; s,) is defined as

where g denotes the MDI magnetogram. Figure 3.9 shows the RER map of the MDI

magnetogram shown in Figure 3.1 (a), in which s, = 32 .

Figure 3.9 Relative energy ratio map of the MDI magnetogram shown in Figure 3.1 (a),
with the filter of size 32 x 32

3.3.4 Combined Response

After applying the filter of size s,. C(x, y; si ), r(x, y; s.) , and rE (x, y; s.) are determined.

Then; they are multiplied together to be the combined response D(x, y; si) corresponding

to the filter as follows:



Figure 3.10 shows the combined response image of the filter of size 32 x 32 , where quite

a lot peaks found in Figure 3.7 have been suppressed because of the low LPNFR and

RER. After applying the filters of all sizes, a set of combined responses are obtained.

Figure 3.10 The combined response image of the filter of size 32 x 32 .

3.3.5 Bipolar Region Extraction

Bipolar regions are extracted from each combined response image by the local maxima

filter, whose size is equal to the one of the filter generating the combined response, and a

global threshold n1. The peaks, of which the magnitude is greater than n1 , , are selected. In

the experiments,n1 set to 6. The peaks picked up from the combined response image

are shown in Figure 3.11. A larger threshold would lead to lose small bipolar regions

which could be EFRs in the initial status, while a smaller threshold would pick up more

small noisy bipolar regions. After combining all the responses, a set of extracted peaks

are obtained. The corresponding bipolar regions are then determined based on these
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peaks, because their centers are located at these peaks and their sizes are equal to the

sizes of the filters generating these peaks. The bipolar regions are further investigated to

trace the candidate EFRs.

Figure 3.11 The peaks picked up from the combined response image in Figure 3.10.

3.4 Tracing Candidate Objects

There are many popular tracking algorithms that can be used in tracking multiple targets

(Bar-Shalom 1978; Bar-Shalom & Fortmann 1988; Musicki et al. 1994; Musicki &

Evans 2002). The Global Nearest Neighbor method is combined with Kalman filter to

trace the candidate EFRs. The global nearest neighbor method is carried out in the state

space, and the bipolar region closest to the predicted state of the candidate EFR is picked

up to update the track. The Kalman filter is used to estimate and predict the state of the

candidate EFR.

Kalman filter was developed by Kalman (1960). It is basically a recursive filter to

estimate the future variation of a dynamic system from a sequence of incomplete and
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noisy measures. It has been applied in research and applications in signal processing,

automatic control, and radar tracking extensively. More references could be found in

(Welch & Bishop 2001; Maybeck 1979; Sorenson 1970; Grewal & Andrews 1993).

Each candidate EFR is assigned with an individual Kalman filter to evaluate its

state. The candidate EFR either evolves to one of newly extracted bipolar regions or

disappears. For each candidate EFR, the probability that a certain bipolar region is its

new observation is evaluated by Kalman filter. The bipolar region with the highest

probability is picked up as the new observation of the candidate EFR. If a bipolar region,

not picked up for candidate EFRs, is distinguished enough from others, a new tracking

will be initiated for it.

3.4.1 Background of Kalman Filter

Kalman filter, based on linear dynamical systems discredited in the time domain, is used

to estimate the state of an object. The state is represented by a vector of real numbers. Let

x,, denote the state vector, in which i is the global index of the object and j is the time

step. The evolution of the object is governed by the following linear stochastic difference

equation (Welch & Bishop 2001):

Here, A
11

 is a transformation matrix, which relates the state at the previous time step j-1

to the state at the current step j; and it may vary with time steps or objects. The matrix

B, 1 relates the optional control input ui ,j to the state x, j . w,, is a zero-mean Gaussian

noise with the covariance Q .., . Let zk,j denote the k-th measurement at time step j. If
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zk,J is the observation of the i-th object at time step j, it is supposed to be the sum of a

linear projection of xj,j and a Gaussian noise v, , defined as:

where His the projection matrix and vi j is a zero-mean Gaussian noise with the

covariance 1?,, .

In practice, usually it is impossible to obtain the exact value of the state x
11

, so it

has to been estimated based on the observations. Let	 be the state estimate of the i-th

object at the time step]. It is assumed that the difference between 	 and xi,j is a zero-

mean Gaussian distribution, and let Pi,j denote the error covariance matrix. Thus,

There are two distinct phases while applying the Kalman filter: predict and

update. In predict phase, xi,j and P are predicted based on the priori knowledge, and in

update phase, they are updated based on the new observations.

In the predict phase, the priori state estimate is denoted as 	 , and it is estimated

as follows:

Let P,5 denote the priori error covariance estimate, and it is calculated as follows:

In the update phase, as the new observations are available, the state estimate

and the error covariance estimate Pe , should be updated, as follows:



3.4.2 Applying Kalman Filter

To apply Kalman filter, it is necessary to define the following variables: x,, , Ai,J ,

ui,j, Ql,j,zkH and k J . The state vector x, 1 is defined as:

where 0 and	 are the latitude and longitude of the bipolar region center in the spherical

coordinate system, (1)+ and (I) - are the sum of the positive and negative pixel values

within the bipolar region in the MDI magnetogram, v8 , vfl , g+ and g - are the first

derivatives of e, 13, V and (I) - with respect to time, respectively. The transformation

matrix A:: is defined as a 8 x 8 matrix defined as follows:

47

where At is the time interval between two consecutive MDI magnetograms in seconds.

In this application, the matrix B, ) and the input u, j vector are not necessary, so they are
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ignored. Note here it is not necessary to calculate the solar differential rotation angle

(Song & Wang 2005) explicitly, instead it is evaluated by Kalman filter implicitly.

In eq. (3.17), the noise w,, represents the accuracy of the linear dynamics model,

and the larger covariance means that the model is less accurate, while smaller covariance

means that it is more trustable. For simplification, it is assumed the distribution of w,, is

identical for all the candidate EFRs at any the time step. So the subscripts of w 11 and the

covariance matrix Q, j are dropped in the following discussion. In the experiments Q is

set to

7.01e - 6 - 5.15e -9 - 2.90e -1 - 2.06e -1 6.05e-10 - 2.05e -12 -1.32e - 5 - 3.17e - 5
-5.15e-9 1.03e - 8 -1.16e - 2 -5.81e-3 -1.79e-12 8.73e-13 - 5.46e - 7 -3.13e - 7
- 2.90e -1 -1.16e - 2 7.14e + 5 3.77e + 5 - 7.77e - 6 - 3.41e - 7 5.33e+1 3.35e+1
- 2.06e -1 - 5.81e - 3 3.77e + 5 6.19e + 5 - 2.62e - 5 - 2.83e - 7 3.28e+1 5.76e+1
6.05e-10 -1.79e-12 - 7.77e - 6 - 2.62e -5 7.70e-14 - 2.66e -16 -1.31e - 9 - 4.91e - 9
-2.05e-12 8.73e-13 -3.41e-7 - 2.83e- 7 -2.66e-16 1.10e-16 -5.52e-11 -4.43e-11
-1.32e - 5 - 5.46e - 7 5.33e+1 3.28e+1 -1.31e - 9 - 5.52e -11 6.41e - 3 4.28e - 3
-3.17e-5 -3.13e-7 3.35e+1 5.76e+1 - 4.91e - 9 - 4.43e -11 4.28e-3 7.55e-3 i

Like the state vector x j , , the observation vector zicj is also defined as

where 0, /3 (I)+ and	 are measured from the k-th bipolar region directly, while v ° ,

, g+ and g - can not be determined in the absence of the previous observation. But

when the i-th candidate EFR is concerned, suppose 1 _ 1 is its previous observation at

time step j-1, and then the values of v e ,	 , g+ and g - are computed as follows:

(3.27)



49

where zk J (4 : 7) represents the last four components of zk,j , while zk ,(0 :3) and

(0 :3) are the first four components of zk,j and Z1,_lrespectively.

The projection matrix H is simply set to a 8x 8 identify matrix in this

application. As for R1 j , it is also assumed the distribution of observation noise v, j is

identical for all the candidate EFRs at any the time step, so the subscripts of v,, and its

covariance matrix Ri,j are also dropped. In this experiments, the matrix R is set to

-
3.93e-6 7.47e-8 8.31e+1 4.88e+1 3.14e-11 1.40e-11 4.51e-5 5.91e-5
7.47e-8 3.88e-6 -7.66e-1 -2.35e-1 1.31e-11 3.41e-10 -7.29e-5 -4.31e-5
8.31e-1 -7.66e-1 1.18e+8 7.31e+7 8.81e-5 -5.59e-5 6.51e+3 3.69e+3
4.88e-1 -2.35e-1 7.31e+7 1.24e+8 9.98e-5 -3.59e-5 3.64e+3 6.80e+3
3.14e-11 1.31e-11 8.81e-5 9.98e-5 1.16e-13 3.64e-15 -1.73e-8 -1.97e-8
1.40e-11 3.41e-10 -5.59e-5 -3.59e-5 3.64e-15 1.19e-13 -2.11e-8 -1.33e-8
4.51e-5 -7.29e-5 6.51e+3 3.64e+3 -1.73e-8 -2,11e-8 2.24 1.25

_ 5.91e-5 -4.31e-5 3.69e+3 6.80e+3 -1.97e-8 -1.33e-8 1.25 2.33

The values of matrices Q and R are both determined based on the statistics.

3.4.3 Updating State of Candidate EFRs

To determine the new state of a certain candidate EFR, its state is first predicted by

applying Kalman filter. Then the Mahalanobis distance between it and all the newly

extracted bipolar regions is calculated, and then pick up the one closest to it as its new

observation at the current time step. Finally, the state for the candidate EFR is updated

based on the new observation.

There are two assumptions: 1) a newly extracted bipolar region can be assigned to

at most one candidate EFR; 2) a candidate EFR either evolves to a newly extracted

bipolar region, or disappears forever. As for assumption 1, since the EFRs are distributed
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over the solar disk sparsely, it should hold in most cases. As for the assumption 2, it is

found that once the track of an EFR is initiated, it will seldom be lost until the

disappearance. Therefore, the "lost-and-return" phenomena are not considered.

As mentioned above; first the next observation of current candidate EFRs should

be determined. It is done based on the Mahalanobis distance between the candidate EFR

and each newly extracted bipolar region. The distance is denoted as M 1 (k) , where k

and i are the indexes of the bipolar region and candidate EFR respectively, and j is the

time step. Based on 7i, :j and zk,j , the distance M, (k) is calculated as follows:

where W is the covariance matrix. Based on statistics, in the experiments, it is set to

1.09e-5 6.95e-8 5.41e+1 2.82e+1

6.95e -8 3.89e -6 - 7.77e -1 - 2.40e -1

5.41e-1 -7.77e-1 1.19e+8 7.34e+7

2.82e -1 - 2.40e -1 7.34e + 7 1.25e +8 _

The bipolar region closest to the candidate EFR will be assigned to the candidate EFR as

the new observation. But if the distance is greater than the threshold 772 , which is set to

50 in the experiments, the assignment will be invalid and the disappearance of the

candidate EFR will be reported; otherwise, the state vector and error covariance matrix of

the candidate EFR will be updated based on the new observation by using eq. (3.22) and

(3.23).

It is possible that two or more candidate EFRs get closer and closer and even

evolve to the same bipolar region. If so, only one candidate EFR will be preserved, and
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all the others will be dropped and not traced any more. Similar to eq. (3.31), the distance

between two candidate EFRs is defined as follows:

If the distance is less than the threshold 77 2 , the candidate EFRs are too close. Then one

of them should be selected for further tracking and dropped the others. The selection

criterion is based on the average drift distance of the i-th candidate EFR, denoted as M1,1,

and it is defined as

where M11 = min(Mi,j (k)) and p is set to 0.5 in the experiments. If p is smaller, M 11 is

more sensitive to ; otherwise fa,, trusts its previous values more. The candidate

EFR with the smallest /14 ., j will be preserved.

3.4.4 Identifying New Candidate EFRs

After the states of all candidate EFRs have been updated, some bipolar regions are picked

up as new observations of canididate EFRs. All the remaining bipolar regions are

checked for new tracking. Based on the covariance W , the distance between a bipolar

region and all the other regions, including the existing candidate EFRs and other bipolar

regions, can be calculated similar as eq. (31) or (32). If the minimum distance is greater

than the threshold 173 , which is set to 500 in the experiments, a new track will be

initiated and the bipolar region will be traced as a new candidate EFR. The first four

components of its )7,,, are measured from the bipolar region and the last four components
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are all set to zeros. The initial error covariance p can be set to an arbitrary large value,

and it is set to the sum of the matrix Q and R in the experiments. The average drift

distance Mi,j can be set to an arbitrary large value, and it is set to 173in the experiments.

3.5 Classification of Candidate Objects

After the complete observation of a candidate EFR is available, a feature vector is

defined based on the properties measured during the observation time. A Support Vector

Machine (Vapnik 1998) classifier is then applied to distinguish the EFR from all the other

bipolar regions.

3.5.1 Property Measurement

Each candidate EFR is traced in consecutive frames from its initial appearance until it

disappears from the field of view. In each frame, the properties are measured, such as

location, orientation, distance between two polarities, and the positive and negative

magnetic fluxes. Thus, the corresponding time profiles of proprieties can be constructed

for further investigation.

The time span of growing period is critical to distinguish the EFR from other

regions, as well as the property profiles during the growing period. Therefore, the

growing time should be determined from the time profile of total magnetic flux.

Typically, the total magnetic flux increases from the beginning to the maximum and then

decreases. Its time profile is convolved with a Gaussian function with the standard

deviation of 1.5, and then the maximum is picked up as the end of the growing period.
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Thus, the growing period is determined. The following properties of each candidate EFR

are measured during the growing period:

a. Time span of the growing period, denoted as t .

b. Growing rate of total flux magnitude, denoted as kf  .

c. Initial relative energy ratio, denoted as r E°. It is the mean value of relative energy
ratio measured from the first three frames.

d. Initial total flux magnitude, 'denoted as fa  . It is the mean value of the total flux
magnitude measured from the first three frames.

e. Initial distance between two polarities, denoted as d o . It is the mean value of the
distance between tow polarities measured from the first three frames.

f. Correlation between the positive and negative magnetic fluxes, denoted as p+ . It
is the correlation between the positive and negative flux magnitudes during the
growing period.

g. Mean local positive to negative flux ratio, denoted as0	 .

h. Positive to negative flux growing rate ratio, denoted as rk . It is defined as
2k+ k_

rk =  2 	2 , where k„ and k_ are the growing rates of positive and negative flux
k, t k_

magnitude respectively.

i. Growing rate of the distance between two polarities, denoted as kd .

j. Maximum total flux magnitude, denoted as fmax

k. Mean relative energy ratio, denoted as rE .

Hence, an eleven-dimensional vector v = (t,k1,rE0, fo , d© , p÷ ,rø,,rk,kd, fmax , rE ) is defined

for the candidate EFR.



54

3.5.2 Object Classification

The support vector machine (SVM) is applied to classify the candidate EFRs. The SVM,

introduced by Vapnik (1998), is based on statistics learning theory for the two-class

classification problem. The idea is to map the input patterns to a high-dimensional feature

space and construct an optimal hyper-plane to separate all the patterns (Guyon & Stork

2000). Different kernel functions can be used, such as linear, polynomial, sigmoid, and

radial basis function. The polynomial of degree 2 is chosen as the kernel function in the

experiments.

The classifier requires training prior to testing. Each candidate EFR in the training

set is represented as the feature vector defined above and is classified by human

inspection. A label is associated to each candidate EFR. Then, the SVM classifier takes

the input patterns and the associated class labels to compute the optimal decision hyper-

plane. After that, the SVM classifier is ready to test an unknown bipolar region.

3.6 Experimental Results

The method is implemented in the RSI Interactive Data Language (IDL) together with the

Solar SoftWare (SSW) IDL library (Freeland & Handy 1998). The IDL program runs on

a Dell Dimension 4600 with an Intel Pentium 4 processor (2.8 GHz) and 1.0 GB memory

under Fedora Core Linux 4.0.

The MDI magnetograms in 2001 and 2002 are used as the data set in the

experiments. The program is first applied on all the magnetograms, resulting 3234

candidate EFRs detected, including 186 EFRs and 3058 non-EFRs. This list does not

include the objects that exist in less than 9 hours or of which the maximum total magnetic
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flux is less than 3.15 x 10 21 Mx, which is verified visually. All the included objects are

classified by human inspection. A feature vector is assigned to each detected object.

Next, half of samples are picked up randomly for training and the remaining for

testing. That is, 93 EFRs and 1529 non-EFRs are picked up randomly for training, and

the others are used for testing. The experiment is repeated 100 times and the average

classification rates are computed. The results show that the detection rates of EFRs and

non-EFRs are 96.4% and 98.0%, respectively. But since the number of non-EFRs is

much larger than that of EFRs, among the EFR events reported by the program, only

74.3% of them are true EFRs, which means the false alarm rate is 25.7%.

The computational time can be divided into several parts. First, it takes 0.015

seconds to conduct the pre-processing and 40 seconds to process a single frame and

extract bipolar regions. The time to trace the candidate EFRs and measure the associated

properties depends on the number of candidate EFRs detected. Typically, it takes 1.5

seconds to process the objects in a frame, if the disk I/O is not considered, which can be

avoided by implementing the detection method in on-the-fly way. The SVM training is

performed off-line. The time to classifying an object takes less than 1 second. Therefore,

it takes approximately about 45 seconds to process each frame, indicating that 68 hours

are needed to process all the magnetograms in a year.

3.7 Discussion and Conclusions

In this chapter, a method is presented to automatically detect emerging flux regions by

using continuous MDI magnetograms. The experimental results show that the method can

be used to automatically detect EFRs based on consecutive MDI magnetograms



56

effectively. In most cases, the circular filters captured the most EFRs' centers and sizes

correctly, and Kalman filter worked effectively to estimate and predicate the states of

candidate EFRs.

By analyzing the misclassified objects, it is found that the main reason is that the

diversity of the EFRs' shape caused the circular harmonic filters of the same shape to be

less effective to detect the EFRs of irregular shape. It means if the shape of an EFR is

irregular, its center would be either lost or mis-determined, and thus the associated

properties could not be measured correctly. To address this problem, the joint composite

filter will be considered to match EFRs of diverse shapes more closely. The composite

filter may be more important for detecting active regions, of which the shape diversity is

much more than that of EFRs.

Another reason is that it was noticed that the "lost-and-return" happened in the

experiments, though it did not happen frequently, especially when the significant EFRs

are traced. When the "lost-and-return" happens, the track of the candidate EFR would be

interrupted and the property time profiles could not be continuous and accurate, which

also leads to misclassification. To address this problem, Joint Probability Data

Association (JPDA) rule should be considered, which is more robust than the Global

Nearest Neighbor method used currently.

Besides, the complex background around the object may also degrade the

classification rate. Because if the object is located in complex background and there are

other magnetic concentrations around it, the false correlation peaks may be generated

based on un-matched concentrations and the true peaks could then be overwhelmed.
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In the future, the improvement will be made in the following aspects. First, the

joint composite filter would be considered to match object more closely. This method

will be also extended to detect active region and monitor the relationship between the

EFR and its nearest active region, since it is of interest for space weather predication

study. Second, other tracking algorithm, such as IPDA, JPDA and JIPDA, will be

investigated to improve the track performance. Third, alternative features will be

evaluated to continue improving the classification rates.



CHAPTER 4

SOLAR FLARE PREDICTION

4.1 Introduction

Solar flares and coronal mass ejections (CMEs) are the most important solar explosive

phenomena as far as space weather effects are concerned. Although physical mechanisms

of energy buildup and release are not yet fully understood, from the observational point

of view, flares and CMEs originate preferentially in magnetic regions with strong field

gradients and magnetic shear, long polarity-inversion lines and complex polarity patterns

(e.g., Falconer 2001; Falconer et al. 2003; Song et al. 2006; Wang et al. 2006; Schrijver

2007, etc.).

Forecasting the occurrence of solar flares from the analysis of solar photospheric

magnetogram data is an important and challenging task in the solar physics research. The

earlier predictions were more based on McIntosh classification of sunspots (McIntosh

1990) or relying on observer's experience (e.g., Zirin and Marquette, 1991). In recent

years, the statistical correlation between a variety of photospheric magnetic parameters

and flare productivity of source regions have been investigated in many studies, and some

parameters are found to be positively correlated with the probability of a region to

produce a major flare (Falconer et al. 2002; Leka & Barnes 2003a, 2003b, 2007; Jing et

al. 2006; Schrijver et al. 2005; Schrijver 2007; Song et al. 2007).

The purpose of this study is to develop a mathematical tool to predict the density

function of flare peak intensity or soft X-ray flare index based on a set of magnetic

parameters. It is proposed to divide this problem into two parts: the prediction of the

occurrence probability of significant flares, such as X-, M- and C-class flares, and the

58
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prediction of probability density function of flare peak intensity or flare index under the

flare occurrence assumption. The first part of the problem can be solved by using ordinal

logistic regression (Song et al. 2007) or kernel logistic regression (Wahba et al. 1995),

since the output is dichotomous (0 or 1). The other part is more challenging, since its

output should be the whole probability density function of flare peak intensity or flare

index. This chapter is focused on the second part of the problem.

A novel two-step conditional density estimator is proposed in this chapter by

combining kernel-based nonlinear regression and moment-based density function

reconstruction techniques to solve the problem. Compared with traditional double-kernel

density estimator, the new method can easily handle high dimensional data set, while it

would be quite difficult to apply the double-kernel density estimator in this case. The

capability of handling high dimensional data is essential in this problem, since scientists

are looking for various magnetic parameters to predict solar flares, therefore, the

parameter vector is multi dimensional, and it would be extended further when new data

sources become available.

4.2 Dataset and Magnetic Parameters

The dataset includes 2972 active regions (NOAA 07961 to 10932) observed from 1996 to

2006. To predict the density function of solar flare peak flux (in W /m 2 ), 1017 C-, M-

and X-class solar flare events were selected, if they are located in an active region, whose

position angle is less than 30 degrees from the solar disk center. To predict the density

function of solar flare index, 530 active regions close to the disk center and associated

with at least one significant flare were selected and analyzed.
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For each active region, three magnetic parameters, including total unsigned

magnetic flux Tflux , energy dissipation Ediss and length of strong-gradient neutral line

Lgnl. These parameters are chosen primarily because they can be derived directly from

the MDI line-of-sight magnetograms and have historically shown their potential in flare

forecasting (Jing et al. 2006; Song et al. 2007). The procedures of deriving three

magnetic parameters are well described in Jing et al. (2006) and Song et al. (2007).

The flare peak intensity, denoted as I, was read from Solar Geophysical Data

(SGD) flare reports. The flare index (in 10 -6 W / m 2 ), denoted as FI, is defined as

by weighting the flare peak intensities of X-, M-, C- and B-class flares within the

specified time window as 100, 10, 1 and 0.1, respectively (Abramenko 2005).

4.3 Mathematical Modeling

The solar flare prediction of the density function of either I or FI is modeled as the

conditional density estimation (CDE) problem. Given a set of magnetic parameters, either

I or Fl is treated as a random variable, and then try estimating the associated probability

density function.

The task of CDE is to estimate the probability density function of a random

variable y, denoted as frlx (y I x) , give a specific value of x, where y E R and x E R d . In

this application, y is either I or Fl and x is the magnetic parameter vector. Usually, start

with a sequence of observations (X 1 ,	 (X n,Yn), and these observations will be used

to train the model. The CDE can be considered as the generalization of regular
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regression, whose goal is to estimate conditional mean, and quantile regression, which

aims to model conditional quantiles. The conditional density function plays a critical role

in various prediction problems, since it provides a complete description of the stochastic

behavior of the response variable based on its covariates.

The CDE problem was first introduced by Rosenblatt (1969), and typically this

problem is solved by non-parametric methods, and the best well-known conditional

density estimators are named as the double-kernel estimators, including Nadaraya-

Watson estimator and its extensions (Nadaraya 1964; Watson 1964; Hyndman et al.

1996; Hall et al. 1999; Fan et al. 1996; Fan & Yao 2003). In these kernel-based

conditional density estimators, the kernel function plays a critical role, which is a

symmetric weight function and serves as a smoothing factor. The choice of specific type

function is not crucial, and usually a Gaussian function is selected to serve the purpose.

On the other hand, the bandwidth is much more important, and there are several

bandwidth selection rules that have been proposed in the literature to determine optimal

bandwidths (Bashtannyk & Hyndman 2001; Fan & Yim 2004; Hall et al. 1999; Hall et al.

2004). These double-kernel estimators are used most widely and applied to a broad range

of application problems, the success is due to the fact that little assumptions is necessary

to be made about the parametric form of fY│X (y lx) , and thus these methods are quite

flexible and capable of approximating any functions. It is very desirable, especially when

handling complex data and little knowledge is available about the underlying density

function. But the main problem of these methods is that their performance depends

heavily on the selection of bandwidths. Unfortunately, the selection of good bandwidths

is not a trivial task and usually it's difficult to determine the optimal values of bandwidth
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based on finite samples (Pritsker 1998). It becomes worse when high dimensional

covariates are involved (Pritsker 1998). So due to this fact, currently these methods seem

to have confined to bivariate datasets, and are difficult to be applied in multivariate cases.

To address the problem of the double-kernel estimators, an alternative conditional

density estimator is proposed to solve the problem. The method involves two main steps.

First, the conditional moments are estimated based on nonlinear regression analysis, and

then the conditional density function of the response variable is recovered based on the

moments. To achieve the high accuracy of the estimation of conditional moments of

response variable, machine learning techniques are adopted in the nonlinear regression,

which can handle high dimensional data easily. It should be noted that the moments can

uniquely determine its probability density function. Therefore, if a sufficient number of

moments are available, its density function can be approximated based on these moments,

which is known as a moment problem (Shohat & Tamarkin 1943; Akhiezer 1965).

4.4 Double-kernel Methods

Suppose that the observations (X 1 , )	 (Xn, ) , where V, E R and X, E R d , are

available, and they are generated by a underlying joint density function fX,Y(x,y). It is

assumed that they are strictly stationary, independent and identically distributed. The goal

is to estimate the conditional density function fylx (ylx) based on the available

observations. The scalar case of X is presented in this section, and the functions used in

multivariate case should be similar and be easily deduced.

The conditional density function fY│x (y I x) can be defined as:



(4.6)

(4.7)

so if the marginal density function f x (x) and joint density function f (x, y) are

estimated first, the conditional density function f, ix (y I x) can be estimated as:

where fx,y y) and ix (x) are the kernel estimators of f x y (x, y) and fx (x) ,

respectively. By applying the kernel function, the :1/46, 1x (y I x) and fx (x) can be estimated

as follows:

where h1 and h2 are bandwidths, W is a kernel function, and Wh (x) = 1/hW (x/h) . In general,
h h

the kernel function K should be a symmetric weight function and possess the following

properties:

.1W (x)dx =1,

xW (x)dx = 0

The specific choice of the kernel function is not critical (Mays & Gamlin 1995), and

usually a Gaussian density function is selected. By plugging the eq. (4.4) and (4.5) into

eq. (4.3), it is changed to



which is known as Nadaraya-Watson estimator (Nadaraya 1964; Watson 1964), and is a

classical kernel density estimator.

Fan et al. proposed a direct estimator based on local polynomial regression,

considered as the extension of Nadaraya-Watson estimator (Fan et al. 1996). It is noted

that as h1 --> 0 ,

and thus f y│x (y I x) can be estimated by regressing Whl (Y — y) on X. To apply local

polynomial regression, g(x;a) is defined as a polynomial of degree p, in which a is a

parameter vector (ac,α, ...,αp ),such that

The optimal value of a is defined as

The details of compute a are presented by Fan et al. (1996). Once the optimal value a

is obtained, /fix (x, y) = do . Thus, fyIx (x, y) can be estimated by regressing Whl (Y — y)

on X

Let g(x; a) be a linear function, which means p =1 in eq. (4.10), and the

alternative method based on local polynomial regression would be reduced to Nadaraya-

Watson estimator, which is the reason that this method is considered as the extension of



65

Nadaraya-Watson estimator. In both of these methods, the kernel function is used twice.

in both x and y direction, respectively, they are named as double-kernel estimators.

In double-kernel density estimation, the bandwidths are critical for the

performance of the estimators, and it is trickier to select good bandwidths than kernel

functions. There are several methods proposed in the literature to select good bandwidths,

such as bootstrap, cross-validation or plug-in (Bashtannyk & Hyndman 2001; Fan & Yim

2004; Hall et al. 1999; Hall et al. 2004).

The nonparametric estimators are quite flexible, since they make little

assumptions on the target conditional density function. The freedom from parametric

assumptions makes it able to handle complicated density functions, so the double-kernel

estimators have been applied in a very wide class of problems successfully.

The main limitation of double-kernel estimators is that the double-kernel

estimators seem to have confined to the bivariate case up to now. The main reason for

this limitation is the difficulty of selecting optimal bandwidths from finite data samples

especially in the presence of high dimensional data. Although there are a couple of

methods proposed to select bandwidths, it is still a tough task in many cases, and it

becomes even worse in multivariate case. But, in many application problems, high

dimensional covariates are essential, since they are more informative than one-

dimensional covariates and help to reduce the uncertainty of the conditional density

estimation. Due to the limitation of double-kernel estimators, they can not handle such

multivariate data very well, and thus the estimation can not be done based on high

dimensional covariates.
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4.5 Moment - based Conditional Density Estimator

In this section, a new method is described to solve the CDE problem and overcome the

main limitation of double-kernel estimators reviewed in the last section. This method

involves two main steps. First, conditional moments of the response variable Y are

estimated based on the given covariates, and then the condition density function of Y is

constructed based on the estimated moments. To handle high dimensional covariates and

achieve high accuracy, the machine learning techniques, which was introduced in

Support Vector Machine (SVM) (Vapnik 1995; Vapnik 1998), and the kernel trick

(Muller et al. 2001) are adopted to do nonlinear regression and estimate conditional

moments. After that, the probability density function is constructed based the estimated

moments (Shohat & Tamarkin 1943; Akhiezer 1965). There are a couple of available

methods making use of Pearson Curves (Solomon & Stephens 1978), saddelpoint

approximations (Reid 1988) or inverse Mellin transform (Mathai & Saxena 1978). In

these methods usually exact moments are required; otherwise the reconstructed density

function could be easily ruined by the estimation errors. Instead, a unified method is

presented by Provost (2005), and approximated moments are required, which is more

feasible in this application.

4.5.1 Normalization

Before proceeding to the next section, there are two suggestions for the implementation

of conditional density estimation. First, it is suggested to preprocess the original

observations as follows:
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where X ,. is the j-th component of Y, , X. 1	,...,X„11 and Y = {Y,	 Y,, . Thus,

each component of X and Y are mapped into [-1, 1]. Such mapping is not necessary

theatrically but very helpful in practice, because the higher moments of Y could easily

become intractable if we do not do the mapping.

4.5.2 Conditional Moment Estimation

As mentioned above, the first step is to estimate the conditional moments of the response

variable Y, denoted as E(Y'), where i=0,	 m, and clearly, E(Y° ) =1. To handle the

high dimensional covariates and achieve high accuracy, the nonlinear regression is

applied based on kernel trick and estimate the condition moments of Y. Here, the kernel

trick is a method for converting a linear regression algorithm into a non-linear one by

using a non-linear function to map the original covariates into a higher-dimensional

space, and this makes a linear regression in the new space equivalent to non-linear

regression in the original space. The non-linear regression is more powerful than linear

regression and capable of capturing complex relationship between the response variable

and the covariates. Besides, please note that the kernel function in machine learning is

different from the counterpart in statistics, such that it is a function used to calculate the

dot product of two vectors.
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Given a specific covariate X, it is proposed to estimate its conditional moments in

the following two steps:

(1) Compute the feature vector Q(X) by projecting X onto the principal

components of the training dataset in the higher dimensional feature space, which are

extracted by using Kernel Principal Component Analysis (KPCA) (Schðlkopf et al.

1998).

(2) Apply the linear transform to determine the output. The weight vector used in

the linear transform is determined by applying linear regression analysis on the training

dataset. Since the linear transform is conducted in the higher-dimensional feature space, it

is equivalent to the non-linear transform in the original space.

First of all, the KPCA should be applied to extract the principal components of

the training dataset. The KPCA is the kernel version of the traditional Principal

Component Analysis (Schðlkopf et al. 1998). Suppose a sequence of observations,

(X1 , YI) ,..., (X, , ) , are avaiable. Consider a mapping function 0 transforming the

original vector X to a higher-dimensional vector ø(X), and thus construct a new space

spanned on 0(X 1 ),	 Ø(X„) . Then a kernel matrix K of dot products can be defined as

K = D T (I) , 	 (4.14)

where (1) = [0(X1 ),0(X2 ),...,Ø(X n )]. Let K . denote the element in the i-th row and j-th

column of the matrix K, and	 = (.0(X ,),0(X J)) . Since the feature space is spanned on

n sample vectors, the dimension of all the data lying in this space should be lower than n

and equal to the rank of the kernel matrix K.
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Next, a mapping function 0 should be chosen to make the kernel matrix K fully

defined. After a specific mapping function 0 is chosen, the original X can be mapped into

0(X) and then element of K is computable. But the explicit mapping X into 0(X) should

be avoided, because it is inefficient and unnecessary. Instead, a function should be

applied to compute (0(X ,),0(X j )) directly, which is far more efficient and flexible than

using the explicit mapping, and such function is named as kernel function, denoted as k .

Note that kernel function used here is totally different from that mentioned in the last

section, which is a symmetric weight function. The implementation of the kernel function

determines the exact form of the mapping function implicitly, and thus the inner products

can be computed in the kernel space efficiently without explicit mapping of Xs.

Typically, there are many choices for kernel functions, and common kernel

functions are listed as follows (Muller et al. 2001):

Table 4.1 Common Kernel Functions

Any of the functions can be used as the kernel function to compute the inner products.

But an interesting function is developed as follows:



where d is the degree of the polynomial that will be used. The details of the inference of

this kernel function can be found in the appendix. With larger value of d, more

complicated function can be approximated, but usually more training samples are needed.

The developed kernel function is of interest, because it implies to use the Taylor

expansion as the mapping function. The motivation to develop this kernel function is

explained using the following basic example. Suppose X is a scalar, and then model the

relationship between X and Y, denoted as fy (x) The underlying relationship is not

available and it has been estimated from the available observations. The function

fy (x) could be quite complex, but usually it could be approximated by using a

polynomial, according to the Taylor's theorem. The following Taylor expansion at the

origin is used to approximate the unknown function fy (x) :

where d is the arbitrary degree of the polynomial, and Rd is the remainder term and

would be quite small if x is close enough to 0. Ignore Rd and rewrite eq. (4.16) in vector

notation:

The right-hand side of eq. (4.15) is the inner product of a vector (I, x, x 2 ,..., X d )T and a

weight vector, which can be determined based on linear regression analysis. So let the
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mapping function 0 be the function which maps the original x into a vector

(1, x, x 2 ,..., xd)T . It is believed that the mapped vectors 0(x) should carry sufficient

information for modeling the relationship between Y and original X. Then calculate the

which is a special case of eq. (4.15) such that u and v are both scalars. In case that u and v

are both vectors, the kernel functions can be found in the appendix.

After the kernel function k is selected, the kernel matrix K is then determined. The

kernel function defined in eq (4.14) is applied to construct the kernel matrix K. Note that

the degree d in the kernel function has not been determined yet. The selection of d will be

discussed later in this section, and now assume it has been determined temporarily. Then,

extract the principal components of the feature space, which are the eigen vectors of the

kernel matrix K. Eigen decomposition is applied to the kernel matrix K , and

where E is a diagonal matrix, of which the diagonal elements are non-zero eigen values

of K and U is the matrix of corresponding eigen vectors.

The kernel matrix K is a n x n matrix, and suppose there are s non-zero eigen

values. Clearly, n should be the upper bound of s. In fact, a tighter upper bound of s can

be obtained, if the kernel function defined in eq. (4.15) is applied. Let Nd  denote the

upper bound of s in case that can eq. (4.15) is applied, and then Nd can be defined as:
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where 1 is the length of the vector X. So there should be at most Nd non-zero eigen

values of the kernel matrix K. If other kernel function is applied, the upper bound of the

dimensionality of K should be different correspondingly.

After obtaining the principal components of the feature space, the feature factor of

a given original sample X = x can be computed as follows:

A new dataset can then be constructed, (Q(X1),Yl)	 (Q(Xn ), ) , based on the

original observations, and then the linear regression is applied to model the relationship

between Q(X) and the moments of Y , and the modeled relationship will be used for

predicting conditional moments of Y.

The following linear equation is used to model the relationship between Q(X)

and Y:

where W. is a weight vector and ε is a zero-mean Gaussian error. By applying

minimum squared error (MSE) method, the following result of W, is obtained

where . A =[C2(X 1 ) , Q(X 2 ) , , C2(Xr)l and B =k 1 , Y2 , , Yn]T . Now given any specific

X = x , the i-th moment of Y can be predicted as follows:

Now let us solve the remaining problem discussed previously in this section about

the selection of d in the kernel function. Clearly, with larger d, the corresponding 0(x)
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would contain more terms, and thus it is capable of approximating more complex

functions. But the overfitting problem should be aware of here. The overfitting means

that there are too many parameters in the model in presence of limited number of training

samples, and it would make the performance worse on the unseen data. But if the value of

d is too small, the corresponding 0(x) would not contain enough high-order terms to

approximate complex functions. The d's values are usually different while predicting

different moments of Y, and usually to predict higher order moment of IT a larger value of

d should be chosen.

To predict the i-th moment of Y, the suitable d should be selected based on Akaike

information criterion (AIC) (Akaike 1974) to balance the model's capability and

simplicity. Follow the following steps to determine the value of d:

(1) Set d=0.

(2) Apply the kernel function defined in eq. (4.13) with the current d, and compute
the feature vectors S2(X1 )	 SI(Xn ) .

(3) Regress V' on 52(X) and determine the weight vector W, .

(4) Evaluate the impact of each principle component on the output and select the
optimal principle components based on AIC score.

(5) Increase d by 1 and repeat the steps from (2) to (4) until d exceeds the maximum
value allowed.

(6) Pick up the value of d with the maximum AIC score as the determined value of d.

All the steps mentioned above except Step 4 has been described and can be implemented.
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Now let us specify how to implement Step 4. Let U=(a1,...αs)

E = diag(λl 	 and W, =	 ws)T. The impact of the j-th principal component on

the output, denoted as /MP., , can be evaluated as follows:

where 0, (X) denotes the j-th component of Ø(X) . IMP, can be considered as the

weighted energy of the j-th principal component. Thus, the impact of each principal

component can be evaluated and sort all the principal components in the descending

order of their impact. Suppose the order is r1 , ..., and rs .

Then to select the optimal principal components, the AIC scores can be computed

as follows:

where RSS, is the residual sum of squares and evaluated by using leave-one-out cross

validation. The RSSt  is defined as follows:

where Yi_jlx the predicted fx=xj x=xj ' using all the observations except (x,, Y,) as the

training data set. Then the maximum is picked up from AIC O, ..., AICs . Suppose AIC, is

the maximum, and then the optimal principal components are a,. αrt  . Thus, the

maximum AIC score and corresponding principal component set are obtained.

The degree of the kernel function can be searched within a certain range, e.g.

from 1 to 10, etc. After all the candidate kernel functions have been investigated, the
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value of d with the maximum AIC score is selected, and the corresponding principal

component set is selected as the optimal principal component set. So a new eigen vector

matrix U' = . . . , a ,.) is defined based on the optimal principal component set. Then, the

U in eq. (19) could be replaced with U' to compute the feature vectors and predict the

moment of Y. Please note that the value of d and the corresponding optimal principal

component set are usually different while predicting different moments of Y. So the

optimal d and U' should be evaluated for each moment of Y respectively.

It is better to predict central moments instead of ordinary moments of Y. Though

theoretically they are equivalent, predicting central moments usually yield better

performance in practice. It can be done by predicting the first moment of Y firstly, and

then predicting the moments of (Y . — Y1) . The techniques to reconstruct the density

function based on central moments are identical to those based on ordinary moments,

except that the conditional density function reconstructed based on central moments at X

are shifted toward the origin and the offset is — X=, , which can be easily adjusted.

4.5.3 Moment-based Density Function Reconstruction

In this step, the probability density function will be reconstructed based on the moments

obtained in the last step, which is known as a moment problem (Shohat & Tamarkin

1943; Akhiezer 1965). There are a couple of methods proposed in the literature, which

makes use of Pearson Curves (Solomon & Stephens 1978), saddelpoint approximations

(Reid 1988) or inverse Mellin transform (Mathai & Saxena 1978). Alternatively, the

density function could be represented in terms of orthogonal polynomials, such as

Laguerre, Legendre, Jacobi, and Hermite polynomials (Provost & Rudiuk 1995; Provost
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2005). Typically, the exalt moments are required in above methods, and the

reconstructed function is very sensitive to the estimation error, meaning that the

reconstructed functions could be easily ruined by the inaccurately estimated moments.

Since only the approximated moments estimated based on regression are available and

the exact values are never available, the methods mentioned above are not usable in this

application.

A unified semi-parametric method is proposed by Provost (2005) and only

approximated moments are required, which is feasible in this application. This method is

reviewed briefly and then explain its application in this application in the remaining of

this section.

The basic idea of this method is that if the first t moments of a density function

are known, the density function can be approximated by means of the product of a base

density function, whose parameters are determined by matching available moments, and

a polynomial of degree t, whose efficients are obtained by making use of the moment

method as well. Generally speaking, with more moments the density functions with more

details could be recovered. But in practice due to the difficulty of estimating higher order

moments, the estimation of higher order moments is not as reliable as that of lower ones,

so adopting more moments does not always yield better performance. The problem that

how many moments should be used for density function reconstruction will be discussed

later.

Suppose the first 2m moments of Y have been obtained given a specific X in the

last step. First, construct a (m + 1) x (m +1) matrix M, and Mi,j  =	 lx=x , of which

is the element in i-th row and j-th column. Clearly, M9,0 =1 in all the cases.
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Second, a base function should be chosen as the initial approximation of the target

density function. Usually, one of Gaussian, Gamma and Beta functions can be selected as

the base function. Different base functions possess the different tail behavior, so we could

pick up a suitable base function based on the prediction of the tail behavior of the

underlying density function. Generally speaking, if there is not any available knowledge

about the underlying density function, Gaussian function is a good starting point. After

the type of base function is selected, its parameters can be determined by matching the

first few available moments.

Third, the first m moments of the base function are computed on the support [-1,

1], denoted as µ0 , 	 Pm . Then the underlying density function can be approximated as:

where Ψ(y) is the base function and^T = A/1 -1 (p0 ,...„um )T . For more details of

this method, please refer to Provost (2005).

Thus, the conditional density function of Y has been reconstructed based on the

estimated moments. If we perform the preprocessing step, we could recover the density

function of original data by performing simple scaling and shifting easily.

4.5.4 Performance Measurement and Optimization

A cross-validation method was proposed to evaluate the performance of conditional

density estimators (Fan & Yim 2004). The cross-validation method is applied to evaluate

the performance and solve the remaining problem about determining the number of

moments to be predicted left previously.
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For an estimator fy│x (ylx) of fylx (y 1 x), an integrated squared error (ISE) is

defined as follows:

I is not computable, because fylx (y j x) is unknown. Note that /3 does not depend on the

estimator fyIx (y I x), and thus can be ignored. Let I'= II —2I2 . So the minimization of I

is equivalent to the minimization of I'. Fortunately, based on the available observations

II and 12 can be estimated as:

both of which are available, and then i'=	 212 . In eq. (4.30) and (4.31) the leave-one-

out cross-validation method is applied, and f_i(y I X,) is the estimator fylx (y X) with

the observation (Xi,Yi ) omitted. Thus, P is estimated instead of original I. If the	 is

smaller, the performance is better. Therefore, the value of I' is used as the ISE to

evaluate the performance of a conditional density estimator.

Now, let us solve the remaining problem, i.e. how to determine the number of

moments to be used for density function reconstruction. In fact, the performance of the

estimator should be evaluated with different number of the moments, and then the one
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with the best performance should be picked up; the number of the moments used in this

best estimator is treated as the optimal value of number of the moments to be used.

4.6 Experimental Results

First, the proposed method discussed in Section 4.5 is compared with the double-kernel

density estimator discussed in Section 4.4 through a simulated model for demonstration.

Then, the proposed method is applied to the real solar flare dataset and the density

functions of flare peak intensity and flare index are predicted, respectively. In each

experiment, the ISEs of the proposed method and double-kernel density estimator are

measured for comparison.

4.6.1 A Simulated Model

To compare the performance of the proposed method and double-kernel density

estimator, the following simple simulated model is considered:

where x is uniformly distributed over [0, 1]. We generate 1000 random samples for

training and the same number of samples for testing based on the f ylx (y I x) . The Figure

4.1 (a) shows the conditional density function f ylx (y I x) , and (b) shows the generated

training samples.

The proposed method is applied to estimate the conditional moments of Y and the

first two moments are plotted in Figure 4.2 (a) and (b), respectively. From the figure, it is

be observed that the conditional moments estimated by the proposed method are very
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close to the true moments. Then the proposed method and double-kernel method are

applied to estimate the conditional density functions, and the conditional density

functions estimated at x = 0.2 , x = 0.4 x = 0.6 and x = 0.8 are plotted in Figure 4.3 (a),

(b), (c) and (d), respectively. From Figure 4.3; the conditional density functions generated

by the proposed method are smoother and closer to the true densities. The ISE scores is

computed to compare the performance of two methods, and ISEs of the proposed method

and double-kernel method are -2.887 and -2.828, respectively. Therefore, in this

experiment, the proposed method outperforms the double-kernel method.

(a) (b)
Figure 4.2 (a) The true and estimated first moment of Y, and (b) the true and estimated

second central moment of Y, where the true functions are plotted using solid
curves and the estimated functions are plotted using dotted curves.
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Figure 4.3 Estimated conditional densities for model (4.31) for (a) x = 0.2 , (b) x = 0.4
(3) x = 0.6 and (4) x = 0.8 , using the proposed method (dashed curve) and
double-kernel method (dotted curve), compared with the true densities (solid
curve).

4.6.2 Application to Flare Peak Intensity Prediction

The proposed method is applied to predict the conditional density function of the peak

intensity of solar fares that will be generated within next 24 hours based on the magnetic

parameters of the active region. After checking the flare events associated with the active

regions (NOAA 07961 to 10932) from 1996 to 2006, 711 significant solar flares (C-, M-,

and X-class) are selected for investigation and they are associated with 299 active
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regions, and all the active regions are near the disk center, of which the position angles

are less than 30 degrees; to facilitate magnetic parameter measurement.

The magnetic parameters of the associated active region, including total unsigned

magnetic flux T4,„„ , energy dissipation Ed,„ , were measured from MDI line-of-sight

magnetograms. The response variable is the flare peak intensity I. Instead of using the

original let Y = log10  (/) and predict the conditional density function of Y. Thus, for a

C-calss flare, the Y should be [0, 1); for a M-class flare, the Y should be between [I, 2),

and for a X-class flare, the Y should be [2, +00). Let X denote the covariate, and the task

then is to predict the conditional density function f YIx (ylx) based on a specific magnetic

covariate X. The relationship between T flux and log 10 (/) is shown in Figure 4.4 (a) and

the relationship between Ediss, and log 10 (I) is shown in Figure 4.4(b).

Figure 4.4 (a) The relationship between Tflux, and log o (I) and (b) the relationship

between E diss and log10(/) •

Both the proposed method and double-kernel method are applied to predict the

conditional density function fY,X(ylx) based on X =Tfiux. To measure the performance

accurately, the experiment contains 50 iterations. In each iteration. 356 samples are
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picked up randomly for training and the remaining samples are used for testing, and then

measure the performance of two methods. After 50 iterations, the average ISE of each

method is obtained. The average ISEs of the proposed method and the double-kernel

method are -2.43 and -2.47, respectively; meaning that the proposed method performed

slightly worse than the double-kernel method. In Figure 4.5, the conditional density

functions estimated by two methods at different values of Tflux are plotted, and it can be

observed that two curves are closer to each other with larger Tflux .

(c) 	 (d)

Figure 4.5 The fIlTflux (y x) estimated at (a) X = 0.2 , (b) X = 0.4 , (c) X = 0.6 and (d)

X = 0,8, using the proposed method (solid curve) and double-kernel method
(dashed curve).
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Then two methods are applied to predict the conditional density function

(ylx) based on X = Farts and did the similar experiment. The average ISEs of the

proposed method and the double-kernel method are -2.41 and -2.47, respectively. This

result also shows the proposed method performed slightly worse than the double-kernel

method and confirmed the result of previous experiment. In Figure 4.6, the conditional

density functions estimated by two methods at different values of Eflux are plotted, and it

can be observed that two curves are closer to each other with larger Eflux

(c)	 (d)

Figure 4.6 The	 (y x) estimated at (a) X = 0.2 (b) X = 0.4 , (c) X 0.6 , and (d )

X = 0.8, using the proposed method (solid curve) and double-kernel method
(dashed curve).
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We also predict the density function of flare peak intensity based on both andd

E diss 9 and the ISE is -2.43, which is identical to the result using T flux. The reason could be

that T flux and E diss are correlated to each other closely and the combination of them does

not provide much more information compared with single one of them.

4.63 Application to Flare Index Prediction

The two methods are applied to predict the condition density function of flare index

based on magnetic parameters. The magnetic parameters used here include total unsigned

magnetic flux Tflux , energy dissipation E diss . The flare index is calculated using eq. (4.1),

and the length of the time window is 3 days. The active regions (NOAA 07961 to 10932)

are checked and 530 active regions with at least one C- or higher class flare are picked up

for investigation, and all the active regions are selected near the disk center, of which the

position angles are less than 30 degrees, to facilitate magnetic parameter measurement.

Similarly, the magnetic parameters used here include total unsigned magnetic flux

Tflux and energy dissipation E diss . Let Y = log 10 (FI) and X denote the covariate. The task

then is to predict the conditional density function fylx (y 1 x) based on a specific magnetic

covariate X The relationship between T flux and log 10, (FI) is shown in Figure 4.7 (a) and

the relationship between and log ic, (/) is shown in Figure 4.7(b). From Figure 4.7, It

confirms that there does exist correlation between flare index and magnetic parameters.

The proposed method and double-kernel method are applied to predict the

conditional density function fylx (y 1 x) based on X = T flux . The same experiments are

done and the performance of two methods are measured, repsectively. The experimental
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results shows that the average ISEs of the proposed method and the double-kernel method

are -1.78 and -1.85, respectively; which means the proposed method performed slightly

worse than the double-kernel method.

Figure 4.7 (a) The relationship between Tflux and log 0 (F./) and (b) the relationship

between Ea and log e (F/).

Figure 4.8 The fFI│Tflux (y x) estimated at (a) X = 0.2 , (b) X = 0.4 , (c) X = 0.6 and (d)

X = 0.8 , using the proposed method (solid curve) and double-kernel method
(dashed curve).
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Two methods are also applied to predict the conditional density function

fylx (y x) based on X = Ediss and did the similar experiment. The average ISEs of the

proposed method and the double-kernel method are -1.85 and -L86, respectively. This

result also shows the performance of the proposed method is comparable to that of the

double-kernel method and confirmed the result of previous experiment. In Figure 4.9, the

conditional density functions estimated by two methods at different values of Ediss are

plotted, and it can be observed that two curves are closer to each other with larger Ediss.

Figure 4.9 The ,fF I│Ediss (y x) estimated at (a) X = 0.2 , (b) X = 0.4 , (c) X = OM and (d)

X = 0,8, using the proposed method (solid curve) and double-kernel method
(dashed curve).

We also predict the density function of flare index based on both T flux and Ediss ,

and the ISE is -1.83, which does not show superiority to single magnetic parameter. The
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reason could be that Tau, and Ediss are correlated to each other closely and the

combination of them does not provide much more information compared with single one

of them.

4.7 Discussion and Conclusions

In this chapter, a new method is presented to predict the conditional density function by

combining kernel-based nonlinear regression and moment-based density function

reconstruction techniques. This method is applied onto the solar flare perdition problem

to predict the conditional density function of flare peak intensity or solar flare based on

the magnetic parameters.

The proposed method is compared with the double-kernel density estimator

through one simulation model and the solar flare prediction problem. In the simulation

model, the proposed method outperformed the double-kernel density estimator, while in

solar flare prediction problem, the performance of the proposed method is slightly worse

than that of the double-kernel density estimator. So the performance of the proposed

method is comparable with that of the double-kernel density estimator in regular case,

and since it can be easily applied to high dimensional data set, which makes it attractive

in solar flare prediction problem, because in the future more and more parameters would

be included, and in this case the double-kernel density estimator becomes ineffective.

In summary, a mathematical tool, which can be used for conditional density

estimation, is developed and it is capable of handling high dimensional data sets

effectively.



CHAPTER 5

SUMMARY AND CONCLUSIONS

In this dissertation, the automatic methods for prominence eruptions detection, emerging

flux regions detection and solar flare prediction are presented. These automated methods

can be used for processing large scale solar images as well as real-time solar activity

observation and prediction, which is important for space weather. Advanced image

processing and machine learning techniques are combined in these methods to take

advantage of the progress in information technologies during the last decades.

In prominence eruption detection, image segmentation, morphological operations

and support vector machine are applied. The classification rates of prominence eruptions

and non-prominence eruptions are 93.3% and 93.6%, respectively. However, since the

number of non-prominence eruptions detected by the method is much higher than that of

prominence eruptions, most limb events classified by the method are not prominence

eruptions, which should be improved in the future. The new properties and segmentation

technique will be considered to improve the method. Also, it would be interesting to

combine the detection of filament and prominence eruptions to make the method more

robust and sensitive to the true prominence eruptions.

In emerging flux region detection, multi-scale harmonic filter is applied to detect

dipoles of various sizes on solar surface by using MDI magnetograms, and the rotation

invariance of the filter enables to detect the dipoles of any orientation. Kalman filter is

applied to trace the candidate EFR until its disappearance. The lost-and-return

phenomena was noticed in the experiments, which indicates it is necessary to improve the

tracing techniques, and the alternative techniques, such as IPDA, JPDA and JIPDA,

89
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should considered and tested the future The classification rates of EFRs and non-

EF Rs are 96.4% and 98.0%; respectively, and the false alarm rate is about 25.7% due to

the large number of non-EFRs detected by the method. The joint composite filter should

be considered to improve the performance of identifying new candidate EFRs, and

alternative statistical features should be included to improve the classification rates. This

method should be extended to detect other bipolar structure on the solar surface. such as

active regions in the future.

In solar flare prediction, a novel method is developed by using kernel-based

nonlinear regression and moment-based density function reconstruction techniques. This

method is used to predict the probability density function of either flare peak intensity or

flare index based on magnetic parameters of the associated active region. It mainly

involves two steps. In the first step, the conditional moments of the response variable is

predicted by using kernel-based nonlinear regression, which enables it to handle high

dimensional data set efficiently. In the second step, the density function is reconstructed

based on the predicted moments. This method is applied to solar fare data set collecting

the information of active regions from 1996 to 2006, and compared with double-kernel

density estimator. This experimental results show that the proposed method yields

comparable performance with the double-kernel density estimator in the regular case.

Since it can be applied to high dimensional dataset, it is essential for future research in

solar flare prediction, because more and more magnetic parameters will be included. But,

currently, it is limited to approximate relative simple function, such as uni model

functions, due to the difficulty in estimating high order conditional moments. If the high

order conditional moments could be estimated more accurately, the method would be
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able to provide more subtle details of the target density function. In summary, A usable

mathematical tool for conditional density estimation has been developed in presence of

high dimensionality of data set, and it can be used in solar flare prediction based on

multiple magnetic parameters.



APPENDIX

A SPECIAL KERNEL FUNCTION CORRESPONDING TO TAYLOR
EXPANSION

According to Talyor's theorem, it is possible to use a polynomial to approximate a

differentiable function. Suppose there is a complicated differentiable function y = f ,

where z =xd)T . Its Taylor's expansion at the origin using the terms of the

degree up to n can be defined as follows:

where Rm is the remainder. The remainder Rm depends on x and is small if x is close

enough to ö , so it is ignored in the following discussion. The eq. (1) with Rm omitted

can be re-written in vector notation as follows:

where ,8 is a weight vector and 0(i) = ),...xd)T , which is a expansion vector

and contains all the terms of the degree up to n. If the exact form of f (50 is available, the

parameter /3 can be computed from the partial derivatives of f ; otherwise it could be

estimated from the available observations (I I, , (5C n , y n) based on regression

analysis. So to approximate a complicated function f (50 , the original x is first mapped

to a extended vector 0(1) and then apply regression analysis to determine the weight of

each component of 0(1) But the kernel trick allows to implement the mapping function

92
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0(1) and regression analysis implicitly by using the kernel function; which computes the

inner product of the mapped vectors.

Let C p(x) denote the vector whose entries are all possible p-th degree ordered

T
products of the entries of 	 , and then C p (50 = (x1p 4 -1 X 2 ,..., )T . Since

0(5C) =	 ),...xdn y , the corresponding kernel function can be defined as:

If (u,v)=1,	 = d+ 1 .

In the simple case that that the input vectors are one-dimensional, indicating

scalars, the Taylor series of f (x) can be represented as:

With the mapping function 0(x) = [1,x' ,...,x d ] T , then, the kernel function is defined as:

In interesting observation is that if the magnitudes of x is limited to be less than

1, such that ;MI< 1, and let d ---> 00 , the eq. (4) would be converted to:
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