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ABSTRACT

ION ASSISTED MAGNETRON SPUTTERING OF TANTALUM THIN
FILM DEPOSITION AND CHARACTERIZATION

by
Hua Ren

The purpose of this research was to investigate the effects of ion bombardment on the

crystallographic phases of tantalum films during their deposition by magnetron

sputtering process, and to gain understanding of the mechanism of the ion-solid

interactions during the thin film growth. Tantalum (Ta) exists in two distinct

crystallographic phases: a stable a-phase with a body centered cubic (bcc) lattice

structure and a metastable β-phase with a tetragonal lattice structure. The tough and

ductile a-phase Ta is desired in most industrial applications, such as diffusion barrier

layers in integrated circuits, metallic corrosion protective layers, and in biomedical

devices. The β-phase Ta is hard and brittle, and its presence may compromise the film

performance. Bulk Ta metal has the a-phase structure but the β-phase appears in thin

films, unless special means are used to avoid its growth.

In this work a DC magnetron sputtering system was modified for RF operation

along with a provision for DC biasing the substrate to accelerate inert gas ions towards

the tantalum thin film during its growth process. The experiments demonstrated that the

ion bombardment energy, controlled by varying the bias voltages, has a strong effect on

the crystallographic phase of tantalum films as well as their surface morphology. High

quality bcc (a-phase) tantalum thin films were deposited under -150 V substrate bias at

an ion current density of approximately —0.4 mA/cm 2 , both on silicon and aluminum

substrates. These ion bombardment conditions for bcc a-phase Ta growth are quite



different from those previous reported, however, it was found that the total energy

delivered by ions per deposited atom in this and in previous work is approximately the

same.

Ion bombardments by plasma Ar ions accelerated to the biased substrate also

sputtered away the deposited Ta during the film growth, resulting in thinner films at

higher ion energies, which was measured by Rutherford backscattering spectroscopy.

The sputtering yield derived from these data was compared with previously published

data and theoretical predictions. This ion assisted deposition process was further studied

by molecular dynamic simulations and statistical analysis of ion impacts and atom

impingements on the film surface. It was concluded that these two events are

independent, and that the film crystallographic structure transformation is induced by

ion impacts rearranging the deposited atoms after their arrival on the growing film.

The results for this work have demonstrated that bcc a-phase tantalum thin films

can be grown on both silicon and aluminum substrates at room temperature by RF

magnetron sputter with ion bombardment conditions very different than those previous

reported. The advantage of the new process is that it can be carried out in a standard

magnetron deposition system with a provision of substrate biasing to control the ion

bombardment. Such a system is easier to scale to industrial operation than those

described earlier, which requires a more complex apparatus.
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CHAPTER 1

INTRODUCTION

The thin film material which is the subject of this study is tantalum (Ta). Tantalum is a

gray-blue, metallic element. Its atomic number is 73, and atomic weight is 180.9479

g/mole. Ta has two distinct crystallographic structures, stable a-phase Ta with body

centered cubic (bcc) crystallographic structure and the metastable β-phase Ta with

tetragonal crystallographic structure [1]. The a-phase Ta is desired in most applications

because of its many useful properties, such as high strength and good ductility, while β-

phase Ta is hard and brittle [2-8]. Ta has a high melting point (2996°C) and is almost

completely immune to chemical attack at temperatures below 150°C [9].

Sputter deposited tantalum thin films usually possess the metastable β-phase

crystallographic structure or a two phase mixed structure. Many studies have been

focused on developing deposition techniques and finding appropriate deposition

conditions for obtaining high quality a-phase tantalum thin films. Earlier research done

by Leszek Gladczuk and Anamika Patel et al. at MITT [10] showed that a-phase Ta could

grow on steel substrates by DC magnetron sputtering when the substrate is heated to 400

°C.

For various thin film applications, it's vital to control the thin films'

microstructure and morphology, as they control their properties. There are several

methods that can be used to improve the quality of deposited thin films. The employment

of energetic ion species bombarding growing films is considered a very effective way to

control thin film microstructures, hence its properties.
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The ion bombardment contributes kinetic energy and momentum to the arriving

thin film atoms (adatoms), increases their mobility on the surface of substrates or the

growing thin films, and therefore affects thin films' nucleation, coalescence and growth.

When the deposited thin film atoms are given a high kinetic energy or when other species

with high energy impinge on the growing thin films, the properties of the thin films can

be controlled and improved [11]. This increase in the energy of the arriving atoms and in

their surface mobility enables deposition at lower substrate temperature with dense film

microstructures, selectable stress levels, and in some cases desired crystallographic

phases. In addition, ion bombardment can knock off loosely attached impurity atoms

reaching the deposited film surface, and thus reducing the films' impurity level which is

very important for thin films used in microelectronic circuits' fabrication [12]. In this

work, the effect of ion bombardment in the RF sputtering deposition process for Ta films

was explored, and it was expected to control thin films' crystallographic phase and

quality by introducing the ion bombardment into the deposition process.

This study focused on growing the thin tantalum films by a RF magnetron

sputtering system with a provision of substrate biasing. During the deposition process, the

energy and flux of argon ions which were attracted towards the substrate and the growing

films by negatively biasing the substrate electrode was controlled. The preliminary results

showed that energetic ion bombardment allowed the control of the crystallographic phase

of Ta thin films. The investigation goal was to find the deposition conditions for growing

a-phase Ta instead of n-phase or mixed phase Ta films. The ion bombardment effects on

the microstructure and morphology of deposited tantalum thin films were also being

investigated.



CHAPTER 2

LITERATURE REVIEW

Tantalum was discovered in 1802 by a Swedish chemist Anders Gustaf Ekeberg in

minerals obtained from Ytterby, Sweden, and the first relatively pure ductile tantalum

was produced by von Bolton in 1903. The commercial use of tantalum also began in 1903

with the production of tantalum wire [13, 14]. Today, tantalum metal has many

applications in electronics, mechanical, chemical and biomedical areas.

Tantalum has a number of unique characteristics and attractive properties that

triggered extensive research in this element and its compounds. Tantalum is almost

completely immune to chemical attack at temperatures below 150° C, and is attacked

only by hydrofluoric acid, acidic solutions containing the fluoride ion, and free sulfur

trioxide. Alkalis attack it only slowly. Ta is completely immune to body liquids and it is a

nonirritating material. At high temperatures, tantalum becomes much more reactive. For

tantalum compounds, the oxide films are stable and have good dielectric properties, and

the tantalum nitride has similar attractive properties too. Therefore, tantalum and its

compounds are most promising materials for corrosion, heat and wear resistant protective

coatings [10, 15-19].

As one of the most corrosion resistant materials, tantalum can be milled into sheet

used for chemical equipment such as bayonet heaters, vapor condensers, multi-tube heat

exchangers, thermo-wells, rupture diaphragms and orifices. In glass-lined steel

equipment, tantalum plugs are selected to be repair perforations. Because of its superior

chemical stability in various environments, components made by tantalum are used in

sulfuric acid concentrators, in temperature controllers for chromium plating and in

3
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distillation and condensation of acids and acidic chemicals. One of the most important

tantalum compounds, tantalum carbide, is mixed with some grades of cemented carbides

to make hard carbide cutting tools with a low coefficient of friction and a high resistance

to mechanical shock [20-22].

In addition to having desirable properties for protective coatings, the major

applications of tantalum thin films are in electronic industry. Tantalum can form very

stable anodic oxide films which make excellent capacitors. Tantalum capacitors possess

higher volumetric capacitance efficiency than any other material capacitors, and provide

better performance both at low and high temperatures [20, 23]. In the past, tantalum and

tantalum compounds have been investigated as thin film resistors with a low temperature

coefficient of resistivity [24]. Recently in the semiconductor industry with the

development of copper interconnection in ultra-large-scale integrated circuits (ULSIs),

tantalum and tantalum based thin films with their superior chemical and thermal stability

are accepted as the most promising diffusion barrier layer preventing copper from

diffusing and reacting with the underlying silicon, silicon dioxide and low-k dielectrics

[25-31]. Tantalum is also used in the copper metallization, damascene process, as an

adhesion layer and polish stop in chemical mechanical polishing (CMP) [32]. Another

application of tantalum is in X-ray optics such as absorbers in x-ray lithography [33].

Biotechnology is another area of application of tantalum and its compounds. The

metal possesses excellent histo-compatibility, and it has been used as a biomedical

material in orthopedics since 1940s. Many other wide applications of tantalum in making

surgical components for surgical implants, for suture wire, cranial repair plates and for

wire gauze for abdominal muscle support in hernia repair surgery, etc. also attract a lot of
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attention because it is extraordinarily inert to body fluids and tissues. More recently,

tantalum nitride has been investigated for surface modification of blood-contacting

biomaterials [34].

Several investigations have been conducted on developing techniques for

depositing tantalum and its compounds, and connecting the processing parameters with

the resulting film properties. In this chapter, a review of different properties of two

different crystallographic phases of tantalum thin films is presented. Then the key factors

which are considered to affect and control the phase, microstructure and properties of

deposited tantalum thin films are reviewed. Previous research done on the ion

bombardment effect on the deposited tantalum thin film structures is addressed in

particular.

2.1 Properties of α-phase and β-phase Tantalum

Tantalum metal is known in two distinct crystalline phases or structures: the earliest

known, a stable a-phase tantalum (Im3m space group, a=3.304 A) with a body centered

cubic crystal lattice structure and the metastable β-phase tantalum (P42/mnm space

group, a=5.313 A, c=10.194 A) with a tetragonal crystal lattice structure known since

1965 [1, 35, 36].

The physical properties of β-phase Ta are not well known, except that it is hard,

brittle and thermally unstable. Common bulk tantalum has the a-phase structure and

possesses good chemical, thermal and mechanical properties, including a high melting

temperature (2996 °C), high elastic modulus similar to that of steel, good ductility and

formability, and resistance to acids and aggressive hot propellant gases [36-38]. It has a

relatively low thermal conductivity (57 W/m °C) and a low electrical resistivity of 15-60
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µS2 /cm  which makes it a good choice for the thin film interconnection and for barrier

coatings. The resistivity of β-phase Ta is much higher, 170-210 u/cm [39, 40]. The a-

phase Ta has a superconducting transition temperature (TO of 3.25 K while the β-phase

Ta has a superconducting transition temperature of (TO of 0.5 K. Typical Knoop

microhardness values for the β-phase Ta are greater than 900, while the values for a-

phase Ta are in the 300-400 range. These properties make β-phase Ta more susceptible to

crack formation and failure, and hence less desirable for protective coating applications

where thermal shock and high shear forces are present [16].

There is only one report on β-phase Ta being grown in the bulk form [41]. The

metastable β-phase Ta or mixed phase Ta is usually observed in sputtering deposited thin

films [16, 42]. The metastable β-phase Ta transforms into a-phase Ta when heated up to

750-1000 °C [1, 36, 42]. The properties of the a-phase and β-phase Ta are listed in Table

2.1 [1, 41, 43].



Table 2.1 Thermal-mechanical Properties of a-phase and f3-phase Ta

Phase	 Alpha tantalum	 Beta tantalum

Structure	 BCC, S.G. Im3m	 Tetragonal, S.G. P42/mnm

Lattice parameters	 a=b=c=0.33058nm	 a=b=1.0194nm

c=0.5313 nm

Density (g/cm 3)	 16.55	 16.9

Hardness	 300-400 KHN	 900 KHN

Ductility	 Ductile	 Brittle

Resistivity (uC2/cm) 	 15-60	 170-210

Temperature coef. of	 +500+1800	 -100+100

resistivity (ppm/ °C)

Superconducting transition	 3.25	 0.5

temperature (K)

Thermal stability	 Tmelting point at 2996°C	 Tbeta-alpha at 750-1000°C

Sources: [1, 41, 43]

2.2 Factors Affecting the Crystallographic Structure of
Deposited Tantalum Thin Films

Various techniques have been used for depositing tantalum thin films, such as physical

vapor deposition, including electron beam evaporation [44, 45] and different sputtering

techniques, such as DC sputtering [46, 47], RF sputtering [47], triode sputtering [38, 48],

ion beam assisted sputtering [49], magnetron sputtering [50, 51]. Chemical vapor

deposition [52], and electrochemical deposition [36] have also been successfully used.

With these deposition processes, a-phase tantalum, f3-phase tantalum or mixed phase
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tantalum will grow on different substrates depending on specific deposition conditions.

Based on the prior research work, a summary of the deposition conditions which

contribute to controlling the crystallographic structure of deposited tantalum thin films on

different substrates was reviewed and summarized below.

2.2.1 Deposition Conditions

(1) Vacuum Condition and Impurities

The deposition environment is very important for thin film deposition process, especially

the residual gas contents (such as nitrogen, water vapor and oxygen) in the vacuum

system. These are critical parameters in controlling the structures and properties of the

deposited thin films. For tantalum thin film deposition, several investigations have been

focused on this aspect, and different groups of researchers claimed that the vacuum

conditions and the impurities existing in the vacuum environment would affect the

deposited tantalum thin film structure (a-phase structure, β-phase structure or mixed

phase structure).

Initially, many researchers questioned whether β-phase Ta was an allotrope of bcc

a-phase Ta or an impurity-stabilized Ta phase. Read and Altman's research [I] showed

that β-phase Ta films were as pure or even purer than a-phase Ta films, and as the

pressure of any reactive residual gas content in the deposition vacuum system increased,

the deposited Ta films were always grown in the a-phase structure. Others [2, 7] also

reported that increasing the amounts of residual gases in the deposition vacuum system

favored the normal a-phase Ta growth. They thought that body-centered cubic lattice

structure of a-phase Ta was a more open structure where interstitials (impurities) could
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order themselves at extremely low concentrations and thus form a super lattice different

from the normal structure. Also the stresses in thin film could govern the choice of

specific interstitial sites for impurities in thin films [7].

Similarly, Feinstein and Huttemann et al. [53] concluded that the presence of 0 or

possibly OH on the substrate surface was necessary for the β-phase Ta nucleation at the

initial stage, and not for keeping it growing with the same structure during the later

growth stage. Moreover, if the impurities incorporated into the Ta films during the

growth stage exceeded the solubility limit of β-phase, eventually the a-phase Ta would be

formed.

On the other hand, Schauer et al. [54, 55] reported that the β-phase Ta was an

impurity stabilized phase with a certain relatively small amount of foreign atoms built

into the films. Unlike the observation which Feinstein and Huttemann et al. made, they

found that impurity atoms were necessary not only for the nucleation but also for the

growth of β-phase Ta. They even concluded that the formation of β-phase Ta was caused

either by impurity atoms adsorbed at the substrate surface or by reactive gases added into

the sputtering argon atmosphere. They also noted that clean substrates and clean

conditions with regard to the reactive gases maintained in the deposition environment

during sputtering produced the a-phase Ta.

Gersteng [24], Krikorian [56] and Baker [57] observed that increasing of the

oxygen or nitrogen concentration in the discharge atmosphere always produced a-phase

Ta for a defined sputtering condition which normally produced the β-phase form.

Westwood [58] claimed that an increase of oxygen partial pressure in the discharge was

associated with the formation of β-phase and he interpreted the β-phase structure as an
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impurity-stabilized phase which is formed to accommodate impurities in the coatings at

levels higher than the solubility limit for the bcc a-phase tantalum.

The question of whether the incorporation of impurities is a necessary condition

for the formation of a-phase Ta or β-phase Ta still can not be answered from these

contradictory results.

(2) Sputtering Gas

One obvious phenomenon is that the sputtering yield of tantalum (atomic mass 181) will

increase when bombarded by inert gas ions of increasing atomic number [59]. However,

another question is whether the different inert sputtering gas species will affect the

crystallographic structures of the deposited Ta thin films, and how? Matson et al. [16, 42]

evaluated the effect of different sputtering gas species (Ar 18, Kr36 and Xe54) on the

microstructure of deposited tantalum coatings. They observed that heavier sputtering

gases promoted the formation of bcc a-phase Ta, which agreed with the work of Ino et al.

[60]. They also reported that high energy ion bombardment promoted growth of the 13-

phase but noted that the ion bombardment energy and momentum required for the bcc to

β-phase transition was shifted to higher values when xenon was used instead of argon as

the sputtering gas. They attributed the change in crystallographic phase of films grown

using different sputtering gases to differences in the abilities of the gases to induce

forward recoil-implanted Ta atom defects into the growing film structures.
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(3) Substrate Temperature

Heating the substrates during the deposition process can help grow thin films with the

desired stable crystalline structure and also improve their properties. For tantalum thin

film deposition, it was reported that high substrate temperature favored the growth of a-

phase tantalum, but different researchers reported different temperature ranges for

growing a-phase or f3-phase tantalum.

Matson et al. [37, 42] reported that typically substrate temperatures above 300 °C

and as high as 600 °C were necessary to produce a completely bcc phase coating using

argon, and substrate temperatures in excess of 200 °C were required to produce 100% bcc

a-phase Ta when using krypton as the sputtering gas.

Fischer et al. [61] and research previously done in our NJIT lab by Leszek

Gladczuk and Anamika Patel et al. [10] showed that heating the substrate to a moderate

temperature of 400 °C resulted in the growth of pure bcc a-phase Ta by DC magnetron

sputtering using Ar gas.

Schwartz et al. [62] demonstrated that mixtures of a- and β-phases could be

deposited by sputtering at substrate temperatures of 400465 °C. Mattox et al. [63]

observed the formation of a mixture of a-phase and β-phase Ta on heated substrates

during deposition too. Schauer et al. [64] deposited tantalum films on Corning 7059 glass

and Ta20 5-coated substrates at a temperature above 300 °C. It was observed that most of

the films deposited onto the substrates at a temperature higher than 300 °C produced pure

a-phase while a few of the films showed mixtures of a-phase and β-phase. Heiber et al.

[65] used Corning 7059 glass and sapphire as substrates for tantalum deposition.
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Mixtures of a-phase and β-phases were formed when the substrates were heated to

temperatures above 300 °C during sputtering.

Mills [8] studied the structure as a function of temperature of deposition, and he

showed that the tetragonal β-phase was only formed below 300 °C; above 600 °C the

structure was independent of substrate and was always bcc a-phase Ta. At intermediate

temperatures, the structure was a mixture of two phases, the dominant phase depending

on whether the deposition temperature was closer to 300 °C or 600 °C. The effect of

higher substrate temperatures on the promotion of bcc a-phase Ta over the β-phase in

sputtered coatings has generally been attributed to the increased mobility of Ta atoms in

the growing films at the higher temperatures.

2.2.2 The Effect of Substrate and Underlayers

(1) Substrate Materials

Several authors found that the nature of the substrate has a large effect on the nucleation

of either tetragonal β-phase Ta or bcc a-phase Ta. Previous research results of deposited

tantalum on about twenty different substrate materials, which included single crystal,

polycrystalline, and amorphous materials, fell into three groups based on their influence

on the structure of tantalum thin films [8, 29, 38, 50, 53]. These include: (I) the substrates

that were readily oxidized or formed surface oxides in air at room temperature (SiO2,

copper, nickel, amorphous glass) nucleated the β-phase tantalum; (H) substrates that did

not form surface oxides even in oxidizing atmospheres (Au, Rh, Pt and W) always

nucleated a-phase tantalum; and (III) substrates which did not form surface oxides in air

at room temperature but which could be oxidized at elevated temperatures always
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nucleated bcc α-phase tantalum when deposited directly on the freshly prepared substrate,

and β-phase Ta when they were fully oxidized, while mixtures of both phases were

formed when the substrates were partially oxidized, e.g., Ta 2N.

(2) Underlayers

Epitaxy is a thin film growth technology in which a thin film with approximately the

same lattice structure parameter as the substrate material will grow successfully and

orderly the substrate. The principle behind this is that the substrate lattice will promote

the growth of a thin film with the same size and geometry of its lattice. Similarly, a thin

layer of material different from the substrate and different from the final top thin film if

deposited as the interlayer between the substrate and the top thin film can play a similar

role. This interlayer, sometimes also called an under-layer, will promote the growth of the

top thin film with the same lattice structure.

Investigations of depositing tantalum thin films on different types of substrates

and under-layers have been done previously. Westwood [66] studied depositing tantalum

films on a thin layer of gold and also on a carbon layer on glass. It was observed that

these under-layers which cover the whole substrate and are electrically connected to the

anode in the sputtering system encouraged the formation of the bcc α-phase tantalum

rather than the tetragonal β-phase tantalum. The percentage of the α-phase of tantalum

was higher in films deposited on substrates covered by these under-layers than in films

deposited at the same time on adjacent substrates without under-layers.
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Hoogeveen et al. [31] observed that β-phase tantalum always formed on SiO 2 and

(111) textured copper, whereas a-phase tantalum formed on a (111) textured aluminum

under layer. They claimed that some atoms in the (111) planes of fcc Al, which consisted

of regular triangles with side length 0.28635 nm, were close in spacing to the atoms of

the (110) planes of bcc a-phase Ta, consisting of isosceles triangles with one side length

0.28629 nm. Indeed, in this one direction, the Ta and the Al atom rows fitted extremely

well, differing only by 0.02%, even though in the perpendicular direction there was no

matching at all, as was usually necessary for epitaxial growth.

Sajovec [49] and Face [39] et al. showed that a-phase tantalum was always

formed when deposited on an under-layer of niobium. This study also revealed that the

niobium under-layer thickness was very critical to the initial nucleation step of tantalum

thin films, and a minimum Nb under-layer thickness of 0.25 1.t was required for the a-

phase tantalum nucleation. The presence of water vapor and its possible reaction with the

Nb surface caused the Ta film to grow in the β-phase structure rather than the intended

bcc a-phase structure [19, 38].

Heiber and Lautenbacher [65] found that β-phase tantalum could be stabilized by

a tantalum silicide interlayer. A titanium adhesion layer on SiO 2 dielectric or Si easily

altered the phase formation behavior of tantalum and tantalum based thin films by

promoting the formation of a-phase Ta [67]. The lattice parameter of titanium layers

with hexagonal and highly (0001) preferred orientation was very close to a-phase Ta with

bcc and (110) preferred orientation. The (0001) closest packed planes of the underlying

titanium had a regular hexagonal mesh with a side length of 2.890 A, and the (110)
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planes of the bcc a-phase Ta consisted of an irregular hexagonal mesh with a side length

2.876 A and thus two-dimensionally matched to the underlying titanium.

Colgan et al. [68] demonstrated that a reactively sputtered Ta(N) seed layer could

promote the growth of α-phase tantalum thin films at room temperature. Earlier

experiments by Leszek Gladczuk and Anamika Patel et al. [69] in our NJIT laboratory

further indicated that the nitride layer which promoted the growth of a-phase Ta

consisted of stoichiometric TaN.

Shimada et al. [70] also found out that TaN x could work as a seed layer which

helped self-growth of a-phase tantalum films by hetero-epitaxy. Tanaka et al. [71] found

that the phase of sputtered Ta formed on a molybdenum under-layer depended on its

thickness. As the thickness of molybdenum was increased, the percentage of the a-phase

formed was found to be higher.

2.2.3 Post Deposition Treatment-Annealing Temperature

When the tantalum films of β-phase were heated in a vacuum of 10 -6-10 -5 Ton, the [3-

phase to a-phase Ta transformation was reported at 700-750 °C, while the transformation

temperature was lowered to 600-650 °C if in the presence of residual gases [2, 40]. Lee et

al. [41] reported that upon annealing, β-phase tantalum became unstable at 300 °C, and

complete β-phase to a-phase transformation occurred at —750 °C.
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2.3 Substrate Biasing

Energetic ion bombardment of the substrate and the growing film can strongly influence

the film structure and properties [72]. For tantalum thin film deposition, it is still not clear

from previous work whether energetic species bombardment promotes a-phase or (3-

phase Ta growth. The results of these different researchers are also quite contradictory

and the reason for a preferential creation of one or the other phase is still not known.

In the paper of Das [7], he mentioned that RF and DC sputtered Ta films

deposited without bias possessed b.c.c. a-phase structures, however, DC sputtered Ta

films (at around -100 V negative substrate bias) had the structure which was interpreted

as a tetragonal distorted b.c.c. superlattice. He provided an explanation by combining the

effect of applying a negative potential to the substrate on the relative interstitial residual

gas content and then the formation of tantalum film phase. He said that various

chemically reactive and non-reactive impurities, such as sputtering gas (usually inert gas,

Ar) and some residual gases (nitrogen and oxygen) in the high vacuum systems could be

trapped in the thin films during the sputtering process. However, by applying a negative

substrate bias, the loosely bonded impurities were re-sputtered by bringing more

energetic bombardment carried by those attracted ions, and the vacuum conditions were

improved dramatically. According to Knewstubb et al. [73], among the different

ionization species in plasma discharges, such as N2+, N+, and NO ions, NO will be less

bonded to tantalum thin films and easily knocked off in a way described by Maissel and

Schaible [74]. So the final results are an increase in the N/O ratio. He summarized that

the improvements of vacuum conditions by applying substrate bias led to an over-all

reduction in residual gas content in the system, so the N/O ratio, and thus the specific
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interstitial nitrogen and not oxygen promote the formation of a tetragonal distorted b.c.c.

superlattice, some people thought as a-tantalum phase.

The experiment done by Maissel et al. [74] further showed that high resistivity 13-

phase Ta formed at low bias because the positively charged impurity ions were attracted

to the substrate at voltages too low for ion bombardment cleaning to be effective. While

increasing the bias voltage, the low resistivity a-phase Ta formed because the ion clean-

up was in effective operation.

In contrast, an IBM research group, Catania et al. [75, 76] reported more recently

that β-phase tantalum was deposited by hollow cathode enhanced magnetron sputtering

technique under -100 V bias, or even lower, with no significant change in film impurity

levels. The results suggested that the formation of the β-phase Ta was not controlled by

impurity effects but by Ta forward scattering and related stress changes. In another paper

[77], these authors pointed out that the substrate bias voltage during the later stages of

thin film growth was more important than that during nucleation on the substrate, and

even offset initial conditions to favor the formation of the opposite phase. They also

concluded that the momentum transfer effects were the central factor controlling the

phase formation.

However, Cook [59, 78] indicated that the formation of a-phase tantalum was

favored by enhanced ion bombardment (i.e. flux and energy) of the substrate/growing

film. He claimed that a certain bombarding energy was necessary to be supplied for the

formation of the low resistivity a-phase Ta, and a -100 V bias was required at 6 kV

cathode voltage whilst -200 V was needed at 4 kV.
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Matson et al. [16, 37] also evaluated the effect of sputtering gas species and

substrate bias during deposition on the phase and microstructure of sputtered Ta coatings.

They stated dense b.c.c. a-phase tantalum was the primary structure in Ta thin films

deposited by Kr or Xe sputtering gases at 200°C substrate temperature, —1500 V target

bias, and a higher substrate bias voltage (-100 V) during the deposit, while the β-phase

Ta with distinctive columnar microstructure was formed by Ar under similar conditions.

Ino et al. [60] reported that the b.c.c. a-phase Ta could be grown on SiO 2 when the ratio

of ion flux to Ta flux was higher than 13 and impinging ion energy was lower than 20 eV

for an Ar plasma. For different inert gas ion irradiations, the ion flux to atom flux ratio

and ion energy conditions for growing the b.c.c. a-phase Ta were different. They reported

that when the normalized ion to atom flux ratio is 26, the b.c.c. a-phase Ta can be grown

on silicon at ion energies lower than 30 eV for Ar ions and at ion energies ranging from

30 to 90 eV for Xe ions. They claimed that there are two effects in biased sputtering that

cause the phase transition from bcc a-phase to β-phase Ta. One is defect generation by

the recoil implantation of Ta atoms under high ion bombardment conditions. The other is

insufficient total energy input to a growing Ta film surface at low ion irradiation and

resulting poor quality.

Others have stated that the 13- to a-phase transformation that occurrs at high

temperature is accompanied by stress relief, and they believe that the main stress relief

mechanism for tantalum films with intrinsic compressive stresses to completely relax

their stress is the phase transformation [79]. Impurity incorporation was another reason

given for the phase transformation [38].
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A major goal of this work was to find the range of conditions for growing a-phase

Ta film in a RF magnetron sputtering system with substrate biasing. Table 2.2 lists the

ion bombardment conditions for promoting a-phase Ta growth reported recently by

researchers from the IBM group [75, 76] and the Japanese group[60]. These are the only

detailed and extensive data related to this work that have been published. Both groups,

however, used rather special equipment, operating at unusually low pressure (IBM group)

or with a complex dual RF and dual DC power supply system (Japanese group). Their

results are also quite different. To establish the conditions for a-phase Ta growth in a

more standard and simpler system suitable for scaling to industrial applications is the

final goal.

Table 2.2 Ion Bombardment Conditions for Growing a-phase Ta

IBM group[75,76] Japanese group [60]

Deposition system	 Hollow cathode enhanced
magnetron sputtering system

Dual RF sputtering process

Bombarding Energy (eV) —150, 22 * 10 - 30

Energetic particles per

deposited Ta atom

0.5, 1 * >13

Energy per deposited Ta
atom (eV/atom)

—100 >130

* Refers to energetic Ta atoms
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2.4 Tantalum Nitride Thin Film

Tantalum nitride is also a very interesting material with various excellent properties, such

as chemical inertness, high hardness, corrosion resistance, high thermal stability, and a

low temperature coefficient of resistance (TCR) [80] which is desired in

microelectronics, especially in portable terminal and telecommunication devices for the

purpose of high reliability. Tantalum nitride thin films are the most promising candidate

for copper metallization diffusion barrier layers for sub-quarter-micron devices since the

copper interconnects for deep submicron multilevel integrated circuit (ICs) become

widely used in the electric industry [81]. Besides being widely used in the electronic

industry as a barrier layer and in precise and stable thin film resistors [82-84], tantalum

nitride can be deposited as a hard, wear and corrosion resistance protective coating for

metals [85]. A new application of tantalum nitride is in high-speed thermal printing heads

[86, 87]. One of its most promising applications is as a diffusion barrier layer in

[FeN/TaN]n  multilayer structures for the application as write-head materials in high-

density magnetic recording systems [88].

Since the 1940s, tantalum and its compounds have been used as biomedical

materials because of its excellent corrosion resistance, chemical stability and histo-

compatibity. Tantalum nitride as a surface modification material, which possesses good

blood compatibility and mechanical durability, has attracted considerable attention

recently [34].
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Tantalum nitride thin films have been successfully deposited using different types

of techniques such as reactive sputtering [89-95], metalorganic chemical vapor deposition

(MOCVD) [96], ion-beam-assisted deposition (IBAD) [97, 98], and electron-beam

evaporation [99]. The phases sequentially formed by sputtering tantalum under increasing

amounts of nitrogen partial flows include nitrogen-incorporated cubic Ta [α-Ta(N)],

hexagonal Ta2N and NaCl-type TaN [67, 83, 100, 101] based on the literatures accounts.



CHAPTER 3

EXPERIMENTAL

In this work, tantalum thin films were deposited by a RF magnetron sputtering system

together with DC substrate biasing apparatus as shown in Figure 3.1. In order to have a

significant fraction of Ar ions to bombard the growing Ta thin films during growth, the

original DC magnetron sputtering system was modified into a RF magnetron sputtering

system with the consideration of simplicity and no necessity of installing an external ion

source. The modifications involved assembling a RF power supply with matching net

work and tuning controlling unit with the Ta target electrode, and attaching a RF filter

and the external DC power supply for providing bias on the substrate electrode. Electrical

meters were hooked into the circuit for measuring the ion current. Detailed information

about the apparatus used is described below followed by a description of the preparation

procedures for substrates and the characterization techniques which were used to

characterize the deposited tantalum thin films.

22
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Figure 3.1 Schematic of biased RF magnetron sputtering system.

3.1 Biased RF Magnetron Sputtering

The idea of biased sputtering was to increase the electric field surrounding the substrate

by applying a negative potential to the substrate beyond the field normally created by the

plasma potential and thus to increase the energy and flux of positive plasma ions that

could be used to bombard the growing thin films. The initial experiment with DC

magnetron sputtering was simply putting a negative DC voltage on the substrate, and this

only resulted in a relatively low ion current and very limited ion bombardment of the

growing thin films, thus had no effect on the crystallographic structure of the deposited
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tantalum thin films at all. The measured ion current and its effects on thin film growth

increased significantly when the same magnetron sputtering source was powered by RF

at the frequency of 13.56 MHz. The relationship between ion current and the negative

substrate bias voltage is illustrated in Figure 3.2. The Ta sputtering source was operated

in a 5 mTorr pressure argon environment.

In the DC mode, the target voltage was -300 V and target current 0.5 A

corresponding to a power of 150 W. While in the RF mode, the RF input power was 150

W and the reflected power was about 1W with the best tuning. The net input power was

149W which was close to the DC mode. However, the obtained ion current under

different substrate bias voltages was relatively higher when the magnetron sputtering

system was operated in the RF mode versus the DC mode as illustrated in Figure 3.2. The

ion current was measured by an isolated meter attached through the substrate. One thing

that needs to be kept in mind is that the secondary electrons that were ejected from the

target also contribute to the measured current. Generally the secondary electron emission

rate per bombardment ion was about 0.1 for metal targets in the energy range of typically

observed in dc glows 100 to 1000 eV, and this depends on energy and the ion species and

surface material condition as well [102]. Also, it was hard to set up the proper device and

connection for measuring the ejected Ar ion current only, so here the measured current

could be all counted to the attracted Ar ions with the ignorance of secondary electrons'

contribution.
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Figure 3.2 The relationship between ion current and negative DC bias voltage in DC and
RF magnetron sputtering system.

The reason for this difference could be attributed to the ion density difference for

magnetron system operated in the DC and RF mode. The ion density in the DC mode was

only very high in the magnetic field near the target electrode where electrons were

trapped, and very few ions could escape and move toward the substrate. On the other

hand, the ionization efficiency of the RF electric field was much higher compared with

DC electric field, and ions were effectively generated farther away from the target

electrode from where they could be more easily attracted to the substrate.

The RF magnetron sputtering system for biased substrate deposition was shown

schematically in Figure 3.1. The proper installation of the RF power generator and

matching network was critical to the proper operation of the system. Operation of the

system required proper tuning of the RF power supply with the magnetron sputtering

source to maximize the transferred power for initiating and maintaining the plasma too.

This function was performed by a matching network and tuning control box. Proper

tuning was accomplished by maximizing the output power and minimizing the reflected
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power as shown by the meters on the RF power supply. The RF filter was a type of

device that allowed the passing or rejecting of signals by their frequency. Here it is

connected between the substrate holder and the DC power supply to prevent AC or RF

signals form entering the DC power supply, which may interfere with its operation and

also with the measurement of DC voltage by the volt meter, specifically disturbing DC

power operation for biasing. The detailed electric modification work was described in the

Master Thesis of Savita Raina [103].

3.2 Sample Preparations

3.2.1 Substrate Clean Procedure

Two types of substrates were used to deposit tantalum thin films on, one was (100)

oriented silicon wafer and the other was an aluminum disk substrate (1.0 mm thick, 15

mm diameter, 99.0% purity produced by Goodfellow Cambridge Limited). The 0.5 x0.5

inch silicon substrates were first immersed into a 10% diluted hydrofluoric acid for about

2 mins. This step was used to remove the silicon native oxide top layers and also surface

contaminants. The second step was to rinse the substrates several times in the de-ionized

water. Then the substrates were rapidly mounted on the substrate holder and loaded into

the vacuum chamber in order to avoid the fresh cleaned silicon substrate getting oxidized

and contaminated again.

For the aluminum substrates, general ultrasonic cleaning steps were performed in

two types of chemical solutions in the sequence of ethanol, acetone and ethanol, and each

for 10 mins. The freshly cleaned substrates needed to be mounted and loaded into the

vacuum chamber quickly after ultrasonic cleaning. After loading the substrates, pumping
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the sputtering vacuum chamber was done as soon as possible, to keep the substrates in a

relatively clean environment.

3.2.2 Vacuum

The chamber baking step was performed after the base pressure of sputtering vacuum

chamber reached the 10 -7 Torr level indicated by a vacuum sensor. This step was mainly

used to remove the water vapor which was absorbed on the internal chamber wall. The

baking temperature was monitored by a thermal couple at a temperature around 150 °C

for 24 hrs. The pressures of various residual gases were listed in Table 3.1, monitored by

an INFICON - QUADREX 200 Residual Gas Analyzer before baking and after the

baking (when system cooling about 12 hrs).

The concentration (partial pressures) of various gases in the vacuum, especially

water vapor and carbon dioxide, decreased dramatically after performing chamber baking

as indicated by the Residual Gas Analyzer. It was found that this step was necessary for

depositing thin films with lower contamination and consistent structure and quality.

Considering a partial pressure of 10 -6 Ton, it corresponds to approximately 0.42

monolayers of air impurity atoms striking the surface during deposition per sec. Then the

0.42 monolayers impurity atoms were comparable to 0.07 nm per sec of deposited Ta. If

the impurity arrival rate (partial pressure) was a high fraction of the deposition rate, then

significant contamination could be expected for deposited Ta thin films, such as reactive

elements 0 and OH. However, in the case of the experiment done here, the Ta thin films

were deposited under the argon inert gas working pressure of 5 mTorr, and the impurity

arrival rate was only a very small fraction of deposition rate.
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Table 3.1 The Pressure of Residual Gas in the Sputtering System Vacuum Chamber
before and after Baking

Residual gas	 Gas pressure before baking	 Gas pressure after baking

(Ton)	 (Ton)

Total base pressure	 1.5x10-6	 3.5x10-7

Hydrogen	 5.4x10-8	 5.1x10-8

Water	 7.7x10-6	 5.8x10-7

N2/CO	 3.7x10-7	 3.7x10-7

Oxygen	 3.6x10-8	 7.8x10-8

CO2	 1.9x10-7	 3.2x10-8

3.2.3 Thin Film Deposition

The base pressure of the sputtering system was about 5.0x10 -8 Ton with pumping by the

turbo-pump and crypo-pump after chamber baking, and readied for thin film deposition.

Substrate sputter etching cleaning prior the deposition was proven to be another

important step for depositing thin films with consistent quality in this investigation. By

doing this, the 99.999% pure Ar gas was first introduced into the sputtering chamber, at a

gas flow of 18 sccm which could be regulated and controlled by a gas flow control meter.

The substrate holder was turned to the position directly in front of the observation

window, and an electrical connection made between the substrate holder and the power

supply for conducting sputter etching cleaning to the substrates attached to it. The sputter

etching step was processed at 400 V DC power with the substrate ion current in the range

of 1-10 mA (0.03-0.3 mA/cm 2), and the Ar gas pressure of 250350 mTorr for 20 min.
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According to the sputtering yield (S, the number of atoms sputtered by one

incident ion) data for different materials summarized in ref. [104] Table 3-4 of page 113,

S = 1.05 for Al and S = 0.5 for Si at 0.5 keV Ar, this leads to 10 15 Al or 5x10 14 Si atoms

per square cm per sec. sputter removed from the substrate by sputtering etching based on

the average ion current density 0.16 mA/cm 2 per sec. i.e., —10 15 ions/cm2 per sec. So for

the 20 min sputter etching exposure time, about 1.2x10 18/cm2 (-200 nm) Al and

6x10 17/cm2 (-120 nm) Si atoms were removed during these process at the extreme

conditions.

After the substrates finish sputter etching, it was moved directly to the position

right above the magnetron sputtering source for deposition. The sputtering source was

running approximately half an hour prior the deposition for removing the accumulated

contaminations of the Ta target, such as oxidized surface layer, as well as for stabilizing

the target operation, and the substrates were properly shielded during this cleaning step.

The Ar gas work pressure during thin film deposition was 5 mTorr. The pre-determined

substrate bias voltage was then applied, and the substrates shield was removed to deposit

Ta film on substrate. The deposited Ta film thickness was controlled by deposition time,

and later was measured based on the Rutherford Backscattered measurement.



30

3.3 Characterization Techniques

3.3.1 X-Ray Diffraction

For deposited tantalum thin films, learning the crystallographic structures of deposited

tantalum films was the priority task, and X-ray diffraction (XRD) methodology was used

here for this purpose. XRD could be used to identify the structure of single crystalline,

polycrystalline and amorphous material for both powder and thin film samples. It also

could be used to determine the internal stress of different samples by knowing the peak

position shift relative to stress-free samples and the crystal size by analyzing the full

width at half maximum intensity (FWHM) of the peak. Here a Philips PW3040 X-Ray

diffractometer was used to perform a continuous scan under the conventional 2theta scan

and the generator settings of 45 kV and 40 mA. The X-ray was provided by copper (Cu)

with the Kα-1 wave length of 1.540598 nm.

For tantalum, the typical XRD spectra of sputter deposited tantalum thin film is

shown in Figure 3.3. As the figure shows, the first primary peak for the sputtered α-phase

Ta is the (110) peak at a (20) angle of 38.438° and for the β-phase is a (002) peak at a

(20) angle of 33.555° [105, 106]. These peaks appearing between 30 to 40 degrees turned

out to be the major peaks used for identifying the sputtered Ta films crystallographic

phase structures.
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Figure 3.3 Typical XRD spectra of sputter deposited a-phase and β-phase tantalum thin
films.

Based on Bragg's Equation, the spacing, d, between the crystals planes with the

specific orientation (hkl) which shared the same normal direction respective to the sample

surface could be expressed as Equation 3.1:

The lattice strain could be calculated by using the lattice spacing d as an internal gauge,

expressed by Equation 3.2.

Where E is the lattice strain, d is the plane spacing of the sample and d o is the plane

spacing of a strain free reference sample. In the majority of cases of thin films only a

biaxial stress was formed so that the measurement in the Bragg-Brentano geometry was

possible. If the strain was homogeneous and isotropic in the thin film substrate interface,
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the lattice stress could be determined from the shift of a diffraction line or peak by using

Equation 3.3 below.

Where a represents the stress, E is Young's modulus and IA is Poisson's ratio of the

material investigated [107].

By using the Scherrer Equation 3.4, the crystal size of deposited tantalum thin

films could be estimated. It describes peak broadening in terms of incident beam

divergence which made it possible to satisfy the Bragg condition for non-adjacent

diffraction planes. Once instrument effects had been excluded, the crystallite size could

be easily calculated as a function of peak width (specified as the full width at half

maximum peak intensity, FWHM), peak position and wavelength [28, 108].

Here X is the wavelength of the X-ray source, OB is the Bragg angle, and B is the full

width at half maximum height at 20 13 referred to a standard sample.

3.3.2 Rutherford Backscattering

Rutherford backscattering (RBS) is a material analytical technique based on scattering of

high energetic ions, generally MeV, from atoms at the surface and in the near-surface

area of tested material. A 2-4 MeV high energy and low mass He 2+ was directed toward

the sample, and a small fraction of particles (-10 5) backscattered from the sample after

colliding with the sample atom nuclei were detected by an energy-sensitive detector
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placed at an angle close to 180° with respective to the sample surface normal. The

backscattered energy of these energetic particles is related by momentum and energy

conservation laws of the incident energy to the mass of the sample elements from which

the particle backscattered. RBS is an absolute analytical technique since the relative

number of particles backscattered from a sample atom for a given number of incident

particles is related to the probability of incident high energy ions backscattered from a

given material. The scattering cross section determined by the Coulomb potential was

used to express this probability, and it was proportional to the square of the atomic

number of the target atom. On the other hand, those ions which backscattered from an

element at some depth in the sample would have less energy than those backscattered

from the sample surface, and the energy loss of the ions was due to interaction with

electrons and collision with nucleus when penetrating to some depth in the sample. The

amount of energy loss for each ions distance traversed in the sample depends on the

element in the sample, and most importantly, the element density. This can provide the

information of the sample composition versus different depth as well as sample thickness

for thin films.

As for billiard ball scattering, particles such as helium 4 ions used here (m=4)

backscattered from a heavy element nucleus like Ta retains a higher fraction of its energy

therefore produced a higher energy signal in the spectrum than lighter elements (Si) in the

substrate. Thin films could were analyzed by RBS for composition, thickness and

uniformity with depth. The RBS operation conditions listed in the Table 3.2.
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Table 3.2 RBS Operating Conditions

Incident ion	 Incident ion	 4He

Incident ion energy (keV)	 2000.00

Geometry	 a Incident angle (Deg.)	 0.00

13 Exit angle (Deg.)	 26.00

0 Scattering angle (Deg.)	 154.00

Calibration	 Calibration offset (keV)	 53

Energy per channel (keV/ch)	 5.7150

Energy resolution	 Detector resolution (keV)	 19.0

Generally, the values obtained for element concentrations from RBS were

absolute values needing no further calibration, while the depth and thickness numbers (in

nm) were not absolute unless the density of the material was correctly known. Usually, a

model based on the actual scattering cross section and the stopping power was used to

generate a theoretical spectrum which was then adjusted until a fit was obtained to the

experimental data. Here the software "SIMNRA 5.02" was used to simulate the RBS

energy spectrum by adjusting element concentration, and film thickness as identified by

number of atoms per square cm. By knowing the tantalum thin film density and assuming

the density uniformity though the film thickness, the actual film thickness could be

determined by the following Equation 3.6.

Where n (number/cm2) was the Ta film thickness (aerial density) obtained by RBS

simulation, Watomic (g/mole) was the element atomic weight (180.92 for Ta), p (g/cm3)

was density and NA (6.02 x10 23/mole) was Avogadro's number.
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3.3.3 Scanning Electron Microscope (SEM)

Unlike conventional optical microscopes which use a series of glass lenses to bend light

waves and create a magnified image, SEM is a microscope that uses electrons to form a

detailed 3-dimension image with much higher magnifications. For example, with the

beam angular width of 0.3° (5 mrad) and under the same magnification of 30, the depth of

field for SEM was 670 um while 4 for optical microscope. This allows people a view

of the substance with much smaller features.

Figure 3.4 Schematic of SEM [109].

The electron beam came from a fine filament, typically a tungsten hairpin gun,

and then was accelerated toward the anode. Some electrons were accelerated right by the

anode and on down the column, to the sample, as shown in Figure 3.4. The Cylindrical

Magnetic Lens played a role of focus and directed the electrons to the sample. When the

electron beam struck the sample, both photon and electron signals were emitted. But not

all of them were detected and recorded, commonly only secondary electrons, the

backscattered electron and X-rays were caught and used for information.
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Here the field emission scanning electron microscopy (LEO 130 FE_SEM) was

used under "inlens" detection mode to obtain the surface morphology information of

deposited tantalum thin films, in which the secondary electron detector produced a clear

and focused topographical image of the samples. Samples for SEM require electrically

conductive adhesive. For the metallic conductive samples, the sample was directly placed

on the sample holder by adhesion conductive carbon glue tape. The SEM images were

taken to see the top morphology of the tantalum thin film.

3.3.4 Atomic Force Microscopy (AFM)

The atomic force microscopy (AFM), one kind of scanning probe microscopy (SPM),

was invented in 1986 by Binnig, Quate and Gerber. By utilizing a sharp probe moving

over the surface of a sample in a raster scan, the tip of the AFM which was on the end of

a cantilever bent in response to the interaction between the tip and the sample, therefore

the topography features of the surfaces could be imaged and recorded.

Normally there were two different modes, contact mode and tapping mode.

Tapping mode was used for soft, adhesive or fragile samples since the forces imposed on

samples using the tapping mode was much weaker than using contact mode. The contact

mode was the most common method of operation of the AFM, in which the tip and

sample remained in close contact as the scanning proceeded (in the repulsive regime of

the inter-molecular force curve). One of the drawbacks of the contact mode was that there

existed large lateral forces on the sample as the tip was "dragged" over the specimen. In

this work, the contact mode was chosen to image the surface topography of deposited

different Ta thin films. A Nano-Scope llla manufactured by Digital Instruments was
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used. The AFM images were shown and discussed further in the following chapter. It had

2-10 nm lateral resolution and 0.1 nm vertical resolution.



CHAPTER 4

EXPERIMENTAL RESULTS

For this investigation, different thickness tantalum thin films on silicon and aluminum

substrates have been prepared by the modified biased RF magnetron sputtering system

under different substrate bias voltages. Below are the experimental results of film

thickness and foreign atom incorporation measured by RBS, crystallographic structure,

lattice strain and crystal size of Ta thin films obtained by XRD spectra analysis, and the

top surface film morphology observed by SEM and AFM.

4.1 RBS Measurement

RBS measurements were performed on tantalum thin films deposited for 10 min under

different bias voltages. Two representative RBS spectra of Ta thin films deposited on

Si-100 substrates for 10 min with substrate bias voltages of 0 V and -300 V are shown in

Figure 4.1. The thin film thicknesses shown in Figure 4.2 was obtained (in terms of the

number of atoms per unit area) from fitting the measured spectra with simulated curves

by using SIMNRA 5.02, and the film thickness was derived based on the formula

described in Section 3.3.2 with the assumption that tantalum thin films have the same

density as bulk Ta (16.8 g/cm 3).

38
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Figure 4.1 RBS spectra of tantalum thin films deposited under (a) 0 V and (b) -300 V for
10 min. ( 	• 	Experimental points 	 Fitting line)
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Substate bias voltage (V)

Figure 4.2 The film thickness of tantalum thin films deposited for 10 min under different
substrate bias voltages.

The tantalum thin film thickness are expressed in units of 10 15 atoms per square

cm, which corresponds to about one monolayer of Ta, since one monolayer of material

roughly contained 10 15 atoms per cm2 . It was seen that the tantalum thin film thickness

decreased with increasing negative substrate bias voltage. The Ta film thickness

deposited with the bias voltage of the -300 V was only a half of that deposited at 0 V and

this indicated that the tantalum thin film got re-sputtered by Ar ions accelerated by -300

V substrate bias voltages. It was also found that the film thickness of tantalum deposited

under the same bias voltage of 0 V for 10 min was 186 nm and 260 nm by using two

different Ta sputtering targets. One of these targets was used for many hours and showed

deep erosion, and one was a new target. This was reasonable, because people could

expect the difference in the sputtering angular distribution between the brand new target

and the used target.
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The RBS spectrum of tantalum thin film deposited under -300 V for 10min is

shown in Figure 4.1 (b), and the simulation result also indicated that there was about 10%

Argon (Ar) implanted into the tantalum thin film under -300 V bias, while there was

undetectable Ar incorporation indicated by RBS for tantalum thin films deposited under

the lower bias voltages (0 ~ -200 V).

From the RBS measurements of tantalum films deposited for 10 min and the

measured in-situ ion current, a ratio of Ar ions to arriving Ta atoms at the substrate and

the growing Ta thin film sputtering yield by different substrate bias voltages attracted Ar

ions were derived and listed in the Table 4.1 below.

Table 4.1 Substrate Ion Bombardment Parameters

Bias voltage (V) 0 -100 -150 -300

Substrate Ar ion current (mA) 9.60 13.58 13.69 14.13

Film thickness (x10 15Atoms/cm2) 1046 815 640 425

Ratio of Ar Ions/incoming Ta atoms 0.90 1.27 1.28 1.32

Sputtering Yield of growing Ta films - 0.17 0.30 0.45

During the biased sputtering deposition, Ar ions transfer their energy and

momentum to Ta atoms of the film, and the number of Ar ions needed to sputter away

each Ta atom from the growing films decreased as the ion energy increased. The sputter

yield is defined as the number of atoms or molecules ejected from a target surface per

incident ion. It is a fundamental parameter for measuring the efficiency of sputtering. In

this case, the sputtering yield of the growing Ta thin films was defined as the number of

Ta atoms removed from the growing thin film surface per incident Ar ion.
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The Ta sputtering yield under different bias voltages was then derived under the

assumption that the flux of incoming Ta atoms under different bias voltages never

changed and was the same as it was under 0 V bias. Also it was assumed that there was

no sputtering of the growing Ta thin films under 0 V bias. The Ta thin film sputtering

yield of 0.45 at 0.3 keV Ar was close to that extrapolates to the previously reported

experimental value of 0.57 at 500 eV [104]. Detailed sputtering yield comparisons of

semi-empirical formula calculation results, experimental data would be introduced along

with MD simulation results in Section 5.4. When the substrate bias voltage increased to -

300 V, approximately 10% atomic Ar was incorporated into the Ta thin film as found by

RBS measurement. These incorporated Ar atoms are about 3% of the total impinging Ar

ions (derived by ion current).

4.2 XRD Measurements of Tantalum Thin Films

In order to understand the crystallographic phases, XRD measurements were performed

for the bias sputtering deposited tantalum thin films. The analysis methods described in

Section 3.3.1 for XRD spectra were used to further determine the internal lattice strain

and crystal size of those tantalum thin films too. The detailed results are shown as below.

4.2.1 The Crystallographic Structure Identification of Tantalum Thin Films

Thin tantalum films were first deposited under different substrate bias voltages ranging

from 0 V to -300 V for 10 min, on both silicon and aluminum substrates subjected to a

approximately 20 min sputter etching prior to deposition. The XRD spectra of these thin

tantalum films are illustrated in Figures 4.3 and 4.4. Scans over a wide 20 range (20°-
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160°) have not revealed other significant reflections, and convinced us that these two

prominent peaks represent the films crystallographic texture and are a reliable measure of

the presence of the two phases.

Positron [02Theta]

Figure 4.3 XRD spectra of tantalum thin films deposited on silicon substrates with
sputter etch (S.E.) for 10 min under different substrate bias voltages (a) 0 V, (b) -50 V,
(c) -100 V; (d) -150 V, (e) -200 V; (0 -250 V, and (g) -300 V.



Figure 4.4 XRD spectra of tantalum thin films deposited on aluminum substrates with
S.E. for 10 min under different substrate bias voltages (a) 0 V, (b) -50 V, (c) -100 V,
(d) -150 V, (e) -200 V, (f) -250 V, and (g) -300 V.

Figures 4.3 (a) and 4.4 (a) clearly show that tantalum thin films with mixed

phases, identified by the a-phase Ta (110) peak at 38.438 and the β-phase (002) peak at

33.555, grew with 0 V substrate bias on both silicon and aluminum substrates. The

intensity of the a-phase Ta peak was higher than the β-phase Ta peak in these figures, but

it was also observed that sometimes the intensity of the β-phase Ta peak was higher than

that of the a-phase Ta peak for 0 V bias deposited Ta thin films as shown in Figure 4.5.

This indicates that the tantalum thin film phase formation is quite sensitive to over all

deposition conditions.
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Figure 4.5 XRD spectra of tantalum thin film deposited under the same nominal
conditions, 0 V bias for 10 min deposition; under different runs.

At a negative substrate bias voltage of -50 V (Figures 4.3 (b) and 4.4 (b)); a-phase

Ta became the dominant crystallographic structure of the thin films, and 100% pure a-

phase Ta grew for substrate bias voltage of -100 V; -150 V and even -200 V (Figures 4.3

(c)'~(e) and 4.4 (c)~(e)) on both silicon and aluminum substrates. However, upon further

increasing the substrate bias voltage up to -250 V and -300 V, tantalum thin films grown

on silicon substrates returned back to the β-phase, while tantalum thin films grown on

aluminum substrate were still a-phase as shown in Figures 4.3 (f), (g) and 4.4 (f), (g) .

As mentioned in Section 3.2.2, the substrate sputter etching prior the deposition

was a very important step for depositing consistently high quality thin films. The XRD

spectra in Figures 4.6 and 4.7 were obtained for the thin tantalum films deposited on both

silicon and aluminum substrates without performing a sputter etching cleansing step.
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Figure 4.6 XRD spectra of tantalum thin films deposited on silicon substrates without
S.E. for 10 min under different substrate bias voltages (a) 0 V, (b) -50 V, (c) -100 V,
(d) -150 V, (e) -200 V, (f) -250 V, and (g) -300 V.

Position [`02Theta]

Figure 4.7 XRD spectra of tantalum thin films deposited on aluminum substrates
without S.E. for 10 min under different substrate bias voltages (a) 0 V, (b) -50 V, (c) -100
V, (d) -150 V, (e) -200 V, (f) -250 V, and (g) -300 V.



47

By comparing the spectra of Figures 4.3, 4.4 with Figures 4.6, 4.7, it was clear

that the β-peak Ta dominated the structure of Ta films which were deposited without

performing the pre-deposition sputter etching under different substrate bias voltages on

both silicon and aluminum substrates. The sputter etching effect appeared to be

dramatically stronger even for films deposited on silicon substrates since there was only a

strong β-phase Ta peak and no detectable a-phase Ta peak regardless of the bias voltage

for those Ta films deposited without a sputter etching (S.E.) step.

Figures 4.8 and 4.9 showed XRD spectra were for tantalum thin films deposited

with different thicknesses by controlling the deposition times under 0 V bias conditions.

These figures showed that tantalum thin films grew initially with strong a-phase

component, and which even dominated the structure of the 15 min deposition films.

Figure 4.8 Tantalum thin films deposited on silicon substrates with S.E. under 0 V bias
for (a) 10 min, (b) 15 min, (c) 20 min, (d) 30 min, and (e) 40 min.



48

Position [°2Theta]

Figure 4.9 Tantalum thin films deposited on aluminum substrates with S.E. under 0 V
bias for (a) 10 min, (b) 15 min, (c) 20 min, (d) 30 min; and (e) 40 min.

But for thicker tantalum films (20 min deposition films), the β-phase was

dominant structure and there was only very small amount a-phase component detected.

This phase transformation happened for thicker tantalum films deposited on both silicon

and aluminum substrates. Different thickness tantalum thin films deposited under other

substrate bias voltages ranged from -50 V to -150 V were also deposited, and the XRD

spectra of those films were illustrated in Figures 4.104.15.
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Figure 4.10 Tantalum thin films deposited on silicon substrates with S.E. under -50 V
bias for (a) 10 min, (b) 20 min, and (c) 30 min.
Counts

Figure 4.11 Tantalum thin films deposited on aluminum substrates with S.E. under 50 V
bias for (a) 10 min, (b) 20 min, and (c) 30 min.
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Figure 4.12 Tantalum thin films deposited on silicon substrates with S.E. under -100 V
bias for (a) 5 min, (b) 10 min, (c) 15 min, and (d) 20 min.

Figure 4.13 Tantalum thin films deposited on aluminum substrates with S.E. under -100
V bias for (a) 5 min, (b) 10 min, (c) 15 min, and (d) 20 min.
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Figure 4.14 Tantalum thin films deposited on silicon substrates with S.E. under -150 V
bias for (a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min.

Figure 4.15 Tantalum thin films deposited on aluminum substrates with S.E. under -150
V bias for (a) 5 min, (b) 10 min, (c) 20 min, and (d) 40 min.
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The intensity (peak height) of the β-phase peak relative to the a-phase peak

increased when the film became thicker (longer times deposition than 10 min) for bias

voltages -50 V and -100 V. While on the other hand for tantalum thin films deposited

under -150 V bias, the β-phase structure never appeared, and the a-phase structure always

remained to be the only type even for Ta thin films deposited for longer times as shown

in Figures 4.14 and 4.15.

For 20 min deposition, tantalum thin films deposited under higher bias voltages

such as -300 V, the β-phase structure dominated in the film deposited on silicon

substrates, but the film deposited on aluminum substrates at the same time still had a-

phase as shown in Figures 4.16 and 4.17.

Counts

Figure 4.16 Tantalum thin films deposited on silicon substrates with S.E. under -300 V
bias for (a) 10 min, and (b) 20 min.



Figure 4.17 Tantalum thin films deposited on aluminum substrates with S.E. under -300
V bias for (a) 10 min, and (b) 20 min.

After the observation of the tantalum thin films phase changing with applying

different substrate bias voltages (0 ~ -300 V) and different thickness, there were still

questions left like whether the substrate negative bias condition was only needed for the

initial nucleation stage or even later for the growth stage of the thin film deposition

process.

In order to answer this, tantalum thin films were deposited in two steps. First by

providing -150 V bias voltage (the conditions at which the crystallographic structure of

tantalum thin film deposited on silicon substrate was identified to be a-phase Ta) for 10

min, and then the bias voltage was changed to -300 V (the conditions at which the

crystallographic structure of tantalum thin film deposited on silicon substrate was

identified to be β-phase Ta) to continue the deposition for another 10 min. The XRD
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spectrum of this thin film sample is shown in Figure 4.18 (d). It was clear that once the a-

phase Ta grew under -150 V bias voltages, it would keep growing with the same structure

even when the bias voltage was increased to -300 V.

A further confirmation experiment was performed by depositing tantalum thin

film under -300 V for 10 min on the α-phase Ta thin films deposited earlier (under -150

V for 10 min) and had been removed from the deposition chamber for XRD analysis. The

XRD spectrum of the Ta thin film deposited earlier under -150 V is shown in Figure 4.18

(a), while the film also consisting of additional later deposited tantalum thin film layer

under -300 V is shown in Figure 4.18(c). Only the a-phase Ta peak appeared too. As a

reference, another bare silicon substrate was placed on the same substrate holder next to

the one already with earlier deposited Ta thin film, and a tantalum film was deposited

only under the -300 V for 10 min at the same time. This reference sample showed only β-

phase peak, as expected (Figure 4.18 (b)). This experiment even provided a convincing

proof that the substrate bias condition for getting the α-phase Ta at the initial thin film

nucleation stage was most important and necessary.
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Figure 4.18 XRD spectra of tantalum thin films deposited on silicon substrates: (a) under
-150 V for 10 min, (b) under -300 V for 10 min, (c) under -300 V for 10 min on earlier
deposited film (a), and (d) initially under -150 V for 10 min then continuing deposition
under -300 V for 10 min.

By reversing the order of applied substrate bias conditions, the tantalum thin films

were initially deposited under -300 V bias for only 1 min, and then changed the bias

voltage to -150 V for the rest 9 min deposition. Figure 4.19 shows the XRD spectra of the

crystallographic structure of the films on silicon and aluminum substrates.



Figure 4.19 XRD spectra of tantalum thin films deposited with mixed bias conditions:
-300 V for 1 min then changes to -150 V for 9 min on (a) silicon, and (b) aluminum
substrate.

It appeared to be a mixed phase growing on the silicon substrate, while still only

a-phase Ta on aluminum substrate but a very broad peak. This indicated that the tantalum

thin films initial nucleation stage was most important for defining the final film

crystallographic structures.

4.2.2 Internal Lattice Strain and Crystal Size of Tantalum Thin Films

Internal lattice strain and the crystal size are other important issues for thin films

deposited by different technologies, and it is believed that these are correlated with the

thin film phase structure changes too. Using the formula introduced in Section 3.3.1; the

internal lattice strain of thin tantalum films could be determined by comparing the XRD

peak position shift with respect to the peak position of strain-free films. According to the
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unit cell lattice constant of tetragonal β-phase reported by Moseley et al. [110], a=10.194

A and c=5.313 A, the spacing of the (002) crystal planes was 2.6565 A, and the spacing

between the (110) crystal planes of bcc a-phase Ta was 2.3376 A, based on the lattice

constant of 3.3058 A [41].The crystal size also could be calculated by Scherrer Equation

3.4 from the full width at half maximum of the designated XRD peak.

The results derived from the width of the (110) a-phase peak show that this phase

grows in small crystals (8 — 24 nm) as seen in Table 4.2 and Figure 4.20. The grain size

does not change appreciably with the film thickness (Figure 4.21). The grain size of β -

phase were found to be much larger, and in contrast to the a-phase significantly

decreasing with increasing bias voltages (Table 4.2).

Table 4.2 Grain Size in Ta Thin Films

Bias Voltage
(V)

Deposition
Time

(minutes)

Film
Thickness*

(nm)

a-phase
(nm)

n-phase
(nm)

0 10
20
30
40

186.4
(369)
(554)
(738)

24
25
-
-

32
32
86
128

100 10 145 18 -
20 (290) - 62

150 10 114 19 -
20 (228) 19 -
40 (456) 18 -

250 10 (89) 9 12
300 10 76 7** 10

20 (152) 11** 12
Determined from RBS using bulk Ta density (16.8 g/cm3)
Numbers in parentheses interpolated form deposition time

**	 Films on Al substrate, all other on Si
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Substrate bias voltage (V)

Figure 4.20 The grain size of the a-phase crystals in Ta thin films deposited for 10 min.
with different substrate bias voltages based on Sherrer formula.

Figure 4.21 Lattice strain and grain size in a-phase Ta thin films deposited for different
times at a substrate bias voltage of -150 V.
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The internal bcc lattice strain for films on Si substrates deposited for 10 min under

different bias voltage is shown in Figure 4.22. There is a significant drop in compressive

strain at -100 V and -150 V bias, where the a-phase dominates the film structure. Further

increases in bias increases the compressive strain. The dependence of strain on thickness

of the films deposited with -150 V bias, consisting of the a-phase, is shown in Figure

4.21.

0 	 -50 	 -100 	 -150 	 -200 	 -250 	 -300

Substrate bias voltage (V)

Figure 4.22 Lattice stain in α--phase crystals Ta thin films deposited for 10 min. with
different substrate bias voltage for 10 min.

The crystallite size of tantalum thin films decreased with increasing substrate bias,

and this decrease partially reflects their smaller thickness, due to re-sputtering, as shown

by RBS measurements. The minimum internal lattice strain was observed in the thin film

deposited under -100 V and -150 V bias. By observing the XRD spectra, it was also seen

that a large β-phase Ta (002) peak position shift for films deposited on silicon substrates,

seeing Figures 4.3 (a) and (g), 20 angle of 33.548° (with 0 V substrate bias) changed to

33.07° (under -300 V substrate bias). Usually the strain free β-phase (002) oriented peak
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position was at a 20 angle of 33.555 degrees. So the strains of β-phase Ta in the films

deposited on silicon substrates with 0 V substrate bias and -300 V substrate bias voltages

were 0.5% and 1.9% respectively. This meant that the β-phase Ta crystal was highly

expanded in the direction normal to the film surface while highly compressed in the

direction parallel to film surface.

It had also been noticed for the XRD spectra (Figure 4.6) of tantalum thin films

deposited under different substrate bias voltages on silicon substrates, without pre-

deposition sputter etching cleaning that only the β-phase (002) Ta peak appeared, and the

peak shifted significantly toward lower angles when the bias voltage increased. This

indicated that the compressed stress accumulated in the lattice plane which was parallel

to the thin film surface too.

In addition, the crystallographic phase of thicker (deposition time longer than 10

min) tantalum thin films on silicon substrates would change from mainly a-phase

(undetectable β-phase) to β-phase dominant mixed phases when the applied substrate

bias voltage was -100 V, and would not change, for pure a-phase, when the applied

substrate bias voltage was -150 V, even thought the internal lattice strain of a-phase for

both 10 min deposition tantalum thin films under -100 V and -150 V bias possessed the

similar minimum value. The concern was that how the internal lattice strain developed

for both phases with the film thickness increases when the applied substrate bias voltages

were -100 V, and how this was related with the phases changing. In order to answer these

questions, the internal lattice strain and crystal size for both phases in the different

thickness tantalum thin films deposited under -100 V bias were evaluated, and listed in

the Table 4.3. The relative amount of β-phase Ta listed in the table was determined by
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peak intensity in XRD spectra, i.e., the percentage of β-phase (002) peak intensity

relative to the peak intensity of a-phase (110) peak and β-phase (002) peak.

Table 4.3 The Relative amount of β-phases Tantalum with Different Thickness
Deposited under -100 V Bias and Their Lattice Strain and Grain Size

Similarly, the internal lattice strain and grain size for only a-phase Ta in the

different thickness tantalum thin films deposited under -150 V bias were also evaluated,

and listed in the Table 4.4.

Table 4.4 The Lattice Strain and Grain Size of a-phases for Different Thickness
Tantalum Thin Films Deposited under -150 V Bias
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It was concluded that tantalum thin films deposited under -150 V bias possessed

only the stable a-phase structure, and the crystal size did not change much with the film

thickness, while the lattice strain decreased when the film thickness increased. For

tantalum thin films deposited under -100 V bias on silicon, it grew initially with the

mixed phases structures with small amount of highly stressed β-phase (about two times

higher than a-phase in the same film) at the 5 min deposition. It then became almost pure

a-phase at 10 min deposition, but this bias condition could not stabilize the film crystal

structures as it finally turned to be only the β-phase with a lower level stress and very

large size crystals when the deposition time was 20 min. During increasing Ta film

thickness at -100 V bias, the lattice strain and crystal size of a-phase component for the

same group of films changed in the same manner as observed in those films deposited

under -150 V bias. For tantalum thin film deposited under -100 V bias on aluminum

substrates, the β-phase structure was also observed in the film deposited for 20 min with

low level stress and comparable large size crystals, and even the a-phase component

became expanded in the direction parallel to the film surface.
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4.3 SEM Images of Tantalum Thin Films

SEM images of different magnification were taken for tantalum thin films deposited on

silicon substrate under 0 V, -100 V, -150 V and -300 V bias for 10 min. These images

presented in Figures 4.23 —4.25 showed the surface morphology of these thin films.

200nm
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WD= 6mm

Signal A = InLens

Pixel Size = 7.1 nm

Signal A = InLens

Pixel Size = 7.1 nm

Figure 4.23 SEM image of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 10 min at magnification of 50K.
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Figure 4.24 SEM image of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 10 min at magnification of 200K.
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Figure 4.25 SEM image of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 10 min at magnification of 400K.

In Figure 4.23 (a), the SEM images of tantalum thin film deposited under 0 V

taken under 50K magnification showed a lot of small bright white spots, which

represented protrusions from the film surface. The size of these bright white protrusion

spots increased when the bias voltage was changed from 0 V to -100 V, as was seen in

the image of Figure 4.23 (b). There was no obvious white protrusion spots in the image

(Figure 4.23 (c)) of tantalum thin film deposited under -150 V; which consisted of only a-
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phase structure. For tantalum thin film deposited under -300 V, the white spots appeared

again but they were very dense and not so bright (shown in Figure 4.23 (d)).

By increasing the magnification to 200K, more details in the top morphology of

the tantalum thin films could be clearly revealed. The images for different films looked

similar except for the film deposited under -300 V, which appeared to be more textured

with rising rounded and elongated grains and deeper grain boundaries. This could be seen

even more clearly from the images taken at the 400K magnification. In order to see the

feature of those white spots, an image of one of those white spots for tantalum thin film

deposited under -150 V which could not be seen under low 50K magnification was taken

as shown in Figure 4.26. This white spot had the same feature as surrounding crystal

grains.

Figure 4.26 SEM image of a protrusion on the surface of Ta thin film deposited under
-150V for 10 min.
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SEM images also had been taken for thicker tantalum thin films (i.e. deposited for

longer time) to show their surface morphology. Figure 4.274.230 showed the SEM

images of tantalum thin films deposited for 20 min under OV, -100 V, -150 V and -300 V

bias on silicon substrates.

EHT = 5.00 kV 	 Signal A = InLens
WD 	 5 mm 	 Pixel Size =.356.9 nm

Signal A = InLens

Pixel Size = 356.9 nm

Figure 4.27 SEM images of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 20 min at magnification of 1K.
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Figure 4.28 SEM images of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 20 min at magnification of 50K.
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Figure 4.29 SEM images of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V, and (d) -300 V for 20 min at magnification of 200K.



Figure 4.30 SEM images of Ta thin films deposited on silicon substrates under (a) 0 V,
(b) -100 V, (c) -150 V; and (d) -300 V for 20 min at magnification of 400K.

In Figure 4.27, the SEM images taken under 1K magnification of tantalum thin

films deposited under different bias voltages showed a lot of small bright white

protrusions on the film surface except for the tantalum thin films deposited under -300 V.

One (Figure 4.27 (d)) showed relatively less protrusions. The size of those protrusions

and the density were also quite non-uniform for all the thin films.
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Tantalum thin films deposited under -100 V and -300 V showed relatively smooth

surface morphology under different magnifications as seen in Figure 4.28— 4.30 (b) and

(d). For tantalum thin films deposited under -300 V bias voltage, the SEM image taken

under 50K (Figure 4.28 (d)) showed a lot of small area with some grain features,

however, the rest area showed just smooth background without any clear features.

Tantalum thin films deposited under -150 V showed similar grain structures as

thinner films (10 min deposition one as shown in Figure 4.24 (c) and 4.25 (c)) as shown

in Figure 4.29 (c) and 4.30 (c). For tantalum thin films deposited under 0 V bias, SEM

images showed similar but incomplete grain structure as the thin tantalum film deposited

under -150 V in Figure 4.29 (d) and 4.30 (d).

The features of those white protrusions on these different 20 min deposition

tantalum thin films had been imaged and shown in Figure 4.31 below. As shown here, the

white protrusions area always showed similar features as the surface morphology of

tantalum thin film deposited under -150 V.



Figure 4.31 SEM images of white protrusions on the surface of Ta thin films deposited
on silicon substrates under (a) 0 V, (b) -100 V; (c) -150 V, and (d) -300 V for 20 min.

By observing these SEM images of Ta thin films, we found that the Ta thin film

surface appearance correlates with the crystallographic phase content of the films. The a-

phase film surface is characterized by dense regularly spaced grain facets while the small

grained films show finer features within a network of ridges. Occasionally; protrusions

with the a-phase features were observed on the surface of the films which consisted

mostly of the β-phase. Mixed phase films show less regular surface with local a-phase

facets interspersed with larger areas of less distinct features.
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4.4 AFM Images of Tantalum Thin Films

Tantalum thin films deposited on silicon substrates for 10 min under different substrate

bias voltages were also observed by AFM using the contact mode. AFM images in Figure

4.32 and Figure 4.33 below showed the surface morphology of these different thin films.

(a)

(b)

Figure 4.32 AFM images of 2 p.m x 2	 area (z=50nm/div) of tantalum thin films
deposited on silicon substrates for 10 min under substrate bias voltages: (a) 0 V, and
(b) -100 V.
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Figure 4.33 AFM images of 2	 x 2 .Lin area (z=50nm/div) of tantalum thin films
deposited on silicon substrates for 10 min under substrate bias voltages: (a) -150 V, and
(b) -300 V.

The surface roughness of tantalum thin films surface roughness increased with

increasing substrate bias voltages, i.e., ion bombardment energy. However, there were

more large protrusions on the surface of tantalum thin films deposited under 0 V bias as

shown in Figure 4.34 (a) than the others observed by the large area AFM image below.



Figure 4.34 AFM images of 30 p.m x 30 pm area (z=250nm/ div) of tantalum thin films
deposited on silicon substrates for 10 min under substrate bias voltages: (a) 0 V, and
(b) -100 V.



Figure 4.35 AFM images of 30 um x 30 m area (z=250nm/ div) of tantalum thin films
deposited on silicon substrates for 10 min under substrate bias voltages: (a) -150 V, and
(b) -300 V.

The mean roughness (R a) of tantalum thin films based on large area and small

area AFM image analysis were shown in Table 4.5.
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Table 4.5 The Roughness of Tantalum Thin Films Deposited using Different Bias
Voltages

Bias voltage (V) Ra (nm) over 2 gm x 2 gm area Ra (nm) 30 p.m x 30 pm area

0 3.618 3.760

-100 2.980 9.598

-150 3.495 5.288

-300 3.920 4.629

In order to further characterize the shape and density of the protrusions on the

surface of tantalum thin films according to their AFM images, the section analysis was

also performed on the 30 pm x 30 pm area AFM images. Figure 4.36 showed the section

analysis of a tantalum thin film deposited on a silicon substrate under 0 V bias for 10 min

as an example. The section analysis of top view AFM image could provide the

information of protrusion height, width and density. Table 4.6 summarizes the protrusion

size and density on the surface of tantalum thin films deposited on silicon substrate under

different bias voltages based on the section analysis of their 30 pm x 30 pm area AFM

images.



Figure 4.36 Section analysis of a 30 µm x 30 Inn area AFM image of tantalum thin film
deposited on silicon substrate for 10 min under 0 V bias.



79

Table 4.6 The Protrusion Size and Density on the Surface of Tantalum Thin Films
Deposited on a Silicon Substrate under Different Bias Voltages Based on the Section
Analysis of their 30 gm x 30 gm Area AFM Images

Bias voltage Protrusion height Protrusion width Height/width 	 Protrusion

(V)	 (nm)	 (nm)	 ratio	 density (/um2)

0 <225.16 <879 0.26 0.6

-100 <86.453 <644 0.13 0.02

-150 <72.547 <1026 0.07 —0

-300 <125.28 <762 0.17 —3

The section analysis result revealed that large protrusions appeared on the

tantalum thin films deposited under 0 V and -300 V bias voltages, and the protrusion

density increased dramatically when increasing the bias voltage. Tantalum thin films

deposited under -150 V bias surfaces were relatively smooth with relatively low density,

spread base and short protrusions. This thin film was also shown by XRD to be pure a-

phase tantalum.



CHAPTER 5

THEORETICAL ANALYSIS

In order to better understand the ion assisted Ta film deposition process as well as the

effects of ion bombardment on the film growth, molecular dynamic (MD) simulations

were performed in this study. In MD simulations, the positions, velocities, kinetic

energies and potential energies of each atom or molecule in the system are determined by

solving the equations of motion based on the assumed intermolecular potentials. They

can reveal the molecular system changes during certain process, such as deposition of

atoms, ion impact, etc. Here the Ta film was represented by a finite number of atoms

arranged in a perfect single crystal lattice, and the energy of the bombarding Ar ions was

varied in the range corresponding to the substrate bias voltage in the deposition

experiments. Motion of the Ta atoms and the Ar projectile during the impact was

followed and the probabilities of the Ar projectile reflection and of sputtering Ta film

atoms was derived.

By doing the MD simulation, the sputtering yields of Ta thin films by Ar ions at

different bias voltages was obtained and compared with the results calculated using the

semi-empirical formula of Yamamura [111] as well as to the values extracted from RBS

measurements. Moreover, the MD simulation provides us the information of time,

volume and the surface area of the ion impact event evolution on the Ta thin films, which

will help to understand the mechanism of ion assisted deposition.

80
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5.1 MD Simulation Introduction

First introduced by Alder and Wainwright in the late 1950's, the molecular dynamic

method was used to explore the interactions of hard spheres. In 1964, a major milestone

in the history of the MD simulation development, Rahman did the first simulation for

liquid argon by using a realistic potential. In 1974, Rahman and Stillinger performed a

MD simulation for liquid water [112]. MD simulation has been developed for carrying

out many different types of theoretical research since then. A number of phenomena can

be studied for understanding the interaction between the energetic projectile atoms and

solid by performing MD simulations, including cluster deposition, melting, and

sputtering. In this work, the method is used to explain the physical phenomena occurring

during ion bombardment of the growing tantalum thin films.

A MD program "Kalypso", written by M. A. Karolewski [113-115] for personal

computers running under Windows operating system, was used here. The program is

designed to analyze several surface atomic bombardment phenomena, such as ion

scattering spectroscopy, secondary ion mass spectrometry and ion-induced Auger

electron emission, etc. The "Kalypso" program package is based on classical dynamics to

model the atomic interactions between projectile atoms and the solid (also called

"Target"). A composite screened-Coulomb, many-body, tight-binding (TB) potential is

used to model interactions between the atoms of the target [113]. Classical dynamics

describes the motion of the atoms by Newton's second law, F=ma, where "F" is the force

exerted on the atom, "m" is its mass and "a" is its acceleration. Providing the energy and

direction of the projectile atoms and the positions of the target atoms, it is possible to

determine the acceleration of each atom in the target system. Integration of the motion
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equations then yields the information of the positions and velocities for the atoms as they

vary with time [112]. Thus a picture of the target system can be derived at any time state

during the interaction.

The atomic interactions in the target modeled in the program are described by a

repulsive screened-Coulombic potential (V c) at short inter-nuclear distances and an

attractive many-body tight-binding (TB) potential (Va) at inter-nuclear distances which

are comparable to chemical bond lengths. At intermediate distances, the repulsive and

attractive potentials are joined smoothly at short distances by means of a switching (i.e.

interpolation) function, a so called core switching function, and the attractive TB

potential is also terminated smoothly at the cut-off distance by means of another

switching function, a so called cut-off switching function. The classical equations of

motion are integrated using the finite difference "velocity Verlet" integration algorithm

[116].

In order to process the simulation, the first step is to set up the molecular system

which includes the target atomic mass, target geometry and size, its crystallographic

structures and the projectile with the atomic mass and bombarding energy as close as

possible to the real system using the "Spider" program within this Kalypso program

packages.

By using this simulation program, a growing tantalum thin film with the ion

bombardment process was simulated. The time sequence of images of the tantalum film

surface after the ion impact was obtained, the sputtering yield of the growing tantalum

thin films by energetic ions attracted under different negative substrate bias voltages was

calculated, and the net energy transferred into the growing tantalum thin film by the ion
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bombardment was analyzed. The detailed simulation results are described and shown

below.

5.2 Evolution of BCC a-Phase Tantalum Film after Ion Bombardment

First, the MD simulations were conducted for the purpose of revealing the lattice changes

of growing tantalum film after the ion impact. Initially, the MD simulations were carried

out on the Ta target which consisted of 13500 atoms (15x30 rows in x-y plane and 30

layers in z depth). This program was run with varying termination times: 50 fs, 100 fs,

150 fs, 200 fs, 250 fs, 300 fs and 400 fs, then the sequence images of bcc a-phase Ta

(110) surface bombarded by 150 eV ion at the end of each time sequences were stored

and viewed through the "visualiser" function of the kalypso MD simulation program.

Corresponding to the Ar ion impact position as shown in Figure 5.1, two representative

sequences of images of ion bombardment development on tantalum thin film targets in

the x-z and x-y planes are shown in Figure 5.25.7.
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Figure 5.1 Schematic of the Ar ion impact coordinate position with respect to the BCC
Ta (110) lattice (Ar ion 1 and 2 refers to the impact position of Figure 5.2-5.4 and
5.55.7, respectively).

Figure 5.2 Ion impact event development (for the time shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at 50
fs after the ion collision with the surface. Ion energy is 150 eV, impact point 1 (see
Figure 5.1).



Figure 5.3 Ion impact event development (for the times shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at
100200 fs after the ion collision with the surface. Ion energy is 150 eV, impact point 1
(see Figure 5.1).



Figure 5.4 Ion impact event development (for the times shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at
250400 fs after the ion collision with the surface. Ion energy is 150 eV, impact point 1
(see Figure 5.1).



Figure 5.5 Ion impact event development (for the times shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at
50-150 fs after the ion collision with the surface. Ion energy is 150 eV, impact point 2
(see Figure 5.1).



Figure 5.6 Ion impact event development (for the times shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at
200300 fs after the ion collision with the surface. Ion energy is 150 eV, impact point 2
(see Figure 5.1).



Figure 5.7 Ion impact event development (for the time shown) in cross section (X-Z
plane) and on the surface (X-Y plane). Consecutive frames show the system x, y, z at 400
fs after the ion collision with the surface. Ion energy is 150 eV, impact point 2 (see
Figure 5.1).

These series of images clearly record the development of collisions with time.

During this process, Ta thin film atoms which absorbed enough energy from ion impacts

move away from their original position and transfer their energy to other surrounding

atoms through secondary collisions. These Ta thin films atoms finally settle down at new

crystal lattice positions when their energy is decayed to sufficiently low values. As we

can see, there exists an energetic volume in which the Ta atoms are displaced and even

rearranged into different positions than their original places in the lattice. This energetic

volume develops with time as the ion impact energy is dissipated through multi-collision

processes. Several simulations were performed in order to get the information about the

energetic volume size and duration time. These may be related to the volume of the film

and the time in which an ion impact affects the crystal structure.
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Regarding the collision cascade duration time, it was observed from images like

those above images that the Ta thin film atoms motion 400 fs after impact was not only

induced by ion impact but also by lattice reconstruction which was due to the finite size

of the bcc crystal lattice instability. A larger size bcc Ta target (100860 atoms, about 10

times larger than the previous target) was also used to perform the same simulation for

150 eV ion impact. It was also found that the Ta thin film atoms motion would involve

lattice reconstruction after 400 fs. It gave us a time limit of about 400 fs within which the

displacements of atoms by a collision cascade could be reliably investigated by this

method. Fortunately, we found that the energetic collision cascade, caused by the ion

impacts in the investigated energy range, subsides in a shorter time than this limit. In

addition, the reconstruction does not increase the atoms kinetic energy so that the high

velocity of some atoms can be attributed only to the ion impact event.

In order to learn the size of the energetic volume around 400 fs, two different

critical conditions were used to define it by analyzing the Ta target after bombardment:

the atoms' displacement from their original positions and their kinetic energy. For

example, 400 fs after a 150 eV ion impact at location 1 (Figure 5.1) on the target of

13500 atoms, 9 Ta atoms were displaced from their original positions by more than half

the lattice constant distance 400 fs after impact. For those atoms [sqrt((x1-xo) 2+(y1-

y0)2+(z1
-z0)2)] > 1.5 A, where xo and x 1 are initial and final x coordinates. Figures 5.8 (a)

and (b) show the original lattice positions of the 9 atoms and those 400 fs after the

impact, respectively.



Figure 5.8 Ta target atoms whose lattice displacement [sqrt((x1-x0) 2+(y1-yo)2+(z1-zo)2)]
more than 1.5 A at 400 fs before and after bombardment by a 150 eV Ar ion.

Before the impact, the atoms were arranged in the well ordered lattice position,

within a volume of 5x5x7 A3, with only very low energy (at 300K), thermal

oscillations(<0.004 nm rms). After the impact, atom number 2 and 3 are sputtered away

from the surface with energies 8 and 19 eV respectively. The rest of atoms shown are

scattered into a volume of 20x15x10 A 3 and have average energies ~ 0.14 eV. The reason

for choosing this somewhat arbitrary criteria of atomic displacement by a half lattice

constant is that such a movement is likely to lead to a major transformation of the lattice,

such as from bcc to tetragonal Ta phase.
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As mentioned above, for the reason that bcc targets are only "metastable" when

described by a tight-binding potential, they will tend to recrystallize to a fcc structure,

starting from the edges of the target and gradually moving in. This was also observed by

seeing Kalypso's visualiser window during the simulation. According to the program

author's recommendation, this process can be slowed by moving the cut-off distance to a

point between coordination shells, but it cannot be avoided completely. Other possible

ways to reduce this problem are to work with very wide targets (so that edge effects do

not affect the simulation). One has to be very careful that the target reconstruction is not

producing artifacts in the simulation results.

In order to prove the reliability of the simulation results, a series simulation on ten

times larger size target, 100860 atoms (41 x82 rows in x-y plane and 30 layers in depth),

were also performed for ion bombardment on a bcc (110) Ta target at different bias

voltages. Figure 5.9 shows the image of those Ta target atoms displaced by 1 A with

respect to their original lattice position 250 fs after impact. The bcc (110) target lattice

does not change much with the impact processing as compared with smaller size target as

observed by "visualiser" window.



Figure 5.9 Ta target atoms whose lattice displacement [sqrt((x1-x0) 2+(y1-yo)
2
+(Z1 -ZO)

2
)]

is more than 1 A at 250 fs before and after bombardment by a 150 eV Ar ion on a larger
target.

As a comparison, the same simulation data on the larger size target was also

analyzed by using the Ta atoms kinetic energy as critical conditions to define the

energetic volume. Figure 5.10 shows the Ta target atoms kinetic energy to be larger than

0.5 eV which may lead to crystal structure change too. The size of the energetic volume

determined by these two methods is approximately the same. Atoms within this energetic

volume (i.e., the atoms within this volume were affected by ion impact through series

collisions) would possess enough energy to move to new lattice positions, and finally

lead to transformation of the film crystallographic structure.



Figure 5.10 Ta target atoms whose kinetic energy is higher than 0.5 eV at 250 fs before
and after bombardment by a 150 eV Ar ion on a larger target.

5.3 Energy Transferred by MD Simulation

The MD simulation also gives the energy of the projectile atom after each impact, from

which the total energy transferred to a Ta target for different energies of the ion

bombardment was derived. The energy transfers averaged over 875 impacts for different

ion energies are given in Table 5.1. The energy carried off by sputtered Ta atoms is also

given.
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Table 5.1 Ar Projectile Energy Transferred to the Film

Ar projectile energy before impact (eV) 10 100 150 300

Averaged Ar projectile energy after

impact (eV)

5.98 23.54 28.46 38.97

Ave. energy of sputtered Ta atoms (eV) 0 0.51 5.33 14.29

Ave. energy transferred to the target

system during bombardment (eV)

4.02 75.95 116.21 246.74

Ar ions reflected from surface 100% 100% 99.5% 78.1%

The higher energy ion impacts, the lower the fraction of the projectile energy is

transferred but higher the absolute energy is delivered to the Ta target. At 10 eV, only

approximately 4 eV (43.2%) of the ion bombardment energy is transferred to the Ta

target, while at 300 eV the transferred energy is 246.74 eV (82%).

5.4 Sputtering Yield by Molecular Dynamic Simulation

The sputtering yield is one of the most important parameters of the sputtering process,

and it can be derived by using the "Kalypso" MD simulation program. The sputter

deposited tantalum thin films generally grow as either (001) oriented tetragonal

crystallographic structure β-phase or as a (110) oriented bcc crystallographic a-phase

structure. In this case, the target was set up as a (110) oriented bcc crystal with 20 layers

for a total of 17640 Ta atoms. The Ar projectile energies ranged from 10 eV to 300 eV.

A total of up to 875 impacts with different impact parameters was simulated for each



96

projectile energy to get good statistics. A desktop personal computer with a Pentium 4,

2.80 GHz processor took about 72 hours for simulation of one energy.

Sputtering yields are derived based on the results of filtering sputtered Ta target

atoms from "Dynvar.snk" simulation result files for all the impacts by the "Winnow"

program. For example, using the filter condition “rz>5*10-10 u m" and "rw>1" (in the

"Winnow" program) refers to the Ta atoms positions 5 nm above the target surface, the

number of sputtered Ta target atoms is 154 after 875 Ar impacts at 100 eV. This gives a

sputtering yield of "154/8750.176". Table 5.2 lists the simulated sputtering yields of

tantalum, and compares them with the value derived from RBS measurements of thin

films deposited under different bias voltages.

Table 5.2 Sputtering Yield of Growing Tantalum Thin Film under Different Energy Ar
Ion Bombardments

*The sputtering yield under 0 V bias is assumed to be 0 for RBS measurement, and is used as a reference
for deriving experimental sputtering yields under other bias voltages.

These results are illustrated in the Figure 5.10 together with the results of the

semi-empirical formula discussed in the following section. The sputtering yield from MD

simulations increases with increasing ion bombardment energy, as expected. The

sputtering yields derived from RBS measurements are based on the assumption of zero
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sputtering at 0 V bias (Ar projectile energy is 10 eV), and it also shows the trend of

increasing with ion bombardment energy increasing. At an Ar energy of 10 eV, the

sputtering yield is zero from simulation result, which agrees with the assumption and is

reasonable since it is lower than the Ta sputtering threshold energy, 26 eV [117].

Moreover, the sputtering yield derived for 100 eV, 150 eV and 300 eV agrees well with

the values reported by Stuart et al. [117] and extrapolates to the previously reported

experimental value of 0.57 at 500 eV Ar [104]. The RBS measurement and MD

simulation results of sputtering yields at -100 V and -150 V bias are in a reasonably good

agreement, but the sputtering yield at -300 V bias calculated by MD simulation is almost

double the value of that derived from RBS measurement. This discrepancy is mostly due

to the limited size bcc Ta target, and also the single crystal structure of MD simulation Ta

target did not represent well the real polycrystalline structure thin film. However, the

sputtering yield measured by RBS was quite close to the reference experimental data

reported by Stuart etc. [117] as seen from the Figure 5.11 below. The MD simulations

much better fit the data at low energy than the values given by the semi empirical formula

of Yamamura [118](see next section).



Substrate bias voltage (V)

Figure 5.11 Sputtering yield of growing tantalum thin film under different energy ion
bombardment derived by RBS measurement and MD simulations along with reference
data.

5.5 Sputtering Yield by a Semi-empirical Formula

Since the sputtering yield is the most fundamental parameter for characterizing the

sputtering process, much effort has been made to evaluate it by using experimental data

and to predict it by theoretical methods, or a combination of both. Among those used are

a semi-empirical formula derived by Matsunami et al. in 1984 [119] and an equation

shown below by Yamamura and Itoh in 1989 [118] which is based on a combination of

Lindhard's theory of nuclear and electronic stopping with experimental sputtering yield

data. In the book "Ion-Solid Interactions" written by Nastasi, Mayer and Hirvonen [120]

at 1996, this semi-empirical formula was also introduced in detail for calculating the

sputtering yield. Here a semi-empirical formula was also used to calculate the sputtering



99

yield of Ta in the Ar energy of 10 eV to 500 eV and compare them to the re-sputtering

data of the growing Ta thin film. The sputtering yield YE at the ion energy E, calculated

by this empirical formula (5.1) fits both heavy and light ion sputtering and shows below

(formula 9.9 from ref.[120]):

where YE(E) is the sputtering yield for ions with energy E bombarding a target at normal

incidence. as and Qs are empirical parameters derived from experimental sputtering data.

Sn(E) is the nuclear stopping cross-section in units of 10 -15 eV cm2 and Uo is the surface

binding energy (estimated from the cohesive energy). S e(E) is the reduced Lindhard

electronic stopping cross-section, and Eth is the sputtering threshold energy.

According to the ref. [120],chapter 9, page 224, the empirical parameter as is

found to be dependent on both the incoming ions and the target, and the empirical

formula (5.2) is given by the following expression (formula 9.16 of ref.[120]):

The value of empirical parameter Q s for tantalum is 0.62 from Yamamura and Itoh [118].

The nuclear stopping cross-section, Sn(E), is dependent on the incoming ion energy and

can be calculated by the formula (5.3) (formula 9.12 from ref. [120]):

Where Kn and Sn(ε) are defined separately by the formula (5.4) and (5.5) (formula 9.13

and 9.14 from ref. [120]):



In which, the reduced energy E in the Thomas-Fermi form given by formula (5.6)

(formula 9.15 from ref. [120]):

The surface binding energy Uo for tantalum is 8.10 eV from Kittel [121].

The Lindhard-Scharff electronic stopping cross-section is often expressed in reduced

notation as formula (5.7) (formula 5.59 from ref. [120]):

The sputtering threshold energy, Eth, corresponding to the minimum energy required for

sputter away the target atoms, can be calculated by using the method introduced by

Yamaura and Bohdansky in 1985 [122], and the formula (5.9) (formula 9.10 from ref.

[120] is shown in the following:

where 7 is the energy-transfer factor for elastic collisions, defined in the formula 5.10

(formula 9.11 from ref. [120]):
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Therefore the sputtering yield of argon ions (atomic number Z 1 =18 and mass M 1 =39.948)

bombarding tantalum (atomic number Z2=73 and mass M2=180.95) with an energy from

10 eV to 500 eV is calculated and also plotted in Figure 5.11.

From Figure 5.11, the sputtering yields for Ar bombarding Ta within the energy

range 10 eV to 500 eV, calculated by this semi-empirical formula, are lower than both

which derived from RBS measurement and MD simulation. It is worth noting, however,

that the formula does not fit other experimental data in the energy range used in this study

too either. For example, the experimental sputtering yield data for Ar ions on Ta target

provided by Stuart and Wehner [117] which is also illustrated in ref. [60] and Figure 250

of ref. [111].



CHAPTER 6

DISCUSSION

Combining the experimental and MD simulation results of ion assisted tantalum thin film

deposition, it's clear that the film crystallographic structure and micro-morphology is

strongly affected by ion bombardment conditions. Here, the relation between the

crystallographic structure of Ta films and the ion bombardment conditions are discussed

in more detail. The role of the substrate is also examined. The effect of ion bombardment

on the film thickness, lattice strain, and grain size is discussed as well. Finally the

statistics of ion impacts and deposition of tantalum atoms, together with the duration of

these events is related to the mechanism of the ion bombardment modification of the

growing film.

6.1 Ion Bombardment Conditions

In this research, as discussed in Section 3.1, the current of bombarding Ar ions (ion flux)

which are attracted by supplying different substrate negative bias voltages in the RF

magnetron sputtering process only increases a little because of the fixed system

configuration and the power input, so the major ion bombardment parameter which can

be manipulated in this ion assisted RF magnetron sputtering process is the ion

bombardment energy and it is determined by the substrate bias voltages. From the

experiments, it was clearly shown that the energy of ions bombarding the film during

deposition had a strong influence on its crystallographic structure. Such an effect had

been reported earlier, and the explanations varied from the role of incorporation of

impurities to the kinetics of ion-atom collisions. Here the results will be discussed in

102
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comparison with two more recent and extensive studies of ion assisted Ta deposition [60,

75, 76]. Surprisingly, it is found that deposition with the bias voltage around -150 V

results in the a-phase Ta films on Si-100, with the β-phase or mixed phase films being

deposited at lower or higher voltage, while the data in references[60] and [75, 76] show

that the a-phase grows with the substrate bias of approximately 20 V and below, and the

β-phase or mixed phase at higher voltages.

In making such comparisons, it is important to account for all significant

differences in the apparatus and the deposition parameters, which may affect the results.

The two other different systems being compared to are a dual RF magnetron sputtering

system in reference [60] and a hollow cathode enhanced magnetron sputtering system in

reference [75, 76], while in this work a conventional RF magnetron sputtering system

with the provision of substrate DC biasing is used. The target-substrate distance in this

experiments (50 mm) lies between those in the two earlier experiments, 30 mm [60] and

100 mm [75, 76], and this difference is not considered to be very significant by itself. A

more important parameter is the ratio of the mean free path of the sputtering gas to this

distance, which in the paper of Ino et al. [60] is almost the same as in ours (-0.3), but in

the very low pressure of the apparatus used by the IBM group [76], the mean free path is

more than 2.5 times larger than the target-substrate distance. In the latter case many Ar

ions, accelerated by the high voltage of the target, are reflected back as neutral atoms and

reach the film without collisions in the gas. Similarly, the Ta atoms, sputtered from the

target, impact the film with higher energies as they reach it with fewer gas collisions.

Thus the films in this case may be exposed to a higher particle flux and energy than the

energy and flux due to the acceleration by the substrate bias voltage. This is confirmed in
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their paper by significant incorporation of Ar in the films deposited even at zero bias and

the presence of compressive stress in the films. According to the author's own estimate,

the total energy brought to the film by particle bombardment, including energetic Ta

atoms is about 100 eV per deposited atom at zero bias [76].

In contrast, in this work and that of Ino et al. [60], the bombarding energy E, is

only defined by the ion accelerating substrate voltage Vb, = qiVb + Vp, where Vp is the

plasma potential of only a few volts, and q, is the ion charge. Another critical parameter

in ion assisted deposition is the flux of ions bombarding the substrate, or rather the ratio

of ion and atom fluxes. In this work, this ratio is close to one, as well as 0.5 in that of

reference [76], while the flux of ions required for deposition the a-phase reported in

reference [60] was around 15, and only the β-phase Ta films were obtained when the ratio

was 10 and less. The high ion flux increases the total energy brought to the growing film

per deposited Ta atom. For example, at E, = 10 eV and ion to atom flux ratio of 15

(typical values quoted in reference [60]), the total energy brought to the film by the ion

bombardment is approximately the same as in this study for Vb = 150 V. It is not so easy

to estimate the ion bombardment energy input to the growing film in the work of Catania

et al., because of the presence to the flux of energetic Ar and Ta atoms, in addition to the

flux of ions accelerated by the substrate bias voltage. It appears that the former flux is

sufficient for the growth of the bcc a-phase even at zero bias voltage and increasing the

bias above 20 V results in deposition of n-phase films. In the work of Ino et al., the β-

phase was deposited at ion energies < 10 eV until the ion to atom flux ratio was increased

to about 15 and more. The higher ion flux resulted in deposition of pure a-phase films
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until the ion energy was increased further resulting in β-phase films, regardless of the ion

flux.

By concurring with the conclusions of both papers[60, 76], and also with further

work at IBM on different ion assisted deposition methods of Ta [75] that the impact of

energetic particles during film deposition promotes the growth of the bcc a-phase of Ta.

There is a certain energy, or momentum, range below and above which the deposition of

the a-phase is suppressed and a more disordered β-phase grows. The figure of merit

appears to be the ion energy per deposited atom. This is somewhat unexpected since the

cascade of atomic collisions following an impact of an energetic ion is different than the

effect of, say, 10 impacts of ions with one tenth of the energy. Nevertheless, both events

can rearrange adatoms on the growing film surface and provide sufficient energy for

atomic displacements that may leads to the change in crystal lattice type. In all the cases

discussed, the energy input to the growing film is rather large. An impact of a 150 eV ion

can rearrange a cluster of atoms on the surface. Our preliminary molecular dynamics

simulations indicate that atoms in at least three atomic layers are affected. Moreover, in

this case, each site on the surface where an atom is deposited is also subjected to an ion

impact, and thus a number of ion impacts, each of them rearrange several atoms, affect

every adatoms. While the details of the mechanism of a particular Ta phase growth are

still to be better understood when there is sufficient energy available in the ion assisted

deposition to rearrange the deposited atoms. This rearrangement is caused by rapid and

energetic collision cascades, with energies much higher than kT for substrate heating to

temperature of 400 °C, and above, that also leads to deposition of bcc rather than

tetragonal phase of Ta [10].
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6.2 Film Thickness

It is well known that bulk tantalum usually appears to be bcc α-phase structure, however,

thin film tantalum is often β-phase or mixed phase structures. So film thickness

accompanied with the crystal lattice strain may be one of the factors which affect the film

phase structures. The results of RBS measurements on different film samples deposited

for 10 minutes show that their thicknesses depends on the bias voltage applied during

deposition. This is explained as the process of re-sputtering of the deposited films by the

bombarding ions. There is no re-sputtering of the film at Vb = 0 since in this case the ion

energy is very low, below the sputtering threshold, estimated at 26 eV [117]. The

sputtering yield at the higher ion energies were thus derived by comparing the thickness

of the films deposited at different substrate bias voltages with the film deposited at zero

bias voltage. The sputtering yield derived for 100 eV, 150 eV and 300 eV is consistent

with the values reported by Stuart et al. [117] as seen in Figure 5.11. Moverover, the

presence of Ar was only found in the films deposited at Vb = -300 V, and estimate its

atomic concentration at 10 %, in agreement with the result reported by Catabia et al. [76].

6.3 Lattice Strain and Grain Size

The small grain size of the α-phase films (5 20 nm) may be a reflection of the high

density of nucleation sites on the surface bombarded by energetic ions. As discussed

below, each ion impact rearranges a cluster of surface atoms creating a potential seed for

a new grain growth. Under continuous high intensity energetic ion bombardment (150

eV, ion to atom ratios ~ 1), the a-phase grain size is small (~ 20 nm) and does not change

significantly while the film thickness increases fourfold from approximately 100 nm to
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400 nm (Figure 4.21). For comparison, the a-phase Ta films deposited at 400 °C by DC

sputtering without energetic ion bombardment, had a grain size varying from 25 to 35 nm

as the film thickness increased in the same range [10]. The grain size in the films of this

research decreases with increasing ion energy, in both a and β-phase.

The positive strain in the normal direction, determined from XRD data, indicates

that the films are in compressive stress (in the lateral direction). The stress of the cc-

E
phase can be estimated as a = — Y , using the elastic modulus of bcc Ta: Y= 1.962x10 11

2v

Pa, and the Poisson ratio v = 0.35. The above expression gives the compressive stress in

the range 0.42 to 2.5 GPa for the strain values 0.0015 and 0.009, respectively,

corresponding to the data span in Figs. 4.21 and 4.22.

The data show that as the ion energy increases from the low values at zero bias

voltage, the film crystallographic phase changes from β, or mixed phase to the a-phase at

-150 V bias, independently of the substrate material. This phase change, with

disappearance of large β-phase crystals, is accompanied by the significant relief of the

compressive internal strain (Figure 4.22). The strain decreases with increasing film

thickness (Figure 4.21) to 0.1% at film thickness of 456 nm which is lower than in the

film of the same thickness deposited by DC sputtering (0.5%) [10]. Further increase of

the bombardment energy, above 150 eV, leads to the increase in compressive strain. The

implanting of atoms, self-interstitials as well as impurities, such as Ar, into the film

structure is known to cause compressive stress in sputtered films [123, 124], and these

effects may explain the observed increasing strain with increasing ion bombardment

energy, above 150 V bias. This strain, however, and similar strain at zero bias, are

approximately the same as the strain in the a-phase Ta films deposited at 400 °C by DC
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sputtering without energetic ion bombardment [10]. The β-phase structure in the film

deposited on Si at -300 V bias has even higher strain (0.019) than the a-phase films

deposited on Al under the same conditions (0.009).

Overall, for Ta thin film deposited at different bias voltages with different

thicknesses, it is found that the a-phase Ta (110) oriented crystal grain size did not

change much with a change in the bias voltages as well as the film thickness, however,

the lattice strain of a-phase (110) crystals decreased as the magnitude of the bias voltage

increases up to -100 V, and also decreased with increasing the film thickness. On the

other hand, it is observed that large size β-phase Ta (002) oriented crystals with lower

level lattice strain tend to grow with low energy of ion bombardment, at zero substrate

bias, especially in the thicker films. High energy ion bombardment (-300 eV) depresses

the β-phase crystal grain size and increases the lattice strain, particularly in thinner films.

The appearance of β-phase Ta film may be controlled by both crystal grain size

(nucleation sites density) and crystal internal stress. For the β-phase Ta crystals, with

increasing ion bombardment energy, the grain size decreases since nucleation sites

density increases, also the crystal stress will increase. In this study, the β-phase with large

grain size crystals and with low internal stress was grown at low ion energy. With

increasing ion bombardment energy, β-phase grows in small size crystallite with

increasing internal stress. At some point, the β-phase crystal can not sustain the internal

stress, and it collapses (ion to atoms flux ratio -1 .0 at -150 eV). As the ion energy

increases further, the crystal grain size decreases to the level where it can sustain the

internal stress.
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6.4 The Substrate Effect

Many of the measured film properties, including strain and grain size, do not depend

significantly on the substrate material and can be thus attributed to the effects of ion

bombardment. Generally, however, the aluminum substrate appears to promote a more

robust growth of the a-phase. This is apparent in XRD patterns of films with different

thickness deposited with -100V bias (Figure 4.12 and Figure 4.13) and in films deposited

for 10 minutes with -300 V bias (Figure 4.3 and Figure 4.4), which show the presence of

strong β-phase peaks in samples on Si but not on Al. It has been known that certain

substrates promote the growth of Ta a-phase. Among them is Nb with a bcc crystal

structure and a lattice constant very close to that of bcc Ta (0.3 % difference) that

facilitates epitaxial Ta growth [39]. Al, with the fcc structure was also found to promote

bcc Ta growth with strong (110) texture. The growth of bcc Ta on Al had been

interpreted as an approximate epitaxial matching of some atoms on the (110) Ta plane

with atoms of the fcc Al on the (111) plane [125]. The matching is only very good only

along the <110> axis of the Al (111) plane aligned with the <111> axis of (110) Ta plane,

but it is apparently sufficient for nucleation of bcc Ta crystals. This quasi-epitaxial

relation between Al and Ta may also contribute to the growth of the a phase in this case.

The role of the substrate is also demonstrated by the necessity to perform the pre-

deposition sputter etching step. The sputter etching removes loosely bonded contaminant

species from the substrate surface as well as a thin native oxide layer. This effect is

especially strong for silicon substrates as there was no a-phase Ta growth on silicon

substrates, even under -150 V bias, without performing the pre-deposition sputter etching

cleaning step.
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The phase of tantalum thin films deposited on silicon substrates with sputter

etching performed under 0 V bias is not consistent (in some films strong a-phase

structure is detected, in others strong β-phase structure), in contrast to the thin films

deposited under other bias conditions. During 0 V bias depositions, the energy of the ions

is very low, 10 eV, and their effect is too weak to influence the crystallographic structure

of deposited tantalum thin films, while the substrate may play the main role. The

crystallographic structure of the tantalum thin films growing under very low energy ion

bombardment may thus be very sensitive to the substrate state, and small differences in

this after sputter etching may lead the crystallographic phase changing.

It was observed that tantalum thin films deposited under a high bias voltage (-300

V) have a β-phase structure on silicon substrates, but an a-phase structure on aluminum

substrates. It is proposed that the reason for this is the modification of the surface

structure of silicon substrate by energetic ions in the early stage of the Ta film growth. It

is well known that the energetic ion bombardment creates damage in silicon lattice that

accumulates and amorphizes the crystals at sufficient ion dose. The amorphizing dose is

of the order of 10 -15 cm-2, which in our case accumulates in time in which a few

monolayers of tantalum are deposited. Since the damage of an ion impact may easily

reach the depth of several atomic layers, some amorphizing of silicon surface is possible.

The effect strongly depends on ion energy and appears to be significant only above 150

eV in this case. It should be noted that tantalum films on Si substrate deposited initially at

-150 eV bias, and with continuing deposition at the bias increased to -300 V, also shows

a-phase structure (Figure 4.17). Thus the initial stage of the deposition, with -150 V bias,
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during which silicon structure was not sufficiently damaged, determined the

crystallographic phase of the Ta film, most of which was deposited at -300 V bias.

The metallic aluminum substrate, on the other hand, is not amorphized by such

ion bombardment because of the nature of its metallic bond. In metals, the atomic

positions are not fixed by rigid covalent bonds and the lattice is not easily destroyed by

atomic displacements.

6.5 MD Simulation

The molecular dynamics simulation provided insight into the phenomena occurring in Ta

films bombarded by energetic Ar ions. This includes the relative numbers of reflected and

implanted Ar ions, their energy and thus the ion energy deposited in the film. The

duration and the spatial extent of the collision cascade could be also estimated. In

addition, MD simulation provided the values of the sputtering yield of bcc Ta bombarded

by Ar ions at energies used in this investigation. In order to get statistically significant

results, a total of 875 impacts with different impact positions with respect to the (110)

oriented bcc a-phase Ta lattice were simulated.

The simulations show that in the projectile energy range: 10 eV to 150 eV almost

all Ar ions are scattered back after colliding with the tantalum target atoms, while at an

energy of 300 eV, 192 Ar ions out of 875 remain embedded in the target. This roughly

agrees with the approximately 10% Ar concentration measured by RBS in tantalum thin

films deposited under -300 V bias conditions.
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From MD simulations, the energy deposited into the growing tantalum thin films

by Ar ion impacts can be determined. At -150 V bias (Ar ion input energy of 150 eV),

approximately 120 eV was transferred on average into the deposited tantalum thin film,

while at the bias voltage of -300 V the transferred energy is 250 eV. The fluxes of ions

and Ta atoms are approximately equal, however, the input energy was not the energies

delivered per single atom of film during the bias sputtering process, instead it was

delivered through multi-collision process to more than one atom as well as dissipated

through both nuclear and electron collisions. However, for the atoms which received

enough energy and this energy was higher than the binding energy of Ta atoms, then they

were capable of leaving their original position and rearranging themselves in the new

lattice position in the film.

The MD simulation sputtering yield is close to the sputtering yield derived from

the RBS measurement for 0 V, -100 V and -150 V bias conditions, however there is a

significant difference between the simulated and experimental sputtering yield for 300 eV

bias. An obvious difference in the simulation and the experimental systems is that the

simulation is for (110) oriented bcc Ta crystallographic structure, while the

crystallographic structure of tantalum thin films deposited under -300 V bias conditions is

β-phase. The sensitivity of sputtering yield obtained from MD simulations to the

crystallographic structure of target was demonstrated by comparing its values for (100)

and (110) oriented bcc Ta target which were 0.292 ± 0.017 and 0.378 ± 0.019 for 150

eV Ar, respectively.
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One possible reason that the sputtering yield derived from MD simulation is

higher than the sputtering yield derived the RBS measurement may be due to the fact that

the film consists of polycrystalline material while MD simulation assumes a single crystal

target in which atoms bound in perfect lattice. Another reason is due to the surface oxide

on the thin films which may lower the observed sputtering yield. Under the condition of

base pressure 10 -8 Torr and thin film deposition rate 0.3 nm/s, the estimated upper limit

of oxygen incorporation during our Ta deposition is about 0.002 which would grow a

surface oxide at —7 x10 -4 nm/s if all o2 reacted with surface during deposition. This is

about 400 times less than the arrival rate of Ta atoms during sputtering. If oxide regrows

faster than which can be removed, then the lower sputtering yield can be expected since

the sputtering yield of Ta2o5 is lower than pure Ta (at bombarding argon ion energy in

600 eV, the sputtering yield for Ta is 0.62 and for Ta 2o 5 0.15 is [126]). So it means that

at least 38% Ta2o 5 is required for lowering the sputtering yield getting from MD

simulation (0.877) to mach the result from RBS measurement (0.45). As mentioned

before, this is not the only reason for the measured low value of sputtering yield. Also,

even this MD simulation author suggested that the sputtering yield getting from this

simulation can be used as a comparison but not good enough for the purpose of

predicting the absolute value.
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6.6 Statistics of Deposited Atoms and Ion Impacts and its Role
in the Mechanism of Ion Assisted Deposition

For the purpose of understanding how ion impacts may affect the film structure,

mathematical calculations of the time and space relation of the atom deposition and ion

impacts are presented below.

The ion assisted deposition process can be looked as consisting of two basic

physical events: (1) deposition of an atom (also called adatom) which can move (diffuse)

on the surface before being trapped (attached) to a lattice site, and (2) impact of an ion on

the film surface which creates a collision cascade affecting a finite film surface and

volume for a certain time. The key question is under the conditions of these analyzed

experiments do these two events occur simultaneously in a given film volume or are

separated in time and space.

Consider now two impacts of ions with the flux Assuming these events happen

randomly and uniformly on the thin film surface, there are 'di ions that land on a unit area

after time T, or the average area that includes one ion is 1/(Tfi). Taking i as the time

duration of the impact event, consider only "active" impact" sites, i.e., those that are

affected by the energetic ions. The average distance between these active sites is

calculated by considering a circular area around each, with a circle radius r that can be

expressed as (1t6) -1/2 . The mean distance between the centers of two consecutive events

is then 2r. The relationship between the event distance, 2r, and time i is presented in

Figure 6.1. In this study, fi 10 15 cm-2 s -1 , and i estimated from MD simulation is 400 fs,

which gives 2r = 560 um. Since the area affected by each impact is much smaller, it is

concluded that the impact events do not overlap and occur independently of each other in
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time and space. Since the atom and ion fluxes are approximately equal, the same

conclusion applies to deposition events of adatoms.

Time after first impact (fs)

Figure 6.1 The development of the mean distance between deposited atom and ion
impact with time.

Considering now two random events: the deposited Ta atoms arrive with atomic

flux, fa, and diffuse through the average area, Aa, in time ta before attaching to the thin

film crystal lattice position, and the ions come with flux f and affect the thin film atoms

in an average surface regime Ai by collision cascade in time ti before their energy are

dissipated.

From the statistical point of view, the probability of two areas A l and A2 partially

overlapping in a unit surface area is approximately ni A1+n2A2 where n1 and n2 are the

numbers of areas A l and A2 in a unit surface area respectively under the condition of

n1Al«1 and n2A2«1. Based on the MD simulation,Aais close to zero and Aiis about
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20x15*10-16 cm2 when ti is 400 fs which satisfies fitiAi 1.2* 10 11 «1 (fitiAi =

10 15 x400*10 -15 x300*10 -16). So using this in the consideration of time and space

coincidence of atom diffusion and ion impact, the probability of these two events

coincidence is approximately fataAa+fitiAi 10 -11 . This means that the chance for these

two events coincidence in the time and space is very small, almost zero. In another

words, there will be fafitiAi = 12000 atoms affected by ions per second but they will be

distributed over a "large" area of 1 cm 2 on which there will be 10 15 impacts per second,

so again the probability that an adatom is affected by ion impacts is very small (12000/

3x10 15 = 4x10 -11 ).

Therefore, the atoms condense on the surface forming thin film before an ion

impact occurs nearby, and also the consecutive ion and atom impacts are too far apart to

affect each other. Thus, an atom attaches to the film before it can be affected by an ion

impact and the collision cascade created by the ion dies out before an atom lands on the

surface near the ion impact. Moreover, each ion impacts affect about 20 atoms which are

already condensed, i.e., in the real thin film deposition process as in this work, each

condensed Ta atoms will be moved and rearranged several times before finally settled

down, and this will contribute to the thin film crystal structure transformation.

From the above analysis, it's clear that film deposited by biased RF magnetron sputtering

process is a combination of two physical processes: deposition of Ta atoms with

relatively low energy (< 10 eV) and bombardment of the substrate (initially) and the

growing film surface by ions with relatively high energy (depending on the biasing

voltage), and these two processes in space and time analysis shows that they are

independent. The arriving Ta atoms (adatoms) with relatively low energy diffuse on the
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growing thin film surface and lose their kinetic energy to the surface atoms until binding

to a stable position first, then the incoming Ar ion with relatively high energy will

quickly transfer its energy to the surrounding film atoms in a collision cascade which

extends over certain surface area and depth. Thus it was concluded that the role of ion

bombardment in the biased sputtering process is modification of the already formed Ta

thin film structure. MD simulations further suggest that the volume of Ta film that can be

modified by an Ar ion impact is several atomic layers deep and covers the area of several

nm2 on the film surface. The impacts are widely separated in space and time, so that

modification by ion bombardment proceeds over small volume at a given time.



CHAPTER 7

SUMMARY AND CONCLUSIONS

The purpose of this research was to investigate the tantalum thin film deposition by the

biased sputtering process at ambient temperature. The effect of ion bombardment on the

crystallographic phase of tantalum (Ta) thin films as well as the thin film surface

morphology was studied. The Ta thin films were deposited on two types of substrates,

(100) oriented silicon and on polycrystalline aluminum. A negative bias voltage, 0 — 300

V, was applied to the substrate to control the energy of the ions bombarding the growing

film. The films were characterized by X-ray diffraction (XRD), for identification of Ta

crystallographic phases, and by Rutherford backscattering spectroscopy (RBS), for

measuring the film thickness and foreign atoms incorporation. The film surface

morphology was investigated by scanning electron microscopy and the roughness by

atomic force microscopy. It was found that the presence of two crystallographic phases of

Ta (body centered cubic and tetragonal) in thin films can be controlled by the substrate

bias voltage.

The experiments confirmed that energetic ion bombardment during deposition by

magnetron sputtering affects the crystallographic phase of Ta thin films. New conditions

for the growth of, the usually desired, bcc Ta films were found. In contrast to earlier

reports this phase can grow under Al.+ ion bombardment close to 150 eV with the ion flux

comparable with the flux of deposited Ta atoms. While this energy is much higher than

the ion energy used previously to grow bcc Ta films, it was found that the total energy

delivered by ions per deposited atom in this and in previous work is approximately the

same.
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In addition to the experiments, molecular dynamics simulations were performed

to further understand this ion assisted deposition process. The average area of the film

surface and the volume affected by an ion impact, as well as the duration of the energetic

collision cascade were estimated from the simulations. A statistical analysis of ion

impacts and atom impingements showed that the two events occur independently and do

not coincide in time and space. Therefore the thin film crystal structure is transformed by

rearrangement of deposited atom clusters by ion impact induced by collision cascades

and not by imparting energy to adatoms before their attachment to the growing film.

From the point of view of applications, the new conditions for deposition of bcc

Ta films can be achieved in a relatively simple system comprised of a magnetron

sputtering source supplied with RF power and DC substrate biasing. Such a deposition

system is easier to scale up to industrial operation than those described earlier, which

require complex apparatus.
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