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ABSTRACT

DESIGNING MULTIMODAL INTERACTION
FOR THE VISUALLY IMPAIRED

by
Xiaoyu Chen

Although multimodal computer input is believed to have advantages over unimodal

input, little has been done to understand how to design a multimodal input mechanism

to facilitate visually impaired users' information access.

This research investigates sighted and visually impaired users' multimodal

interaction choices when given an interaction grammar that supports speech and touch

input modalities. It investigates whether task type, working memory load, or prevalence

of errors in a given modality impact a user's choice. Theories in human memory and

attention are used to explain the users' speech and touch input coordination.

Among the abundant findings from this research, the following are the most

important in guiding system design: (1) Multimodal input is likely to be used when it is

available. (2) Users select input modalities based on the type of task undertaken. Users

prefer touch input for navigation operations, but speech input for non-navigation

operations. (3) When errors occur, users prefer to stay in the failing modality, instead of

switching to another modality for error correction. (4) Despite the common multimodal

usage patterns, there is still a high degree of individual differences in modality choices.

Additional findings include: (1) Modality switching becomes more prevalent

when lower working memory and attentional resources are required for the performance

of other concurrent tasks. (2) Higher error rates increases modality switching but only



under duress. (3) Training order affects modality usage. Teaching a modality first

versus second increases the use of this modality in users' task performance.

In addition to discovering multimodal interaction patterns above, this research

contributes to the field of human computer interaction design by: (1) presenting a

design of an eyes-free multimodal information browser, (2) presenting a Wizard of Oz

method for working with visually impaired users in order to observe their multimodal

interaction.

The overall contribution of this work is that of one of the early investigations into

how speech and touch might be combined into a non-visual multimodal system that can

effectively be used for eyes-free tasks.
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CHAPTER 1

INTRODUCTION

Researchers' early efforts to provide information access for visually impaired individuals

through the use of computing technologies can be traced back to the 1980s' when the first

screen readers were generated to work with DOS and UNIX operating systems (Thatcher,

1994). Researchers' continuous efforts in this field in the past two decades have resulted

in systems that read stored documents, operating system interfaces, and Web pages;

systems that provide access to special information types such as graphs, tables, and

mathematical notations; systems that travel with the user to provide portable information

access; and innovations in input and output technologies and techniques customized for

the visually impaired.

Although these systems have significantly increased information and computer

systems accessibility, limitations exist in their input designs. For example, keyboards and

keypads are broadly used to provide a large amount of functions through single or

combined keystrokes (e.g., Asakawa and Itoh, 1998; Braille n Speak by Freedom

Scientific). Issues related to these designs are the high memorization load required to

efficiently use these mechanisms and the requirement that users sequentially access

information using arrow keys to listen to and step through the information structure until

the desired information is found. A touch screen using a "touch-to-hear" mechanism can

break this sequence of information presentation (Roth et al. 2000), but the cost of the

device is high. A set of head gestures can be easily learned and used to also skip through

information (Brewster et al. 2003). However, using such gestures in a public environment

may make the user look and feel awkward.
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In general, different input modalities provide different advantages to users but

also introduce serious limitations. at the same time. One solution to this problem is to

design an integrated multimodal input system for the visually impaired that appropriately

matches the input mechanism to the user task.

Well-designed multimodal input mechanisms have a great potential to improve

information and systems accessibility. By complementing each other, multiple input

modalities can yield a "highly synergistic blend in which the strengths of each mode are

capitalized upon and used to overcome weaknesses in the other" (page 576, Oviatt,

1999b). Having multiple input modalities can create a failsafe system in which one

modality can be used to correct errors that occur in the other input modality (Oviatt,

1996). Moreover, multimodal interfaces are expected to support the natural coordination

of speech and hand motions because, as linguists have uncovered, there is a close

synchrony between speech and hand gestures in human communication. In fact, speech

and hand motions have been found to be inseparable units expressing different aspects of

the same conceptual content in the communication (McNeil, 2000).

Coordinated speech and hand inputs can provide different advantages for the

visually impaired. Speech input can provide a comprehensive grammar without limiting

the user to learning physical devices and complex motor actions. Speech input can

provide fast and direct access to system functions without the need for users to browse

menus. Hand input allows visually impaired users to take advantage of their sense of

touch acuity. Hand operations also do not interrupt a user's comprehension of computer

speech output. Research on multimodal input on GUIs indicated that combined gesture

and speech inputs improved a system's speech understanding by using gesture to
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disambiguate what was meant by speech (Bolt, 1987; Hauptmann and MacAvinney,

1993). Combined gesture and speech also sped up the interaction process since many

gestures could be carried out simultaneously with speech (Thorisson et al. 1992).

In addition to the above research, theories of cognitive psychology also imply a

promising future for multimodal interaction for visually impaired users. Theories in

human attention specify that there exist multiple pools of attentional resources, each of

which processes specific types of information. Multiple tasks can be performed at the

same time as long as they require separate pools of resources (Wickens, 1980 and 1984).

There is also research showing that verbal information and spatial movement are

processed by different pools of resources (Wickens and Liu, 1988). The theory in human

working memory suggests that working memory consists of three components, two of

which process verbal and spatial information separately, and the third which integrates

the processed verbal and spatial information (Baddeley and Hitch, 1974).

However, little in practice has been done on designing multimodal speech and

hand input dialogues for visually impaired users. This is because much prior work on

multimodal inputs assumes that hand operations in multimodal input are performed using

hand-eye coordination, a skill not available to the visually impaired. Furthermore, prior

work on dialogues of integrated speech and hand input mainly focused on two application

domains: interactive map based tasks (e.g., Oviatt, 1997; Oviatt et al. 2003), and cross-

modal error correction in speech recognition systems (e.g., Sears et al. 2003; Suhm et al.

2001). Empirical research is needed to help us understand how to unleash the power of

multimodal input to facilitate visually impaired users' non-visual interaction.
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The goal of this research is to provide such empirical results that lead to the

formation of design principles. The research was conducted on AudioBrowser (Chen et

al. 2006), a non-visual information access with parallel speech and touch user input. This

thesis reports users' non-visual multimodal interaction patterns captured through two

studies using AudioBrowser: an exploratory study with sighted users aiming at

understanding the design problems and drafting the scope of the research, and a

controlled experiment with visually impaired users evaluating and extending the

understandings obtained from the exploratory study. It discusses discovered interaction

behaviors basing them on cognitive psychology theories. This work also reports a

research method that uses Wizard of Oz simulation to capture visually impaired users'

interaction with a speech recognition system.

The rest of this thesis is organized into the following general sections: (1) a

review of related research, (2) the research questions addressed by the thesis and a

description of the AudioBrowser system, (3) the design, results and discussion of the

exploratory study with sighted users, (4) the design, results and discussion of the

controlled experiment with visually impaired users, and (5) the contributions.



CHAPTER 2

RELATED WORK

2.1 Overview

This literature review contains three general parts.

The first part reviews existing designs of information access for visually impaired

users. It consists of the following subsections: (1) design of screen readers, (2) non-visual

tools for navigation in hyper spaces, (3) designs that read specific information types, and

(4) enriched audio outputs used for information representation. The purposes of this part

are to obtain an overview of the available designs for the targeted users and advantages

and disadvantages of those designs, and to identify the requirements and design issues

that have not been addressed in current designs. The review results in the suggestion of a

new form of interface dialogue that involves multimodal speech and hand input.

The second part reviews work done on multimodal input dialogue designs on

graphical user interfaces, since multimodal input on non-visual interfaces are not yet

available. This part focuses especially on interfaces containing speech and hand gesture

inputs. It consists of the following subsections: (1) lessons learned from gesture input

design, (2) lessons learned from designs of speech dialogues, (3) the advantages of

combined speech and gesture inputs, and (4) findings and interpretations from existing

studies on multimodal input on graphical user interfaces.

The third part reviews the theories and empirical studies in cognitive psychology

relevant to multimodal interaction design. It has two subsections: (1) human attention,

especially models if attention and theories about attention allocation to information

5
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conveyed through different modalities concurrently, and (2) working memory, especially

how multimodal information is processed in the working memory.

A summary of the literature review is provided at the end of this section.

2.2 Designs for the Visually Impaired

2.2.1 Design and History of Screen Readers

Software integrated with a speech synthesizer to read content objects aloud and inform

users about events on computer screens has been given a general name: screen readers.

Older versions of screen readers worked on text-based operating systems such as DOS

and UNIX. Newer versions work on Graphic User Interfaces (GUIs), which can specify

icons, menus, control buttons, events of dialogue boxes, and so on. Screen readers

provide access to stored documents, web contents, and special information styles (e.g.,

software development environments, tables and mathematical notations). A selected

collection of screen readers is described in this section.

In the late 1970's, a prototype called SAID (Synthetic Audio Interface Driver)

was created by IBM (Thatcher, 1994). This was the first attempt by computer scientists to

make electronic information accessible to blind users. The main idea was to transform

text displayed through the IBM 3377 terminals to auditory output using synthesized

speech. The device was a modified terminal including a twelve-key keypad and a multi-

lingual voice system. Users had limited control using the keypad and the required

hardware was very costly. The prototype was not turned into a product because of the

unavailability of many needed technologies.
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Following this attempt, in 1988, when related technologies were significantly

improved, IBM developed Screen Reader/DOS that transformed the visual display of

DOS to speech output (Thatcher, 1994). It included an 18-key keypad and a Profile

Access Language (PAL) that could make changes in the keypad functions and the speech

output style.

In 1994, when GUIs started to be widely adopted, IBM created Screen Reader/2

for the windows applications running on its OS/2 operating system (Thatcher, 1994). The

goal was to convert a large collection of functions on the GUI to speech output. Using an

eighteen-key function keypad, the user could request specific characters, words,

sentences, lines, or the entire text to be read. A text-editing mode was facilitated by the

system's repeating the text strings entered via a regular keyboard. The highlight of Screen

Reader/2 was its access to a significant amount of GUI features. It spoke out the visual

effects of text, such as text color, font, and size. It adopted simple non-speech audio to

indicate attributes of menu items. It functioned with user controls such as check boxes,

buttons, and dialogue windows. Although usability tests were not reported, Screen

Reader/2 was the first functionally comprehensive digital information access for visually

impaired computer users.

Visually impaired users can now purchase any of the following screen readers:

JAWS (Renter, 2003), Window Eyes (GW Micro, Inc, 2003), and Hal (Dolphin Group,

2004), but the cost is much higher than what an individual typically pays for software

today. These products are designed to work with Microsoft Windows, Mac OS, and

Linux. There is no publication reporting on the usability of these commercial products.
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These products inherited and enhanced the functions of Screen Reader/2 by providing

more comprehensive, though more complex, keyboard controls and audio outputs.

Although the invention of screen readers is revolutionary, some major issues with

these products exist. The navigation and operation capabilities are restricted by the user's

ability to memorize complicated keystrokes, the complete set typically consisting of over

one hundred variations. Even if these keystrokes are all memorized, a considerable

amount of functions and contents are still reached via up and down or left and right arrow

keys, which means the user has to go through unwanted information to reach the wanted.

The speech output is flat — the hierarchies, indentions, columns, spaces between topics,

and other structural information indicating content structure are not presented. Visual

effects used to direct users' attention are not conveyed to visually impaired users. The

serial presentation of functions and content does not facilitate the user's formation of a

structured information space — a pivotal characteristic for information comprehension,

thus, losing the richness of the information displayed.

2.2.2 Non-visual Navigation in Hyperspace

Beginning in the mid 1990's, researchers extended their efforts to hyperspace. They

created non-visual web page browsers that enabled blind users to join the World Wide

Web community. Here, two representative systems are discussed.

2.2.2.1 Lessons Learned from the DAHNI System. Significant work was done by

Helen Petrie and her colleagues (Petrie et al. 1996; Petrie et al. 1997; and Morley et al.

1998). They first compared visual interfaces with auditory interfaces, and concluded that

visual interface users received a large amount of information at once, which contained
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cues supporting the formation of an overview and the choice of content to focus on,

whereas auditory interface users did not have this advantage because audio output was

transient and serial. Based on their findings the researchers developed a system called

DAHNI (Demonstrator of the ACCESS Hypermedia Non-visual Interface).

DAHNI provided tour information of London. The information set contained 37

nodes (i.e., web pages) netted by hyperlinks. DAHNI presented three types of

information overview, including a short description of a web page, a scan of the links on

the page, and the location of the page using a number assigned to each page (i.e., node).

Users could control reading options, reading pace and the settings of the auditory output.

The device could accept input from a standard keyboard, a joystick, or a customized

touch-tablet. These input modalities were not integrated into a multimodal dialogue, but

used individually each time the program was started. The system could accept input from

different devices because the congregation of input commands was laid out on an "H"

shaped working space and this working space was mapped to each input device.

The auditory output of DAHNI was designed to reflect the hyper-spatial features.

When a hyperlink was read, an earcon (i.e., a non-speech auditory cue, functioning

similar to an icon (Brewster et al. 1996) was used to mark the beginning of the link

without slowing down the speech output. The link was also read in a higher pitch. The

use of these combined auditory cues was deemed useful for users' navigation in a system

evaluation. A "select" command was accessible on the keyboard for going to the linked

page. Earcons were used to indicate headings on the web page and error messages.

Tactile output was used in combination with speech description to display pictures.
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A comprehensive system evaluation was conducted among nine visually impaired

users. Objective task performance and errors (e.g., methods used, time taken, use of the

input device, problems encountered) were analyzed using videos, experimenter's notes,

and computer logs. Subjective ratings of the users were collected using 5-point rating

questions inquiring about all aspects of the system, including the usability of the input

devices and commands, the memorizability of the earcons, the usability of system help

and the tutorial, the presentation of information, and the feeling of orientation in the

hyperspace. Separate experiments were conducted to assess users' learning and memory

(e.g., recognition of earcon-indicated headings, recognition of sounds used, and free

recall of information presented). Besides the overall positive results of the system

evaluation, the keyboard and the touch-tablet were found to be the favored interaction

modality over the joystick.

In general, the participatory design approach, the functionality of the system, and

the evaluation methods of this series of studies serve as valuable references for later

studies conducted on choice of input mechanisms for visually impaired users.

2.2.2.2 User Interface of a Home Page Reader. Home Page Reader is another non-

visual Internet browser adopting keyboard input and auditory output (Asakawa and Itoh,

1998; IBM 1998-2004). Besides functions similar to the DAHNI system, Home Page

Reader has the following enhanced features: searching for strings, canceling a connection

to a new page, moving between pages in a history list, inputting a URL, searching the

Web, managing bookmarks, and playing plug-in multimedia files located on a Web page.

An email system allowing sending, receiving and composing emails is also built into the

browser.
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User controls are based on HTML tags on a web page. By capturing the tags of

web page elements (e.g., <hl> and <h2> for headers, <a href ...> for hyperlinks, <img

...> for graphs, <table> for tables, etc.) the system allows users to browse either

sequentially or by elements and to move forward or backward within the same type of

elements. Auditory cues are used to indicate the type of element (e.g., a higher pitch is

used when reading a hyperlink). Users perform over 100 functions using 21 keys on

either a customized keypad or a standard keyboard. While the functionality is

significantly enhanced, the complex keystroke operations make it a challenge to become

proficient with the system's full range of functions. In addition, much of this

functionality must be taught and cannot be learned by interacting with the system.

Details of the usability test were not reported, but the researchers reported the

results of a study used to measure the time needed to adequately train users to beginner,

intermediate, and advanced levels. System novices needed additional training about the

basic concepts of the Internet such as what homepages and hyperlinks are. Help

information needed special tailoring for these novices. Intermediate users needed 30

minutes of in-person training to learn the basic functions. Only advanced users (those

with considerable computer expertise with other systems) were asked to learn the

advanced functions. Using the online manual and the system's help function, these users

were able to learn the system on their own. After one day they were able to use the basic

functions and after three days they could use the advanced functions.

To improve their design, the researchers ran an additional study to uncover the

maximum listening speeds of the visually impaired (Asakawa et al. 2003). They found

the highest listening speed for advanced users was about 500 words per minute and that
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for novice users, about 300 words per minute. Both are much faster than the default

reading speed of most screen readers and Internet browsers.

The researchers also found that web page designers tend to fragment contents

using visual effects (such as background colors and borders). The visually fragmented

groupings are not accessible using tag order reading. To solve this problem, the

researchers designed techniques to transcode visual effects into structured annotations

accessible by information readers (Asakawa and Takagi, 2000, Asakawa et al. 2002, and

Takagi et al. 2002).

Non-visual Internet browsers are a significant step toward bridging the gap

between visually impaired users and electronic information resources. On the other hand,

issues remaining in the interaction methods of these systems are similar to those of screen

readers. The amount of information and functions presented sequentially slows down the

information access process and provides limited assistance in establishing a mental

picture of the information organization. Gestalt information (e.g., proximity, similarity,

continuity, closure, etc. of information objects) that sighted users obtain at a glance from

a table of contents is not presented effectively or at all. Affordance of interface objects is

rarely presented. In short, blind users lack the opportunity that sighted people are given to

effectively process information presented to them.

2.2.2.3. Web Page Summaries for Visually Impaired Web Surfers. In a more

recent attempt, researchers implemented "gist" summaries for web pages to assist

visually impaired users' web browsing (Harper and Patel, 2005). The problem the

researchers attempted to solve with available web browsing products, was that of

requiring visually impaired users to listen to an entire web-page before understanding its
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usefulness for their current task. This sequential access only mechanism handicapped

users. "Gist" summaries have also proved useful to sighted users' web browsing. By

receiving the same type of summaries, visually impaired users can decide more quickly

on the utility of a web page.

A "gist" summary creation tool, "Summate" (Chen, 1997; Chi, Pirolli, Chen, and

Pitkow, 2001), was installed to work with the FireFox web browser for visually impaired

users. Summate is a client-side system that automatically and dynamically annotates web

pages with a small summary at its head. The gist summaries were created "on-the-fly"

using the following rules: based on its algorithm, a maximum of four sentences were

returned — the first sentence of the web page, the first sentence of the last paragraph, and

the sentences at the upper (75%) and the lower (25%) quartiles of the web page. These

sentences together were evaluated for their "goodness" as the summary for the page. The

measure of goodness was annotated using "high", "medium", or "low". The summary

and the denotation were displayed together to the user as a JavaScript generated FireFox

alert. A casual test with sighted users on random real web sites confirmed users'

preference for gist summaries generated using this algorithm.

2.2.3 Designs Reading Specific Types of Information

Screen readers often do not read special information structures correctly. These

information types include tables, mathematical notations, and graphs. Systems reading

these information types have been created.

Oogane and Asakawa (1998) first worked on the accessibility of tables in HTML

files. They created an index to every individual table cell. Users can use either the table
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index or the arrow keys to read table cells. When tables are not arranged in regular rows

and columns (e.g., when the first column has one row and the second column has three

rows), the tables are transformed to comport with a regular row and column structure.

Yesilada and his colleagues (2004) investigated the method to render tables into

audio. They enabled three levels of table navigation in their auditory table browser,

EVITA: the low-level navigation of moving left, right, up and down and et cetera, the

high-level navigation of moving to designated rows and columns, and comparison

between rows and columns. The user controls are mapped onto numeric keys on the

keyboard. Users are able to control information flow, as well as to choose what to read

next in a table.

A UMA (Univeral Mathematics Accessibility) system is being developed through

a multi-institution collaboration (Karshmer et al. 2004). The system converts

mathematical documents transcribed in formats used by sighted individuals to those used

by unsighted individuals and vice versa. Through the use of the FreeTTS speech

synthesis engine and the Java Speech API, the system can render math notations to audio

output.

Edwards and colleagues (2006) complemented the above creations by

implementing Lambda, a multimodal math editor that presents math notations through

Braille and synthetic speech in a linear fashion. Longitudinal observatory evaluations

revealed that, instead of using the multimodal output, all testers liked to use the Braille

output only but kept the speech output off. To break the sequential access to elements in a

math notation, the users created shortcuts to access certain parts of a math notation

quickly.
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In addition to math notations, access to graphical representations has been

researched intensively too. Graphs are presented by either summaries in speech and non-

speech audio (e.g., Asakawa and Itoh, 1998; and Zhao et al. 2004), in combined audio

and haptic output (e.g., Petrie et al. 1997; Colwell et al. 1998; and McGee et al. 2000), or

in tactile output (e.g., Petrie, Morley, and Weber, 1995; Wall and Brewster, 2006). The

idea of haptic output is to use the movements of a device or the popping-up of a

collection of small pins to generate dynamic outputs interpretable by the user. The idea of

tactile output is to allow the user to detect the shape of the surface of the output device

(i.e., Braille output). Haptic and tactile outputs have great potential to present graphical

information.

The issues of sequential output caused by using left, right, up and down keys take

place again in some systems. Alternative input methods are needed to allow direct access

to system functions and information items. This means not only information searching

based on the relative position of information items, but also direct access based on

absolute position should be provided as complementary input methods.

2.2.4 Enrichment of Information Representation Using Audio

Extensive work has been done to enrich information presentation using audios. For the

sake of brevity, only a few recent studies are mentioned below.

Brewster and his colleagues used non-speech cues, or earcons, to present the

positions of information nodes in a hierarchical information space (Brewster et al. 1996;

Brewster, 1998). The hierarchy was formed by general categories, sub-categories, and

leaf information items. The timbres, pitches and rhythms of musical earcons were
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manipulated to represent different information categories and levels. It was reported that

the users were able to comprehend the structural information presented in earcons.

Smith and her colleagues extended the work by using earcons to present

hierarchical relationship of objects in an integrated development environment (IDE) for

blind computer programmers (Smith et al. 2004). A repetitive simple earcon was used to

represent the depth of an information node on the hierarchy — the more repetitions, the

deeper the information node.

Cohen and colleagues (Cohen et al. 2005 and 2006) expanded the work by using

auditory cues to support navigation and understanding of relational graphs. In relational

graphs, nodes are connected by connection lines. Variations of pitch, the use of musical

scales, and insertion of audio effects were experimented to represent nodes and

connection lines. The final implementation is using a continuous musical tone to indicate

that a connection line is being navigated, an increased volume to indicate the departure

from the connection line during navigation, and a tone with vibrato effect to indicate the

proximity to a node.

Sounds have also been reported as effective representations for the locations of

states on an American map (Zhao et al. 2004 and 2005), for the preview of a web page

following a hyperlink (Parente, 2004), for two-dimensional tabular numerical information

(Ramloll et al. 2001), and for three-dimensional interactive environments for visually

impaired children to learn orientation, geography and culture (Sanchez and Saenz, 2005;

Sanchez and Baloian, 2005).

Providing richer and necessary information only through audio output has been

the focus of researchers in this field. However, well designed audio output is only one
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aspect of an effective and intuitive interaction. There is a need to make both aspects, i.e.,

audio output and user input actions, coupled tightly to form an interaction flow that helps

users establish a mental model of the information space through interface dynamics.

2.2.5 Summary of Designs for the Visually Impaired

Through the review of technical products designed for visually impaired users, two

general design issues are identified. The first is no ease in learning. Current designs, most

of which use either keyboard input or Braille input, require tremendous training and

memorization to use. The high learning requirement becomes a barrier for a significant

amount of visually impaired users. For people who lost vision in their older age, learning

new technical skills and Braille is a much higher challenge. Unfortunately, statistical

reports indicate that health problems accompanying aging are the highest reason causing

vision lost (American Foundation for the Blind, 2001). The second design issue is

sequential access to information. Many system designs require information to be accessed

using arrow keys, and as such, users need to go through a large amount of unwanted

information to reach the desired information.

To provide solutions to these issues, a new input mechanism needs to be invented.

This input mechanism should reduce the learning and memory load for using it and

provide direct access rather than sequential access to information contents and system

commands. For these purposes, we chose to integrate gesture input and speech input into

a non-visual multimodal interaction.

Unlike keystroke input, gesture and speech input are natural and familiar to most

people. Speech can provide direct access to information content and system commands
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without sequential skipping. Gesture input, coupled with carefully designed audio output,

can reduce the learning and memorization load.

In the next section, work related to designing such a multimodal input dialogue is

discussed. Since the multimodal input design for the visually impaired is still rare, the

main body of the discussion will be based on designs of gesture input, designs of speech

dialogues, and designs of multimodal input on graphical user interfaces.

In the following Table 2.1, representative systems for the visually impaired

discussed in each category are summarized, along with their strengths and deficiencies.



Table 2.1 Summary of Non-Visual Information Access on Desktop Computers

Technical
Products Screen Readers Internet Browsers Browsers Accessing Special Info

Types Products with Specialized Audio Output

System
Example JAWS Window-Eyes DAHNI Home Page Reader EVITA UMA (Universal

Math Access)

JavaSpeak (Aplug-in based on
Eclipse Platform)

Sonification of
geo-referenced
information

Audio
enriched links

Application
Domain

GUI access and
Internet support

GUI access and
Internet support Internet access Mainly Internet

and email access Table navigation Math notation
access

Non-visual Java
programming

Geo-info access
on a U.S. map

Web page
previews

Developer Freedom Scientific GW Micro, Inc. University of
Hertfordshire, UK IBM University of

Manchester
Multi Univ.
project

Multi Univ.
project

Univ. of
Maryland,
College Park

University of
North
Carolina

Reference Developer's web
site

Developer's web
site Morley et al. 1998 Asakawa and Itoh,

1998 Yesilada et al. 2004 Karshmer et al.
2004 Smith et al. 2004 Zhao et al. 2004 Parente 2004

User Input
/ System
output

Keyboard /
Synthetic speech or
Braille

Keyboard /
Synthetic speech
or Braille

Keyboard, joystick or
touchtablet / Audio,
audio plus tactile for
pictures

Keyboard or
customized keypad
/ Audio

Keyboard / Audio Keyboard /
Audio Keyboard / Audio Keyboard /

Audio

Keyboard /
Synthetic
speech

Strength
Rich functions for
Windows GUI
access

Rich functions for
Windows GUI
access

0 Finely designed
audio output features for
navigating the hyper-
space

0 Logical layout of
commands on a user
input "workspace"
usable by multiple input
devices

Rich functions for
Internet access

0 Non-linear table
browsing enabled

0 Independent table
browsing as well as
table linearizing for
read by screen readers

Conversions
between various
math notations
used by sighted
users and
visually impaired
users

Finely designed
audio output for
representing
hierarchical
structures

Spatial sounds
representing
location of a state
on a mosaic U.S.
map

Web page
preview
before
following a
hyper link

Challenges
to Users /
Deficiencies

CD Considerable
amount of learning
& memorization to
use via keystrokes

0 Braille display is
expensive

0 Tables are read in
a linear manner

0 Considerable
amount of
learning &
memorization to
use via keystrokes

0 Braille display
is expensive

Skip of unwanted
information only in a
sequential manner by
using "next" and
"previous" like
commands

Considerable
amount of
memorization to
use over 100
system features via
21 keys

Usability study only
done with one blind
user.

Report not included
how the blind user
understands tables and
whether s/he needs to
know spatial locations
of cells

Usability study
not yet reported

Sequential skip of
unwanted
information by
using arrow keys conjunction of

Sequential
browsing of all
states from top to
bottom column
by column

Compatibility
only with
Internet
Explorer used
with

JAWS

•



2.3 Designs of Speech and Gesture Interaction

Linguists have recognized the close synchrony between gesture and speech in human

communication. They recognized the synchrony from the fact that when speech was

disrupted gesture was disrupted too (McNeill, 1992), that stutterers modified their

gestures to match with their speech (McNeill, 2000), and that deliberate mismatch

between gesture and speech could influence a subject's recall of a narration (McNeill,

1992). The synchrony indicates that gesture and speech are inseparable units expressing

different aspects (i.e., the imagistic aspect and the linguistic aspect) of the same

conceptual content in the communication (McNeill Lab). This synchrony suggests that

combining hand gestures and speech input in the human-computer interaction not only

adapts to the natural way of human communications but also provides potential powers in

expression.

Currently, little work is available on multimodal hand gesture and speech input

dialogues on non-visual interfaces, but such dialogues have been studied on visual

interfaces. These studies, together with trails in designing hand gesture input alone and

speech input alone, provide indications on designing non-visual multimodal dialogues

and nurture the establishment of a theory base. In this section, the following related

aspects are discussed: (1) designs of gesture input, (2) designs of speech dialogues, and

(3) findings and interpretations from existing studies on multimodal hand gesture and

speech interface dialogues.

20



21

2.3.1 Gesture Input Design

Well designed gesture input can be intuitive to blind users. It has better capability to

imitate direct manipulation than keypad/keyboard input, the main stream of input devices

for the current devices for the blind. Because direct manipulation is a key feature of

intuitive interaction with WIMP systems (Windows, Icons, Menus, Pointer), gesture input

has advantages in providing powerful access to WIMP applications.

2.3.1.1 Classification of Gesture Input. Hand gesture input is one of the most

studied input methods. When designing gesture input grammars, designers refer to

natural gestures used in human communication. Human communication gestures can be

categorized as manipulative gestures, semaphoric gestures, and pointing gestures (Quek

et al. 2002). Manipulative gestures intend to control some entity by applying a tight

relationship between the actual movements of the gesturing hand/arm with the entity

being manipulated. Grasp, release, drop are typical manipulative gestures. On graphical

user interfaces, manipulative gestures are especially used in direct manipulation, and may

be aided by visual, tactile, or force-feedback from the object (virtual or visual).

Semaphoric gestures employ a stylized dictionary of static or dynamic hand or arm

gestures. An example is moving toward right to indicate moving forward. Semanphoric

gestures are communicative in that they serve as universal symbols for the human-

machine communication. Pointing gestures are mainly used for deictic purposes in

combination with definite articles or demonstrative pronouns.

Manipulative gestures have been used in virtual reality games to assist stroke

rehabilitation (Merians et al. 2002; Boian et al. 2002). The patients' gestures are collected

using sensory gloves. The patients' tasks are to manipulate virtual objects including a
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window, a butterfly, a piano, and several pistons. The range of the hand motion is

exercised by wiping the glass of a window to see the landscape outside. The speed of the

hand motion is exercised by scaring away the butterfly. The fractionation of the fingers is

exercised by playing the piano. The strength of the finger is exercised by moving the

piston connected to each finger. A three-week patient trial was conducted among four

post-stroke hemiplegic subjects aged 58 to 72. The results showed various degrees of

improvement in hand impairment following this therapy. There was a good retention of

gains and a positive subjective evaluation by the patients and participated therapist.

Semaphoric gestures are broadly used for text input (e.g., Graffiti) and for

conveying geometric attributes. Graffiti is a single stroke alphabet that resembles the

Roman alphabet and is based on Unistroke (Goldberg and Richardson, 1993; Költringer

and Grechenig, 2004). When Graffiti input is used, the user's hand gesture input is

recognized and transformed to letters, numbers, backspace or special characters. Hand

gestures are usually transmitted to the computing device interface through a stylus

because of the limited physical space for conducting Graffiti input. In various studies

Graffiti has proved to be an efficient text entry method (Fleetwood et al. 2002;

MacKenzie and Zhang, 1997).

Sowa and Wachsmuth described a system that used co-verbal iconic gestures for

describing objects in a virtual environment (Sowa and Wachsmuth, 1999 and 2000). In

the study the subjects described a set of five virtual parts (e.g., screws and bars) that are

presented visually to them in wall-size display. Their descriptions were in combined

speech and gesture, which were captured by a microphone and a pair of CyberGloves

(Immersion Corporation). The researchers found that the subjects presented geometric
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attributes by abstracting parts from the complete shape using semaphoric gestures, e.g.,

using combinations of movement trajectories, hand distances, hand apertures, palm

orientations, hand-shapes, and index finger direction.

Pointing gestures lie in between manipulative gestures and semaphoric gestures.

Pointing gestures are mainly used as deixis in multimodal input in combination with verb

instructive commands. A well-known instantiation is Bolt's "Put-That-There" system

prototype with "that" and "there" instructed using pointing gestures (1980). The

advantage of such combinations is their adaptation to the natural human communication

patterns.

Several design strategies can increase the usability of these gesture inputs. The

first is using real spatial references (such as Badler's plastic spaceship (Badler et al.

1986)) as opposed to an imaginary objects for gesture manipulation, because "[locating] a

desired point or area [is] much easier when a real object is sitting on the Polhemus's

digitizing surface." (Ostby, 1986) The second is applying physical constraints (Norman,

1990). Software constraints, although useful, often require the understanding of the

constraints and their feedback, which impose a small cognitive load. Physical constraints

can lend support and remove this cognitive load: users can try configurations of objects

by moving their fingers until they hit something (Hinckley et al. 1994a). The third is

implementing gesture manipulations onto a small working space to comport with the

typical small physical working volume exhibited by users. This user behavior was seen in

observations of subjects performing writing tasks (Guiard, 1987) as well as observations

of users' performance on a two-handed gesture interface (Hinckley et al. 1994b). These
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design strategies are valuable and have been reflected in the design of the hand input of

our experiment system, AudioBrowser.

2.3.1.2 Gesture Input Designs Influential to Non-Visual Interfaces. An array of

innovative interaction mechanisms has lighted made great strides in a hope to helping to

solve the design issues in designs for the visually impaired users. These interaction

mechanisms take advantage of gesture and tactile inputs, whose potential to affect present

designs for the blind is prominent, but has not yet been fully recognized.

Roth and his colleagues created an interface that receives user input from a touch

screen and generates 3D auditory output for the user (Roth et al. 1998; Roth et al. 2000).

When a user points to a block of content on a web page displayed on the touch screen, the

content is outputted via speech with added spatial characteristics that help characterize

the location of the information. For example, if the information is on the top-left on of the

screen, the speech output appears to come from the top-left portion of the user's hearing

space. This location information can provide navigational assistance for later revisit

subsequent visits of the same content.

Brewster and his colleagues developed an eyes-free gesture-audio interface for

wearable devices (Brewster et al. 2003). The interface receives input from the user's head

movements and hand gestures and produces 3D auditory output. The head gestures are

received via a head gesture detector mounted on the user's headphone. The hand gestures

are received via the touch screen of a PDA. These gesture inputs proved to be effective

even when users were walking. However, the head gesture detection device is very

costly. Moreover, the head gesture may be awkward when used in public. These types of
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gross motor input mechanisms also do not allow for a large array of options to be input to

the computer by the user.

Friedlander and his colleagues created Bullseye menus on touchpads (Friedlander

et al. 1998). The Bullseye menus consist of a set of concentric circles divided into

quadrants. A menu item is located in each quadrant. Non-speech audio cues are used to

indicate the boundaries between menu items and the direction of the stroke (up down,

left, right) further extends the number of menu items that can be accommodated with this

method. In the evaluation of Bullseye menus as a potential input mechanism for visually

impaired users, it was found that users could efficiently and effectively select a large

number of menu items using non-speech audio feedback. A second study looked at tactile

feedback, which gave a slight "bump" as each concentric ring was passed. This, too,

worked effectively, but was not as efficient as the sound feedback.

A variation of the Bullseye, called the earPod, was presented recently by Zhao et

al. (2007). The earPod is an eyes-free menu selection interface using touch input and

reactive audio feedback. Up to 12 menu items can be mapped on its circular track.

Browsing menu items is executed by sliding the thumb on the circular touchpad.

Selection is executed by lifting the thumb from the desired menu item. When a menu

item is touched, speech output is synthesized to read the item. When a boundary between

two menu items is reached, a click sound is made. When finger motion is fast, audio

feedback is truncated to give partial playback. A post-evaluation showed that there

wasn't significant difference in the selection accuracy and overall selection speed

between the earPod interface and its counterpart interface with only visual feedback. Half
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of the sighted participants preferred the earPod interface while the other half preferred the

visual interface.

A series of work has been conducted by Tremaine and her co-workers (William

and Tremaine, 2001; Chen et al. 2003, 2004, 2005 and 2006). They created a mechanism

using simple and intuitive pointing gesture and button clicks on the touchpad to control

information browsing. Soundnews (Williams and Tremaine, 2001), an early version of

this interface, was used to browse hierarchically organized news articles on desktop

computers. This mechanism was then implemented on a PDA interface, the

AudioBrowser system, to access personal information (Chen et al. 2004, 2005 and 2006).

The idea is dividing the sensing area of the touchpad to small segments that are mapped

with information items and operation commands. When a segment is touched, the system

speaks aloud the information item or operation that is touched. The user then clicks the

buttons on the touchpad to execute the command, or to zoom into the detailed

information in which case the segments on the sensing area are changed accordingly to

map with the information items on the new information hierarchy. This mechanism

relieves the user from having to memorize operation vocabularies and supports

exploratory learning. This mechanism also provides an advantage similar to that of a

visual interface wherein the user is able to browse the operation options for possible

future use. The prerequisite to use this mechanism is that the information to browse is

organized hierarchically. The usability studies on both versions proved that the users

made efficient use of this mechanism.

Text input has been impossible on non-visual interactions by users who do not

know Braille input or regular keyboard input. But Wobbrock's EdgeWrite© makes non-
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visual text entry possible for those users (Wobbrock et al. 2003; Wobbrock et al. 2004).

EdgeWrite was originally designed for people with motor disabilities. It is similar to

Graffiti text entry mechanism but relies on physical edges and corners of the input device

(e.g., the sensing area of a touchpad). The user moves his or her stylus or finger along the

physical edges and into the corners of a square bounding the input area. Recognition of

the user input does not depend on the path of the motion, but on the order that corners are

contacted. EdgeWrite was first implemented on a Synaptics touchpad. Recently it has

been customized for a four-key keypad (Wobbrock et al. 2006), trackballs (Wobbrock

and Myers, 2006), and joysticks on cell phones (Wobbrock et al. 2007) and wheelchairs

(Wobbrock et al. 2005). Because of its ease of use and its suitable input device,

EdgeWrite on the touchpad is very promising for non-visual text entry.

Another invention that has potential impact on mobile text entry is the non-

keyboard QWERTY typing developed by Goldstein and colleagues (Goldstein et al.

1999). This typing mechanism uses pressure sensors strapped on fingertips to detect

pressing motions of fingers. A language model based on lexical and syntactic knowledge

is used to transform finger stroke sequences into words and sentences. A keyboard is no

longer a necessity necessary for using the QWERTY input. This text entry mechanism,

although still requiring users' familiarity to keyboard input, allows fast input while

maintaining the mobility of the wired device.

Based on the review above, advantages of gestural input can be summarized as

the follows. First, the prevalent use of gestures in human communications makes intuitive

gesture input on computers possible. Gesture input commands can be designed so that

traditional gesture meanings in human communications are carried on (e.g., Brewster et
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al. 2003). Second, this type of input can provide advantages similar to those of direct

manipulation on GUIs, and can reduce the demand of commands recalled (e.g., Roth et

al. 2000, Friedlander et al. 1998). And third, when used in conjunction with sensor

technologies, portability of the connected device can be achieved (e.g., Wobbrock et al.

2003 and 2004, Goldstein et al. 1999). These advantages target the same design issues in

systems for visually impaired users recognized in previous sections.

2.3.2 Speech Input Dialogue Design

Conversational speech offers an attractive alternative to input methods on physical

spaces. It is familiar, requires minimal physical effort for the user, and leaves the hands

and eyes free. Since speech is not constrained by physical dimensions, the number of

speech commands is virtually unlimited.

Spoken dialogues can be designed simple or complex depending on the degree of

freedom the user is given and the naturalness of the conversation. A definition given by

Fraser (1997) described spoken dialogue systems as computer systems wherein humans

interact on a turn-by-turn basis and in which natural speaking plays an important part in

the communication. Spoken dialogue systems allow users to interact with complex

computer applications in a natural way using speech.

2.3.2.1 Classification of Speech Dialogues Based on Dialogue Control Strategies.

Speech input dialogues can be classified based on three dialogue control strategies

(McTear, 2002):

Finite-state dialogues: A finite-state dialogue consists of a sequence of

predetermined steps. In most cases the system has complete control over the
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conversation, produces prompts at each step, recognizes user entries, and produces

system actions based on user entries. The user's speech entry is usually short and must

adhere to predetermined grammar that is carefully prompted by the system. A major

advantage of this type of dialogue is its simplicity and relatively high accuracy rate of

speech recognition. The vocabulary and grammar specified in advance ensures less

recognition errors. However, the disadvantage is its lack of flexibility and naturalness.

The user is constrained either to input one value at a time or to input multiple values

according to a strictly defined form and order.

Template-based (or frame-based) dialogues: Rather than building a dialogue

according to a predetermined sequence of steps, a template-based (or frame-based)

dialogue analogizes a form-filling task in which a predetermined set of information is to

be gathered. The user provides required information in a flexible order. The system fills

the provided information into the predefined template, and prompts for any missed

information items. Similar to state-based dialogues, template-based dialogues are suitable

for well-structured tasks, and in most cases the system takes the initiative and elicits data

from the user to complete a task. The difference from a finite-state dialogue is that the

flow of a template-based dialogue can be event-driven and not predetermined. Template-

based dialogues allow more flexible and more natural user entries.

Agent-assisted dialogues: The third type of dialogues is assisted by one or more

intelligent agents. An agent cooperates with other agents if it is unable to handle the task

alone. Particular subtasks may be assigned to particular agents. Communication among

agents is monitored and used to generate a state-of-play report that is further used to

supply information required by the other agents and arrange the interaction activities.
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With this type of dialogues, the system is able to intelligently and flexibly solve most

complex tasks for the users.

The spoken dialogues can be led by the system, the user, or both. In system-led

dialogues the system asks the user a series of questions to collect information required to

fulfill a task. The system determines what questions to ask and in which order. System-

led dialogues are usually modeled into a state transition network or a transition diagram

(Green, 1986), in which the nodes represent the system's questions and the transitions

between the nodes determine all the possible paths through the network. In user-led

dialogues, the user initiates the conversation and system actions. In dialogues led by both

the user and the system, a rule-based expert system may be needed to manage complex

conversations based on decisions rules and contexts.

A study conducted by Potjer and his colleagues (Potjer et al. 1996) compared a

system-led version and a mixed-initiative version of a simple call assistance application.

The system-led version used isolated word recognition. The mixed-initiative version used

continuous speech recognition and more complex natural language processing. When

using the system-led version, the user provided the required information in two steps;

when using the mixed-initiative version, the user provided the required information in

one utterance. However, the results from a performance comparison indicate that the

system-led version was not slower than the mixed-initiative version, because the mixed-

initiative version encountered more recognition errors due to multiple meanings

embedded in longer sentences.

In terms of user satisfaction towards different types of dialogue controls, Potjer's

research (Potjer et al. 1996) showed no difference between the system-led interface and
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its mixed-led counterpart. Billi and his colleagues (Billi et al. 1996) verified that

dialogues that required the user to input single words or simple phrases achieved a better

user acceptance than dialogues requiring more complicated user speech input.

These results were extended by a study on a multimodal gesture and speech input

interface by Robbe-Reiter and co-workers (Robbe-Reiter et al. 2000). Reiter's study

indicated that compared to compound speech input, simple and short utterances reduced

neither the efficiency of users' interactions nor their satisfaction. In addition, the fixed

grammar on short utterances had a limited influence on users' use of modalities.

To guide developers' choice of speech dialogue control strategies, Bernsen and

Dybkjærs (1994) created a task-oriented dialogue theory stating that small and simple

tasks should use single-word dialogues, larger and well structured tasks in a limited

application domain should take use of system-directed dialogues, and that larger and

unstructured tasks should use mixed-initiative dialogues.

Since the tasks are relatively simple in the AudioBrowser system, we

implemented user-led finite-state dialogues. Speech commands are simple words and

phrases. Compared to other alternatives, this type of voice interaction is the simplest and

hence, easier to learn and use, and achieves a better speech recognition rate.

2.3.2.2 Lessons Learned from Speech Dialogue Designs. For many reasons, speech

recognizers are still error-prone. Also, opposite to graphical interface, a speech-only

interface makes system functionality and operation boundaries invisible (Yankelovich

and Lai, 1998; Yankelovich, 1996). As such, speech-based interfaces should emphasize

feedback and verification to guide users through a successful interaction. A list of prompt
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and confirmation techniques has been indicated by researchers (Brennan and Hulteen,

1995; Yankelovich et al. 1995; Yankelovich, 1996).

Significant lessons can be learned from Yankelovich's study series (Yankelovich

et al. 1995; Yankelovich, 1998). The system studied was an experimental conversational

speech system that provided mail, calendar, weather, and stock quotes applications. The

user studies produced several design indications. (1) Without visual aids, the speech

interaction is more like interpersonal conversational style and away from graphical

techniques. GUI conventions would not transfer successfully to a speech-only

environment. Vocabulary on the graphical interface was not the same as that in speech

interactions. For example, relative dates such as "one week from tomorrow" and "the day

after Labor Day" were not necessary on a graphical calendar but were frequently needed

by users of a non-visual speech interface. (2) Information flow controls such as pop-up

dialog boxes that worked efficiently in GUI were highly non-compliant by users of the

non-visual speech interface, suggesting that dialog boxes should be eliminated. Auditory

feedback should be carefully designed to announce and confirm the dialogue modes

change. (3) Speech was easy for humans to produce, but much harder for us to consume.

The slowness of the speech output was a main contributor. As such, the speech feedback

should be informative, relevant, brief, orderly, and no more than is required. Systems

should permit users to move the conversation forward more quickly by accepting

compound answers (A discourse management module in the program should keep track

of what has been said and what has not (Martin et al. 1996)). Users should be able to

interrupt the output with their voice.
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The results of Yankelovich's studies reached a consensus with Mynatt's

conclusion (Mynatt, 1994; Mynatt and Edwards, 1992 and 1995; Edwards and Mynatt,

1994), that when a GUI is transferred to a non-visual interface, the non-visual interface

should not model every aspect of its visual counterpart. The non-visual interface should

present its content structures differently to reflect users' specific need for navigation in a

non-visual condition through auditory presentation media. Furthermore, even if the

interface keeps its GUI features, when speech input is added, the GUI feedback should be

redesigned to allow users to be aware and to use the full potential of the speech dialogues

(Ibrahim and Johansson, 2002).

The lessons and principles in design of voice input dialogues should benefit the

design of non-visual multimodal interface dialogues that involve speech input techniques.

2.3.3. Multimodal Interaction Design

Multimodal speech and gesture input dialogues are not yet available in technical products

or published research. The majority of existing studies on multimodal interactions are on

GUIs. Studies providing insights on behavioral patterns of user inputs have been mainly

conducted within two application domains: interactive map related tasks and multimodal

disambiguation and error correction.

The map-based user studies were conducted on interactive simulated maps using

Wizard of Oz user study methods. Users of these maps used stylus or mouse to point or

circle an area on the map, gave natural speech instructions (such as "I don't want houses

in the flood zone", or gave commands in written words or symbols (such as a cross).
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Based on the user's input captured, a hidden experimenter sent predefined response

interfaces to the user's terminal.

Multimodal disambiguation and error correction were observed in a spectrum of

multimodal systems, and especially on speech recognition systems. These systems were

large vocabulary speech recognition systems such as ViaVoice ® (IBM) and Dragon

Naturally Speaking (ScanSoft). These systems allow users to manually correct speech

recognition errors using speech commands, mouse selection, and keyboard typing.

In the following subsections, the advantages of combined gesture input and

speech input are first discussed. They are followed by the review of findings and

interpretations of user behaviors in the two multimodal application domains, i.e.,

interactive map related tasks and multimodal error correction. Although there is an array

of technical multimodal products created and presented from the technical standpoint in

the literature, those products are not discussed in this review, since this review is to

provide references for a dissertation research focusing on the user behavior.

2.3.3.1 Expanded Powers of Combined Gesture and Speech Inputs. Combined

gesture and speech have been documented to have various advantages in terms of

expressiveness, complementariness, robustness, and performance efficiency on computer

interfaces.

Expressiveness: Combined gesture and speech inputs allow more powerful

expressions. Gesture and speech are both semantically rich input modes, but they have

been observed to have different expressive powers in describing subjects in different

domains. Gestures are powerful in describing geometrical attributes because they provide

several methods of expression that speech does not provide, such as combinations of
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movement trajectories, hand distances, hand apertures, palm orientations, hand shapes

and index finger directions (Sowa and Wachsmuth, 1999 and 2000). On the other hand,

speech provides a complicated vocabulary to address nominal information or

instructional commands (Cohen 1992) and is not tied to spatial constraints. Hence, speech

can be used to interact with the system regardless of degree of visual exposure

(Billinghurst 1998). When speech and gesture are used together, the strengths of each

input mode compensate for the weaknesses of the other. Due to the increased

expressiveness, users preferred combined speech and gesture input to either modality

alone. Hauptman and MacAvinney (1993) found that when a combined input was

possible subjects used combined speech and gesture at 71% of the time as opposed to

speech input only or gesture input only. Oviatt (1996) found that when users interacted

with a graphical map, the more spatial the task was the more users preferred integrated

speech and gesture input to either speech or gesture input alone.

Complementariness: Speech and gesture are used in a complementary manner in

both human natural communication and human-computer interactions. Linguists have

documented that spontaneous speech and gesture do not involve duplicate information

(Cassell et al. 1994; McNeill 1992). Oviatt and her colleagues (Oviatt, 1996 and 1997;

Oviatt, et al. 1997) found that when users used an electronic graphical map, speech input

and pen input consistently contributed different and complementary semantic information

— that subject, verb, and object of a sentence were usually spoken, and locative

information written. Even when correcting system errors speech and pen inputs rarely

express redundant information. Complementary use of speech and gesture is the natural

and dominant theme during users' multimodal interaction.
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Robustness: From a usability standpoint, multiple input modalities offer an error-

handling advantage so that when one input mode fails the user can switch to another. For

example, integrated natural language with direct manipulation overcame limitations of

the two input techniques when used alone (Cohen et al. 1989). Users select the input

mode that they think is less error prone for a particular task, which leads to error

avoidance (Oviatt and Cohen 2000, Suhm et al. 2001). To offer the full error-handling

advantage the system design needs to meet two points. One is that different input modes

provide parallel or duplicate functionality, in order for the user to switch between input

methods freely at any point. The other is that different input modes can disambiguate

each other so that recognition errors from unimodal recognition can be recovered (Oviatt,

1999a). The results of Oviatt's study (Oviatt, 1999b) showed that one out of eight

commands processed by the multimodal system produced the correct response because of

mutual disambiguation between the speech and the pen inputs. Oviatt (1996) also found

that integrated speech and pen input produced 36 percent fewer task errors.

Performance Efficiency: From a psychological standpoint, users' efficiency of

performing multiple tasks can be increased if the tasks require information processing by

different sensory modes, for example spatial and verbal (Treisman, 1973). In multimodal

interfaces users can perform visuo/spatial tasks at the same time as giving verbal

commands with little cognitive interference (Billinghurst, 1998). Martin (1989) found

that people using a CAD program with the addition of speech input had an improved

performance by 108 percent than people who used a traditional interface. Oviatt (1996)

found that integrated speech and pen input resulted in 23 percent fewer spoken words and

10 percent faster completion time compared to speech input only. Suhm et al. (2001)
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confirmed that multimodal error correction for speech user interfaces was faster than

unimodal correction by respeaking. Grasso found that the task completion time, the

number of speech errors, and user acceptance all improved when an interface comprised

of both direct manipulation and speech input (Grasso, Ebert, and Finin, 1999).

2.3.3.2 Findings and Interpretations from Integrated Speech and Pen Inputs on

Interactive Maps. Oviatt and her co-workers conducted a series of exploratory

analysis of users' use of multimodal input versus single-modal input on a simulated

interactive map (Oviatt 1996, and Oviatt et al. 1997). The map was called a "Service

Transaction System" on which subjects could display, zoom, select, and filter real estate

based on given requirements. During the study, eighteen subjects first received a general

orientation on how to enter information on the touch tablet when writing, speaking, and

combining both modalities. Subjects were free to use cursive handwriting or printing,

gestures, symbols, graphics, pointing, or other marks using the stylus. When speaking,

subjects were instructed to tap and hold the stylus on the map as they spoke. In all cases,

subjects were encouraged to speak and write naturally using the input modalities in any

way. For example, a person might circle a lakeside house icon with the stylus and say "I

don't want a house in a flood zone." In response, the system would display waterways

and flood zones, and would filter out the house icon if it was located in such zones.

The system responded to subjects' input in a Wizard of Oz approach. An assistant

tracked and interpreted user input and sent predefined map displays and confirmations

back to the subject. The response delays, as reported, averaged less than 1 second

between subject input and system feedback.
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The research design was a completely crossed factorial with repeated measures.

The main factors are (1) input modalities — speech-only, pen-only, and combined speech

and pen input, and (2) presentation format — high-resolution map with detailed display of

objects and low-resolution map with minimal objects displayed. Eighteen subjects

participated in the study. Each subject completed two tasks in each of the six experiment

conditions. Subjects' performance was videotaped and transcribed for analysis.

Results found in the studies were rich. The results are shown in Table 2.2.

Table 2.2 Findings from Oviatt's Studies on Integrated Speech and Pen Inputs on an
Interactive Map, "Service Transaction System"

Length and Complexity of
Speech Utterances

In these map-based interactions, utterances during multimodal input were
significantly briefer and less complex syntactically than those during
speech-only input. (4.79 versus 6.22 words respectively)

Spoken Disfluencies (1) Spoken disfluencies during multimodal input were significantly lower
than those during speech-only input.
(2) A strong relation was found between the length of the utterance and the
likelihood of a spoken disfluency.

Spatial Location
Descriptions

(1) Utterances in describing spatial locations in speech-input mode were
lengthier than those in multimodal input mode.
(2) Hence spoken disfluency rate when describing spatial location was
higher in speech-input only mode than in multimodal input mode.
(3) Also spoken disfluency rate was significantly more elevated in the
spatial location domain than in the verbal commands domain.

Task Completion Time Task completion times were significantly shorter during multimodal map
interactions than during either speech- or writing-input only.

Task-critical Content Errors Average user content errors during multimodal input were significantly
lower than either speech-input or writing-input only.

Self-reported and Observed
Preferences

If to choose one input method, 94.5% subjects preferred multimodal input,
5.5% preferred writing-input only, and none preferred speech-input only.

Input-task dependence Spatial location commands on the map were more frequently expressed
multimodally, and spatial location commands were the only ones more
likely to be expressed multimodally. Speech was used for 100% of subject
and verb constituents.

Linguistic Content (1) 98% of unimodal spoken consructions and 97% of multimodal
constructions were in the format of subject-verb-object.
(2) Pen input was mainly used for drawing graphs, symbols, signs, and
pointing.

Multimodal Integration
Patterns

Most (or 86%) multimodal constructions were draw-and-speak. The rest
were point-and-speak. Drawing and speaking could be simultaneous,
sequential, and compound.
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Following this series of studies, Oviatt and her colleagues conducted another

study series on pen-and-speech multimodal integration patterns of subjects with a larger

age-span. The researchers modeled the behavior of 12 subjects aging 21-58 (Oviatt et al.

2003) and 15 seniors aging 66-86 (Xiao et al. 2003) on a multimodal map system with a

random error generator and two experiment "wizards". The system recognition error rates

were controlled to allow researchers to observe the change of users' multimodal

integration pattern under the effect of errors.

Results showed that all users had a dominant temporal multimodal integration

pattern, i.e., to either give multimodal input simultaneously with a temporal overlap

between input signals of different modalities, or give the input sequentially with a

temporal lag between the signals. The dominant temporal pattern of a user was reinforced

with the elevation of system recognition error rate. When the error rate was increased,

the multimodal input signal overlaps of simultaneous integrators, and the multimodal

input signal lags of sequential integrators, were all correspondingly elevated.

To observe whether children have such multimodal patterns, a study was

conducted with 24 children aged 7-10 (Xiao et al. 2002). Because the map-based tasks

were not suitable for children at this age, the study was conducted on a simulated system

that taught children about marine animals through graphics and animations. The children

interacted with the system using natural speech and pen drawing (Oviatt and Adams,

2000). The results showed that similar to adult users, a child was either a simultaneous

integrator or a sequential integrator. Their use of simultaneous integration was more often

than adults. The lags between their sequential input signals were shorter than adults. For a
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child this temporal multimodal integration pattern was dominant during the whole

experiment session.

The second series of studies revealed that users of different ages had predominant

temporal multimodal integration patterns, which was not likely to change despite changes

in system error rates.

2.3.3.3 Findings and Interpretations from Multimodal Error Correction. Various

studies have reported that multimodal user controls benefit error handling in error-prone

input modes, especially speech input. Those studies uncovered the following user error

handling behaviors during their multimodal interactions.

After learning a multimodal interface, users select the input mode that they think

is less error prone for particular task, which leads to error avoidance (Oviatt and Cohen

2000, Sears et al. 2003). For example, when inputting a foreign surname, users are more

likely to use writing input rather than speech input because users experienced fewer

errors in writing names (Oviatt and Olsen, 1994). When users originally preferred one

input modality, they also used other modalities because they learned to avoid ineffective

input modalities with experience (Suhm, et al. 2001).

Switching input modality was found to be an effective error handling strategy.

When recognition errors occur, users switched input modes for error correction (Oviatt,

1999b). It was reported that the likelihood that users switching input mode following a

system error was three times higher than in the baseline condition, in which recognition

was error-free (Oviatt et al. 1998).
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During a study of detailed user error handling behavior on a speech recognition

system that provided alternative input modalities for error correction, Oviatt and VanGent

(1996) observed two phenomena. One was that users re-dictated the same word despite

incorrect recognition. This was referred as "spirals" or "no-switch" strategy. The number

of re-dictation transactions was referred to as "spiral depth". The other was that during

error correction a new error occurred, which was referred to as "cascade". In a study on

three commercial large vocabulary continuous speech recognition systems, Karat and her

co-workers found spirals and cascades embedded in each other, and uncovered similar

initial no-switch strategy and a higher likelihood of input method switch if errors were

not corrected after the initial no-switch tendency (Karat et al. 1999).

Multiple input modalities result in more efficient and better error correction

results. In a study on a semi-simulated electronic map system that accepts speech input

and pen inputs, Oviatt (1999b) reported that one out of eight commands processed by the

multimodal system produced the correct response because of mutual disambiguation

between speech and pen inputs. Oviatt (1996) reported that integrated speech and pen

input resulted in 36 percent fewer task errors, 23 percent fewer spoken words, and 10

percent faster completion time compared to speech input only. In a study comparing

various unimodal and multimodal error correction strategies on speech recognition

systems, Suhm and his colleagues (Suhm et al. 2001) confirmed that cross-modal repair

speeded up the correction of speech recognition errors on speech user interfaces

comparing to unimodal error correction by re-speaking, and that cross-modal repair was

more accurate than unimodal repair. The better error correction results with multimodal

input than unimodal input is caused by users that are less productive with ASR
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(Automatic Speech Recognition) than with keyboard and mouse on correcting dictation

errors (Karat et al. 2000), and that speech is less effective in direction-oriented navigation

(e.g., move up two lines) needed in speech error correction tasks than in target-oriented

navigation (e.g., select target) (Sears et al. 2003).

Multimodal disambiguation is effective not only in interactive map systems and

speech recognition systems, but also in other systems. Holzapfel and his colleagues

(2004) found that speech input could disambiguate 3D gesture input that was more error-

prone than speech. They found that their multimodal fusion approach was very tolerant

against falsely detected pointing gestures.

Because of the uncovered error correction behaviors, Oviatt's suggestions on

designing multimodal systems are apparently valuable. She suggested that systems with

multimodal input modalities should implement two design tactics. One was that different

input modes provide parallel or duplicate functionality in order for the user to switch

between input methods freely at any point. The other was that different input modes can

disambiguate each other so that recognition errors from unimodal recognition can be

recovered (Oviatt 1999a).

In general, multimodal input has a great potential to benefit visually impaired

users, because "... well-designed multimodal systems should be able to integrate

complementary modalities to yield a highly synergistic blend in which the strengths of

each mode are capitalized upon and used to overcome weaknesses in the other." (Oviatt,

1999b, pp. 576)
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2.4 Theories in Cognitive Psychology Applied to Multimodal Interaction

In order to design multimodal interaction, knowledge in how human attention and

working memory are used to process multimodal information is necessary. Established

theories can be used to explain humans' ability to process information communicated via

multiple modalities separately using distinct cognitive resources, and when needed, in a

multi-tasking manner by sharing attentional resources.

Although a large portion of work in cognitive psychology is still assumptional and

under exploration, some theories have been supported by empirical information and

widely accepted.

2.4.1 Human Attention in Relation to Multimodal Interaction

2.4.1.1 Definition of Attention. 	 The earliest but most concrete definition of

attention was given by William James, one of the first major psychologists:

"Everyone knows what attention is. Focalization, concentration, and

consciousness are of its essence. It implies withdrawal from some things

in order to deal effectively with others, and is a condition which has a real

opposite in the confused, dazed, scatterbrained state". (James, 1890, pp.

403-404)

This definition implies that attention is limited — we can only attend to one thing

at a time, and that attention is selective — we direct our attention to one thing or another.

2.4.1.2 Models of Attention. In order to understand human attention, models of attention

have been built from both cognitive and clinical perspectives.
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One of the most commonly accepted attention models from the cognitive

perspective was defined by Wickens (1984). According to this model, information

received by receptors passes through three stages: encoding, central processing, and

responding. In the perceptual encoding state, information is identified and interpreted.

Information is further comprehended, integrated and transformed in the central

processing stage. Finally, in the responding stage, actions are taken on the basis of the

central processing.

One of the most widely used clinical models was defined by Sohlberg and Mateer

(1989). This model was derived from research on the recovering of attention processes in

brain damaged patients, and is used to evaluate attention in patients with different

neurologic pathologies. The model describes five attention hierarchies: (1) focused

attention, referring to the ability to respond to specific stimuli; (2) sustained attention,

referring the ability to maintain a consistent response to a continuous stimuli;

(3) selective attention, referring to the ability to focusing on a specific process while

ignoring others, explaining the cocktail party effect (Arons, 1992); (4) alternating

attention, referring to the ability to shift attention focus and move between tasks; and (5)

divided attention, which is the highest level of attention that refers to the ability to

process multiple tasks at the same time.

2.4.1.3 Ramifications of Attention Allocation Theories. Three major ramifications of

attention theories have been established: the bottleneck theory, the single resource pool

theory, and the multiple resource pool theory.

The bottleneck theory (Welford, 1952; Broadbent, 1958) or the filter theory as

referred to earlier, proposes that information is processed in serial order. Along the
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processing stages bottleneck exists somewhere which forces the filtering out of

information not selected for further processing. In this theory, the capacity for

information processing is considered to be fixed, and the processing is done by a single

undifferentiated resource — only a limited amount of information can be brought from the

sensory register to the working memory.

The single resource pool theory (Kahneman, 1973) on the contrary proposes

flexible central resource capacity. In this model the amount of available attention is

determined by the individual (individuals' arousal level of attention varies), the tasks

(different tasks demand different levels of attention), and the situation (either involuntary,

in which something draws attention, or selective, in which an individual consciously

decides to pay attention to something). This theory further suggests that, although being a

single pool of resource, attention can be allocated to several activities at once, and that

parallel processing can occur in all the processing stages. However, when a certain task

demands a high level of attention, performance of other concurrent tasks is degraded.

The multiple resource pool theory (Navon & Gopher, 1979; Wickens, 1980, 1984

& 1992) is the most popular one among the three ramifications. It argues that instead of

sharing a single pool of resource, there exist multiple pools of resources, each of which

has its limited capacity and is related to specific skill. Multiple tasks can be performed at

the same time as long as they require separate pools of resources.

The multiple resource pool theory proposes three dimensions that determine how

attentional resources are allocated for concurrent tasks and to which degree concurrent

tasks can be performed efficiently:
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Information processing modalities: visual vs. auditory. Previous studies suggest

that people are better at dividing attention across modalities than dividing it within a

single modality. Xu et. al. (2005) presented that users could process and integrate

information from visual and auditory channels more efficiently than processing the same

amount of information in a single modality.

Information processing stages: perceptual, central processing, and response.

Evidence indicates that resources used for an early stage (i.e., perceptual or central

processing) are different from resources used for a later stage (i.e., response). This is why

a driver can easily monitor the road (perceptual) while steering (responding), but will be

more inclined to accidents when steering (responding) and talking on cell phone

(responding) (United States National Highway Traffic Safety Administration, 1997).

Information processing codes: imagery/spatial information vs. auditory/verbal

information. Research shows that imagery/spatial and auditory/verbal processing requires

distinct resources (Wickens & Liu, 1988). This has been agreed and explained by the

working memory theory proposed by Baddeley and Hitch (1974 and 2000). The next

literature section will explain this in details.

More research has confirmed and expanded the multiple resource pool theory.

Some studies suggest that limited capacity applies to multiple resource pools

when people perform time-sharing tasks. For instance, performing concurrent tasks

utilizing different modalities sometimes degrades performance on all tasks (Wickens &

Ververs, 1998). People are slower in responding to visual stimuli when they are required

to monitor the auditory channel at the same time (Spence & Driver, 1997).This is

possibly because that the total amount of attention for multiple modalities is limited, and /
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or the integration of information from multiple modalities results in a heavy cognitive

workload.

Some studies extend the understanding in the factors that determine how well

attention is divided among concurrent tasks. Wickens et. al. (1998) proposed four

determining factors: (1) the degree to which a task can be performed automatically; (2)

the individual's skill in attentional resource allocation; (3) the degree to which

information from different modalities is similar which can cause confusion in parallel

processing; and (4) the amount of shared attention. With regard to (1), when an automatic

processing task is concurrent with another less automatic task, more attention is given to

the latter.

2.4.2 Working Memory in Relation to Multimodal Interaction

Working memory, which was previously called short-term memory, operant memory, or

provisional memory, refers to the structures and processes used for temporarily storing

and manipulating information. Although many working memory models have been

proposed, Baddeley and Hitch's model is most commonly accepted and explains why a

speech / touch coordinated input mechanism could work well for users.

Baddeley and Hitch's three-component working memory model (1974)

potentially explains how integrated speech and hand input can work effectively for

human cognition. Their model specifies two subsystems and a central executive. The two

subsystems are the phonological loop and the visuo-spatial sketchpad, which are short-

term storage and process systems dedicated to distinct content domains.
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The phonological loop deals with auditory and verbal process. Visually presented

textual information can be transformed into phonological codes by silent articulation

before entering the phonological loop. The phonological loop consists of two

components: a short-term phonological store that temporarily remembers speech sounds,

and an articulatory rehearsal component that repeats the words to prevent them from

decay. If a person who is reading is asked to say something irrelevant aloud, his

articulatory rehearsal process is blocked which impairs his memory for the verbal

material his is reading. This effect is called articulatory suppression.

The visuo-spatial sketchpad holds imagery and spatial information. It consists of a

visual cache that stores shapes and colors, and a spatial component that deals with spatial

and kinaesthetic information (Logie, 1995). This structure is supported by evidence

obtained from previous research, which indicates that there is little interference between

visual and spatial tasks, and that brain damage sometimes results in impairment in one

component but not the other.

The central executive is an attentional control system that supervises and

coordinates cognitive processes in the phonological loop and the visuo-spatial sketchpad

if tasks have to be processed in the two subsystems simultaneously. The central executive

directs attention to relevant information and inhibits process of irrelevant information.

Baddeley expanded this working memory model in 2000 by adding the third

subsystem, the episodic buffer, which, Baddeley believes is where information from the

other two subsystems is integrated into episodes with chronological order and linked to

long-term memory (Baddeley, 2000).
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In addition to the structure of working memory, Baddeley specifies that all four

components have limited capacity.

Other researchers have argued that the working memory model should be revised

to represent a multiple-resource model (Navon and Gopher, 1979; Wichens, 1980 and

1984), because evidence has shown that verbal and spatial working memory are

independent to each other (Shah and Miyake, 1996).

This working memory model is supported by experimental results with dual-task

diagram and research in brain damages. Dual-task paradigms are used in experimental

psychology. They require individuals to perform two tasks simultaneously and compare

the performance with single-task conditions. More details can be found in Mousavi et. al.

(1995), Woodhead and Baddeley (1981) and Cocchini et. al. (2002).

This working memory model makes two predictions: (1) if two tasks make use of

the same subsystems, they cannot be performed successfully together, and (2) if two tasks

make use of different subsystems, it should be possible to perform them together as well

as separately (Eysenck, 2004).

This working memory model further predicts that in multimodal interaction with

integrated speech and hand input, speech tasks and hand movement tasks are processed in

two subsystems of the working memory separately, and can potentially be performed

simultaneously with little interference against each other.

In general, the above research in cognitive psychology has served as the

theoretical foundation for the proposed speech and touch input.
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2.5 Summary of Literature Review

In this section relevant literature has been reviewed. Besides providing rich background

information, the literature serves as a guideline for designing the exploratory study and

the experiment and structuring the research.

2.5.1 Designs for Visually Impaired Users

The literature in the field of designing information access for visually impaired users

provides overviews of the fashion and design techniques of the present non-visual

information access, as well as revealing the design issues that have not been considered

in these products. Specifically, the two major design issues are:

(1) The use of arrow keys in navigation forces users to browse information sequentially.
Users need to go through a large amount of irrelevant information to reach the desired
information. This type of sequential browsing does not help with the establishment of
mental models for comprehending hierarchical information structures.

(2) The prevalent use of keyboards as the main input device requires intensive user
learning and memorization. If the functions of keys are not memorized, the functions
are not likely to be used unless the user reviews the help document or the user manual
to find the function. But relying on the help document or the user manual reduces the
usability of a system (Mack et al. 1983; Nielsen, 1994; Nielsen et al. 1986).
Furthermore, the user has no "preview" of the command before pressing the key. This
means additional effort to reverse actions selected in error.

New interaction mechanisms are needed to address these design issues. The new

design should provide both direct access and access through browsing to information and

commands. Multimodal input offers potential for providing these interaction alternatives.

Speech input can be designed with a rich command vocabulary and is suitable for

directly accessing subjects and instructions. Hand motions on a physical space have

proved effective in menu browsing and selection (Friedlander et al. 1998; William and
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Tremaine, 2001; Chen et al. 2003, 2004, and 2005). Thus, a new interaction mechanism

that integrates speech and hand input is proposed and developed for non-visual

information access for the visually impaired.

2.5.2 Designs of Speech and Gesture Interaction

The literature in the fields of gesture input design and speech dialogue design has

provided a set of development suggestions for this multimodal speech and hand input

mechanism.

When designing a hand gesture input mechanism:

(1) Developers can make use of manipulative gestures, semaphoric gesture, and or
pointing gestures in the command grammar. These gestures are broadly used in
human communications and human computer interactions. Especially, pointing
gestures on a physical space tied with audio or tactile feedbacks have proved effective
(Roth et al. 1998 and 2000; Friedlander et al. 1998; William and Tremaine, 2001;
Chen et al. 2003, 2004, and 2005).

(2) Using real spatial references as opposed to imaginary objects for gesture input will
make locating a desired point or area much easier.

(3) Applying physical constraints as opposed to software feedback will give users more
direct guidance on gesture movement and reduce a user's cognitive load in finding
physical input locations.

(4) Gesture commands should be implemented on a small working space as opposed to a
large working space. This reflects the user patterns observed in both natural gestural
tasks and human-computer interactions.

When designing speech input dialogues:

(1) Designers can use finite-based, template-based, or agent assisted dialogues.

(2) Designers can implement a system-initiative, user-initiative, or mixed-initiative
dialogue control strategy. Studies have proved that different dialogue control
strategies do not necessarily lead to different efficiencies in interaction. User
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satisfaction with each of the dialogue types is equivalent. Designers should choose a
dialogue control strategy based on the tasks to be performed using the system.

(3) Short speech commands composed of single words or simple phrases achieve a better
user acceptance than longer commands because short commands are easier to learn
and introduce less system recognition errors. A longer command that compounds
several short commands does not necessarily increase the efficiency of the user-
system interaction or user satisfaction.

(4) When speech dialogues are designed for a non-visual interface, the system
functionality and operation boundaries are invisible. System prompts and
verifications are pivotal to guiding user-system interaction. Developers can refer to
(Brennan and Hulteen, 1995; Yankelovich et al. 1995; Yankelovich, 1996) for
practical guidelines for prompt design.

(5) When speech dialogues are designed for a non-visual interface, the vocabulary of
subject and verb commands should be different from the phrases used on a visual
interface with similar functionality. The information organization and information
flow controls should be redesigned as well. This is because, in a non-visual condition,
users' mental models of the information organization and information flow, as well as
the vocabulary used to control information display, may be different. Completely
mapping a non-visual interface with a visual interface in the same application domain
can introduce usability problems.

(6) Speech output is sequential and slow. As such, tradeoffs need to be made between the
completeness and the conciseness of the speech feedback. The interaction mechanism
should allow users to skip, move forward, and interrupt quickly.

The lessons learned from previous research and design practices have provided

valuable guidelines to the design of the AudioBrowser system.

2.5.3 Theories in Cognitive Psychology Related to Multimodal Interaction

The literature in cognitive psychology provides insights as to how human attention and

working memory support multitasking in multiple modalities:

(1) Although having limited capacity, human attention can be divided to process multiple
concurrent tasks that use resources from different resource pools:

• People are better at dividing attention across modalities (e.g., visual and auditory)
than dividing it within a single modality;
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• Resources used for an early information processing stage (i.e., perceptual or
central processing) are different from resources used for a later information
processing stage (i.e., response);

• Spatial imagery/ and auditory / verbal processing require distinct attentional
resources.

(2) How well attention is divided among concurrent tasks depends on four factors:

• The degree to which a task can be performed automatically — when an automatic
processing task is concurrent with another less automatic task, more attention is
given to the later;

• The individual's skill in attentional resource allocation;

• The degree to which information from different modalities is similar (similar
information can cause confusion in parallel processing); and

• The amount of shared attention.

(3) Working memory which handles the processing of input from the computer and is
used to develop and generate commands to the computer system, consists of four
components:

• The phonological loop that stores and processes auditory and language related
information;

• The visuo-spatial sketchpad that processes visual, spatial, and possibly movement
and kinesthetic information;

• The episodic buffer where information from the other two components is
integrated into episodes in chronological order and linked to long-term memory;
and

• The central executive that coordinates and monitors the cognitive processes in the
phonological loop and the visuo-spatial sketchpad.

This structure of the working memory and the information processing theories

from cognitive psychology provide a theoretical background for guiding the design of a

multimodal input mechanism that combines speech input and hand gesture input. Users

input operations can be executed through speech and gestural channels separately but
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concurrently, using different pools of cognitive resources in a separate but integrated

manner in the working memory.

2.5.4 Designs of Multimodal Interaction

The literature in the field of multimodal interaction that comprises speech and hand

inputs to GUIs has provided insights on users' multimodal behavioral patterns that affect

the design of such interfaces. The main findings are:

(1) When given multiple input modalities, users generally use them in a multimodal
fashion, but not all tasks are performed using multiple modalities. Map related tasks
are mainly performed using integrated speech and pen input rather than speech or pen
input only, because pen input is more efficient in drawing and pointing. Speech, when
used for the same task, results in speech disfluencies. When using speech recognition
systems, direction-oriented tasks are performed using keyboard and mouse more than
using speech commands, because use of the keyboard and mouse are more efficient in
these tasks, while speech commands are more efficient in target-oriented tasks.

(2) Users use multimodal, rather than unimodal input, to increase their interaction
efficiency. Speech utterances during multimodal input are briefer and less complex
compared to those in speech-only input. Speech disfluencies are reduced in
multimodal input resulting in shorter task completion times.

(3) Each user follows one of the two multimodal integration temporal patterns:
simultaneous input or sequential input. The user follows his/her integration pattern
most of the time during the multimodal interaction. Changes in user tasks and
changes in system recognition error rates do not necessarily result in changes in
users' multimodal integration patterns.

(4) When errors occur, users switch modalities to improve the error correction results.
Specifically, when one input mode fails, users tend to switch to another input mode to
overcome errors.

The behavior patterns observed from previous research have proved users'

preferences in multimodal input. However, these behavior patterns cannot be used

directly to guide the integration of multiple input modalities in a non-visual information

access for visually impaired users, because first, the behavioral patterns are detected on
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graphical user interfaces designed for sighted users who may use multimodal systems

differently from visually impaired users, and second, the domains of the systems

researched are map-related applications and speech recognition applications, which have

significant differences from non-visual textual information accessing systems in terms of

functionality and user-system interactivity.

Empirical research is needed to test whether user behavioral patterns in

multimodal graphical user interfaces can be extended to the proposed non-visual

multimodal interaction, and whether the proposed non-visual multimodal input

mechanism can be learned and used successfully. The research should also uncover any

different behavior patterns of visually impaired users during the interaction. The findings

in this empirical research will serve as the theoretical basis for integrating speech and

gesture inputs into a non-visual textual information access system for the visually

impaired.



CHAPTER 3

RESEARCH QUESTIONS, RESEARCH APPROACH AND AUDIOBROWSER
SYSTEM

3.1 Overview

This chapter presents the initial research questions derived from the literature. This is

followed by descriptions of the research approach and the AudioBrowser system, which

is an eyes-free information browser used for carrying out this research.

The research questions ask that, when performing non-visual information

browsing tasks, (1) whether users choose to use multimodal or unimodal input, (2) how

they use the multimodal input, (3) how they handle errors in the input, (4) whether the

order of training for the modalities affects users' input usage, and (5) whether sighted

users and visually impaired users use the input mechanisms the similar ways.

To answer these questions, an exploratory study with sighted subjects was

conducted first. The study aimed at refining the research questions and forming testable

hypotheses. A controlled experiment was then conducted with visually impaired subjects

to test the hypotheses.

3.2 Research Questions

The literature review has indicated that multimodal speech and hand input has great

potential to improve visually impaired users' information browsing. The goals of the

proposed research are (1) to explore whether a multimodal speech and hand input

mechanism will provide solutions to some design issues of existing information access

56
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for visually impaired users, and (2) to explore how users use the multimodal interface and

what design indications can be derived from this use.

To achieve these goals, the following research questions have been generated:

RQ1: When interacting with a non-visual multimodal system, do users use

multimodal or unimodal input?

RQ2: If users choose to use multimodal input, do they have special multimodal

input patterns, i.e., is there a relationship between the type of input operation and users'

choice of input modality?

RQ3: What are users' error correction strategies for the non-visual multimodal

interface?

RQ4: Does training affect users' multimodal input behavior?

Finally, it will be valuable to ascertain if sighted users use a non-visual system to

explore information differently from visually impaired users, because most system

designers and developers are sighted and it is therefore difficult for them to understand

the difference between their own navigation and visually impaired users' navigation in

the information space. The knowledge acquired in this thesis will help to establish

guidelines for system developers whose products need to accommodate visually impaired

users' needs. Thus, the following research question is proposed:

RQ5: Can we conclude any common or different patterns existing in sighted and

visually impaired users' multimodal interaction?
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3.3 Research Approach — Exploratory Study and Controlled Experiment

This research combined an exploratory study that determined the parameters of the

investigation with a controlled experiment that then tested the hypotheses generated by

the exploratory study. The exploratory study was an observation-based gathering of data

that would direct the experiment design towards answering the posed research questions.

The results from the exploratory study helped to extend research questions, construct

testable hypotheses, generate viable stimuli and suggest the controls that needed to be

exercised in the experiment.

Due to the limited number of visually impaired participants available, the

multimodal interface design which did not give sighted users a significant advantage, and

the purpose of the pilot study — to gather information for running a study with visually

impaired users, the exploratory study was conducted with sighted users. The controlled

experiment was conducted with visually impaired users. Instructions and approaches in

the sighted users study were necessarily different than the experiment design in the

visually impaired users study, because the study was exploratory and because certain

adaptations that were made for visually impaired users would have made the pilot study

ponderous, confusing and strange for its subjects, e.g., reading all instructions out loud.

This made the pilot study different from the experiment so that data collected in each

study could not be compared with statistical tests. However, this arrangement did allow

observation-based qualitative comparison of the multimodal interaction patterns between

sighted and visually impaired users.
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3.4 System Description

The research was conducted on AudioBrowser, a system with both speech and hand

inputs. AudioBrowser inherits the hand input on a touchpad from SoundNews (Williams

and Tremaine, 2001). The speech input parallel to the hand input was designed and

implemented in 2005 as part of this thesis.

AudioBrowser is a non-visual information browser that organizes information,

e.g., news articles, into a hierarchy and reads the information for users using auditory

output. Users can control the way the content is read using speech and hand input

commands.

The hand input is performed on a touchpad, consisting of pointing gestures on the

sensing area of the touchpad, and clicks on the buttons beside the sensing area. The

speech input is received via a microphone and processed by the Microsoft Speech

Recognition Engine. The AudioBrowser system outputs speech and/or non-speech audio

displays. Speech output is standard American English synthesized by a Microsoft Text-

to-Speech Engine. Non-speech outputs, such as clicks and other sound effects, are

prerecorded audio clips.

The designs of the touchpad input and the speech input comply with the design

strategies suggested by the literature on gesture input design and speech dialogue design.

The literature suggests that gesture commands should be implemented using real

spatial references as opposed to imaginary references. The literature also suggests that

gestures should be performed in a small working space that adapts to human natural

gesturing. In AudioBrowser, a Synaptics touchpad (Figure 3.1) is used for the touchpad

input. It is about half the size of an average human palm. The programming interface
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provided by Synaptics allows developers to program functions for the sensing area and

the buttons. The sensing area of the touchpad is divided into three tracks. The borders of

the tracks are demarcated using paper clips taped to the touchpad. These tracks provide

physical constraints through tactile feedback, a feature consistent with suggestions in the

literature. The two buttons at the two sides of the sensing area are used to execute

commands. The two buttons under the sensing area are not used in the experiment, but

have the function of an abort button for AudioBrowser.

Figure 3. 1 Programmed Synaptics Touchpad

The tracks in the sensing area are dynamically divided into small segments, as

illustrated in Figure 3.2. One info oration item or operation command is mapped to each

segment. When the user's finger touches a segment, the system speaks aloud the

corresponding item on the segment. When the user reaches the boundary between two

segments, the system outputs a "click" sound to indicate that a boundary is being

traversed. This allows a user to rapidly traverse 3 or 4 segments without listening to the

underlying speech contained in the segment. When the user proceeds to the next segment,

the system halts the speech output of the previous segment and then outputs speech for

the new segment being pointed to.

The first track is dedicated to browsing information that is organized

hierarchically (Figure 3.2). The information is dynamically divided into segments that
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map onto items on the information level being navigated. A user can explore the items at

that information level by gliding a finger across the track. If an item being pointed to is a

category, pressing the right button selects the category and goes down one information

level. The same track is then rewritten with information items at the new level. Pressing

the left button goes up one level in the information hierarchy.

Figure 3. 2 Browsing Hierarchical Information Using the Touchpad

The second and third tracks are mapped with operation commands. Users explore

these tracks to find a command and then press one of the buttons to execute the

command. Button clicks are mode-sensitive, i.e., what function a button click performs

depends on what item is selected in the track. For example, when the command "read by

sentence" is selected, clicking on the right button reads the next sentence, and clicking on

the left button reads the previous sentence. When "change reading volume" is selected,

clicking on the right button increases the reading volume and clicking on the left button
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decreases the volume. This is a solution to deploy functions on a limited operation space,

but not to lose intuitivity and consistency of the operations, as clicking the right button

always results in an action going to "next" or increasing a value, and clicking the left

button always results in an action going to "previous" or decreasing a value.

The speech input grammar size is fifty-four commands. Each command consists

of one to four words, while the majority of commands consist of two or three words. This

simple and fixed grammar design is consistent with the literature's design suggestion that

isolated word recognition for speech input in a fixed domain with limited tasks is

sufficiently accurate for effective user interaction.

Speech dialogues are user-initiated. A speech command will be executed when

the user holds down a "push-to-talk" button (i.e., the ctrl button on the keyboard as

programmed) and speaks a command into the microphone.

Rather than using complicated compound speech commands such as "Find the

email from John Smith on May 1 St 2005", simple and short speech commands that

parallel the touchpad commands were created for the speech grammar. This means that

any input operator (i.e., the smallest input operation unit) of a user task can be done using

either speech input or touchpad input. Performance of a user task usually comprises a

series of input operators. Thus, a user task can be performed using either multimodal

input or unimodal input, depending on a user's choice.

There are three reasons for creating parallel speech and touchpad commands at

the operator level. First, the user can freely decide to finish a user task using mixed input

modalities. Second, at any time, when one input mode fails, the user can switch to the

other to recover from the failure. Third, a speech command that is forgotten can always
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be found on the touchpad. The most frequently used touchpad and speech commands are

listed in Table 3.1.

Table 3. 1 Frequently Used Touchpad and Speech Commands

Typical User Task Touchpad Commands Speech Commands
Browse information on one
level in the information
hierarchy

Glide across the first track "Next article/ category/ item",
"Previous article/ category/ item"

Go to a different information
level by entering or exiting an
information category

Click the right button to enter an information
category, click the left button to exit

"Select" or "zoom in", "exit" or "zoom
out"

Set the text unit (i.e., word,
sentence, paragraph, or
complete content) by which the
system reads the content

Find the command "set to word", "set to
sentence", "set to paragraph", or "set to
complete content" on the second track

"Set to word", "set to sentence", "set
to paragraph", "set to complete article"

Read the next or the previous
text unit

Find "set to word", "sentence", or
"paragraph" on the second track, click the
right button to read the next unit, or click the
left button to read the previous unit

Method 1: "Set to word/ sentence/
paragraph" + "Next" or "previous"
Method 2: "Next word/ sentence/
paragraph" or "Previous word/
sentence/ paragraph"

Browse the text unit
commands, in case the user
forgets the text units available
for use

Glide across the second track "Output unit" (by which the system
speaks aloud all the text units available
for use)

Pause reading and resume
reading

Click the right and the left buttons together to
pause, to resume click the right button (which
leads to reading the next text unit) or click the
left button (which leads to reading the
previous text unit)

"Pause", "resume"

Spell a word Find the command "set to word" on the
second track and click the left and the right
buttons together to spell the current word

"Spell" or "spell word"

Browse system settings, in case
the user forgets what settings
are available for adjusting

Glide across the third track Method 1: "Settings menu" (by which
the system speaks all the system
settings)
Method 2: "First setting" + "next
setting" or "previous setting" (by
which the system speaks one setting at
a time)

Change reading speed/ volume/
pitch

Find "speed", "volume" or "pitch" on the
third track and click the right button to
increase it, or click the left button to decrease
it

Method 1: "increase speed/ volume/
pitch" or "decrease speed/ volume/
pitch"
Method 2: Speak "First setting" and
repeat "next setting" until the wanted
setting is found, then speak "increase"
or "decrease"

Change reading voice Find "voice" on the third track and click the
right button to use the next voice on a voice
list, or click the left button to use the previous
voice on the list

Method 1: "next voice" or "previous
voice"
Method 2: Speak "First setting" and
repeat "next setting" until "voice" is
found, then speak "next" or "previous"
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3.5 Design Issues Encountered and Solutions Implemented During Iterative
System Development

This section describes the design issues encountered and their solutions during the

iterative system design and implementation process of building a multimodal

AudioBrowser.

First, the speech recognition engine is designed to process everything it hears,

even irrelevant sounds. This characteristic caused problems and a method was needed for

disambiguating speech commands from irrelevant sounds. The first implementation of

AudioBrowser with the speech recognition feature emphasized the severity of this

problem. The system "heard" irrelevant speech and noise, interpreted them as speech

commands, and executed the closest-sounding command on a constant basis even when

the user was intending to only use the touchpad. For example, a door closing in the next

laboratory easily led to the interpretation of the "next" command.

A microphone with an on/off button was tried as a way of fixing this problem.

The user switched the microphone on to speak a command and switched it off when

finished. Unfortunately, turning the microphone on and off generated an interfering

sound that was also interpreted as speech. In addition, there was latency between the

button being switched on and the system starting to process sounds so that the spoken

command was not heard but ambient noise was processed leading again to an unexpected

command being selected.

A "push-to-talk" button on the keyboard of the computer was then tried. This

eventually became a feature of the system. The button needed to be pushed down in order

for the system to execute a spoken command. This approach filtered out many irrelevant
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sounds, and the button did not generate interference with the speech recognition. An

inconvenience is that users still need to pay attention to a small latency and push the

button before, not during their utterance of a command. The "Ctrl" button on the

keyboard is used to fulfill this "push-to-talk" function.

One problem not solved by the first "push-to-talk" idea was that of the button

irrelevant sounds still being accepted by the system when the button was pushed. Because

of this, one push could result in the system's recognition and execution of a mixed series

of correct and incorrect commands. In many circumstances the system's speech output

interfered with its recognition of user speech commands, and formed an execution loop.

To significantly reduce this symptom, each time the button is pushed, the system

recognizes only the first heard command. As long as the user does not wait a long time

before speaking after pushing the button, most irrelevant sounds are filtered out

successfully.

The second issue was that some speech commands were harder to recognize by

the recognition engine than other commands. Changes were made in the speech grammar

to avoid these recognition problems. AudioBrowser understands a fixed list of speech

commands. A command can be a single word or a phrase. Shorter commands take a

shorter time to be spoken, but risk more speech recognition errors. Longer commands, on

the contrary, require only a little more overheard in time, but reduce the risk of speech

recognition errors. The speech grammar has been gradually adapted to reach a balance

between the length of the commands, the naturalness of the language, and the risk of

recognition errors.
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An example of this balance can be seen in the original speech command of

"word." "Word" had been a speech command initially for setting the system to read text

word-by-word. Due to its short length and high phonetic similarity to other sounds, the

system constantly recognized irrelevant sounds in the environment as the command

"word". After the command "word" was changed to "set to word" the recognition error

was significantly reduced.

This chapter serves as a prelude to the next chapter. Having presented the

research questions of interest and the system that will be used to test out the research

questions, an exploratory study is needed to refine these research questions and test the

feasibility of the research being underdtaken. The next chapter presents this exploratory

study.



CHAPTER 4

DESIGN OF EXPLORATORY STUDY WITH SIGHTED USERS

4.1 Overview

The goal of the exploratory study was to determine if the patterns in multimodal

integration described in the research questions, could be observed. A speech input

grammar was designed for AudioBrowser that paralleled the touch input grammar that

already existed in AudioBrowser. This parallelism had the advantage that one modality

could replace another modality at any time in the interaction. This potential replacement

meant that the study could also examine if multimodal interfaces were effective for

helping with error correction, that is, if one modality caused an error, a second modality

could possibly be selected and the input command redone, thereby avoiding the error.

The entire study was set up to be as naturalistic a study as possible, i.e., both types

of input (speech and touch) were taught to the subjects, but choice of which modality to

use for any operation was completely at the subject's discretion. The subjects in the

study were asked to perform tasks that they would normally do with AudioBrowser. As

such, the study was more of an exploratory study than a controlled experiment except that

all subjects received the same training and the same tasks to perform with AudioBrowser.

The study sessions were captured on video. The subjects were also invited to provide

comments and opinions in a post-study interview.

The next section of this chapter describes the subjects who participated in the

study, the procedures carried out in the study, the tasks given to the subjects, and the data

67
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that was captured. This is followed by a section describing the coding done on the

qualitative data collected.

4.2 Subjects, Procedure, Tasks and Data Capture

Fifteen subjects participated in the exploratory pilot study. During the study it was found

that one subject did not speak English fluently enough to use the speech recognizer in

AudioBrowser. Hence, his data was excluded from this report because of the large

number of speech understanding errors that occurred. The remaining fourteen subjects all

spoke fluent English. At the time of the study, four subjects held a masters degree or were

enrolled in a Ph.D. program and ten were undergraduates. The graduate level subjects

participated in the study as volunteers. The undergraduate students participated for course

credit, as part of an information systems evaluation course. The students were given the

options of performing a system evaluation project individually, or participating in the

exploratory study to help evaluate AudioBrowser. All subjects majored in computer

science, information systems, information technology, or human computer interaction.

The subjects were sighted but were not provided any visual interface during the

study. The subjects interacted with the system by listening to the auditory output. During

the study the subjects sat in a laboratory room with a preprogrammed Synaptics

touchpad, a directional microphone, and a regular keyboard in front of them. A

directional microphone receives sounds from a specific direction and restricts sounds

coming from other directions. The "Ctrl" button on the keyboard was used as the "push-

to-talk" button for speech input. The equipment was connected to the AudioBrowser

system. The user's speech input was received and processed by the Microsoft Speech
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Recognition Engine. The system's speech output was standard American English

synthesized by the Microsoft Text-to-Speech Engine. The non-speech audio output such

as the "click" and the "whish" sounds used to indicate a change of state in AudioBrowser

were prerecorded sound clips.

The complete study for each subject took three consecutive days. The entire

participating time of each subject was approximately six hours. In the first two days, the

subjects participated in two tutorials on how to perform speech input and touchpad input.

Preceding the speech input tutorial, each subject spent approximately thirty minutes in

training the speech recognition engine to their speech patterns. Half of the subjects had

the speech input tutorial in the first day and the touchpad input tutorial the second day.

The other half received the tutorials in the reverse order. The subjects were assigned to

the two training orders randomly. During the tutorials, the subjects read written

instructions and tried the system functions as directed by the tutorial document. A

practice session followed each tutorial session. In the practice session, the subjects

performed a list of tasks that covered all the system functions using the input method

taught in the preceding tutorial session.

On the second day when the subjects had learned both speech and touchpad input,

they were asked to freely mix the two input methods to do a new set of tasks. This

allowed them to find their own multimodal strategy. The tutorials and practices in the

first two days were ample so that each and every subject mastered the input methods and

formed his/her multimodal pattern of input.

On the third day, the subjects first warmed up by using their selection of

multimodal inputs to finish a set of tasks. Once this warm-up was complete, the study
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session began. Subjects were given a new list of tasks that represented the complete

system functions and the typical use of the system. The tasks included browsing

information categories and finding a particular piece of information, reading the

information by specified text units (e.g., paragraph by paragraph), proceeding forward or

going backward within the text to find a particular name to spell, comprehending a

paragraph, pausing and resuming reading, changing the reading speed, volume, and so

on. These tasks covered all system features and represent a real information-browsing

scenario using the system. The subjects were not restricted as to what input methods to

use and how to use them. A digital video camera fixed on a tripod was used to capture all

user input operations and system responses.

Table 4. 1 Exploratory Study Procedure

Learning and
individual

multimodal
patterns

formation

Day Subject Group 1 Subject Group 2

Da 1y 

Study introduction
Consent form filling out
Background questionnaire filling out

Study introduction
Consent form filling out
Background questionnaire filling out

Speech recognition engine training
Speech input tutorial
Speech input practice

Touchpad input tutorial
Touchpad input practice
Speech recognition engine training

Day 2

Touchpad input tutorial
Touchpad input practice

Speech input tutorial
Speech input practice

Speech input review Touchpad input review

Multimodal input practice Multimodal input practice

Day 3

Multimodal input warming up Multimodal input warming up
Experiment Experiment
Post-study interview and
questionnaire administration

Post-study interview and questionnaire
administration

After the experiment session, the subjects were interviewed about their experience

with AudioBrowser. The interview was conducted as follows: The experimenter played

back the video of the experiment session task by task. The subject watched the video and
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described what he or she was doing, why a particular input method was used to perform

the task, what problems had been encountered, and any comments he or she had about the

input method chosen. Subjects were then asked to fill out a post-study questionnaire.

4.3 Experimenter Notes Preparation and Coding

The experimenter transformed the videos of each subject's experiment session into

comprehensive notes documenting the corpus of user inputs and system responses. Notes

were taken based on operators, the smallest user input unit. For each subject, the

documentation included operator series by the subject to finish an experiment task, input

mode used operator by operator, whether an operator succeeded or not, the problems that

happened, the remedy the subject took, and the subject's comments. Coding was then

conducted based on the notes for the following variables:

Input mode use: Input modes were coded for each operator. They are either

speech input or touch input.

Input mode switches and potential switch causes: Input mode switches were

marked out. Based on the experimenter's observation, there are four potential reasons for

input modality switching. (1) Operation Type Change: when the operation type changed

between navigation and non-navigation operations, the subjects changed input mode. (2)

Mode Failure: when failures in user input occurred, the subjects switched to a different

input mode to recover. (3) Experiment Task Change: when one experiment task was

finished, a subject stopped using the system to read the next experiment task. This hiatus

may have reset the subject's choice of input mode. (4) Need of repetition: the subjects
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seemingly preferred the touchpad input for repetitive operations. When they needed to

perform an operation repeatedly, they switched to the touchpad to execute this.

Operation types: Operation types reflect the goals of input operators. For

example, to finish the experiment task "find a news article about Hillary Clinton", the

user needs to use two types of operations: "browse the information categories" and

"zoom into a category".

The operation types involved in using the AudioBrowser system are in two

application domains: information browsing/reading and system settings control. The

detailed operation types in the two domains are illustrated in Table 4.2.

Table 4.2 Operation Types

Domains Operation Types Details

Information
browsing/ reading

Browse a single level information Go to the next or previous article or
information category

Go to a different information level Enter or exit an information category

Proceed or recede within a text Read the next or previous word, sentence,
or paragraph

Non-proceeding or -receding operations
within the text

Pause
Resume
Spell a word
Read the current article again from the
beginning
Repeat

Set reading unit Set to word, sentence, paragraph, or
complete content

Show the list of reading units

System settings
control

Search for a system setting Search for reading speed, volume, voice,
pitch, and the speed of non-speech sounds

Change the value of a system setting
Increase or decrease speed, volume, or
pitch; use the next or previous reading
voice

Show the list of system settings



73

The detailed operation types can be abstracted to two higher level types:

navigation operations, which relate to searching and locating an item in the information

space or the command space, and subject or verb instructions, which are abstract

commands not tied with locations in the information and the commands spaces.

Repetitive operations: When the user gave a command exactly the same as the

immediately preceding command, the user's operation was a repetitive operation.

Repetitive operations were recorded for two causes: (1) The user repeated a command

because the preceding command failed (i.e., the preceding command did not achieve the

user's goal either because the user used a wrong command or because the system mis-

recognized the command); (2) The user repeated a command to achieve a system

response the same as the preceding response.

Successful, partially successful, and failed operations: Every operator was

recorded for its success, partial success or complete failure. Successful operators are

those that resulted in system responses that users aimed at. Partially successful operators

represent the situations where the system reacted to the user's input operation with

correct system executions, but either that the system did not deliver the auditory feedback

to the user clearly, or that the user expected a different result because the user's mental

model was different from the way that the system actually worked. Completely failed

operations are those led to an explicit error message or those without any system

responses.

Failure types: For the completely failed inputs, several major failure types were

recognized. The failure types occurred in speech input and in touchpad input were not

completely the same.
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For speech input, there were six major types of failures. (1) Speech output

interference: When the speech recognition engine inadvertently recognized its own

speech output as a speech command and executed a corresponding command. A typical

scenario of this type of failure is that the user said "Pause" when the system was reading

an article aloud, and the system was interfered by its reading and recognized the

command incorrectly. (2) Speech recognition errors: The speech recognition software

failed to recognize a clearly uttered speech command when no obvious external

interference existed. (3) No reaction symptom: A speech command was given by a user,

but the system did not respond. (4) Environment noise interference: When the speech

recognition engine inadvertently recognized environment noise as executable commands.

Interference examples include when the push-to-button was pressed, the microphone

picked up environment noise, such as irrelevant talk by the subject, the spin of the

computer CPU fans, and the echoes reflected by the wall of the experiment room. (5)

Incorrect user mental model: The user understood the system in a way different from

how the system actually worked. (6) Other failures: In some occasions the failure was not

any of the aforementioned types, such as system bugs.

For touchpad input, there were three major types of failures. (1) Mode errors:

These represent the major touchpad failure type. The three tracks of the touchpad are

basically three modes of the touchpad input. The functions of the two physical buttons

aside are based on the present mode of the touchpad, i.e., when it is in the information

category/ title browsing mode (when the first track is in use), the two buttons execute

zooming in and zooming out functions; when it is in the text unit setting mode (when the

second track is in use), the two buttons execute reading the next text unit and reading the
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previous text unit functions; when it is in the system setting adjustment mode (when the

third track is in use), the two buttons execute increasing the setting value and decreasing

the setting value functions. This design was a solution to deploying a necessary set of

functions within the limited design space of the touchpad. But this design introduced user

operation errors. For example, the touchpad's static nature caused users to forget the

present system mode and when a tactile command was executed, an unexpected system

response occurred. (2) Incorrect user mental model: Similar to the speech input, some

operation errors occurred in touchpad input were caused by that the mental model of the

user mismatched the way that the system actually worked. (3) Other failures: Other

failures were mainly caused by system bugs existed.

Error correction operations: When an input error occurred, the user took actions

to recover from the error. The error correction operations were coded at the operator level

into four categories: (1) an unsuccessful speech operator is followed by a speech operator

for error correction, (2) an unsuccessful speech operator is followed by a touchpad

operator to fix the problem, (3) an unsuccessful touchpad operator is followed by a

touchpad operator; and (4) an unsuccessful touchpad operator is followed by a speech

operator.

Error correction cases were also marked. An error correction case contains a

sequence of error correction actions until the error is corrected or given up.

4.4 Reliability

The notes and coding were finished by one experimenter. The coding was conducted

twice and over 90% of the coding was the same.



CHAPTER 5

RESULTS AND DISCUSSION OF EXPLORATORY STUDY

5.1 Overview

The purpose of the exploratory study was to explore possible causes and relationships

that could be tested in a controlled experiment. Abundant qualitative and quantitative

data was analyzed. Rich results were obtained.

The most important observations are as follows. (1) All the subjects chose to use

multimodal input, while multimodal and unimodal inputs were both available to them.

(2) The subjects seemed to choose modalities based on the type of operations they were

performing. The subjects used touch input for navigation, and speech for short tasks that

interrupted navigation. (3) When error occurred, the subjects stayed in the failing

modality instead of switching to another modality to correct the errors.

In addition, the exploratory study found that some factors, which were not

included in the original research questions, seemed to affect the subjects', input modality

choices and switching. The factors are: cognitive load, error rate, and the level of vision

available for task performance.

Based on the observations obtained from the exploratory study, the research

questions were revised. Hypotheses based on the observations obtained from the

exploratory study were formed for statistical verification. The next chapter provides more

details on the revision in the research questions and the hypotheses.
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5.2 RQ1: Multimodal or Unimodal

Research question 1 is: When interacting with a non-visual multimodal system, do users

use multimodal or unimodal input? To study this question, the number of speech inputs

and the number of touchpad inputs were counted. The switches that occurred between

input modes were then tabulated and analyzed for possible underlying reasons for each

switch.

There were a total number of 1642 input operations performed by the 14 subjects

during the experiment sessions, among which 635 or 38.67% were speech input

operations, and 1007 or 61.33% were touchpad input operations. The total number of

input operations by individual subjects averaged 117.3, ranging from 73 to 200, with a

standard deviation of 29.43. The number of speech input operations averaged 45.4,

ranging from 5 to 81, having a standard deviation of 24.9. The number of touchpad inputs

averaged 71.9, ranging from 27 to 129, with a standard deviation of 30.8. Thus, there was

a wide range of individual behavior in modality choice, but all subjects mixed speech and

touchpad inputs during the experiment sessions.

5.2.1 Input Modality Switch Analysis

During the total number of 1642 input operations by all subjects, 222 input mode

switches occurred, which ranged from 7 to 27 switches for each subject. Through

analyzing the experiment session videos, four major potential causes of input mode

switches were identified:

Change of Operation Type: As explained, a user task can contain several

operators, each of which can be classified into one of the operation types described in
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"Operation Types" in the "Experimenter Notes Preparation and Coding" section. The

change of operation types was a major potential reason of the input mode switch. A total

number of 148 or 66.67% input mode switches were accompanied by operation type

changes. Among these 148 input mode switches, 133 (i.e., 59.91% of 222) were

accompanied only by operation type changes, and 15 were accompanied also by other

identified causes of input mode switches.

Operation Repetition: It has been found that when there was a need to repeat a

system action, the subject tended to switch to touchpad input to perform the repetition.

The need of repetition constituted to 9.91% (i.e., 22 out of 222) of the input mode

switches. One of the 22 switched was also accompanied by another potential reason. 21

mode switches (i.e., 9.46% of 222) were performed when only the need of repetition is

presented.

Preceding Input Failure: Although the experimenter has observed that the failure

of an input operation did not necessarily lead to a switch of the input mode, there were

still 36 switches (i.e., 16.22% of 222) that involved input failures in the immediately

preceding operation step. Among the 36 occurrences, 6 coinstantaneously involved

another potential switch cause, and 30 (i.e., 13.51% of 222) involved only input failures

in the preceding step.

Start of New Tasks: When one experiment task was finished, the subject spent

some time reading the next experiment task. It was suspected that some switches of input

modes were due to this intervention, i.e., after a break in an operation flow, the subject

had an opportunity to choose another input mode. 22 (i.e., 9.91% of 222) input switches

occurred when the subjects finished one experiment task and started another. 10 of the 22
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occurred coinstantaneously with another potential switch cause. The rest 12 (i.e., 5.41%

of 222) occurred merely with experiment task interference.

These statistics covered 95.50% input modes switches. The rest 4.50% (i.e., 10 of

222 switches) did not involve any of the four causes above. The following pie chart

illustrates these results.

(1) Switches related to Operation Type Change Only (59.91%)
(2) Switches related to Operation Repetition Only (9.46%)
(3) Switches related to Preceding Input Failure Only (13.51%)
(4) Switches related to Start of New Task Only (5.41%)
(5) Switches related to Two of the above Causes (7.21%)
(6) Switch Cause not Identified (4.51%)

Total Number of Input Mode Switches: 222

Figure 5. 1 Input Mode Switches Illustrated by Potential Causes

One particular interest of the experimenter's was to investigate whether any of the

potential causes of input mode switches were also the predictors of input mode switches.

For this purpose, a correlation analysis was conducted between the dependent variable,

the total number of input mode switches, and the potential predictors: (1) the total

numbers of operation type changes, (2) the total numbers of input failures, and (3) the

total numbers of operations to repeat a system action. Since all subjects experienced the

same number of experiment task interventions, it is not possible to investigate the

correlation between the number of experiment tasks and the number of input mode

switches at this time.
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Normality was checked within each corresponding data set. For the total number

of modality switches and the total number of repetitive operators, identical values existed

in the data sets, and hence the Kolmogorov-Smirnov test was adopted. Since no identical

values existed in the data sets, it was appropriate to use the Shapiro-Wilks test for the

total number of operation type changes and the total number of input failures. The test

results indicated that all data sets satisfied the normal distribution assumption. Therefore,

Pearson's r is the correct correlation calculation for the data.

Table 5. 1 Test of Normality

* This is a lower bound of the true significance.

a Lilliefors Significance Correction

It is shown in Figure 5.2 that the best linear relationship exists between the

number of task type changes and the occurrences of input mode switches, whose

Pearson's r = 0.587 with p (one-tailed) = 0.014.

To further investigate the predictive ability of these factors on input mode switch,

a linear regression was conducted. The resulting model with all three factors has R = .773

and R Square = .597. The significance values and the 95% confidence intervals indicate

that two of the factors, system action repetitions and input failures, should be dropped

from the model. So task type change remains in the model. However, this regression
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model with only one predictor is not viable because its predicting ability is not satisfied

(with R = .587 and R Square = .344). Nevertheless, the correlation is high enough to

suggest that task type change might be a reason for modality switching and therefore, this

is kept as a hypothesis to test in the thesis experiment.

Left figure: The figure presents a correlation matrix between the dependent variable (i.e. the num. of
input mode switches) and three independent variables (i.e. the num. of operation type changes, the
num. of operations to repeat a system action, and the num. of input failures). The purpose of the
correlation check is to see whether the independent variables have any predictive effect on the
dependent variable. Each red dot in the correlation matrix represents the data of one subject. In each
grid there are fourteen dots. The only dependent variable that presents a linear correlation is operation
type changes.

Right figure: The figure presents the linear regression based on between the number of input mode
switches and the number of operation type changes. Each red dot represents the data of one subject.
There were thirteen dots in the figure because two subjects' data superposed at the (49, 7) point.

Figure 5. 2 Correlations between Input Mode Switches and Possible Predicting Factors
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Table 5. 2 Coefficients of Linear Regression Models Predicting Input Mode Switches

5.3 RQ2: Multimodal Input Usage: Input Modality — Operation Type Dependence

Research Question 2 is "If users choose to use multimodal input, do they have special

multimodal input patterns — i.e., is there a relationship between the type of input

operation undertaken and a user's choice of input modality?" To study this question, the

subjects' actual use of input modes corresponding to input operator types was analyzed.

The subjects' subjective ratings of the speech input and the touchpad input respectively

for each input operation type were also analyzed.

Paired t-test was the general method used for analyses. Since Paired t-test is

robust to non-normally distributed data, test of data normality was not necessary.

5.3.1 Users' Choice of Input Modality for Each Operation Type

It was found that when the subjects used AudioBrowser to browse information, their use

of input mode for each operator was operation-type dependent. It means that the subjects

chose a specific input method for a specific operation type. The results are elaborated
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along the nine categories of operation types listed in Tables 5.3 and 5.4. These operation

types are at the operator level.

Operation Type 1: Browse single level information: This type involves browsing

the titles of the next or the previous information category or article. The operation using

the touchpad is gliding the finger across the virtual segments on the information-

browsing track (the first track). The speech input operations can be speaking "next

category", "previous category", "next article", or "previous article", etc. The average

number of touchpad input used by the subjects to perform this type of operation was

confirmed to be significantly more than the average number of speech input used to

perform this operation type (i.e., 6.29 versus 2.14 input operations respectively, paired t

(13) = 3.342, p = 0.0027, one-tailed).

Operation Type 2: Go to a different information level: This type involves entering

(i.e., zooming into) or exiting (i.e., zooming out of) an information category. The

touchpad operation is to click the side buttons. The speech operation is to say "zoom in"

or "select", and "zoom out" or "exit". The average number of speech inputs used to

perform this task was 2.64, while the average number of touchpad input used was 5.07.

The touchpad operations used were significantly more than the speech operations, with

paired t (13) = 1.913, p =0.039, one-tailed

Operation Type 3: Proceed or recede within a text: This type of operation read the

next or previous word, sentence, or paragraph. The touchpad operation involves setting

the text unit (i.e., word, sentence, or paragraph) which the system should read, and

clicking the buttons to go to the next or the previous text unit. The speech operation is to

say "next word/ sentence/ paragraph", or "previous word/ sentence/ paragraph". The
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results showed that the subjects overwhelmingly preferred to use touchpad than speech.

The average number of touchpad input used was 41.07, while the average number of

speech used was 9.43. Paired t (13) = 4.569, p = 0.0003, one-tailed.

Operation Type 4: Non-proceeding or -receding operations within a text: Besides

proceeding and receding, there is one set of operations to control the information reading.

Examples of frequently performed controls are pause, resume, spell word, read the

current article from the beginning, and repeat. A comparison between the number of

speech commands used and the number of touchpad input used by individual subjects

showed that speech was significantly used more than touch (i.e., 19.57 versus 7.21

respectively, paired t (13) = 4.314, p = 0.0004, one-tailed). To show more details, the

analysis for individual frequently used command was conducted.

Command 1: Pause: To pause reading, the subjects used slightly more speech

input than touchpad input, (i.e., 5.36 versus 3.93, on average). This did not lead to any

significant difference in the amount of speech and touch used.

Command 2: Resume: The subjects used significantly more speech input than

touchpad input to resume paused reading. The average number of speech and touchpad

inputs was 8.79 versus 0.5. Paired t (13) = 7.173, p =0.000004, one-tailed.

Command 3: Spell: No significant difference has been found between the amount

of speech input used and the amount of touchpad input used to spell a word. The average

numbers are 1.07 speech inputs and 0.93 touchpad inputs.



85

Command 4: Read the current article from the beginning: Again, no significant

difference has been found. The subjects used 1.93 speech inputs and 1.79 touchpad

inputs, on average, to perform this task.

Command 5: Repeat: The subjects used significantly more speech than touch to

perform this task. The averages were 1.43 versus 0 — actually no touchpad input was

used. Paired t (13) = 2.589, p = 0.0112, one-tailed.

Operation Type 5: Set reading unit: This type of operation is to set the reading

unit to word, sentence, paragraph, or complete content/article. Once it is set the system

reads one unit at a time. When performing it, the operation on the touchpad is to glide the

finger across the virtual segments on the second track (i.e., the text unit track) until the

segment mapped with the desired text unit is reached. This action on the touchpad is

actually also a process of looking for a text unit by using recognition memory. Speech

input, on the contrary, requires the user to name the desired text unit directly (i.e., using

recall memory) by speaking "set to word", "set to sentence", "set to paragraph", or "set to

complete article". Although paired t test did not show any significant difference between

the number of speech commands used and the number of touchpad input used, touchpad

was used more than speech input (i.e., 7.29 versus 5.57 respectively).

Operation Type 6: Search for a system setting: When users do not remember the

system settings available for adjusting (adjusting what?), they need to browse the setting

options and use their recognition memory to pick the desired setting. Similar to the

touchpad operation for task type 5, the touchpad input for searching for a system setting

is to glide across the virtual segments on the third track (i.e., the system settings track),

listen to the speech-announced segments, and pick the desired setting. The speech
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operations include three speech commands, "first setting" which lets the system point to

the first setting on the system settings list, and "next setting" and "previous setting" that

move the system pointer to the next or previous setting on the list. When searching for a

setting, the subjects used none speech input and 1.64 touchpad input, on average. This

contributed to a paired t (13) = 3.846 and one-tailed p = 0.001.

Operation Type 7: Change the value of a system setting: To increase or decrease

the value of a system setting (i.e., speed, volume, voice, pitch, or the volume of the non-

speech audio) using the touchpad, the user needs to search for the setting first on the

system settings track, then click the buttons to change its value. To perform this operation

using speech, the user needs to speak "increase" or "decrease" and the name of the

setting, e.g., "increase volume". During the experiment, the subjects used nearly the same

amount of speech and touchpad input (i.e., 3.86 versus 3.21, on average). The difference

is not significant.

There are two other types of operations in Table 5.1 that were not used by the

subjects at all. Those are to show the complete list of text units available for set, and the

complete list of system settings available for adjustment. When the subjects could not

recall a setting or a text unit, they simply glided through the touchpad tracks to find it,

rather than letting the system to read the list of options to remind them.

The findings about the dependency of input mode choice on operation types are

summarized in Table 5.3. Figure 5.3 shows the detailed comparison among the operation

types.
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These operation types, through further analysis, can be classified to two major

categories: navigation operations and subject or verb instructions. Navigation operations

involve navigating the information or commands hierarchy to locate an item. They relate

to locations either on the information hierarchy or within a node of the hierarchy.

Subjective or verb instructions are commands not tied to locations in the information

space. The analysis reveals that the choices of input methods for the two categories of

operations are significantly different (See Table 5.4). The conclusions are that when

performing navigation operations, the subjects used significantly more touchpad input

than speech input, while when performing subjective or verb instructions, the subjects

used significantly more speech input than touchpad input.



Table 5. 3 Input Mode Choice by Task Types



Navigation Operations 	 Non-navigation
.
,

Commands

Figure 5. 3 The Operation Type-Input Mode Dependency Illustrated by Subjects' Actual Use of Input Modes



Table 5. 4 Input Mode Choice by Major Operation Categories
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5.3.2 Users' Ratings on Input Modalities for Each Operation Type

Besides looking at the amount of speech and touchpad input actually used, the

experimenter also collected the subjects' opinions toward the ease of use of speech input

and touchpad input, and how much the subjects liked the speech and the touchpad input

(Likability), for each individual operation type. These opinions were collected during the

interview session. Four questions were asked for each operation type: "how easy to use

do you think speech input is when finishing this type of operation", "how much do you

like to use speech input to finish this type of operation", "how easy to use do you think

touchpad input is when finishing this type of operation", and "how much do you like to

use touchpad input to finish this type of operation". The subjects' answers were marked

on seven-point semantic differential scales, with 1 as "very easy" or "like very much",

and 7 as "very difficult" or "dislike very much".

The subject's perceived ease of use of an input mode to finish a type of operation

was found highly correlated to the subject's likability toward that input mode to finish

that type of operation. The correlation between the perceived ease of use of speech input

for an operation type and the likability to use speech input to perform that operation type

was 0.9387. The same correlation between the perceived ease of use of touchpad input

and the likability to use touchpad input was 0.9051.

The subjects' ratings on the ease of use of speech input and touchpad input, and

their ratings on how much they like speech input and touchpad input, are found to be

operation type-dependent, as well — to perform a particular type of operation, the subjects

felt that a particular input mode was easier to use than the other, and that they liked one

input mode better than the other for performing the operation.



92

The perceived ease of use and likability are elaborated along operation types in

Table 5.5.

The subjects' subjective ratings reflected the patterns found in their choices of

input modalities. For navigation operations, the subjects' ratings on the ease of use of

touchpad input were significantly higher than those of speech input; the subjects' ratings

on likability of touchpad input were significantly higher than those of speech input. For

subject or verb instructions, the subjects' opinions were the opposite: the ratings on the

ease of use of speech input were significantly higher than those of touchpad input; the

ratings on likability of speech input were higher than touchpad input, but barely

significant (p =0.09, one-tailed). The detailed results of the paired t-tests are shown in

Table 5.6.



Table 5. 5 Comparison of Subjective Ratings on Speech Input and on Touchpad Input along Operation Types



Figure 5. 4 The Operation Type-Input Mode Dependency Illustrated by Subjective Ratings on Ease of Use

Figure 5. 5 The Operation Type-Input Mode Dependency Illustrated by Subjective Ratings on Likability



Table 5. 6 Comparison of Subjective Ratings on Speech Input and Touch Input against Operation Types
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5.3.3 Input Modality Choice for Repetitive Operations

From a different perspective, input operators can be categorized as either repetitive

operations or non-repetitive operations.

Two types of repetitive operations occurred during the exploratory study. One

type is that when an error occurred the subject repeated the input operator until the

system recovered from the error. The analysis for this type of repetition will be presented

in the next section, "User Error Correction Strategies". The other type of repetition

occurred when a subject needed to execute the same command repeatedly, in the same

modality or in different modalities, to achieve a system action multiple times. The

observation on this type of repetition is reported below.

To repeat a system action, the subjects tended to use more touchpad input than

speech input. On average, each subject used 5.4 speech operations and 31 touchpad

operations to perform this type of repetition. A paired t-test generates t (13) = -4.6127

and p (one-tailed) = 0.0002, which confirms that the touchpad was used significantly

more than speech input. The statistics also show that most repetitions of this type took

place during text comprehension and searches within text when the subjects performed

reading the next or previous paragraph, sentence, or word, etc. repeatedly.

5.4 RQ3: Error Correction Strategies

The third research question is "What are users' error correction strategies on the non-

visual multimodal interface?" To answer this question, the types of failed operations were

identified. The subjects' error correction strategies were then elaborated.



97

5.4.1 Types of Input Errors

Errors took place in both speech input and touchpad input. The success rate of speech

input during the experiment was 73.7%. And that of touchpad input was 95.6%. The

remaining operations were unsuccessful, i.e., either partially successful (i.e., succeeded

with problems, or swp), or completely failed (i.e., failure, or f).

Swp: The partially successful input operations resulted in partially successful

system reactions with some execution problems. This repertoire of operations represented

a situation where the system successfully interpreted and executed the input from the

subject, but the information of resulted system actions was not delivered to the user

clearly and fluently via the machine speech and caused confusion to the user. The

unsuccessful speech feedback was mainly caused by the unnaturalness and the staccato of

the machine talk generated by the Text-to-Speech engine.

F: A completely failed input operation is one of the following: (1) the system

gave an explicit error message indicating that the input operation was failed, (2) the

system encounted a recognition error and responded incorrectly, and (3) the system

provided no respond at all to a user input.

For speech input, complete failures can be broken down to the six failure

categories described in the Failure Types section in the "Notes Preparation and Coding" section.

They are: (1) Speech output interference, (2) Speech recognition errors, (3) No-reaction

symptom, (4) Environment noise interference, (5) Incorrect user mental model, and (6)

Other failures, mainly caused by program bugs and execution problems. For touchpad

input, the failures were (1) caused by incorrect user mental model, and (2) caused by

bugs existed in the codes.
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Tables 5.7 and 5.8 provide an overview of unsuccessful input operations of both

speech input and touchpad input.

Figure 5. 6 Summary of Speech Operation Failures



Table 5. 7 Summary of Success and Failures in Speech Operations

Table 5. 8 Summary of Success and Failures in Touchpad Operations
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5.4.2 Error Correction Strategy Analysis

It was believed that when one input failed the user would switch to the other input mode

to recover from the errors. However, the study disclosed different results.

Errors and correction actions were analyzed at two levels, the operator level and

the error correction case level. At the operator level, the researcher observed each input

operator immediately following an input failure. At the error correction case level, the

researchers observed each sequence of error correction operators until the error was

corrected.

Again, paired t-test was the main method for quantitative comparison. Since

paired t-test is robust to non-normally distributed data, check of the normality assumption

was not necessary.

5.4.2.1 Analysis at the Operator Level. In speech input, a total number of 167

unsuccessful (i.e., partially successful + complete failed) operations occurred to all

fourteen subjects. Among those unsuccessful operations, 139 or 83.23% were followed

by a speech input intending to overcome from the failure, and only 28 or 16.77% were

followed by a touchpad input for problem fixation.

In touchpad input, a total number of 44 unsuccessful operations took place to all

subjects. 37 or 84.09% of them were followed by a touchpad input and 7 or 15.92% were

followed by a speech input for the purpose of failure recovery.

An unsuccessful speech input operator followed by another speech input operator

to fix the problem is coded as ss; an unsuccessful speech input operator followed by a

touchpad input operator to fix the problem is coded as st; an unsuccessful touchpad input
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operator followed by another touchpad input operator is coded as tt; and an unsuccessful

touchpad input operator followed by a speech input operator is coded as ts.

A paired t test was conducted to compare the numbers of ss and st by each

subject. The paired t (13) = 4.279, with p (one-tailed) = 0.000449. It indicates that the

subjects used significantly more speech input than touchpad input following an

unsuccessful speech input to overcome from the preceding operation failure. Only in rare

cases did the subjects switch input mode for failure recovery.

Another paired t test was conducted to compare the numbers of tt and ts by each

subject. The paired t (13) = 2.760, with p (one-tailed) = 0.008114. It means that the

subjects used significantly more touchpad input than speech input to fix failed touchpad

operations.

The tables and charts summarizing the statistics are shown as follows.

Figure 5. 7 Remedial Operators Following Failed Speech Operators



Figure 5. 8 Remedial Operators Following Failed Touchpad Operators

Table 5. 9 Remedial Operators Following Failed Speech Operators
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Table 5. 10 Remedial Operators Following Failed Touchpad Operators
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The tables and the charts clearly show that in most cases when an operation

failure occurred the subjects did not switch input mode but continued to use the same

input mode for failure recovery. In the charts we can see exceptions happened to Subject

10 in speech failure recovery and Subject 9 in touchpad failure recovery. In each case

only one error occurred and the subject switched input mode to remedy.

5.4.2.2 Analysis at the Error Correction Case Level. Overall, a total number of

158 errors occurred during the experiment sessions. The subjects attempted to correct 150

of them and did not try to correct the other 8 errors. Error correction operations did not

always succeed at the first attempt. It took one to five attempts to correct one error. The
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average attempts to correct each error were 1.32. The spread of the error correction

attempts are showed in the following figure:

No attempt to 	 Errors 	 Errors 	 Errors 	 Errors 	 Errors
correct the 	 corrected in 	 corrected in 	 corrected in 	 corrected in 	 corrected in

error 	 one attempt 	 two attempts three attempts four attempts five attempts

Figure 5. 9 Counts of Cases that an Error was Corrected in One, Two,
Three, Four or Five Attempts

The word "case" is used for a series of operation attempts to correct one error.

The error correction cases that involved input mode switches were significantly less than

the cases where the error was corrected without input mode switch. A paired t (13) = -

4.519 was obtained with a one-tailed p = 0.00029. This indicates that when input errors

occur, users will most likely stay with the same input mode for error correction.

Table 5. 11 Counts of Error Correction Cases with & without Input Mode Switches

*(1) Num. of error correction cases that involved input mode switch
*(2) Num. of error correction cases where the input mode was not switched
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When an error occurs sometimes there is only one way available in the current

input mode to correct the error, but sometimes multiple methods in the current input

mode are available to correct the error. For example, if the speech command "pause" is

not first recognized by the system, the user has to speak "pause" repeatedly until the

system did recognize it. But if the speech command, "zoom in", is not recognized by the

system, in speech input the user can either continue to speak "zoom in" or speak "select"

to overcome the problem.

In the first situation, when only one method is available in the current input mode

to correct the problem, 19 or 30.65% cases the subjects switched input mode, while in 43

or 69.35% cases the subjects did not switch input mode but used the only available

method repeatedly to correct the error. A paired t-test generated t (13) = -2.604 and p

(one-tailed) = 0.0109, which indicates that despite there being only one error correction

method available in the failed input mode, the subjects still mostly stayed in the same

mode, instead of switching the mode, for error correction. A comparison figure is showed

below.

Input Mode Switched 	 Input Mode Not Switched

Figure 5. 10 Subjects' Error Correction Strategies When Only One Method was
Available for Error Correction in the Failed Input Mode
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In the second situation, when there was more than one method available for

correcting the error in the current input mode, in 15 or 17.05% cases, the subjects

switched input mode, while in 73 or 82.95% cases, the subjects did not switch input mode

for error correction. A paired t-test confirms that input mode switch occurred

significantly less than no input mode switch in this situation (t (13) = -4.833, p (one-

tailed) = 0.00016). Several types of error correction actions were identified from the

video analysis. They are displayed in Figure 5.11 below.

Figure 5. 11 Subjects' Error Correction Strategies When More than One Method was
Available for Error Correction in the Failed Input Mode

In a total of 34 occasions input mode was switched for error correction. In 23

(67.76% of 34) cases, input mode was switched at the first error correction attempt. In six

out of 34 (i.e., 17.65%) cases, input mode was switched at the second error correction

attempt.



Figure 5. 12 The Time Point at Which Input Mode was Switched for Error Correction

5.5 RQ4: Effect of Training

Research question 4 is "Does training affect users' multimodal input behavior?" We

asked this question because we wanted to know whether the way the training materials

were presented to the subjects influenced their interaction behavior and if the effect did

exist, what we should do to control the bias introduced by training during the experiment.

In the exploratory study, the training order was counterbalanced. Half of the

subjects were trained for speech input first, while the other half were trained for touchpad

input first. To investigate whether the training order had an effect on the subjects' choice

of input method, several statistical tests were conducted.

The measures used in the tests were the amount of speech input used, the amount

of touchpad input used, and the subjects' ratings on Ease of Use and Likability on each

input modality. Likability refers to how much a subject liked an input modality.

Normality was checked within each corresponding data set. No test result was

significant at .05, which indicated that data was normally distributed in all data sets.

Therefore, parametric methods were used for all tests.
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Table 5. 12 Normality Test for Modality Usage by Subjects Receiving Training in
Different Orders

Table 5. 13 Normality Test for Modality Ratings by Subjects Receiving Training in
Different Orders

First, a two-sample t test was conducted to compare the amount of speech input

used by people who received speech input training first and the amount of speech input

used by people who received touchpad input training first. The amount of speech input

used by each subject was standardized using the formula: (num. of speech input

performed by the subject) / (total num. of input performed by the subject). Thus, this

percentage reflects not only the amount of speech, but also the amount of touchpad input
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used by the subject. The comparison of means did not disclose any significant difference

of speech and touchpad use between the two groups of people who received input

trainings in reversed orders (see Table 5.14 below).

Table 5. 14 Comparing the Percentages of Speech Used by People Who Had Speech
Input Training First and by People Who Had Touchpad Input Training First

Second, for people who received the trainings in the same order, a paired

comparison was conducted to test the difference of the number of speech input used and

the number of touchpad input used by this group of people. The comparison was done

twice, one for people who had speech training first, and the other for people who had

touchpad training first. The results in the following Tables 5.15 and 5.16 showed that

people who had touchpad training first used significantly more touchpad input during the

experiment sessions. But the similar significance was not seen among the people who

received speech training first.
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Table 5. 15 Comparing the Amount of Speech Input and the Amount of Touchpad Input
Used by People Who Had Speech Input Training First

Table 5. 16 Comparing the Amount of Speech Input and the Amount of Touchpad Input
Used by People Who Had Touchpad Input Training First

Third, the average ratings on the Ease of Use and the Likability were compared

between the group that received speech training first and the group that received

touchpad training first. To calculate the average ease of use rating on speech input by a

group of subjects, the following formulas were used:
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Avg. Ease of
Use rating on

speech input by
Group 1

Avg. Ease of
Use rating on
speech input
by a subject

E Avg. Ease of Use rating on speech input by each subject in Group 1

Total number of subjects in Group 1

E Ease of Use rating on speech input to each task type by the subject

Total number of task types

The average ease of use ratings on touchpad input, and the average likability

ratings on speech input and touchpad input were calculated in similar way.

Among the comparisons of these averaged ratings, no significant difference has

been found. The results are showed in the following Table 5.17.

Table 5. 17 Rating by Groups that Received Trainings in Different Orders

1 Ratings on Ease of Use were on a seven-point scale, where 1 = very easy to use, and 7 = very difficult to
use. Rating on Likability were on a seven-point scale, where 1 = like to use very much, and 7 = dislike to
use very much

2 Group 1 received speech training first, and group 2 received touchpad training first.

Fourth, for each group of people who received training in the same order, a paired

comparison was conducted to look at the difference between the people's ratings on the

speech input and their ratings on the touchpad input. Again, no significant difference was

found.
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Table 5. 18 Comparisons between Ratings on Speech Input and Ratings on Touchpad
Input by Each Group that Received Trainings in the Same Order

The following conclusions can be made on the training order effect.

(1) People who received speech training first tended to use more speech operations than
people who received touchpad training first. But the tendency was not significant.

(2) People who received touchpad training first tended to use significantly more touchpad
input than speech input. People who received speech training first also tended to use
more touchpad input than speech input, but this tendency was not significant.

(3) People who received touchpad training first slightly tended to rate touchpad
operations more positively than people who received speech training first, but the
tendency was not significant.

People who received speech training first tended to rate speech operations more

positively than touchpad operations. And people who received touchpad training first

tended to rate touchpad operations more positively than speech operations. But none of

these tendencies was significant.

5.6 Subject's Responses to the Post-Questionnaire

The subjects' overall ratings toward the AudioBrowser system were collected using the

post questionnaires. Because the subjects had used (1) speech input alone, (2) touchpad

input alone, and (3) mixed speech and touchpad input respectively during the three-day

study, the subjects were asked to compare the three input styles.
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The following table shows the statistics of the subjects' answers. Questions 1 to 6

were answered on a seven-point semantic differential scale with 1 "very easy" and 7

"very difficult". Questions 7 to 14 were answered on a five-point Likert scale with

1=strongly agree, 2=agree, 3=neutral, 4=disagree, 5=strongly disagree.

Table 5. 19 Ratings in the Post-Experiment Questionnaire

To compare the subjects' ratings on speech, touchpad, and mixed input, the

answers to questions 9 - 14 were standardized. The standardized values were obtained by

subtracting the average rating from 5, the extreme value on the rating scale, for each

question. For example, for Question 9, "I get tired easily when I use the speech input",

the average rating 2.79 was subtracted from 5. The obtained value 2.21 represents the
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rating on the reversed question "It is not easy to get tired when I use speech input", given

1 the most agreed extreme, and 5 the most disagreed extreme.

The ratings to questions 3 - 6 and the standardized values of the ratings on

questions 9 - 14 were used for the purpose of comparison. These questions asked the

subjects' opinions about ease of learning, ease of use, ease of fatigue causing (what is

this?), and ease of losing orientation in the information space, of speech input, touchpad

input, and mixed speech and touchpad input respectively. The lower the ratings to

questions 3 - 6, the more positive the subjects' opinions were. Similarly, the lower the

standardized values of the ratings to questions 9 - 14, the more positive the subjects'

opinions were. The comparison results are showed in Figure 5.13 below.

Figure 5. 13 Comparison of Subjective Ratings on Speech Input, Touchpad Input, and
Mixed Speech and Touchpad Input In the Post Questionnaire

To examine possible differences within the subjects' ratings, paired t tests and

ANOVA were conducted.

A paired t test comparing the subjects' answers to Q3 and Q5 showed that the

ease of learning of the two input modes had no significant difference (paired t = 0.744,
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one-tailed p = 0.235). A paired t test comparing the subjects' answers to Q4 and Q6

showed that the subjects felt touchpad input was significantly easier to use than speech

input (paired t = 2.200, one-tailed p = 0.023).

An ANOVA test comparing answers to Q9, 10 and 11 showed that there was a

tendency toward a significant difference (F = 2.497, p = 0.095). To do paired

comparisons, three t tests were conducted. The paired t test comparing Q9 and Q10

showed a significant difference (paired t = -1.863, one tailed p = 0.043), indicating that

the fatigue level introduced by speech input was higher than that introduced by touchpad

input. The paired t test comparing Q9 and Q 11 showed similar significant difference

(paired t = -1.546, one tailed p = 0.073), indicating that the multimodal input introduced a

lower fatigue level than the speech input alone. The fatigue level of touchpad input and

the multimodal input was not significantly different (paired t = 0.234, one tailed p =

0.409).

Another ANOVA test was conducted to compare answers to Q12, 13 and 14. The

results were F = 1.775, and p = 0.183. No significance was indicated. The breakdown via

paired t test resulted in a tendency of significant difference between answers to Q12 and

Q14 (paired t = 1.771 and one-tailed p = 0.061), indicating a possible difference between

the sense of orientation provided by the speech input alone and the combination of the

speech and the touchpad inputs. No significance was found in other pairs (for Q12 and

Q13, t = -0.877 and one-tailed p = 0.198; for Q13 and Q14, t = -0.921 and one-tailed p =

0.187).

Based on the subjects' experience with three input styles respectively (i.e., speech

alone, touchpad alone, and mixed speech and touchpad input), it is found that the subjects



116

felt touchpad input was easier to learn and use than speech input, and that among the

three input styles, mixed input was the least easy to cause fatigue and loss of orientation,

while speech was the most easy to cause those problems.

Question 15 was a multiple-choice question with an open field, "Overall, if I have

to choose one input method, I would choose: A. Speech input, B. Touchpad Input, or C.

Mixed speech and touchpad input. The reason I choose it is because .9,

Eight out of 14 subjects selected mixed speech and touchpad input, 4 subjects

selected touchpad input only, and 2 subjects selected speech input only. Various reasons

for such choices were provided by the subjects. People who selected speech input felt that

speech input was more straightforward and fun, and provided direct access to most

system functions. People who selected touchpad input felt that touchpad was quicker, less

taxing on memory, and less error-prone. Reasons such as some commands were more

accurately recognized via touchpad than via speech input, and it required less energy to

move fingers than to talk were also mentioned. The subjects who selected mixed speech

and touchpad input indicated that both input modes had advantages and disadvantages;

each mode was more suitable to some but not all situations; "combining the two will

ensure to give the best of it". Strong reasons also include that "if I forget one command

on the speech or touchpad, I probably remember it on the other", and that combined input

modes provided the flexibility and accessibility that the subjects desired.
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5.7 Discussion of Exploratory Study Results

5.7.1 Multimodal Use of Input Modalities

The subjects constructed mixed-mode inputs to perform the experiment tasks. Through

video analysis, four reasons were identified which could have led to a total number of

222 input modes switches during the experiment. The reasons are Change of Operation

Type, Operation Repetition, Preceding Input Failure, and Start of New Task.

Change of Operation Types: is apparently the major cause of input mode mixes.

Nearly 60% of input switches were related to it. The Pearson's correlation between the

number of operation type changes and the number of input mode switches reached 0.587

(p one-tailed = .005), implying that when the changes of operation types increase, the

input mode switches will be more prevalent.

A typical scenario of a multimodal input due to changes in the operation type is

described as follows. A user browses an article using the touchpad input. He wants to

reduce the reading speed to listen to a section that is hard to understand. In reducing the

reading speed, he changes the input operation type from navigation to non-navigation. In

order to minimize the intervention to his navigation operation on the touchpad, he keeps

his finger on the touchpad and uses the speech input to reduce the reading speed. Upon

completion, he continues with the navigation operation on the touchpad.

The interpretation to this scenario is that when multitasking, users keep track of

different tasks using separate input modes. In the provided instance, the subjects used the

touchpad input to keep their position in the information space, so that after the

intervention of the speech utterance they could efficiently continue from where the

reading was interrupted.
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The scenario also indicates that physical references in an input method can be

actively used as additional system feedback. In the instance provided, the subjects used

the touchpad to keep their temporary state in the ongoing interrupted task because the

physical references provided continuous feedback that facilitated the regaining of the

state after the interruption. The physical references to some extent complemented the

temporal character of the auditory feedback.

Operation Repetition: also caused some input mode switches (i.e., 9.46% of the

total number of switches). It has been reported before in this thesis that the subjects

tended to use touchpad for repetitive operations. So when there was a need to repeat a

system action, e.g., to continuously go to previous words until the word looked for was

reached, the subjects tended to switch to touchpad input in case they used speech input

initially.

The interpretation for the reason of this switch is that although speech is used

naturally in human communication, it takes a longer time for the user to give a command

than the touchpad. It is also revealed in the experiment videos that when a series of

repetitive commands were given the intervals between two inputs became shorter and

shorter. Speech recognition did not support faster processing of repeated commands

because: (1) Repetitions did not result in faster system response time apparently to each

repeated speech command. (2) When commands were repeated, the subjects' accelerated

inputs were interrupted by unfinished system outputs. The subjects learned these lessons

through using the system and opted to the touchpad input for repetitive operations.

Preceding Input Failure: constituted a portion of input mode switches (i.e.,

13.51% of the total switches). It proved our assumption that when one input mode failed
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users tend to switch to another input mode to overcome the error. The details of input

mode switch due to input failures are discussed in subsection 3 in this section.

Start of New Task: or experiment task intervention, is the interruption in user

performance due to the start of a new experiment task. When one experiment task was

finished, the subject stopped to read the next experiment task. This interruption

sometimes discontinued the use of one input mode, i.e., the selection of input mode for

the next operation due to the effect of recency. The recency effect is defined as that the

most recently used input mode tends to be used again for the next input action, because

switching input mode will introduce an amount of cognitive work and is avoided by the

user. 5.41% (i.e., 12 among a total of 222) input mode switches occurred with the

presence of this interruption of the recency effect. For all the fourteen subjects there were

a total number of 84 experiment task interventions, and 14.29% of them (i.e., 12) were

accompanied with input mode switches. It shows that task reading has potentially

interrupted the recency effect in the choices of input modes.

The above are four reasons that the experimenter observed that caused the

subjects' input modality switches during the exploratory study. However, whether

switching input modalities or not might also have been determined by the cognitive

process required for switching and the cognitive resources available. It's been noticed

that when doing routine tasks, such as following the instructions like "pause reading and

increase the reading volume" and "spell the name of the author", the subjects switched

input modalities more often and quickly. While when doing problem solving tasks, such

as "summarize the reasons why the political leader's policies have failed", the subjects

were more likely to execute all operators using a single input modality despite that there
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were operation type changes, need of repetitive operations, and input operation failures.

Further investigation is needed to reveal the effect of cognitive task types, i.e., routine

cognitive tasks versus problem solving tasks, on users' input modality switch behavior.

5.7.1.1 Implications for the Design of the Controlled Experiment. The results

above indicate the following:

a. The most significant impact to the subjects' choice between available input
modalities was from the type of input operation. When the type of input operation
changed, the subjects switched input modality to cope with the change.

b. Errors and failures in input operation influenced the subjects' modality switching.
The effects on the subjects' modality switching from operation repetition and the start
of new experiment tasks were relatively minor.

Therefore, in the following controlled experiment, the type of input operation

should be included as an independent variable in the hypothesis testing users' input

modality choices. The level of error rates, but not operation repetition or start of new

experiment tasks, should be an independent variable in the hypothesis evaluating users'

modality switches.

In addition, it was observed that the cognitive task types seemingly influenced the

subjects' modality switching behavior, i.e., in the occasions of routine cognitive tasks, the

subjects switched more frequently than in the occasions of problem solving tasks. This

observation was not analyzed because the exploratory study was not designed to

administer different cognitive tasks. The participants performed tasks at different

cognitive levels randomly. Nevertheless, the effect of cognitive task type on users'

modality switch behavior should be investigated during the experiment.

Consequently, the design of the controlled experiment will adopt the following:
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(1) Types of input operation will be one of the independent variables in the hypothesis
testing users' input modality choices.

(2) Input error rates will be one of the independent variables in the hypothesis testing
users' input modality switching behavior.

(3) Cognitive task types will be one of the independent variables in the hypothesis testing
users' input modality switching behavior.

(4) Cognitive task types should be administered as an experiment condition in the
controlled experiment.

5.7.2 Input Modality — Operation Type Dependence

It has been defined that an input operator is the smallest unit of user input. A user task

consists of a series of operators. The pilot study results lead to a hypothesis that there is a

relationship between the input mode selected by a user and the type of the input operator

under taken.

Operators belonging to the family of navigation operations were mostly

performed using touchpad, while operators belonging to abstract commands, or non-

navigation instructions were mostly performed using speech input.

Navigation operations involve navigating and locating information in the

information space (e.g., locating a title of an article on the information hierarchy, locating

a paragraph of interest in an article, and locating a system setting to adjust in the settings

list). On the touchpad the user's operation could be moving a finger around on the

touchpad tracks on which groups of information items and commands were arranged. The

user's speech input could be saying "next article", "next paragraph", or "next setting"

until the desired item is reached.
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The subjects chose touchpad input to perform most navigation operations (79%).

The reasons could be the following: (1) Mapping the information hierarchy onto the

tracks of the touchpad allowed the transformation of a virtual information space into a

two-dimensional physical space. Each item in the virtual information space, although

generated dynamically, has a physical location on the touchpad and hence becomes

tangible. The tangible information space assisted the subjects' formation of a mental

model of the information organization. (2) Once the information structure on the

touchpad was understood, the subjects used this knowledge effectively to access

information quickly. The subjects did this by placing a finger onto the approximate

location on a touchpad track where the desired item was likely to be. It was found

through the researcher's observation that, during navigation, the subjects estimated the

location of an item on the touchpad and targeted the location directly to skip unwanted

information. (3) The subjects took advantage of their vision — all subjects looked at the

touchpad to approximate the location they wanted to land their finger. The subjects

looked at the touchpad through their task performance both when they went to explore a

new route on the touchpad and when they switched back to the touchpad from using

speech input.

On the contrary, speech input was not preferred by the subjects for navigation.

The reasons could be the following: (1) Speech input does not provide a tangible medium

to concretize the information space. Hence to comprehend the information organization

through speech interaction users need to devote higher cognitive efforts than through

touchpad operations. (2) A speech command (e.g., "next article") consumes longer time

than a touchpad command (e.g., moving the index finger slightly on the information
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browsing track) for information browsing. (3) Since speech commands were from

predefined fixed grammar, they did not support naming an information item that was

dynamically loaded into the system (e.g., "Go to the news aticle about WiMax phone

service"). And thus, browsing using speech could only be sequential (e.g., giving the

speech command "next article" repeatedly until the desired article is reached). However,

sequential browsing was not preferred when the location of an item could be

approximated.

Non-navigation operations or abstract commands are system commands not

directly related to any spatial attributes of an information item or command item.

Examples of abstract commands include pause, resume, read article, repeat, spell, set

reading unit, change audio settings, etc. To issue an abstract command using the touchpad

users click a touchpad button(s) or combine command searching on the touchpad tracks

with button clicks. To issue an abstract command using speech users utter a speech

command in the command vocabulary.

The exploratory study results show that when inputting abstract commands, the

subjects tended to use significantly more speech input than touchpad input — 61% of the

abstract commands were given using speech. The reasons could be twofold: (1) Uttering

a speech command was more direct and hence faster than searching the command in the

physical space and executing it. (2) In most cases an abstract command was given in the

middle of a series of navigation commands. An instance is that when reading an article

using the "next paragraph" command the subjects paused their reading and reduced the

reading speed and then resumed reading. In this scenario the subjects kept track of the

situations of two tasks. One was the article reading progress and the other was speed
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reduction. The subjects had used the touchpad to track the article reading progress. In

order not to interrupt his/her tracking, the subjects opted to speech to perform the second

task.

The investigation in the subjects' choices of input modes for each subcategory of

the two main input operation categories confirmed the above interpretation of the

existence of an input modality — operation type dependence.

5.7.2.1 Implications for the Design of the Controlled Experiment. The following

implications for the design of the controlled experiment are made.

(1) The findings continued to indicate that the operation types, i.e., navigation vs. non-
navigation operations, were the major factors determining users' input modality
choices. The controlled experiment, again, should include input operation types as an
independent variable in the hypothesis evaluating modality choices.

(2) The results also indicated that vision was a significant advantage that the sighted
subjects took to estimate the location of their wanted information on the touchpad in
order to skip unwanted information quickly, and to find their way on the touchpad
after modality switching. Will visually impaired users, who do not have vision to
assist their use of the touchpad, make their input modality choices the same way as
sighted users?

(3) The hypotheses in the controlled experiment therefore should include the level of
visual impairment, i.e., low vision vs. blind, as an independent variable to evaluate
the influence of residual vision on users' modality choices and modality switching
behavior.

5.7.3 User Error Correction Strategies

5.7.3.1 Interpretations on Causes of Input Failures. The analysis of failures in

each input mode reveals that the "no response problem" was prevalent in speech input.

The symptom of the problem was no response from the system to speech input given by

users. The causes of this symptom could be complicated and no sure explanation can be

provided at this time. We suspect the major reason was that some background tasks
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running on the operating system competed for computing resources with the speech

recognition application and caused a severe delay in processing the speech recognition

task. A secondary cause of the no-response problem could be the subjects' imprecise

timing of the push and talk cooperation. More specifically, pushing the "push-to-talk"

button about a half second before speaking a command had a higher chance of achieving

a successful system response than pushing the button and speaking the command at the

same time. Sometimes the subjects did the two actions simultaneously or started the

utterance slightly before the button was pressed. The "no response" symptom was often

observed as the result.

The incompatibility between the subjects' mental model and the system's working

model was another cause of input failures in the speech and touchpad modalities. This

repertoire of failures mainly related to the use of operation modes (different from the

concept of input modes) in the system design. The operation modes in the system design

are described as follows.

On the touchpad, the two buttons provide contextual functions as a solution to

deploying all functions on the small physical design space. Each track of the touchpad is

one mode. In different modes, i.e., when different touchpad tracks were touched, button

clicks result in different system actions. When the top track is touched, button clicks

result in zooming into or out of an information section; when the middle track is touched,

button clicks result in going to the next or previous word/sentence/paragraph within a

text; when the bottom track is touched, the same button clicks increase or decrease the

value of an audio setting. While the subject was doing intensive information
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comprehension, he/she did not always pay sufficient attention to the current system

mode, which sometimes led to undesired system reactions following a button click.

For speech input, the design challenge was to find a tradeoff between two design

requirements, i.e., (1) to parallel speech commands with touchpad operations to allow

smooth switches between the two input modes; and (2) to avoid system modes as much

as possible since the speech input was not designed on a limited design space as the

touchpad input was. As a result, only a small number of speech commands are mode-

sensitive. For example, when the system is in the information category browsing mode,

the speech command "next" leads the system to read the title of the next information

category; while when the system is in the article reading mode, "next" can lead to reading

the next word, sentence, or paragraph, depending on the text unit last set by the user.

Because auditory feedback indicating the current system mode was always transient and

sometimes inexplicit, the subject sometimes forgot to switch to the correct system mode

before giving a mode-dependent command. Consequently his/her speech input led to a

system action different from his/her expectation.

5.7.3.2 Interpretations on User Error Correction Strategies. The exploratory study

investigated the types of input errors that could occur in a multimodal input system that

integrates speech and touch input. The exploratory study revealed the subjects' error

correction behavior patterns when using a multimodal system and answered the following

questions.

5.7.3.2.1 On a non-visual multimodal interface for textual information browsing,

how prevalent is input modality switching following an input failure? At the operator

level, immediately following a failed input, input modality switches occurred
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significantly less than input operations with no modality switches. At the error correction

level, in a sequence of error handling actions, input modality switches still occurred

significantly less than error handling without input modality switching.

So the answer to the question is that input modality switching in the non-visual

multimodal system was not a prevalent error handling strategy. This result is different

from the results obtained in multimodal GUI interfaces discussed at the beginning of this

article. The reasons for this different result could be (1) that the amount of mental work

involved in input modality switching has prevented switching in our system (note that the

user has to search for a touchpad command), (2) the lack of visual aids for our subjects

meant that they could readily lose their place in the information structure if they switched

modalities to correct a speech error, and (3) the availability of multiple methods for

correcting an input error has encouraged the use of different methods in a single modality

instead of switching modalities.

Moreover, although speech recognition had higher error rates than touchpad

recognition, speech errors did not lead to higher rates of input modality switching for

error correction than tactile errors. In other words, higher recognition failures do not

necessarily lead to input modality switching.

5.7.3.2.1 On a non-visual multimodal interface for textual information browsing,

how resistant is a user to switching input modalities when the input modality is

failing? It was believed that if there was more than one method available for error

correction within the same input modality, users would be more likely to use alternative

methods within the same modality to correct the error, instead of switching the modality.

However, we were not able to conclude this result because of the small sample size. We
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did show that there was a higher tendency to switch input modalities when one input

mode continued to fail.

Based on the results of this study, the error handling strategy used on multimodal

GUIs and non-visual multimodal interfaces are different. Input modality switching is not

likely to be a major error handling strategy on non-visual multimodal interfaces. Thus, if

users should take the advantage of multimodal error correction, they will need to be

taught to do so, since our study shows they are not naturally switching the modalities.

What the results suggest about the sighted subjects' error correction behavior

include the following. First, it is likely that some of the speech errors that they

experienced are present because of their inexperience with listening to text to speech

output. It is likely that these errors will not be as prevalent with visually impaired users

who are accustomed to this type of output. Second, it is possible that the resistance to

modality switching may also be a result of inexperience with other aspects of our

information browser. We mentioned that we suspected a higher cognitive load being a

reason for this resistance to switching. This load may, in part, be a result of the subjects

being inexperienced in path finding in an information space through auditory feedback.

Certainly, the successful mode switching reported by Suhm et al. (2001) with the

graphical user interface suggests this possibility. Finally, the sighted subjects were

performing a task that required them to listen to and comprehend the information being

read by the text-to-speech engine. It may be that the output modality influenced the

choice of input modality, that is, the subjects stayed with the speech mode because the

dialogue between the human and the computer system suggested a real conversation.

Thus, the natural reaction was to continue speaking.



129

5.7.3.3 Implications for the Design of the Controlled Experiment. 	 The results of

the exploratory study indicate that users are more likely to fix input errors using the same

input modality than switching to another modality. But when the modality continues to

fail, the possibility to switch is higher.

Based on these results, the controlled experiment should test the following:

(1) Whether visually impaired users prefer to use the same input modality, instead of
switching the modality, for error correction?

(2) Whether the levels of error rates influence users' error correction behavior? The
corresponding hypothesis should have error rates as an independent variable and the
amount of modality switches for error correction as the dependent variable. At least
two levels of error rates should be administered during the experiment: high error
rates and a low error rates.

(3) In addition to the impact on users' modality switches related to error correction, does
the level of error rates also impact modality switches in general? This requires an
investigation into not only modality switches for the error correction purpose, but also
modality switches behavior in general. The hypothesis will have error rates as the
independent variable, and the amounts of the two types of modality switches as the
two related dependent variable.

5.7.4 Training Order Effect (Primacy Effect)

We predicted that the input modality learned first would be the primary modality used

later (the primacy effect). The study results showed a small primacy effect in the

subjects' use of the input modalities. People who received speech training first tended to

use more speech and less touchpad operations than people who received touchpad

training first. This tendency was nearly significant (two sample t(12)=1.568, p=0.07).

People who received touchpad training first tended to use more touchpad input than

speech input. This tendency was significant (paired t(13)=2.88, one-tailed p=0.01), while

people who received speech training first also tended to use more touchpad input than
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speech input, but this tendency was not significant (paired t(13)=0.48, one-tailed p=0.33).

However, the training order of different input modes did not significantly affect the

subjects' subjective ratings of different input modalities. A design implication can be

derived from these results: since there is a clear advantage in choosing an input modality

that matches an operation type, user-training materials should be designed so that the

more advantageous input modality is taught first for performing a type of task.

5.7.4.1 Implications for the Design of the Controlled Experiment. To limit the

number of factors impacting the subjects' input modality choice, the training order effect

should be controlled during the experiment. Rather than administering the training

materials in speech input and touchpad input separately and counterbalancing the training

orders, the experimenter should provide multimodal input training, i.e., mixing the speech

and touch input training, and guiding participants to practice multimodal input during the

training.

5.7.5 Other Interpretations

During the experiment sessions, the subjects performed a total number of 1642 input

operators. Among them, 39.04% were speech input and 60.96% were touchpad input.

The following reasons might have contributed to more use of touchpad than speech. (1)

Touchpad input is more robust than speech input. The success rates of touchpad input and

speech input were 95.63% and 73.70% respectively. (2) When using the touchpad the

sighted subjects could see the touchpad tracks and approximate the location of an item on

them. (3) Overall, the subjects performed more navigation operations than non-navigation

instructions (954 (58%) vs. 688(42%)). The subjects commonly chose touchpad input for
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navigation and speech for non-navigation commands. These reasons have possibly

caused more use of touchpad input than speech input during the experiment.

Through the analysis of the subjects' answers in the post questionnaire, it was

found that although the speech input was not more difficult than the touchpad input to

learn, the speech input was more difficult than the touchpad input to use. It was also

found that speech input alone caused significantly higher level of fatigue in use than

either the touchpad input alone or the mixed use of speech and touchpad inputs. These

results could be the consequences of the same reasons mentioned above in (1), (2) and

(3). However, it is interesting to see that the touchpad input did not provide significantly

better support in orientation in the information space than the speech input, while the

mixed speech and touch provided significantly better support in information space

orientation than the speech input. The explanation could be that the touchpad input

provided certain advantages in keeping track of a user's location when the user navigates

the information space, while the speech input allowed the user to deal with interrupting

tasks separately without leaving the current navigation on the touchpad. Resuming the

navigation from the interrupted point became easier because of these separate processes.

Hence the combined speech and touch provided a better sense of orientation in the

information space than the speech alone, while the touchpad input alone did not.

5.7.5.1 Implications for the Design of the Controlled Experiment. Since most

participants looked at the touchpad when executing touchpad operations, a hypothesis

could be constructed to predict that vision has provided additional advantage in path

finding on the physical space, and hence users with any usable vision will be more likely

to use the touchpad than users with no working vision. This difference between users
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with low vision and users with no vision should be investigated during the controlled

experiment.

5.8 Summary of Exploratory Study Results and Implications for Design of
Controlled Experiment

In summary, the analysis and discussion suggest the following findings from the

exploratory study. They also suggest the consequent changes or refinement in the

research questions, as well as the hypotheses to test in the controlled experiment. The

following sections concisely summarize these points.

5.8.1 RQ1

"When interacting with a non-visual multimodal system, do users use multimodal or

unimodal input?"

5.8.1.1 Major Observations.All sighted subjects chose to use multimodal input, rather

than single input modality. Reasons for switching between input modalities varied, but

the most prominent reasons are the change of operation types and the occurrences of

input errors.

In addition, although not analyzed due to the lack of control in the exploratory

study, the cognitive task types seemingly influenced the subjects' modality switching

behavior, i.e., when performing routine cognitive tasks, the subjects switched input

modalities more frequently than when performing problem solving tasks.



133

5.8.1.2 Implications for the Controlled Experiment.	 The following implications

were obtained.

(1) Types of input operation should be one of the independent variables in the hypothesis
testing users' input modality choices.

(2) Input error rates should be one of the independent variables in the hypothesis testing
users' input modality switching behavior.

(3) Cognitive task types should be one of the independent variables in the hypothesis
testing users' input modality switching behavior.

(4) Cognitive task types should be administered as an experiment condition in the
controlled experiment.

5.8.1.3 Hypotheses. Based on each of the implications above, the following hypotheses

can be constructed:

(1) When performing navigation operations, users will use significantly more touchpad
input and less speech input than when performing non-navigation operations.

(2) When error rate increases, users will switch input modality significantly more
frequently for error correction.

(3) When performing routine cognitive tasks, users will switch input modality
significantly more frequently than when performing problem solving tasks.

5.8.2 RQ2

The original research question was: "If users choose to use multimodal, rather than

unimodal input, do they have special multimodal input patterns — i.e., is there a

relationship between the type of input operation and users' choice of input modality?"

5.8.2.1 Major Observations. 	 The observations continue to indicate that input

operation types are the major factor influencing users' input modality choices. The

observations also infer that visually impaired users' level of usable vision might influence
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whether they prefer touchpad input or not, because all sighted subjects used their vision

to help with locating their fingers and way-finding on the touchpad.

5.8.2.2 Implications for the Controlled Experiment. 	 In combination with the

indications from RQ1, RQ2 should be modified to accommodate more factors potentially

influencing users' multimodal input patter. RQ2 is therefore modified as follows: "Do

any of the following factors have an impact on visually impaired users' multimodal input

usage: type of input operator, level of visual impairment, and type of cognitive task?"

5.8.2.3 Hypotheses. Among visually impaired users, users with working vision will use

the touchpad input more frequently than users with no working vision.

5.8.3 RQ3

The original research question was: "What are users' error correction strategies on the

non-visual multimodal interface?"

5.8.3.1 Major Observations. Sighted subjects mostly used the same input modality,

rather than switching to the other input modality, to correct errors and failures.

5.8.3.2 Implications for the Controlled Experiment. 	 The controlled experiment

should continue to investigate whether this behavior pattern is the same as visually

impaired users' error correction strategy.

In addition, the observation discussed in RQ1, that the higher error rates increased

users' input modality switched, should be incorporated into RQ3. RQ3 should address

whether users' error correction strategy and multimodal input pattern change with

variation of error rates.
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Therefore, RQ3 is revised to: "Will errors change users' multimodal interaction

behavior?" It consists of the following more specific and detailed research questions:

• RQ3a. How do visually impaired users correct errors, by switching input modalities
or not?

• RQ3b. Whether different levels of error rates influence users' error correction
behavior?

• RQ3c. Does variation of error rates affect only users' error correction related
modality switches, or users' modality switching behavior in general?"

Furthermore, the previous observation that sighted subjects all used their vision to

help with approximating the location of the wanted information and way-finding on the

touchpad suggested that two more detailed research questions could be added:

• RQ3d. Whether the level of visual impairment has an influence on users' modality
switches for error correction?

• RQ3e. Whether the level of visual impairment has an influence on users' modality
switches in general?

5.8.3.3 Hypotheses. The hypotheses should test the following:

(1) When errors occur, instead of switching to another input modality, visually impaired
users will be more likely to continue to use the failing modality for error correction.

(2) The same as a hypothesis in RQ1, When error rate increases, users will switch input
modality significantly more frequently for error correction.

(3) When error rate increases, users will switch input modality significantly more
frequently in general.

(4) Among visually impaired users, users with working vision will switch input
modalities more frequently for error correction than users with no working vision.

(5) Among visually impaired users, users with working vision will switch input
modalities more frequently in general than users with no working vision.
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5.8.4 RQ4

RQ4 addressed the effect or training order: "Does training affect users' multimodal input

behavior?"

5.8.4.1 Major Observations. 	 There was a small training order effect that had

influenced the subjects' choice of input modalities. The input modality taught first

became the primary modality the subjects used.

5.8.4.2 Implications for the Controlled Experiment. 	 To limit the number of

independent variables, the training order effect should be controlled during the

experiment. The way to control it is to teach the participants to use multimodal input,

rather than speech input and touchpad input separately. By administering multimodal

input tutorials, the training order effect should be eliminated. RQ4 therefore should be

removed from the controlled experiment.



CHAPTER 6

DESIGN OF CONTROLLED EXPERIMENT WITH VISUALLY IMPAIRED
USERS

6.1 Overview

The goal of the controlled experiment was to test the hypotheses formed from the

exploratory study with visually impaired users and to answer the research questions.

The experiment procedure was designed based on but changed from the procedure

of the exploratory study. The major changes are listed below. These changes were also

made to minimize influences of factors not within the scope of evaluation on the subjects'

choice of input modalities.

• Keyboard control was implemented into the AudioBrowser system as a Wizard of Oz
method to allow visually impaired participants to use the speech recognition software
for speech input and to allow the experimenter to manipulate input errors. The Wizard
of Oz method allowed the experimenter to generate system output and errors using
the keyboard without the participants' awareness during the experiment sessions. This
implementation controlled the influence of speech recognition failures on the
subjects' choice of modalities.

• The user training materials were modified. The participants were trained to use
multimodal input rather than the two modalities separately. This modification
controlled the training order effect on the subjects' choice of modalities.

• The participants were tested on their ability to understand computer synthesized
speech output before participating in experiment sessions. During the test each
participant used the reading speed that he or she felt most comfortable with to finish a
listening comprehension test designed by Educational Testing Services (ETS). This
test established a baseline to help to understand whether the subjects' ability to
comprehend synthesized speech affected their choice of input modalities.

• The length of the experiment was decreased from about seven hours over three days
to about five hours over two days to reduce the participants' fatigue. This change
reduced the effect of fatigue on the subjects' choice of modalities.

137
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In addition, the recruiting procedure filtered applicants with less than one year

computer use experience and applicants younger than 20 years old or older than 60 years

old. These recruiting criteria limited potential influences from the subjects' background

and demographics on their choice of input modalities.

The experiment tasks were designed to incorporate routine cognitive tasks and

problem solving tasks. Error rates were controlled so that each subject experienced a

session with human errors only and a session with increased error rates by having both

human errors and artificially generated (system) errors. Human errors refer to mistakes

made by users. System errors refer to the system's failure to process user commands. In

this experiment, fixed errors were introduced in the second session using the Wizard of

Oz method in every participant's experiment session.

The next section of this chapter describes the research questions and hypotheses

derived from the exploratory study, the subjects recruited, the AudioBrowser system

modified for controls and manipulations, the administration of experiment conditions, the

procedures carried out, and the tasks given to the subjects.

6.2 Revised Research Questions

To confirm and deepen the understanding of the results obtained from the exploratory

study with sighted users, an experiment with visually impaired users was conducted.

Some modifications and refinements in the research questions were made based on the

rationale from the previous chapter.

In the exploratory study, the phenomena of interest were the use of multimodal

input, the influences of types of input operators on choices of input modality, and
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multimodal error correction strategies. In addition, the effect of training order was

examined.

In the confirmatory experiment with visually impaired users, the previous factors

of interest remain, but the training order was treated as a controlled variable — the

subjects were trained to use multimodal input, instead of one input modality after

another. The reason for doing this was to eliminate the training order effect and improve

the precision of the results.

Besides, two new factors of interests emerged and were included in the

experiment. They are the level of visual impairment and the type of cognitive task.

The level of visual impairment was included because through conversation and

observation, it was found that people with any vision at all attempted to use their vision

whenever they could. Being able to see the touchpad might obtain additional spatial cues

that could facilitate the use of the touchpad and hence encourage these subjects to use the

touchpad more often. The level of visual impairment, therefore, is within the scope of

investigation on users' multimodal input patterns.

The type of cognitive task was included because based on working memory

theories, people are generally better at dividing attention across modalities than within a

single modality; and that different cognitive tasks might result in different attention

divisions that influence users' use of the multimodal interaction system.

The research questions for the confirmatory experiment are therefore as follows:

• RQ1: When interacting with a non-visual multimodal system, do visually impaired
users use multimodal or unimodal input?
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• RQ2: Do any of the following factors have an impact on visually impaired users'
multimodal input usage: type of input operator, level of visual impairment, and type
of cognitive task?

• RQ3: Will errors change users' multimodal interaction behavior?

RQ3 further embraces three detailed research questions:

o RQ3.1: Do users switch input modalities when correcting errors?

o RQ3.2: 	 Will level of error rates change users' error correction strategies?

o RQ3.3: 	 Will level of error rates influence users' overall modality switching
patterns?

• RQ4: Can we conclude any common or different multimodal interaction patterns
between sighted users and visually impaired users?

6.3 Hypotheses

The exploratory study results have indicated the way the hypotheses should be

constructed.

Testing models and hypotheses are listed in Table 6.1.



Table 6. 1 Research Questions, Quantitative Models and Hypotheses
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	RQ	 Models and Hypotheses

	

RQ3	 Will errors change users' multimodal interaction behavior?

RQ3.1 RQ3.1: Do users switch input modalities when correcting errors?

Model 3.1: Whether users are more likely to switch input modalities or use the same input
modality to correct errors?

Independent variable:

• Type failing modality (speech failure vs. touch failure)

Dependent variable:

• Error correction strategy (correcting by switching modality vs. correcting within
modality)

H3.1	 Users will correct errors in the failing modality significantly more often than
correcting them in another modality.

	RQ3.2	 RQ3.2: Will level of error rates change users' error correction strategy?
& 3.3 RQ3.3: Will level of error rates influence users' overall modality switching pattern?

Model 3.2 & 3.3: The effects of error rate and level of visual impairment on modality
switches for error correction and users' overall modality switches

Independent variables:

• Level of visual impairment (with working vision vs. without working vision)
• Error rate (low error rate vs. high error rate)

Dependent variables:

• Error correction strategy (correcting by switching modality vs. correcting within
modality)

• Total amount of modality switches

H3.2 & Users' modality switches for error correction and modality-switching behavior in
3.3: 	 general are determined by the level of error rates and users' level of visual

impairment.

H3.2 a	 Users with working vision will switch input modalities more frequently for error
correction than users with no working vision.

H3.2 b	 When error rate increases, users will switch input modality significantly more
frequently for error correction.

H3.3 a	 Users with working vision will switch input modalities more frequently in general
than users with no working vision.

H3.3 b	 When error rate increases, users will switch input modality significantly more
frequently in general.

	RQ4	 Can we conclude any common or different multimodal interaction patterns between sighted
users and visually impaired users?



143

6.4 Experiment Design

The experiment was a factorial design, which incorporated three within-subject variables

and one between subject variable.

• The independent variables include the following:

o Level of visual impairment (with working vision vs. without working vision) —
between-subject variable

o Type of input operator (navigation operator vs. non-navigation operator) — within-
subject variable

o Type of failing modality (speech failure vs. touch failure) — within-subject
variable

o Cognitive task type (Routine Cognitive Tasks vs. Problem Solving Tasks) —
within-subject variable

o Error rate (low error rate vs. high error rate) — within-subject variable

• The dependent variables include the following:

o Choice of input modality (speech input vs. touch input)

o Frequency of input modality switches

o Frequency that each error correction strategy was used (correcting by switching
modality vs. correcting within modality)

The variables for each testing model are stated in Table 6.2.
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Table 6. 2 Experiment Design for Testing Models

Model 2.1: Effects of level of visual impairment and type of operator on users' choice of input modality

Experiment design:

• 2x2 factorial design with one between subject variable and one within subject variable

Independent variables:

• Between-subject: Level of visual impairment (with working vision vs. without working vision)
• Within-subject: Type of input operator (navigation operator vs. non-navigation operator)

Dependent variable:

• Choice of input modality (speech input vs. touch input)

Model 2.2: Effects of cognitive task types on input modality switches

Experiment design:

• Single factor design

Independent variable:

• Within-subject: Cognitive task type (Routine Cognitive Tasks vs. Problem Solving Tasks)
Dependent variable:

• Frequency of input modality switches

Model 3.1: Whether users are more likely to switch input modalities or use the same input modality to
correct errors?

Experiment design:

• Single factor design

Independent variable:

• Within-subject: Type of failing modality (speech failure vs. touch failure)

Dependent variable:

• The frequency of error correction with input modality switching and the frequency of error
correction without modality switching

Model 3.2 & 3.3: The effects of error rate and level of visual impairment on modality switches for error
correction and users' overall modality switches

Experiment design:

• 2x2 factorial design with one between subject variable and one within subject variable

Independent variables:

• Between-subject: Level of visual impairment (with working vision vs. without working vision)
• Within-subject: Error rate (low error rate vs. high error rate)

Dependent variables:

• Error correction strategy (correcting by switching modality vs. correcting within modality)
• Total amount of modality switches
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In the experiment sessions the subjects performed news article reading tasks.

They were told they could use the speech and touch input any way they wanted. For each

condition, the subjects' choices of input modalities, input modality switches, and error

correction strategies were collected.

The experiment used a Wizard of Oz feature built in the AudioBrowser system

which allowed the experimenter to generate system output using the keyboard which the

subjects were not aware of. The Wizard of Oz feature was used for two purposes: to

avoid the inaccessibility problems with the speech recognition system and to control error

rates.

Different from the training sessions in the first experiment that taught speech

input and touch input separately, the training sessions of the second experiment

acquainted the participants with speech and touch input simultaneously. This change

eliminated the small training order effect found in the first experiment.

To get a baseline on the subjects' ability to understand computer-synthesized

speech output, the subjects participated in a listening comprehension test. Each subject

read two articles using AudioBrowser and then answered a series of reading

comprehension questions on the articles listened to. In order to answer the questions

correctly each subject had to understand the articles read using the synthesized speech.

The articles, questions and standard answers were from the Listening Comprehension

Section of TOEFL tests (Test of English as a Foreign Language) published on ETS' web

site (ETS, 2005). None of the subjects had read these articles before. The range of the test

scores indicated acceptable abilities of the subjects to understand computer-synthesized

speech output.
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The following sections describe the experiment conditions, the subjects, the

experiment system, and the procedure.

6.4.1 Experiment Conditions

In this section the methods used to administer the independent variables are described in

more details.

6.4.1.1 Cognitive task types (routine cognitive tasks vs. problem solving tasks).

Routine cognitive tasks are tasks using routine cognitive skills. A routine cognitive skill

is one where the person executing the skill has the correct knowledge of how to perform

the task and simply needs to execute that knowledge (Card et al. 1980 and 1983; John

and Kieras, 1996). In other words, when doing routine cognitive tasks, users are no

longer problem solving, but rather applying procedural knowledge to a relatively familiar

task or a routine procedure.

A training session and two practice sessions, totaling two hours across two days,

were designed and administered to ensure that the participants obtained the required

routine cognitive skills in using AudioBrowser prior to the experiment session.

Some examples of routine cognitive tasks used in the experiment are:

• Enter the Times Magazine Special Issue Section.

• Set the reading unit to Sentence.

• Read three sentences and pause reading.

Problem solving tasks, in contrast, are tasks requiring the modulation and control

of routine cognitive skills without prepared procedural knowledge (Goldstein and Levin,
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1987). When users create their own method to achieve a given goal, they are doing a

problem solving task.

An example of the type of problem solving task used in the experiment is:

• You will read an article titled The People Who Influence Our Lives and answer
questions based on the article. Find the article and the questions in the Times
Magazine Special Issue Section. You can revisit the article as many times as you need
to look for answers to the questions.

6.4.1.2 Input error rates (low error rates vs. high error rates). The Wizard of Oz

feature of the AudioBrowser system was used to control the level of error rates in both

the speech input and the touch input.

There were two types of errors. One type was generated when the subjects used a

wrong command or touched the touchpad accidentally. These are called human errors.

The other type was generated when the system processed user commands incorrectly.

These are called system errors. The Wizard of Oz method was used to simulate both

human errors (e.g., touching the touchpad accidentally) and system errors (e.g.,

recognizing a speech command incorrectly).

In the condition with low error rates, the experimenter did not administer errors.

The error rates reflect the human errors the participants made. In this condition, the error

rate ranged from 3.35% to 24.45%. The mean and standard deviation of the subjects'

error rates were 12.68% and 6.18%.

In the condition with high error rates, in addition to human errors, the

experimenter administered system errors during the subjects' speech and touch input

using a keyboard control. The subject was not aware of this manipulation. The error rate,
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in this condition, ranged from 14.63% to 32.47%. The mean and standard deviation were

26.35% and 4.70%.

For each subject, the difference between the error rates of the two conditions

ranged from 5.19% to 25.91%, averaged at 13.67% with a standard deviation of 6.43%.

In other words, the participants all encountered an increase in input errors when

proceeding from the occasional failure condition to the frequent failure condition.

6.4.1.3 Types of input operators (navigation operators vs. non-navigation

instructions). One goal of the experiment was to measure the input choices of users of a

multimodal system in the performance of different tasks. Because of this goal, it was not

possible to control the operations (navigation vs. non-navigation) users would use in their

execution of the tasks. Hence the operation type is a random independent variable

reflecting each user's personal problem solving path. The operation types were collected

during subjects' task performance sessions, then used as a factor to predict the input

modalities the users would choose.

6.4.1.4 Level of visual impairment (with working vision vs. with no working vision).

The level of visual impairment was incorporated as an independent variable because

people with any vision will depend on their vision as much as possible, as such, this

dependence might have an impact on user's use of different input modalities because

touch uses more of a person's visuo-spatial skills.

During the research, the users were interviewed about their backgrounds first,

including questions about their current vision that indicated whether they had working

vision or not. The users were then divided into two groups for data analysis based on

their visual ability.
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6.4.1.5 Administration of experiment conditions. Because the increased error rate

condition is an extreme condition that could affect other factors in the experiment, these

factors were not administered in this condition.. For example, cognitive task types were

administered only within the condition of low error rates.

Table 6. 3 Experiment conditions

6.4.2 Subjects

Subjects were recruited at an annual convention in New Jersey hosted by the National

Foundation for the Blind. The convention was aimed at introducing technologies that

assisted visually impaired people. At the convention the AudioBrowser research group

set up a booth to demonstrate this research and software. The group distributed flyers

describing the research, which were printed in both Braille and large type, to the

convention attendees. The faculty researcher in the group gave a workshop in how HCI

research had been making differences to assist the life of visually impaired people.

During the exhibition and the workshop, visually impaired attendees were invited to try

using AudioBrowser to read news articles published on that day. People who were

interested were encouraged to leave their contact information for participation in the

experiment. They were also encouraged to refer their visually impaired friends to

participate in the research.

Subjects were screened based on the following standards:
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• The subject had his / her visual impairment for at least three years.

• The subject used a computer for at least one year.

• The subject used synthesized computer speech output for at least one year.

• The subject was over twenty but less than sixty years old.

A total of twenty subjects who met the above criteria were recruited. Of them ten

were female and the other ten were male. However, one male subject did not finish the

experiment — he constantly fell asleep during the experiment. It was found that he was

suffering from a brain tumor that caused this narcolepsy. His data was therefore

eliminated from the data analysis.

6.4.3 Experiment System	 •

During the experiment, the AudioBrowser system was running on a Dell Inspiron laptop.

The laptop was placed in front of the experimenter, so that the experimenter could

monitor the user's touchpad interaction through AudioBrowser' s visual output on the

screen and control the system using the keyboard. To maximize the quality of the

auditory output, a pair of speakers were connected to the laptop and placed to face the

subject. A touchpad connected to the laptop was given to the subject. A microphone for

speech input was placed in front of the subject but was not connected. Instead, the

experimenter, unbeknownst to the subject, typed in all spoken commands. A video

camera was set up on a tripod to videotape the user's interaction. Figure 6.1 illustrates

this system setup.
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Figure 6. 1 The Experiment System Setup

6.4.3.1 Control Using Wizard of Oz Method. 	 At the time the speech recognition

input was built into the AudioBrowser system, the success of available and affordable

speech recognition engines all relied on user profile-based speech training. Users had to

train the speech recognition engine individually by reading texts displayed on the screen

and repeated words unrecognized by the engine until all user utterances were recognized.

During the training the speech engine built a user profile for each user. When a user

wanted to use speech input s/he turned on her/his profile. The longer a user trained the

engine the higher the recognition rate the engine returned for the user during her/his later

use. This user profile-based engine training method is commonly used in low-cost or free
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speech engines which are likely to be used in accessibility software. The availability of

low-cost speech understanding systems is changing so that this issue is disappearing.

However, visually impaired users are excluded from any speech recognition

system that requires profile-based speech engine training because screen readers are

typically not adapted to these systems which display visually what is to be read and then

dynamically indicate those passages that need to be reread during the training.

In order to simulate a situation where the speech recognition system works for

visually impaired users, a Wizard of Oz feature was built into the AudioBrowser system.

The Wizard of Oz feature allows user controls via a standard keyboard — when an

utterance is given by a subject, the experimenter can generate system responses

accordingly via keystrokes. All commands and system speech output including error

messages were mapped onto the keyboard that was controlled by the experimenter. The

experiment participants were therefore not required to press the "push-to-talk" button

before giving a speech command. This Wizard of Oz feature also had the distinct

advantage of controlling speech recognition errors in the experiment.

Some examples of the map between speech commands and keyboard keys are:

• Ctrl + S = the speech command "next sentence"

• Alt + S = the speech command "previous sentence"

• F2 = An error message for an invalid speech input, "Sorry, this command is invalid"

When the user gave a speech command, the experimenter hit the corresponding

keys, and the system responded by repeating the speech command first, then executing

the command.
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The following picture shows a map of speech output and system commands on

the keyboard. A total of 56 speech commands were available through single or combined

keystrokes.

Figure 6. 2 Keyboard Used to Control AudioBrowser's Wizard of Oz Feature

Besides speech commands, keystrokes were also able to simulate touchpad

commands. The third row of keys from Q to }, the fourth row from A to ", and the fifth

row from Z to ? on the keyboard correspond to the top, middle and bottom tracks of the

touchpad. Each key correspond to a segment on a touchpad track. For example:

• One stroke on the key Q equals a touch on the first segment of the top touchpad track.

• One stroke on W equals a touch on the second segment of the same track.

• One stroke on A equals a touch on the first segment of the second touchpad track, etc.

The plus key and the minus key correspond to the right and left zoom buttons on

the touchpad. In addition, a key is used to disable the touchpad.
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Thus, the Wizard of Oz feature not only simulates the situation where the speech

recognition system "works" for visually impaired users, but also allows generating

"errors" in users' speech and touch inputs.

6.4.3.2 Articles Read by AudioBrowser. The articles that AudioBrowser read for the

subjects during the experiment came from several resources. The articles used for the

AudioBrowser tutorial and practice sessions were from an earlier New York Times issue.

The articles used during the experiment sessions were from the New York Times, the

Times Magazine, and the listening comprehension test from TOEFL tests created by

ETS.

Due to undesired interpretations of the Microsoft Text to Speech (TTS) engine, all

articles were proofread before being used for the experiment. Changes to the articles were

made whenever necessary in order to assure the correctness of the speech by the TTS

engine. For example, some acronyms and punctuations could not be interpreted correctly

by the TTS engine and so were modified. Some examples of the modifications are

replacing Dr. with Doctor or Drive, replacing CA, Cal., and Calif. with California,

replacing U.S. with U S, etc. For words that the TTS engine could not pronounce

correctly, the experimenter tweaked the spelling so that the TTS engine could provide a

pronunciation closer to the word used in the article.

Tables 6.4 and 6.5 give a breakdown of the two sets of articles read by

AudioBrowser during the experiment. Figure 6.3 presents the hierarchical structure of

reading set 2 that was used in AudioBrowser.



Table 6. 4 Article Set One Read by AudioBrowser

Table 6. 5 Article Set Two Read by AudioBrowser
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Used 	 for 	 routine 	 Used for problem 	 Used to test the
cognitive tasks and the 	 solving tasks and the 	 participants' level of
task	 session 	 with 	 task session without 	 skills to understanding
experimenter- 	 experimenter- 	 computer synthesized
administered 	 input 	 administered 	 input 	 speech output
failures 	 failures

Figure 6. 3 Structure of Article Set 2 Read by AudioBrowser
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6.4.4 Procedure Overview

Each subject participated in the experiment individually. The sessions for each subject

spanned two days, with about two hours on each day. The following table shows the

experiment procedure, estimated time of steps, documents / materials in each step, and

data capture methods used. For the documents used during the experiment, please refer to

Appendices A to K.

Table 6. 6 Procedure of the Controlled Experiment
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The following paragraphs provide more details on each step in the experiment.

6.4.4.1 Steps on Day One.

Step 1: Study introduction. The introduction explained the purpose of the study

to the participants, that is, to improve the design of the speech and touch input for

visually impaired users. The introduction also explained the procedure and time needed.

Step 2: Signing the consent form. The consent form was approved by the NJIT

Institutional Review Board (IRB). The consent form included a video and audio release

agreement. The experimenter read the consent form for the subject and allowed enough

time for questions. When all the questions were clarified, the experimenter helped the

subject to find the location in the form for signature. The subject signed his/her name

using regular handwriting on two paper copies of the consent form. The experimenter

also signed on the copies. One copy was then kept by the experimenter. The other copy

was given to the subject.

Step 3: Pre-experiment interview about the subject's background. The pre-

experiment interview collected participants' background information including their age,

educational background, visual impairment history, current vision, computer experience,

and assistive technology support.

Step 4: Tutorial on using speech and touch input. For each user task, the subject

was taught how to finish it using speech input and touch input. The tutorial combined

learning and practicing. Exercise tasks were embedded in every paragraph of the tutorial.

The experimenter read the tutorial and guided each subject's practice. Subjects were

encouraged to ask questions at any time. Each tutorial lasted for about one hour.
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The following paragraphs are examples from the tutorial script. The news articles

used during the tutorial were from an old issue of New York Times.

"...In front of you is a touchpad. You will use it to control the

AudioBrowser system. [Let the subject feel the touchpad.] It is a

rectangular device with an indented area at the center. The indented area

can detect your touch and so is called the sensing area. The sensing area is

divided into three tracks. [Guide the subject to feel the tracks.] The news

sections and articles and system commands are mapped onto the tracks..."

"...You can also browse the news categories using speech input. These are

the commands you can use: next category, next article, and next item.

These commands let you go to the next news category or article available.

... Now please try these commands."

"...You have learned how to use the touchpad and speech commands to

browse new categories. Now you will finish some simple tasks using what

you have learned. Please find the Sports Section using speech commands. 

Then find the Business Section using the touchpad."

Step 5: Practice on speech and touch input. A practice session of about 35

minutes followed the tutorial session. The subjects exercised speech input tasks, touch

input tasks, mixed input modality tasks, and then had free choice of which input modality

to use on a set of tasks. The purpose of these tasks was to allow the subjects not only to

practice what they learned, but also to start forming their own mixed-modality input

patterns based on their experience and preference.
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Some examples of the practice tasks are shown below. The same set of news

articles from the tutorial session was used.

• A speech task and a touch task: "Please use speech input to find an article titled
Johnson wins 200 meters semifinal in the Sports section, and read the article sentence
by sentence. Then pause after three sentences."

• "Please use the touchpad to find the third article in the Politics section, repeat the title
of the article and spell the author's name."

• A mixed speech and touch input task: "Please use speech input to find an article in the
Europe section about a political event that happened in Spain. Use the touchpad to
decrease the reading speed by one level, and use the speech input to read the next
sentence."

• A free choice of input modality task: "Please use the speech input and the touchpad
input in any way you wish to do the following steps: find a news article interesting to
you, spell the name of the author, increase the volume by two levels, and read a small
part of the article."

The subjects were allowed to request the experimenter's help if they found it

difficult to finish any task.

The experimenter administered a small amount of errors to allow the subjects to

practice error correction.

6.4.4.2 Steps on Day Two.

Step 6: Speech and touch input review. On Day Two, the experimenter helped

the subject review speech and touch input learned in the previous day by reading a

summary of the system functions and speech and touch input commands.

Step 7: Warm-up task session. The warm-up session prepared the subjects for the

experiment session. The types of tasks in this session were the same as those in the
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practice session on Day One, including speech input tasks, touch input tasks, and free

choice of input modality tasks.

Step 8: Experiment session. The experiment session was broken down into three

phases: finding the subject's most comfortable speech settings, testing the subject's

listening comprehension skill on computer-synthesized speech output, and administering

the experiment tasks. Details of each phase are provided in Section 6.4.5, "Procedure of

Experiment Session".

Step 9: Post-experiment questionnaire. After the experiment session, the subjects

were interviewed about their experience and their opinion about using each input

modality to finish specific tasks. The experimenter collected the subjects' opinions in

forms of ratings and recorded their rationales for their ratings.

6.4.5 Procedure of the Experiment Session

The experiment session is one of the steps (i.e., Step 8 in Day Two) in the research.

Before the experiment session started, the subjects' freedom of choosing any

input modality for any tasks was emphasized.

6.4.5.1 Step 1: Find subjects' most comfortable speech settings. Every subject was

asked to go to the same article in the New York Times section, and adjust the audio

settings while listening to the article. Each subject was asked to fine adjust speech and

non-speech audio volumes, reading speed, and pitch, and select the voice with the

pronunciation that was clearest. Each subject used as much time as needed to find the

most comfortable audio settings.
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Once a subject stopped adjusting audio settings, s/he was instructed not to change

the settings any more until finishing Step 2 of the experiment session.

6.4.5.2 Step 2: Test subjects' ability to understand computer-synthesized speech

output. A test examining the subjects' ability to understand synthesized speech

was conducted in order to ensure that the ability to comprehend read text did not affect

the subjects' performance during the experiment. During the test, the AudioBrowser

system read two articles, a short one and a long one. Following each article, subjects

were asked to answer comprehension questions about the article. Three questions

followed the short article and four questions followed the longer article. The questions

were multiple-choice questions each with A, B, C and D options. The questions required

the subjects' understanding of the articles' contents and details.

The articles, questions and standard answers were from the Listening

Comprehension Section of sample TOEFL tests (Test of English as a Foreign Language)

published on ETS' web site (ETS, 2005).

Then with the audio settings selected during Step 1, each subject listened to each

article once without interruption. Following each article, the questions were read to each

subject as many times as needed before the subject gave his/her answer. To allow the

subjects focusing on the listening comprehension task only, the experimenter used the

touchpad to control the AudioBrowser to read the articles and the questions for the

subjects.

The subjects' answers were recorded. A score was assigned to each subject based

on the accuracy of the answers.
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6.4.5.3 Step 3: Administer experiment conditions. The experiment conditions

are shown in Table 6.3. The experimenter administered levels of error rates and types of

cognitive tasks. The types of operators, navigation operators or non-navigation ones,

were introduced by the experiment tasks — the tasks required the subjects to use both

navigation and non-navigation operation to accomplish the tasks.

It has been explained that in the occasional input failures condition, the

experimenter did not introduce any failure using the Wizard of Oz feature. The failures in

this condition naturally occurred during the subjects' normal use. These failures included

wrong user commands, uncorrected bugs in the AudioBrowser system, etc. In the

frequent input failures condition the experimenter introduced a number of input failures

simulating the failures that occurred in the natural context.

The data for each type of cognitive task and each type of operator were only

collected from the occasional input failures condition, not the frequent input failures

condition. There are two reasons for doing this: (1) The pilot study has shown that

increased input failures change users' interaction patterns. Without artificially introduced

errors, the occasional input failures condition has a higher chance to show users' normal

interaction patterns. (2) This way of collecting data mitigates the situation of too many

experiment conditions vs. small sample size.

6.4.5.4 Step 4: User interview and questionnaire. The interview and questionnaire

were used to collect the subjects' opinions toward each type of input operator when

completing different types of tasks. The interview and questionnaire were conducted

between the occasional input failures condition and the frequent input failures condition.
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The rationale was to get user opinions before they were changed by much higher input

failure rates.

6.5 Summary

This chapter provided a detailed summary of the experiment design and experiment

procedures used to test the research hypotheses generated in Chapter 5. In particular, it

gave the rationale for the choices made and the controls embedded in the experiment

design. The next chapter presents a detailed analysis of the data collected with these

procedures and then discusses the findings uncovered by the research.



CHAPTER 7

OVERVIEW OF RESULTS FROM CONTROLLED EXPERIMENT

7.1 Results Overview

Findings from the controlled experiment are abundant. Chapters 7 through 12 are

dedicated to present and discuss these findings. Among these chapters, Chapter 7

provides an overview of the results, and Chapter 12 provides a summary of the results.

Chapters 8 through 11, each addresses one of the four research questions.

The most important findings presented in these chapters are:

• Most subjects selected multimodal input rather than unimodal input while both were
available for free selection (Chapter 8).

• The subjects selected input modalities based on the type of input operation
undertaken (Chapter 9).

• Input modality switching was not intensively used for error correction (Chapter 10).

An overview of the results for all research questions, as well as a summary of the

subjects' background, is provided below.

1. The subjects' background (Chapter 7)
In addition to satisfying the recruitment criteria, the subjects represented both a
visually impaired population (some vision) and a blind population (no vision).

2. The subjects' ability to understand computer-synthesized speech (Chapter 7)
Ten out of 19 subjects answered all listening comprehension questions correctly and
obtained 7, the full score. Five subjects scored 6 out of 7. Three subjects scored 5 out
of 7. And one subject scored 4. The correlation tests did not reveal any significant
relationship between the subjects' listening comprehension scores and their choice of
input modalities or their error correction behavior.

3. RQ1: users' choice between multimodal and unimodal input (Chapter 8)
In the session with low error rates, five out of 19 subjects used unimodal input. Four
of them used the touch input only and one used the speech input only. When error

164
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rates were increased, only one out of 19 subjects used unimodal input. He stayed in
the touch input mode.

4. RQ2: determinants of users' multimodal input patterns (Chapter 9)
The type of input operation was found to have a significant influence on the subjects'
choices of input modalities. Navigation operations were mostly performed using the
touch input. Non-navigation operations were mostly finished using speech input.

Cognitive task type affected the subjects' modality switching behavior. The subjects
switched modalities significantly more for routine cognitive tasks than for problem
solving tasks.

The level of visual impairment was not found to influence a subject's choice of input
modalities or modality switching behavior.

5. RQ3: effects of errors on users' usage of multimodal input (Chapter 10)
Switching input modalities for error correction was not a common practice. The
subjects were found to stay in the same input modality to correct errors.

When error rates were increased, both modality switching for error correction and
modality switching in general were increased. However, staying in the failing
modality was still significantly more prevalent than switching the modality for error
correction.

The level of visual impairment was not influential to the subjects' modality switching
behavior.

6. RQ4: common multimodal input patterns among sighted and visually impaired users
(Chapter 11)
Among the 33 sighted and visually impaired subjects, all but one visually impaired
subject used multimodal input. The one who used unimodal input stayed in the touch
input. The 32 sighted and visually impaired subjects who used multimodal input were
found to choose input modalities based on the type of input operations undertaken.
They seldom switched input modalities for error correction.

The organization of each of the chapters from Chapter 8 to Chapter 11 is as

follows. The models and hypotheses of the research question being addressed in the

chapter are restated. Data preparation and statistical method selection are then described.

These are followed by the data analysis results. At last, discussions on the results are

presented.
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In the next section of this chapter, the subjects' background information and their

scores in understanding computer synthesized speech are described.

7.2 Subjects' Background

Among the 20 recruited subjects, one male subject was not able to finish all the

experiment tasks and hence, was excluded from the data analysis. The 19 subjects whose

participation generated valid data for the research were between 20 and 60 years of age.

The corrected vision in their better eye ranged from total blindness to being able to read

magnified fonts. The numbers of the subjects in categories of vision, age and gender are

shown in the Table 7.1.

Table 7. 1 Distribution of Subjects Based on Age, Gender and Level of Visual
Impairment (I)

The subjects who only had light perception could perceive lights and shadows,

but not any details of objects. So these subjects, together with those whose visual acuity

was zero, were considered subjects with no working vision. The other subjects, to some
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extent, depended on their visual acuity in their everyday life, and so belonged to the

category that had working vision.

The distribution of subjects into the categories with and without working vision is

shown in Table 7.2.

Except for one subject, all subjects' visual impairment resulted from one or more

types of eye diseases, from Retinitis Pigmentosa (RP) to Retinopathy of Prematurity

(ROP). One subject became visually impaired from a head injury.

Twelve out of 19 subjects were born with visual impairment. All subjects had

visual impairment for five or more years.

Table 7.2 Distribution of Subjects Based on Age, Gender and Level of Visual
Impairment (II)

While the subjects had different education levels, all subjects had at least a high

school diploma. Seven of them had bachelor degrees. Nine had already earned a college

degree, or were in education programs working toward an advanced degree.



168

Eighteen out of 19 subjects had used computers for at least six . years. One subject

had been in assistive computer systems training classes for one year. All subjects used

computers for at least an average of one hour per day. They used computers for a variety

of activities from doing school and office work to entertainment and online shopping.

The input methods of their assistive systems all included keyboard input, some had

Braille input, but no speech or touchpad input. For all subjects but one, the output of their

computer systems included speech output.

7.3 Subjects' Ability to Understand Synthesized Speech

In this experiment, it is important to address the issue on the participants' ability to

understand computer-synthesized speech output. If their ability is not equal, then it is

important to determine whether the differences in their ability could have influenced their

multimodal interaction.

The average speed of the speech output the participants chose for the listening

comprehension test was 225 words / minute, ranging from 160 to 320 words / minute.

The distribution of listening speed choices is shown in Table 7.3.

Ten subjects obtained the full score in the text comprehension test. Five scored 6

out of 7. Three scored 5 out of 7. And one scored 4. The score distribution is shown in

Table 7.4.



Table 7. 3 Listening Speed Selection
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Table 7. 4 Listening Comprehension Scores

In order to see whether the subjects' ability to understand computer-synthesized

speech influenced their multimodal input choice, correlation tests were conducted.

Kendall's tau-b, a non-parametric, rank-based correlation coefficient was used, because

the listening comprehension scores were not normally distributed.

The results show that the correlation between the subjects' listening

comprehension scores and the amount of speech inputs and touch inputs they used were

not found to be correlated. The Kendall's tau-b coefficient was 0.266 but was not

significant at p < 0.05. The scores were not correlated with the subjects' choice of error

correction strategies either. A subject's error correction strategy was represented using
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the percentage of times the user stayed in the same modality for error correction. The

Kendall's tau-b coefficient was 0.094 and was not significant at p < 0.05.

The conclusion is that although differences exist in the subjects' ability to

understand the computer-synthesized speech output used in this experiment, the

differences was not found to influence the subjects' use of the multimodal input and

hence, was not considered a factor that needs to be controlled.



CHAPTER 8

CHOICE BETWEEN MULTIMODAL AND UNIMODAL INPUT

8.1 Results

RQ1 asks "When interacting with a non-visual multimodal system, do visually impaired

users use multimodal or unimodal input?"

To answer this question, descriptive statistics were looked at.

During the experiment sessions with visually impaired subjects, a total of 5519

input operators were performed by the 19 participants. Among these operators, 1683, or

30.49% were speech input, and 3836, or 69.51% were touch input. A total of 358 or

21.27% of speech input encountered errors. A total of 411 or 10.71% of touch input

encountered errors. Out of the 5519 input operators, 755 or 13.68% involved switching

from one input modality to a different one when the operator changed. All subjects, but

one, switched input modalities during the complete experiment session.

Input operators executed by individual participants ranged from 177 to 462 and

averaged 290.5 imput operators per subject. Speech input operators executed by

individuals ranged from 0 to 269 and averaged 88.6speech input operators per subject.

Touch input operators executed by individuals ranged from 11 to 462 and averaged 201.9

touch operators per subject.

Although most subjects switched input modalities, some subjects did not. This

extreme preference over one input modality rather than the other was especially

prominent when error rates were low. When error rates were increased, the participants'

modality choices were distributed more evenly, on average.
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In the experiment session with low error rates (i.e., error rates were between

3.35% and 24.45%), the participants executed a total of 4395 input operators, 1213, or

27.60% of which were speech input, and 3182, or 72.40% of which were touch input. 486

or 11.06% of the total number of 4395 input operators involved modality switches.

In the experiment condition with low error rates, five out of 19 subjects did not

switch input modalities. Four out of the five subjects, who had no working vision, used

touch input only; one of them, who had some working vision, used speech input only. In

addition to their level of visual impairment, their choice of input modality did not appear

to relate to any other background they had (including gender, age, years of computer

experience, etc.).

When error rates were increased by 5.19% to 25.91% per subject, which resulted

in 14.63% to 32.47% of failed input operators with each individual, the participants used

speech and touch more evenly. In this condition with higher error rates, the participants

executed a total of 1124 input operators, 470 or 41.81% of which were speech input, and

654 or 58.19% of which were touch input. The total number of operators involving

modality switches was increased to 23.93%, or 269 out of 1124.

In the condition with high error rates, only one out of 19 participants chose

unimodal interaction. This participant was one of the four who used touch input only

when error rates were low.

Table 8.1 below summarizes these results.



Table 8. 1 Input Operators Executed during Experiment Sessions
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8.2 Discussion

The important result obtained from the analysis above is that most subjects used

multimodal rather than unimodal interaction when multimodal interaction was available.

The secondary result is that, whether the error rates were low or high, the subjects mostly

used more touchpad input than speech input.

The subjects' choice of multimodal, rather than unimodal interaction, is in

accordance with the three-component working memory model (Baddeley, 1986; Quinn

and McConnell, 1996). According to the model, human working memory has three

components: the central executive, the phonological loop, and the visuo-spatial

sketchpad. The phonological loop and the visuo-spatial sketchpad store distinct

temporary information and process different tasks without interference against each

other. The visually impaired subjects' phonological loop, or their verbal working
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memory, stores and processes speech commands and synthesized speech output. Their

visuo-spatial sketchpad, or the spatial working memory, processes very little to none of

the visual information, but handles spatial information conveyed through the touchpad.

The central executive supervises and coordinates tasks performed by the two subsystems

by performing four functions: switching of retrieval plans, time sharing during dual-task

performance, selective attention to certain stimuli while ignoring others, and temporary

activation of long-term memory. It is believed that because of this working memory

structure, the subjects were able to naturally divide spatial and verbal tasks between the

two subsystems, and perform the tasks simultaneously.

In addition, the touchpad input allows exploration to find commands, which

reduces the need to memorize commands. The speech input allows direct access to

commands, which saves time since menu browsing is not needed. The two input

modalities provided distinct advantages. The subjects switched between the modalities to

get the most out of the multimodal interaction.

The fact that most subjects used more touchpad input than speech input could be

explained as follows. Cognitive tasks during touchpad input involve processing spatial

information conveyed through the touchpad, and processing computer speech output

triggered by users' touch input. These tasks can be distributed to the spatial and the

verbal subsystems for separate but simultaneous processes which take shorter times as

compared to being processed linearly by a single subsystem. Cognitive tasks during

speech input require more intensive use of the verbal subsystem to process both users'

speech commands and computer-synthesized speech output. As such, speech input is

more of a mono-subsystem task and requires a longer time for processing. The subjects
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naturally used the touchpad input more often to offload some cognitive tasks to the

spatial subsystem which otherwise would have to be processed by the verbal subsystem.

This may also be the reason that when extreme preference is presented for one input

modality over the other (i.e., when users do not switch modality at all), the preference is

often given to the touchpad input — in the case of our study, four out of five subjects who

did not switch input modality during the session with low error rates showed their loyalty

to the touchpad input; and in the session with higher error rates, the only user who did not

switch input modality stayed with the touchpad input, too.

In order to understand how the subjects used the two input modalities, and why a

few subjects insisted on using unimodal input, further data analysis was conducted and is

presented in the next two chapters.



CHAPTER 9

FACTORS DETERMINING MODALITY SELECTION

9.1 Overview

RQ2: Do any of the following factors have an impact on visually impaired users'

multimodal input usage: type of input operator, level of visual impairment, and type of

cognitive task?

In this research question, multimodal input usage refers to users' choice of input

modalities and users' modality switches. Two models were constructed to investigate this

question. The first model addresses the relationship between level of visual impairment,

operator types, and users' choice of input modalities. The second model addresses the

impact of cognitive task types on users' modality switching behavior.

9.2 Model 2.1: Effects of level of visual impairment and type of operator on choice
of input modality

The independent and dependent variables of this model are:

• Independent variable (Between subject variable): level of visual impairment (with

working vision vs. without working vision), and

• Independent variable (Within subject variable): type of operator (navigation operator

vs. non-navigation operator)

• Dependent variable: Choice of input modality (speech input vs. touch input)

For calculation purposes, the dependent variable is represented using the ratio of

speech inputs used over the total number of speech inputs and touch inputs used. Hence,

176



177

this ratio reflects both the amount of speech input and the amount of touch input. The

formula is as follows:

Choice of input modality = number of speech inputs / (number of speech inputs +

number of touchpad inputs)

The hypotheses for this model and the testing results are listed in Table 9.1.

Table 9.1 Hypotheses and Test Results for Model 2.1

Since five out of 19 subjects never switched input modality throughout the entire

experiment session, to investigate whether these subjects' extreme interaction patterns

have impacted the overall testing results, two sets of tests with and without the data from

the five subjects have been conducted.

The following sections elaborate the hypotheses testing process.

9.2.1 Method Selection and Assumption Checking

Because there were two independent variables and one dependent variable, assumption

checking was conducted to decide whether ANOVA or a non-parametric method was

correct for hypotheses testing.
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9.2.1.1 Assumption of Normal Distribution with Data from All Subjects. The

subjects' choices of input modalities were checked in one batch. Since there were

identical values in the data set, the Kolmogorov-Smirnov method was adopted for

normality checking. The result showed that the significance value was less than .05. This

meant that the null hypothesis that the data was normally distributed was rejected. The

Normal Q-Q plot on the data showed a departure from the normal distribution. Table 9.2

and Figure 9.1 present the results of this test.

Table 9.2 Normality Test on Input Modality Choices

Figure 9.1 Normal Q-Q Plot of Input Modality Choices

To improve normality, the original data was transformed using the Arc-root

transformation method. With this method, the arcsine values of the square roots of the

original data were calculated. Normality was then checked based on the transformed data.
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The normality testing result below shows that the transformed data was normally

distributed. The significance value from the Kolmogorov-Smirnov test was larger than

.05, therefore the null hypothesis that the data was normally distributed was not rejected.

The Normal Q-Q plot shows an improved data distribution shape. These results are

shown in Table 9.3 and Figure 9.2.

Table 9.3 Normality Test on Transformed Values of Input Modality Choices

Observed Value

Figure 9.2 Normal Q-Q Plot of Transformed Values for Input Modality Choices

9.2.1.2 Assumption of Normal Distribution, Extreme Data Excluded: After excluding

the data from the five subjects who never switched input modalities throughout the entire

experiment session, the assumption of Normal Distribution was checked again using the

data from the remaining 14 subjects. Since no identical values existed in the data sets this
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time, the Shapiro-Wilks test was adopted. The testing result below shows that the

significance value was larger than .05, hence the null hypothesis that the data was

normally distributed was not rejected. No data transformation was needed. Table 9.4 and

Figure 9.3 illustrate the result of this normality test

Table 9.4 Normality Test of Input Modality Choices (Extreme Data Excluded)

This is a lower bound of the true significance

a. 	 Lilliefors Significance Correction

Normal Q-Q Plot of Users' choice

of input modality (14 users)

Observed Value

Figure 9.3 Normal Q-Q Plot of Input Modality Choices (Extreme Data Excluded)

9.2.1.3 Assumption of Homogeneity of Variance with Data from All Subjects.

Levene's test of equal variance was conducted on the transformed data from all subjects.

No significance less than .05 was found. Therefore the null hypothesis that the error

variance of the dependent variable was equal across groups was not rejected. Table 9.5

presents the results from the homogeneity of variance test.
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Table 9.5 Levene's Test of Equality of Error Variances on Modality Choices (All

Subjects Included) a

9.2.1.4 Assumption of Homogeneity of Variance, Extreme Data Excluded. After

excluding the data from the five subjects who did not switch input modalities during the

experiment session, Levene's test of equal variance was used again to check the equal

variance assumption using the data from the remaining 14 subjects. Again, all

significance values were larger than .05. Therefore the null hypothesis that the error

variance of the dependent variable was equal across groups was not rejected.

Table 9.6 Levene's Test of Equality of Error Variances on Modality Choices (Extreme
Data Excluded) a

9.2.2 Results

9.2.2.1 Results Based on Data from All Subjects. The between- and within- subjects

variables formed four experiment conditions. The descriptive statistics and N of each

experiment condition are shown in the following tables.
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The Descriptive Statistics table shows that the subjects with working vision gave

more speech input and less touch input than the subjects with no working vision — an

average of 69.65% input operators executed by the subjects with working vision were

speech input, while 50.04% input operators by the subjects with no working vision were

given in speech.

The descriptive statistics also show that on average, the subjects used more touch

input and less speech input for navigation operators than for non-navigation — on average,

43.73% of the navigation operators were performed using speech, while 72.87% of the

non-navigation operators were performed using speech.

Table 9.7 Independent Variables and N for Model 2.1 (All Subjects Included)

Table 9.8 Descriptive Statistics for Model 2.1 (All Subjects Included)

* Mean = the average percentage of user input given through the speech modality
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ANOVA was used to test the effects of the within-subject and between-subject

variables and their interaction effect using the data from all subjects. The results indicated

that the Type of Input Operator had a significant effect on users' choice of input

modality. The significance value was less than .001, with an observed power as high as

.990. However, no significant effects were found from the level of visual impairment.

Therefore, Hypothesis 2.1, that the level of visual impairment and the type of input

operator being executed determine a user's choice of input modality, was partially

supported. Hypothesis 2.1b that addresses how the level of visual impairment affects

users' choice of input modality was rejected.

The analysis did not indicate any interaction effect between the level of visual

impairment and the type of input operator.

Table 9.9 Test of Within Subjects Effects for Model 2.1

Table 9.10 Test of Between Subjects Effects for Model 2.1 (All Subjects Included)

a. Computed using alpha = .05
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The type of input operator has been demonstrated to affect users' input modality

choice. To elaborate how it affected, paired T-Tests were conducted within the group of

subjects that had working vision and the group of subjects that had no working vision.

The results below indicate that for navigation operators the subjects with either visual

impairment condition used significantly more touch input and less speech input than for

non-navigation instructions. Therefore, Hypothesis 2.1a is supported.

Table 9.11 Effect of Operator Types on Input Modality Choices (Paired T-Test) (All
Subjects Included)

9.2.2.2 Results that Exclude Extreme Data. Because five out of 19 participants

were found using mono-modality throughout the entire experiment session, there was a

general interest in seeing whether those subjects' extreme input pattern had skewed the

overall results. Therefore, a separate set of tests was conducted using data only from the

remaining 14 subjects who switched input modalities during the experiment session.
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The N's in the four experiment conditions formed by the between- and within-

subjects variables, along with the descriptive statistics in the conditions are shown in the

tables below.

The descriptive statistics obtained the same results as that before the extreme

interaction data was removed, in that less speech operators and more touch operators

were used for navigation operations than for non-navigation operations — an average of

48.12% of navigation operators were given in speech, while 87.67% of the non-

navigation operators were given in speech.

Table 9.12 Independent Variables and N for Model 2.1 (Extreme Data Excluded)

Table 9.13 Descriptive Statistics for Model 2.1 (Extreme Data Excluded)

* Mean = the average percentage of user input given through the speech modality

The descriptive statistic revealed a tendency opposite to that before the extreme

interaction data was removed, in that the subjects with working vision used less speech

input than the subjects with no working vision — an average of 57.16% input operators
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were given in speech by the subjects with working vision, while 78.62% input operators

were given in speech by the subjects with no working vision.

ANOVA was used to test the effects of the within-subject and the between-subject

variables and their interaction. The results were the same as the results from the data from

all subjects, but with a smaller significant value and a greater power: the Type of Input

Operator had a significant effect on the subjects' choice of input modality (Sig. < .01,

observed power = .9997).

However, no significant effects were found from the level of visual impairment,

and the interaction between the level of visual impairment and the type of input operator.

Therefore, with data that excluded extreme input patterns, Hypothesis 2.1, that the

level of visual impairment and the type of input operator being executed determine a

user's choice of input modality, was again partially supported. Hypothesis 2.1b that

addressed how the level of visual impairment affects users' choice of input modality was

rejected.

Table 9.14 Test of Within Subjects Effects for Model 2.1 (Extreme Data Excluded)

a. Computed using alpha = .05
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Table 9.15 Test of Between Subjects Effects for Model 2.1 (Extreme Data Excluded)

Paired T-Tests were conducted to investigate how the Type of Input Operator

affected Input Modality Choices. The one-tailed test was significant at the .05 level

within both levels of visual impairment. Therefore, for navigation operators the subjects

with either visual impairment condition used significantly more speech input and less

touch input than for non-navigation instructions. Hypothesis 2.1a is therefore supported.

Table 9.16 Effect of Operator Types on Input Modality Choices (Paired T-Test)
(Extreme Data Excluded)

Therefore, the analysis from the data with and without the extreme user

interaction data gave identical results.
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9.2.2.3 Subjects' Subjective Ratings. The above statistics have provided evidence

that the type of input operator to be executed has a significant effect on the input

modality the user will choose to execute it. To understand how users would choose an

input modality for each specific type of input operator, the subjects' subjective ratings

were investigated at a detailed level.

Paired T-Tests were used to compare the subjects' ratings on speech and on touch.

Because a Paired T-Test is robust against data departure from the normal distribution and

the equal variances assumptions, assumption checking was not conducted.

Overall, the subjects did not find one input modality easier to learn than the other.

The statistics shown in the following tables confirm this.

Table 9.17 Descriptive Statistics of Subjects' Overall Ratings on Speech and Touch

Table 9.18 Paired T-Test on Subjects' Overall Ratings
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However, for each specific type of input task, the subjects rated on speech input

differently than touch input.

9.2.2.3.1 Navigation tasks. In general, for five out of seven types of navigation tasks,

the subjects rated the touchpad significantly easier to use than the speech input, and /or

they were more likely to choose the touchpad than the speech input for the specific task.

Their overall ratings for navigation operations are shown in the following tables:

Table 9.19 Overall Ratings on Speech and Touch for Navigation Operators

For each specific type of navigation operators, the subjects rated as follows:

(1) Browse news sections & article titles: To browse news sections and article titles of
the same level on the information hierarchy, the user glides his finger across the
touchpad track that holds the news sections / articles or says "next/previous category /
article / item". For this operation the subjects didn't find one modality easier to use
than the other, but would prefer to use touch than speech (Sig. < .05).

(2) Enter a news section: To enter a news-section (i.e., to browse information across
different levels on the information hierarchy), a user clicks the right touchpad button
or says "select / zoom in / read article". For this operation the subjects found the



190

speech input as easy to use as the touch input, but rated more likely to use touch than
speech (Sig. .053 when all subjects' data was counted, and Sig. < .05 when extreme
interaction data was excluded).

(3) Exit a news section: To exist a news-section (i.e., to browse information across
different levels on the information hierarchy), a user clicks the left touchpad button or
says "exit" or "zoom out". For this operation the subjects' ratings were not
significantly different between the to modalities in either ease of use or likelihood to
use.

(4) When a user is in the "paragraph" mode, read the next paragraph: When the user is
already in the "paragraph" mode, to read the next paragraph, the user either clicks the
right touchpad button or says "next paragraph". No significant difference is found in
the subjects' ratings on either ease of use or likelihood to use.

(5) Read five sentences continuously: To read five sentences continuously a user either
touches the "sentence" unit on the touchpad and clicks the right button five times, or
says "next sentence" five times. The subjects rated the touchpad input significantly
easier to use than the speech input (Sig. < .05) and their likelihood to choose the
touchpad input significantly higher than to choose the speech input (Sig. < .05).

(6) Browse available reading units: To browse the available reading units, a user glides
his finger across the touchpad track that holds the reading units or says "next/previous
reading unit". The subjects rated touch significantly easier to use (Sig. < .05) and
having significantly higher likelihood for them to choose for this operation (Sig. <
.05).

(7) Browse available audio settings: For this operation a user glides his finger on the
touchpad unit that holds the audio settings or says "next/previous setting". The
subjects rated that the speech input was easier to use for this task (Sig. < 0.1), and that
it was more likely for them to choose the touchpad input than the speech input to do
this task (Sig. < .05).
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*	 Results outside the parentheses are calculated based on data from all subjects; results in
the parentheses excluded data from the subjects with extreme interaction patterns.

**	 Rating scale for ease of use: 1 = very easy to use; 5 = very difficult to use

*** Rating scale for likelihood to use: 1 = very likely to use; 5 = very unlikely to use

Sig. value with light underline:  significant at the 0.1 level

Sig. value with heavy underline:  significant at the 0.05 level

9.2.2.3.2 Non-navigation tasks. 	 In general, for all five types of non-navigation tasks,

the subjects rated the speech input significantly easier to use than the touchpad, and for

that they were more likely to choose the speech input than the touchpad for the specific

task. Their overall ratings for non-navigation operations are shown in the following

tables.
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For each specific type of non-navigation operators, the subjects rated as follows.

(1) 1. Pause: To pause reading, the user either says "pause" or clicks the two touchpad
buttons at the same time. The subjects' average rating values on speech and touch
were not very different, but significance was found in the ease of use when all
subjects' data was taken into account (that speech was significantly easier to use, with
Sig. < .05) and in the likelihood to use when extreme interaction data was excluded
(that they would significantly more likely to choose speech than touch, with Sig. <
.05).

(2) 2. Resume: To resume reading, the user either says "resume" or touches the desired
reading unit (i.e., word, sentence, or paragraph) on the touchpad and clicks the right
button. The subjects preferred the speech input significantly more than the touchpad
input (The significant values for both ease of use and likelihood are < .05).

(3) 3. Spell a word: To spell a word the user says "spell" or "spell word", or touches the
word unit on the touchpad and clicks both touchpad buttons. Again, the subjects
preferred speech significantly more than the touchpad (The significant values for both
ease of use and likelihood are < .05).

(4) 4. Decrease reading speed: To decrease reading unit the user says "decrease speed" or
touches the speed unit on the touchpad and clicks the left button. The subjects'
preference on the speech input was prominent (The significant values for both ease of
use and likelihood are < .05).
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(5) 5. Repeat a sentence: To repeat a sentence, the user either says "repeat" or touches the
sentence unit on the touchpad and clicks the left button to read the sentence again.
Again, the subjects' preference on the speech input was prominent (The significant
values for both ease of use and likelihood are < .05).

Table 9.22 Ratings on Each Type of Non-Navigation Operators

* 	 Results outside the parentheses are calculated based on data from all subjects; results
in the parentheses excluded data from the subjects with extreme interaction patterns.

**	 Rating scale for ease of use: 1 = very easy to use; 5 = very difficult to use

*** Rating scale for likelihood to use: 1 = very likely to use; 5 = very unlikely to use

Sig. value with light underline: significant at the 0.1 level

Sig. value with heavy underline: significant at the 0.05 level

9.2.2.3.3 Special case. 	 Setting the reading unit is a special case, because on the

touchpad it is a navigation task (since the user glides on the touchpad track that holds

reading units and stops his finger on the desired unit), but in speech it is a non-navigation

instruction (since the user says "set to word /sentence /paragraph /article"). The subjects

rated that they were more likely to use the touchpad input than the speech input to finish

this task (Sig. < .05), reflecting that they preferred finding and executing the command

through navigation rather than recalling and speaking it.
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Table 9.23 Ratings on Setting Reading Unit

* 	 Results outside the parentheses are calculated based on data from all subjects; results in
the parentheses excluded data from the subjects with extreme interaction patterns.

** 	 Rating scale for ease of use: 1 = very easy to use; 5 = very difficult to use

*** Rating scale for likelihood to use: 1 = very likely to use; 5 = very unlikely to use

Sig. value with heavy underline:  significant at the 0.05 level

The following charts summarize the subjects' ratings. With or without extreme

interaction patterns, the subjects' average ratings show the same tendency on choices of

input modalities.



Figure 9.4 Ratings on Ease of Use on Speech Input and Touch Input (All Subjects Included)

Figure 9.5 Ratings on Likelihood to Use on Speech Input and Touch Input (All Subjects Included)



Figure 9.6 Ratings on Ease of Use on Speech Input and Touch Input (Extreme Data Excluded)

Figure 9.7 Ratings on Likelihood to Use on Speech Input and Touch Input (Extreme Data Excluded)
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9.2.2.4 Extreme Interaction Patterns. 	 To illustrate the data, the subjects' IDs are

used.

In the experiment session with low error rates, five out of 19 visually impaired

subjects used unimodal input. The subjects are labeled S4, S8, S14, S16 and S17. When

error rates were increased by the experimenter, four of the five subjects switched input

modalities, but one subject, S 14, still insisted on unimodal input.

The five subjects' speech and touch input usage is illustrated in the following

table.

Table 9.24 Modality Usage by Subjects Who Used Unimodal Input

The five subjects' ratings on speech input and touch input are illustrated in the

following table. S4 did not participated in the rating, and so he is not listed in the table.
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In general, during the session with low error rates, S8 used speech input only,

whereas S4, S14, S16 and S17 used touch input only. During the session with high error

rates, S 14 insisted on touch input, while the other four subjects started to switch

modalities. During the session with high error rates, S8 and S17 corrected errors by

modality switching, but S4 and S16 used unimodal error correction only.

However, the subjects' ratings were not always consistent with their actual use of

the input modalities.
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S8, the subject who used speech input only during the session with low error

rates, rated speech input consistently better than touch input. Even for performing

navigation operations, S8 felt speech easier to use and as such, she was more likely to use

speech input for navigation.

S 14, the subject who insisted on touch input only during the sessions with both

low error rates and high error rates, rated touch higher than speech most of times.

However, for non-navigation tasks she rated speech easier than touch, and that she would

be more likely to choose speech for non-navigation tasks.

S16 and S17, who used touch input only during the session with low error rates,

rated speech better than touch for some questions (refer to Table 7.30).

The data above revealed individual differences in modality selection, as well as

that individuals' modality selection was not necessarily conscious.

9.2.3 Discussion

The most important findings from Model 2.1 are that users choose input modality based

on the type of operation undertaken, and that individual differences in modality switching

should be expected, despite the modality choice — operation type dependence.

The level of visual impairment was not found to affect the subjects' modality

choices. The reason is discussed in this section.

9.23.1 Input modality choice — input operator type dependence. The hypotheses

testing results proved that subjects used significantly more touch input and less speech

input for navigation operators than for non-navigation instructions. The subjects'

subjective ratings revealed the reasons with more details. For most types of navigation
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operations the subjects felt the touchpad input significantly easier to use and that to finish

those operations they were more likely to choose the touchpad input. For most types of

non-navigation instructions the subjects felt the speech input significantly easier to use

and that they were more likely to choose the speech input to finish those operations.

The reasons for the subjects' preference over the touchpad input for navigation

tasks could be that the touchpad input makes navigation operations easier by allowing the

visually impaired subjects to mapping the information structure onto a physical space.

This mapping helps the subjects to understand and explore the information structure by

providing physical references.

Furthermore, based on Baddeley's working memory model (Baddeley, 1986), the

working memory contains two subsystems for storage — phonological loop and

visuo-spatial sketch pad. Although visually impaired users do not need to process visual

information, their spatial sketch pad is used to process spatial information. Navigation

operations often involve extensive speech output comprehension (e.g., consuming the

meaning of sentences or paragraphs) that takes much use of the phonological loop in the

working memory. The touchpad input, by allowing completion of navigational input

using the spatial sketch pad in users' working memory, helps to avoid the chances of

thresholds in the phonological loop and reduces the stress of the working memory.

The advantage of the touchpad is more prominent when continuous navigation is

being executed. The statistical analysis indicated this in the following way: For doing a

one-step navigation operation, no differences in the subjects' ratings on ease of use or

likelihood to use were found between the two modalities, but when performing

continuous navigation steps, the subjects rated that the touch input was significantly
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easier to use than the speech input, and that their likelihood to use the touch input was

significantly higher than the speech input. The underlying explanation used for this is that

reading longer text results in a heavier workload in the phonological loop and hence,

offloading some information processing tasks to the spatial sketch pad significantly

reduced the burden on the subjects' working memory.

On the other hand, the visually impaired subjects preferred speech input for non-

navigation instructions. This could be the result that (1) uttering a non-navigation

command is quicker than searching for and executing the command on the touchpad, and

(2) when the user is navigating the information space using the touchpad, giving a non-

navigational command allows the user to keep tracking of his / her location on the

touchpad (in the information space) and hence, is less interruptive of the navigation task.

Furthermore, many non-navigation instructions (e.g., change audio settings, set

reading unit, spell a word, pause, etc.) are not followed by an extensive speech output

comprehension task, i.e., the users do not need to understand the meaning of sentences or

paragraphs following the instructions. Hence the phonological loop of the working

memory has less working load compared to the workload following a navigational

command. Completing the non-navigation operation on the touchpad to reduce the

workload of the phonological loop is not necessary and takes longer than uttering a

speech command. Therefore, users prefer to use speech input for non-navigation

instruction.

One subject's comments during the interview complemented the point of view

above: "[To change the reading speed,] when you are just starting to read an article, its

easy to do it using the touchpad, because you can find the command on the touchpad. But
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when you are in an article already, it's definitely easier to say it than going through the

settings [via the touchpad], because I can just automatically say 'increase speed'. It

doesn't distract me from the reading"

9.2.3.2 Individual differences. When input errors were not manipulated by the

experimenter, five out of 19 subjects exhibited extreme interaction patterns. S4, S14, S16

and S17, who had no working vision, used touchpad input only. S8, who had working

vision, used the speech input only. After higher error rates were introduced, all of the five

subjects but S14 used multimodal input. S14, who had no working vision, used touchpad

input only.

The subjects explained their choices of input modalities during an interview

between the session with low error rates and the session with high error rates. Their

comments were therefore not influenced by the increased error rates in the second

session.

S8, who used speech input only during the low-error rate session explained that

"[Using the touchpad] is not as easy as saying it. You have to press more buttons and do

more steps. When you verbally speak it, it will take you there in just one step."

S 17' s comments represented the opinions of the four subjects who stayed in touch

mode during the low-error rate sessions: "[speech and touch] both have a proper place for

use, if you said which one ... like I have to have one, then I probably will take the

touchpad. Even though it might be more frustrating to find where it is, for me I think

once you learn how to use it, you could use it. ... because for some reason to think [what

the speech command is for] next sentence [is], compared to just do the next sentence [on

the touchpad], is an extra brain step, which takes a little longer to me. But if you have no
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use of hands, speech is excellent to read a newspaper." S 14's comments complementary

to S 17's: "You know what it is about the speech ... If you don't remember the command,

the touchpad can feed you back, but with speech, you cannot get anywhere if you don't

give the right word". S16 explained his choice based on his experience with other

systems: "I'm so used to using hand commands that it is always less energy than

speaking".

It seems that the subjects' level of visual impairment determined their choice of

input modality. However, hypothesis testing on the effect of visual impairment did not

return any significant result. Moreover, the subjects' subjective ratings were not always

consistent with their modality choices.

S8 and S 14's overall ratings were consistent with their choice of input modality —

S8 consistently rated speech input better than touch input, and S 14 consistently rated

touch input better than speech. S17, although used touch input only during the session

with low error rates, consistently rated speech better than touch. S16, also used touch

input only during the session with low error rates, however, rated speech easier to use,

touch easier to learn, and no difference between the overall ratings and the level of

frustration on speech and touch. (See Table 7.30)

For navigation operations, S8, S14 and S 16's ratings on ease of learning, ease of

use and likelihood to use were consistent with their usage of the modalities during the

low error rate sessions — they rated the modality they each insisted on easier to learn,

easier to use and that they were more likely to use it than the other modality that they did

not choose. On the other hand, S17, who used touch only in the low error rate condition,
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rated speech easier to learn and use than touch, but he admitted that he would be more

likely to use touch for navigation tasks.

For non-navigation operations, all of the four subjects rated speech easier to use

than touch, despite the fact that three of them only used the touch input.

The large difference in the subjects' choices of input modalities could be a result

of the amount of navigation and non-navigation operations each individual executed, and

the error rate each individual encountered.

During the task sessions with low error rates, S4, S14, and S17 performed more

navigation operations than the other subjects. The navigation operations performed by S8

were close to the average of all subjects. In accordance, S4, S14, and S17 performed

fewer non-navigation operations than all other subjects, while the amount of non-

navigation operations performed by S8 was close to the average. Performing more

navigation operations than other subjects might have encouraged S4, S14, and S17 to use

more touchpad input than other subjects.

By using unimodal input, all of the five subjects achieved lower error rates than

the other subjects. S14, the subject who insisted on unimodal input even when the error

rate was increased, achieved the lowest error rate among all subjects during the session

with low error rates. Under a lower error pressure than others, the five subjects were not

as motivated to switch modalities for error correction as others.

When error rates were increased, the five subjects no longer had the lowest error

rates. Four of them started to switch modalities. Two of the four started to use

multimodal error correction. But the other two of the four insisted on unimodal error
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correction instead of switching modalities to correct errors, despite having started to

switch modalities for other tasks.

The explanation to the subjects' inconsistent ratings could be that their choices of

input modalities were not always conscious. Users may have strong personal preferences

that cause them to make their own modality choices and overwrite the common

interaction patterns found in other users.

The above discussion implies, to some extent, that the distribution of the input

operations used, in combination with error rates encountered, determined their individual

preferences for one input modality over another. But the fact that their ratings were not

consistent with their modality use implies that their choice of input modality was not

entirely conscious. They naturally made a choice based on learned experience without

much conscious thought.

9.2.3.3 Effect of level of visual impairment. Before the hypotheses testing it was

believed that users with working vision would use the touchpad more than users with no

vision. The rational was that people who had vision had an advantage in using the

touchpad because they could rely on their vision to place their fingers on the desired

location on the touchpad and hence assist their navigation of information through the use

of a similar physical space. However, the descriptive statistics did not indicate this.
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Table 9.26 Choice of Input Modality by Subjects with and without Working Vision

Accordingly, the hypothesis addressing different choices of input modality by the

subjects with working vision and without working vision was rejected by the data

collected from the experiment.

Looking more closely, it was found that six out of eight subjects with working

vision, who although confirmed that they somewhat depended on their vision in their

everyday life, belonged to the legally blind category. (People whose best corrected vision

is or less than 20/200 are legally blind.) Their vision might not be sufficient to help them

in recognizing sensing tracks and buttons on the touchpad. Therefore there was no

significant difference between them and the participants with no vision.

To evaluate whether the level of visual impairment really has no effect on users'

input modality choices, the subjects with low vision but whose corrected vision is better

than 20/200 should be recruited.
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9.3 Model 2.2: Effects of cognitive task types on input modality switches

The independent variable of this model is cognitive task types (Routine Cognitive Tasks

vs. Problem Solving Tasks). This is a within subject variable. The dependent variable is

frequency of input modality switches.

The hypothesis for this model and the testing result are:

Table 9.27 Hypotheses and Test Results for Model 2.2

9.3.1 Method Selection and Assumption Checking

9.3.1.1 Adoption of Bootstrapping. In order to compare the subjects' modality

switching behavior for routine cognitive tasks and problem solving tasks, data

preparation and post-hoc control were conducted.

The pilot study with sighted subjects had revealed that the two most prominent

factors that caused most input modality switches were the change of input operator types

and the need for error correction. Therefore the major concerns of using the raw data for

analysis of RQ2 without data preparation are as follows:

The first concern was that the level of error rate, in addition to the cognitive task

type, might have skewed the subjects' modality switch patterns.

To check for the possible skew in data, a paired t-test was conducted to compare

the error rates between the routine cognitive task session and the problem solving task
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session. The result indicated no difference between the error rates in the two cognitive

task sessions. Therefore, skew in data introduced by different error rates did not exist.

Table 9.28 Descriptive Statistics for Model 2.2

Table 9.29 Paired T Test Comparing Error Rates in Routine Cognitive Task Session and
Problem Solving Task Session

The second concern was that the transition between input-operator types (i.e., the

transition between navigation operators and non-navigation operators), rather than the

change in the cognitive task type, might have caused input modality switches.

To check whether this confound existed, a correlation analysis between input-

operator type transition and the subjects' input modality switch was conducted. The

correlation analysis was conducted both with data from all subjects and data only from

the subjects without extreme interaction patterns.

In order to determine the correct correlation analysis method, data normality was

checked within both the amount of modality switches and the amount of transitions

between navigation and non-navigation operators. The normality testing results are

shown in the following table.
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Table 9.30 Normality Tests for Modality switches and Transitions between Operator
Types

TRANS = the amount of transitions between navigation and non-navigation operators

SWITCHES = the amount of input modality switches

* This is a lower bound of the true significance.

a. Lilliefors Significance Correction

Since there was identical data within the amount of modality switches when all

subjects' data is counted, the Kolmogorov-Smirnov test was used for the corresponding

normality check. The Shapiro-Wilks test was used for all other normality checks.

The results indicated that the data from all subjects was not normally distributed,

but that data from the subjects who did not present extreme interaction patterns was

normally distributed. Therefore non-parametric correlation analysis (i.e., Spearman's

rank correlation coefficient) was used for data from all subjects, and parametric

correlation (i.e., Pearson's correlation) was calculated for data from the subjects without

extreme interaction patterns.

The results of correlation analyses are shown in the following table.



210

Table 9.31 Correlation between Modality Switches and Operator Types Transitions

TRANS = the amount of transitions between navigation and non-navigation operators

SWITCHES = the amount of input modality switches

* Correlation is significant at the .05 level (2-tailed).
The above results clearly indicate that the input modality switches observed were

partially caused by transitions between navigation and non-navigation operations.

Because of this confound, the raw data could not be used directly to test the

relationship between cognitive task types and users' modality switches. Post-hoc control

is necessary. The post-hoc control adopted was bootstrapping (Simon, 1997).

Bootstrapping is a resampling method with which a distribution is sampled

multiple times to increase N. Bootstrapping is a popular testing mediation because it does

not require data to be normally distributed and is effective with smaller sample sizes (N <

20) (Wikipedia, 2006).

Bootstrapping was conducted within the subjects' modality switches using the

following steps:
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(1) Each user's input operators were organized into four categories. The four categories
are:

• Category 1: All operators in the routine cognitive task session that involve operator
type transitions

• Category 2: All operators in the routine cognitive task session that do NOT involve
operator type transitions

• Category 3: All operators in the problem solving task session that involve operator
type transitions

• Category 4: All operators in the problem solving task session that do NOT involve
operator type transitions

(2) Random selection was conducted repeatedly within each data category for each user:

• For each user, within each of the four categories above, a random selection of ten

operators was repeated for ten times.

(3) Randomly selected data formed a pool of data for hypothesis testing:

• For each user within each of the four categories, the repeated random selection

generated 100 input operators. Therefore for each user, 400 input operators were

generated using bootstrapping. This equals to a total number of 3800 input operators

from the routine cognitive task session and 3800 input operators from the problem

solving task session.

Table 9.32 Distribution of Input Operators Generated Using Bootstrapping
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Therefore, by using the bootstrapping method, the effect of operator type

transition on the subjects' input modality switch patterns was controlled.

The dependent variable was represented using the number of operators that

involve modality switches.

A paired comparison between operators from each of the two cognitive task

sessions was appropriate for the investigation of the proposed hypothesis.

Assumption checks were conducted to determine which paired comparison

method should be adopted.

9.3.1.2 Assumption of Normal Distribution within Each Data Group. Since identical

data existed in the data from all subjects, the Kolmogorov-Smirnov check was adopted.

The results showed that data from all subjects could not be considered normally

distributed. However, Paired T-Test was fairly robust to non-normality. So either a

parametric or a non-parametric paired comparison could be used for the data set.

Table 9.33 Normality Test on Modality Switches (All Subjects Included)

a. Lilliefors Significance Correction
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Normal Q-Q Plot of Freq of modality switches 	 Normal Q-Q Plot of Freq of modality switches

(Routine Cognitive Tasks) 	 (Problem Solving Tasks)

Figure 9.8 Normal Q-Q Plots of Modality Switches (All Subjects Included)

Since there was no identical data in the data from the subjects who did not present

extreme interaction patterns, the Shapiro-Wilks test was adopted. The results showed that

data from the subjects without extreme interaction patterns was normally distributed.

Therefore a parametric paired comparison was appropriate for the proposed test.

Table 9.34 Normality Test on Modality Switches (Extreme Data Excluded)
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Figure 9.9 Normal Q-Q Plots of Modality Switches (Extreme Data Excluded)

9.3.1.3 Assumption of Normal Distribution within Paired Differences. Since	 there

was no identical data in the paired difference between the two groups of data, the

Shapiro-Wilks test was used for corresponding normality check. The result indicated a

non-normal distribution. Again, since Paired T-Test was robust to non-normality, either a

parametric or a non-parametric method could be used for the set of data from all subjects.

Table 9.35 Normality Test on Paired Differences (All Subjects Included)
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Figure 9.10 Normal Q-Q Plot of Paired Differences (All Subjects Included)

The Shapiro-Wilks test was used for the set of data from the subjects who did not

present extreme interaction patterns. The result indicated a normal distribution within this

data set. This confirmed the choice of a parametric method for hypothesis testing within

this data set.

Table 9.36 Normality Test on Paired Differences (Extreme Data Excluded)
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Figure 9.11 Normal Q-Q Plot of Paired Differences (Extreme Data Excluded)

9.3.2 Results

For data from all subjects, a Paired T-Test and its non-parametric version, a Wilcoxon

Signed Ranks Test, returned the same results, which indicated that a significant

difference existed between the amounts of switches from the two cognitive task sessions,

and that the subjects switched input modalities significantly more frequently when

performing routine cognitive tasks than performing problem solving tasks.
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Table 9.37 Effect of Cognitive Task Type on Modality Switches (Paired T-Test) (All
Subjects Included)

Table 9.38 Wilcoxon Signed Ranks for Modality Switches Based on Cognitive Task
Type (All Subjects Included)

Table 9.39 Effect of Cognitive Task Type on Modality Switches (Wilcoxon Signed
Ranks Test) (All Subjects Included)
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For data from only the subjects who did not present extreme interaction patterns, a

Paired T-Test was conducted. The result indicated that the subjects switched input

modalities significantly more frequently when performing routine cognitive tasks than

performing problem solving tasks.

Table 9.40 Effect of Cognitive Task Type on Modality Switches (Paired T-Test)
(Extreme Data Excluded)

The conclusion from the results above is that input modality switches were

significantly more frequent when the subjects were performing routine cognitive tasks

than when performing problem solving tasks.

In addition to the above finding, the correlations between modality switches in the

two cognitive task sessions were high (Pearson's Correlation = 0.9360 when all subjects'

data is included; Pearson's Correlation = 0.8886 when only data from the subjects

without extreme interaction patterns is included). The high correlation indicated a

consistent modality switch pattern across different cognitive task types.
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Table 9.41 Paired Sample Correlation between Modality Switches for Routine Cognitive
and Problem Solving Tasks

9.3.3 Discussion

The input modality switch pattern discovered during the subjects' performance of routine

cognitive tasks and problem solving tasks can be explained using Broadbent's bottleneck

models (Broadbent, 1958), Kahneman's single resource pool models (Kahneman, 1973),

and indications from previous research on how attention is divided between time-sharing

tasks (Sweller, Chandler, Tierney & Cooper, 1990; Allport, Antonis & Reynolds, 1972;

Shaffer, 1975; and Shiffrin, 1977).

According to bottleneck models, only a limited amount of information can be

brought from the sensory register to the working memory for information processing.

According to single resource pool models, attention is an information processing resource

with limited capacity. Previous research indicates that how human allocates attention for

different tasks competing for time and attentional resources depends on the degree to

which one or more tasks can be performed automatically. When an automatic processing

task is combined with any other more cognitively demanding task, more cognitive

resources are available for the latter.
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In the experiment sessions, a user's performance of a routine cognitive task was

close to an automatic process due to the user's familiarity with the task. Performing a

problem solving task, on the contrary, demanded more cognitive resources, normally

involving extensive speech output processing. On the multimodal interface, switching

modality demanded an increased level of cognitive resources which competed for time

and cognitive resources with the performance of routine cognitive tasks and problem

solving tasks. When routine cognitive tasks were processed in an automated fashion,

more cognitive resources were available and, hence, encouraged modality switching. For

problem solving tasks, since cognitive resources were limited, and more cognitive

resources were demanded by the problem solving tasks, less resources were available and

hence restricted modality switching.

The conclusion, therefore, can be made as follows: Cognitive task types have an

impact on the frequency of switches between modalities — when performing routine

cognitive tasks, users attempt to switch more frequently between speech and touch input

than when performing problem solving tasks.



CHAPTER 10

EFFECTS OF ERRORS

10.1 Overview

RQ3: Will errors change users' multimodal interaction behavior?

This research question embraces three more detailed questions. For each of them,

a quantitative analysis model was constructed. In addition, it was suspected that the

subjects with working vision had been able to use their vision for information space path

finding on the touchpad and, hence, could switch modalities more easily. Therefore,

users' level of visual impairment was included as the second independent variable for

two of the following models.

RQ3.1: Do users switch input modalities when correcting errors?

Model 3.1: Whether users are more likely to switch input modalities or use the

same input modality to correct errors?

RQ3.2: Will level of error rates change users' error correction strategy?

Model 3.2: Whether users' modality-switching behavior for error correction is

influenced by the level of error rates and users' level of visual impairment?

RQ3.3: Will level of error rates influence users' overall modality switching

pattern?

Model 3.3: Whether users' modality-switching behavior in general, not just

modality switches for error correction, is influenced by the level of error rates and users'

level of visual impairment?
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For Model 3.1, Hypothesis 3.1 was constructed. For Models 3.2 and 3.3,

Hypotheses 3.2 (a & b) and 3.3 (a & b) were constructed. (See the table below.)

Models 3.2 and 3.3 have two different dependent variables but have the same

independent variable. Therefore Models 3.2 and 3.3 were investigated together using

multiple analyses of variance.

• The independent variables for Models 3.2 & 3.3 are:

o Between subject variable: level of visual impairment (with working vision vs.
without working vision)

o Within subject variable: level of error rates (low error rates vs. high error rates)

• The dependent variables for Models 3.2 & 3.3 respectively are:

o Input modality switches related to error correction

o Total amount of modality switches

• In order to make data comparable among subjects, the raw data was processed using
the following formulas:

o Input modality switches related to error correction = The number of error
correction operators that involved input modality switches / The total number of
error correction operators

o Total amount of modality switches in general = The total number of operators that
involved input modality switches / The largest possible number of operators that
could involve modality switches (i.e., the total number of operators -1)

The hypotheses for RQ3 and the testing results are listed in Table 10.1.
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10.2 Model 3.1: Modality switches for error correction

Model 3.1: Whether users are more likely to switch input modalities or use the same

input modality to correct errors?

In order to provide analysis at a detailed level, three mean comparisons were

conducted: a comparison between error corrections with modality switches and those

without modality switches when error rates are low, the same comparison when error

rates are high, and an overall comparison that embrace both error rate levels.

10.2.1 Method Selection

Paired T-Tests were appropriate for the mean comparisons. Because Paired T-Tests are

robust against non-normal distribution, assumption check for normality was not

conducted.
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Since after error rates were increased, all subjects but one switched input

modalities during task performance, the majority of the subjects did not present extreme

interaction patterns. Therefore all subjects' data was included for hypothesis test.

10.2.2. Results

(1) Overall comparison:

An overall comparison was conducted between error corrections with modality

switching and error corrections without modality switching. The results indicated that the

subjects stayed in the same input modality significantly more often than switching to

another input modality for error correction.

Table 10.2 Paired T-Test Comparing Overall Frequencies of Error Correction with and
without Modality Switches
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(2) Comparison when error rates were low:

In the experiment session with low error rates, the subjects stayed in the same

input modality significantly more often than switching to another input modality for error

correction. The statistical results are displayed in the following table.

Table 10.3 Paired T-Test Comparing Frequencies of Error Correction with and without
Modality Switches When Error Rates were Low

(3) Comparison when error rates were high:

In the experiment session with high error rates, the subjects stayed in the same

input modality significantly more often than switching to another input modality for error

correction. The statistical results are displayed in the following table.
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Table 10.4 Paired T-Test Comparing Frequencies of Error Correction with and without
Modality Switches When Error Rates were High

10.2.3 Discussion

The important finding presented in this section is that, on an eyes-free interface, once an

error occurs, switching modality is used significantly less by both sighted and visually

impaired users than staying in the same input modality to correct that error.

This is significantly different from results of previous research on GUIs. Previous

research on GUIs indicated that when one modality was failing, the allowance of

modality switching made it easier to recover from the failure and, hence, was one of the

prominent advantages provided by multimodal input.

The multiple resource pool theory (Navon and Gopher, 1979; Wickens, 1980,

1984 and 1992) can be used to explain this unwillingness to switch modalities for error

correction, as well as the difference between the results of this research and previous

research.
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The multiple resource pool theory argues that instead of sharing a single pool of

resource, there exist multiple pools of resources, each of which has its limited capacity

and is related to specific skill. Multiple tasks can be performed at the same time as long

as they require separate pools of resources.

When modality switching for error correction is to be performed, more than one

task needs to be performed concurrently and therefore, competes for cognitive resources.

The concurrent sub-tasks during error correction are: understanding input failure, finding

solutions, and switching input modality. Unless modality switching is already a routine

cognitive task that can be performed nearly in automation, modality switching will

demand more cognitive resources from the two working memory subsystems, the

phonological loop and the spatial sketchpad, which are already in heavy use. Through

practice, the subjects learned their inability to processing these tasks simultaneously,

which was the result of the bottleneck in their cognitive resources. Therefore the subjects

avoid modality switching for error corrections unless the switch was a routine cognitive

task.

On a graphical user interface where users can see the screen, the third sub-system

in human working memory, the visuo-sketchpad can be used for task performance. The

error correction sub-tasks can be divided among three working memory subsystems, the

phonological loop, the visuo-sketchpad and the spatial sketchpad. The task load in each

subsystem is therefore lower than when tasks are divided between two subsystems.

Switching input modality, being an error correction method with a higher success rate, is

then preferred by users.
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This unwillingness to switch was presented in both the situation when error rates

were low and the situation when error rates were high. But is a conclusion that allowing

modality switch for the error-correction purpose is not desired by users at all correct?

This question is answered by Model 3.2 by looking at whether the level of error rates and

the level of visual impairment influence users' error-correction related modality

switching pattern.

10.3 Models 3.2 & 3.3: Effects of Error Rates and Level of Visual Impairment on
Modality Switching

Models 3.2 and 3.3 are:

• Model 3.2: Whether users' modality-switching behavior for error correction is
influenced by the level of error rates and users' level of visual impairment?

• Model 3.3: Whether users' modality-switching behavior in general, not just modality
switches for error correction, is influenced by the level of error rates and users' level
of visual impairment?

10.3.1 Method Selection and Assumption Checking

Again, since after error rates were increased, all subjects but one switched input

modalities during task performance, the majority of the subjects did not present extreme

interaction patterns. Therefore all subjects' data was included for hypothesis test.

Because there were two dependent variables, both multivariate hypotheses (H 3.2

& H 3.3) and univariate hypotheses (H 3.2 a & b and H 3.3 a & b) were constructed. The

multivariate hypothesis testing was used to reveal whether the independent variables had

impacts on both dependent variables; while the univariate hypotheses testing was used to

reveal the impact of the independent variables on each dependent variable.
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There were two parametric multivariate methods available, MANOVA

(Multivariate Analysis of Variance) and MANCOVA (Multivariate Analysis of

Covariance). Because both independent variables were categorical rather than

continuous, MANOVA, or its non-parametric alternative, would be the appropriate

method to use. The following sections present the assumption checking to determine

whether MANOVA or its non-parametric alternative should be used.

10.3.1.1 Assumption of Normal Distribution. 	 Tests of normality were conducted

within each of the four experiment conditions to decide whether a parametric statistical

method should be adopted. Thee four conditions were:

• Condition 1: vision = with working vision, error rate = low error rate

• Condition 2: vision = with working vision, error rate = high error rate

• Condition 3: vision = with NO working vision, error rate = low error rate

• Condition 4: vision = with NO working vision, error rate = high error rate

Calculation based on two normality testing methods was conducted. Because the

Shapiro-Wilks method has defects when identical values exist in the raw data, the

Kolmogorov-Smirnov method was adopted instead.

Based on the Kolmogorov- Smirnov test, no results were significant at the .05

level, which indicated the data is normally distributed in all experiment conditions.



Table 10.5 Normality Tests on Modality Switches
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Figure 10.1 QQ Plots for Error Correction Related Input Modality Switches
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Figure 10.2 QQ Plots for General Modality Switches

10.3.1.2 Assumption of Homogeneity of Variance-Covariance Matrices. 	 Box's

M was used to test this.

Table 10.6 Box's Test of Equality of Covariance Matrices on Modality Switches
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Box's M tested the null hypothesis that the observed covariance matrices of the

dependent variables were equal across groups. Since the test result was not significant,

the null hypothesis was not rejected. The assumption of homogeneity of variance-

covariance matrices was supported.

10.3.1.3 Assumption of Homogeneity of Variance 	 Levene's test of equal

variance was conducted.

Table 10.7 Levene's Test of Equality of Error Variances on Modality Switches

This tested the null hypothesis that the error variance of the dependent variable

was equal across groups. Since the test result was not significant, the null hypothesis was

not rejected. The assumption was supported.

10.3.1.4 Assumption of Correlation between Dependent Variables. A two tailed

correlation check was conducted between all observations of the dependent variables. It

revealed that Pearson's r between the two dependent variables was .735, with sig. (2

tailed) < .001.
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Table 10.8 Pearson Correlation between Modality Switches for Error Correction and in
General

* Correlation is significant at the 0.01 level (2-tailed).

The following line chart illustrates this correlation:

Figure 10.3 Correlation between Error Correction Related Modality Switches and
General Modality Switches
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10.3.2 Results

Both descriptive statistics and MANOVA (including multivariate analyses and univariate

analyses) were used to test the hypotheses.

The descriptive statistics allowed comparisons of means in the experiment

conditions. They revealed that in the condition with low error rates, both the average

amount of error correction related input modality switches and the average amount of

total modality switches were lower than the condition with high error rates. The statistics

also showed that in all experiment conditions, on average, the subjects with working

vision switched input modality more than the subjects with no working vision. When

only looking at modality switches for error correction, on average, the subjects with

working vision also switched more than the subjects with no working vision. The

following tables show these statistics.



Table 10.9 Descriptive Statistics of Switches for Error Correction and in General
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* Vision 1 = with working vision

* Vision 2 = with no working vision

The inferential statistics (MANOVA) allowed investigating of whether the above

observations from the descriptive statistics could be generalized in the user population.

The MANOVA tests included two sets of tests, the multivariate tests investigating the

overall effects that the independent variables had on both dependent variables, and the

univariate tests revealing the individual effects of the independent variables on each

dependent variable.

A number of multivariate tests, which included Pillai's Trace, Wilks' Lambda,

Hotelling's Trace, and Roy's Largest Root, were conducted. Among these statistics

Wilks' Lambda is the choice for most researchers. The test of Wilks' Lambda, along with

all other statistics, revealed that Error Rates had a significant effect on both dependent

variables. The test was significant at .001 level, with an observed power of .996.
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The results of the multivariate tests, hence, partially supported Hypotheses 3.2 &

3.3: A user's choice of error correction strategy, and the user's total modality switches in

general are influenced by the level of error rates, but not the user's level of visual

impairment.

Vision was not found significantly influential to the dependent variables. No

interaction effect was discovered.

Table 10.10 Multivariate Tests for Models 3.2 & 3.3 ***

* 	 Computed using alpha = .05
** 	 Exact statistic
*** 	 Design: Intercept+VISION+ ERROR RATE + VISION * ERROR RATE
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Univariate Tests on the within-subjects variables revealed that the level of error

rates had a significant effect on both the amount of modality switches for error correction

(sig. = .013, with observed power of .747), and the amount of general modality switches

(sig. < .001, with observed power of .998). No interaction effect was found.

Hypothesis 3.2 b was therefore supported: When users encounter higher error

rates, they switch input modalities more often for error correction, as compared to the

condition with lower error rates.

Hypothesis 3.3 b was also supported: In general, users switch input modalities

more often when error rates increase.

Table 10.11 Tests of Within-Subjects Effects for Models 3.2 & 3.3

a. Computed using alpha = .05
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Univariate analyses on the between-subjects variable did not find any difference

in the amount of error correction related modality switches between the subjects with or

without working vision. The results revealed, however, that vision had a slight effect on

modality switches in general (sig. = .094, with observed power of only .387).

Therefore, Hypothesis 3.3b, "In general, users with working vision switch input

modalities more often than users without working vision", although not supported at the

Sig. = .05 level, is supported at the Sig. = .1 level, but with a low power (Observed Power

= .387). The lower power indicates that the conclusion that vision has an influence on the

general users' amount of modality switches cannot be made unless an investigation with

a larger sample size supports the same results.

The statistical results did not find the level of vision causing any difference in the

amounts of error correction related modality switches among the subjects, and so H 3.2a

was rejected.

Table 10.12 Average Amount of Modality Switches for Error Correction

Table 10.13 Average Amount of General Modality Switches



Table 10.14 Tests of Between-Subjects Effects for Models 3.2 & 3.3
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a. Computed using alpha = .05

10.3.3 Discussion

10.3.3.1 Effects of level of visual impairment in input modality switch patterns. The

results could not prove the difference among the participants' level of visual impairment

an impacting factor to the participants' modality switches either for error correction or in

general. Although modality switches by the subjects with working vision was slightly

significantly more than switches by the subjects with no working vision (Sig. = .094), the

observed power (=.387) was too weak to conclude the acceptance of the hypothesis.

However, we cannot conclude that the level of visual impairment is not an

impacting factor to users' modality switch patterns based on this study, because, as



241

explained in a previous section, most participants depending on their working vision to

some extent in their life belonged to the legally blind category (i.e., six out of eight

subjects with working vision were legally blind). The visual conditions between the

group of the subjects with and without working vision might not have been big enough to

make a difference in the comparison.

In order to make a conclusion, one more experiment is needed that uses

participants with low vision who however do not belong to the legally blind category.

10.3.3.2 Effects of error rates in modality switches for error correction. Level of

error rates has been proved to significantly affect users' modality switches for error

correction and modality switches in general. When error rates increase, both types of

modality switches are increased accordingly.

The reason of increased modality switches for error correction could be the

following. The errors introduced using the Wizard of Oz method basically fell into the

eight error categories discovered during the exploratory study with sighted subjects. In

the experiment with visually impaired subjects, when error rates were increased, the

subjects encountered more repetitive errors in each error category. It may be natural for

the subjects to seek for alternative error correction methods when repetitive errors occur.

Therefore they switched input modality to avoid same errors.

However it is noticeable that even the subjects' modality switches were increased

when experiencing higher error rates, the subjects still preferred not switching than

switching modalities for error correction. This was proved and discussed by the analysis

of Model 3.1.
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10.3.33 Effects of error rates in general modality switches. The reason that the

subjects' modality switches in general were increased when error rates were higher could

be the following. When the subjects switched more frequently for error correction,

switching modality became a more familiar task. Being more familiar means becoming a

more automatic process that requires less cognitive resources. Therefore the subjects

were able to switch modalities more often in general.



CHAPTER 11

COMMON MULTIMODAL INTERACTION AMONG SIGHTED AND
VISUALLY IMPAIRED USERS

11.1 Results

RQ4: Can we conclude any common or different patterns existing in sighted and visually

impaired users' multimodal interaction?

In this research, the experiments with the sighted subjects and the visually

impaired subjects were conducted separately following different procedures. Because of

this reason, the comparison in multimodal interaction patterns between the two user

groups was interpretation-based rather than hypothesis-testing-based.

There is also a general critique on a comparison between the two user groups,

because so many differences exist, which just makes a comparison not possible.

However, the researcher still believes that a loose comparison based on

interpretation of results from the two experiments will be helpful in understanding the

multimodal usage differences and hence provide implications to designers who need to

accommodate accessibility into their products.

The comparisons were conducted in three directions:

• Sighted and visually impaired subjects' adoption of multimodal input

• Sighted and visually impaired subjects' choice of input modalities

• Sighted and visually impaired subjects' error correction strategies
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11.1.1 Sighted and Visually Impaired Subjects' Adoption of Multimodal Input

Given the same non-visual interface with integrated speech and touch input, and given

that the overall error rates were at a similar level, the sighted subjects, on average, used

slightly more speech input and less touch input than the visually impaired subjects.

Table 11.1 Overall Use of Input Modalities by Sighted and Visually Impaired Subjects

11.1.2 Sighted and Visually Impaired Subjects' Choice of Input Modalities

11.1.2.1 Choice of input modality for each operator type. For navigation operators,

both the sighted subjects and the visually impaired subjects used significantly more touch

input than speech input. The amounts of speech and touch input the two user groups used

were nearly identical (around 23% input were speech and around 77% input were touch).

For non-navigation operators, however, choices of input modalities were very

different between the two subject groups. In general, the sighted subjects used

significantly more speech input than touch input to accomplish non-navigation tasks (i.e.,

61.5% of input was given using speech and 38.5% using touch). While the visually
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impaired subjects did not show any significant modality choice pattern (i.e., 48.9% input

was given using speech and 51.1% using touch).

Overall, the visually impaired subjects used nearly same amount of speech and

touch input for non-navigation tasks. For some of the tasks, such as pause reading and

changing audio settings, the visually impaired subjects used significantly more touch

input. For some other tasks, such as resuming reading, they used significantly more

speech input. This might have caused the overall touchpad usage by the visually impaired

subjects higher than the overall touchpad usage by the sighted subjects.

Table 11.2 Use of Input Modalities for Each Operator Type by Sighted and Visually
Impaired Subjects
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11.1.2.2 Ratings on ease of use of input modalities for each operator type. When

rating their overall preference on the speech and the touchpad input, neither the sighted

subjects nor the visually impaired subjects presented a preference on one input modality

over the other. However, when rating for each specific input operator type, for most

operator types the subjects showed a preference on either speech or touch modality. The

following table presents the details.

It should be noticed that the sighted subjects were asked to rate the ease of use

and the likability on each input modality for each operator type, while the visually

impaired subjects were asked to rate the ease of use and the likelihood to use each input

modality for each operator type. Likability was described to subjects as "how much do

you like to use [a specific input operator] to execute [a specific type of operator]".

Likelihood was described as "how likely would you use [a specific input operator] to

execute [a specific type of operator]". The two different ways of asking for subjects'

ratings were intended to communicate the same meaning. This change of instrument was

made during the controlled experiment because the experimenter found the second way

of asking clearer.

To accomplish navigation operators, the sighted subjects felt touch input

significantly easier to use than speech input, and liked the touch input significantly better.

The visually impaired subjects, although did not feel touch input easier to use, would like

to use touch rather than speech input to accomplish navigation tasks. Their preferences on

touch input for navigation operators were the same.

However, differences existed when the two groups of subjects rated modalities for

non-navigation tasks. Although they both expressed a preference on speech input, the
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visually impaired subjects' preference on speech was stronger. The sighted subjects only

rated speech significantly better for resuming reading. While the visually impaired

subjects felt speech significantly easier to use than touch for all non-navigation operators.

For three out of four non-navigation operators, the visually impaired subjects' ratings

indicate that they would definitely choose speech rather than touch to finish the task.

These results were interesting because the visually impaired subjects actually did not

choose more speech than touch during their task completion, and for some non-

navigation operations they actually chose more touch than speech input. The visually

impaired subjects' subjective ratings were not consistent with their actually modality

choices for non-navigation operators.
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Table 11.3 Ratings on Input Modalities for Each Operator Type by Sighted and Visually
Impaired Subjects

* Results outside the parentheses are based on ratings on ease of use.

Results in the parentheses are based on ratings on likability.

Rating scale for ease of use: 1 = very easy to use; 5 = very difficult to use.

Rating scale for likability: 1= like to use a modality for a specific type of operator; 5 = dislike a
modality for a specific type of operator.

** Results outside the parentheses are based on ratings on ease of use.

Results in the parentheses are based on ratings on likelihood to use.

Rating scale for ease of use: 1 = very easy to use; 5 = very difficult to use.

Rating scale for likelihood to use: 1= likely to use this modality for a specific operator type; 5 =
not likely to use this modality for a specific operator type.



249

11.1.3 Sighted and Visually Impaired Subjects' Error Correction Strategies

For the exploratory study with the sighted subjects, the experimenter analyzed the types

of errors occurred in speech and touch input. During the experiment with the visually

impaired subjects, the experimenter introduced the same types of errors using the Wizard

of Oz feature.

During the experiments, both the sighted subjects and the visually impaired

subjects showed a strong preference on correcting errors using the same input modality

rather than switching the modality.

Table 11.4 Adoption of Error Correction Strategies by Sighted and Visually Impaired
Subjects
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11.2 Discussion

11.2.1 Input Modality Choices by Sighted Subjects and Visually Impaired Subjects

The results with the visually impaired subjects have complied with the results with the

sighted subjects in that the type of input operator is found significantly affecting subjects'

input modality choices.

Before the comparison, it was believed that the sighted subjects would use speech

input a little less than the visually impaired subjects. The rationale was that because the

system output was speech, processing speech output and speech input competed for the

same pool of resources in human attention and working memory. The visually impaired

subjects were expected to be more skilled than the sighted subjects in processing speech

input and output at the same time because their major information reception was through

sounds.

However, the comparison showed opposite results. The visually impaired subjects

actually used more touch input in general, and provided better subjective ratings on touch

input than the sighted subjects for non-navigation tasks. There could be two reasons for

the comparison results.

(1) Navigation in the information space was more cognitively demanding for most
visually impaired subjects than for the sighted subjects. Navigating the information
space requires tremendous cognitive resources for language processing. Therefore,
the visually impaired subjects used touchpad more often to off load tasks processed in
the phonological loop.

(2) Switching from touch input to speech input causes the lost of state on the touchpad.
With the assistance of vision, the sighted subjects could get the state on the touchpad
back quickly by landing their fingers on the previously touched location on the
touchpad. The visually impaired subjects did not have this advantage brought by
vision. Looking for the previous location on the touchpad required exploration
through other locations on the touchpad, which some times caused accidental and
unexpected command execution that made finding the previous location even more
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difficult. Therefore, once "settled" on the touchpad for navigation operations, the
visually impaired subjects were less willing to switch to speech input, despite the
input operation became non-navigational. This explains why the visually impaired
subjects actually used significantly more touch input than speech for some of non-
navigation operations, but rated speech input significantly better than touch for all
non-navigation operations.

11.2.2 Error Correction Strategies by Sighted Subjects and Visually Impaired
Subjects

During error correction by both the sighted subjects and the visually impaired subjects,

correcting errors using the same input modality was used significantly more frequently

than correcting errors by switching the modality. This consistent behavior across different

user groups indicates that, although a second modality provided an alternative way for

error correction, subjects did not necessarily use the alternative way. The reason could be

that switching modality is cognitively demanding. The subjects would rather repeat the

failed input operation until it succeeds than making the efforts to seek for alternative error

correction methods.



CHAPTER 12

SUMMARY OF RESULTS FROM CONTROLLED EXPERIMENT

In summary, the analysis of data from the controlled experiment revealed the following

results. The results are organized by the research questions they address.

(1) RQ1: Do Users Use Multimodal Input

Most visually impaired subjects used multimodal rather than unimodal interaction

when multimodal interaction is available. Individual differences existed — some subjects

chose to stay in a single modality until error rates were increased. There was some

suggestion that subjects with no vision tended to use only the touchpad but this was not

supported by the data analysis. It may be possible that studies involving higher N might

find this to be true for an important subset of subjects. This will require further

investigation.

(2) RQ2: Multimodal Input Usage

Effect of Input Operation Type: Tests of hypotheses revealed that the type of

input operation had significant impacts on users' multimodal input usage. For navigation

operations, the subjects used significantly more touchpad input and less speech input than

for non-navigation operations.

Effect of Cognitive Task Type: Tests of hypotheses revealed that the type of

cognitive task had significant impacts on users' multimodal input usage. When

performing routine cognitive tasks, the subjects switched input modalities significantly

more frequently than when they performed problem solving tasks.
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Effect of Level of Visual Impairment: The level of visual impairment was not

found to significantly affect a users' multimodal input usage.

(3) RQ3: Multimodal Interaction Patterns When Errors are Present

RQ3.1: Do users switch input modalities for error correction?

Hypothesis testing revealed that, when errors occurred, visually impaired subjects

continued to use the failing modality significantly more than switching to another input

modality for error correction.

RQ3.2: Will the level of error rate and users' level of usable vision affect users'

error correction strategy?

Hypothesis testing verified that error rates had a significant effect on users' error

correction strategy. When error rates were increased, the subjects switched input

modality more frequently to correct errors.

However, even when the subjects switched input modalities more frequently to

cope with increased errors, the subjects in most occasions still stayed in the same

modality rather than switching modalities for error correction.

The subjects' level of usable vision was not found to affect their error correction

strategy.

RQ3.3: Will the level of error rate and users' level of usable vision influence

users' modality switching behavior in general?

Hypothesis testing revealed that error rates had a significant effect on users'

modality switching, in general, not merely when error correction was needed. When error

rates were increased, the subjects switched input modality more frequently in general.
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With the data collected in the experiment, the subjects' level of usable vision,

again, was not found to affect their modality switching behavior in general.

(4) RQ4: Multimodal Input Usage by Sighted and Visually Impaired Users

Through comparison of results from the exploratory study with the sighted

subjects and the controlled experiment with the visually impaired subjects, similar

command interaction patterns were found in the subjects' choice of input modality based

on input operation types, and the subjects' preferred strategy for error correction.

For both sighted and visually impaired subjects, input operation type significantly

affected their modality choices. Navigation operations were usually performed using

touchpad input, while non-navigation operations were frequently performed using speech

input.

For both sighted and visually impaired subjects, correcting errors using the

modality that was failing was more prevalent than correcting them in the other modality.

Table 12.1 summarizes the hypothesis testing results.

Chapters 7 to 12 listed all the findings from the experiment. The next and closing

chapter attempts to put some meaning on these findings, in particular, discussing what the

most significant results are in terms of (a) their likely impact on multimodal design and

(b) their contribution to the theory of how people are likely to use multiple modalities.



Table 12.1 Summary of Results from Hypothesis Testing

255



CHAPTER 13

CONCLUSION

The goal of this thesis is to understand how users coordinate hand and speech inputs to

accomplish non-visual information browsing tasks in order to specify how similar

systems should be designed.

In order to achieve this goal, the author conducted an exploratory study with

sighted users, which refined the research questions and generated hypotheses about user

multimodal hand and speech choices. Then a controlled experiment with visually

impaired subjects was run to evaluate the hypotheses and provide answers to the research

questions.

Abundant findings have been obtained. These findings, as well as the design

implications, are presented in this chapter. In addition, contributions, limitations of the

work, and future directions for the research are presented.

13.1 Summary of Findings

13.1.1 Multimodal Rather than Unimodal

All sighted subjects and most visually impaired subjects used multimodal rather than

unimodal interactions when they had equal chances to choose between both.

The subjects' choice of multimodal input can be interpreted as resulting from the

distinct advantages provided by each modality. The touchpad input reduces memorization

load by allowing command search through menu browsing. The speech input provides

direct access to commands and saves time by avoiding menu browsing, much in the way
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macro commands work in text editing. The subjects naturally switched input modalities

based on their needs. If they were close to their menu item, they were likely to use touch

to advance to it. If they were not close, they were likely to use speech and to eventually

memorize the speech command through frequent usage.

Moreover, from the psychological point of view, allocating tasks into different

modalities allows concurrent task processing in working memory. According to Baddeley

and Hitch's working memory model (Baddeley and Hitch, 1974; Baddeley, 2000), tasks

on the touchpad are processed in the visuo-spatial sketchpad, and speaking and listening

tasks are processed in the phonological loop. Using the touchpad for some input tasks

offloads the burden that would otherwise be carried in the phonological loop, because

both speech inputs given by the user and speech outputs given by the computer are

processed in the phonological loop. By using the touchpad, tasks processed in the visuo-

spatial sketchpad and the phonological loop are balanced and processed concurrently.

The central executive then works to integrate information in the two subsystems.

In summary, it might be the above two reasons, stated from different perspectives,

that have led to users' natural choice of multimodal, rather than unimodal interaction.

13.1.2 Modality Choice Based on Input Operation Type

More than choosing multimodal interaction, the subjects seemed to choose certain

modalities for specific user input commands. For information space navigation

operations, the subjects used significantly more touch input than speech input. For non-

navigation operations, the subjects used significantly more speech input than touch input.

This modality choice — command type dependence, again, can be explained from two perspectives.
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13.1.2.1 Explanation using the least effort point of view. From the psychological point

of view, users choose input modalities that lead to least cognitive effort.

Navigation operations (e.g., going to the next paragraph) are often followed by

intensive listening comprehension tasks, and consequently, intensive use of the

phonological loop. Performing input tasks on the touchpad avoids increased workload in

the phonological loop. Therefore, the touchpad is chosen for navigational inputs.

On the other hand, most non-navigation commands (e.g., reducing the reading

speed) do not lead to intensive listening comprehension. Offloading the workload in the

phonological loop by using the touchpad for input tasks does not result in an obvious

benefit. If a non-navigation command is performed on the touchpad, the user needs to

find the appropriate command menu on the touchpad, browse the menu to find the

command, and click a button to execute the command. This is more effort than recalling

the command and speaking it out. Therefore, speech input is chosen for non-navigation

tasks.

13.1.2.2 Explanation by task match to modalities and touch-speech coordination.

The touchpad input provides an advantage of mapping the information structure onto a

tangible physical space and hence assists navigation. Navigation operations are therefore

more frequently performed on the touchpad.

The speech input provides direct access to commands and saves time by avoiding

menu browsing. Non-navigation commands are usually short and not performed

continuously. As such, giving non-navigation commands using speech input is more

efficient than searching for the commands on the touchpad. For the reasons of efficiency

and simplicity, users naturally choose speech input for non-navigation commands.
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Parallel tasks are performed using touch and speech separately to reduce the

interference with each other. The subjects kept their fingers on the touchpad to retain

their position in the information space and gave a short, one-time command using the

speech input. They then resumed their previous navigation task quickly by continuing

from the location that their finger retained on the touchpad. This touch-speech

coordination helped to maintain a fluent command flow.

13.1.3. Resilience to Changing Modality Even under Error Pressure

The subjects did not change modality much, even when the error rate rose.

For sighted subjects, out of 1641 input operations that could be performed using a

modality different from the one used in the previous input, only 222 (i.e., 13.52%)

modality switches occurred. For visually impaired subjects, out of 5518 input operations

that could possibly involve modality switching, only 755 (i.e., 13.68%) switches

occurred. Hypothesis testing revealed that, in both the situation with low error rates and

the situation with high error rates, when errors occurred, in significantly more occasions,

the subjects continued to use the failing modality, rather than switching to another

modality, for error correction.

The simple explanation is that changing the modality requires resetting the whole

cognitive frame, and hence, requires more cognitive resources, which is avoided by users.

A longer explanation can be formed by looking at Broadbent's Bottleneck

attention models (1958). The bottleneck theory specifies that the amount of information

that can be processed and attended to by a human at any given time is limited. Therefore,

concurrently performing tasks that compete for cognitive resources generally results in a
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drop in performance for one or all tasks. When errors occur, users need to perform the

following concurrent tasks: recognizing and understanding the input failure, finding

solutions through more user inputs, and comprehending computer speech output. If

switching modalities is to be performed, competition for cognitive resources among

concurrent tasks will be more intense. Through practice the subjects already were aware

that concurrently processing tasks could result in a drop in task performance. Therefore

users will avoid modality switching for error correction unless switching has become a

routine cognitive task that demands fewer resources.

13.1.4 Individual Differences

Although common multimodal usage patterns were supported by significance testing,

individual differences existed. When error rates were not increased on purpose, five out

of 19 visually impaired subjects used unimodal input. More specifically, one of them

used speech input only, while the other four used touch input only. When error rates were

increased by the experimenter, four of the five subjects switched input modalities, but

one subject still insisted on touch input only.

There is not a simple answer as to why these users chose to use a single modality.

By looking into the input operations they performed, the ratings they gave for the

modalities in a follow up questionnaire, and their comments during the interview that

followed their experiment session, the experimenter collected the following information,

which provided more insight into their choices.

To illustrate these details, the subject IDs are used. The four subjects who insisted

on the touch input during the session with low error rates are labeled S4, S 14, S 16 and
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S17. The subject who used speech input only during the same session is labeled S8. S14

is the subject who insisted on touch only even when error rates were increased.

During the task sessions with low error rates, S4, S14, and S17 performed more

navigation operations than the other subjects. The navigation operations performed by S8

were close to the average of all subjects. In accordance, S4, S 14, and S 17 performed

fewer non-navigation operations than all other subjects, while the amount of non-

navigation operations performed by S8 was close to the average. Performing more

navigation operations than other subjects might have encouraged S4, S14, and S17 to use

more touchpad input than other subjects.

By using unimodal input, all of the five subjects achieved lower error rates than

the other subjects. S14, the subject who insisted on unimodal input even when the error

rate was increased, achieved the lowest error rate among all subjects during the session

with low error rates. Under a lower error pressure than others, the five subjects were not

as motivated to switch modalities for error correction as others.

When error rates were increased, the five subjects no longer had the lowest error

rates. Four of them started to switch modalities. Two of the four started to use

multimodal error correction. But the other two of the four insisted on unimodal error

correction instead of switching modalities to correct errors, despite having started to

switch modalities for other tasks.

The comments given by the subjects during their interviews revealed why they

had chosen one of the input modalities and stayed in it without switching. Each interview

was conducted after the session with low error rates, but before the session with high

error rates, so the subjects' answers were not influenced by the increased error rates.
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S8, who used speech input only during the low-error rate session explained that

"[Using the touchpad] is not as easy as saying it. You have to press more buttons and do

more steps. When you verbally speak it, it will take you there in just one step." S 17' s

comments represented the opinions of the four subjects who stayed in touch mode during

the low-error rate sessions: "[speech and touch] both have a proper place for use, if you

said which one ... like I have to have one, then I probably will take the touchpad. Even

though it might be more frustrating to find where it is, for me I think once you learn how

to use it, you could use it. ... because for some reason to think [what the speech command

is for] next sentence [is], compared to just do the next sentence [on the touchpad], is an

extra brain step, which takes a little longer to me. But if you have no use of hands, speech

is excellent to read a newspaper."

However, these subjects' subjective ratings were not entirely consistent with their

choice of modality. S4 did not fill out a questionnaire, so the discussion is based on

ratings by the other four subjects.

For navigation operations, S8, S14 and S 16' s ratings on ease of learning, ease of

use and likelihood to use were consistent with their usage of the modalities during the

low error rate sessions — they rated the modality they each insisted on easier to learn,

easier to use and that they were more likely to use it than the other modality that they did

not choose. On the other hand, S17, who used touch only in the low error rate condition,

rated speech easier to learn and use than touch, but he admitted that he would be more

likely to use touch for navigation tasks.

For non-navigation operations, all of the four subjects rated speech easier to use

than touch, despite the fact that three of them only used the touch input.
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The above results imply, to some extent, that the distribution of the input

operations used, in combination with error rates encountered, determined their individual

preferences for one input modality over another. But the fact that their ratings were not

consistent with their modality use implies that their choice of input modality was not

entirely conscious. They naturally made a choice based on learned experience without

much conscious thought.

13.1.5 Other Findings

The above findings were deemed the most research significant, in particular, because the

results violate common practice or belief, e.g., that multimodal systems are good for error

correction when input in one modality is failing. The findings listed below are also of

interest but deemed less important.

13.1.5.1 Less Modality Switching in Tasks Demanding Higher Cognitive Resources.

The type of cognitive task has been found to have a significant impact on users'

multimodal input usage. When performing routine cognitive tasks, the subjects switched

input modalities significantly more frequently than when they performed problem solving

tasks.

Routine cognitive tasks are familiar tasks and processed automatically, while

problem solving tasks require a higher level of cognitive resources. Research has pointed

out that human attentional resources have limited capacity (Kahneman, 1973), and that

bottlenecks exist along information processing stages (Broadbent, 1958). Humans divide

attentional resources between time-sharing tasks to deal with time and resource

competition between tasks. One rule for attention allocation is that when an automatic
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processing task is combined with any other more cognitively demanding task, more

cognitive resources are available for the later (Allport et al. 1972; Shaffer, 1975; Shiffrin,

1977; Sweller et al. 1990).

When routine cognitive tasks are processed, since they can be processed

automatically, more attentional resources are available for other concurrent tasks, such as

modality switching. When problem solving tasks are processed, since they demand a high

level of attentional resources, resources available for modality switching become limited.

13.1.5.2 Increased Modality Switching for Error Correction due to Increased Error

Rate. It is not surprising that error rates have significant effects on users' error

correction strategies. When error rates are increased significantly, users switch their input

modality more frequently to correct errors. A simple explanation for this is the following:

When increased errors are encountered in the input modality that a user originally has

chosen, the user eventually gives up on the modality of choice and switches to the other

modality to avoid the errors.

However, users, in general, still prefer to stay in the same modality when errors

occur, even though the frequency of their modality switches for error correction

increases.

13.1.5.3 Increased Modality Switching, in General, due to Increased Error Rate.

This research found that error rates significantly affected users' modality switching, in

general, and not merely when error correction was needed. In short, increased error rates

resulted in increased modality switches anywhere in the user task.
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The reason for this could be the following: When error rates are increased, users'

practice more modality switching for error correction. This makes modality switching

more familiar, eventually becoming a routine cognitive task. Modality switching can then

be performed with a higher level of automation, requiring less cognitive resources.

Therefore users are able to switch modalities more often, in general, with less resource

competition with other tasks.

13.1.5.4 Similar Multimodal Choices Exhibited By Sighted and Visually Impaired

Users. Similar multimodal interaction patterns were found in the sighted and the visually

impaired subjects' choices of input modalities based on input operation types, and the

subjects' preferred strategy for error correction.

For both sighted and visually impaired subjects, navigation operations were

usually performed using touchpad input, while non-navigation operations were usually

performed using speech input. For both sighted and visually impaired subjects, correcting

errors using the modality that was failing was significantly more prevalent than

correcting errors by switching the modality.

13.1.5.5 Higher Usage of Modality Learned First.The exploratory study with sighted

users found that when different input modalities of a multimodal system were taught

separately, increased usage of the modality taught first could be observed. Among the

subjects who were trained on the speech input first, there was no significant difference

between the amount of speech and the amount of touch input used. Among the subjects

who were trained on the touchpad input first, the touchpad input was used significantly

more often than the speech input. It was also found that the subjects trained on the speech

input first used significantly more speech input and less touch input than the subjects who
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were trained on the touch input first. This indicates that training order has an effect on

modality choice, but this primacy effect may disappear with use given the other reasons

observed for modality choice.

13.2 Implications for the Design of an Eyes-Free Information Browser

Based on the findings in this research, suggestions can be made to guide the design of

eyes-free systems accessing hierarchical text information sources.

Implement multimodal input. Most users use multimodal rather than unimodal

input because (1) different input modalities provide different advantages, and (2)

humans' attention and working memory process information distributed in different

modalities more efficiently than processing , all the information in one modality.

Although the study was only performed using an information browser, the theory behind

the results suggests that multimodal systems, in general, for a wide range of user

interfaces would be a better design than unimodal input.

Implement modalities based on tasks. Implementing full functions in each

modality is probably not necessary, because users will use a modality only for certain

types of tasks. And users will stay in that initially chosen modality even if errors occur.

Touch input on a tangible surface is appropriate for navigation operations. Speech input

that allows direct access to functions is appropriate for non-navigation operations. By

choosing the right modality for the right task, implementation efforts can be saved,

computing resources can be used for other applications, and interface operation learning

by the user reduced.
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Allow modality switching for broken task flow. Intensive usability testing is

needed during system design to determine whether there are task flows in which one type

of operation is frequently interfered with by another type of operation. For example,

whether browsing a command menu (a navigation task) is frequently interrupted by the

task of increasing touchpad sensitivity (a non-navigation task). If tasks of different types

constantly interfere with each other, modality switching should be allowed in these task

flows.

Implement alternate methods in single modality to perform one task. The pilot

study found that when the only way to fix an error was either repeating the failed

command or switching to the other modality, the subjects repeated the failed command,

but had low success rates. When there was more than one method in the failed modality

for a problem fix, the subjects used the alternative methods in the failing modality rather

than switching modalities. Thus, implementing alternate methods in a single modality for

task performance matches a users' natural behavior.

Allow modality switching for critical error correction and train users to use it. If

efficient error handling is critical during the use of a system, such as with an emergency

management system, to avoid the problem of one modality failing completely making the

system unusable, alternative input modalities should be implemented to allow error

correction in other modalities. However, users have to be trained to use multimodal error

correction because this research indicates that they will not readily switch modalities for

the correction.

Train users first on the modality that is most appropriate for a given task. Since

the modality taught first will be more frequently used in the future during users'
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interaction with the multimodal system, when users are trained on performing certain

type of tasks, they should be trained on the modality most suitable for the task type.

Based on the results from this research, if both modalities are made available to users for

certain design considerations, touch input should be trained on first for navigation tasks,

while speech input should be trained on first for non-navigation tasks.

Do not create parallel speech and touch commands. Speech grammar should be

different from touchpad grammar. Speech commands should be designed to best support

direct access to functions, while touch commands should be designed to make navigation

easy and efficient. When speech grammar is designed for navigation, it loses its

advantage and will rarely be used. During this research, some speech commands were

never used by the subjects, such as "settings menu", which points to the first setting on a

list of audio settings, and "next/previous setting", which allows browsing the setting list.

These commands mirrored the touchpad grammar, but were never used because the

touchpad provides faster browsing and requires less working memory resources.

Choose appropriate touchpad sensitivity to filter out accidental touches. The

touch input is more error-prone for visually impaired users than for sighted users, because

visually impaired users explore the touchpad space by fingering it and can easily touch a

spot on the sensing area that they did not mean to touch. This disrupts the current task.

Since accidental touches are usually light, usability research needs to be done during

system design to select a sensitivity of the touchpad that can filter out accidental touches.

Alternatively, touchpad sensitivity can be a user setting for those who are heavy- or light-

handed.
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Implement flexible but not open speech grammar. One of the reasons why the

subjects felt that speech input was less easy to learn and use was the rigidness of the

speech grammar. For each speech input operation, a number of similar speech commands

should be designed. Intensive usability research should be done during design to make

the grammar close to naturally spoken commands. Open speech grammar refers to a

grammar with which users speak naturally without using a fixed set of words and

phrases. Such a grammar, however, has significantly lower recognition rates leading to

other usability problems.

13.3 Contributions and Limitations

This research is the first one that investigated sighted and visually impaired users' non-

visual multimodal interaction behavior in parallel. It has revealed important non-visual

multimodal interaction patterns, explained the patterns using cognitive psychology

theories in human attention and working memory, and discussed implications for the

design of eyes-free information browsers.

In addition to discovering multimodal usage patterns, the research has also

contributed in the following aspects:

• A speech grammar was designed for a non-visual information browsing system.

• A non-visual multimodal system was designed for hierarchical text browsing by both
sighted and visually impaired users.

• A Wizard of Oz feature was created for simulating speech recognition functions and
administering errors in speech and touch pad interaction for visually impaired users.

• Coding methods were developed to capture human modality usage from the
experiment videotapes.
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However, the research has its limitations.

The first limitation is the small sample size. A larger sample size may improve the

significance of the results uncovered and also add power to conclusively reject those

hypotheses not supported in this research.

The second limitation is that most subjects categorized as "with working vision"

in this research might not have sufficient vision to be differentiated from the subjects

categorized as "with no vision", because most subjects "with working vision" belonged

to the legally blind category.

The third limitation is the interface used. It is not known how much of the results

are from the specific interface design, that is, some tasks could have been inherently more

difficult in one modality than another because of the design of the interface. For

example, if keys on the interface had been available for the most commonly used speech

commands, perhaps a larger number of users would have stayed with only the touch

interface.

These limitations can be addressed in future research.

13.4 Future Research Directions

A range of research can be done in the future to expand understandings obtained from

this research and to apply the results of this research to interaction design.

In the future, more participants based on recruiting standards that sampled a

population more effectively could be invited to participate in the same controlled

experiment. The addition of their data to the current data set may reveal stronger
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statistical power which is expected to make the results more persuasive and also

generalizable to a larger user population.

Users with low vision but not falling into the legally blind category should be

recruited to complete the multimodal interaction comparison between users with usable

vision and users without usable vision.

The research can be expanded to applications accessing various types of

information structures and formats, not limited to the hierarchical textual information

used in this research. Different information structures that could be included include

hypertext and geospatial information, i.e., auditory street maps. Understanding how

multimodal interaction could increase the accessibility of these information structures is

of special value to the visually impaired users because of their more and more common

use of the Internet and their need for non-visual guides for navigating their world.

A different information format that can be incorporated into the research is

multimedia, such as computer games and digital music. These are becoming an important

part of daily entertainment for visually impaired computer users. New research can focus

on how multimodal interaction can make computer games more fun, and how multimodal

interaction can make multimedia files more accessible.

The research can also be expanded to different computing platforms, not

restricting to desktops and laptops, but including mobile devices such as PDA's and cell

phones. Mobile devices have not been adopted by visually impaired users as broadly as

they are by sighted users. This is mostly because of the accessibility issues residing in the

design of mobile devices. Providing multimodal interaction on these devices is a potential

way to improve a devices' accessibility. Mobile devices have a high potential to be
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designed for increasing visually impaired users' mobility, which is the most desired

capability by a high volume of visually impaired users. Mobile devices, hence, have a

high importance in the future research agenda.



APPENDIX A

IRB APPROVAL FOR THE EXPLORATORY STUDY

The IRB approval for conducting the exploratory study is provided below.

lain NEW JERSEY INSTITUTE OF TECHNOLOGY

Institutional Review Board: /IRS FWA 00003246
Notice of Approval

IRB Protocol Number: E12-04

Principal Investigators: 	 Dr. Marilyn Tremaine

Title: 	 Investigation of Speech and Touch Computer Dialogues

Performance Site(s): 31'I /Off Campus Sponsor Protocol Number (if applicable):

Type of Review: 	 FULL [ ] 	 EXPEDITED [X]

Type of Approval: NEW [ ] 	 RENEWAL [X] 	 MINOR REVISION [ ]

Approval Date: June 12, 2005 	 Expiration Date: June 11, 2006

1. ADVERSE EVENTS: Any adverse event(s) or unexpected event(s) that occur in
conjunction with this study must be reported to the IRB Office immediately (973)
642-7616.

2. RENEWAL: Approval is valid until the expiration date on the protocol_ You are
required to apply to the IRB for a renewal prior to your expiration date for as long
as the study is active. Renewal forms will be sent to you; but it is your
responsibility to ensure that you receive and submit the renewal in a timely
manner.

3. CONSENT FORM: All subjects must receive a copy of the consent form as
submitted. Copies of the signed consent forms must be kept on file with the
principal investigator.

4. SUBJECTS: Number of subjects approved: 65.

5. The investigator(s) did not participate in the review, discussion, or vote of this
protocoL

6. APPROVAL IS GRANTED ON THE CONDITION THAT ANY
DEVIATION FROM `I PROTOCOL WILL BE SUBMITTED, LN
WRITING, TO THE IRB FOR SEPARATE REVIEW AND APPROVAL

(.0 bt fail
	Dawn HallHall Apgar, PhD, LSW, ACSW, Chair IRB 	 June 12, 2005



APPENDIX B

IRB APPROVAL FOR THE CONTROLLED EXPERIMENT

The IRB approval for conducting the controlled experiment is provided below.

NJIT NEW JERSEY INSTITUTE OF TECHNOLOGY

Institutional Review Board: BUS FWA 00003246
Notice of Approval

IRB Protocol Number: E12-04

Principal Investigators: 	 Marilyn Tremaine, Information Systems

Title: 	 Investigation of a Speech and Touch Computer Interface

Performance Site(s): NJIT/Off-Site 	 Sponsor Protocol Number (if applicable):

Type of Review: 	 FULL [ ] 	 EXPEDITED [X]

Type of Approval: NEW [ ] 	 RENEWAL [X] 	 MAJOR REVISION [I

Approval Date: May 8, 2006 	 Expiration Date: May 7, 2007

1 ADVERSE EVENTS: Any adverse event(s) or unexpected event(s) that occur in
conjunction with this study must be reported to the IRB Office immediately (973)
642-7616.

2. RENEWAL: Approval is valid until the expiration date on the protocol_ You are
required to apply to the IRB for a renewal prior to your expiration date for as long as
the study is active. Renewal forms will be sent to you; but it is your responsibility to
ensure that you receive and submit the renewal in a timely manner.

3 CONSENT: All subjects must receive a copy of the consent form as submitted.
Copies of the signed consent forms must be kept on file with the principal
investigator.

4. SUBJECTS: Number of subjects approved: 65.

S. The investigator(s) did not participate in the review, discussion, or vote of this
protocol_

6. APPROVAL IS GRANTED ON THE CONDITION THAT ANY DEVIATION
FROM THE PROTOCOL WILL BE SUBMITTED, IN WRITING, TO THE
IRB FOR SEPARATE REVIEW AND APPROVAL.

..16.4.4,11.1 -Ha (1 ANalt-
Dawn Hall Apgar, PhD, LSW, ACSW, Chair IRB 	 May 8, 2006
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APPENDIX C

CONTROLLED EXPERIMENT — CONSENT FORM

The consent form used in the controlled experiment is provided below.

NEW JERSEY INSTITUTE OF TECHNOLOGY
323 MARTIN LUTHER KING BLVD.
NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STUDY

TITLE OF STUDY:	 •
Investigation of a Speech and Touch Computer Interface

RESEARCH STUDY:
	, have been asked to

participate in a research study under the direction of Dr. Marilyn Tremaine. Other
professional persons who work with them as study staff may assist to act for
them.

PURPOSE:
The purpose of this study is to investigate the use of speech and tactile computer
dialogues.

DURATION:
My participation in this study will last for at total of 4 to 6 hours to be completed
over 2 consecutive days.

PROCEDURES:
I have been told that, during the course of this study, the following will occur:

On the first day:
■The experimenter will read the study introduction.
■The subject will fill out this consent form.
■The subject will fill out a background questionnaire which collects the

information of the subject related to the study.
■The subject will participate in a tutorial to learn to use the speech and the touch

input methods. The tutorial will be followed by a practice session.

On the second day:
■The subject will participate in a warm-up session to practice speech and touch

input operations learned on the first day.
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■The subject will participate in an experiment session during which s/he will
finish a series of tasks using the provided input methods.

■ The subject will be interviewed about their use experience with the system and
fill out a post-questionnaire.

PARTICIPANTS:
I will be one of about 65 participants to participate in this trial.

RISKS/DISCOMFORTS:
There may be risks and discomforts that are not yet known.
I fully recognize that there are risks that I may be exposed to by volunteering in
this study which are inherent in participating in any study; I understand that I am
not covered by NJIT's insurance policy for any injury or loss I might sustain in
the course of participating in the study.

CONFIDENTIALITY:
I understand confidential is not the same as anonymous. Confidential means that my
name will not be disclosed if there exists a documented linkage between my identity
and my responses as recorded in the research records. Every effort will be made to
maintain the confidentiality of my study records. If the findings from the study are
published, I will not be identified by name. My identity will remain confidential
unless disclosure is required by law.

VIDEOTAPING/AUDIOTAPNG:
I understand that I will be video and audio taped during the course of this study.
Video and audio tapes will be stored for 3 years after the end of this project which
is June 2006. Three years after the end of the project the tapes will be erased. The
tapes will be stored in a locked office at NJIT and will not be made available to
anyone except the investigators including Dr. Marilyn Tremaine, Xiaoyu Chen,
Robert Lutz, and John Visicaro who are involved in this research.

PAYMENT FOR PARTICIPATION:
I have been told that I will receive no compensation for my participation in this
study.

RIGHT TO REFUSE OR WITHDRAW:
I understand that my participation is voluntary and I may refuse to participate, or
may discontinue my participation at any time with no adverse consequence. I also
understand that the investigator has the right to withdraw me from the study at any
time.

INDIVIDUAL TO CONTACT:
If I have any questions about my treatment or research procedures, I understand that
I should contact the principal investigator at:
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Dr. Marilyn Tremaine
Information Systems Department

New Jersey Institute of Technology

Newark, New Jersey 07102
Email: tremaine@njitedu
Telephone: 973-596-5284

If I have any addition questions about my rights as a research subject, I may
contact:

Dawn Hall Apgar, PhD, IRB Chair
New Jersey Institute of Technology
323 Martin Luther King Boulevard

Newark, NJ 07102
(973) 642-7616

dawn.apgar@njit.edu

SIGNATURE OF PARTICIPANT
I have read this entire form, or it has been read to me, and I understand it
completely. All of my questions regarding this form or this study have been
answered to my complete satisfaction. I agree to participate in this research study.

Subject Name: 	

Signature: 	

Date: 	

SIGNATURE OF READER FOR PARTICIPANTS WHO ARE VISUALLY
IMPAIRED

The person who has signed above, 	
has visual impairment, I read English well and have read for the subject the entire
content of this form. To the best of my knowledge, the participant understands the
content of this form and has had an opportunity to ask questions regarding the
consent form and the study, and these questions have been answered to the
complete satisfaction of the participant (his/her parent/legal guardian).

Reader Name: 	

Signature: 	

Date: 	
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SIGNATURE OF INVESTIGATOR OR RESPONSIBLE INDIVIDUAL
	To the best of my knowledge, the participant, 	 	 ,

has understood the entire content of the above consent form, and comprehends the
study. The participants and those of his/her parent/legal guardian have been
accurately answered to his/her/their complete satisfaction.

Investigator's Name: 	

Signature: 	

Date: 	
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APPENDIX D

CONTROLLED EXPERIMENT — STUDY INTRODUCTION

The following introduction of the research to the participants was used at the beginning

of the controlled experiment.

Study Introduction

Dear subject,

Thank you very much for agreeing to participate in the study on AudioBrowser.
AudioBrowser is a system that will read news for you during the study. You are asked to
use a touchpad and your speech to operate AudioBrowser. Your preferred ways to
operate the system and your evaluation will help up design better speech and touch input
mechanism for non-visual information systems.

The study will be conducted in two separate sessions on two consecutive days. In the first
day you will participate in a tutorial that teaches you how to use AudioBrowser. You will
get hands-on experience on using the system. On the second day you will participate in
an evaluation session, during which you will be asked to perform a list of tasks using
AudioBrowser. We will catch problems in the system design and your preferred ways of
operation during this session. This session will be videotaped for later analysis.
Following the evaluation session, we will interview you about your experience with
AudioBrowser. We will also collect some background information about you that helps
us create a profile of the user group. Your participation in each day will be approximately
2 hours.

Please feel free to ask questions or provide opinions at any time during the study. Please
understand that this is an initial design of the system and it could have problems. If you
have difficulties using the system, it is due to design problems that we need to catch and
fix. We appreciate the time and efforts you devote to help with designing better non-
visual interfaces.

We are now giving you the detailed study procedure and a consent form to sign. Note that
you are free to quit this study at any time.
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APPENDIX E

CONTROLLED EXPERIMENT — BACKGROUND QUESTIONNAIRE

The following background questionnaire was used to collect the participants' information

related to the research.

Background Questionnaire

The following questions ask you to tell us something about your background. This information
will help us to understand the system design needs for different user groups. All information is
completely confidential. You are free to decide not to answer any specific question.

Name: 	 Today's Date: 	

For the following set of questions, please indicate which of the answers best applies to you.

1. Which age group do you belong to?

a. ( ) 20 — 29 	 b. ( ) 30 — 39 	 c. ( ) 40 — 50

2. Could you tell me which education level applies to you?
a. ( ) high school 	 b. ( ) 1-2 years university
c. ( ) 3-4 years university d. ( ) advanced education beyond bachelor's degree

3. At what age did you become visually impaired? 	

4. What is your current vision? 	

5. For how many years have you been visually impaired? 	

6. What caused your vision impairment? 	
We ask this question because some of the factors associated will affect our design
decision. For example, people whose vision problem was caused by diabetes may
be affected in their sense of touch, and hence we should carefully design the touch
input for them.

7. For how many years have you been using a computer? 	

8. Describe the current setup you use to access information on your computer:

What software do you use to access information and computer programs? For example,
JAWS.



281

How do you give commands to your computer?
a. Regular keyboard
b. Braille input
c. Other input (Please explain)

How does your computer give you its output?
a. Speech output
b. Braille output
c. Other output (Please explain)

1. On average, how many hours do you use a computer every day? 	

2. Now you will hear a list of tasks you might do with a computer. Please say "yes" if you use a
computer to do the task.
	 Create text documents
	 Manage text documents
	 Read news
	 Write emails
	 Use an online-chat program
	 Post messages on online bulletin board
	 Manage personal information such as contacts and appointments
	 Search the Internet
	 Develop web pages
	 Write software programs

10. Do you use a computer for any other activities besides the ones I have indicated? If so, what
are they?

11. The following is a list of methods by which people access the news. For each method, please
indicate whether you use it (1) often (2) somewhat (3) never.

a. Radio 	 (1) often (2) somewhat (3) never
b. Television 	 (1) often (2) somewhat (3) never
c. Newspaper web sites 	 (1) often (2) somewhat (3) never
d. Braille newspapers 	 (1) often (2) somewhat (3) never
e. Other (please explain)

(1) often (2) somewhat (3) never
(1) often (2) somewhat (3) never
(1) often (2) somewhat (3) never

12. Please provide some web sites you visited on the Internet:
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APPENDIX F

CONTROLLED EXPERIMENT — INPUT MODALITY TUTORIAL

The following is the tutorial teaching the participants how to use the speech and touch

input modalities.

AudioBrowser Tutorial

Now you are participating in a tutorial session that teaches you how to use
AudioBrowser. It starts with an introduction to the AudioBrowser system.

AudioBrowser is a program that lets you browse and read information through touch and
speech. We are going to work mostly with newspapers. Audiobrowser will bring up the
news sections of a newspaper first, such as international section, national section, sports
section, etc. It will then let you select a news section based on your interests. Once you
select a news section, the news articles will be available for you to read.

You will communicate with Audiobrowser via finger touches and voice. That is, you will
operate the system using a touchpad and speech commands. AudioBrowser will talk back
to you.

Through this tutorial you will learn to use the touchpad and the speech commands that
AudioBrowser understands. Note that AudioBrowser sometimes makes mistakes. The
sensitivity of the microphone, sounds from the environment, and echoes in the
experiment room are all possible causes of system recognition mistakes. In case a mistake
occurs, you may either repeat your command or use other available commands to recover
from the mistake.

This tutorial includes the following sections: (1) an overview of the touchpad input and
the speech input, (2) a description of the functions of AudioBrowser and the ways to use
those functions using the touchpad and the speech input. Whenever you have questions
during the tutorial, please feel free to ask. You are also encouraged to try out the system
when the experimenter is explaining a function.

An overview of the touchpad and the speech input:

In front of you is a touchpad used for controlling AudioBrowser. (Let subject feel the 
touchpad.) It is a rectangular device with an indented area at the center. The indented area
can detect your touch and so we call it the sensing area. The sensing area is divided into
three tracks (Guide the subject to feel the tracks). The news sections and articles and the
system commands are mapped onto the tracks. When a news section or a command is
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touched on the touchpad, the system speaks to tell you what is being touched. Beside the
tracks, on the left and the right sides of the touchpad are two buttons (Guide the subject to
feel the buttons). You then can click one of the two buttons to enter the section or to
execute the command.

The speech input commands execute functions that are also available on the touchpad.
So, whenever you want the system to do a task you can choose between the touchpad
input and the speech input. Place the microphone in front of you, stay close to the
microphone, and speak to it to let the system hear you. When hearing a speech command
the system repeats what it hears and executes the command.

AudioBrowser functions and how to use the functions

1. Browse news categories and articles

When the system is started, the news categories of an available newspaper will be ready
for you to read. Using the touchpad, you can browse the categories by gliding your finger
on the top track from left to right. Now please try it (Guide the subject's finger). An
example of the system's speech output is "International section, 3 articles, 2 subsections,
item 1 of 8." Here international section is the news category; "3 articles and 2
subsections" indicates that there are 3 articles and additional 2 subsections in the
international section. "Item 1 of 8" indicates that there are a total number of 8 news
categories and international section is the first one. Between two adjacent news
categories you can hear a "click" sound that indicates the boundary between the two.
Now please use the touchpad to browse the available news categories again. 

You can also browse the news sections using speech input. These are the commands you
will use: "next category," "next article," and "next item." These commands let you go to
the next available news section or article. Although these commands are worded
differently, they are equal to the system. Similarly, you can use the commands: "previous
category," "previous article," and "previous item" to go to the previous available news
section or article. These commands, again, mean the same. Now please try these 
commands.

Task 1:
Please find the Sports Section using speech commands. Then find the Business
Section using the touchpad.

When you find a category interesting to you, you can enter the category to read the
articles inside. To enter a category using the touchpad, locate the news category on the
top track first, then click the right button. Now please try to enter the national section.
When you clicked the right button, you heard the system read the title of the first article,
the author of the article, and the article's order among the total number of articles in this
category. The top track is now changed — Instead of having the general news categories
such as "international section," "national section", it now has the articles and the
subsections in the news section you just selected. You can listen to the titles of these
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articles by gliding your finger on the top track. Now try this. To exit this category, click
the left button. Please try it. Now listen to the items on the top track. It comes back to the
general news categories.

You just learned to select a news category and exit a news category using the touchpad.
By using speech input you can do the same thing. The speech commands to select a news
category are "select" and "zoom in," which work equally well. The commands to exit a
news category are "exit" and "zoom out," which work equally well, too. After you have
entered a news category, you can use the commands "next article," "next item," or "next
category," and "previous article," "previous item," or "previous category" to browse the
news articles and sub news sections inside this category. Now please try these
commands.

Task 2:
• Please use speech commands to go to the National Section and use the

touchpad to zoom in.
• Please use the touchpad to zoom out from the National Section, find the

Technology Section, and use a speech command to zoom into the Technology
Section. Finally, use a speech command to zoom out.

2. Read an article

You have learned to browse news sections and the titles of news articles. I am now going
to explain how to read an article when you hear an interesting title. Again you can use
either the touchpad or the speech input.

When using the touchpad, locate the article you want to read using the top track first.
Then you will move to the middle track. On the middle track of the touchpad, there is a
list of text units. Now glide your finger on the middle track from left to right slowly. You
just hear four commands: "set to word," "set to sentence," "set to paragraph," and "set to
complete article." By touching "set to sentence" you request the system to read the article
sentence by sentence. By touching "set to paragraph" you request the system to read the
article paragraph by paragraph. The system will pause after each sentence or paragraph.
The command "set to complete article" allows you to read the whole article without stop,
unless you stop it. The "Set to word" command will be useful when you are searching for
a word to spell.

Speech commands can do the same tasks. The speech commands to use are: "set to
word," "set to sentence," "set to paragraph," and "set to complete article." If you forget
these text units, you can use the command "output unit" to have the system tell you the
text units. (Please try these speech commands.)

Now let me brief what you have done:
(1) First, you locate an article. To locate an article you glide your finger on the top track
or use speech commands: "next article" "previous article" "next item" "previous item"
"next category" "previous category;"
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(2) Second, you select the text unit by which you want the system to read the article. On
the touchpad you do so by gliding on the middle track. Using the speech input you use
the commands "set to word, sentence, paragraph, or complete article."

Now what's the next step? Again you have two choices, the touchpad or the speech input.
On the touchpad you can click either the right button to read the next text unit, or the left
button to read the previous text unit. But pay attention that if you have set the text unit to
the complete article, only press the left button, which will read the whole article from
*the beginning*. The right button doesn't work. To pause reading at any time, press the
left and the right buttons together. Now please try to let the system read by "sentence," 
then by "paragraph," and then by "complete article."

Note that the two buttons now have different functions — For the top track on which you
browse news categories and article titles, the two buttons are to enter or exit a section.
For the middle track on which you set the text unit, the two buttons are to read the next or
previous text unit.

You clicked the touchpad buttons to read the next or previous text unit. You can use
speech commands to do the same thing. The speech commands to use are: "next word,"
"previous word," "next sentence," "previous sentence," "next paragraph," "previous
paragraph," "read article" and "pause." The command "read article" will read an article
from *the beginning*. Now please try these commands.

A trick here is that the speech commands are more flexible than the touchpad — you don't
have to say "set to sentence" before using the command "next sentence." You can use the
command "next sentence" directly at any time. Similarly, you can use the commands
"next word", "previous word", "next paragraph" and "previous paragraph" directly
without setting the reading unit to word or paragraph first. Now please say -next word" 
first, and then say "next sentence." 

To resume reading after a pause, say "resume", which will resume reading from where it
was paused. An alternative way to resume reading is to use the touchpad. Go to the
middle track first and select the text unit you want the system to read by, and click the
right button to resume from the next text unit, or click the left button to resume from the
previous text unit. Now please try these commands.

Task 3:
• Please use a speech command to go to the next article in the current news

category.
• Use the touchpad to have the system read the next four sentences. While the

fourth sentence is being read, use the touchpad to pause in the middle of the
sentence. Then use the speech input to resume from where it is paused.

• Use a speech command to let the system read the next paragraph. In the
middle of the paragraph, use a speech command to pause reading. Then use
the touchpad to resume reading from the next paragraph.



286

When you need to spell a word, use the speech commands "spell" or "spell word." These
commands spell the last word in the article read by the system. To spell using the
touchpad, set the text unit to word first, then press the left and the right buttons together.
Of course you can set to word using either the middle track of the touchpad or using the
speech command "set to word." Now please try these commands.

When you need to repeat a text unit in the article last read by the system, use the speech
command "repeat," or press the right button to go the next text unit and the left button to
return to the unit you want to repeat.

3. Adjust audio settings

You have learned how to read an article. What if you need to decrease the reading speed
or increase the reading volume?

AudioBrowser allows you to change 5 audio settings: reading speed, volume, the voice
used to read the article, the pitch of the voice, and the volume of the non-speech audio
feedback, e.g., the clicks heard between news items. These settings are on the bottom
track on the touchpad. Listen to these settings by gliding your finger on the bottom track.
At this time clicking the right button will increase the value of the setting you touched
last, and clicking the left button will decrease the value of that setting. Now please try
these controls.

To change the settings using speech input, use the following speech commands:
"increase speed," "decrease speed," "increase volume," "decrease volume," "next
voice," "previous voice," "increase pitch," "decrease pitch," "increase tone volume,"
and "decrease tone volume." Now please try these controls.  When changing the voice,
please only use the first three voice, Mary, Mike, and Sam.

If you forget the audio settings available, there are three ways to remind yourself. The
first way is to glide your finger on the third track to browse the settings. The second way
is to use a speech command "settings menu," which has the system tell you all the
settings available for adjustment. The third way is to give the following speech
commands in order: 'first setting," "next setting," and "next setting" until the setting that
you are looking for is reached. Now please try these controls.

After adjusting the audio settings, there are multiple ways to return to the article being
read. Using speech input, you can say "resume," "next sentence / paragraph," "previous
sentence / paragraph." You can also use the command "read article" to read from the
beginning of the article.

To return to the article using the touchpad, go back to the middle track to select a text
unit and click the right button to read the next text unit, or click the left button to read the
previous text unit. Now please try these controls.
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If you don't want to return to the point where you paused within the article, but to read
other articles or news categories, use the speech commands "next article," "next
category," etc., which you have used to browse news categories and articles. You can
also place your finger back to the top track to locate the article titles or news sections.
Now please try these controls.

Task 4:
• Please use a speech command to go to the next article in the current news

category.
• Please use a speech command to have the system read the next paragraph.

Pause in the middle of the paragraph using speech.
• Use the touchpad to decrease the reading speed by one level.
• Use the touchpad to resume reading from the next paragraph. Pause in the

middle of the paragraph using the touchpad.
• Please use speech commands to increase the reading pitch by two levels.
• Use speech to resume reading from where it has paused.

You have learned all the functions and controls of AudioBrowser. Now we will have a
short break (5 minutes). After the break I will briefly summarize the speech and touchpad
controls you have learned, and give you a list of tasks to practice.
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APPENDIX G

CONTROLLED EXPERIMENT — TASK SHEET FOR PRACTICE IN DAY ONE

The following tasks were used in the practice session held after the input modality

tutorial in day one.

Practice of Speech and Touchpad Input

In this practice session you will finish a list of tasks using the speech and the touchpad
input you have learned. When there is a question or a problem please let the experimenter
know. The experimenter will help you. This practice session will be video taped. You are
suggested to use about 30 minutes to finish all the tasks.

Task 1.
Please use speech commands to finish the following steps:
• Find and enter the Sports Section.
• Find an article titled "Johnson Wins 200 Meters Semifinal."
• Set the reading unit to sentence and read the next sentence.
• Read the next paragraph and pause in the middle of the paragraph.
• Change the voice to the next available voice and continue to read the article. Wait until

the system finish reading the current text unit.
• Go back three words and spell the word.
• Please read two more sentences.
• Exit the Sports Section.

Task 2.
Please use the touchpad to perform the following steps:
• Find the Politics Section and enter the section.
• Find an article titled "Bush Is Seeking Safe and Solid Running Mate."
• Go to the third paragraph. Pause when the third paragraph is being read.
• Go back five words and spell the word.
• Change the voice to the previous voice and read the next sentence.
• Read one more paragraph and exit the Politics Section.

Task 3.
• Please use the speech input to go to and enter the International Section.
• Use the touchpad to find the subsection titled "Europe" and enter it. The "Europe"

section can be a subsection.



289

• Use the touchpad to find an article titled "Spain Suspects Basque Group in 2 Attacks."
• Use the speech input to read the next four sentences.
• Use the touchpad to read the next five words.
• Use the touchpad and the speech input to spell the last word respectively.
• Use the touchpad to decrease the reading speed by one level and use the speech input to

read the next sentence.
• Use the speech input to increase the reading volume by one level and use the touchpad

to resume reading.
• Please repeat the last sentence using speech and touch respectively.

Task 4.
Perform the following steps. Please use any mixed speech and touch input that you like:
• Find a news article interesting to you. The article should be in a different news

category.
• Spell the name of the author and read five more sentences.
• Increase the tone volume by 2 levels and read the next paragraph. Pause reading in the

middle of the paragraph.
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APPENDIX H

CONTROLLED EXPERIMENT — TASK SHEET FOR WARMING-UP IN DAY
TWO

The following tasks were used as a warming-up practice before the controlled experiment

in day two.

Warm-Up Tasks

In this practice session you will finish a list of tasks using the speech and the touchpad
input you have learned yesterday. When there is a question or a problem please let the
experimenter know. The experimenter will help you. This practice session will be video
taped. You are suggested to use about 15 minutes to finish the tasks.

Task 1.
Please use speech input to finish the following steps:
• Please find and enter the New York Times Section.
• Find and enter the National Section.
• Find an article titled "Supreme Court Hears Case on Abortion Rights."
• Read the next paragraph.
• Read the next paragraph and pause in the middle of the paragraph.
• Decrease the reading speed by one level and continue to read the article. Wait until the

system finishes the current paragraph.
• Go back three words and spell the word.
• Read one more sentence.
• Exit the National Section.

Task 2.
Please use the touchpad to perform the following steps:
• Find the Education Section.
• Enter the Education Section and find an article titled "Learning-Disabled Students

Blossom in Blended Classes."
• Go to the third paragraph. Pause when the third paragraph is being read.
• Go back four words and spell the word.
• Increase the reading volume by one level and read the next sentence.
• Read one more paragraph and exit the Education Section.
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Task 3.
Perform the following steps. Please use any mixed speech and touch input that you like:
• Find the International Section.
• Find the news about Mexico's Leader's Attitude toward Migration.
• Spell the last name of the author and read five more sentences. Pause in the middle of

the fifth sentence.
• Change the voice to the next available voice and increase the reading speed by one

level. Resume reading.
• Repeat the last sentence and read one more paragraph.
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APPENDIX I

CONTROLLED EXPERIMENT — EVALUATION OF PARTICIPANTS'
ABILITY TO UNDERSTAND COMPLIER SYNTHESIZED SPEECH

The following articles are TOEFL exam samples from ETS Web site. They were used to

evaluate the participants in the controlled experiment on their ability to understand

computer synthesized speech output. The articles are marked using the scripts read by the

AudioBrowser system.

(Articles are marked with scripts read by AudioBrowser)

<np title=ITOEFL Listening Sample Questions) date=IDecember 1, 20051>
<s name=ILectures About the Naturel>
<a h1=1Article Onel
b1=1By ETS I
t=IToday's discussion is about a common animal reaction — the yawn. The dictionary
defines a yawn as "an involuntary reaction to fatigue or boredom." That's certainly true
for human yawns, but not necessarily for animal yawns. The same action can have quite
different meanings in different species.
For example, some animals yawn to intimidate intruders on their territory. Fish and
lizards are examples of this. Hippos use yawns when they want to settle a quarrel.
Observers have seen two hippos yawn at each other for as long as two hours before they
stop quarreling.
As for social animals like baboons or lions — they yawn to establish the pecking order
within social groups, and lions often yawn to calm social tensions. Sometimes these
animals yawn for a strictly physiological reason — that is, to increase oxygen levels. And
curiously enough, when they yawn for a physical reason like that, they do what humans
do — they try to stifle the yawn by looking away or by covering their mouths. 1

<a h1=1Questions Based on Article Onel
b1=IEach question is a paragraph. Please set the text unit to paragraph to read them. 1
t=IQuestion 1: What is the speaker's main point?
Answer A:Animals yawn for a number of reasons.
Answer B:Yawning results only from fatigue or boredom.
Answer C:Human yawns are the same as those of other animals.
Answer D:Only social animals yawn.
Question 2: According to the speaker, when are hippos likely to yawn?
Answer A: When they are swimming.
Answer B: When they are quarreling.
Answer C: When they are socializing.
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Answer D: When they are eating.
Question 3: What physiological reason for yawning is mentioned?
Answer A: To exercise the jaw muscles.
Answer B: To eliminate fatigue.
Answer C: To get greater strength for attacking.
Answer D: To gain more oxygen. 1

<a h1=1Article Twol
b1=1By ETS I
t=INow listen to part of a lecture from a gemology class.
In last week's lesson about the difference between metals and gems, we discussed how
pliable true gold is. Today we are going to be talking about the diamond, the hardest
known natural mineral. As most of you know from our introductory chapter, diamonds
are the transparent form of pure carbon. Carbon crystals form deep in the Earth's mantle
when high temperatures and extreme pressure occur. The term "diamond" comes from the
Greek word adamas, which means unconquerable. In the jewelry business, diamonds are
valued according to a few categories, known as the 4 C's. The cost of a diamond depends
on its carat, color, cut, and clarity. Besides Africa, there are few areas around the world
with large diamond deposits. However, diamond replication is a new trend that threatens
the multimillion dollar industry. Researchers have discovered a way to produce large
volumes of diamonds by putting carbon under extreme heat and pressure. This process
causes the carbon to crystallize into diamonds. Even the trained eye cannot detect the
difference between a natural diamond and one that is manufactured in this way. While
this innovation could devastate the jewelry industry, it could also turn the precious stone
into a common semiconductor. Not only are diamonds incredible conductors of heat, they
are also efficient electrical insulators. Tremendous heat can pass through a diamond
without causing any significant damage. I

<a h1=1Questions Based on Article Twol
b1=1Each question is a paragraph. Please set the text unit to paragraph to read thent.1
t=IQuestion 1: What is the purpose of this lecture?
Answer A: To compare diamonds and gold.
Answer B: To discuss types of gems.
Answer C: To discuss the formation of diamonds.
Answer D: To review the elements of carbon.
Question 2: Which of the following is not one of the 4 C's used by the jewelry business?
Answer A: Carbon.
Answer B: Carat.
Answer C: Color.
Answer D: Cut.
Question 3: Where do natural diamonds form?
Answer A: In a manufacturing plant.
Answer B: In an electrical insulator.
Answer C: Deep in the Earth's mantle.
Answer D: Alongside metals such as gold.
Question 4: According to the professor, what are diamonds good for besides jewelry?



Answer A: They can create heat.
Answer B: They can hold heat in.
Answer C: They can damage insulators.
Answer D: They can conduct electricity. I
>
</s>
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APPENDIX J

CONTROLLED EXPERIMENT — EXPERIMENT TASK SHEET

The document below is the task sheet used for the experiment sessions.

Experiment Task Sheet

You are being asked to do the following tasks. You can use the speech input and the
touch input freely. A video camera will be used to catch your use of the system and any
problems occurring.

You will do these tasks independently without help from the experimenter. All tasks are
to be completed. If you encounter a problem, please tell the experimenter what the
problem is.

The experimenter will read each task for you. If you do not hear a task clearly, feel free to
ask the experimenter to repeat. Tell the experimenter when you finish a task so that the
experimenter will then read the next task for you.

Task 1. (Finding the user's comfortable reading speed)

1) Please listen to all of the sections available at the top level.
2) Go to National section in New York Times section and find the article titled "Busiest

Hurricane Season on Record Ends".
3) Set the reading unit to Paragraph, and have the system start to read the article.
4) Adjust the reading speed to a level comfortable for you. Do this by adjusting the

reading speed, listening to the article and readjusting the reading speed until you feel
it is comfortable. When you find the best speed for you, stop reading.

Task 2. (Testing the user's ability to understanding synthesized computer speech output)

Now you will listen to two articles. For each article, once the system starts to read it, it
will not stop until the whole article is finished. Please try your best to understand the
article. When each article is finished, you will answer some questions based on the
article. When you are ready, the experimenter will have the system start reading.

(The experimenter has the system read articles in "Lectures About the Nature" section.)

The article is finished. Now you are to answer some multiple-choice questions based on
the article. Listen to each question and the four choices of answers following it. They are
labeled Answer A, Answer B, Answer C, and Answer D. You can ask the experimenter
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to repeat any question and answer choice if you need. When you decide your answer to a
question, tell the experimenter your answer and proceed to the next question. Now you
can start listening to the questions.

Task 3. (Routine cognitive tasks)

1) Please find the Times Magazine Special Issue Section which is at the top level.
2) Set the reading unit to Sentence. Enter the Times Special Issue Section.
3) Read all of the item titles available in this section.
4) Go to Part One of the article and start reading it. When four sentences are finished,

pause in the middle of the fifth sentence.
5) Increase reading volume and resume reading. Then pause in the middle of the next

sentence.
6) Have the system spell out the last word that the system read.
7) Go back four words and spell the word.
8) Resume reading, increase the reading pitch by three levels. And resume reading.
9) Decrease the reading pitch by two levels. Then start reading the article from the

beginning. Pause after you have heard the words, "The TIME 100."

Task 4. (Comprehending a short article)

Now read the article again, from the beginning to the end. When you finish the article,
finish three questions asked based on the article. The questions are in the section next to
the article, titled Questions based on Part One. You will have the system read the
questions for you and go back to the article to find the answers.

You can read the questions first if you want. You can repeat reading any part of the
article or the questions as needed.

Task 5. (Comprehending a longer article)

Now you will read Part Two of the article. Answer the questions asked based on Part
Two. Again you will have the system read the questions for you and go back to the article
to find the answers.

Again you can read the questions first if you want. You can repeat reading any part of the
article or the questions as needed.
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Task 6. (Observing the user's error-handling strategies)

In this task section you will handle errors. The system will generate errors for you to
handle. When an error occurs you can use any way to fix it. All errors are to be fixed.

1) Please tell the system to go to the New York Times Section, and enter the Health
Section.

2) Please go to the third article
3) Please set the reading unit to "sentence" and read the next three sentences. Then

repeat the last sentence.
4) Please command the system to read by complete article, and resume reading from

where it was paused. After it reads two or three sentences, pause reading.
5) Please spell the last word read by the system. Go back two words and spell.
6) Please set the reading unit to "paragraph" and resume reading from where it was

stopped. Wait until the system stops.
7) Please go to the next article.
8) Please increase the reading pitch by two levels and resume reading.
9) Please command the system to exit Health Section and zoom into Business Section

that's two sections before Education Section.
10)Please command the system to decrease the reading speed by one level.
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APPENDIX K

CONTROLLED EXPERIMENT — POST QUESTIONNAIRE

The following is the questionnaire used between the experiment session with low error

rates and the experiment session with high error rates.

Post Questionnaire

Before you perform the last task, we would like you to tell us your opinions about the
speech input and the touchpad input. You will give us your opinions for each of the tasks
that we describe.

Please describe how would you do the following tasks using speech and using touch
respectively?

1. Browse news sections and article titles
Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 — 2 — 3 — 4 — 5 	 Difficult

2. Enter a news section.
Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult



Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

3. Exit a section

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

4. Set reading unit

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2 — 3 — 4 — 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult
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5. When the reading unit is set to "paragraph", read the next paragraph

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1 —2-3-4-5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

6. When the reading unit is set to "word", read the next paragraph

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

7. Read the next five sentences continuously

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely
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How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

8. Pause reading

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

9. Resume reading

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1 — 2 — 3 — 4 — 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely
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How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

10. When the system reading has been paused, spell the last word that the system has read

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2 — 3 — 4 — 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2 — 3 — 4 — 5 	 Difficult

11. When the system reading has been paused, find a word in the middle of a sentence

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 —2-3-4-5 	 Difficult

13. When the system is reading, decrease the reading speed

Please describe how would you do this task using speech?



How likely would you use speech to finish this task?
Likely	 1— 2— 3— 4— 5	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy	 1— 2— 3— 4— 5	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely	 1— 2— 3— 4— 5	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy	 1— 2— 3— 4— 5	 Difficult

14. After the reading speed has been adjusted, resume reading

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely	 1— 2— 3— 4— 5	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy	 1 —2-3-4-5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely	 1— 2— 3— 4— 5	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy	 1— 2— 3— 4— 5	 Difficult

15. Repeat the sentence that was just read by the system

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely	 1— 2— 3— 4— 5	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?
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How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

16. Get to know what reading units are available

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1 — 2 — 3 — 4 — 5 	 Difficult

17. Get to know what audio settings are available

Please describe how would you do this task using speech?

How likely would you use speech to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use speech to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult

Please describe how would you do this task using touch?

How likely would you use touch to finish this task?
Likely 	 1— 2— 3— 4— 5 	 Unlikely

How easy would you find it is to use touch to finish this task?
Easy 	 1— 2— 3— 4— 5 	 Difficult
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QUESTIONS FOR USER INTERFACE SATISFACTION [2]:

Overall reaction to the Speech Input:

Terrible 	 1— 2— 3— 4— 5 	 Wonderful
Difficult 	 1 — 2 — 3 — 4 — 5 	 Easy
Frustrating 	 1— 2— 3— 4— 5 	 Satisfying
Inadequate power 	 1 — 2 — 3 — 4 — 5 	 Adequate power
Dull 	 1— 2— 3— 4— 5 	 Stimulating
Rigid 	 1— 2— 3— 4— 5 	 Flexible

Overall reaction to the Touchpad Input:

Terrible 	 1— 2— 3— 4— 5 	 Wonderful
Difficult 	 1 — 2 — 3 — 4 — 5 	 Easy
Frustrating 	 1— 2— 3— 4— 5 	 Satisfying
Inadequate power 	 1 — 2 — 3 — 4 — 5 	 Adequate power
Dull 	 1 — 2 — 3 — 4 — 5 	 Stimulating
Rigid 	 1— 2— 3— 4— 5 	 Flexible
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