
Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE
AND LINK CONGESTION

by
Ibrahim Takouna

Link/Node failure occurs frequently causing service disruption in computer networks.

Hardware techniques have been developed to protect the network from Link/Node

failure. These techniques work in physical layer, therefore their convergence time is very

small. On the other hand, many schemes have been proposed to mitigate the failure

influence on the network. These schemes work in upper layers such as the network layer.

However, hardware solutions faster than other schemes, but they are expensive.

Link/Node failure causes all flows which were using the failed link/node are temporarily

interrupted till a new path reestablished.

Three recovery algorithms have been proposed that mitigate the changes occur in

the network. These changes are link/node failure and link congestion. The algorithms

mainly pre-compute a backup next hop for each destination in the network. This path is

feasible to accommodate re-routed traffic when a failure occurs without causing

congestion or loops. Simulations have been conducted to show the performance of the

proposed algorithms using ns2 network simulation tool. The results show fast recovery

for all flows were using the link/node failure. Furthermore, the throughput per node also

increases due to decrease interruption service time.

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE
AND LINK CONGESTION

by
Ibrahim Takouna

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

August 2007

APPROVAL PAGE

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE
AND LINK CONGESTION

Ibrahim Takouna

Dr. Roberto Rojas-Cessa, Thesis Advisor	 Date
Assistant Professor of Electrical and Computer Engineering, NJIT

Dr. Nirwan Ansari, Committee Member	 Date
Professor of Electrical and Computer Engineering, NJIT

Dr. Edwin Hou, Committee Member	 Date
Associate Professor of Electrical and Computer Engineering, NJIT

BIOGRAPHICAL SKETCH

Author:	 Ibrahim Takouna

Degree:	 Master of Science

Date:	 August 2007

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Bachelor of Science in Computer Engineering,
Islamic University of Gaza, Gaza, Palestine, 2002

Major:	 Computer Engineering

In the name of Allah, Most Gracious, Most Merciful

"Are those who know equal to who know not" (Quran 39:9)

To my faithful wife, to my daughter Farah and my parents

v

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Roberto Rojas-Cessa for his

supervision, advice, and guidance from the very early stage of this research.

Special thanks are given to Dr.Nirwan Ansari and Dr. Edwin Hou for

participating in my committee.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 1

1.1 Overview of Re-Routing 	 3

1.2 Physical Layer Protection 	 6

1.3 Network Layer Protection 	 9

1.4 Link State Update Schemes 	 11

1.5 Related Work 	 13

	

1.6 Contributions of this Thesis 14

2 ROUTING TREE RECOVERY ALGORITHM 	 15

2.1 Link Failure Recovery Algorithm.. 	 15

	

2.2 Node Failure Recovery Algorithm 28

2.3 Link Congestion Mitigation Algorithm 	 33

2.4 Time Complexity Analysis 	 37

2.4.1 Link Failure Recovery Algorithm Time Complexity 	 37

2.4.2 Node Failure Recovery Algorithm Time Complexity 	 38

2.4.3 Link Congestion Mitigation Algorithm Time Complexity 	 38

3 ALGORITHMS IMPLEMENTATION AND SIMULATION RESULTS 	 39

3.1 Node Basics 	 39

3.1.1 Address and Port Number Management 	 40

3.1.2 Agent Management 	 41

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

	3.1.3 Tracking Neighbors 41

3.2 Routing Module and Classifier Organization 	 42

3.2.1 Routing Module 	 42

3.2.2 Node Interface 	 44

3.2.3 New Features Added 	 45

3.3 Simulation for link Recovery 	 46

3.3.1 Load Distribution for Link 	 47

	

3.3.2 Throughput for Node 50

	

3.4 Simulation for Node Recovery 53

3.4.1 Load Distribution for Links 	 54

3.4.2 Throughput for Nodes 	 55

3.5 Simulation for Double Link Recovery 	 56

4 CONCLUSION AND FUTURE WORK 	 58

4.1 Contributions 	 • 58

4.2 Future Work 	 60

LIST OF TABLES

Table Page

1.1 IGP Convergence [23] 11

2.1 Link Failure Recovery Algorithm Notation 	 16

2.2 Sample of Routing Table for Node S 	 	 18

2.3 Extended Routing Table for Node 1 Case I 	 21

2.4 Routing Table for Node 1 in Case II 	 25

2.5 Routing Table for Node 4 in Case II 	 25

2.6 Routing Table for Node S in Case III 26

2.7 Routing Table for Node 2 in Case III 27

2.8 Node Failure Recovery Algorithm Notation 	 29

2.9 Congestion Recovery Algorithm Notation 	 34

ix

LIST OF FIGURES

Figure	 Page

1.1 Characterization of failure in the Sprint IP backbone network... 	 1

1.2 Backup path types 	 4

1.3 Network survivability with (a) restoration (b) protection[14] 	 4

1.4 SONET self-healing ring: Unidirectional Path-Switched Ring
Architecture UPSR achieves 1+1 protection [16] 	 7

1.5 SONET self-healing ring: 	 Unidirectional Path-Switched Ring
Architecture [16] 	 8

1.6 Service interruption time a) proactive (pre-planned) and b) reactive 	 11

2.1 Data routing tree for source node S 	 17

2.2 Example of Link failure recovery algorithm-case I 	 20

2.3 Example of Link failure recovery algorithm-case II 	 23

2.4 Example of the Link failure recovery algorithm-loop free case III 	 27

2.5 Packet forwarding policy 	 29

2.6 Example of node failure 	 27

2.7 Example of the node recovery algorithm 	 32

2.8 Consider link(S,u) as congested link 	 33

2.9 Recovery from the congestion in link(S,u) 	 34

2.10 Example for link congestion mitigation algorithm 	 36

3.1 Ns2 unicast node routing structure 	 40

3.2 Interaction among node, routing module, and routing 	 43

3.3 A modified ns2 unicast node routing structure 	 46

3.4 Link load for each link in the network size 20 nodes 	 48

LIST OF FIGURES
(Continued)

Figure	 Page

3.5 Link load for each link in the network size 40 nodes 	 49

3.6 Link load for each link in the network size 60 nodes 	 49

3.7 Link load for each link in the network size 100 nodes 	 50

3.8 Throughput for each node in the network size 20 nodes. 	 51

3.9 Throughput for each node in the network size 40 nodes. 	 51

3.10 Throughput for each node in the network size 60 nodes 	 52

3.11 Throughput for each node in the network size 100 nodes (0-49) 	 52

3.12 Throughput for each node in the network size 100 nodes (50-99) 	 53

3.13 Link load for each link in the network size 20 nodes for node failure 	 54

3.14 Link load for each link in the network size 40 nodes for node failure 	 54

3.15 Throughput for each node in the network size 20 nodes for node failure...... 	 55

3.16 Throughput for each node in the network size 40 nodes double link
failure 	 55

3.17 Load for each link in the network size 20 nodes for node failure
double link failure 	 56

3.18 Throughput for each node in the network size 20 nodes double link
failure 	 57

xi

CHAPTER 1

INTRODUCTION

The number of Internet applications and services are growing very fast. These

applications are extensions from science and business applications to personal

communication applications. Most of the services are sensitive to both network

failures and changes on network conditions, or they might require Quality of

Service (QoS) guarantees. Consequently, failure recovery and network

survivability has being studied extensively in recent years [1]-[11]. SDH/SONET

automatic protection switching (APS) completes the recovery process within 50

ms [12]. This recovery time of tens of milliseconds satisfies most requirements.

Network failure has been reported to occur very frequently in some networks.

Figure 1.1 shows some statistics of the link failures in the Sprint IP backbone

network as measured during seven months. Each single point at (t, 1) is used to

represent a failure on link 1 at time t.

Apr 	 May 	 Jun 	 Jul 	 Aug 	 Sep 	 Oct 	 Nov
Time

Figure 1.1 Characterization of failure in the Sprint IP backbone network [13].

1

2

This study of routing updates in the Sprint's IP backbone network [13] shows that

80% of all failures are unexpected. Of those, 70% affect a single link at a time

while 30% involve shared link risk groups. These numbers shows the need of fast

recovery techniques in the Internet. Planned link failures constitute the remaining

20%, can be handled by techniques such as graceful shutdown and ordered

updates.

Resilience refers to the ability of a network to keep services running despite a

link/node failure. For telephone networks, link/cable cuts are the largest cause of

service interruption time. Resilient networks recover from a failure by repairing

themselves automatically or circumventing a failure using additional resources.

More specifically, failure recovery of a network can be achieved by rerouting

traffic from the affected part of the network to another portion of the network.

Rerouting is subject to several constraints. End-users may want rerouting to be

fast enough so that the interruption time of services due to a link failure is either

unnoticeable or minimal. The new path taken by rerouted traffic can be either

computed at the time failures occurred reactive or before failures proactive. In the

second case, rerouting is said to be pre-planned. Pre-planned rerouting

mechanisms permit to decline interruption of service time but it requires

additional hardware to provide redundancy in the network and consume valuable

resources, such like computation cycles to find backup paths.

In this chapter, an overview of various network recovery techniques is

presented. Section 1.1 presents re-routing of traffic after a link/node failure.

Section 1.2 describes rerouting techniques at the physical and MAC layers.

3

Section 1.3 describes failure protection at the network layer, including an

overview of IP Fast Re-Route (IPFRR) and a comparison of rerouting at lower

layers with rerouting performed by the network layer without pre-planning and

pre-planning. This section also includes a description of previous works.

1.1 Overview of Rerouting Schemes

This section presents a general overview of the rerouting concept. Rerouting

schemes can be used in both circuit and packet switching networks. In either a

link/node failure in a network or a congested link, traffic flows must change its

route in order to reach its final destination in a timely fashion. Consequently, the

service is interrupted for time Tint.service as in Eq. 1.1. Service interruption time is

the time since a failure occurs and gets detected until packets start using a backup

path and the service is resumed. On the other hand, the transmission of packets is

rerouted from a primary path to a backup path, which can be computed in advance

before the failure occurred. Figure 1.2 depicts an example where a source node S

sends traffic to a destination node D, and where a link on the primary path fails.

The primary and the backup paths can be totally disjoint as in Figure 1.2.a or

partially shared as in Figure 1.2.b.

Normal operation

Protection

114th Traffic
	

path

occurs and is detected Failure on working path in detected

4

(a) fully disjoint	 (b) shared

Figure 1.2 Backup path types.

Tint service = Tdetect	 Tnotif	 Tswitchover

Workingpath

Alternate path is established, and
traffic	 re-muted

-batik is switched to the protection path

Figure 1.3 Network survivability with (a) restoration (b) protection [14].

5

Figure 1.3 depicts two kinds of survivability restoration and protection

techniques. The restoration of a new path is established after a failure occurred

and the traffic is rerouted through the new path. In a protection technique,

protection paths can be dedicated and pre-established. Protection paths are used as

backup paths for the working paths. A rerouting technique consists of four general

steps, where each one has a limited time for completion. These steps are the

following. First step: the network must be able to detect link failures. Link failure

detection can be performed by dedicated hardware or software at the end nodes or

at the adjacency of the failed link. Second step: nodes that detect the link failure

must notify the other nodes in the network of the failure. The selection of nodes

that are actually notified of the failure depends on the rerouting technique used.

Third step: a backup path must be computed proactively or reactively. In

proactive rerouting schemes, however, this step is performed before link failure

occurs. Fourth step: instead of sending traffic on the primary failed path, a node

called path-switching node must send traffic on the backup path. This step is

called switchover. Switchover completes the repairing of the routing path for

continuation of the transmission after a link failure. When the failed link is

repaired, traffic can be rerouted to the primary path, or keep being sent on the

backup path, depending on the use requirements and network utilization.

6

1.2 Physical Layer Protection

A ring network is a network topology where all nodes are attached to the same set

of physical links. Each link forms a loop. In counter-rotating ring topologies, all

links are unidirectional and traffic flows in one direction on one half of the links,

and in the reverse direction on the other half. Self-healing rings are particular

rotating ring networks, which perform rerouting as follows. In normal operation,

traffic is sent from a source to a destination in one direction only. If a link fails,

then the other direction is used to reach the destination. Self-healing rings require

expensive specific hardware and waste up to half of the available bandwidth to

provide full redundancy. On the other hand, lower layer protection mechanisms

are the fastest rerouting mechanisms available as self-healing rings can reroute

traffic in less than 50 ms. This section presents four MAC and physical rerouting

mechanisms that rely on a counter rotating ring topology: SONET UPSR and

BLSR Automatic Protection Switching, FDDI protection switching, and RPR

Intelligent Protection Switching. In SONET, protection with self-healing rings is

called Automatic Protection Switching (APS [15]) and comes in two flavors. The

first one, Unidirectional Path-Switched Ring Protection at the MAC and physical

layers, as shown in Figure 1.4, is a self-healing ring network with benefits from

1+1 protection. In this 1+1 protection, two rings are used. Traffic is sent through

both working and protection paths at ingress nodes. The destination receives the

same data on each ring, but takes in from one ring only. In the event of a link

failure, the receiver detects the increase of the bit error rate or the absence of

traffic on one of the rings, and then decides to take in the traffic from the other

7

ring. The SONET standards specify that the service interruption time should not

exceed 50 ms [1], which is low enough for the outage to be unnoticeable by

customers who participate in a live conversation where voice is carried over a

SONET network. However, this technique requires detected backup paths for

restoration, which is very costly.

:age SONET
Grog P.1u tip lexer

	 SO NET ring
(optic fibers)

rk ing pat h
(01 work ng fiber)

Backup71pal h
(on b backup p f bet)

Figure 1.4 SONET self-healing ring: Unidirectional Path-Switched Ring

architecture. UPSR achieves 1+1 protection [16].

The second protecting scheme, Bidirectional Link-Switched Ring

architecture (BLSR) is shown in Figure 1.5, benefits from 1:1 protection. In this

1:1 protection, traffic is sent to the working path during normal operation. On a

link failure, the node upstream of the failed link wraps traffic from one ring to

another ring in the reverse direction so that traffic still can reach its destination.

BLSR is as fast as Unidirectional Path-Switched protection and does not waste as

many resources. The MAC layer provides the means for IP to send packets over a

local area network. Fiber Distributed Data Interface (FDDI) [17] implements a

protection mechanism at the MAC layer that is similar to SONET BLSR. FDDI

8

runs over dual rotating rings. In normal operation, traffic is sent on one ring only.

Like BLSR, FDDI wraps paths when a link failure is detected and uses the second

ring only as a backup ring. Therefore, FDDI implements 1+1 protection and

requires full link redundancy. Resilient Packet Ring (RPR) is a more recent MAC

protocol designed to run on multiple counter-rotating rings. In RPR, path

protection is called Intelligent Protection Switching (IPS). IPS can be viewed as

an enhanced SONET BLSR mechanism. Indeed, when a link failure occurs,

traffic is first wrapped exactly like SONET BLSR does. The emitting node is

notified of the failure and changes the ring on which it sends traffic. The new path

taken by packets is therefore shorter than the wrapped path, resulting in both

shorter delays for packets and a better utilization of the available resources. The

lower layer rerouting mechanisms are fast because the nodes that detect the failure

perform themselves the switchover step immediately, bypassing the notification

step.

SONET acd

drop multiplexer

SONET rirg

!optic fibers)

Regular pith

or traffic

Rerouted t attic
an link failure

_ink failure

Figure 1.5 SONET self-healing ring: Unidirectional Path-Switched Ring
architecture [16].

9

1.3 Network Layer Protection

Packet switching networks, like the Internet, are expected to be resilient to

link/node failures. Routing protocols [18] [19] [20] [21] take into account

topology changes such as a link failure and re-compute routing tables accordingly

using a shortest path algorithm. When all routing tables of the network are

recomputed and have converged, all paths that were using a failed link are

rerouted through other links. However, convergence is slow and takes usually

several tens of seconds. This long recovery time can potentially jeopardize the

satisfaction of services and user requirements. Part of the reason for this long time

is that routing protocols use timers to detect link failure with coarse granularity (1

second) making the Tdetect term in Equation 2.2 large compared with lower layer

rerouting mechanisms. Also, all routers in the network have to be notified of the

failure. Propagating notification messages is done in an order of magnitude of

tens of millisecond which makes Tnotif negligible compared with Tdetect· Indeed

routers only need to forward the messages with no additional processing and

routing tables have to be recomputed before paths are switched. Re-computing

routing tables implies using CPU intensive e shortest path algorithms which can

take a time Tswitchover of several hundred milliseconds in large networks. It is

possible to perform faster IP rerouting by shrinking the Tdetect and Tswitchover terms

of Equation 1.1. In [22], first, they propose to use sub-second timers to detect

failures and decrease the value of the Tdetect term. Second, they suggest that

routing convergence is slow due to the obsolescence of the shortest path

algorithms employed in current routing protocols which would be able to

10

recompute routing tables at the millisecond scale if faster, more modern

algorithms were used. In summary, expected rerouting times in networks using

modified routing protocols are below one second, but the authors also argue that

millisecond network layer rerouting is achievable.

IPFRR is a proactive technique or pre-planned technique. The nodes of a

network using IPFRR pre-compute a backup path to each destination before a

failure occurs so that when a failure is detected, the routes are switched to backup

paths without waiting to compute a new path to resume the service quickly.

Consequently, the repair time is reduced and therefore, this leads to a reduction of

interruption service time.

As mentioned in Section 1.1, the physical protection failure recovery is

completed in less than 50 ms but it requires extra hardware and wastes recourses.

Most IP networks are required a failure recovery time within a second. However

some business applications require a failure recovery time shorter than 50 ms.

Recently, it has been reported a reduced recovery time to one second in carefully

configured networks using link state IGPs [22]. Figure 1.9 depicts a time

comparison between proactive and reactive routing recovery schemes when link

(3,4) fails. In Figure 1.9 (a), the backup path is computed before a real failure

occurs so it saves recovery time. However, a proactive scheme computes the new

path after a failure detected that takes some milliseconds.

11

Node 3 !Link (3,4) fails

Figure 1.6 Service interruption time a) proactive (pre-planned) and b) reactive.

The following table shows the required time for each operation for normal

recovery process. Updating routing table process takes most of recovery process

time. As seen in the table, to update 500 prefixes takes 280 ms in the worst case,

which is a significant amount of time compared with the others values.

Table 1.1 IGP Convergence [23]

The operation	 Time

Failure Detection (SONET today) 	 20 ms

Origination 	 10 ms
Queueing, Serialization, Propagation 	 30 ms
Flooding < 5 * 2ms = 	 10 ms
— SPF 	 n * 40 us
FIB Distribution Delay: 	 50 ms
500 important prefixes: Worst-case:	 280 ms

1.4 Link State Update Schemes

There are many studies try to improve link state update scheme. Some of these

schemes are presented as following. First, some of these schemes are concerned

about efficiency and reliability of dissemination of the link state. For reliability

and to avoid flooding update, [24] has proposed a Tree-Based Reliable Topology

12

(TRT) to disseminate link state information. This scheme proposes a multiple tree

based link state dissemination scheme. This scheme satisfies the reliability and

efficiency but it cannot satisfy the requirement for a fast recovery time when a

failure occurs. In [25], it has been proposed a dissemination scheme that uses

broadcast for building the first tree. Then, this approach uses the tree to

disseminate link state. The proposed approach alternates between flooding and

tree-based broadcasting modes. In other words, when the link state dissemination

is guaranteed, the time required for source node to update its routing table to

recover a failure path cannot be guaranteed. Second, other studies intend to

overcome link state information that causes the false routing, either positive or

negative. A framework has been proposed in [26] to solve such problems that

result from the dissemination of inaccurate or outdated link state information.

The search of alternative paths have been proposed in [27][28]. The primary

objective of multiple-path routing approach is to compensate for the inaccuracy of

the knowledge accuracy available to routing nodes, but it cannot provide an

alternative path for each flow in a network in all cases of failures. Third,

researchers have proposed an update policy mechanism for link dissemination. In

[29], it has been stated that routing without considering the staleness of link state

information introduced by update policies may generate significant percentage of

false routing.[29] presents the Least Cost Multiple Additively Constrained Path

(LCMACP) scheme to mitigate the effect of staleness of link state. In [30], it been

presented two different link-state update policies to advertise the availability of

wavelength and converter resource in all-optical DWDM transport networks.

13

1.5 Related Work

IP Fast ReRoute IPFRR was proposed as framework in [31]. The simple scheme

of IPFRR uses equal cost multi-paths (ECMP)[32], where at least two paths with

the same cost are calculated for each source/destination pair. However, multipath

routing with ECMP usually do not satisfy the minimal resilience requirement of at

least two outgoing paths at each node [33]. For this reason, ECMP does not

guarantee the network survivability. Failure insensitive routing (FIR) is presented

in [34] for single-link failures. Given a primary path Source to Destination {S —to-

D}, FIR identifies a number of key links such that removing any of these links

forces the packets go back to S. Therefore, the failure of any key links can be

inferred by S at a deflected packet. To provide an alternate path, FIR removes the

key links and runs shortest path routing from S to D. Extending FIR to cover

single-node failures is presented in [35]. In [36], a loop-free alternate path is

presented where It choose an alternative backup path that satisfy this criteria cost

(N, D) < cost (N, S) + cost(S,D). On other words, S should not be the next hop for

N the backup next hop, but this is not guarantee the recovery process. Finally, a

scheme is proposed to set up a tunnel from node S to node Y that is multiple hops

away [37]. This scheme adds extra packet processing where all packets are

encapsulated by S and routed towards the tunnel endpoint. Then, the tunnel

endpoint decapsulates the packets and forwards them according to its routing

table. Multiple routing configuration (MRC) algorithm has been presented in [38].

In this work, the approach in each node has multiple configurations or a multi-

routing table. Then, when a failure occurs and is detected, the node tries to find

14

suitable configuration to overcome this failure. Managing the multiple routing

tables is significant overhead issue here.

1.6 Contributions of this Thesis

Many studies have been investigated the failure recovery either link or node. This

thesis addresses some of the problems related to failure recovery and congestion

recovery.

For these, this thesis proposes three algorithms.

• First, an algorithm for link failure recovery using proactive routing against
failures is proposed. When a node detects a failure, the pre-calculated
alternative paths make the recovery faster.

• Second, a proactive algorithm for node failure recovery is proposed. This
scheme uses some of the ideas presented for link failure but it considers
the differences on the effects created by node failures that are not present
with link failure.

• Third, a proactive congestion mitigation algorithm is also proposed.

This thesis provides the complexity analysis and implementation discussion of the

algorithms, and present simulations to test their performance under different

failures. The simulations are performed by using ns2 [39] simulation software.

This thesis is structured as follows. Chapter 2 introduces three proposed

algorithms for self-recovery networks from link and node failures, and for

congestion mitigation. Chapter 3 presents simulations and results. Chapter 4

contains the conclusions and future work.

CHAPTER 2

ROUTING TREE RECOVERY ALGORITHM

In this chapter, three algorithms have been proposed for data routing tree

recovery. The proposed algorithms aims to recover the transmission of packets

quickly and effectively from link failure, node failure, and link congestion. The

scheme is based on proactive computation of a backup path for each network

destination. Each obtained backup path is capable of accommodating rerouted

traffic and of being loop free. A modified Breadth First Search (BFS) algorithm

[33] is used to determine the backup path and several conditions to select eligible

links (paths).

The rest of this chapter is organized as follows. Section 2.1 proposes a link

failure recovery algorithm that pre-computes the backup path. Section 2.2

proposes a route recovery algorithm for node failure. Section 2.3 presents a link

congestion mitigation algorithm. Section 2.3 discusses some implementation

issues, such as routing table extension. Section 2.4 discusses the algorithm time

complexity for the three proposed algorithms.

2.1 Link Failure Recovery Algorithm

In this section, an algorithm that aims at determining a backup path is described,

which is feasible to accommodate the rerouted traffic result from a link failure.

The backup path is pre-computed before a failure occurred. A primary port used

to forward data through routing tree or down stream tree for any node.

15

16

However, when a failure occurs, a subset of these nodes switch to their backup

ports for fast rerouting, and the routing tree is updated according to the used

backup ports.

The following is a table with the notation used to describe the proposed

algorithms.

Table 2.1 Link Failure Recovery Algorithm Notation

Network with V nodes and E edges

Primary port of node n before any failure

Backup port of node n when link (i,j) fails

Traffic generated in node n.

Link(i, j) capacity

The traffic destined to sub-tree T c u i .

The traffic in link (i ,j) or link utilization

The total traffic in the network or utilization

The total rerouted traffic

The total number of backup port when a link fails

2.1

2.2

17

Minimize:

2.3

2.4

In addition, it is required to find a feasible path capable to accommodate the

rerouted traffic without causing additional congestion in others links in the tree.

Equation 2.2 guarantees that link(i,j) utilization is less than link(i,j) capacity. The

second constrain is to minimize overall network traffic, which means that the

selected path is used to reroute traffic and be the shortest path to the destination.

The third constrain is to minimize number of switchover nodes.

r̀erouted traffic Trerouted

Figure 2.1 Data Routing Tree for source node S.

18

After determining the routing table for node S, the routing information would

look similar to the contents in Table 2.1. By looking at the destination and the

next hop columns, u node is the next hop for all the destination nodes in the sub-

trees T cu1 T cut, T cux . So when node S assumes that its next hop is fail, it tries

to find a backup path or backup next hop. The mean point of our algorithm 1 is to

determine a backup next hop node before the primary next hop become

unreachable.

Table 2.2 Sample of Routing Table for Node S

Destination Path Type Cost Next hop(s)
U u
V v
u

c1 u
u

c2 u
u

c x u

d 1 u

dx u

Definition 1 The backup path is a path capable to accommodate the rerouted

traffic from the source to the new next hop.

19

Algorithm 1 Link Failure Recovery

Step 1: Initialization: Set the backup ports for node S to null.

Step 2: Mark children nodes (next hop nodes for each destination) u={1,2„ m} as

unreachable and doing the following:

Step 2.1: Color all nodes in sub tree T(u) black, unreachable node u as

red, and the other nodes in the topology white "where the

forwarding path is not affected by failure"

Step 2.2: Compute how much is traffic should be rerouted (Trerouted)

Step 2.3: Compute a back up path by using BFSpath(G, S, u , Trerouted)

feasible to accommodate the rerouted traffic Trerouted to

reconnect the black and red nodes to the main tree T(S)

Step 2.4: Set the backup port according the discovered path from S to u

Step 2.5: Colors the recovered nodes to white.

This algorithm will be explained by giving three examples in the following.

Case I

Figure 2.2 (a) shows the primary data routing tree T for node S. In Figure 2.2 (b),

it is assumed that the link between nodes S and 1 failed and the nodes are colored

according to step 2.1. After link(S, 1) fails, two disconnected sub-trees T 1 and Ts

were formed resulting from the primary tree T. Then in step 2.2 node S compute

how much traffic should be reroute. Step 2.3 returns a feasible path that could

accommodate the rerouted traffic as in Figure 2.2 (c). Finally in step 2.4 the node

S set the back up port according the returned path as shown in Figure 2.2 (d) the

20

next hop will be node 2 for all nodes in the sub-tree Tl when actual failure occurs

instead of node 1.

(a) Primary data routing tree. (b) Link (S, 1) fails.

The next hop to the disconnected sub-tree. (d) Survivable node white.

Figure 2.2 Example of Link failure Recovery Algorithm-Case I.

(c)

The example in Figure 2.2 shows that node S switches its data to the backup port

for each affected destination. Meanwhile, all other nodes keep using their original

ports. In this way, the routing tree survives using all nodes in the disconnected

sub-tree T 1 and the algorithm reduces the number of nodes that need to be

21

changed for recovery. The routing table should be extended as in Table 2.2. An

extra column is added specify the backup next hop.

Table 2.3 Extended Routing Table for Node 1 Case I.

Destination Path Type Cost Next hop(s) backup hop(s)
S - -

1 1 2

2 2 2

3 1 2

4 1 2

5 2 2

6 1 2

7 1 2

8 2 2

Claim 1. Given a primary tree for node S T=(VT, ET), and two nodes i, j VT, the

primary path PPi,j a backup path BPi,j, and b is a link(i,j). b E E ppi,j, there

exists a tree T'=(VT ',ET ') such that

1-VT= VT v VBPi,j

2- ET={ET u EBPi,j} \{b}

Proof:

Consider T 1 =(V T1,E TO and Ts=(VTS,ETs) two trees results from a link b fails in

the primary tree T. Trees T and T s are rooted at node S. Assume, without losing

generality, that j E	 VT] and i VTs . Let i be the root of tree Ts. Trees T 1 and Ts

are link and node disjoint therefore the graph T=(VT L) VBPi j), { ET L.-) EBPi,j} \{b}

When link b fails, the traffic for sub-tree T1 that was using the primary path PP i,j

is rerouted to BP i ,j without make a loop a recovery all the nodes affected by

failure, hence (1) and (2).

22

Case II

In first case, previous example, a direct link was between the next hop of T 1 and

the root of sub-tree Ts . However, in second case, the next example shows how the

algorithm works if there is not a direct link between T i and Ts . The same steps

like the previous example. Figure 2.3 (a) shows the primary data routing tree for

node S. Node S assumes that the next hop, Node 2, is unreachable. The nodes are

colored according to Step 2.1. After link(S,1) fails, there are two disconnected

sub-trees T 1 and Ts as result from the original tree T. Then in Step 2.2, node S

computes how much traffic needs to be rerouted. Step 2.3 returns a feasible path

that can accommodate the rerouted traffic, as Figure 2.3(c) shows. In Step 2.4, the

node S sets the back up port according the returned path as shown in Figure 2.3

(d). The next hop is Node 2 for all nodes in the sub-tree T 1 when actual failure

occurs instead of Node 1. However, as shown Figure 2.3 (d), Node 4 has two

sources, one from Node 1 and the other from Node 4 after the algorithm

terminates.

24

In this case, Node 4 does not have two sources, because Node 1 has no

more node as next hop for node S to forward traffic for Node 4 and the new next

hop for Node 4 is Node 2 after a link (S, 1) fails. For Node 1 to receive its data

from node S work as follows: when the data packets arrive to Node 4, this node is

the responsible for forwarding the traffic for Node 1 only. Therefore, the new

recovery routing tree is as seen in Figure 2.3 (e) and the recovered T1, which was

rooted by Node 1, becomes rooted by Node 4. As observed, in this algorithm, the

routing table of other nodes can be used to assist in the recovery of the main

routing tree for any node. In Table 2.3, the routing table for Node 4 without

backup hops. Therefore, when node S detects a failure in link (5,1) then it

switches the use of its original port to its backup port. All the destinations that are

using as next hop Node 1 will switch to Node 2. For example, the path S—>1

before the failure for destination Node 1 occurs, and then after the failure occurs,

the new path is S-2--4-41, as shown in Figure 2.3 (e). The number of hops for

destination Node 1 after failure is increased by 2 hops. For destination Node 4, the

path before the failure is S—>1-4, then after failure, the new path is S—>2--4.

Here, the number of hops is the same before and after the failure.

25

Table 2.4 Routing Table for Node 1 in Case II

Destination Path Type Cost Next hop(s) Backup hop(s)
S - -

1 1 2

2 2 2

3 1 2

4 1 2

5 2 2

6 1 2

7 1 2

8 2 2

Table 2.5 Routing table for Node 4 in Case II

Destination Path Type Cost Next hop(s) backup hop(s)
1 1 -

4 4 -

7 7 -

Case III

This case describes the case of how loops are avoided by the recovery algorithm.

The following example explains this case. Consider having two primary trees, one

for Node S colored black and a routing table as in Table 2.5 and the other tree for

Node 2 colored gray and a routing table as Table 2.6. The problem here is when

Node S selects Node 2 as the new next hop after link (S,1) fails and a loop could

result. For example, the path for destination Node 1 before failure is S—>1 , and

after failure would be S—>2—>S—>2, becoming a loop. By applying the forward

policy in Figure 2.5, when Node 2 receives a packet, it decides its next hop for a

26

destination, for example Node 1, Node 2 considers the next hops for these

destinations unreachable and enables the backup next hop only for these

destinations. Therefore, flows destined from Node 2 to Node S still have the same

primary path. In other hand, the flow generated from node 2 and destined to node

1 according to primary tree for node 2 the next hop for this flow is node S, but

node S select node 2 as a backup next hop when considered link S,1 fails. At this

way, a loop is formed S—>2—>S—>2. According to forward policy in figure 2.5

when node 2 receive packet from node S and find that packet just forwarded by

itself. Then, node 2 considers the next hop for this flow- destination node 1- is

failed and switch to its backup next hop. Similarly, all flows next hop are S and

make a loop will switch to their backup next hop. Meanwhile, flows from node S

to destination node 2 after link S,1 fails is S—>2—>1, without any loop.

Table 2.6 Routing table for Node S in Case III

Destination Path Type Cost Next hop(s) Backup hop(s)

S - -

1 1 2

2 2 2

3 1 2

4 1 2

5 2 2

6 1 2

7 1 2

8 2 2

Table 2.7 Routing table for Node 2 in Case III

Destination Path Type Cost Next hop(s) backup hop(s)
S S -
1 S 1
2 - -

3 S 1

4 S 1

5 5

6 S 1

7 S 1

27

(a) Primary routing tree for Nodes S and 2. (b) Link (S,1) fails and splits the tree.

(c) Survivable trees for node S and 2.

Figure 2.4 Example of the Link Failure Recovery Algorithm-loop free Case III.

New packet. Get primary or backup
ports

Arrive from
forward port

Use Backup port

28

Yes

No

Use Primary port

Change primary port for

these flows to backup port.

Figure 2.5 Packet Forwarding Policy.

2.2 Node Failure Recovery Algorithm

In this section introduces an algorithm that aims at determining a backup path. A

path is feasible to accommodate the rerouted traffic result from a node failure.

The backup path also pre-planned before a failure occurred. The node recovery is

different from link recovery as this is more complex than link failure recovery.

Figure 2.3 shows how traffic is rerouted and the dependency that this has on the

number of sub-tree at Node u.

Figure 2.6 Example of Node Failure.

Table 2.8 Node Failure Recovery Algorithm Notation

a network with V nodes and E edges

primary port of node n before any failure

backup port of node n when link (i,j) fails

traffic generated in node n.

link(i,j) capacity

The traffic destined to sub-tree T c u ; .

the traffic in link (i ,j) or link utilization

the total traffic in the network or utilization

the total rerouted traffic

the total number of backup port when a link fails

29

Minimize:

Two constrains have to be satisfied. The first one is to minimize the overall traffic

in network after the traffic is rerouted, as in Equation 2.6. Choosing the shortest

path to destination decreases the number of links that the rerouted traffic go

through, consequently, it decreases the overall network utilization. The second

constrain is to minimize number of used backup ports for stability of the routing

tree.

As shown in Figure 2.6, Node u, which is assumed failed, has x children, each of

which is denoted as cu1,cu2,.... c u x , where each child is the root for sub-trees T ca l

,• • • ., I cux. Here, the goal is to bypass the failed node u to its children cu1,cu2,• • •,

cux, that satisfy the two constrains.

30

31

Algorithm 2 Node failure recovery algorithm

Step': Initialization: Set the backup ports for node to null.

Step2: Mark the children nodes (next hop nodes for each destination) u={1,2„ m}

as unreachable and do the following:

Step2.1: Color all nodes in sub tree T(u) black, failed node u as red, and

the other nodes in the topology white where the forwarding path

is not affected by failure.

For (i=1 to i=x) do step 2.2 to 2.5

Step 2.2: Compute how much is traffic in the links (link utilization)

between (u, cu,) { where cu, is the root of sub-tree T cu, and du ,

the computed utilization value}.

Step 2.3: Compute a path by using BFSpath(G, S, c u, ,d u,) feasible to

carry the rerouted traffic du, (where d u, T cu;) to connect the

root GI') of the T cu, to the main T(n).

Step 2.4: Set the backup port according the discovered path from v to c u , .

Step 2.5: Color the recovered nodes to white.

32

(a) Primary data routing tree. (b) Node 1 fails.

(c) Computing reroute path. (d) Link (S, 1) fails.

Figure 2.7 Example of the Node Recovery Algorithm.

Example of Algorithm 2 is illustrated in Figure 2.7. The routing tree for Node

S is shown in Figure 2.7 (a). Figure 2.7 (b) shows Node 1 as a failed node, then

Node S finds a path to reroute the affected flows. After finding the new next hop

for the rerouted flows, some of these flows change their path after the failure

occurs. In this example, the new path from Node S to Node 6 is S---+2---+4---+3---+6,

which is longer than the primary path S---+ 1---+3---+6 by one hop.

33

2.3 Link Congestion Mitigation Algorithm

The last proposed algorithm is for link congestion mitigation. This algorithm is

introduced in this section. The purpose of this algorithm is to determine a backup

feasible path to accommodate the rerouted traffic results from link congestion.

The backup path is also pre-planned before any link congestion occurs. Why do

not use any of previous two proposed (link and node failure) algorithms? Because

link congestion is a different phenomenon from the two pervious proposed

algorithms in the following characteristics:

1.- In link recovery, all traffic has to be rerouted, but in link congestion, only part

of the congesting traffic can be rerouted.

2.- Congestion in other links to relieve the currently congested ones has to be

avoided. Figure 2.9 shows how some flows of a congested link can be rerouted to

other links without causing congestion in other parts of the network while

mitigating effectively the congestion.

Figure 2.8 Consider link(S,u) as congested link.

Figure 2.9 Recovery from the congestion in link(S,u).

Table 2.9 Link Congestion Recovery Algorithm Notation

a network with V nodes and E edges

primary port of node n before any
failure

backup port of node n when link (i,j)
fails

traffic generated in node n.

link(i,j) capacity

The traffic destined to sub-tree T c u i .

the traffic in link (i ,j) or link utilization

the total traffic in the network or
utilization

the total rerouted traffic

the total number of backup port when a
link fails

34

Minimize:

Algorithm 3 Mitigation of Link Congestion

Step 1: Initialization: Set the backup ports for Node S to null.

Step 2: Mark children nodes (next hop nodes for each destination) u={1,2„ m} as

congested and doing the following:

Step 2.1: Color all nodes in sub tree T(u) black, the next hop node u as red, and

the other nodes in the topology white where the forwarding path is not

affected by congestion.

Step 2.2: Compute how much is traffic should be rerouted (Trerouted).

Step 2.3: Compute a back up path by using a feasible BFS path(G, 5,

cu x , Trerouted) to accommodate the rerouted traffic Trerouted to

reconnect the black and red nodes to the main tree T(S).

Step 2.4: Set the backup port according the discovered path from S to u.

Step 2.5: Colors the recovered nodes as white.

35

36

(a) Primary routing tree for node S. (b)Link(S,1) congested.

(c) Compute a backup path. (d) New routing tree.

Figure 2.10 Example for link congestion mitigation algorithm.

Figure 2.10 shows an example of the normal Case I. Figure 2.10(a) is a

primary routing tree. Link (S,u) is considered congested link in Figure 2.10 (b). In

Figure 2.10 (c), Node S computes a feasible path to reroute the smallest flow in

this link to other path to mitigate the congestion. In Step 2.2, the node S decides

which flows should be rerouted and in Step 2.3, it computes the path for the

rerouted traffic Trerouted. The smaller flows are selected for rerouting to avoid

37

congestion in other links. The routing tree for Node S is changed as shown in

Figure 2.10 (d). Consequently, flows from Node S to Nodes 4 and 7 change their

paths to S—> 1 —44 and S—>1—>4—>7, respectively. For other cases, the same

procedure applies to Cases II and III, benefiting from the routing tables of other

nodes and from the forward policy to avoid loops.

2.4 Time Complexity Analysis

In this section, the complexity analysis for the three proposed algorithms will be

presented. Sections 2.4.1, 2.4.2, and 2.4.3 discuss the analysis of the link recovery

algorithm, the node recovery algorithm complexity, and the link congestion

mitigation algorithm, respectively.

2.4.1 Link Failure Recovery Algorithm Time Complexity

Step 2.3 computes a path in time complexity O (V+E) where V network nodes

and E edges. Step 2.3 is executed m times, where m number of the assumed failed

links that Node S has. Therefore the complexity is O (m(V+E)). For Step 2.3,

most of cases, a path is found before traversing all network nodes V and E edges.

For variable m, m is the node degree or number of edges always, which is very

small, compared to V and E. for example, m could be between 3 to 10, which

number is negligible. As result, the total time complexity of the algorithm is

O(V+E).

38

2.4.2 Node Failure Recovery Algorithm Time Complexity

Again, the main step in the algorithm is Step 2.3, which computes a path in time

complexity O(V+E), where V network nodes and E edges. Step 2.3 is executed x

times for each assumed next hop of Node S, where x is the number of children of

the failed node and m is the Node S's degree or its number of edges. Therefore,

the time complexity is O(x.m(V+E)). As for Step 2.3, in most of the cases, a node

finds the path before traversing all network nodes V and E edges. considering that

variables x and m are very small compared to V and E, the total time complexity

of the algorithm is O(V+E).

2.4.3 Link Congestion Mitigation Algorithm Time Complexity

Similar to the link failure recovery algorithm, Step 2.3 in the congestion

mitigation algorithm computes a path in time complexity O(V+E), where V

network nodes and E edges. As Step 2.3 is executed m times, where m number of

the assumed congested links that node S has. Note that m has different meaning

from the other two previous algorithms. Therefore, the time complexity is

O(m(V+E)) and the total time complexity of the algorithm is O(V+E) when m is

very small compared to V and E.

CHAPTER 3

ALGORITHMS IMPLEMENTAION AND SIMULATION RESULTS

First, node structure and routing module in ns2 will be described. Then,

describing the procedures in the class Simulator in Section 3.1 and instance

procedures in the class node to access and operate on individual nodes. Section

3.2 presents the routing module in ns2 node. Then, the simulations study the load

distribution in each link and the throughput for each node. Section 3.3 contains

the simulation setup and the result for link failure scheme. Section 3.4 presents

the simulation setup and the results of link node scheme. In Section 3.5, link

failure recovery algorithm is applied for double link failure.

3.1 Node Basics

The instance node in ns2 constructs of simple classifier objects. The Node itself is

a standalone class in OTcl. However, most of the components of the node are

themselves TclObjects. The typical structure of a unicast node is as shown in

Figure 3.1. This simple structure consists of two TclObjects: an address classifier

(classifer_) and port classifier (dmux_) .These classifiers deliver incoming

packets either the correct agent (e.g., Upper layer) or outgoing link (e.g., next

hop).

Basic node contains the following components:

• An address or id : _,increasing by 1 (from initial value 0) across the simulation
namespace as new node is created.

39

40

• A list of neighbors (neighbor~: Structure of a Unicast Node. Notice that entry_
is simply a label variable instead of a real object, e.g., the classifier_.

• A list of agents (agent~

• A node type identifier (nodetype~

• A routing module

Figure 3.1 Ns2 unicast node routing structure.

3.1.1 Address and Port Number Management

The procedure $node id returns the node number of the node. This number is

automatically incremented and assigned to each node at creation by the class

Simulator method, $ns node. The class Simulator also stores an instance variable

arrayl, Node_, indexed by the node id, and contains a reference to the node with

that id. The procedure $node agent hporti returns the handle of the agent at the

specified port. If no agent at the specified port number is available, the procedure

returns the null string. The procedure alloc-port returns the next available port

41

number. It uses an instance variable, np_, to track the next unallocated port

number. add-route and add-routes are procedures that used by unicast routing to

add routes to populate the classifier_ The usage syntax is $node add-route

(destination id). dmux_ is a port demultiplexer at the node, if the destination id is

the same as this node's id, it is often the head of a link to send packets for that

destination. add-routes (destination id) used to add multiple routes to the same

destination that must be used simultaneously in round robin manner to spread the

bandwidth used to reach that destination across all paths (e.g., Multiple Equal

Cost Path (MECP)). Finally, the procedure intf-changed{} is invoked by the

network dynamics code if a link incident on the node changes state.

3.1.2 Agent Management

Given an agent, the procedure attach* will add the agent to its list of agents_,

assign a port number the agent and set its source address, set the target of the

agent to be its (i.e., the node's) entry{}, and add a pointer to the port

demultiplexer at the node (dmux_) to the agent at the corresponding slot in the

dmux_ classifier. Conversely, detach{}will remove the agent from agents_, and

point the agent's target, and the entry in the node dmux_ to nullagent.

3.1.3 Tracking Neighbors

Each node keeps a list of its adjacent neighbors in its instance variable, neighbor_.

The procedure add-neighbor {} adds a neighbor to the list. The procedure

neighbors {} returns this list. The function of a node when it receives a packet is

42

to examine the packet's fields, usually its destination address, and on occasion, its

source address. It should then map the values to an outgoing interface object that

is the next downstream recipient of this packet. In ns, this task is performed by a

simple classifier object. A node in ns uses many different types of classifiers for

different purposes. A classifier provides a way to match a packet against some

logical criteria and retrieve a reference to another simulation object based on the

match results. Each classifier contains a table of simulation objects indexed by

slot number.

3.2 Routing Module and Classifier Organization

An ns node is essentially a collection of classifiers. The simplest node unicast

contains only one address classifier and one port classifier, as shown in Figure

3.1.

3.2.1 Routing Module

In general, every routing implementation in ns consists of three function blocks:

• Routing agent exchanges routing packet with neighbors,

• Route logic uses the information gathered by routing agents (or the global
topology database in the case of static routing) to perform the actual route
computation.

• Classifiers sit inside a Node. They use the computed routing table to perform
packet forwarding.

Notice that when implementing a new routing protocol, one does not

necessarily implement all of these three blocks. For instance, when one

implements a link state routing protocol, one simply implement a routing agent

that exchanges information in the link state manner, and a route logic that does

Base

RouteComputation

Hier

User
SimulationMcast

MPLS

Node
routing

add-route
delete-route

transport
attach
detach

Classifier
insert-entry
install-entry
install-demux

RtModule/Base
routing

add-route
delete-route

transport
attach
detach

Management
register
unregister

43

Dijkstra on the resulting topology database. It can then use the same classifiers as

other unicast routing protocols. When a new routing protocol implementation

includes more than one function blocks, especially when it contains its own

classifier, it is desirable to have another object, which is called a routing module,

that manages all these function blocks and to interface with node to organize its

classifiers. Figure 3.2 shows functional relation among these objects. Notice that

routing modules may have direct relationship with route computation blocks, i.e.,

route logic and/or routing agents. Hover, route computation MAY not install their

routes directly through a routing module.

Routing
Modules

Figure 3.2 Interaction among node, routing module, and routing.

A routing module contains three major functionalities:

1- A routing module initializes its connection to a node through register { }, and
tears the connection down via unregister 1. Usually, in register{ a routing
module (a) tells the node whether it interests in knowing route updates and
transport agent attachments, and (b) Creates its classifiers and install them in
the node. In unregister } a routing module does the exact opposite: it deletes
its classifiers and removes its hooks on routing update in the node.

44

2- If a routing module is interested in knowing routing updates, the node will
inform the module via RtModule::add-route{dst, target} and RtModule::delete-
route{dst, nullagent}.

3- If a routing module is interested in learning about transport agent attachment
and detachment in a node, the node will inform the module via
RtModule::attach{agent, port} and RtModule::detach{agent, nullagent}.

3.2.2 Node Interface

To connect to the above interfaces of routing module, a node provides a similar

set of interfaces:

In order to know which module to register during creation, the Node class

keeps a list of modules as a class variable. The default value of this list contains

only the base routing module. The Node class provides the following two

procedures to manipulate this module list:

— Node::enable-module{[name]} If module RtModule/[name] exists, this
proc puts [name] into the module list.

— Node::disable-module{[name]} If [name] is in the module list, remove it
from the list. When a node is created, it goes through the module list of the
Node class, creates all modules included in the list, and registers these
modules at the node. After a node is created, one may use the following
instance producers to list modules registered at the node.

— Node::list-modules{} Return a list of the handles of all registered
modules. Node::get-module{[name]} Return a handle of the registered
module whose name matches the given one. Notice that any routing
module can only have a single instance registered at any node.

To allow routing modules register their interests of routing updates, a node object

provides the following instance procedures:

— Node::route-notify{module} Add module into route update notification
list.

— Node::unreg-route-notify{module} Remove module from route update
notification list.

45

— Node::port-notify{module} Add module into agent attachment notification
list.

— Node::unreg-port-notify{module} Remove module from agent attachment
notification list.

Node provides the following procedures to manipulate its address and port

classifiers:

— Node::insert-entry inserts classifier into the entry point of the node. It also
associates the new classifier with module so that if this classifier is
removed later, module will be unregistered.

— Node::install-entrydiffers from Node::insert-entry in that it deletes the
existing classifier at the node entry point, unregisters any associated
routing module, and installs the new classifier at that point. If hook is
given, and the old classifier is connected into a classifier chain, it will
connect the chain into slot hook of the new classifier.

— Node::install-demux{demux, port} places the given classifier demux as
the default demultiplexer. If port is given, it plugs the existing
demultiplexer into slot port of the new one. Notice that in either case it
does not delete the existing demultiplexer.

3.2.3 New Features Added

New utility procedures have been added that help to implement previous proposed

algorithms. These procedures as following:

— update-route {} this procedure update the routing table for node.

— get-next-hop {} return the next hop for a specified destination.

— compute-next-hop {}: compute a route from source to destination and
return next hop.

— print-route {}: display the route from source to destination.

These procedures are implemented in C++ programming language. Then, the

46

procedures linked to TCL code which is used in ns2 simulation software.

Furthermore, an implementation for the forward policy has been explained in

Chapter 2. Each node has a classifier which controls the forwarding process.

Another constrain have to be satisfied that if the received packet is the same

packet just the node has forwarded it then will update-route producer notified to

enable the backup next hop. In this case, the next hop considered invalid and the

node enables its backup next hop.

Figure 3.3 A modified ns2 unicast node routing structure.

3.3 Simulation for Link Recovery

Using ns2 network simulator was adopted to study the performance of the

proposed scheme for node/link failure recovery. Comparing the proposed

schemes with Link state protocols such as OSPF is extensively deployed. The

topology used in simulation all randomly generated using BRITE [41] topology

generator. Four random topologies with different network size range from 20 to

47

100 nodes are used in simulation. The traffic generated in network using CBR

traffic with rate 3Mbps for each flow. generate mesh traffic among nodes in the

network that means each node sends traffic to other nodes in the network. Node

minimum degree is four links for each node.

3.3.1 Load Distribution for Link

The simulation focus on Traffic load in each link after a random selected link has

been failed. Then, the traffic load in each link for our proposed recovery scheme

was compared with link state protocol. The link index arranged according to

BRITE software order each link is bidirectional. For example, link (1,2) has two

indices one for direction 1-to-2 and the other for 2-to-1. Figure 3.3 depicts the

link load for link state protocol in blue points and our proposed fast recovery in

purple for a network size 20 nodes. This graph shows how algorithms can

recovery the failure in short time and with accuracy near the link state protocol.

Where link state protocol waits after a failure occurs and recalculate new path to

resume service.

t/)
Co
.0
::E
'C
as
0
..J

35

30

25

20

15

10

5

0

~ 1

Link Load

11 21 31 41 51 61 71 81 91 101111121131

Link Index

Figure 3.4 Link load for each link in the network size 20 nodes.

48

-+- Link State

ujW. Fast Recovery

Then, Figures 3.5, 3.6, 3.7 show the load in each link. In all figures, the

link load for Fast Recovery Algorithm close to the link state protocol or

recalculated path. In addition, noticing that our recovery algorithm can distribute

the traffic among links near optimal. For example, Figure 3.5 shows that link

utilization for Fast Recovery less than the link utilization when use link state

protocol. In the same time, Figure 3.8 shows that the throughput for all nodes is

better than link state. Why could this be happen? Referring to Equation 1.1 the

service interruption time the term T notfication and Trecomute these values are reduced

in Fast Recovery. Consequently, the service time increases that mean the node

receive more packets. In other words, the failed link, which is selected randomly,

is far from the source that make the service interruption time for link state is

longer than the Fast recovery. Furthermore, the ' location of link failure is

significant so there have been many studies conducted to identify the critical link

49

In network. For instance, the location of link failures has been addressed in

[42][43].

Link Load

80

70

60

~ 50
.a

== 40
-+- Link State

'0 co ---00-- Fast Recovery
0 30 ...J

20

10

o
1 20 39 58 77 96 115134153172 191 210229248267286

Link Index

Figure 3.5 Link load for each link in the network size 40 nodes.

(f)
Q.
.a
:!!
"C
co
0

...J

120

100

80

60

40

20

o

Link Load

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391 417 443

Link Index

Figure 3.6 Link load for each link in the network size 60 nodes.

Fast Recavery

'O f 35

30

" • • • • 20
11
S

"
"

l
,
0

Link Load

50 99 148197246295 344 393 442 491 '>40589630 eIlI 136

Unk Index

__ Link Slale

FIISt ~ovc' Y

Sf)

____ J
FiJ.turc 3.7 Link load for e;Jch link in the net work s ize HK) nodes.

3.3.2 TlmlUghllut ftll" Node

Throughput is Ilumbc.r of wl-'Civcd and acknowledged pad:.c l~ for a dC<;linalinli.

lIere. Ihroughpul i.., Ihe mouI1l or n:cc ivcd Harrie in Mbp<;. In Figurl! 3 .6. the

Ihroughpu\ for link Siale and fa<;t recovery are the "allle. Again referring 10 se rvice

il1l.:rrupliLm lim c equation Tml ,,, Till' " i" the same for link sale and Fa~ t R..:~~ovcry.

51

Nodes Throughput

o Link State
o Fats Recovery

Node Index

Figure 3.8 Throughput for each node in the network size 20 nodes.

On other hand, Figure 3.6 shows that the throughput for Fast Recovery is better

than link state for all nodes.

Node Throughput

Series1
Series2

Figure 3.9 Throughput for each node in the network size 40 nodes.

Figures 3.8 and 3.9 show the same thing. All nodes have better throughput

when using Fast Recovery instead of link state. Figure 3.11 shows the throughput

52

for first fifty nodes (0-49) in the network and Figure 3.12 presents the throughput

for the other fifty nodes (50-99).

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58

node Index

rm Link State

IIi1III Fast Recowry

Figure 3.10 Throughput for each node in the network size 60 nodes.

250

en 200
Q.
.c
:! 150 -:::l
J:

g 100
o
'-
J:

~ 50

o

Node Throughput

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

Node Index(0-49)

II Link State

II Fast Recovery

Figure 3.11 Throughput for each node in the network size 100 nodes (0-49).

53

Node Throughput

Link State

Fast Recovery

Figure 3.12 Throughput for each node in the network size 100 nodes (50-99).

3.4 Simulation for Node Recovery

In node recovery simulation, three random topologies were used with different

network size range from 20 to 60 nodes. The traffic generated is as in link

recovery simulation 3Mbps for each flow. Node minimum degree is two links for

each node.

54

Figure 3. 13 Link load for eal:h link inlhe nelwork size 10 nodc~ for !lode failure.

250

200

•
" 150 D
~

" • 100 0
~

50

0

Link load

. ,

14 27 40 53 66 79 92 1051 181 3 1144

Unk Index

,-- Link State 'l
I ... Fast Recovery'

Figure 3. 14 Link 10Ml fo r each link in 1he network size 40 l1ode~ for node fai lure.

] .4.2 Throughpuf lill' Nodes

37.6

til 37,5

~ 37.4
_ 37.3 ,
~ 37.2
g> 37. 1
e 37 .
~

I- 36,9

36,8

Node Throughput

3 5 7 9 11 13 15 17 19

Node Index

~
-

D Link State

[I Fast Aeco\€~ 1

Figure .'.15 T hroughpu t f(lr each node in Ihe network r. izc 2U Ilodes fu r node

fai lure.

Node Throughput

90 --. .. .,w·,," ... · ·.·.~ •• ·· .. ,,·., ••• >< ,,v.>"~ ".M~·« .•. «· • .. •· · "'.,., ,.· •. ·• •. · •• m ••• m .. M.·,· .•. « • ., · •• _ ·M.« .. ~.· • .,.,

o 80~~~~~--~~--~~~--~~~~~

.8' 70
:!: 60 -a 50
"§, 40
5 30
.t: 20
.... 10

o
4 7 10 13 16 19 22 25 28 31 34 37 40

Node Index

55

~Link State !

• Fast Reco\ery I

Figure 3.16 Throughput for each node in the network size 40 nodes double link

failure

3.5 Simulation for Double Link Recovery

In this section apply recovery scheme in double link failure. As show in figure

3.17 our scheme can recovery from two link failure occurs in the same time with a

good load distribution. Figure 3.18 shows that can also gain the same throughput

for each node as link state protocol.

35

30

0
25

c.
.c 20
:I<

" 15 ~

S
10

5

0

Link Load

. " . •

i ~. ' 1 i •• , , : . ~4
., « ... , ". if)<

15 29 43 57 71 85 99 113127

Link index

--link Sale I
.- Fast Recovery ,

56

l: ij:(UI '~ 3. 17 L{I:lu for t:ad link ill Ihl' netwOrk si/.c 20 lIol1cs for node fa ilure

double link failure.

Node Throughput

37,6

• 37.5
~ • '" ,
~ 373 • ~
~ 372

1

0 link Stale
g Fast Raco~r

0 37. 1

37
3 5 , 9 " 13 15 17 1.

Node Index

I,' ij:.:ure 3. 18 Th roughput for each node in the network s ize 2() nolie" dnuhle lillk

fa ilure.

CHAPTER 4

CONCLUSION AND FUTURE WORK

Link/node failure occurs frequently as has been shown in Figure 1.1, and these

failures are the cause of service disruption network systems. To avoid long time

service interruption, many techniques and approaches have been developed.

Hardware protection works in physical layer. It needs frequently maintenance

which is very costly. There are many Network layer recovery solutions have been

proposed. For instance, IP Fast ReRouting (IPFRR) is a scheme that ties to

reroute the traffic from the failed part of the network to other working parts

without using extra hardware. Hover, the hardware solution protection recovers

faster than the other solution when failure occurs. Indeed, IPFRR is a preplanned

backup path to reroute traffic on a link/node failure and can be implemented by

modifying the exiting router software. A tradeoff between convergence time and

cost always exits.

4.1 Contributions

The goals of the thesis are as following. First, reduces the service interruption

time as possible as can. Second, recover all the flows without causing congestion

in other part of the network. Three algorithms re proposed that recover the node

failure, link failure and congestion. These schemes depend on the local recovery

and local reroute that reduce the notification and dissemination time. Due to that,

the service interruption time is reduced and recovery convergence becomes fast.

57

58

A Comparison between the proposed schemes results and OSPF protocol are

conducted.

Chapter 2 presents the proposed schemes. First, link failure recovery

where every node considers primary next hop fail, then it computes a path. This

path does not cause congestion in other links while rerouting traffic in it. Second,

node failure recovery scheme is more critical than link failure because each node

has many links. Similarly to link failure recovery, node failure recovery pre-

computes a feasible path that does not cause congestion in other links. Third,

congestion mitigation scheme tries to reduce the like utilization but may increase

the over all network utilization. To clarify the difference between link utilization

and network utilization, for example, maybe the computed path longer than the

primary path that increase the over all network utilization. On the other hand,

there is a short path and many flows share one or more links in this path, so more

flows take shared link more these link utilized till causing congestion in one or

more links. Finally, the time complexity analysis of schemes is presented.

Complexity time for all algorithms was liner.

In Chapter 3, the simulation and results is presented. Basic components in

ns2 will be explained that re used to implement the schemes. Then, a simulation

was used to show the performance of the proposed schemes. The simulation was

focused on two network factor. Firstly, the link utilization, the results show that

the proposed techniques less link utilization than the OSPF protocol.

Consequently, reduce the probability of congestion occurs. Secondly, throughput

59

is a significant factor in any network. The results show that proposed schemes

throughput per node always better than OSPF. That result from reducing the

service interruption time. However, when network size increases the convergence

time between the proposed schemes and OSPF grows. Therefore, the throughput

grows due to increasing in service time.

4.2 Future Work

This thesis focuses only in a single failure either node or link. Hover, applying the

scheme on double link failure occurs in the same time, it gives similar link

utilization for re-calculated path by OSPF. But what could happen if two flows

have the same backup path. Nodes share this path when they pre-computed their

next hops individually without any co-oration among them. Now, when the failure

occurs each node will reroute the traffic to backup path that will cause congestion

in some links in pre-computed path. Extending the work to solve like this problem

for multiple link/node failure required a lot of work. Furthermore, to keep

cooperation among nodes may cause exchange information overhead in the

network.

Finally, implementing our schemes in Linux kernel to study the exact

performance of the proposed schemes and monitor the changes in the traffic when

failures occur. Implementing these algorithms in kernel will help to design such a

batch file could install it in routers to update their operating system instead of

replacing the route itself.

REFERENCES

[1] I. Chlamtac, A. Ganz, and G. Karmi, "Lightpath communications: an approach to
high bandwidth optical WAN's," IEEE Transactions on Communications, Vol.
40, pp. 1171-1182, 1992.

[2] T. Frisanco, "Optimal spare capacity design for various protection switching
methods in ATM networks," IEEE ICC, pp. 293-298, 1997.

[3] D. K. Hsing, B. C. Cheng, G. Goncu and L. Kant," A restoration methodology
based on pre-planned source routing in ATM networks," ICC, pp. 277-182,
1997.

[4] A. Itai and M. Rodeh, "The multi-tree approach to reliability in distributed
networks, Information and Computation," Vol. 79, pp. 43-59, 1998.

[5] M. M'edard, S. G. Finn and R.A. Barry, "A novel approach to automatic
protection switching using trees," ICC, pp. 272-276, 1997.

[6] M. M'edard, S. G. Finn and R.A. Barry, "WDM loop-back recovery in mesh
networks," OFC, pp. 298-299, 1998.

[7] M. M'edard, S. G. Finn, R.A. Barry and R.G. Gallager, "Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs,"
IEEE/ACM Transactions on Networking, Vol. 7, pp. 641-652, 1999.

[8] S. Ramamurthy and B. Mukherjee, "Survivable WDM mesh networks Part I-
Protection," IEEE INFOCOM, pp. 744-751, 1999.

[9] S. Ramamurthy and B. Mukherjee, "Survivable WDM mesh networks Part II-
Restoration," IEEE ICC, pp. 2023-2030, 1999.

[10] G. D. Signorelli, M. Gryseels and P. M. Demeester, "SDH over WDM:
interworking and planning aspects," Proceedings of the SPIE, Vol. 3408, pp.
235-246, 1998.

[11] N. Wauters, C. Ocakoglu, K. Struyve and F. P. Falcao, "Survivability in a new
pan-European carriers' carrier network based on WDM and SDH technology:
current implementation and future requirements," IEEE Communications
Magazine, Vol. 37, No. 8, pp. 63-69, 1999.

[12] T. H. Wu and R. C. Lau, "A class of self-healing ring architectures for SONET
network applications," IEEE Trans. Communications, Vol. 40, pp. 1746-1756,
Nov. 1992.

60

[13] A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot,
"Characterization of failure in an IP backbone," in IEEE INFOCOM, Mar.
2004.

[14] A. Leon-Garcia, and I. Widjaja," Communication Network Fundamental Concepts
and Key Architechtures", 2nd edition

[15] S. Bellcore, "Automatic Protection Switching for SONET, Issue1," Oct. 1990.

[16] www.cs.virginia.edu/—mngroup/projects/mpls/documents/thesis, Retrieved Aug.
2, 2007 from the World Wide Web.

[17] ANSI. Fiber Distributed Data Interface (FDDI) { Token Ring Media Access
Control (MAC), ANSI X3.139-1987, 1987.

[18] G. Malkin. IETF RFC 2453: RIP version 2, Nov. 1998.

[19] C. L. Hedrick. IETF RFC 1058: Routing Information Protocol, Jun. 1988.

[20] J. Moy. IETF RFC 2328: OSPF version 2, Apr. 1998.

[21] D. Oran. IETF RFC 1142: OSI IS-IS intra-domain routing protocol, Feb. 1990.

[22] C. Alaettinoglu, V. Jacobson, and H. Yu."Toward millisecond IGP convergence,"
NANOG 20, Washington, D.C., USA, Oct. 2000.

[23] "IP Fast Reroute Overview and Things we are struggling to solve,"
http://bgp.nu/—dward/IPFRR/IPFRR_overview_NANOG.pdf, Retrieved Aug.
2, 2007 from the World Wide Web.

[24] N. Ansari, G.Cheng, R. N. Krishnan, "Efficient and Reliable Link State
Information Dissemination",in IEEE communication letters, Vol. 8, No. 5,
May 2004.

[25] T. Korkmaz, M. Krunz, "Hybrid Flooding and Tree-based Broadcasting for
Reliable and Efficient Link-state Dissemination," Global Telecommunications
Conference. GLOBECOM '02. IEEE, Vol 3, pp. 2400-2404, Nov. 2002.

[26] G. Cheng, N. Ansari, "An Information Theory Based Framework for Optimal
Link State Update", IEEE COMMUNICATIONS LETTERS, Vol. 8, No. 11,
Nov. 2004.

[27]	 Y. Jia, I. Nikolaidis, P. Gburzynski, "Alternative Paths vs. Inaccurate Link State
Information in Realistic Network Topologies," Proc. Int. Symp. Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 2002),
Soc. for Modeling & Simulation International, pp. 162-169, Jul. 2002.

61

[28] Y. Jia, I. Nikolaidis, P. Gburzynski,"Multiple Path Routing in Networks with
Inaccurate Link State Informat ion", Communications, 2001. ICC 2001. IEEE
International	 Conference,	 Vol.	 8,	 pp.	 2583-2587,	 2001.

[29] G. Cheng, N. Ansari, "Minimizing the Impact of Stale Link State Information on
QoS Routing", in proceedings IEEE Communications Society subject matter
experts for publication in the IEEE GLOBECOM 2005.

[30] A. Al-Fuqaha, G. Chaudhry, C. Beard, M. Guizani, I. Habib,"Link-State Update
Policies for All-Optical DWDM Transport Networks", Communications, 2004
IEEE International Conference on , Vol 3, pp. 1831-1835, Jun. 2004.

[31] M. Shand and S. Bryant, "IP fast reroute framework," Internet-Draft, Oct. 2005.
[Online]. Available: http://www.ietf. org/internet-drafts/draftietf-rtgwg-ipfrr-
framework-04.txt

[32] A. Iselt, A. Kirstdter, A. Pardigon, and T. Schwabe, "Resilient routing using ecmp
and mpls," in IEEE High Performance Switching and Routing (HPSR), Apr.
2004.

[33] Cornelis Hoogendoom, Karl Schrodi, Manfred Huber, Christian Winkler and
Joachim Charinski," Towards Carrier-Grade Next Generation Networks,"
Proceedings of ICCT2003.

[34] S. Lee, Y. Yu, S. Nelakuditi, Z. Zhang, and C.-N. Chuah, "Proactive vs reactive
approaches to failure resilient routing," in IEEE INFOCOM, Mar. 2004.

[35] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah,"Failure
inferencing based fast rerouting for handling transient link and node failures,"
in IEEE Global Internet, Mar. 2005.

[36] A. Atlas, "Basic specification for IP fast-reroute: loopfree alternates," Internet-
Draft, Feb. 2005.Available:http://www3.ietf.org/proceedings/05mar/IDs/draftietf-rtgwg-ipfaspec-base-03.tx

[37] S. Bryant, M. Shand, and S. Previdi, "IP fast reroute using not-via addresses,"
Internet-Draft, Oct. 2005 .Available:

http://www.ietf.org/internet-drafts/draftbryant-shand-ipfrrnotvia-addresses-01.txt

[38] A. Kvalbein et al., "Fast IP network recovery using multiple routing
configurations, in IEEE INFOCOM, Apr. 2006.

[39] "NS2", Retrieved Aug. 2, 2007 from the World Wide Web:
http://www.isi.edu/nsnam/ns/doc/index.html

62

[40] "Breadth First Search," Retrieved Jun.10, 2007 from the World Wide Web:
http://en.wikipedia.org/wiki/Breadth-first_search

[41] "Random Topology Generator" Retrieved Jun. 20, 2007 from the World Wide
Web: http://www.cs.bu.edu/brite/

63

	Copyright Warning & Restrictions
	Personal Info Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication Page
	Acknowledgment
	Table of Contents (1 of 2)
	Table of Contents (2 of 2)
	Chapter 1: Introduction
	Chapter 2: Routing Tree Recovery Algorithm
	Chapter 3: Algorithms Implementation and Simulation Results
	Chapter 4: Conclusion and Future Work
	References

	List of Tables
	List of Figures (1 of 2)
	List of Figures (2 of 2)

