

ABSTRACT

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE
AND LINK CONGESTION

by
Ibrahim Takouna

Link/Node failure occurs frequently causing service disruption in computer networks.
Hardware techniques have been developed to protect the network from Link/Node
failure. These techniques work in physical layer, therefore their convergence time is very
small. On the other hand, many schemes have been proposed to mitigate the failure
influence on the network. These schemes work in upper layers such as the network layer.
However, hardware solutions faster than other schemes, but they are expensive.
Link/Node failure causes all flows which were using the failed link/node are temporarily
interrupted till a new path reestablished.

Three recovery algorithms have been proposed that mitigate the changes occur in
the network. These changes are link/node failure and link congestion. The algorithms
mainly pre-compute a backup next hop for each destination in the network. This path is
feasible to accommodate re-routed traffic when a failure occurs without causing
congestion or loops. Simulations have been conducted to show the performance of the
proposed algorithms using ns2 network simulation tool. The results show fast recovery
for all flows were using the link/node failure. Furthermore, the throughput per node also

increases due to decrease interruption service time.

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE
AND LINK CONGESTION

by
Ibrahim Takouna

A Thesis
Submitted to the Faculty of
New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of
Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

August 2007

APPROVAL PAGE

ROUTE RECOVERY SCHEMES FOR LINK AND NODE FAILURE

AND LINK CONGESTION

Ibrahim Takouna

og/23/ ¢

Dr. Roberto Rojas-Cessa, Thesis Advisor
Assistant Professor of Electrical and Computer Engineering, NJIT

Date

/6 >

Dr. Nirwan Ansari, Committee Member
Professor of Electrical and Computer Engineering, NJIT

" Date

9/5’/%3

Dr. Edwin Hou, Committee Member
Associate Professor of Electrical and Computer Engineering, NJIT

Date

BIOGRAPHICAL SKETCH

Author: Ibrahim Takouna
Degree: Master of Science
Date: August 2007

Undergraduate and Graduate Education:

e Master of Science in Computer Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

e Bachelor of Science in Computer Engineering,
Islamic University of Gaza, Gaza, Palestine, 2002

Major: Computer Engineering

iv

In the name of Allah, Most Gracious, Most Merciful

“Are those who know equal to who know not” (Quran 39:9)

To my faithful wife, to my daughter Farah and my parents

ACKNOWLEDGMENT

I would like to express my deepest appreciation to Dr. Roberto Rojas-Cessa for his
supervision, advice, and guidance from the very early stage of this research.
Special thanks are given to Dr.Nirwan Ansari and Dr. Edwin Hou for

participating in my committee.

vi

TABLE OF CONTENTS

Chapter Page
1 INTRODUCTION.ottt 1
1.1 Overview of Re-ROUtING.ccoiuiiniiiiiii 3

1.2 Physical Layer Protection..........co.oeveiiiiiiiiiiiiiiiiiiiiieeeeae 6

1.3 Network Layer Protection..........cccvvvuvuiiiiiieiiiiiiiieic e 9

1.4 Link State Update Schemes............coooiiiiiiiiiiiiiiiie e 11
L.SRelated Work. ..o 13

1.6 Contributions of this Thesis.............oooiiiiii 14

2 ROUTING TREE RECOVERY ALGORITHM.........ccooiiiiiiiiiiin, 15
2.1 Link Failure Recovery Algorithm........................., 15
2.2 Node Failure Recovery Algorithmoooooiiii 28
2.3 Link Congestion Mitigation Algorithm...............ccooiiiiiiiii 33
2.4 Time ComplexXity AnalysiS.........c.ovviirimininiiiiiiniiiiiieeaa, 37
2.4.1 Link Failure Recovery Algorithm Time Complexity.................... 37

2.4.2 Node Failure Recovery Algorithm Time Complexity..................... 38

2.4.3 Link Congestion Mitigation Algorithm Time Complexity................ 38

3 ALGORITHMS IMPLEMENTATION AND SIMULATION RESULTS.......... 39

3.1 INOAE BaSICS. ettt 39
3.1.1 Address and Port Number Managementoooiiiiiiiinan, 40
3.1.2 Agent Managementocoeuiuiiniiiniiiiiiii e 41

vii

TABLE OF CONTENTS

(Continued)

Chapter Page
3.1.3 Tracking Neighbors.cooiiiiiiiiiiii s 41

3.2 Routing Module and Classifier Organization..................oooeiiiiiiiiiiiinnn.. 42
3.2.1 Routing Module.ocouiiiiiiiiiii 42
3.22Node Interface.......o.oveiniiniiiii 44

3.2.3 New Features Added............oooeiiiiiiiiiiiii e, 45

3.3 Simulation for link RECOVETY.......coooiiiiiiiiiiiiii e 46
3.3.1 Load Distribution for Link............coocooiiii 47

3.3.2 Throughput for Node..........ooooiiiiiiiii 50

3.4 Simulation for Node ReCOVEIY......c.veviriiiiiiiiiiiiiiiiiiiiee e 53
3.4.1 Load Distribution for Links............cooviiiiiiiinii i 54

3.4.2 Throughput for NOdes......ccoouiiniiiiiiiiii 55

3.5 Simulation for Double Link Recovery..........coooiiiii 56

4 CONCLUSION AND FUTURE WORK ... 58
L B 00117 ¢ 10) L1510 1 LTSS 58
4.2 FUUTE WOTK. oottt ittt e 60

viii

Table

1.1

21

22

23

24

2.5

2.6

2.7

2.8

2.9

LIST OF TABLES

Page
IGP Convergence [23]....coieiiii i e 11
Link Failure Recovery Algorithm Notation...............c.cooviiiiiiiini 16
Sample of Routing Table for Node S..........c.cooeviiiiiiiiiiiiiiii, 18
Extended Routing Table for Node 1 Case I.............cc.coviiiiiiii 21
Routing Table for Node 1inCase Il...........ccooiiiiiiiiiiiiiin, 25
Routing Table for Node 4 in Case IL..............cooooiiii . 25
Routing Table for Node Sin Case IIl.............coooeiiiiiiiiiiiiiiiii 26
Routing Table for Node 2 in Case IIL..........coiiiiiiiiiiiiiii 27
Node Failure Recovery Algorithm Notation...................... 29
Congestion Recovery Algorithm Notation..............cooviiiiiiiiiiiii 34

ix

LIST OF FIGURES

Figure Page
1.1 Characterization of failure in the Sprint IP backbone network.................... 1
1.2 Backup path types.........oooiii i 4
1.3 Network survivability with (a) restoration (b) protection[14].........ccceveeunneee. 4

1.4 SONET self-healing ring: Unidirectional Path-Switched Ring

Architecture UPSR achieves 1+1 protection [16]............ccoviiiiiiii. 7
1.5 SONET self-healing ring: Unidirectional Path-Switched Ring

ATChItecture [16]....uir it e 8
1.6 Service interruption time a) proactive (pre-planned) and b) reactive............ 11
2.1 Data routing tree for source node S..............ociiiiii i 17
2.2 Example of Link failure recovery algorithm-case I........................co. 20
2.3 Example of Link failure recovery algorithm-case II...................oo 23
2.4 Example of the Link failure recovery algorithm-loop free case IIL............... 27
2.5 Packet forwarding policy.........ccoiiiiiiiiii e, 29
2.6 Example of node failure.................. 27
2.7 Example of the node recovery algorithm..................c.ooi 32
2.8 Consider link(S,u) as congested link...............c.coiiiiii 33
2.9 Recovery from the congestion in link(S,u)...........coooviiiiiii 34
2.10 Example for link congestion mitigation algorithm........................ 36
3.1 Ns2 unicast node routing StruCtUIe.oiueerieiiiniiiiiiii it 40
3.2 Interaction among node, routing module, and routing.....................ooein 43
3.3 A modified ns2 unicast node routing Structure.............c.ceoevveveeeeiieannnnn. 46
3.4 Link load for each link in the network size 20 nodes.............................. 48

LIST OF FIGURES

(Continued)
Figure Page
3.5 Link load for each link in the network size 40 nodes............c..c.ceeevnnen.n. 49
3.6 Link load for each link in the network size 60 nodes............cc.c.ocovennee 49
3.7 Link load for each link in the network size 100 nodes............................. 50
3.8 Throughput for each node in the network size 20 nodes.......................... 51
3.9 Throughput for each node in the network size 40 nodes.......................... 51
3.10 Throughput for each node in the network size 60 nodes......................... 52
3.11 Throughput for each node in the network size 100 nodes (0-49)................... 52
3.12 Throughput for each node in the network size 100 nodes (50-99)................. 53
3.13 Link load for each link in the network size 20 nodes for node failure.......... 54
3.14 Link load for each link in the network size 40 nodes for node failure............ 54
3.15 Throughput for each node in the network size 20 nodes for node failure...... 55

3.16 Throughput for each node in the network size 40 nodes double link
fAllUre. ... 55

3.17 Load for each link in the network size 20 nodes for node failure
double HNK fallUre. e, 56

3.18 Throughput for each node inthe network size 20 nodes double link
FAIIUTE. e e 57

xi

CHAPTER 1

INTRODUCTION

The number of Internet applications and services are growing very fast. These
applications are extensions from science and business applications to personal
communication applications. Most of the services are sensitive to both network
failures and changes on network conditions, or they might require Quality of
Service (QoS) guarantees. Consequently, failure recovery and network
survivability has being studied extensively in recent years [1]-[11]. SDH/SONET
automatic protection switching (APS) completes the recovery process within 50
ms [12]. This recovery time of tens of milliseconds satisfies most requirements.
Network failure has been reported to occur very frequently in some networks.
Figure 1.1 shows some statistics of the link failures in the Sprint IP backbone
network as measured during seven months. Each single point at (t, 1) is used to

represent a failure on link | at time t.

100

. BOO :
g i ""{?-a:
= A
= B 4
Z &0 ey 4
<= -3 E
= Wy
N ¥ Fib
400 kY i .
: %
200 ‘I 4. .
’ LN ecd ':9-"1
T Ls o=
ke R I P R A PR SN S 228 T
Apr May Jun Jul Aug Sep Mo
Time

Figure 1.1 Characterization of failure in the Sprint IP backbone network [13].

This study of routing updates in the Sprint’s IP backbone network [13] shows that
80% of all failures are unexpected. Of those, 70% affect a single link at a time
while 30% involve shared link risk groups. These numbers shows the need of fast
recovery techniques in the Internet. Planned link failures constitute the remaining
20%, can be handled by techniques such as graceful shutdown and ordered
updates.
Resilience refers to the ability of a network to keep services running despite a
link/node failure. For telephone networks, link/cable cuts are the largest cause of
service interruption time. Resilient networks recover from a failure by repairing
themselves automatically or circumventing a failure using additional resources.
More specifically, failure recovery of a network can be achieved by rerouting
traffic from the affected part of the network to another portion of the network.
Rerouting is subject to several constraints. End-users may want rerouting to be
fast enough so that the interruption time of services due to a link failure is either
unnoticeable or minimal. The new path taken by rerouted traffic can be either
computed at the time failures occurred reactive or before failures proactive. In the
second case, rerouting is said to be pre-planned. Pre-planned rerouting
mechanisms permit to decline interruption of service time but it requires
additional hardware to provide redundancy in the network and consume valuable
resources, such like computation cycles to find backup paths.

In this chapter, an overview of various network recovery techniques is
presented. Section 1.1 presents re-routing of traffic after a link/node failure.

Section 1.2 describes rerouting techniques at the physical and MAC layers.

Section 1.3 describes failure protection at the network layer, including an
overview of IP Fast Re-Route (IPFRR) and a comparison of rerouting at lower
layers with rerouting performed by the network layer without pre-planning and

pre-planning. This section also includes a description of previous works.

1.1 Overview of Rerouting Schemes
This section presents a general overview of the rerouting concept. Rerouting
schemes can be used in both circuit and packet switching networks. In either a
link/node failure in a network or a congested link, traffic flows must change its
route in order to reach its final destination in a timely fashion. Consequently, the
service is interrupted for time Tiy service @S in Eq. 1.1. Service interruption time is
the time since a failure occurs and gets detected until packets start using a backup
path and the service is resumed. On the other hand, the transmission of packets is
rerouted from a primary path to a backup path, which can be computed in advance
before the failure occurred. Figure 1.2 depicts an example where a source node S
sends traffic to a destination node D, and where a link on the primary path fails.
The primary and the backup paths can be totally disjoint as in Figure 1.2.a or

partially shared as in Figure 1.2.b.

Figure 1.3 depicts two kinds of survivability restoration and protection
techniques. The restoration of a new path is established after a failure occurred
and the traffic is rerouted through the new path. In a protection technique,
protection paths can be dedicated and pre-established. Protection paths are used as
backup paths for the working paths. A rerouting technique consists of four general
steps, where each one has a limited time for completion. These steps are the
following. First step: the network must be able to detect link failures. Link failure
detection can be performed by dedicated hardware or software at the end nodes or
at the adjacency of the failed link. Second step: nodes that detect the link failure
must notify the other nodes in the network of the failure. The selection of nodes
that are actually notified of the failure depends on the rerouting technique used.
Third step: a backup path must be computed proactively or reactively. In
proactive rerouting schemes, however, this step is performed before link failure
occurs. Fourth step: instead of sending traffic on the primary failed path, a node
called path-switching node must send traffic on the backup path. This step is
called switchover. Switchover completes the repairing of the routing path for
continuation of the transmission after a link failure. When the failed link is
repaired, traffic can be rerouted to the primary path, or keep being sent on the

backup path, depending on the use requirements and network utilization.

1.2 Physical Layer Protection
A ring network is a network topology where all nodes are attached to the same set
of physical links. Each link forms a loop. In counter-rotating ring topologies, all
links are unidirectional and traffic flows in one direction on one half of the links,
and in the reverse direction on the other half. Self-healing rings are particular
rotating ring networks, which perform rerouting as follows. In normal operation,
traffic is sent from a source to a destination in one direction only. If a link fails,
then the other direction is used to reach the destination. Self-healing rings require
expensive specific hardware and waste up to half of the available bandwidth to
provide full redundancy. On the other hand, lower layer protection mechanisms
are the fastest rerouting mechanisms available as self-healing rings can reroute
traffic in less than 50 ms. This section presents four MAC and physical rerouting
mechanisms that rely on a counter rotating ring topology: SONET UPSR and
BLSR Automatic Protection Switching, FDDI protection switching, and RPR
Intelligent Protection Switching. In SONET, protection with self-healing rings is
called Automatic Protection Switching (APS [15]) and comes in two flavors. The
firth one, Unidirectional Path-Switched Ring Protection at the MAC and physical
layers, as shown in Figure 1.4, is a self-healing ring network with benefits from
1+1 protection. In this 1+1 protection, two rings are used. Traffic is sent through
both working and protection paths at ingress nodes. The destination receives the
same data on each ring, but takes in from one ring only. In the event of a link
failure, the receiver detects the increase of the bit error rate or the absence of

traffic on one of the rings, and then decides to take in the traffic from the other

7

ring. The SONET standards specify that the service interruption time should not
exceed 50 ms [1], which is low enough for the outage to be unnoticeable by
customers who participate in a live conversation where voice is carried over a

SONET network. However, this technique requires detected backup paths for

restoration, which is very costly.

g e stination

4 SONET Add
Drop Mu tiphexer

SOMNET ring
{o3hz tibers)

Whrkirg path
o1 work ng fiber;

Backin path
(on backup fizar}

Figure 1.4 SONET self-healing ring: Unidirectional Path-Switched Ring

architecture. UPSR achieves 1+1 protection [16].

The second protecting scheme, Bidirectional Link-Switched Ring
architecture (BLSR) is shown in Figure 1.5, benefits from 1:1 protection. In this
1:1 protection, traffic is sent to the working path during normal operation. On a
link failure, the node upstream of the failed link wraps traffic from one ring to
another ring in the reverse direction so that traffic still can reach its destination.
BLSR is as fast as Unidirectional Path-Switched protection and does not waste as
many resources. The MAC layer provides the means for IP to send packets over a
local area network. Fiber Distributed Data Interface (FDDI) [17] implements a

protection mechanism at the MAC layer that is similar to SONET BLSR. FDDI

runs over dual rotating rings. In normal operation, traffic is sent on one ring only.
Like BLSR, FDDI wraps paths when a link failure is detected and uses the second
ring only as a backup ring. Therefore, FDDI implements 1+1 protection and
requires full link redundancy. Resilient Packet Ring (RPR) is a more recent MAC
protocol designed to run on multiple counter-rotating rings. In RPR, path
protection is called Intelligent Protection Switching (IPS). IPS can be viewed as
an enhanced SONET BLSR mechanism. Indeed, when a link failure occurs,
traffic is first wrapped exactly like SONET BLSR does. The emitting node is
notified of the failure and changes the ring on which it sends traffic. The new path
taken by packets is therefore shorter than the wrapped path, resulting in both
shorter delays for packets and a better utilization of the available resources. The
lower layer rerouting mechanisms are fast because the nodes that detect the failure
perform themselves the switchover step immediately, bypassing the notification

step.

SONET acd
drop multiplexer

SONET rirg
‘optic fibers)

Jegular peth
‘ar traffic

Serouted taffic

on link failure

_ink failure

Figure 1.5 SONET self-healing ring: Unidirectional Path-Switched Ring
architecture [16].

1.3 Network Layer Protection
Packet switching networks, like the Internet, are expected to be resilient to
link/node failures. Routing protocols [18] [19] [20] [21] take into account
topology changes such as a link failure and re-compute routing tables accordingly
using a shortest path algorithm. When all routing tables of the network are
recomputed and have converged, all paths that were using a failed link are
rerouted through other links. However, convergence is slow and takes usually
several tens of seconds. This long recovery time can potentially jeopardize the
satisfaction of services and user requirements. Part of the reason for this long time
is that routing protocols use timers to detect link failure with coarse granularity (1
second) making the Ty term in Equation 2.2 large compared with lower layer
rerouting mechanisms. Also, all routers in the network have to be notified of the
failure. Propagating notification messages is done in an order of magnitude of
tens of millisecond which makes Tyois negligible compared with Tgeeci. Indeed
routers only need to forward the messages with no additional processing and
routing tables have to be recomputed before paths are switched. Re-computing
routing tables implies using CPU intensive e shortest path algorithms which can
take a time Twichover Of several hundred milliseconds in large networks. It is
possible to perform faster IP rerouting by shrinking the Tgeteet and Tswitchover terms
of Equation 1.1. In [22], first, they propose to use sub-second timers to detect
failures and decrease the value of the Tgeeor term. Second, they suggest that
routing convergence is slow due to the obsolescence of the shortest path

algorithms employed in current routing protocols which would be able to

10

recompute routing tables at the millisecond scale if faster, more modern
algorithms were used. In summary, expected rerouting times in networks using
modified routing protocols are below one second, but the authors also argue that
millisecond network layer rerouting is achievable.

IPFRR is a proactive technique or pre-planned technique. The nodes of a
network using IPFRR pre-compute a backup path to each destination before a
failure occurs so that when a failure is detected, the routes are switched to backup
paths without waiting to compute a new path to resume the service quickly.
Consequently, the repair time is reduced and therefore, this leads to a reduction of
interruption service time.

As mentioned in Section 1.1, the physical protection failure recovery is
completed in less than 50 ms but it requires extra hardware and wastes recourses.
Most IP networks are required a failure recovery time within a second. However
some business applications require a failure recovery time shorter than 50 ms.
Recently, it has been reported a reduced recovery time to one second in carefully
configured networks using link state IGPs [22]. Figure 1.9 depicts a time
comparison between proactive and reactive routing recovery schemes when link
(3,4) fails. In Figure 1.9 (a), the backup path is computed before a real failure
occurs so it saves recovery time. However, a proactive scheme computes the new

path after a failure detected that takes some milliseconds.

11

Node 3 |Link (3,4) fails
> Time >
Tpreco deetect Tfnolif(‘alion Tswitchover deetec T notifcation TrecomputeT witchover
PPl —» > >l T DJ
Nod_wl » Time | _|

Figure 1.6 Service interruption time a) proactive (pre-planned) and b) reactive.
The following table shows the required time for each operation for normal
recovery process. Updating routing table process takes most of recovery process
time. As seen in the table, to update 500 prefixes takes 280 ms in the worst case,
which is a significant amount of time compared with the others values.

Table 1.1 IGP Convergence [23]

The operation Time
Failure Detection (SONET today) 20 ms
Origination 10 ms
Queueing, Serialization, Propagation 30 ms
Flooding <5 * 2ms = 10 ms

— SPF n * 40 us
FIB Distribution Delay: 50 ms
500 important prefixes: Worst-case: 280 ms

1.4 Link State Update Schemes
There are many studies try to improve link state update scheme. Some of these
schemes are presented as following. First, some of these schemes are concerned
about efficiency and reliability of dissemination of the link state. For reliability

and to avoid flooding update, [24] has proposed a Tree-Based Reliable Topology

12

(TRT) to disseminate link state information. This scheme proposes a multiple tree
based link state dissemination scheme. This scheme satisfies the reliability and
efficiency but it cannot satisfy the requirement for a fast recovery time when a
failure occurs. In {25], it has been proposed a dissemination scheme that uses
broadcast for building the first tree. Then, this approach uses the tree to
disseminate link state. The proposed approach alternates between flooding and
tree-based broadcasting modes. In other words, when the link state dissemination
is guaranteed, the time required for source node to update its routing table to
recover a failure path cannot be guaranteed. Second, other studies intend to
overcome link state information that causes the false routing, either positive or
negative. A framework has been proposed in [26] to solve such problems that
result from the dissemination of inaccurate or outdated link state information.
The search of alternative paths have been proposed in [27][28]. The primary
objective of multiple-path routing approach is to compensate for the inaccuracy of
the knowledge accuracy available to routing nodes, but it cannot provide an
alternative path for each flow in a network in all cases of failures. Third,
researchers have proposed an update policy mechanism for link dissemination. In
[29], it has been stated that routing without considering the staleness of link state
information introduced by update policies may generate significant percentage of
false routing.[29] presents the Least Cost Multiple Additively Constrained Path
(LCMACP) scheme to mitigate the effect of staleness of link state. In [30], it been
presented two different link-state update policies to advertise the availability of

wavelength and converter resource in all-optical DWDM transport networks.

13

1.5 Related Work
IP Fast ReRoute IPFRR was proposed as framework in [31]. The simple scheme
of IPFRR uses equal cost multi-paths (ECMP)[32], where at least two paths with
the same cost are calculated for each source/destination pair. However, multipath
routing with ECMP usually do not satisfy the minimal resilience requirement of at
least two outgoing paths at each node [33]. For this reason, ECMP does not
guarantee the network survivability. Failure insensitive routing (FIR) is presented
in [34] for single-link failures. Given a primary path Source to Destination {S —to-
D}, FIR identifies a number of key links such that removing any of these links
forces the packets go back to S. Therefore, the failure of any key links can be
inferred by S at a deflected packet. To provide an alternate path, FIR removes the
key links and runs shortest path routing from S to D. Extending FIR to cover
single-node failures is presented in [35]. In [36], a loop-free alternate path is
presented where It choose an alternative backup path that satisfy this criteria cost
(N, D) < cost (N, S) + cost(S,D). On other words, S should not be the next hop for
N the backup next hop, but this is not guarantee the recovery process. Finally, a
scheme is proposed to set up a tunnel from node S to node Y that is multiple hops
away {37]. This scheme adds extra packet processing where all packets are
encapsulated by S and routed towards the tunnel endpoint. Then, the tunnel
endpoint decapsulates the packets and forwards them according to its routing
table. Multiple routing configuration (MRC) algorithm has been presented in [38].
In this work, the approach in each node has muitiple configurations or a multi-

routing table. Then, when a failure occurs and is detected, the node tries to find

14

suitable configuration to overcome this failure. Managing the multiple routing

tables is significant overhead issue here.

1.6 Contributions of this Thesis
Many studies have been investigated the failure recovery either link or node. This
thesis addresses some of the problems related to failure recovery and congestion
recovery.
For these, this thesis proposes three algorithms.

e First, an algorithm for link failure recovery using proactive routing against
failures is proposed. When a node detects a failure, the pre-calculated
alternative paths make the recovery faster.

e Second, a proactive algorithm for node failure recovery is proposed. This
scheme uses some of the ideas presented for link failure but it considers
the differences on the effects created by node failures that are not present
with link failure.

e Third, a proactive congestion mitigation algorithm is also proposed.

This thesis provides the complexity analysis and implementation discussion of the
algorithms, and present simulations to test their performance under different
failures. The simulations are performed by using ns2 [39] simulation software.
This thesis is structured as follows. Chapter 2 introduces three proposed
algorithms for self-recovery networks from link and node failures, and for

congestion mitigation. Chapter 3 presents simulations and results. Chapter 4

contains the conclusions and future work.

CHAPTER 2

ROUTING TREE RECOVERY ALGORITHM

In this chapter, three algorithms have been proposed for data routing tree
recovery. The proposed algorithms aims to recover the transmission of packets
quickly and effectively from link failure, node failure, and link congestion. The
scheme is based on proactive computation of a backup path for each network
destination. Each obtained backup path is capable of accommodating rerouted
traffic and of being loop free. A modified Breadth First Search (BFS) algorithm
[33] is used to determine the backup path and several conditions to select eligible
links (paths).

The rest of this chapter is organized as follows. Section 2.1 proposes a link
failure recovery algorithm that pre-computes the backup path. Section 2.2
proposes a route recovery algorithm for node failure. Section 2.3 presents a link
congestion mitigation algorithm. Section 2.3 discusses some implementation
issues, such as routing table extension. Section 2.4 discusses the algorithm time

complexity for the three proposed algorithms.

2.1 Link Failure Recovery Algorithm
In this section, an algorithm that aims at determining a backup path is described,
which is feasible to accommodate the rerouted traffic result from a link failure.
The backup path is pre-computed before a failure occurred. A primary port used

to forward data through routing tree or down stream tree for any node.

15

16

However, when a failure occurs, a subset of these nodes switch to their backup
ports for fast rerouting, and the routing tree is updated according to the used

backup ports.

The following is a table with the notation used to describe the proposed
algorithms.

Table 2.1 Link Failure Recovery Algorithm Notation

G(V,E) | Network with V nodes and E edges

P, Primary port of node n before any failure
b,’;’j Backup port of node n when link (i) fails
Ano Traffic generated in node n.

Cij Link(i, j) capacity

A | The traffic destined to sub-tree T c*;.

Aij The traffic in link (i ,j) or link utilization

U The total traffic in the network or utilization

Treromea | The total rerouted traffic

BP;ya1 The total number of backup port when a link fails

— 2.1
Trerouted - /?‘u + Z A‘Tui
i

/11., ;<€ 22

17

Minimize:

U=> 4, 23
i,j
— ij 24
BPtotal - Z bn !
nev

In addition, it is required to find a feasible path capable to accommodate the
rerouted traffic without causing additional congestion in others links in the tree.
Equation 2.2 guarantees that link(i,j) utilization is less than link(i,j) capacity. The
second constrain is to minimize overall network traffic, which means that the
selected path is used to reroute traffic and be the shortest path to the destination.

The third constrain is to minimize number of switchover nodes.

rerouted traffic Trerouted
)‘4 Tcu]+ -..7\4 Tcux +)\«u

Figure 2.1 Data Routing Tree for source node S.

18

After determining the routing table for node S, the routing information would
look similar to the contents in Table 2.1. By looking at the destination and the
next hop columns, u node is the next hop for all the destination nodes in the sub-
trees T c"; T ¢’ T c". So when node S assumes that its next hop is fail, it tries
to find a backup path or backup next hop. The mean point of our algorithm 1 is to
determine a backup next hop node before the primary next hop become

unreachable.

Table 2.2 Sample of Routing Table for Node S

Destination | Path Type | Cost | Next hop(s)
U u
\'% \%
u
cl u
u
c?2 u
u
c X u
d] u
dy u

Definition 1 The backup path is a path capable to accommodate the rerouted

traffic from the source to the new next hop.

19
Algorithm 1 Link Failure Recovery
Step 1: Initialization: Set the backup ports for node S to null.

Step 2: Mark children nodes (next hop nodes for each destination) u={1,2,, m} as
unreachable and doing the following:

Step 2.1: Color all nodes in sub tree T(u) black, unreachable node u as
red, and the other nodes in the topology white “where the
forwarding path is not affected by failure”

Step 2.2: Compute how much is traffic should be rerouted (Trerouted)

Step 2.3: Compute a back up path by using BFSpath(G, S u | Treroutcd)
feasible to accommodate the rerouted traffic Treroued tO
reconnect the black and red nodes to the main tree T(S)

Step 2.4: Set the backup port according the discovered path from S to u

Step 2.5: Colors the recovered nodes to white.

This algorithm will be explained by giving three examples in the following.

Case |

Figure 2.2 (a) shows the primary data routing tree T for node S. In Figure 2.2 (b),
it is assumed that the link between nodes S and 1 failed and the nodes are colored
according to step 2.1. After link(S, 1) fails, two disconnected sub-trees T; and T
were formed resulting from the primary tree T. Then in step 2.2 node S compute
how much traffic should be reroute. Step 2.3 returns a feasible path that could
accommodate the rerouted traffic as in Figure 2.2 (c). Finally in step 2.4 the node

S set the back up port according the returned path as shown in Figure 2.2 (d) the

20

next hop will be node 2 for all nodes in the sub-tree T; when actual failure occurs

instead of node 1.

The next hop to the disconnected sub-tree. (d) Survivable node white.

Figure 2.2 Example of Link failure Recovery Algorithm-Case I.

The example in Figure 2.2 shows that node S switches its data to the backup port
for each affected destination. Meanwhile, all other nodes keep using their original
ports. In this way, the routing tree survives using all nodes in the disconnected

sub-tree T; and the algorithm reduces the number of nodes that need to be

21

changed for recovery. The routing table should be extended as in Table 2.2. An
extra column is added specify the backup next hop.

Table 2.3 Extended Routing Table for Node 1 Case 1.

Destination | Path Type | Cost | Next hop(s) | backup hop(s)
S -

o0 (N [N [[[W N ==
O T e e | I e [I
[NSRNI ST SERL SRR SR SRS S

Claim 1. Given a primary tree for node S T=(Vr, Er), and two nodes i,j Vr, the
primary path PPi,j a backup path BPi,j, and b is a link(i,j). b € E ppi,j, there
exists a tree T’=(V1’,E1) such that

1-V1= V1 Y Vgpi

2- Er={Er VY Egpi;j} \{b}

Proof:

Consider T=(V 11,E 1) and Ts=(V1s,Ers) two trees results from a link b fails in
the primary tree T. Trees T and T are rooted at node S. Assume, without losing
generality, thatj € Vpy and i V. Let i be the root of tree Ts. Trees T; and Ts
are link and node disjoint therefore the graph T=(Vr Y Vgpij), { Er Y Egpi;} \{b}
When link b fails, the traffic for sub-tree T that was using the primary path PP;;
is rerouted to BP;; without make a loop a recovery all the nodes affected by

failure, hence (1) and (2).

22

Case II

In first case, previous example, a direct link was between the next hop of T; and
the root of sub-tree Ts. However, in second case, the next example shows how the
algorithm works if there is not a direct link between T, and Ts. The same steps
like the previous example. Figure 2.3 (a) shows the primary data routing tree for
node S. Node S assumes that the next hop, Node 2, is unreachable. The nodes are
colored according to Step 2.1. After link(S,1) fails, there are two disconnected
sub-trees T; and Ts as result from the original tree T. Then in Step 2.2, node S
computes how much traffic needs to be rerouted. Step 2.3 returns a feasible path
that can accommodate the rerouted traffic, as Figure 2.3(c) shows. In Step 2.4, the
node S sets the back up port according the returned path as shown in Figure 2.3
(d). The next hop is Node 2 for all nodes in the sub-tree T; when actual failure
occurs instead of Node 1. However, as shown Figure 2.3 (d), Node 4 has two
sources, one from Node 1 and the other from Node 4 after the algorithm

terminates.

23

(c) The next hop to the disconnected sub-tree. (d) Survivable node white.

(e) Actual recovery routing tree

Figure 2.3 Example of Link Failure Recovery Algorithm-Case II.

24

In this case, Node 4 does not have two sources, because Node 1 has no
more node as next hop for node S to forward traffic for Node 4 and the new next
hop for Node 4 is Node 2 after a link (S, 1) fails. For Node 1 to receive its data
from node S work as follows: when the data packets arrive to Node 4, this node is
the responsible for forwarding the traffic for Node 1 only. Therefore, the new
recovery routing tree is as seen in Figure 2.3 (¢) and the recovered T1, which was
rooted by Node 1, becomes rooted by Node 4. As observed, in this algorithm, the
routing table of other nodes can be used to assist in the recovery of the main
routing tree for any node. In Table 2.3, the routing table for Node 4 without
backup hops. Therefore, when node S detects a failure in link (S,1) then it
switches the use of its original port to its backup port. All the destinations that are
using as next hop Node 1 will switch to Node 2. For example, the path S—1
before the failure for destination Node 1 occurs, and then after the failure occurs,
the new path is S—2-»4--1, as shown in Figure 2.3 (e). The number of hops for
destination Node 1 after failure is increased by 2 hops. For destination Node 4, the
path before the failure is S—1—4, then after failure, the new path is S—2—4.

Here, the number of hops is the same before and after the failure.

Table 2.4 Routing Table for Node 1 in Case II

Destination | Path Type | Cost | Next hop(s) | Backup hop(s)
S - -
1 1 2
2 2 2
3 1 2
4 1 2
5 2 2
6 1 2
7 1 2
8 2 2
Table 2.5 Routing table for Node 4 in Case II
Destination | Path Type | Cost | Next hop(s) | backup hop(s)
1 1 -
4 4 -
7 7 -
Case III

25

This case describes the case of how loops are avoided by the recovery algorithm.

The following example explains this case. Consider having two primary trees, one

for Node S colored black and a routing table as in Table 2.5 and the other tree for

Node 2 colored gray and a routing table as Table 2.6. The problem here is when

Node S selects Node 2 as the new next hop after link (S,1) fails and a loop could

result. For example, the path for destination Node 1 before failure is S—1, and

after failure would be S—2—S—2, becoming a loop. By applying the forward

policy in Figure 2.5, when Node 2 receives a packet, it decides its next hop for a

26

destination, for example Node 1, Node 2 considers the next hops for these
destinations unreachable and enables the backup next hop only for these
destinations. Therefore, flows destined from Node 2 to Node S still have the same
primary path. In other hand, the flow generated from node 2 and destined to node
1 according to primary tree for node 2 the next hop for this flow is node S, but
node S select node 2 as a backup next hop when considered link S,1 fails. At this
way, a loop is formed S—2—S—2. According to forward policy in figure 2.5
when node 2 receive packet from node S and find that packet just forwarded by
itself. Then, node 2 considers the next hop for this flow- destination node 1- is
failed and switch to its backup next hop. Similarly, all flows next hop are S and
make a loop will switch to their backup next hop. Meanwhile, flows from node S
to destination node 2 after link S,1 fails is S—2—1, without any loop.

Table 2.6 Routing table for Node S in Case II1

Destination | Path Type | Cost | Next hop(s) | Backup hop(s)
S -

[0 <IN N I Ko)W O, [I SO R US T I (O I
DO = [[N = = (B e
NN NN (NN NN

Table 2.7 Routing table for Node 2 in Case III

Destination | Path Type | Cost | Next hop(s) | backup hop(s)
S S -

1 S 1

2 - -

3 S 1

4 S 1

5 5

6 S 1
7 S 1

(c) Survivable trees for node S and 2.

Figure 2.4 Example of the Link Failure Recovery Algorithm-loop free Case III.

27

ports

New packet. Get primary or backup

Arrive from
forward port

No

y

Use Backup port

\ 4

Use Primary port

Change primary port for
these flows to backup port.

Figure 2.5 Packet Forwarding Policy.

2.2 Node Failure Recovery Algorithm

28

In this section introduces an algorithm that aims at determining a backup path. A

path is feasible to accommodate the rerouted traffic result from a node failure.

The backup path also pre-planned before a failure occurred. The node recovery is

different from link recovery as this is more complex than link failure recovery.

Figure 2.3 shows how traffic is rerouted and the dependency that this has on the

number of sub-tree at Node u.

A Tcu1+ A Tcux +Au

Figure 2.6 Example of Node Failure.

Table 2.8 Node Failure Recovery Algorithm Notation

G(V,E) | anetwork with V nodes and E edges

P, primary port of node n before any failure

b:j backup port of node n when link (i,j) fails

Ano traffic generated in node n.

Ciyj link(i,j) capacity

A 7 | The traffic destined to sub-tree T c';.

Aij the traffic in link (i ,j) or link utilization

U the total traffic in the network or utilization
Trerouea | the total rerouted traffic

BP,ya the total number of backup port when a link fails

29

30

— 2.
Trerouted - ﬂ’u + Z A T ui >
i

A . <c. . 2.6

Minimize:

U = Z/Ii,j 2.7

BP,, =) b 2.8

Two constrains have to be satisfied. The first one is to minimize the overall traffic
in network after the traffic is rerouted, as in Equation 2.6. Choosing the shortest
path to destination decreases the number of links that the rerouted traffic go
through, consequently, it decreases the overall network utilization. The second
constrain is to minimize number of used backup ports for stability of the routing
tree.

As shown in Figure 2.6, Node u, which is assumed failed, has x children, each of
which is denoted as c'i,c%,.... ¢y, where each child is the root for sub-trees T c*
,...., T ¢"x. Here, the goal is to bypass the failed node u to its children c";,c",...,

c",, that satisfy the two constrains.

31
Algorithm 2 Node failure recovery algorithm
Step1: Initialization: Set the backup ports for node to null.

Step2: Mark the children nodes (next hop nodes for each destination) u={1,2,, m}
as unreachable and do the following:

Step2.1: Color all nodes in sub tree T(u) black, failed node u as red, and

the other nodes in the topology white where the forwarding path
is not affected by failure.

For (i=1 to i=x) do step 2.2 to 2.5

Step 2.2: Compute how much is traffic in the links (link utilization)
between (u, c;) { where c"; is the root of sub-tree T c"; and d*
the computed utilization value}.

Step 2.3: Compute a path by using BFSpath(G, S, c"; ,d";) feasible to
carry the rerouted traffic d*; (where d* =\ 1 ") to connect the
root () of the T ¢ to the main T(n).

Step 2.4: Set the backup port according the discovered path from v to c';.

Step 2.5: Color the recovered nodes to white.

32

(c) Computing reroute path. (d) Link (S, 1) fails.

Figure 2.7 Example of the Node Recovery Algorithm.

Example of Algorithm 2 is illustrated in Figure 2.7. The routing tree for Node
S is shown in Figure 2.7 (a). Figure 2.7 (b) shows Node 1 as a failed node, then
Node S finds a path to reroute the affected flows. After finding the new next hop
for the rerouted flows, some of these flows change their path after the failure
occurs. In this example, the new path from Node S to Node 6 is S—2—4—3—6,

which is longer than the primary path S—1—3—6 by one hop.

33

2.3 Link Congestion Mitigation Algorithm
The last proposed algorithm is for link congestion mitigation. This algorithm is
introduced in this section. The purpose of this algorithm is to determine a backup
feasible path to accommodate the rerouted traffic results from link congestion.
The backup path is also pre-planned before any link congestion occurs. Why do
not use any of previous two proposed (link and node failure) algorithms? Because
link congestion is a different phenomenon from the two pervious proposed
algorithms in the following characteristics:
1.- In link recovery, all traffic has to be rerouted, but in link congestion, only part
of the congesting traffic can be rerouted.
2.- Congestion in other links to relieve the currently congested ones has to be
avoided. Figure 2.9 shows how some flows of a congested link can be rerouted to
other links without causing congestion in other parts of the network while
mitigating effectively the congestion.

A Tcu1+ A Tcux +Au

Figure 2.8 Consider link(S,u) as congested link.

u
7‘« Tcu1+ ---}\ch x-1 +>\«u

34

Figure 2.9 Recovery from the congestion in link(S,u).

Table 2.9 Link Congestion Recovery Algorithm Notation

G(V,E) a network with V nodes and E edges

P, primary port of node n before any
failure

pii backup port of node n when link (i,j)

§ fails

Ao traffic generated in node n.

Cij link(i,j) capacity

Ard The traffic destined to sub-tree T c';.

Aij the traffic in link (i ,j) or link utilization

U the total traffic in the network or
utilization

Trerouted the total rerouted traffic

BPyya the total number of backup port when a

link fails

Trerouted = mln{ Z’u ’ ZTC";‘ Where i=0 to i=X}

/11.,1. <¢;

Minimize:
U= Z A
i,j

B])total - Z bri’j

neV

Algorithm 3 Mitigation of Link Congestion

Step 1: Initialization: Set the backup ports for Node S to null.

35

2.9

2.10

2.11

2,13

Step 2: Mark children nodes (next hop nodes for each destination) u={1,2,, m} as

congested and doing the following:

Step 2.1: Color all nodes in sub tree T(u) black, the next hop node u as red, and

the other nodes in the topology white where the forwarding path is not

affected by congestion.

Step 2.2: Compute how much is traffic should be rerouted (Tieropted)-

Step 2.3: Compute a back up path by using a feasible BFS path(G, S,
", Trerouted) t0 accommodate the rerouted traffic Treroued tO

reconnect the black and red nodes to the main tree T(S).

Step 2.4: Set the backup port according the discovered path from S to u.

Step 2.5: Colors the recovered nodes as white.

36

(c) Compute a backup path. (d) New routing tree.

Figure 2.10 Example for link congestion mitigation algorithm.

Figure 2.10 shows an example of the normal Case I. Figure 2.10(a) is a
primary routing tree. Link (S,u) is considered congested link in Figure 2.10 (b). In
Figure 2.10 (c), Node S computes a feasible path to reroute the smallest flow in
this link to other path to mitigate the congestion. In Step 2.2, the node S decides
which flows should be rerouted and in Step 2.3, it computes the path for the

rerouted traffic Tieroued. The smaller flows are selected for rerouting to avoid

37

congestion in other links. The routing tree for Node S is changed as shown in
Figure 2.10 (d). Consequently, flows from Node S to Nodes 4 and 7 change their
paths to S—1—4 and S—1—4—7, respectively. For other cases, the same
procedure applies to Cases II and III, benefiting from the routing tables of other

nodes and from the forward policy to avoid loops.

2.4 Time Complexity Analysis
In this section, the complexity analysis for the three proposed algorithms will be
presented. Sections 2.4.1, 2.4.2, and 2.4.3 discuss the analysis of the link recovery
algorithm, the node recovery algorithm complexity, and the link congestion

mitigation algorithm, respectively.

2.4.1 Link Failure Recovery Algorithm Time Complexity

Step 2.3 computes a path in time complexity O (V+E) where V network nodes
and E edges. Step 2.3 is executed m times, where m number of the assumed failed
links that Node S has. Therefore the complexity is O (m(V+E)). For Step 2.3,
most of cases, a path is found before traversing all network nodes V and E edges.
For variable m, m is the node degree or number of edges always, which is very
small, compared to V and E. for example, m could be between 3 to 10, which
number is negligible. As result, the total time complexity of the algorithm is

O(V+E).

38

2.4.2 Node Failure Recovery Algorithm Time Complexity

Again, the main step in the algorithm is Step 2.3, which computes a path in time
complexity O(V+E), where V network nodes and E edges. Step 2.3 is executed x
times for each assumed next hop of Node S, where x is the number of children of
the failed node and m is the Node S°‘s degree or its number of edges. Therefore,
the time complexity is O(x.m(V+E)). As for Step 2.3, in most of the cases, a node
finds the path before traversing all network nodes V and E edges. considering that
variables x and m are very small compared to V and E, the total time complexity

of the algorithm is O(V+E).

2.4.3 Link Congestion Mitigation Algorithm Time Complexity

Similar to the link failure recovery algorithm, Step 2.3 in the congestion
mitigation algorithm computes a path in time complexity O(V+E), where V
network nodes and E edges. As Step 2.3 is executed m times, where m number of
the assumed congested links that node S has. Note that m has different meaning
from the other two previous algorithms. Therefore, the time complexity is
O(m(V+E)) and the total time complexity of the algorithm is O(V+E) when m is

very small compared to V and E.

CHAPTER 3

ALGORITHMS IMPLEMENTAION AND SIMULATION RESULTS

First, node structure and routing module in ns2 will be described. Then,
describing the procedures in the class Simulator in Section 3.1 and instance
procedures in the class node to access and operate on individual nodes. Section
3.2 presents the routing module in ns2 node. Then, the simulations study the load
distribution in each link and the throughput for each node. Section 3.3 contains
the simulation setup and the result for link failure scheme. Section 3.4 presents
the simulation setup and the results of link node scheme. In Section 3.5, link

failure recovery algorithm is applied for double link failure.

3.1 Node Basics

The instance node in ns2 constructs of simple classifier objects. The Node itself is
a standalone class in OTcl. However, most of the components of the node are
themselves TclObjects. The typical structure of a unicast node is as shown in
Figure 3.1. This simple structure consists of two TclObjects: an address classifier
(classifer_) and port classifier (dmux_) .These classifiers deliver incoming
packets either the correct agent (e.g., Upper layer) or outgoing link (e.g., next
hop).

Basic node contains the following components:

* An address or id : _,increasing by 1 (from initial value 0) across the simulation
namespace as new node is created.

39

40

* A list of neighbors (neighbor_): Structure of a Unicast Node. Notice that entry
is simply a label variable instead of a real object, e.g., the classifier .

* A list of agents (agent)
* A node type identifier (nodetype_)

* A routing module

Koute{,ogic

add-reuie U

g [
“ tObject &

Y
+
o | add-roat2 ()

w1
v
%
A
'?Dr(\M'M aniial i-’ H ., .

\l*l Agent_| l‘-.¢.\"| tFear '—)'
/’ eniry_ {

i nFroto/DV " i Bidc /"
' T n.h:r -

e,
nFrots/DV ’
nkeer (€

”/;l / N
Ak \
mm*é" M% rlak’iw

antry_

e~/ S U RN

% . '//"\\\\ y Fi) \
~—, , L
Tastall () I\\ e . / "\.\

=¥ alfadule/Base

Figure 3.1 Ns2 unicast node routing structure.

3.1.1 Address and Port Number Management

The procedure $node id returns the node number of the node. This number is
automatically incremented and assigned to each node at creation by the class
Simulator method, $ns node. The class Simulator also stores an instance variable
arrayl, Node_, indexed by the node id, and contains a reference to the node with
that id. The procedure $node agent hporti returns the handle of the agent at the

specified port. If no agent at the specified port number is available, the procedure

returns the null string. The procedure alloc-port returns the next available port

41

number. It uses an instance variable, np_, to track the next unallocated port
number. add-route and add-routes are procedures that used by unicast routing to
add routes to populate the classifier The usage syntax is $node add-route
(destination id). dmux__ is a port demultiplexer at the node, if the destination id is
the same as this node’s id, it is often the head of a link to send packets for that
destination. add-routes (destination id) used to add multiple routes to the same
destination that must be used simultaneously in round robin manner to spread the
bandwidth used to reach that destination across all paths (e.g., Multiple Equal
Cost Path (MECP)). Finally, the procedure intf-changed{} is invoked by the

network dynamics code if a link incident on the node changes state.

3.1.2 Agent Management

Given an agent, the procedure attach{} will add the agent to its list of agents_,
assign a port number the agent and set its source address, set the target of the
agent to be its (ie, the node’s) entry{}, and add a pointer to the port
demultiplexer at the node (dmux_) to the agent at the corresponding slot in the
dmux_ classifier. Conversely, detach{}will remove the agent from agents_, and

point the agent’s target, and the entry in the node dmux_ to nullagent.

3.1.3 Tracking Neighbors
Each node keeps a list of its adjacent neighbors in its instance variable, neighbor_.
The procedure add-neighbor {} adds a neighbor to the list. The procedure

neighbors {} returns this list. The function of a node when it receives a packet is

42

to examine the packet’s fields, usually its destination address, and on occasion, its
source address. It should then map the values to an outgoing interface object that
is the next downstream recipient of this packet. In ns, this task is performed by a
simple classifier object. A node in ns uses many different types of classifiers for
different purposes. A classifier provides a way to match a packet against some
logical criteria and retrieve a reference to another simulation object based on the
match results. Each classifier contains a table of simulation objects indexed by

slot number.

3.2 Routing Module and Classifier Organization
An ns node is essentially a collection of classifiers. The simplest node unicast
contains only one address classifier and one port classifier, as shown in Figure
3.1.
3.2.1 Routing Module
In general, every routing implementation in ns consists of three function blocks:
* Routing agent exchanges routing packet with neighbors,
* Route logic uses the information gathered by routing agents (or the global
topology database in the case of static routing) to perform the actual route

computation.

* Classifiers sit inside a Node. They use the computed routing table to perform
packet forwarding.

Notice that when implementing a new routing protocol, one does not
necessarily implement all of these three blocks. For instance, when one
implements a link state routing protocol, one simply implement a routing agent

that exchanges information in the link state manner, and a route logic that does

43

Dijkstra on the resulting topology database. It can then use the same classifiers as
other unicast routing protocols. When a new routing protocol implementation
includes more than one function blocks, especially when it contains its own
classifier, it is desirable to have another object, which is called a routing module,
that manages all these function blocks and to interface with node to organize its
classifiers. Figure 3.2 shows functional relation among these objects. Notice that
routing modules may have direct relationship with route computation blocks, i.e.,
route logic and/or routing agents. Hover, route computation MAY not install their

routes directly through a routing module.

Routing
Modules
RtModule/Base «———| Base > J Node
routing 4 routing Route
add-route R add-route “ o e
delete-route Hier > delete-foute Computation
transport tfransport User
ateach Mcast > attach Simulation
detach detach EES—
Management Classifier
geme! MPLS .
register insert-entry
unregister install-entry
: \ install-demux
L]
*

Figure 3.2 Interaction among node, routing module, and routing.
A routing module contains three major functionalities:

1- A routing module initializes its connection to a node through register {}, and
tears the connection down via unregister {}. Usually, in register{} a routing
module (a) tells the node whether it interests in knowing route updates and
transport agent attachments, and (b) Creates its classifiers and install them in
the node. In unregister {} a routing module does the exact opposite: it deletes
its classifiers and removes its hooks on routing update in the node.

44

2- If a routing module is interested in knowing routing updates, the node will
inform the module via RtModule::add-route{dst, target} and RtModule::delete-
route{dst, nullagent}.

3- If a routing module is interested in learning about transport agent attachment
and detachment in a node, the node will inform the module via
RtModule::attach{agent, port} and RtModule::detach{agent, nullagent}.

3.2.2 Node Interface

To connect to the above interfaces of routing module, a node provides a similar

set of interfaces:

In order to know which module to register during creation, the Node class

keeps a list of modules as a class variable. The default value of this list contains

only the base routing module. The Node class provides the following two

procedures to manipulate this module list:

Node::enable-module{[name]} If module RtModule/[name] exists, this
proc puts [name] into the module list.

Node::disable-module{[name]} If [name] is in the module list, remove it
from the list. When a node is created, it goes through the module list of the
Node class, creates all modules included in the list, and registers these
modules at the node. After a node is created, one may use the following
instance producers to list modules registered at the node.

Node::list-modules{} Return a list of the handles of all registered
modules. Node::get-module{[name]} Return a handle of the registered
module whose name matches the given one. Notice that any routing
module can only have a single instance registered at any node.

To allow routing modules register their interests of routing updates, a node object

provides the following instance procedures:

Node::route-notify{module} Add module into route update notification
list.

Node::unreg-route-notify {module} Remove module from route update
notification list.

Node

45

Node::port-notify{module} Add module into agent attachment notification
list.
Node::unreg-port-notify{module} Remove module from agent attachment

notification list.

provides the following procedures to manipulate its address and port

classifiers:

Node::insert-entry inserts classifier into the entry point of the node. It also
associates the new classifier with module so that if this classifier is
removed later, module will be unregistered.

Node::install-entrydiffers from Node::insert-entry in that it deletes the
existing classifier at the node entry point, unregisters any associated
routing module, and installs the new classifier at that point. If hook is
given, and the old classifier is connected into a classifier chain, it will
connect the chain into slot hook of the new classifier.

Node::install-demux{demux, port} places the given classifier demux as
the default demultiplexer. If port is given, it plugs the existing
demultiplexer into slot port of the new one. Notice that in either case it
does not delete the existing demultiplexer.

3.2.3 New Features Added

New utility procedures have been added that help to implement previous proposed

algorithms. These procedures as following:

update-route {} this procedure update the routing table for node.
get-next-hop {} return the next hop for a specified destination.

compute-next-hop {}: compute a route from source to destination and
return next hop.

print-route {}: display the route from source to destination.

These procedures are implemented in C++ programming language. Then, the

47

100 nodes are used in simulation. The traffic generated in network using CBR
traffic with rate 3Mbps for each flow. generate mesh traffic among nodes in the
network that means each node sends traffic to other nodes in the network. Node

minimum degree is four links for each node.

3.3.1 Load Distribution for Link

The simulation focus on Traffic load in each link after a random selected link has
been failed. Then, the traffic load in each link for our proposed recovery scheme
was compared with link state protocol. The link index arranged according to
BRITE software order each link is bidirectional. For example, link (1,2) has two
indices one for direction 1-to-2 and the other for 2-to-1. Figure 3.3 depicts the
link load for link state protocol in blue points and our proposed fast recovery in
purple for a network size 20 nodes. This graph shows how algorithms can
recovery the failure in short time and with accuracy near the link state protocol.
Where link state protocol waits after a failure occurs and recalculate new path to

resume service.

48

Link Load

—e— Link State

- Fast Recovery

Load Mbps

“1 11 21 31 41 51 61 71 81 91 101 111 121 131
Link Index

Figure 3.4 Link load for each link in the network size 20 nodes.

Then, Figures 3.5, 3.6, 3.7 show the load in each link. In all figures, the
link load for Fast Recovery Algorithm close to the link state protocol or
recalculated path. In addition, noticing that our recovery algorithm can distribute
the traffic among links near optimal. For example, Figure 3.5 shows that link
utilization for Fast Recovery less than the link utilization when use link state
protocol. In the same time, Figure 3.8 shows that the throughput for all nodes is
better than link state. Why could this be happen? Referring to Equation 1.1 the
service interruption time the term Thotfication @1d Trecomute these values are reduced
in Fast Recovery. Consequently, the service time increases that mean the node
receive more packets. In other words, the failed link, which is selected randomly,
is far from the source that make the service interruption time for link state is
longer than the Fast recovery. Furthermore, the location of link failure is

significant so there have been many studies conducted to identify the critical link

49

in network. For instance, the location of link failures has been addressed in

[42][43].

Link Load

80 “im
70
60

50

—e— Link State

40
- Fast Recovery

Load Mbps

30

20

10

1 20 39 58 77 96 115134 153 172 191 210 229 248 267 286

Link Index

Figure 3.5 Link load for each link in the network size 40 nodes.

Link Load
120
100 ;

80

—— Link State

60
»»»»» Fast Recavery

-

Load Mbps

40

20

1 27 53 79 105 131 157 183 209 235 261 287 313 339 365 391 417 443
Link Index

Figure 3.6 Link load for each link in the network size 60 nodes.

50

Link Load

il
«
}
|
|
|
|
3
|

—=— Link State
Fast Recovery

Load Mbps
[y]
o

P

L]

& K SR oY

0| v e A o Tanatre

1 50 09 148 197 246 205 344 393 442 491 40 589 608 687 /a6
Link Index

Figure 3.7 Link load for each link in the network size 100 nodes.

3.3.2 Throughput for Node

Throughput is number ol received and acknowledged packets lor a destination.
Here, (hroughput s the mount of received Irallic in Mbps. In Figure 3.6, the
throughput lor link state and fast recovery are the same. Again referring to service

interruption time equalion Ty, T is the same for link sate and Fast Recovery,

51

Nodes Throughput

37.6 1
@ 3754
L il
Sa4im

273 I}
37.2 {f

@ Link State
@ Fats Recowery

roughpu

37

12 3 456 7 8 910111213 14 1561617 1819 20

Node Index

Figure 3.8 Throughput for each node in the network size 20 nodes.
On other hand, Figure 3.6 shows that the throughput for Fast Recovery is better

than link state for all nodes.

Node Throughput

90
ol
70 41k
60
50
40
20 EEEREEEEEERRERRERERELE

HHH 1l DSeriest
lSeries_Zj

Throughput Mbps

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39
Node Index

Figure 3.9 Throughput for each node in the network size 40 nodes.
Figures 3.8 and 3.9 show the same thing. All nodes have better throughput

when using Fast Recovery instead of link state. Figure 3.11 shows the throughput

52

for first fifty nodes (0-49) in the network and Figure 3.12 presents the throughput

for the other fifty nodes (50-99).

O Link State
B Fast Recowery

Thranahnnt Mhno
S

20

1 4 7 10 13 1

node Index

Figure 3.10 Throughput for each node in the network size 60 nodes.

Node Throughput

250 i ——

N

o

o
T

a
=
5 15 Link State
S B Fast Recovery
S 100
o
=
" 50
il

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49
Node Index(0-49)

Figure 3.11 Throughput for each node in the network size 100 nodes (0-49).

33

Node Throughput

M (o Link state
B Fast Recovery

N O D AN O
© © O M MM O ®©® O OO O O
Node Index(50-99)

Figure 3.12 Throughput for each node in the network size 100 nodes (50-99).

3.4 Simulation for Node Recovery
In node recovery simulation, three random topologies were used with different
network size range from 20 to 60 nodes. The traffic generated is as in link
recovery simulation 3Mbps for each flow. Node minimum degree is two links for

each node.

o
F =

Figure 3.13 Link load for each link in the network size 20 nodes for node failure.

Link Load

Link Index

1 14 27 40 53 66 79 92 105118 131 144

- —e—Link State
‘ » - Fast Recovery

Figure 3.14 Link load lor cach link in the network size 40 nodes for node [ailure.

3.4.2 Throughput for Nodes

37.6 -
37.5
37.4
37.3
37.2
37.1 -
37
36.9 |}
36,8 U
1 3 5 7 9 11 13 156

Throughput Mbps

Node Index

Node Throughput

o Link State :
| Fast Heccv_en_.il

Figure 3.15 Throughput for each nodc in the

failure.

network size 20 nodes for node

55

Node Throughput

Link State
B Fast Recowery

Throughput Mbps

1 4 7 10 13 16 19 22 25 28 31 34 37 40
Node Index

Figure 3.16 Throughput for each node in the network size 40 nodes double link

failure

3.5 Simulation for Double Link Recovery
In this section apply recovery scheme in double link failure. As show in figure
3.17 our scheme can recovery from two link failure occurs in the same time with a

good load distribution. Figure 3.18 shows that can also gain the same throughput

for each node as link state protocol.

Link Load

—+—Link Sate ‘
Fast Recovery

Load Mbps

P g
L)

18 290 43 57 71 85 99

Link index

Figure 3.17 Load for each link in the network size 20 nodes for node failure

double link failure.

Node Throughput

97.6 5 D
37.5
37.4 g
373 &
a7.2 !
37.1

a7 -

o Link State
| Fast Flecov_lgr_

Throughput Mbps

q 3 5 Fs g 1" Fa TE: 0
Node Index

Figure 3.18 Throughput for cach node in the network size 20 nodes double link

failure,

CHAPTER 4

CONCLUSION AND FUTURE WORK

Link/node failure occurs frequently as has been shown in Figure 1.1, and these
failures are the cause of service disruption network systems. To avoid long time
service interruption, many techniques and approaches have been developed.
Hardware protection works in physical layer. It needs frequently maintenance
which is very costly. There are many Network layer recovery solutions have been
proposed. For instance, IP Fast ReRouting (IPFRR) is a scheme that ties to
reroute the traffic from the failed part of the network to other working parts
without using extra hardware. Hover, the hardware solution protection recovers
faster than the other solution when failure occurs. Indeed, IPFRR is a preplanned
backup path to reroute traffic on a link/node failure and can be implemented by
modifying the exiting router software. A tradeoff between convergence time and

cost always exits.

4.1 Contributions

The goals of the thesis are as following. First, reduces the service interruption
time as possible as can. Second, recover all the flows without causing congestion
in other part of the network. Three algorithms re proposed that recover the node
failure, link failure and congestion. These schemes depend on the local recovery
and local reroute that reduce the notification and dissemination time. Due to that,

the service interruption time is reduced and recovery convergence becomes fast.

57

58

A Comparison between the proposed schemes results and OSPF protocol are
conducted.

Chapter 2 presents the proposed schemes. First, link failure recovery
where every node considers primary next hop fail, then it computes a path. This
path does not cause congestion in other links while rerouting traffic in it. Second,
node failure recovery scheme is more critical than link failure because each node
has many links. Similarly to link failure recovery, node failure recovery pre-
computes a feasible path that does not cause congestion in other links. Third,
congestion mitigation scheme tries to reduce the like utilization but may increase
the over all network utilization. To clarify the difference between link utilization
and network utilization, for example, maybe the computed path longer than the
primary path that increase the over all network utilization. On the other hand,
there is a short path and many flows share one or more links in this path, so more
flows take shared link more these link utilized till causing congestion in one or
more links. Finally, the time complexity analysis of schemes is presented.

Complexity time for all algorithms was liner.

In Chapter 3, the simulation and results is presented. Basic components in
ns2 will be explained that re used to implement the schemes. Then, a simulation
was used to show the performance of the proposed schemes. The simulation was
focused on two network factor. Firstly, the link utilization, the results show that
the proposed techniques less link utilization than the OSPF protocol.

Consequently, reduce the probability of congestion occurs. Secondly, throughput

59

is a significant factor in any network. The results show that proposed schemes
throughput per node always better than OSPF. That result from reducing the
service interruption time. However, when network size increases the convergence
time between the proposed schemes and OSPF grows. Therefore, the throughput

grows due to increasing in service time.

4.2 Future Work

This thesis focuses only in a single failure either node or link. Hover, applying the
scheme on double link failure occurs in the same time, it gives similar link
utilization for re-calculated path by OSPF. But what could happen if two flows
have the same backup path. Nodes share this path when they pre-computed their
next hops individually without any co-oration among them. Now, when the failure
occurs each node will reroute the traffic to backup path that will cause congestion
in some links in pre-computed path. Extending the work to solve like this problem
for multiple link/node failure required a lot of work. Furthermore, to keep
cooperation among nodes may cause exchange information overhead in the
network.

Finally, implementing our schemes in Linux kernel to study the exact
performance of the proposed schemes and monitor the changes in the traffic when
failures occur. Implementing these algorithms in kernel will help to design such a
batch file could install it in routers to update their operating system instead of

replacing the route itself.

REFERENCES

[1] I. Chlamtac, A. Ganz, and G. Karmi, “Lightpath communications: an approach to
high bandwidth optical WAN’s,” IEEE Transactions on Communications, Vol.
40, pp. 1171-1182, 1992.

[2] T. Frisanco, “Optimal spare capacity design for various protection switching
methods in ATM networks,” IEEE ICC, pp. 293-298, 1997.

[3] D. K. Hsing, B. C. Cheng, G. Goncu and L. Kant,” A restoration methodology
based on pre-planned source routing in ATM networks,” ICC, pp. 277-182,
1997.

[4] A. Itai and M. Rodeh, “The multi-tree approach to reliability in distributed
networks, Information and Computation,” Vol. 79, pp. 43-59, 1998.

[5] M. M’edard, S. G. Finn and R.A. Barry, "A novel approach to automatic
protection switching using trees,” ICC, pp. 272-276, 1997.

[6] M. M’edard, S. G. Finn and R.A. Barry, “WDM loop-back recovery in mesh
networks,” OFC, pp. 298-299, 1998.

(7] M. M’edard, S. G. Finn, R.A. Barry and R.G. Gallager, “Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant graphs,”
IEEE/ACM Transactions on Networking, Vol. 7, pp. 641-652, 1999.

[8] S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks Part I-
Protection,” IEEE INFOCOM, pp. 744-751, 1999.

[91 S. Ramamurthy and B. Mukherjee, “Survivable WDM mesh networks Part II-
Restoration,” IEEE ICC, pp. 2023-2030, 1999.

[10] G. D. Signorelli, M. Gryseels and P. M. Demeester, “SDH over WDM:
interworking and planning aspects,” Proceedings of the SPIE, Vol. 3408, pp.
235-246, 1998.

[11] N. Wauters, C. Ocakoglu, K. Struyve and F. P. Falcao, “Survivability in a new
pan-European carriers’ carrier network based on WDM and SDH technology:
current implementation and future requirements,” IEEE Communications
Magazine, Vol. 37, No. 8, pp. 63-69, 1999.

[12] T.H. Wu and R. C. Lau, “A class of self-healing ring architectures for SONET

network applications,” IEEE Trans. Communications, Vol. 40, pp. 1746-1756,
Nov. 1992.

60

[13]

[14]

[15]

[16]

[17]

[18]
[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Markopoulou, G. Iannaccone, S. Bhattacharyya, C.-N. Chuah, and C. Diot,
“Characterization of failure in an IP backbone,” in IEEE INFOCOM, Mar.
2004.

A. Leon-Garcia, and I. Widjaja,” Communication Network Fundamental Concepts
and Key Architechtures”, 2nd edition

S. Bellcore, “Automatic Protection Switching for SONET, Issuel,” Oct. 1990.

www.cs.virginia.edu/~mngroup/projects/mpls/documents/thesis, Retrieved Aug.
2, 2007 from the World Wide Web.

ANSI. Fiber Distributed Data Interface (FDDI) { Token Ring Media Access
Control (MAC), ANSI X3.139-1987, 1987.

G. Malkin. IETF RFC 2453: RIP version 2, Nov. 1998.

C. L. Hedrick. IETF RFC 1058: Routing Information Protocol, Jun. 1988.

J. Moy. IETF RFC 2328: OSPF version 2, Apr. 1998.

D. Oran. IETF RFC 1142: OSI IS-IS intra-domain routing protocol, Feb. 1990.

C. Alaettinoglu, V. Jacobson, and H. Yu.”Toward millisecond IGP convergence,”
NANOG 20, Washington, D.C., USA, Oct. 2000.

“IP Fast Reroute Overview and Things we are struggling to solve,”
http://bgp.nu/~dward/IPFRR/IPFRR_overview_NANOG.pdf, Retrieved Aug.
2, 2007 from the World Wide Web.

N. Ansari, G.Cheng, R. N. Krishnan, “Efficient and Reliable Link State
Information Dissemination”,in IEEE communication letters, Vol. 8, No. 5,
May 2004.

T. Korkmaz, M. Krunz, “Hybrid Flooding and Tree-based Broadcasting for
Reliable and Efficient Link-state Dissemination,” Global Telecommunications
Conference. GLOBECOM '02. IEEE, Vol 3, pp. 2400-2404, Nov. 2002.

G. Cheng, N. Ansari, “An Information Theory Based Framework for Optimal
Link State Update”, IEEE COMMUNICATIONS LETTERS, Vol. 8, No. 11,
Nov. 2004.

Y. Jia, I. Nikolaidis, P. Gburzynski, “Alternative Paths vs. Inaccurate Link State
Information in Realistic Network Topologies,” Proc. Int. Symp. Performance
Evaluation of Computer and Telecommunication Systems (SPECTS 2002),
Soc. for Modeling & Simulation International, pp. 162-169, Jul. 2002.

61

[28] Y. Jia, I. Nikolaidis, P. Gburzynski,“Multiple Path Routing in Networks with
Inaccurate Link State Informat ion”, Communications, 2001. ICC 2001. IEEE
International Conference, Vol. 8, pp. 2583-2587, 2001.

[29] G. Cheng, N. Ansari, “Minimizing the Impact of Stale Link State Information on
QoS Routing”, in proceedings IEEE Communications Society subject matter
experts for publication in the [IEEE GLOBECOM 2005.

[30] A. Al-Fuqaha, G. Chaudhry, C. Beard, M. Guizani, I. Habib,“Link-State Update
Policies for All-Optical DWDM Transport Networks”, Communications, 2004
IEEE International Conference on, Vol 3, pp. 1831-1835, Jun. 2004.

[31] M. Shand and S. Bryant, “IP fast reroute framework,” Internet-Draft, Oct. 2005.
[Online]. Awvailable: http://www.ietf.org/internet-drafts/draftietf-rtgwg-ipfrr-
framework-04.txt

[32] A.Iselt, A. Kirstdter, A. Pardigon, and T. Schwabe, “Resilient routing using ecmp
and mpls,” in IEEE High Performance Switching and Routing (HPSR), Apr.
2004.

[33] Cornelis Hoogendoom, Karl Schrodi, Manfred Huber, Christian Winkler and
Joachim Charinski,” Towards Carrier-Grade Next Generation Networks,”
Proceedings of ICCT2003.

[34] S. Lee, Y. Yu, S. Nelakuditi, Z. Zhang, and C.-N. Chuah, “Proactive vs reactive
approaches to failure resilient routing,” in IEEE INFOCOM, Mar. 2004.

[35] Z. Zhong, S. Nelakuditi, Y. Yu, S. Lee, J. Wang, and C.-N. Chuah, Failure
inferencing based fast rerouting for handling transient link and node failures,”
in IEEE Global Internet, Mar. 2005.

[36] A. Atlas, “Basic specification for IP fast-reroute: loopfree alternates,” Internet-
Draft, Feb. 2005.Available:http://www3.ietf.org/proceedings/05Smar/IDs/draft-
ietf-rtgwg-ipfrrspec-base-03.tx

[37] S. Bryant, M. Shand, and S. Previdi, “IP fast reroute using not-via addresses,”
Internet-Draft, Oct. 2005.Available: http://www.ietf.org/internet-drafts/draft-
bryant-shand-ipfrrnotvia- addresses-01.txt

[38] A. Kvalbein et al., “Fast IP network recovery using multiple routing
configurations, in IEEE INFOCOM, Apr. 2006.

[39] “NS2”, Retrieved Aug. 2, 2007 from the World Wide Web:
http://www isi.edu/nsnam/ns/doc/index.html

62

[40] “Breadth First Search,” Retrieved Jun.10, 2007 from the World Wide Web:
http://en.wikipedia.org/wiki/Breadth-first_search

[41] “Random Topology Generator” Retrieved Jun. 20, 2007 from the World Wide
Web: http://www.cs.bu.edu/brite/

63

	Copyright Warning & Restrictions

	Personal Info Statement

	Abstract

	Title Page

	Approval Page

	Biographical Sketch

	Dedication Page

	Acknowledgment

	Table of Contents (1 of 2)
	Table of Contents (2 of 2)

	Chapter 1: Introduction

	Chapter 2: Routing Tree Recovery Algorithm

	Chapter 3: Algorithms Implementation and Simulation Results

	Chapter 4: Conclusion and Future Work

	References

	List of Tables

	List of Figures (1 of 2)
	List of Figures (2 of 2)

