
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

SYNTHESIS AND ANALYSIS OF REACTIVE NANOCOMPOSITES
PREPARED BY ARRESTED REACTIVE MILLING

by
Swati Μ. Umbrajkar

Different types of reactive nanocomposites have been synthesized by Arrested Reactive

Milling (ARM). The technical approach was to increase the interface area available for

heterogeneous reaction between solid fuel and oxidizer components. Using aluminum as

the main fuel and different metal oxides as oxidizers, highly energetic reactive

nanocomposites with different degrees of structural refinement were synthesized.

Specifically, stoichiometric ΑΙ-ΜοΟ3, A1-CuO, and ΑΙ-ΝαΝΟ3 material systems were

studied in detail.

The correlation of heterogeneous exothermic reactions occurring in the

nanocomposite powders upon their heating at low rates and ignition events observed for

the same powders heated rapidly was of interest. Differential scanning calorimetry

(DSC), X-ray diffraction (XRD) and heated filament ignition experiments were used to

quantify the ignition kinetics and related reaction mechanisms. Fuel rich Al-Mo03

nanocomposites were also synthesized using ARM. Optimum composition and milling

parameters were identified for fuel-rich compositions. Analysis of exothermic reactions

in Al-Mo03 system showed that kinetics of such reactions could not be determined by

isoconversion processing and respective activation energies could not be meaningfully

found as functions of reaction progress. Instead, detailed DSC measurements at different

heating rates are required to enable one in developing a multi-step kinetic model to

describe such reactions adequately.
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CHAPTER 1

INTRODUCTION

1.1 Problem Statement

Nanostructured materials are receiving significant attention in the fields ranging from

electronics to metallurgy due to their novel and unique properties. Similarly, reactive

nanocomposites powders exploiting the exothermic nature of thermite reactions [1-3] have

attracted a great deal of interest for their use in ordnance applications. Different types of

reactive nanocomposite have been synthesized, including mixed nanopowders (also

called metastable intermolecular composites, or MICA) [4-9], porous nanocomposite

produced by sol-gel synthesis [9-13], self assembled composites [14], multilayer

nanofoils [ 15-17], and dense nanocomposites powders produced by Arrested Reactive

Milling (ARM) [18-22]. Despite different synthesis techniques and material types, the

common approach was to increase the interface area available for heterogeneous reaction

between solid fuel and oxidizer components. Although different nanocomposite have

been synthesized, the reaction mechanisms between the starting materials are not well

understood. Hence this work focuses on exploring the benefits of nanofabrication and

study of the reaction mechanisms of high energy density materials for their use in

propellants, explosive and pyrotechnics. Specifically, synthesis, characterization and

ignition-combustion performance of highly energetic nanocomposite prepared by ARM

are included in this thesis. A quantitative model describing the reaction mechanism for

energetic nanocomposite was developed. The proposed reaction model in conjunction

with a detailed heat transfer model has been used to establish a relationship between the

reaction mechanism and ignition kinetics.

1
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Using aluminum as the main fuel and different metal oxides as oxidizers, highly

energetic reactive nanocomposite with different degrees of structural refinement have

been synthesized. Specifically Al-Mo03 and Al-CuO material systems are studied in

detail. The correlation of different processes occurring in the composites powders

during heterogeneous exothermic reactions identified in low heating rate experiments and

ignition of the same powders occurring at high heating rates was of interest. Differential

scanning calorimeter (DSC), O-ray diffraction (CORD) and heated filament ignition

experiments were used to quantify the ignition kinetics and related reaction mechanisms.

A brief study on the synthesis and characterization of nitrates based energetic

composites is also included in this thesis. Three metallic powders, including aluminum,

magnesium, and mechanically alloyed Alo.5Μgο.5 were used as fuels to prepare

composites with ΝαΝΟ3 as an oxidizer using ARM.

1.2 Background

Traditional energetic materials such as trinitrotoluene or ΤΝΤ(C 7Η5Ν306),

RDO(C3Η6Ν606), hexanitrobenzene, also known as HΝB(C6Ν6012) comprising an

oxidizer and fuel in a single molecule are characterized by very high, but poorly

controllable reaction rates. Generally, as illustrated in Figure 1.1, each molecule consists

of a combination of "fuel" (C-H) and "oxidizer" (N-O) with the main reaction products

including Η20, C02 and C0. Therefore; the energy output is limited to the heat of C and

H oxidation leading to a relatively low energy density.
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Figure 1.1 Structure of 2, 4, 6 trinitrotoluene (monomolecular energetic material) [23].

An alternative to monomolecular energetic materials is a class of energetic

composites based on metal fuels. Such composites are characterized by increased reaction

enthalpy, low cost and non-toxic combustion by-products [24-28]. Most popular metal

fuels include Al, Mg, Br and B. However, the primary drawback of metal-based energetic

compositions is their relatively low reaction rate. Specifically, ignition for most metals is

rate limited by relatively slow heterogeneous processes, which serve as a kinetic

bottleneck for the bulk reaction rate.

Recently, this problem was addressed by development of metal-based

nanomaterials, including nano-sized and nanostructured powders. The basic approach is

to increase the specific surface area available for heterogeneous reaction and thus boost

the overall reaction rate. Two types of novel reactive nanomaterials based on metal fuels

were recently developed at NJIT. These enhanced metal-based fuels can be categorized

into supersaturated solid solutions and composite nanomaterials. Supersaturated solid
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solutions of metal based systems like Al-Mg, Al-Ti, Al-Li, Al-Br, ΑΙ-MgΗ2, B-Mg, etc

have been studied in detail elsewhere [24-28]. Composite nanomaterials can be further

categorized into metal-metalloid composites [ 17, 28-29] and metal-metal oxide

composites [1-8, 10-12]. This study focuses on the metal - metal oxide nanocomposites

using aluminum as a fuel. These include most popular formulations described in the

literature dealing with energetic materials [3-16, 18-22 and 30] e.g, ΑΙ-Fe203, Al-Cu0,

ΑΙ-ΜοΟ3, ΑΙ-ΚΜn04 etc. For all of the above compositions; large negative heat of

formation of Α1203 [ 1-16, 18 - 22] results in highly exothermic termite reaction.

1.3 Termite Compositions

Based on the size of the fuel and oxidizer the thermites can be categorized into traditional

thermites and nanothermites. Micron sized reactants are used in traditional thermites [ 1-

3, 31] whereas use of nano-sized fuel and oxidizer particles or domains are used to

produce nanothermite in recent research [4-16, 18-22]. Traditional thermites are

prepared by conventional mixing component powders such as ferric oxide and aluminum

[1-3]. In conventional mixing, domains rich in either fuel or oxidizer can exist which

limit the mass transport and therefore decrease the efficiency of reaction [ 10]. Novel

mixing techniques have also been developed (discussed in Section 1.3.1). Based on their

synthesis techniques, nanothermite can be broken down in two main categories; bottom

up and top down techniques. `Bottom up' techniques use atoms and molecules as nano

material building blocks. In the `top down' approach the nanomaterials are produced as a

result of refinement of the initial component present as bulk domains or relatively coarse

powders. Figure 1.2 shows a broad classification of nanothermites preparation techniques.



Figure 1.2 Classification of nanothermites based on their synthesis techniques.

1.3.1 Nanothermites Prepared by Bottom up Approach

These thermites involve the use of manometer sized reactants [4-16, 18-22]. Both the

nano-sized aluminum and the nano-sized metal oxides can be synthesized in situ or can

be purchased from commercial supplier [8-14, 31-36]. Based on their synthesis

techniques, nanothermites prepared by bottom up approach are categorized into:

1.3.1.1 Techniques using nano-A1 powders.

A detailed study on the potential usage of energetic nano-sized powders for combustion

and rocket propellants lists the suppliers of various nano-sized energetic materials [34].

The availability of nano-sized Al powders is critically important for these techniques.

Therefore following are brief descriptions of two of the main nano aluminum article-

syntheses processes.
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Generation of nano aluminum powder through wire explosion.

Earlier researchers have worked on synthesis and characterization of nanoaluminum

powders via wire explosion [31-32]. A recent work based on the same process indicates

that this is basically an inert gas evaporation technique, where the particles are produced

by evaporating a thin metal conductor by passing high current through it in an inert

atmosphere [33]. The nano aluminum particles were produced in nitrogen, argon and

helium environments. A basic circuit used for exploding wires to produces nano powders

is shown in Figure 1.3.

Figure 1.3 Experimental set up for production of nano aluminum particles by wire-
explosion technique [33].

The major factor determining the particle size in the wire explosion process is

superheating of evaporated material. The particle size produced by the wire explosion

reduces substantially with increasing super heating of the metal. The nano particle

formation process starts with closing of the switch S, when the voltage appears across the

wire and the current rises. This causes Joule heating of the conductor, which eventually

melts and boils. The switch is a high voltage trigatron gap, R is the exploding aluminum

wire resistance and L is the contribution by the internal inductance of the capacitor and

the lead inductance. Due to Joule heating, the temperature of the conductor followed by

melting and eventually reaching the boiling point and superheating, before the liquid
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phase changes to gas phase. After wire evaporation, the plasma begins to expand in the

medium due to the significant difference in the temperature between the plasma and the

ambient gas. The expanded plasma particles are gradually cooled during this process of

collision with ambient gas molecules. Finally, the plasma loses its expansive driving

force. Hence, a lower ambient pressure allows a larger expansion volume. This leads to

lower concentration of aluminum during particle growth, resulting in small Kano-

articles.

Synthesis of aluminum nano particles with femtosecond laser pulses

Aluminum nano particles have been synthesized by irradiation of solid Al targets with

femtosecond laser pulses [35]. Figure 1.4 shows schematics of the experimental setup and

conditions of this process.

Figure 1.4 Schematics of the experimental setup and conditions [35].

This process involves a Ti:sapphire laser beam, with 50 fs pulse duration, 0.8 Om

wavelength and a diameter of few millimeters which irradiates a target. The spatial laser

intensity profile is Gaussian to a good approximation. The target is a 100 Om thick Al foil

on a transparent heat-insulating Ca-F2 glass substrate. The pressure in the vacuum

chamber is i0-4 Torn The laser irradiates the target at an angle of 45° and intensities

varying between 3e 12 W/cm2 and 5e 14 W/cm2 . The heated plasma expands into the
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vacuum from the Al target, whereas the debris are collected on a silicon wafer. In

general, both the size and shape of the deposited particles are observed to be widely

distributed the former ranging from tens of manometers to as high as approximately 500

rim. Extensive work has also been conducted on the production of nanoscale aluminum

powders known as Ultra Fine Grain (MFG) aluminum. The dynamic gas condensation

method was used to produce MFG aluminum as described elsewhere [36]. The average

particle size of MFG aluminum was approximately 35 manometers [36]. Nanothermites

synthesized by using nano-Al powders can be further divided into the following

categories:

1.3.1.1. a. Nanocomposites Prepared by Mixing (ultrasoiiicatioii): Metastable

Intermolecular Composites or MICA is a class of energetic materials composed of

individual fuel and oxidizer particles that have nanoscale dimensions [4-9].

Oxidizer

Figure 1.5 Structure of MIC [5].

A typical structure of MIC is shown in Figure 1.5. Arrays of composites have been

prepared and studied by several researchers using aluminum and different metalloids

[4-9]. The powder mixture is typically suspended in hexane solution and mechanically

mixed using sonic waves. The sanitation process helps break up macro-scale
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agglomerates and ensure better mixing of fuel and oxidizer. The mixture is poured in a

pan and heated to a few degrees above ambient, allowing the solvent to evaporate [4-6].

Advantages: MICA exhibit reduced ignition temperatures and high bulk burn rate as

compared to micron sized composites [4-9].

Disadvantages: The mechanical mixing renders a rather unstructured nature to the

composites. This causes a large and almost uncontrollable variability in the combustion

behavior [9]. MI5's are spark and friction sensitive, hence very small quantities of

samples are synthesized and handled [5]. Nano-Al powders used are pyrophoric in air;

hence handling of these powders is difficult. In order to passionate the pyrophoric

aluminum, a thin aluminum oxide coating surrounds the Al core. However, even a few

manometer thick coating of oxide results in a significant volumetric fraction of inert

aluminum oxide [5, 7].

1.3.1.1. b. nanocomposite Prepared by Sol-Gel Processing: In a sol-gel derived

composites, fuel commonly resides within the pores of a solid matrix made up of the

oxidizer particles as shown in Figure 1.6 [10-12].  The preparation of such composites

starts with dissolution of molecular precursors of oxidizer which undergo hydrolysis and

condensation to form a stable soil (suspension of particles 1-1000 urn in diameter in

solution) [9-12]. This process is initiated by changing pH, temperature, or ionic strength

of the solution, or through addition of a catalyst or gelling agent. The soil can be further

linked through condensation of surface groups on the particle surfaces to form a gel. The

gel is a rigid three-dimensional structure that has nanostructured framework and pores

with dimensions of 2-100 Om. The final step of removing the pore fluid from the wet gels
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is accomplished by either evaporation to produce a xerogel or by supercritical extraction

to yield an aerogel [4-5, 9] .

Figure 1.6 Structure of a sol-gel based thermite formulation [9].

Advantages: 

Attractive features of the sol-gel approach for energetic material processing are that it

produces composites with extremely well dispersed and intimately mixed component

phases [4]. Laboratory equipment is inexpensive.

Disadvantages: The sol-gel prepared aerogel and aerogel oxidizers contain impurities that

act as heat sinks during flame propagation and retard the combustion wave speed [9]. In

order to remove impurities, the oxidizers need to be subjected to heat treatment, which

increases the complexity of the process [9]. 5ompatibility of sol-gel processing with

different materials is limited. Mse of nano-sized reactants makes handling of these

powders difficult. Nano-sized aluminum results in reduced active metal content as in the

mixed nanocomposites.
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1.3.1.1. c. Self Assembled Nanoeiiergetic Composite

In this category of composites, researchers have chosen oxidizer nanorods over spherical

nanoparticles because of higher surface area available for arrangement of fuel

nanoparticles around them [14].

Figure 1.7 Schematic of synthesis and structure of a self-assembly energetic
composite [14].

Polymer is used as a binder because each polymer molecule generally has numerous

binding sites to bind the nanoparticles. Α schematic of the synthesis process along with

the structure of a self-assembly composite is shown in Figure 1.7. The self-assembled of

Nanoeiiergetic composites begins with the synthesis of nanorods. Copper oxide nanorods

were synthesized by surfactant templating method. This is followed by sanitation of the

nanorods in a solution containing the polymer of choice for 4 hers, followed by separation

of the nanorods from the solution by a centrifuge. The nanorods are further washed to

remove excess polymer. These nanorods are dried at 120 °C for 1.5 hers to remove the

solution. The polymer-coated nanorods are then mixed with nano-Al particles with 2-

propanol as the dispersing medium. The particles are separated by centrifugation and

dried to produce self-assembly nanocomposites [14].

Advantages: 0xidizer nanorods provide more surface area available for arrangement of

fuels nanoparticles. The burn rate of self-assembly composite has been found to be

higher than that of the similar nanocomposites prepared by simple mixing [14].
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Disadvantages: Synthesis of nanorods is a lengthy and complicated process. 0nly small

quantities of nanorods and hence self-assembled nanocomposites can be prepared in each

batch [14].

1.3.1.2 Techniques using Deposition of Material.

Reactive Multilayer Nanofoils

Instead of combining the reactants in powder compacts, sputter deposited alternate layers

of reacting materials were produced to form highly reactive nanofoils [15-17]. Self

propagating exothermic formation reaction in nanofoils makes them an ideal candidate

for various joining applications. Such materials are also well suited for applications

requiring high density energetic components. Highly structured nanofoils are prepared in

argon environment by deposition of reactants onto a substrate (silicon wafer) by rotating

them above metal (Al) and oxidizer (Cu0) targets respectively [15-16].

Figure 1.8 restructure of reactive nanofoils, b. Schematic diagram of reactive multilayer
foils used for joining two components [15-17].
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Magnetron gun sputtering is used to deposit alternate layers of fuel and oxidizer

as shown in Figure 1.8a. The thickness of the deposited film can be controlled so that the

amount and diffusion distance between reactants can be tailored to optimize the

combustion process. Generally, thickness of each layer of thermite based nanofoils is

approximately on the order of 1 Am or less and the total foil thickness is approximately

14 um [ 15], while the reactive metal based nanofoils have thickness of each belayed on

the order of 25 — 90 Om with a total thickness of the foils ranging from 16 um to 158 um.

Researchers have studied in detail the synthesis and reaction mechanism of multilayer

nanofoils prepared by alternate layers of Al and Cub [15-16].

Advantages: Greater uniformity between reactants is achieved. Sputter deposition of

starting materials allows highly dense structure of the foils possessing relatively low

porosity. A high degree of control over the scale of individual layers is possible during

the synthesis.

Disadvantages: The procedure can be time-consuming, expensive and only small

amounts of material can be synthesized at a single time [9]. Material selection is also a

challenge because sputter deposition of highly reactive materials is difficult [15-17].

Deposition of materials on the substrate occurs at elevated temperatures which results in

a partial reaction of the starting materials; e.g. formation of Cu403 due to partial

reduction of Cub by Al [15, 16].
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1.3.2 Nanothermites Prepared by Top Down Approach

These termites involve the use of micron sized constituent that are refined mechanically

to achieve mixing on a nanoscale [18-22] e.g., nanocomposite prepared by ARM.

Arrested Reactive Milling

Arrested Reactive Milling or ARM is a technique based on high energy mechanical

milling of starting components. This preparation technique enables fine mixing and

produces highly developed reactive interfaces between the components, which result in

enhanced reaction rates. ARM is a modification of reactive milling [37, 38], in which a

blend of powders capable of an exothermic reaction is ball-milled. If the reaction

enthalpy is sufficiently high, a self-sustained reaction is triggered mechanically after a

certain milling time. The products are no longer reactive. In ARM, highly reactive

nanocomposite powders are formed as a result of arresting (or stopping) the milling

process prior to the initiation of the self-sustained reaction. A wide range of materials

has been synthesized as shown in Table 1.1.

The materials shown in Table 1.1 were synthesized on a laboratory scale using a

SPEX 8000 series shaker mill with a typical batch size ranging from 5 to 10 g, and a

Retsch 400 planetary mill with a batch size of up to 100 g per milling vial. Industrial

scale production using ARM is possible using mills with a higher capacity, such as

attrition mills. Researchers have presented a detailed review of various types of mills used

for mechanochemical synthesis as well as mechanical alloying [37, 38].

The ARM process can be readily scaled up using a process model formulated

using a discrete element modeling (DEEM) code [39]. The milling progress for a range of



parameters can be expressed by a quantity called milling dose, which is proportional to

the product of the milling time and the charge ratio (or ball mass to powder mass ratio).

The DEEM numerical scheme (based on a soft sphere interaction model) was used to

simulate the milling process in a APEX Shaker Mill. A sharp temperature increase

observed during reactive milling of powders capable of highly exothermic reactions was

used in parallel experiments as an indicator of the milling progress. The time of this sharp

increase thus determines the time when milling should be interrupted for actual

nanocomposite synthesis. Correlating measurements and predictions of the DEM-based

model for this time, projection to different milling conditions is possible.

Advantages: Fine mixing of reactants is achieved on a nanoscale. Each nanocomposite

particle is of several dimensions on the scale of 1-100 Om, as a result handling of

powders is simple. These materials can be compared to the nanocomposite produced

by mixing nanopowders of aluminum and metal oxides. Aluminum nanopowders used

for those materials are produced by one of the vapor condensation techniques and require



passivation. The passivation aluminum nanoparticles have at least a 2 — 4 Om oxide layer

[40, 41] resulting in dramatic decrease of the active fuel content. On the other hand,

passivation of micron sized nanocomposite powders produced by ARM affects only their

external surface. Therefore bulk of the reactive interface area existing between

aluminum and another component within such particles remains intact. ARM is less

expensive and can be easily scaled up for higher production demands. Wide array of

material systems can be used to prepare reactive nanocomposites.

Disadvantages: Extended milling time results in a localized partial reaction. As a result

complete heat of reaction between the constituents cannot be exploited. The milling

media as well as products of partial reaction introduce impurities in the products [22-23].

Some of the ARM-prepared nanocomposite are sensitive to electrostatic discharge and

require additional protective coatings for safe handling.

Figure 1.9 SEAM image of B-Ti nanocomposite particle synthesized by ARM. Titanium
matrix is light. Embedded dark nano-sized particles are boron.



CHAPTER 2

SYNTHESIS OF Al-Mo03 NANOCOMPOSITES BY ARRESTED REACTIVE
MILLING

2.1 Introduction

Termite reactions that use aluminum as the reducing agent, also called aluminothermic

reactions, are highly exothermic [2]. Once initiated these reactions become self-

sustaining. Due to high reaction enthalpy of the ΑΙ+Mob3 system, the combustion

characteristics of this formulation have been studied previously [7, 8]. Both studies were

conducted on composites formulated using nano-aluminum, which is usually passivated

with an oxide layer. This layer is generally 2 to 3 nm thick, reducing the available energy.

Further, those formulations could only be consolidated to 38 % of the theoretical

maximum density (TAD). In order to overcome the disadvantages of using Kano-

aluminium and to achieve near TAD, in this work, Al-Mob3 nanocomposites were

synthesized using ARM [18-22], a technique derived from reactive milling [37, 38]. As

explained in Chapter 1, the reactants are ball-milled, and the milling is interrupted before

a spontaneous reaction is mechanically triggered. Extended milling results in the

synthesis of composite particles with a highly refined structure. The milling time at which

the reaction is mechanically triggered effectively sets a limit to the achievable degree of

refinement. However, the refinement can be influenced by the specific milling parameters

chosen, such as mass of powder, mass of the milling media, ratio of sample to milling

media and the use of process control agents. This work focuses on finding optimized

milling conditions for manufacturing Al-Mob3 powders by ARM. The scientific goal of

17
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this work is to establish a correlation between the milling parameters and structure,

properties, and performance of the nanocomposites.

2.2 Experimental

A shaker mill (8000 series by Apex CertiPrep) was employed in this research. Flat-ended

steel vials were used along with milling media of 5 mm diameter. Milling balls made of

alumina (Α12O3), Birconia (ΖΤb2), steel, and tungsten carbide (WC) were used. Figure 2.1

shows an image of the different milling balls. Alumina and tungsten carbide balls had

broad equatorial bands. The number of milling balls was selected to be 55 pHs, to achieve

the ball to powder mass ratio (BPR) of 5 for steel balls. This BPR was selected based on

earlier experiments [39]. In experiments with other milling media, the number of milling

balls remained constant, so that the ball to powder mass ratio (BPR) varied from 3 to 9 as

a function of the density of milling media as listed in Table 2.1. Starting blends were

prepared in the stoichiometric proportion (2Α1 + ΜοΟ3) from powders of elemental

aluminum (99% pure, -325 mesh by Atlantic Equipment Engineers) and molybdenum

trioxide MoO3 (99.95% pure, by Alfa Cesar). Figure 2.2 shows a backscattered electron

SEAM image of a cross-section of blended particles embedded into epoxy.

Table 2.1 Milling Parameters used for the Synthesis of Al-MoO3 Nanocomposites

Milling Media Density BPR Milling Time [min]

[g/cm3 ] Dry milled lml of hexane	 8m1 of hexane

Alumina 4.0 3.0 1.5 90* 60*
Zirconia 5.8 4.5 0.5 24 60*

Steel 7.8 5.0 2.0 19 60*

Tungsten Carbide 15.7 9.3 1.5 7.5 60*

* Νο reaction



Figure 2.1 Milling media used in the synthesis of the Αl-Μο03 nanocomposites; a.
tungsten carbide, b. Steel, c. Zirconium and d.Alumina.

r figure G.ιΡ tsacκscaιιereu electron SEM  image of 111C iiiiimi UnGi1U U1 ιιmιGllί61. 1 ι1G LULL&

background represents epoxy, the bright particles are MoO3 and gray particles are
aluminum.
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Synthesis of the A1-MoO3 nanocomposites was carried out in argon. Α specific

amount of hexane (C6Η 1 4) was added as process control agent (PICA) to inhibit cold-

welding and partial reaction during milling (see Table 2.1). The process temperature was

monitored using a thermistor attached to the side of the milling vial and connected to a

digital data logger. The instant of reaction was marked by a sharp rise in the vial

temperature [18-22]. Reactive nanocomposites were prepared by arresting the milling

before the reaction was triggered. The milling times required to initiate the reaction

varied with the milling media and the amount of PICA used. For certain conditions the

reaction was never triggered, therefore the milling was stopped after specific durations of

90 and 60 min (see Table 2.1 for details). Each batch was prepared with a powder mass

οf 5 g.

2.3 Sample Characterization

Morphology and composition of the nartocomposites were examined on a LEO 1530

Field Emission Scanning Electron Microscope (SEAM) operated at 10 kV. The samples

were embedded in epoxy and cross-section. The phase composition was determined for

each sample by x-ray diffraction (XRD). The ORD was performed on a Phillips X'pert

MAD powder diffraction operated at 45 kV and 40 me using Cu Κα radiation (λ =

1.5438 Α). Temperature-dependent structural transformations were determined by

differential scanning calorimeter (DSC) using a Netzsch Simultaneous Thermal AnalyBer

SΤΑ409 PC. Alumina pans were used and the furnace was flushed with argon at

approximately 10 mlimin. DSC traces were recorded between room temperature and

1013 K with heating rates varying from 5 to 20 K/min. The temperature is accurate
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within ±1 K. The DSC measurements were performed in Ad in order to observe the effect

of thermite reactions on powder ignition. The effect of ambient oxidizer (air) for the

ignition experiments was negligible as discussed below.

2.3.1 Ignition Set Up

Preliminary ignition experiments with thermite powders were performed in both argon

and room air environments [21]. No effect of gas environments on the ignition kinetics

was detected. Therefore, in the research presented in this chapter, the powders were

ignited in air only on the surface of an electrically heated metal filament. A simplified

diagram of the experimental setup is shown in Figure 2.3. Further experimental details

have been described elsewhere [24, 27]. A 0.5 mm diameter Nicbrome wire mounted in a

controlled environment chamber was used as a filament. The total length of the heated

filament was 4.5 cm; however the length of the powder coated portion was approximately

1 cm. Α small amount of powder was mixed with hexane and a thin layer of the slurry

was deposited on the filament surface using a soft paintbrush. The coating was

completely dried before the filament was electrically heated. To observe ignition, a

silicon photodiode (DET110 by Thorlabs, Inc.) was focused on the powder coating. The

temperature history of the heated filament was measured using a high-speed infrared

pyrometer (DP1581 by Omega Engineering, Inc.). The pyrometer was focused on the

uncoated surface of the filament adjacent to the powder coating. Thus, the temperature of

the heated powder was not measured directly, but inferred from the measured filament

temperature [42]. A constant value of the filament emissivity, ε=0.75, which is the

average emissivity for Nicbrome in the temperature range of 770 -1270 K [43], was used
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ms. At that time, the pyrometer output is within the calibrated temperature range and

thus, the ignition temperature is measured directly. For the other sample, the trace

labeled 8 ml, the ignition is observed at about 1250 ms and at a temperature that is too

low to measure directly from the pyrometer trace. Therefore, for such experiments the

ignition temperature was evaluated using a numerical transient model of the filament

heating. The model considered the temperature-dependent resistance of the filament,

convective heat losses, electric voltage applied, and constant temperature boundary

conditions for the filament ends clamped to the massive electrodes. The predicted

temperature history of the filament essentially coincided with the experimental data for

the range where the temperature measurements were calibrated. Thus, the calculated

temperatures corresponding to the lower-temperature portion of the filament heating

history could be used to evaluate the ignition temperature as illustrated in Figure 2.4.

Figure 2.4 Photodiode and temperature traces recorded during ignition experiments of
different Al-Mo0 3 nanocomposite.
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2.4 Results And Discussion

2.4.1 SEAM Analysis

Overviews of cross-section samples of the materials prepared under different

conditions are shown in Figure 2.5. The sample arrested after 1.5 min and milled with

the lowest density milling balls (Α12O3) appears to be very similar to the starting powder

with little difference in the size, shape, or morphology of the aluminum and molybdenum

oxide powders. On the contrary, the sample milled for the same time using the highest

density milling balls (WC) consists of very large composite particles, in which Al and

Μο03 layers are sandwiched together. In every case, the reaction was initiated

mechanically well before the components were intimately mixed together. Adding PCA

allows one to extend the milling time in both cases, resulting in reduced particle sizes and

formation of nanocomposites. The mixing appears to be more uniform for both Α12O3

and WC milling media. A self-sustaining reaction was never initiated for samples milled

with the high-density balls and the milling was therefore interrupted after an extended

period of time (90 min). The sample contains a large number of fine particles of

individual components. Such particles are not observed in the sample produced with the

high-density balls and arrested before the reaction initiation (~ 7.5 min). The level of

refinement in the composite particles produced with WC balls varies widely from particle

to particle. A better comparison of the powders produced with different milling media

can be made from the high-magnification images in Figure 2.6 showing cross-section

samples milled for 60 minutes and with 8 ml of PICA using all four types of milling balls.

For all cases, the mixing of reactive components is achieved on a scale of about 100 Om.

The overall scale of mixing seems to be coarsest for the sample prepared with Α12O3



milling balls. The difference in the scale of mixing between other samples is hard to

assess from the images. The bright particles identified by energy-dispersive x-ray

spectroscopy as Mob and appropriately labeled in the image of a sample prepared with the

WC balls indicate that undesirable reaction between the components producing Mob and

A1203 started, but was not self-sustained during milling.

Figure 2.5 Backscattered electron SEAM images of the cross-section 2Α1+Μo03
composites prepared under different milling conditions.



Figure 2.6 High magnification backscattered electron SEAM images of the cross-section
samples milled for 60 min with 8m1 of hexane using different milling media.

2.4.2 XRD Analysis

XRD patterns of nanocomposites synthesized using different milling media are shown in

Figure 2.7. In addition to Al and MoO3 peaks, the peaks of ΜοΟ3Η0.5 were observed for

samples milled with alumina and Zzirconia. With increased milling times, peaks

corresponding to Mob, MoΟ2, and Α1203 appear, indicating the beginning of

decomposition of MoO 3 and oxidation of Al. Some ORD patterns show an abnormal

intensity distribution of the MoO 3 peaks due to preferred orientation [44]. Strong peaks

corresponding to tungsten carbide, iron and alumina were observed for samples milled

with the respective milling media. Contamination from the milling media was especially
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high in the cases of alumina and tungsten carbide, likely because they were not entirely

spherical, as shown in Figure 2.1.
8m1

Figure 2.7 ORD patterns of the initial blend and the samples milled with different
milling media for a milling time of 60 min.

The average crystallite size of each sample was estimated by whole pattern

refinement of the RD patterns using the GAS software (Generalized Structural

Analysis System) [45]. The parameter describing the Lorentzian peak width was used to

estimate the crystallite size. Figure 2.8 shows the change in the crystallite size for both

Al and M003 as a function of density of the milling media for the samples milled for 60

min using 8 ml of hexane as PICA. The error bars shown in Figure 2.8 represent the

standard deviation resulting from the least squares fitting procedure. Specifically, they
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do not relate in any way to the true size distribution of crystallites with realistic shapes. It

is estimated that the actual variance of the average crystallite size is on the order of 10 %.

Consistent decrease in the crystallite sizes with increase in the milling time was

observed for all samples. It appears that the variation of the crystallite size of M003 is

greater than that of Al. For both, the observed crystallite size levels out at higher ball

densities.

Density of grinding media, g/cm 3

Figure 2.8 Change in the crystallite size of the Al and MoO3 as a function of the density
of the milling media for the samples milled for 60 min.

CORD patterns were also compared to evaluate the degree to which MoO 3 was

reduced as a function of the milling media density. The average oxidation state of Mob

was calculated based on the overall material composition obtained from the CORD pattern

refinement. The change of that oxidation state, compared to the fully oxidized state of
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Mo03 as 0% and metallic Mob as 100%, is shown in Figure 2.9 as a function of the

milling media density. This is discussed in further detail in the following section.

Figure 2.9 Change in the average oxidation state of Mob as a function of density of the
milling media for the samples milled for 60 min.

The error bars in Figure 2.9 reflect the uncertainty of the least squares refinement

procedure. The results show that some partial reaction occurs at any milling condition.

The extent of the Mo03  reduction occurring during milling is affected by the milling

media density. Milling with higher density media at otherwise constant milling

parameters reduces Mo03 more strongly. This conclusion is consistent with the SEAM

observations (see Figures. 2.5 and 2.6) showing noticeable presence of metallic Mob in the

samples milled with WC balls.



2.4.3 Thermal Analysis
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Figure 2.10 DSC traces of the samples milled with 8ml of hexane (60 min) using
different milling media.

A set of baseline corrected DSC traces recorded at a heating rate of 10 K!min for

the samples milled with 8 ml of hexane for 60 min is shown in Figure 2.10. The strongest

exothermic events are observed to occur for all samples between 600 and 900 K. In

general, the intensity of exothermic events is higher for the samples milled with steel and

Zzirconia balls. Aluminum melting (endothermic peak) is observed around 935 K. The

magnitude of the melting peak can not be usefully measured, however. As the estimate

of the crystallite size above indicates, milling results in nanometer-sized Al crystallites

which may melt over a wide temperature range, and below the bulk melting temperature

[46]. This range overlaps with the exothermic effects and is difficult to delimit. The
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lower intensity of exothermic peaks of the sample milled with WC balls, for which the

crystallite sizes of both Al and Mo03 are the smallest (see Figure 2.8) can be explained

by a more significant Mo03 reduction during the milling. Mob, and layers of MoO2 and

A1203 formed during milling, separate the remaining finely divided Al and Mo03 slowing

down the reaction.

As noted above, the CORD patterns of the samples after the entire heating cycle in

the DSC show the presence of MoO 2 along with A1203. This suggests that over the

heating cycle only partial reduction occurred. For comparison purposes, the DSC results

were therefore evaluated in terms of the following reaction:

Mo03 + 2 Al= MoO2 + 1 /3 (A1203) +4/3 Al + 2027.5 JIg [47] (2.1)

The DSC traces were integrated, and the results were compared to the theoretical energy

release of Reaction (2.1). This gave an estimate for the progress of the reaction:

where ΔΗ(T) is the exothermic heat release from the DSC curves integrated up to the

temperature T and Preference  is 2027.5 JIg [47] (see Reaction 2.1). At the same time, the

progress of Reaction (2.1) was estimated from the quantitative CORD phase analysis based

on the average oxidation state v of Mob in the sample.

where v denotes the oxidation state, and x the molar fraction of Mo-bearing phase i. The

average oxidation state of Mob in the uiireacted material is 6, while Mob in the completely

reacted material has an average oxidation state of 0. In the products of Reaction (2.1),
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Mob has an average oxidation state of 4. Considering only Reaction (2.1), the reaction

progress can be expressed as

The value calculated from EV. (2.4) should be directly comparable to the value calculated

from EV. (2.2). If ξXRD is the degree to which the material has converted to the products

of Reaction (2.1), then 1—ξ χRD measures the extent to which Reaction (2.1) can still

proceed. Thus, a comparison can be made between 1—ξ χRD(Το) for as-milled samples (or

the samples at room temperature Τ0=293 K) and ξDSC(Tmαx) determined by heating these

samples in the DSC to the maximum experimental temperature Tmax = 1013 K. Table 2.2

and Figure 2.11 show the results as a function of density of the milling media. The

correlation between the values of the reaction progress determined from two independent

sources is reasonable, especially considering the uncertainty of integrating the DSC over

a wide temperature interval, where the assessment of a reliable baseline is problematic.

Table 2.2 Comparison of Reaction Progress by DSC and by Quantitative Phase Analysis
of as-milled Material



Figure 2.11 Comparison of enthalpy values determined by DSC and degree of reaction
estimated from Vuantitative phase analysis.

For the material milled with steel media, samples were recovered from the DSC

runs at intermediate temperatures. Therefore, it was now possible to compare reaction

progress determined from the Vuantitative phase analysis of these samples, to partial

integrals of the corresponding DSC trace at the same temperatures that the samples were

recovered from. Since the results of the Vuantitative phase analysis show that the as-

milled material is already partially reacted (see Table 2.2), the reaction progress ξDsc(T)

(EVE. 2.2) was corrected by the fraction of reactive material in the milled sample

where the subscript 0 refers to the milled material. Similarly, the reaction progress a

intermediate temperatures as determined from Vuantitative CORD phase analysis was

scaled to account for the fraction of the milled material that had already reacted:



The values for ξ'Dsc(T) and ξ'XRD(T) are shown in Table 2.3 and Figure 2.12. An obvious

contradiction is the apparent increase of the reaction progress above 100 % as determined

by Eq. (2.5). Aside from the fact that the DSC integration is tentative, this likely

indicates that the reaction may have progressed further than suggested by Reaction (2.1).

This may not be reflected accurately in the Vuantitative phase analysis. The average

oxidation state of Mob in the sample (Eq. 2.3) is strongly influenced by the presence of

metallic Mob. As only 2 XXRD reflections of Mo are observed in the XRD patterns, and

overlap with other peaks is strong, small errors in the Vuantification of this phase will

have strong effects on the apparent reaction progress. In summary, both values of the

reaction progress as derived from XRD and DSC up to 753 K agree reasonably well with

each other.

Table 2.3 Relative Reaction Progress by of Samples Recovered from Intermediate
Temperatures.
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Figure 2.12 Comparison of relative reaction progress in partially heated samples as
determined by quantitative phase analysis and DSC.

2.4.4 Ignition

Figure 2.13 shows the results of the ignition experiments performed in air for the Al-

M003 nanocomposites synthesized using different milling media. The filled symbols

indicate the ignition data of the samples milled with 8 ml of hexane, the open symbols

represent the samples milled with 1 ml of hexane and the shaded symbols indicate dry

milled samples. Ignition was not observed for the sample milled with tungsten carbide

balls and 8 ml of hexane, at medium and low heating rates, and for dry milled samples

using alumina and tungsten carbide balls at all heating rates. Figure 2.13 shows that softer

milling with larger amounts of hexane and respectively extended milling time generally

results in higher degree of structural refinement, and hence in a decrease of the ignition

temperature. At the same time, despite longer milling time (90 min vs 60 min) the



ignition temperature of the sample milled with alumina and 1 ml of hexane is higher as

compared to all samples milled with 8 ml of hexane.

Figure 2.13 Ignition temperatures of different Al-Mo03 nanocomposites as a function of
heating rate.

Of all samples milled with 8 ml of hexane, ignition temperatures are the lowest

for the materials prepared using steel milling media. This effect of density of milling

media is consistent with the results of the thermal analysis for these samples. Powders

with optimum degrees of structural refinement result in higher intensities of exothermic

events coupled with lower ignition temperatures, whereas higher ignition temperatures

can be attributed to either lower degrees of structural refinement coupled with lower

intensities of exothermic events during thermal analysis, or to a higher degree of Mob

reduction during the milling process. The products of partial reaction further participate

in the milling process thereby increasing the diffusion distance between the starting
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materials. In both cases the reaction rate in DSC as well as in ignition experiments is

impeded.

2.5 Conclusions

Stoichiometric 2A1 + Mo03 powders with increasing degrees of structural refinement

were synthesized by increasing the milling intensity using milling media with

consistently increased densities and by varying the amounts of the liquid PICA. An

increase in the milling intensity also results in an increased rate of undesired partial

reaction between the starting materials. Milling media with densities in the range of 5 to 8

g/cm3 result in the highest structural refinement accompanied by the lowest degree of

partial reaction. Powders produced with such milling media are most reactive as indicated

by the lowest amounts of unoxidized aluminum remaining upon their slow heating to 935

K. The highest reactivity of these powders is also supported by the observed strongest

exothermic feature in the DSC traces. Filament ignition tests showed that the same

sample powders have the lowest ignition temperatures as compared to other powders with

the same bulk compositions. Steel milling media are recommended for the optimized

milling conditions required for manufacturing of reactive Al-Mo03 nanocomposite

powders by ARM.



CHAPTER 3

KINETIC ANALYSIS OF TERMITE REACTIONS IN Al-MoO3
NANOCOMPOSITE

3.1 Introduction

Nanometer-scaled metallic energetic materials have gained relevance in recent years due

to their potentially very high reaction rates [4-18] . In order to use these materials in

propellants, explosives or pyrotechnics, their reaction behavior must be known at the

operating conditions of a specific application. Combustion applications are generally

characterized by high heating rates in the range 10 3-106 K/s. Reactions at low

temperatures under static conditions are relevant for storage and aging of these materials.

Experimental investigations of reaction mechanisms in nanometer-scaled thermites are

generally conducted by thermal analysis, and are therefore limited to low heating rates in

the relatively narrow range of 0.01 — 1 K/s. The phenomena observed by thermal

analysis frequently indicate several concurrent exothermic and endothermic processes

that are difficult to separate, and therefore difficult to project to slower or faster heating

regimes [48]. While separate experiments in fast heating regimes, as relevant for ignition

and combustion processes result in descriptive parameters useful for applications in the

range of heating rates covered, the data are difficult to reduce to obtain conclusive

evidence for specific reaction mechanisms [49]. The present study uses both thermal

analysis and high heating rate ignition experiments to quantify the ignition kinetics and

identify the related reaction mechanism. Stoichiometric Al-M00 3 nanocomposite

powders are selected for this initial investigation.

38
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nanocomposites thermite powders with balanced 2A1+Μο0 3 composition were prepared

by arrested reactive milling as described in Chapter 2 [22] . The synthesis of reactive

nanocomposite by mechanical milling has been documented for a number of termite

systems as well as materials with highly exothermic formation of intermetallic phases

[18]. The specific material for this study was prepared by milling of the component

powders in 50-ml steel vials using a APEX 8000D shaker mill. Steel balls of 5 mm

diameter were used as milling media, the charge ratio was 5. Milling for 60 minutes was

carried out with 8 ma of hexane as process control agent. The resulting nanocomposites

powders were characterized by X-ray diffraction (ORD) and scanning electron

microscopy [22]. Figure 3.1 shows a representative backscattered electron image of an

Al-Mo03 nanothermite. The sample was embedded into epoxy and cross-section. The

phase contrast within the particles shows the formation of fully dense composites of Al

and Mo03 mixed on the scale of under 100 Om.

Figure 3.1 Backscattered electron image of an Al-Mo0 3 nanothermite prepared by
arrested reactive milling.
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Reactions occurring in the nanothermites during slow heating were characterized

by Differential Scanning Calorimeter (DSC) using a Netzsch STA409PC thermal

analyzer. Platinum sample pans covered with lids were used, and the furnace was flushed

with argon at approximately 10 mlimin. DSC traces were recorded with heating rates

varying from 1 to 5 Kimin. The temperature range was limited to a maximum of 1013 K

(740 °C) in order to avoid melting and decomposition of M003 above 1068 K (795 °C).

After the initial heating cycle, the same sample was held at 1013 K for 30 min, and then

heated again at the same heating rate in order to obtain a baseline for the measurement. It

was assumed that the bulk heat capacity of the sample did not change dramatically

between first and second heating.

Samples were analyzed by RD to determine the phase makeup after the heating

cycle. To gain insight into the reaction process, some material was recovered after

heating to intermediate temperatures, and subsequently subjected to the same phase

analysis procedure. The XXRD patterns were processed using the GAS whole pattern

fitting software package [45].

In addition to thermal analysis, a preliminary investigation of ignition at high

heating rates in the range 10 2-104 K/s was conducted. The reactive powder was coated on

an electrically heated Nichrome filament. The temperature of the filament was monitored

with an infrared pyrometer. aight emission from the powder coating was detected by a

photodiode. A sharp onset of the light emission was taken as evidence of ignition. The

setup is illustrated in Figure 2.3; in Chapter 2 (Section 2.4.4). The relation of thermal

analysis and filament ignition experiments will be discussed further below.
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3.3 Results

The result of the thermal analysis is shown in Figure 3.2 for several heating rates. The

traces shown were baseline-corrected by subtracting the DSC signal recorded for the

second heating of the same sample. The thermite reaction proceeds over an extended

temperature interval, between 400 and 1000 Κ. The DSC traces show a broad exothermic

hump starting at low temperatures overlapped with at least three distinguishable peaks, as

labeled in Figure 3.2 Qualitatively, these measurements are generally consistent with the

reported DSC traces for mixed Al and M003 nanopowders [50]. Note however that the

broad exothermic hump was not observed for mixed nanopowders. Figure 3.2 shows that

the shape of the signal and therefore the relative significance of individual component

reactions changes as a function of the heating rate. As expected, the onset of the broad

exothermic hump and apparent peaks shift to higher temperatures as the heating rate

increases. CORD measurements for the samples heated to different temperatures show that

as the temperature increases, the amounts of M003 and Al decrease while increased

amounts of M002 and, at higher temperatures, A12ΜοΟ6 form. Formation of amorphous

or poorly crystalline A1203 polymorphism cannot be reliably identified directly from the

ORD patterns. Evolution of the phases directly identified from the XXRD whole pattern

processing is illustrated in Figure 3.3. In general, there is reasonable correlation for the

reaction progress between M003 and Al determined independently from DSC and XXRD

measurements. However, the RD results do not provide enough details to identify the

reactions causing the exothermic peaks in the DSC traces. Additional details regarding

the comparison of the RD and DSC measurements for the Al-Mo03 nanocomposite

thermites are reported elsewhere [22].
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Figure 3.2 Observed DSC signal for the reaction of Al-Μο03 nanothermite at various
heating rates. The endothermic peak near 930 K indicates melting of residual aluminum.

Figure 3.3 Concentrations of ΜοΟ2, ΜοΟ3, Al, Mob, and A12ΜοΟ6 determined from the
whole pattern processing of the ORD measurements for the stoichiometric
nanocomposite powders of 2A1+ΜοO3 heated to different temperatures.
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Example results of the ignition experiments performed at different heating rates

are shown in Figure 3.4. The photodiode signals are plotted versus the filament

temperatures measured simultaneously. The heating rates were adjusted by varying the

voltage applied to the filament and measured from the recorded pyrometer traces. The

records of light emission from the igniting samples show very sharp onsets at the

respective ignition temperatures. aike in the thermal analysis experiments, the ignition

temperature increases with increasing heating rate.

Figure 3.4 Results of the ignition experiments performed at different heating rates.

For initial evaluation, thermal analysis as well as ignition results were processed

according to an isoconversion method after Kissinger [51]. Figure 3.5 shows the

corresponding plot of 1n(12/,0 vs. the reciprocal temperature for ignition temperature as

well as for traceable DSC peaks. In this formalism, β is the heating rate in K/s and the

temperatures T are derived from thermal analysis at the onsets of exothermic peaks, and

from the ignition experiments at the onset of the photodiode signal jump. The slopes of
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these curves give an approximation of the respective activation energies of the underlying

processes. Figure 3.5 shows that the ignition results do not line up directly with the

thermal analysis. Therefore, a more detailed data processing is needed to establish the

correlation between these two experiments and to identify the exothermic process (or

processes) driving ignition in these materials.

3.4 Data Processing

Since simple isoconversion processing did not lead to a meaningful relation between

ignition and thermal analysis measurements, it was attempted to reconstruct the whole

heat flow signal for the DSC measurement with the best resolution. Because activation
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energy and frequency factor for each individual DSC peak are relatively strongly

correlated, the results of this determination were used as initial estimates only;

comparison with measurements at higher heating rates allowed tuning these values.

Before more detailed data processing can be applied, the following considerations

should be taken into account. From concurrent and previous work [22] it was known that

the nanocomposite is relatively homogeneous. That is, the milled material contains

minor contaminants aside from the major constituents. Specifically, small but noticeable

amounts of Μο02.5(ΟΗ)0.5 form as a result of milling. While its formation mechanism

has not yet been unambiguously determined, it is possible that the strong mechanical

activation of the milled Al causes the process control agent hexane to break down,

forming poorly crystalline aluminum carbide phases while releasing hydrogen. This

suggests the possibility that amorphous Al-C phases are also present in the milled

material, although they have not been detected by either RD or SEAM investigations.

Further, small amounts of Mo02 have been reduced to form Mo02 as well as some

metallic Mob. Continued milling caused these phases to come in contact with all other

phases, and as a result, a large variety of different interfaces were formed. Therefore, it

was expected that the actual reactions can not usefully be modeled with traditional

reaction mechanisms that were developed for reactions in homogeneous media [52].

Such mechanisms are based on the assumption that the reaction proceeds to a certain

degree of completion (that is, by depletion of the reacting components). In the present

case, the reaction may actually cease to proceed as a result of growing layers of reaction

products, which represent significant diffusion barriers for further reaction although the



46

bulk composition of the sample may still have significant amounts of reactive

components.

As a compromise, the observed peaks were modeled as follows: without detailed

a-priori information about the reaction mechanism, the system was treated as

undifferentiated. The entire range of the DSC measurement at 1 K/min (see Figure 3.2)

was divided according to the apparent individual peaks. As the simplest assumption, the

observed exothermic peaks were assumed to be independent of one another. All

reactions were modeled according to the equation

where Φ is the heat flow measured by the DSC, Φ=dQ/dt, Q is the heat of the reaction, β

the heating rate dT/dt, A is the frequency factor, Ελ is the activation energy, R is the

universal gas constant and T is the temperature. The reaction coordinate (nominal

concentration of a reacting species) is given with α. The function f(α) refers to the

specific kinetic law describing the reaction. The heat of reaction Q was partitioned

between the four individual peaks so that

Qrotai was determined from the integral over the whole DSC trace between initial and final

baselines. The requirement for a useful estimate of the reaction heat dictated the choice

of the measurement at 1 K/min because measurements at other heating rates did not result

in a final baseline. Integration of these measurements was therefore ambiguous.

The selection of the kinetic law defining the function f(α) is difficult and implies

prescribing a specific reaction mechanism. In the most simplified approach, a first order
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reactions, f(α) =α can be assumed. More complicated reaction kinetics could be

evaluated when the first order reaction does not describe the experiments satisfactorily.

Thus, the following descriptions were selected for different exothermic peaks. The broad

exothermic hump could not be described by the simple power order reaction and was

modeled instead as a reaction controlled by three-dimensional diffusion as described by

the Bander equation [52]

The remaining sharper peaks were successfully modeled as first-order reactions:

To obtain the kinetic parameters Α and Ελ, the model was fit to the measurement

at 1 Kimin using the Netzsch Thermokinetics software package [53]. The restriction to

the measurement at 1 K was necessary as the measurements at higher heating rates did

not result in unambiguous final baselines, and could therefore not be used for strict data

fitting. Since, however, fitting a single measurement may lead to ambiguous results [54],

the activation energies and frequency factors for the three sharper peaks were estimated

based on the observed shift in the measurements at 2.5 and 5 K/min. Figure 3.6 shows

the experimental data together with the individually modeled peaks as well as the sum of

the modeled peaks.

While this approach is obviously a simplification, it does allow evaluating the

reactions at heating rates outside the range covered by thermal analysis. Therefore, once

a reasonable description of the DSC traces at different heating rates is achieved, the same

model can be used to describe ignition. Furthermore, because kinetics for each

exothermic peak is determined it becomes possible to compare the respective activation
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energies to those of the known processes occurring in the specific materials system. For

the Al-Mo02 nanocomposite, related processes are the decomposition of M002 and

M002 and diffusion of ions of 0 and Al through the MoO 2 and A1202 layers. Finally, it

can be possible to identify one or more processes that directly control the ignition

kinetics.

Figure 3.6 Comparison of experimental data with model curves for heating rate of 1
Kimin. The dotted lines indicate individual modeled peaks whereas the light and dark
solid lines represent modeled and experimental DSC trace.

3.5 Reaction Kinetics

To validate the calculations, the kinetic parameters were used to calculate peak positions

at the highest heating rate used in thermal analysis experiments. This comparison is

shown in Figure 3.7. The model does not reproduce the details of the measurement;

however the peak positions coincide approximately. The kinetic parameters (frequency
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factors and activation energies) are shown in Table 3.1. Projection of the model

calculations to much higher heating rates is shown in Figure 3.8.

Table 3.1 Activation Energies and Frequency Factors for Individual Exothermic Peaks
Observed in the DSC Traces for the Stoichiometric 2A1+ΜοO2 Nanocomposite Powder

These calculations were compared with results of filament ignition experiments.

The calculated heat flow curves were processed according to the isoconversion method

after Ozawa, Flynn and Wall [55], where the temperature at a constant reaction progress,

T f(α), is evaluated at varying heating rates β. The slope of lη(β) vs. 1/T gives the

activation energy of the rate controlling process at temperature T and heating rate β.

Analogous to the experimental curves, α was determined by integrating the

calculated heat flow curves according to EV. (3.2). Temperatures were determined for

values of α in the range of 0.001 %, to 0.1 %. Figure 3.9 shows the results of this

calculation in relation to both, experimental ignition temperatures as well as the onset of

the DSC signal. The slope of the curves is similar to the ignition data points at high
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heating rate, while it resembles the onset of the initial reaction in the thermal analysis

experiments with a low activation energy.

Figure 3.7 Comparison of experimental data with model curves projected to heating rate
of 2.5 Kimin. The dotted lines indicate individual modeled peaks whereas the light and
dark solid lines represent modeled and experimental DSC trace.

An exact match was not obtained, but it was also not expected given the

approximate nature of the presented analysis. Based on Figures 3.8 and 3.9, it can be

concluded that the ignition of the stoichiometric 2A1+Μo0 2 nanocomposite powders is

primarily driven by the low-activation energy process responsible for the onset of the

broad exothermic hump in the DSC signal starting at low temperatures. At the same

time, the processes causing sharper second and third exothermic peaks observed at higher

temperatures play only a secondary role when the samples are heated rapidly. Finally,

the high activation energy process causing the fourth and strongest exothermic peak
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observed in the DSC traces almost does not affect ignition occurring at higher heating

rates.

Figure 3.8 Model curves projected outside the range of heating rates of thermal analysis.

A more detailed analysis of the ignition is now possible in which the reaction

model comprising the superposition of the four processes described in Table 3.1 can be

used for the quantitative heat transfer analysis of the heated powder. Different

experimental configurations can be readily described. For the present ignition

experiments using a heated filament, it will be taken into account that the temperatures

recorded are not the temperature of the reactive composite, but the temperature of the

filament substrate. Recently, a numerical scheme has been developed to describe the

ignition of powder coated on a heated filament [49]. Application of the reaction model

developed here to this ignition simulation will be subject of future work.
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3.6 Discussion

The activation energies shown in Table 3.1 can be discussed in the context of elementary

reactions in the Al-Mo02 system. The activation energy of reduction of M002 to form

M002 in a hydrogen atmosphere was determined as 34 kJ/mol (40 viol-% H2), or 103

kJ/mol (5 viol-% H2) [56]. The observed activation energy of the broad underlying

exothermic hump is within this range, suggesting that M002 reduction is the rate limiting

step, at least at low temperatures. This explanation suggests that in nanothermites

prepared as mixed powders the oxygen released as a result of such decomposition can

readily escape. However, in dense composites as used in this study the released oxygen

is contained within the condensed material and is therefore more likely to react with

aluminum. This difference in the reaction process explains why the broad exothermic

process observed here for the fully dense naniocomposite powders was not noticeable in

the DSC traces presented in Ref [50], for the mixed nanopowders of Al and M002.

The sharper and smaller peaks at higher temperatures are characterized by

substantially higher activation energies, which are comparable to activation energies

determined for aluminum oxidation [57]. The rates of Al oxidation depend on the surface

coverage by various polymorphism of A1 20 2 and are controlled by diffusion of ions of 0

and/or Al. Diffusion of oxygen through a surface layer of alumina was characterized

by an activation energy of 220 kJ/mol [57]. Similarly, a recent experimental study of Al

oxidation by Sun et al. determined an apparent activation energy of 240 ± 20 kJ/mol for

Al oxidation [50]. Activation energies as high as 418 kJ/mol were also reported for Al

oxidation, without identifying the specific alumina polymorphism being formed [58]. Thus,

the second, third, and fourth exothermic peaks (see Table 3.1) could reasonably be
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assigned to reactions where rates are limited by diffusion through the growing alumina

layer. The activation energies for the second and third peak are nearly the same,

suggesting that both peaks could be caused by the diffusion through the same or similar

polymorphism of A1202, most likely alumina. The presence of two separate peaks could

be explained by the existence of different interface morphologies where the alumina (or

related transition alumina) layers are being formed. The fourth peak with high activation

energy is observed at higher temperatures, at which formation of the A1 202 polymorphism

is likely, and formation of the ternary phase A12ΜοΟ6 is observed from ORD.

Figure 3.9 Preliminary comparison of ignition experiments at high heating rates and the
onset of DSC curves at low heating rates with lines of constant reaction progress
calculated according to the model calculations.
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3.7 Summary And Conclusions

Reactions in stoichiometric 2A1+Μο02 nanocomposite thermite powders have been

investigated using thermal analysis and heated filament ignition experiments. A

preliminary reaction model was fit to the experimental data. The reaction model is the

superposition of four reaction steps assumed to be independent. The comparison of the

activation energies determined for the reaction steps observed in this study with

activation energies reported earlier for elementary reactions in the Al-Mo02 system

suggests that the first, low-activation energy reaction is associated with decomposition of

M002 while following reaction steps are controlled by the diffusion through growing

layers of A1202. Preliminary comparison with ignition experiments suggest that a

relatively small heat release at the onset of the exothermic reaction causes ignition at high

heating rates. The proposed reaction model can be combined with a detailed heat transfer

analysis for a specific experimental situation. Therefore, quantitative description of the

ignition kinetics and identification of the specific reaction mechanism driving ignition for

each specific experiment will become possible.



CHAPTER 4

EXOTHERMIC REACTIONS IN Al-CuO NANOCOMPOSITES

4.1 Introduction

Among several types of reactive nanocomposite synthesized by ARM [ 18-22], Al-CuO

thermites are of particular interest. The reaction is highly exothermic and its temperature

can be adjusted to produce either molten or vapor-phase copper. Thus, a broad range of

potential applications is possible including joining compounds and energetic

compositions enabling transient gas generation. Recently, Αl-CuΟ multilayer nanofoils

were produced and characterized [ 15, 16] . Differential thermal analysis traces of these

nanofoils when heated from ambient conditions to 1673 Κ indicated that the reaction

proceeded via two separate exothermal occurring around 850-950 K and 975-1275 K.

These events were interpreted as reactions controlled by lateral growth of A1202 nuclei

and then by diffusion of oxygen through growing A1202 layers, respectively. It was

suggested that the oxygen diffusion through Cub layers was not a rate-limiting process

for the observed reactions [16].  However, in our initial experiments with Al-CuO dense

nanocomposites powders produced by ARM, exothermic events were observed to occur at

much lower temperatures, starting from about 400 Κ [21]. Thus, the reaction mechanisms

proposed in refs. [ 15, 16] need to be expanded and verified in order to be applied to a

broader range of Al-Cub nanocomposite. The present work is aimed to develop a more

adequate description of Al-CuO thermite reactions. Furthermore, the correlation of

different processes occurring during such reactions and ignition of A1-CuO

nanocomposite occurring at high heating rates was of interest. Differential scanning

55
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calorimeter (DSC), X-ray diffraction (ORD) and heated filament ignition experiments

[24] were used to quantify the ignition kinetics and related reaction mechanisms.

4.2 Experimental

4.2.1 Preparation of Nanocomposite Powders

A shaker mill (8000 series by Apex CertiPrep) was employed in this research. Flat-ended

steel vials were used along with 5 mm steel balls. Starting blends were prepared in

stoichiometric proportions from powders of elemental aluminum (99% pure, -325 mesh

by Atlantic Equipment Engineers) and cupric oxide CEO (99% pure, 1-5 micron, by

Atlantic Equipment Engineers). Synthesis was carried out in argon environment. A

small amount of hexane (C6H 14) was added as a process control agent (PCA) to hinder

the cold welding during milling. The process temperature was monitored using

thermistors attached to the sides of the milling vials and connected to a digital data

logger. The instant of reaction was marked by a sharp rise in the vial temperature.

Highly metastable energetic Nanocomposite were prepared by arresting the milling

before the spontaneous exothermic reaction. When the amount of PICA added to the

mixture was varied, the milling times required to initiate the reaction changed. Three

different samples were prepared by varying both the amount of PCA and the milling

times, as shown in Table 4.1. When the materials were milled without any PCA, the

reaction occurred within 2 min. When 1 ml of hexane was added, the reaction was

triggered after 16 minutes of milling. When 8 ml of hexane was added, the reaction did

not initiate even after an hour of milling and the metastable samples were prepared by

stopping milling after 60 minutes.
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Table 4.1 composites Powder Samples Prepared and Msed in this Research

batch mass 3 g; ball to powder mass ratio 5, 5 mm steel balls

4.2.2 Sample Characterization

Morphology and composition of the composites were examined on a aE0 1530 Field

Emission Scanning Electron Microscope (SEAM) operated at 10 kV. The samples were

embedded in epoxy and cross-section for examination. The phase composition was

determined for each sample by x-ray diffraction (ORD). The ORD was performed on a

Phillips X'pert MAD powder diffraction operated at 45 kV and 40 me using Cu Κα

radiation (λ = 1.5438 A). Temperature-dependent structural transformations were

determined by differential scanning calorimeter (DSC) using a Netzsch Simultaneous

Thermal Analyzer STA409 PC. Alumina pans were used and the furnace was flushed

with argon at approximately 10 ml/min. DSC traces were recorded between room

temperature and 1013 K with heating rates varying from 5 to 40 K/min. The temperature

is accurate within ±1 K.

4.2.3 Ignition Experiment

In addition to thermal analysis, a preliminary investigation of ignition at high heating

rates in the range 10 2-104 K/s was conducted. The reactive powder was coated on an

electrically heated Nicbrome filament. The temperature of the filament was monitored

with an infrared pyrometer. Light emission from the powder coating was detected by a
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photodiode. A sharp onset of the light emission was taken as evidence of ignition. The

setup is illustrated in Figure 2.3; in Chapter 2 (Section 2.4.4).

4.3 Results

4.3.1 SEAM Analysis

Figure 4.1 shows SEM images of the cross-section of the starting powder mixture and

Al-CuO composites synthesized after ~ 2, 16 and 60 min of milling. These images are

produced using backscattered electrons and show phase contrast between Al and Cu0-

rich phases. It can be observed that the particle size decreases and morphology of the

powder changes with increasing milling times. For the starting mixture, (Figure 4.1A) the

bright CEO particles are well distinguished from gray Al and the dark epoxy background.

After 2 min of dry milling (sample 1), the Al particles are flattened as shown in Figure

4.1 B. The Cub particles are reduced in size and embedded in aluminum. Very large,

dense agglomerates are formed. Most of the CEO particles are close to the surface of

aluminum and located on or between the ductile aluminum layers. After 16 min of

milling with 1 ml of hexane added (Figure 4.1 C, sample 2), the particle sizes of Al and

CEO reduce drastically and some of the CEO particles become embedded in the Al

matrix. However, unmixed particles of Al and CEO are still present. The particle sizes

vary widely. The mixing appears to be non-homogeneous throughout the sample.

Groups of relatively coarse particles of Al and CEO representing loose agglomerates are

visible in Figure 4.1 C. At the same time, some particles with a much finer mixing of

components are also present. Figure 4.1 D shows that the increase in the milling time to

60 min, possible when 8 ml of hexane was added, resulted in further reduction of the



particle sizes and in a more homogeneous mixing. Figure 4 shows an image of the same

sample as shown in Figure 4.1 D but at a higher magnification. Most of the particles are

nanocomposites of Cub inclusions in the aluminum matrix. Fine mixing of Al and CEO

particles has been achieved. At the same time, several very bright and homogeneous

particles are visible. A close inspection shows presence of small spherical voids inside

such bright particles, which are identified as copper. Therefore, at the extended milling

time and large amounts of the PICA used, the thermite reaction occurred locally, but did

not propagate through the entire sample. This suggestion is further confirmed by CORD as

described below.

Figure 4.1 Backscattered electron SEAM images of the cross-section Al-Cub samples
embedded in epoxy: A. Starting material; B. Sample 1; C. Sample 2; D. Sample 3. The
magnification is the same for all the images and is illustrated by the scale bar in the
image B.



Figure 4.2 High magnification SEAM image of cross-section sample 3 embedded in
epoxy.

4.3.2 X-ray Analysis

Figure 4.3.a shows the X-ray diffraction patterns for the samples 1, 2, and 3. Figure 4.3.b

shows the crystallite size of aluminum as a function of milling time. As seen earlier in

Table 4.1, addition of hexane enables increased milling time. As an overall trend, the

increased milling times result in the decreased intensity of Al and CEO peaks. The CORD

pattern of sample 1 shows only peaks of starting materials, Al and CEO. The CORD

pattern of sample 2 indicates additional presence of Cu and small amounts of Cu20.

These peaks arise due to the localized partial reaction that occurs during milling.



Α1

Figure 4.3 a). X-ray diffraction patterns of composite samples 1, 2, and 3 prepared at
different milling times (cf. Table 4.1). b). Crystallite size of aluminum as a function of
milling time.
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Amorphous or poorly crystalline Α12O2 polymorphism are also likely to be produced in this

reaction, but are not detected from XXRD. Extended milling time (60 min) for sample 3

gives rise to CuΑΙ2, -alumina and Cu9A14 in addition to Al, CEO, Cu and Cu20 peaks.

Increase in the milling time also leads to broadening of peaks as a result of

decrease in the crystallite size of both Al and CEO. SEAM and CORD results indicated that

sample 1 consisted of unmixed particles of the starting material. Hence the ignition

experiments and thermal analysis measurements were limited to samples 2 and 3 in

which nanocomposites structures were formed. The average crystallite size of each sample

was estimated by whole pattern refinement of the XXRD patterns using the GAS software

(Generalized Structural Analysis System) [45]. It was observed that increase in milling

time results in the decrease in the crystallite size of aluminum.

4.3.3 Ignition

Figure 4.4 shows the ignition temperatures of the Al-CuO nanocomposites as a function

of heating rate. The filament ignition experiments were performed in air at three different

heating rates varying in the range of 104- 106 Kimin (102 — 104 K/s). In general it is

observed that the ignition temperatures of the Al-CuO nanocomposites increase with

increasing heating rates as is expected for a thermally activated ignition mechanism. It is

also clear that ignition temperatures measured for sample 2 are higher than for sample 3.

A decrease in the ignition temperature for sample 3 can be attributed to a higher degree of

structural refinement achieved at a longer milling time with a greater quantity of liquid

process control agent.



Figure 4.4 Ignition temperatures measured for samples 2 and 3 at different heating rates.
The error bars represent the standard deviations from multiple measurements.

4.4 Thermal Analysis

Thermal analysis was performed in both argon and oxygen environments for several

heating rates. Figure 4.5 shows the DSC traces of samples 2 and 3 collected at 5, 20 and

40 K/min in argon. The traces shown were baseline-corrected by subtracting the signal

recorded during the second heating of the same sample. Heating of sample 2 from room

temperature to 1013 K was accompanied by a broad and very weak exothermic event

between 350 and 800 K. In addition, a strong exothermic peak was observed between 825

and 930 K. A weak endothermic peak corresponding to aluminum melting was observed

around 933 K.



Figure 4.5 DSC traces of samples 2 and 3, recorded in argon at the heating rates of 5, 20
and 40 K/min respectively. Symbols are used to identify the exothermic peaks.

The DSC trace of sample 3 is characterized by a series of at least three

overlapping exothermic events, including the low temperature events that were not

observed for sample 2. The first, broad exothermic event was observed between 350 and

600 K. It was followed by a strong exothermic event between 600 and 800 K. The third

exothermic event occurred between 825 and 930 K and was similar to the exothermic

peak observed for sample 2 in the same temperature range. In addition to the aluminum-
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melting peak, endothermic peaks were observed around 820 and 860 K, corresponding to

the melting of CuΑ1 2 and Cu9A14 , respectively [59].

To identify processes occurring during the exothermic events, CORD patterns were

collected from powders obtained by quenching sample 3 heated to intermediate

temperatures bracketing each event. The sample was quenched by interrupting the power

to the DSC furnace, achieving effective cooling of 300-500 K over a period of 10-15

minutes. Figure 4.6 shows the respective XXRD patterns.

Figure 4.6 XXRD patterns of the powders produced by heating sample 3 in argon to and
quenching at the temperatures bracketing exothermic events observed in DSC traces
(Figure 4.5).

The XXRD pattern of the as-milled material is shown in Figure 4.6 for reference as

well, and it is identical to that shown in Figure 4.3 for sample 3. As a general trend, the

peak intensities for starting materials Al and CEO, decrease, whereas the peak intensities
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of the reaction products, e.g., Cu20, CuΑ12, Cu9Α14 and γ-Α12O2 increase at higher

temperatures.

Figure 4.7 DSC traces of samples 2 and 3, recorded in oxygen at the heating rates of 5,
20 and 40 K/min respectively. Symbols are used to identify the exothermic peaks.

The main effect observed for the sample heated to 598 K, is a substantial increase

in intensity of the Cu20 peaks. This increase continues throughout the heating. The

peaks of intermetallic phases, CuΑ1 2 , Cu9Α14 become fairly strong at 598 and 773 K, but

almost disappear at a higher temperature. The intensity of peaks corresponding to both

Cu20 and Cu increases considerably at 1013 K. It was also observed that the peaks
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become narrow as the temperature increases, which implies that crystallite sizes of the

materials increase.

Figure 4.7 shows the DSC traces of samples 2 and 3 heated at 5, 20 and 40 K/min

in oxygen. The traces shown were baseline-corrected by subtracting the signals recorded

during the second heating of the same sample. DSC traces generally similar to those

recorded for the same samples heated in argon, as shown in Figure 4.5. However, the

positions of the temperatures exothermic events observed for sample 3 in oxygen are

slightly shifted compared to those in argon.

Figure 4.8 XRD patterns of the powders produced by heating sample 3 in oxygen to and
quenching at the temperatures bracketing exothermic events observed in DSC traces
(Figure 4.7).
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Similar to the treatment described above for the samples heated in argon, the

powders produced by heating sample 3 in oxygen and quenching at several intermediate

temperatures were collected and analyzed by XRD. Figure 4.8 shows the respective

XRD patterns. Mnlike results shown in Figure 4.6, the peak intensity of CEO increases at

increased temperatures, while the peak intensity of Al decreases as in Figure 4.6. 0nly a

small increase in the peak intensity for Cu20 at 773 K is observed followed by a decrease

at 1013 K. Similar to results shown in Figure 4.6, the intensity of the peaks of

intermetallic phases is at a maximum at the intermediate temperature of 773 K. Also

similar to Figure 4.6, the peak intensity of Cu increases considerably at 1013 K and all

the peaks become narrow at increased temperatures indicating an increase in the

crystallite sizes.

4.4 Reaction Kinetics

The thermal analysis data were initially processed using an isoconversion method

by Kissinger [51]. A plot of ln(β/T2) vs. the reciprocal temperatures 1/T of the DSC

peaks, where β is the heating rate in K!min, is shown in Figure 4.9. In addition, the

results of the ignition temperature measurements are presented in the same coordinates,

corresponding to a much higher range of heating rates. The slopes of the straight lines

corresponding to each group of data points represent the values for the respective

activation energies. Results of DSC experiments obtained for samples 2 and 3 in argon

are shown in Figure 4.9. Table 4.2 summarizes the activation energies obtained by the

Kissinger method for the exothermic peaks observed for both samples 2 and 3 heated in

both argon and oxygen environments. Figure 4.9 shows that when the heating rates
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approach the range of those used in ignition experiments, the stronger exothermic events

(labeled as ♦ and • in Figures 4.5 and 4.9) are expected to occur at much higher

temperatures, as compared to the observed ignition temperatures. Note that the points

representing the strong peak labeled as Δ, for sample 2, nearly coincide with the points

representing the strong peak labeled as ♦ for sample 3. Note also that ignition of sample

2 occurs at temperatures that are weakly dependent on the heating rate and are very close

to the melting point of Al (cf. Figure 4.4). The kinetics of the temperatures, relatively

weak and broad exothermic event labeled as ■, seems to project to a temperature range

close to, but slightly lower than that observed for ignition of sample 3 (cf. Figure 4.9).

Figure 4.9 Comparison of ignition temperatures measured at different heating rates in air
and exothermic peak positions observed in the DSC traces for sample 2 and 3 heated in
argon. The hollow and solid symbols represent data for samples 2 and 3, respectively.
The aluminum melting point is shown for reference.
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Table 4.2 Activation Energies of Exothermic Peaks Observed in Argon and Oxygen for
Sample 3 Calculated using Kissinger Method [51].

The following discussion will be only related to sample 3, for which ignition

occurred at lower temperatures and appeared to be most directly affected by low-

temperature A1-CuO reactions of interest in this paper. Because of the higher level of

refinement (cf. Figures. 4.1- 4.3), sample 3 best represented nanocomposite Al-Cu0

materials of interest to practical applications.

A useful correlation between the thermal analysis results and ignition experiments

can only be established if the reaction kinetics representing the exothermic events

observed in DSC are described quantitatively. As a first step to obtaining such a

description, the DSC traces for sample 3 were processed to determine the activation

energy as a function of reaction progress, a, according to the method after Ozawa [60],

and Flynn and Wall [59]. This processing was based on evaluation of temperatures

corresponding to a constant reaction progress observed at different heating rates.

Calculations of the reaction progress involved measurements of partial areas under the

DSC curves, which required detailed reconstruction of the temperature-dependent

baselines. Because the temperature ranges used in the experiments were broad, the

baselines were neither well-constrained, nor expected to be linear. This was confirmed
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by initial estimates using straight-line baselines between start and end points of the DSC

signal, which resulted in substantially different reaction progress corresponding to the

positions of the same exothermic peaks at different heating rates. To reconstruct a more

accurate temperature dependent baseline, it was assumed that the degree of conversion

was the same for all heating rates when the 3 rd, strongest peak occurred in the DSC

signals. The initial and final slopes of the DSC curve recorded at 5 K/min were used to

construct a smooth initial baseline for this measurement and determine the respective

degree of conversion corresponding to the position of the 3 rd peak. This degree of

conversion corresponded to 90%, and it was used consistently to adjust the baseline

representing the weighted averages of the initial and final slopes for other used heating

rates.

Msing the reconstructed baselines, the activation energy was calculated as a

function of reaction progress as shown in Figure 4.10. The temperatures corresponding

to the reaction progress of 20, 40, 60, and 90% for the heating rate of 5 K/min are also

shown in Figure 4.10 for reference.
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Alpha (α),

Figure 4.10 Activation energy as a function of reaction progress, a. The dotted lines
indicate the reaction temperatures corresponding to the respective values of a at the
heating rate of 5 K/min.

The initial value of the activation energy remains close to 80 kJ/mol until a

reaction progress of about 30%. This is followed by a segment with an activation energy

close to 100 kJ/mol. After about 70% of the overall reaction is completed, the activation

energy increases to about 265 kJ/mol. The dependency of activation energy on the

reaction progress indicates that at least three different reaction steps need to be

considered. This is consistent with the overall DSC signal shape indicating at least three

overlapping exothermic events as discussed above. The values of activation energies are

also roughly consistent with those shown in Table 4.2, found from the peak position

processing using the Kissinger method. Following this initial assessment, the reaction

was assumed to comprise three separate steps with the respective activation energies
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defined from the flat portions of the curve shown in Figure 4.10. This initial assumption

was explored using Netzsch Thermokinetics software [53]. A sequence of calculations

was performed in which the activation energies of the three steps remained fixed but the

reaction mechanisms and frequency factors were allowed to change to match the

experimental results at different heating rates. In addition, the reaction scheme was

varied starting with three independent parallel reactions and including different

combinations of interdependent reactions occurring in series or in parallel. After a

number of calculations, it was found that a close match of the shape of the low-

temperature portion of the DSC trace could not be achieved. Thus, it was further

assumed that the broad, low-temperature exothermic event corresponding to a up to about

30% consists of two overlapping reaction steps with close activation energies, but

different frequency factors and, possibly, reaction mechanisms. A second set of

calculations with four reaction steps was therefore performed in which, as described

earlier, various combinations of reaction mechanisms and reaction models were

considered. As before, the activation energies remained restricted in the three narrow

ranges, as implied by the three levels observed in Figure 4.10. While the results were

quite sensitive to the selection of individual reaction mechanisms and frequency factors,

no significant improvement could be achieved assuming complex interdependent reaction

schemes as opposed to the simplest assumption of four independent, parallel reactions.

Thus, it was finally found that a reaction mechanism including four independent parallel

reactions as described in Table 4.3 provides an adequate match of the experimental DSC

traces at different heating rates. The first, low temperature step was modeled as an

Avrami-Erofeev n-dimensional nucleation/growth controlled reaction [52] with n=0.6.



The second and third steps were modeled as nth order reactions with n=3.9 and n=2.6,

respectively. The fourth step was modeled with an Avrami-Erofeev n-dimensional

nucleation/growth controlled reaction with n= 0.75.

Figure 4.11 shows a comparison of experimental and calculated DSC traces for

different heating rates. Curves illustrating individual reaction steps, as described in Table

4.3 are also shown. In addition, the predicted DSC signal, or the calculated rates of heat

release are presented for the higher heating rates approaching those realized in the

ignition experiments. Because of different activation energies, the shapes of the traces

change and it becomes increasingly difficult to distinguish between contributions from

individual reaction steps.
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Figure 4.11 Comparison of experimental (solid lines) and calculated DSC traces (dashed
lines) for different heating rates. Thin dashed lines show individual reaction steps.
Predicted heat flows are also shown for high heating rates approaching the experimental
conditions for ignition tests.

4.5 Discussion

The experimental DSC data for different samples were observed to be somewhat

different. The results for sample 2, for which the level of structural refinement was

relatively low, were similar to the earlier results [ 15, 16] presented for multilayer Al-

CuOX nanofoils. The first well resolved exothermic peak occurred in the vicinity of 900

K. The activation energy for this peak was estimated to be around 270 kJ/mol (Table

4.2), which compares well with the value of about 280 kJ/mol reported in ref. [ 16]. The

low-temperature processes resulted in a small, low-temperature exothermic that was clearly
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detected but poorly resolved for sample 2. On the other hand, these low-temperature

events were well resolved for sample 3, which had the same chemical composition as

sample 2, but was prepared with a better refinement and a more uniform nanomixing

between Al and CEO. Thus, the analysis of the reaction kinetics presented above for

sample 3 describes the generic thermite reaction 2A1+3Cu0, with a higher reaction rate

due to the very high reactive interface area. In terms of thermally activated reaction

models, the description obtained by processing specific DSC signals for sample 3 will

have values of pre-exponents (or frequency factors) specific for that sample, while the

rest of the model should be applicable to any Al-CuO thermites. The quantitative

correlation of the frequency factors with the specific sample morphology was beyond the

scope of this project but is planned in the future.

The differences observed between the DSC signals recorded for both samples 2

and 3 in oxygen and argon are insignificant. The analysis of intermediate reaction

products shows that the reactions in argon start from decomposition of CEO to Cu 20.

The bulk of the released oxygen must have oxidised aluminum in order to explain the

observed significant exothermic effect. Thus, it is suggested that amorphous or poorly

crystalline aluminum oxide polymorphism were produced even though they were not well

visible from the CORD patterns.

For both samples, the initial exothermic effect was nearly the same in oxygen, as

it was in argon while the formation of Cu 20 was not detected from ORD for the samples

heated in oxygen. This can be interpreted suggesting that the produced Cu 20 quickly red-

oxidised interacting with the ambient oxygen. This difference in the reaction products

explains the small differences in the reaction kinetics (cc. Table 4.2). Thus, the reaction
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kinetics measured for experiments in oxygen represents an additional process of re-

oxidation of the produced Cu20 that is unlikely for the rapid processes occurring in

practical applications and in the performed here ignition experiments. Therefore, the

heterogeneous reaction kinetics applicable for use in ignition models needs only to

describe the reactions in the Al-CuO system, without adding reactions with external

oxygen. Such a kinetic model was developed above (cf. Table 4.3) considering the DSC

results produced by heating sample 3 in argon.

The proposed model involving four independent parallel reaction steps describes

consistently the experimental thermal analysis data. It is interesting to consider which

specific reactions could be tentatively assigned to the four steps that were introduced.

The comparison can be now made between the kinetic parameters identified in Table 4.3

and those reported in the literature for related reactions in the Al-CuO systems.

Relatively low activation energies were reported for the processes involving

decomposition of CEO. The activation energy of reduction of CEO in the presence of

hydrogen was found to be 60 kJ/mol [62]. In another report, the reaction

4CuO—+2Cu2O+O2 taking place via a moving phase boundary and rate limited by oxygen

diffusion along the Cu20 grain boundaries, was found to have an activation energy of 106

kJ/mol [63]. On the other hand, activation energies in a broad range have been reported

for the aluminum oxidation that is rate-limited by diffusion through growing Α1202

scales. Α sequence of Α1202 polymorphism including amorphous—> '— θ α phases was

reported to be produced upon aluminum heating in oxygenated gases [64]. This sequence

is expected to be modified by the presence of other condensed phases, such as COX, but

the overall scheme of aluminum oxidation including a sequence of transition alumina
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phases leading to the formation of the stable α—Α1203 should remain. The related

activation energies for the consequent oxidation steps of aluminum powders in oxygen

were identified in ref. [57] as 120, 227, and 306 kJ/mol for the growth of amorphous, y-

Hand alumina polymorphism, respectively.

Interestingly, the initial process of growth of the amorphous alumina has the

activation energy comparable to that of CEO decomposition. However, the activation

energy increases significantly upon formation of crystalline alumina polymorphism at

higher temperatures.

Comparing the activation energies reported in the literature for CEO

decomposition and alumina growth with the values presented in Table 4.3, it can be

suggested that the initial steps of the Al-CuO reaction are controlled by CEO

decomposition. This suggestion is supported by the XXRD patterns analysed for the

samples quenched from intermediate temperatures. At higher temperatures, the rates of

these decomposition processes are supplemented by the growth of amorphous alumina

that could not be detected by XXRD. The above processes can be assigned for the

introduced steps 1-3 which all have relatively low activation energies. An increase in the

activation energy in step 4 signals that the growth of crystalline Α1202 polymorphism

becomes the rate-limiting reaction step.

Because the four events were assumed to be independent of one another, the total

heat release of thermite reaction can be found simply as a sum of the heats released in

each event:
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Considering specific expressions and parameters of individual terms, QI  ,

described in Table 4.3, the heat release as a function of temperature and heating rate for

the overall Al-CuO thermite reaction can now be described. As noted above, the

frequency factors are specific for the particular sample morphology used in this research

and one needs to re-determine their values for different composites materials. The

overall reaction mechanism, however, is expected to remain valid for any Al-CuO

composites.

In order to use the proposed reaction mechanism for quantitative description of

ignition experiments, a detailed heat transfer model needs to be developed describing the

ignition experiment and including the term given by EV. (4.1), using the specific kinetic

parameters presented in Table 4.3. Such a model was outside the scope of this project.

Instead, the validity of the proposed mechanism was assessed by relating thermal analysis

to ignition experiments via an isoconversion approach. This assumes that ignition occurs

at a constant degree of reaction progress α (see Figure 4.10). Figure 4.12 shows an

Arrhenius diagram where a group of curves representing constant reaction progress are

superimposed on the experimentally observed ignition temperatures. The plot suggests

that ignition occurs when approximately 4 % of the total reaction enthalpy is released.

The temperatures where 4 % reaction progress is observed in the thermal analysis

experiments have been determined and are also shown for reference. These experimental

points correlate well with the calculated lines of constant reaction progress, which is to be

expected considering the good match between the experimental and calculated DSC

curves shown in Figure 4.11. This indicates that ignition indeed can be described

adequately by the overall reaction kinetics model reported here.



Figure 4.12 Comparison of ignition experiments and thermal analysis data at selected
levels of reaction progress with the lines of constant reaction progress calculated
according to the introduced kinetic model.
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4.6 Conclusions

The highly exothermic heterogeneous reaction between Alb and CEO was found to start at

relatively low temperatures (~ 400 K) and is well described by four parallel reaction

steps. Earlier measurements did not resolve the temperatures exothermic events and

focused on the strongest, fourth reaction step. However, ignition of the nanocomposite

A1-CuO materials was shown to be driven primarily by the lower-temperature oxidation

processes.

Specific mechanisms and kinetic parameters were determined to describe the

individual reaction steps for the prepared nanocomposite powders. These mechanisms

include the frequency factors specific for the powders used in this study and activation

energies that should remain valid for any Al-CuO composite materials. The identified

reaction steps were tentatively assigned to specific processes of CEO decomposition

followed by diffusion of reacting species through amorphous and then crystalline Α1203

polymorphism. It was shown that ignition of Al-CuO nanocomposite powders can be

described reasonably well using the proposed kinetics of Al-CuO heterogeneous

reactions. Future work will focus on development of a complete, quantitative ignition

model.



CHAPTER 5

ALUMINUM RICH Al-Mo03 NANOCOMPOSITE POWDERS PREPARED BY
ARRESTED REACTIVE MILLING

5.1 Problem Statement

Previous results have shown that micron-sized nanocomposites powders prepared by

ARM have a high reactivity comparable to that of chemically similar mixed nanopowder

compositions, while offering potential advantages in handling, maximum packing

density, and cost [18-22]. For many applications of energetic formulations, an external

oxidizer, e.g., oxygen from air or from a propellant formulation will be utilized and thus

the stoichiometric thermite compositions are of limited interest. For such applications, it

is proposed to develop off-stoichiometric, metal rich reactive nanocomposite. This

project deals with the corresponding Al-Mo03 compositions. One objective of this work

is to determine the maximum aluminum concentration that can be used in order for the

nanocomposites to remain sufficiently reactive to warrant its practical applications. The

project includes synthesis of several nanocomposites powders and characterisation of their

morphologies and reactivates. X-ray diffraction, electron microscopy, and thermal

analysis were used to characterize the prepared materials. In addition, ignition tests using

an electrically heated filament and constant volume explosion experiments were also

conducted.

82



83

5.2 Material Synthesis

A shaker mill (8000 series by Apex CertiPrep) was employed in this research. Flat-ended

steel vials were used along with steel milling media of 5 mm diameter. Starting blends

were prepared in off-stoichiometric proportions from powders of elemental aluminum

(99% pure, -325 mesh by Alfa Cesar) and molybdenum trioxide M002 (99.95% pure, by

Alfa AAesar). Synthesis was carried out in argon environment using 5 g powder batches

with different AL/M002 ratios. 4 ml of hexane (C6Η14) was added as a process control

agent (PCA) to inhibit both cold welding and partial reaction during milling. The process

temperature was monitored using a thermistor attached to the side of the milling vial and

connected to a digital data logger. The instant of reaction was marked by a sharp rise in

the vial temperature. The stoichiometric composition requires 2 moles of Al

corresponding to each mole of Mo03. Preliminary experiments in which the samples

were milled dry established that the self-sustaining reaction was mechanically triggered

during milling for the blends with up to 10 moles of Al per mole of Mo03. Typically, the

reaction would occur within the first few minutes of dry milling. It was also observed

that adding hexane as a process control agent enabled us to avoid rapid triggering of

exothermic reaction and obtain uniform nanocomposite powders. For further

experiments, four samples were prepared with aluminum concentrations of 4, 8, 12 and

16 moles per mole of Mo03. Wet milling (with hexane as PCA) and a constant milling

time of 30 min were used to achieve a similar degree of structural and compositional

refinement for all samples. After milling the samples were collected and stored in an

argon-filled glove box.
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5.3 Sample Characterization

Morphology and composition of the nanocomposite were examined on a LEO 1530

Field Emission Scanning Electron Microscope (SEAM) operated at 10 kV. The

nanocomposite samples were embedded in epoxy and cross-section for examination.

The phase composition was determined for each nanocomposite by x-ray diffraction

(XRD). The ORD was performed on a Phillips X'pert MAD powder diffraction

operated at 45 kV and 45 mA using Cu Ka radiation (λ = 1.5438 Α).

Temperature dependent structural transformations were determined by differential

scanning calorimeter (DSC) using a Netzsch Simultaneous Thermal Analyzer STA409

PC. Alumina pans were used and the furnace was flushed with argon at approximately 50

mlimin. DSC traces were recorded with heating rates varying from 1 to 40 K/min. The

samples were heated from room temperature to 1200 K, held at 1200 K for 30 min, and

then cooled to room temperature. Without disturbing the experiment, the samples were

then heated to 1200 K for the second time to record the baseline signal. The temperature

was accurate within ±1 K.

5.4 Ignition and Constant Volume Explosion Experiments

Ignition of the prepared powders was studied at heating rates ranging approximately from

2,000 to 20,000 K/s. The reactive powder was coated on an electrically heated

Nichrome® filament. The value of the DC voltage applied to the filament determined the

experimental heating rate. The temperature of the uncoated portion of the filament was

monitored with an infrared pyrometer. aight emission from the powder coating was

detected by a separate photo-sensor. A sharp onset of the light emission was taken as
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evidence of ignition and the temperature recorded for that instant was considered as the

measured ignition temperature. The setup is described in detail elsewhere [24, 42].

Combustion of the prepared nanocomposite powders was studied using constant

volume explosion (CAVE) experiments. A 9.2 a explosion vessel was used. The vessel

was initially evacuated. A short gas blast delivered from a high pressure reservoir

through a nozzle with multiple small openings introduced powder into the vessel and

simultaneously established the initial gas environment and pressure. After a short delay,

aerosolised powder was ignited by a heated filament placed in the center of the vessel

and the pressure was monitored using a pressure transducer. Experiments were

performed in a mixture of 22.5 % 02 and 77.5 % Ν2. The ratio of the maximum

explosion pressure to the initial pressure before ignition, and the maximum rate of

pressure rise were used to assess the energy released in each explosion and the rate of

combustion, respectively. Condensed combustion products were collected after each

experiment for subsequent analysis. In addition to the nanocomposite powders, a

spherical aluminum powder by Atlantic Equipment Engineers, 99.9 % pure, nominal sise

1 — 5 um was used in these experiments for reference. This reference sample was

selected based on earlier experiments [65] where it was found to give the highest

explosion pressures and rates of pressure rise among several different aluminum powders.

A detailed description of the experimental setup and procedure is available elsewhere

[28, 29]. The experimental methodology is based on a technique developed by the M.S

Bureau of Mines for characterization of the explosibility of various dusts [66-67]. In the

preliminary tests using the experimental conditions described in Aef. [29], it was found

that some of the nanocomposite powders ignited upon entering the explosion vessel with



the gas blast. Το avoid such uncontrolled ignition, the gas blast duration was increased,

while the pressure in the reservoir was reduced. The final operating parameters were as

follows: gas blast duration: 500 ms, reservoir pressure: 2.45 atom, initial pressure in the

explosion vessel prior to ignition: 1 atom, delay between the gas blast and ignition: 300

ms.

5.5 Results and Discussion

5.5.1 Particle Sizes

Particle size distributions of the nanocomposite powders were determined by low angle

laser light scattering using a Coulter aS 230 enhanced laser diffraction particle size

analyzer. Measurements required suspension of small quantities of powder in de-ionized

water. Figure 5.1 shows the particle size distribution (PSD) of the as-milled

nanocomposite powders as well as for the spherical aluminum powder used for reference

in the CVE experiments. It was observed that the particle size increased with increasing

aluminum concentration. For the results of CVE experiments to be useful in terms of

identifying the effect of material composition, the particle sizes for powders of different

materials must be close. The PSD of the nanocomposite sample with bulk composition

4Α1 + M003 was found to be reasonably close to that of the reference aluminum powder.

However for the nanocomposite samples with higher aluminum concentrations, the

particles were noticeably coarser when compared to the reference aluminum. Therefore,

the above nanocomposite powders were size-classified using a 450 mesh sieve. Figure

5.2 shows the PSD of the size-classified powders used in CAVE experiments (along with

as-prepared 4A1+Μο02 and spherical Al powders). The particle sizes for the sieved
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powders were still noticeably coarser than for the reference aluminum, which should be

considered while interpreting the results of the CAVE experiments. In the future, if

necessary particle sises can be reduced using milling at cryogenic temperatures or other

techniques.



Figure 5.2 Particle size distribution of the nanocomposites powders after sieving. The
size distribution is also shown for aluminum powder used for reference constant volume
explosion experiments.

5.5.2 Morphology of Naiiocomposite Powders

Back-scattered SEAM images of cross-section samples of the Al-Mo03 Naiiocomposite

with different bulk compositions are shown in Figure 5.3. The dark background is epoxy

used for embedding the sample; the grey areas indicate aluminum matrix whereas the

light inclusions indicate Mo02. Al and Mo03 are sandwiched together and form a fully

dense material with a highly developed reactive interface. For all the prepared

compositions, the elongated, nano-sized Mo03 inclusions were uniformly distributed in

the Al matrix. No significant change in the size of Mo02 inclusions as a function of the

bulk material composition was observed.
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Figure 5.3 Backscattered electron SEAM image of Al-Mo03 nanocomposites with varying
concentration of Al.
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. In some samples, the presence of the fully reacted phases, e.g., Mob (very bright, white

component) and Α12O3 (dark, uniform component) was detected indicating that during

milling chemical reaction was initiated, although did not propagate over the entire

sample. Most of the reacted phases were observed for the 4Α1+ΜοO3 sample. This

reaction is undesirable and should be avoided for optimised synthesis conditions.

5.5.3 Phase Compositioiis

Figure 5.4 shows the CORD patterns of the nanocomposites synthesised with different

aluminum concentrations (note that Si02 peaks appear because quartz powder was added

as an internal standard for the XADC measurements). As expected, the intensities of Al

peaks decrease and of Mo03 peaks increase with reduced aluminum concentration. The

aluminum peak at around 45° is somewhat distorted because of an overlap with a peak of

Fe occurring nearly at the same angle, Iron in the XXRD patterns, indicates minor

contamination of the sample by the milling media. Peaks of Μο03Η0.5 are observed for

all samples. The intensity of these peaks changes only slightly with sample composition.

A possible source of hydrogen could be hexane used as a surface control agent. Presence

of metallic Mob was also noticed in the XADC patterns. Metallic Mob indicates that reaction

between Al and Mo02 was mechanically triggered during milling, but was not self-

sustained. To assess the extent of this undesirable partial reaction, the XADC patterns

were processed using the GAS whole pattern refinement software [45]. The relative

amounts of Mob and Mo03 phases were compared for all samples. The calculated mass

ratio of Mob and Mo03 as a function of bulk aluminum concentration is shown in Figure

5.5. It is clear that the reaction was most significant for the 4Α1+ΜοO3 sample. The
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crystallite size of aluminum was also evaluated from the refinement. It was estimated to

vary in the range of 35-45 rim.

Figure 5.4 AD patterns of samples with varying concentrations of Al.



Figure 5.5 Mass ratio of Mo/Mo02 phases calculated using experimental XXRD traces and
whole pattern refinement software [45] for samples with different aluminum
concentrations.

5.5.4 Reactioiis upoii Heatiiig

Figure 5.6 shows baseline corrected DSC traces for the three nanocomposite samples

with different bulk compositions heated to 1200 K at a rate of 2 K/min. The heating was

accompanied by several overlapping exothermic peaks occurring before the aluminum

melting point, which is indicated by a vertical dotted line. For all samples, the first

exothermic process starts at a temperature below 400 K. A broad exothermic hump was

reproducibly observed between 350 and 500 K. This hump was followed by a weak

exothermic peak between 600 and 750 K. A strong exothermic peak was observed to

occur between 800 and 900 K. Additional weak and poorly resolved exothermic features

were observed, e.g., around 700 and 900 K. An exothermic peak was also observed in

the vicinity of 1000 K, above the melting point of Al. An endothermic peak indicating
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aluminum melting was not clearly detected for all samples, most likely because of

overlap with exothermic features. A second strong endothermic peak was observed for

the 16Α1+Μο02 sample at 1000 K. This peak appears to indicate melting of Α1 12Μo and

paratactic formation of ΑΙ5Μo reported to occur around 1000 K [68]. For samples with

lower concentration of aluminum, this endothermic peak was masked by an exothermic

peak.

The kinetics of the observed exothermic reactions is of interest for both modeling

ignition and predicting stability of the prepared nanocomposite powders. However, the

quantitative analysis of such kinetics is not straightforward. An initial attempt was made

to analyze the obtained DSC traces using an isoconversion approach [69]. It was found,

however, that such analysis is not meaningful and that a detailed kinetic model needs to

be developed instead. Development of such a model is outside the scope of this paper

and will be addressed in future work. Additional details describing isoconversion data

processing from the DSC experiments with metal-rich Al-Mo03 nanocomposite powders

are available elsewhere [69].



5.5.5 Igiiitioii Temperatures

Figure 5.7 shows the ignition temperatures of the Al-Mo0 3 nanocomposites as a function

of heating rate. Each point represents the average of at least seven measurements taken

at the same experimental conditions. The error bars show the standard deviations

obtained for each experimental data set. Aluminum melting point is shown for reference

as a dotted line. Clearly, all samples ignited at temperatures well below the Al melting

point. At the lowest heating rate used (around 2000 — 3000 Kis), ignition occurred in

about the same temperature range of 720 — 750 K for all the samples.

For the sample with bulk composition 16A1+Μo03, increased heating rates

resulted in higher ignition temperatures, as expected for a thermally activated ignition

process. For this specific composition, extrapolating the resulting trend line to a
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practically interesting heating rate of 106 K/s results in an estimated ignition temperature

of 1160 K.

For samples with lower concentrations of Al, an increase in the heating rate

initially resulted in a small but reproducible decrease in the ignition temperature. Further

increase in the heating rate resulted in the regular trend of increased ignition temperature.

Note also that all three remaining samples ignited at very close temperatures for all

heating rates. Following the trend line shown in Figure 5.7 based on the two higher

heating rate experiments (and neglecting the point at the lowest heating rate) combined

for all three of these samples, it is predicted that these powders would ignite at about 910

K at a heating rate of 10 6 K/s. The unusual decrease in the ignition temperature observed

for the three samples between the heating rates of approximately 2000 and 7000 K/s can

be interpreted assuming a change in the ignition mechanism occurring upon increase in

the heating rate. In other words, it can be suggested that for these materials, different

exothermic processes result in a thermal runaway when the samples are heated at

different heating rates.



5.5.6 Combustion Experimeiits

The main goal of the CAVE experiments was to compare the combustion performance of

different reactive nanocomposite powders between one another as well as to compare

their performance with that of a pure aluminum powder. Before the experiments,

adiabatic flame temperatures and respective combustion product compositions were

determined for different materials using the NASA CEA (Chemical Equilibrium with

Application) code [70]. Calculations were performed for a constant volume case, with

the volume of the combustion chamber filled with a gas mixture of 22.5 % 0 2 and 77.5 %

N2, selected to match the volume of the experimental explosion vessel, 9.2. L. Predicted

adiabatic flame temperatures for the varied mass loads for different fuels are shown in

Figure 5.8. The nanocomposite powders were represented by their respective bulk
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compositions of Alb and ΜοΟ3. Presence of small quantities of reaction products formed

during milling was neglected.

For experiments with Alb powder, the mass load was selected that resulted in the

highest predicted adiabatic flame temperature, i.e. 2.89 g. This case corresponded closely

to a stoichiometric Al-air mixture. A similar choice could not be made for all the

nanocomposite powders because the increase of the mass of powder, which includes both

fuel and oxidizer, can result in a continuous increase in the flame temperature, as clearly

seen for 4Α1+Μο0 2 (cf. Figure 5.8). For nanocomposite powders with smaller aluminum

concentrations, the fuel loads corresponding to the maximum temperatures increase

significantly compared to that of pure Al. Therefore, selection of the mass loads for

nanocomposite fuels as matching the maximum predicted adiabatic flame temperatures

was impractical. Instead, the mass loads of nanocomposite powders were selected to

match the volume of the reference aluminum sample. In other words, the volume of the

powdered fuel used in the CAVE experiments remained constant for all the materials. The

powder loads used in these experiments for different materials are shown in Table 5.1.

Also shown in Table 5.1 are equivalent masses of pure Al per powder load for each

material.
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Characteristic CAVE pressure traces for different materials are shown in Figure 5.9. The

pressure trace recorded in an experiment with pure Al powder indicates a significant

delay between the instant the igniter was triggered and the time when a substantial

increase in pressure was observed. However all nanocomposite powders ignited without

any noticeable delay, an indication of their higher reactivity as compared to aluminum.



In a first approximation, the ratio of the maximum CVE pressure, Amax , over initial

pressure in the vessel can be considered proportional to the flame temperature. The

maximum pressures are practically identical for pure Al and for the 8Αl+Μo0 3

nanocomposite powder. The maximum pressures are somewhat lower for other

nanocomposite samples.

A crude evaluation of the heat release produced in CVE experiments can be made

assuming that the released heat, ΔΑ is generally proportional to the temperature increase

in the vessel:

where the p and v are respectively the density and volume of the mixture, CV is its

specific heat at constant volume, and Τini is its initial temperature (i.e., room
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temperature). Assuming further that the behavior of the heated combustion products is

similar to that of an ideal gas, one can write that

Therefore, the heat release per gram of aluminum in each of the tested powders can be

compared based on the following estimate

The left hand side of the latter equation is plotted in Figure 5.10 as a function of the

material composition. Aluminum mass is taken from Table 5.1. Based on Figure 5.10, it

appears that for both 4Α1+Mo02 and 8A1+Μο03 nanocomposite powders the energy

release per gram of aluminum was nearly the same and much higher than that for pure

aluminum powder. However, with the increased aluminum concentration, the energy

release quickly approaches that of pure aluminum, indicating reduced combustion

efficiency. Most likely, the reduced combustion efficiency is associated with the larger

particle size for the nanocomposite powders with higher aluminum concentrations. Thus,

reducing particle sizes for such materials, e.g., by using milling at cryogenic

temperatures, may prove to be a promising approach.



Aluminum concentration, %

Figure 5.10 Equivalent heat of reaction normalized per mass of aluminum for different
powder compositions.

The combustion rate of the powders is evaluated from the maximum rate of pressure rise,

dp/dtmax, proportional to the burn rate for the CAVE experiments [71]. The dp/dtmax was

calculated by processing the recorded pressure traces. The results in terms of the

maximum rates of pressure rise plotted as a function of the material composition are

shown in Figure 5.11. The value of dp/dtmax and thus the burn rate of the sample

containing 8 moles of Al was the highest. The burn rates for all prepared nanocomposite

powders exceed that of pure aluminum.
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Figure 5.11 The maximum rates of pressure rise measured in CAVE experiments, dp/dtmax ,
as a function of the powder composition. The dashed line indicates a polynomial
interpolation to fit the data points.

The combustion products were collected and their composition was investigated

using x-ray powder diffraction. The resulting AD patterns are shown in Figure 5.12.

Once again, quartz was added to the samples as an internal standard. An agreement with

the combustion efficiency of aluminum discussed above (cf. Figure 5.10), the peaks of

metallic Al indicating unburned metal are stronger for the products of powders with

higher initial aluminum concentrations. The peaks of W0 2 are most likely due to the

presence of burned fragments of the igniter wire made of tungsten.

A more quantitative estimate of the reaction completeness can be obtained by

comparing the intensity ratio of a characteristic Α1203 peak to that of a characteristic Al

peak. This ratio as a function of the material composition (including the results for pure

Al powder not presented in Figure 5.11), is shown in Figure 5.12. As expected, the



103

reaction is most complete (the highest ratio of A1 203/Α1 peak intensity) for the lowest

aluminum concentration in the nanocomposite powder. For the sample with bulk

composition 16A1+Μo03, the reaction completeness is less than that of pure Al powder.

Again, this can be explained by a substantial difference in the particle sizes (cf. Figure

5.2). Even after sieving, the nanocomposite particles had an average particle size of 16

m as compared to 6 m for aluminum.

Figure 5.12 XADC patterns of CAVE combustion products of different nanocomposite
powders.



Figure 5.13 Results of XRD analysis of combustion products collected in CAVE
experiments: intensity ratios for peaks of Α1203 and Al.

5.6 Coiiclusioiis

Fuel rich Al-Mo0 3 nanocomposite with varying compositions have been synthesized.

Mniform mixing of Mo03 nano-domains in Al matrix is achieved for all samples.

Particle size of the nanocomposite powders increases with increase in aluminum

concentration. Thermal analysis showed that exothermic processes start when the

nanocomposite powders are heated to only about 350 K. Multiple and overlapping

exothermic processes are observed and further work is needed to understand the reaction

mechanisms in these materials. At the heating rates varied in the range of 3000 — 30000

Κ/s, all nanocomposite powders ignite at temperatures well below the Al melting point.

Ignition temperatures of samples containing 4, 8, and 12 moles of Al per mole of Mo03

are similar and lower than those of the sample containing 16 moles of Al. It is noted that

for the former set of samples, the ignition mechanism changes as the heating rate

increases. Based on the current measurements, it is estimated that the nanocomposite
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powder with the bulk composition 1 6Αl+Μο0 3 will ignite at about 1160 K when heated

at a rate of 106 K/s, typically occurring in fuel-air explosions. The nanocomposite

powders with lower aluminum concentrations are expected to ignite at an even lower

temperature, of about 910 K, when heated at 10 6 K/s. Constant volume explosion

experiments indicate that the flames produced by nanocomposite thermite powders in air

propagate much faster than those produced by pure Al powder. The maximum rate of

pressure rise indicative of the highest burn rate was measured for the 8A1+Mo02

nanocomposite powder. Maximum reaction pressure indicative of the overall combustion

energy is highest for pure Al, closely followed by that cor 8A1+Mo02 and followed by

those for the 12Α1+Mo03 and 4Α1+Mo03 nanocomposite powders. The reaction energy

normalized per unit mass of aluminum is the highest for nanocomposite materials with

bulk compositions 4Α1+Μo03 and 8A1+Mo03 and lowest for pure Al and for the

16A1+Μο03 nanocomposite sample. This reduced efficiency of combustion inferred

from the measured pressure traces correlates with the analyzed combustion products,

containing respectively greater amounts of uiireacted aluminum. It is suggested that a

reduced efficiency of combustion for very aluminum-rich nanocomposite powders is

explained by relatively coarse particle sizes obtained for these materials.



CHAPTER 6

KINETICS OF SOLID STATE REDUCTION-OXIDATION REACTIONS:
FAILURE OF ISOCONVERSION APPROACH

6.1 Iiitroductioii

Thermal analysis became a ubiquitous tool for characterization of various solid state

reactions. Most of the related scientific studies report results in terms of specific

activation energies for specific transformations. An increasing number of practically

motivated and engineering publications interpret the results with the goal to determine

stability or aging characteristics of materials of interest. The most widely used approach

to interpret thermal analysis results in both cases is based on model-free isoconversion

methods. A number of variations to isoconversion analysis have been developed. A

critical comparison was given by Staring (2003) [72]. Several software implementations

are available commercially [73-74]. The activation energy is treated as a parameter of

the degree of transformation, α, and the Arrhenius formalism is developed to match the

differential thermal analysis (DTA/DSC) or thermo-gravimetric (TG) curves collected at

several heating rates. Once the match is achieved, the same formalism is used to predict

the material behavior under varying environmental conditions generally characterized by

lower heating rates. Recently, with development of novel reactive nanomaterials,

especially those employing thermite reactions [4 - 22], it became of significant interest to

expand the kinetics information inferred from thermal analysis to much higher heating

rates in order to quantify ignition kinetics for such materials. While the advantages of

model-free processing appear to be significant for some practical implementations [55, 75

-77], the concept of variable activation energy has been seriously criticized [78]. It has

106
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been suggested that development of true reaction models, i.e., including concurrent

processes with specific activation energies offers more benefits in the long run and

reduces errors resulting from the inappropriate applications of the model-free processing.

Indeed, such processing, can only be adequately applied for independent, well-resolved

reactions when the experimental baseline is unambiguously established. Mnfortunately,

such cases are rare in solid state reactions and the experimental results of thermal analysis

need to be carefully examined before an isoconversion approach is used.

This paper presents an example of a solid-state reaction for which any of the

generally used isoconversion approaches fail. The DSC measurements are reported and

initially processed by the Kissinger peak method [51]. The resulting reaction kinetics and

respective activation energies are of significant practical interest, but are determined with

unacceptably low accuracy. An attempt to model the experimental DSC results by a

series of independent processes is shown to fail. Additional experiments demonstrate

clearly that the isoconversion approach represented by either simple calculation or

advanced, software-based mathematical processing is unacceptable for this reaction. It is

concluded that development of a reaction model is imperative for practical interpretation

of the respective DSC results.

The specific solid state reaction of interest to this study is a reduction-oxidation

reaction of Al with ΜοΟ3. The reaction is studied for fully dense nanocomposite

powders with a composition 4Α1+Μο0 2 (with excess Al over the stoichiometric

composition) produced by arrested reactive milling (ARM). Detailed description of

synthesis of reactive nanocomposite powders by ARM is available elsewhere [18 - 22].

The material used in this study and other similar nanocomposite materials are being
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currently developed for advanced reactive formulations to be used in propellants,

explosives, and pyrotechnics [18-22].

 6.2 Materials

Nanocomposite powders were prepared using a shaker mill (8000 series by Apex

Certiprep) with flat-ended steel vials and 5 mm diameter steel milling balls. Powders of

elemental aluminum (99% pure, -325 mesh by Alfa Cesar) and molybdenum trioxide

M002 (99.95% pure, by Alfa Cesar) were blended in the required proportion. Batches of

5 g were milled under argon and with 4 ml of hexane (C6Η14) as process control agent

(PICA) to inhibit cold welding and prevent reaction of Al with Mo03 during milling. A

constant milling time of 30 min was used. The product powders had particle sizes in the

rangg of 1 — 200 m. Each particle consisted of an aluminum matrix with embedded

nano-inclusions of ΜοΟ3. An example of a cross-section is shown in Figure 6.1.

Previous work [79] has shown that the general sequence of reactions in such

material includes decomposition of Mo03 into M002 and 0 and diffusion of oxygen ions

to Al through layers of different polymorphism of Α1203 and possibly through MoO2. At

higher temperatures, formation of ternary oxides, Α12ΜοΟ6 was observed [79].



6.3 Thermal Aiialysis

Reactions in the nanocomposite powders at elevated temperatures were studied by

differential scanning calorimeter (DSC) using a Netzsch Simultaneous Thermal Analyzer

STA409 AC. Alumina pans were used and the furnace was flushed with argon at

approximately 50 mlimin. DSC traces were recorded between room temperature and

1200 K with heating rates varying from 1 to 40 K/min. At 1200 K, the samples were held

for 30 min, and then cooled to room temperature. In order to establish a useful baseline,

the reacted samples were than heated again to 1200 K. The temperature sensor of the

DSC was calibrated with a set of high-purity standards; the temperature measurements

are estimated to be accurate within +1 K.



The results of the DAC measurements for a set of heating rates are shown in

Figure 6.2. The traces show a series of overlapping exothermic peaks. Initial exothermic

events starting at ~400 K are difficult to separate. These features are followed by

stronger and more easily identifiable peaks in the 800 — 950 K temperature range. In

addition to the expected shift to higher temperatures at higher heating rates, the shapes of

the observed peaks change substantially. For example, a relatively strong peak observed

between 600 and 700 K at the lowest heating rates can hardly be detected when heating

rates exceed 5 K/min.

Figure 6.2 Baseline-corrected DAC traces collected for nanocomposite powder with bulk
composition 4 Al + M003 at heating rates ranging from 1 to 40 K/min.
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6.4 Data Processiiig

In an initial attempt to separate DSC peaks, and to assign an individual activation energy

to each process, apparent peak maxima were used to process the data according to

Kissinger method [51]. The Kissinger formalism states that

where β is the heating rate, Τρ  the temperature of the peak maximum, E is the activation

energy of the process, and R is the universal gas constant. A plot of the left hand side

(LHS) of equation (1) vs. the reciprocal peak temperature should yield a straight line with

the slope of B/R. The constant C is regarded as specific to the reaction mechanism, and

need not be further specified. To apply this method, peak positions have to be identified.

As can be seen in Figure 6.2, only the peak in the 800 — 900 K range can be tracked

throughout all measurements. In order to be able to estimate the activation energy for the

other identifiable features in the measurements, different reference points were used as

approximations. The onset point of the overall heat effect was used, as well as the

inflection point of the minor peak in the 600 — 700 K range. Figure 6.3 shows the results.

It is evident that within these few measurements, some apparent outliers exist, and that

the data points therefore can not be described by straight line fits. Results that are

qualitatively similar have been reported in other publications on energetic composites

[16, 80-82]. Additional experiments in smaller heating rate increments suggest that such

outliers consistently form a trend, rather than represent the reproducibility of the

experiment. These measurements should be regarded with caution, and more detailed

measurements are needed.



Figure 6.3 Data processed according to the Kissinger peak position method. Heating
rates used were 1, 2, 5, 10, 20, and 40 Ki'min.

Since simple peak processing leads to the conclusion that individual peaks can not be

assigned unique activation energy values, it was next attempted to determine the

activation energy as a function of reaction progress according to various isoconversion

formalisms [76]. In all these methods, the reaction progress, α, is determined at a

number of different heating rates by integration of the heat flow Φ over time. This

requires a reliable determination of the baseline of the measurements. Despite the

experimental procedure outlined above, the signal at the end of the measurement (T >

1000 K) did not always return to zero, indicating that the baseline correction was not

complete. This is most likely due to slight changes in the physical parameters of the

sample that affect heat transfer, such as shrinkage or decrease in porosity. Α synthetic

baseline ΦΒL was then constructed by taking the weighted average between the heat flow

at the beginning (Φ1) and the end (Φ f) of the experiment with α as the weighing factor:
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This baseline was subtracted from the measured heat flow, and finally a was calculated

by integration:

Since the baseline depends on α while α depends on the baseline, α was caicuiateD

iteratively. The initial baseline was taken as a straight line between starting and end

points; subsequently the value of α converged after 3-4 iterations.

conversion methods can be classified in two main categories. The Ozawa-

Flynn-Wall, Generalized Kissinger, and Stariiik's methods are examples of conversion

methods that rely on the approximation of the so-called temperature integral [76, and

references therein]. Of these examples, Stariiik's method is the most accurate [76]. It

uses the following equation:

where Τα is the temperature corresponding to a specific degree of conversion. By

plotting the LHS of equation 4 vs. 1/Τ for fixed values of α, the activation energy can be

determined as a function of α.

Other methods do not rely on any approximation, but instead use the measured

heat flow directly. An example is the Friedman method:
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where explicit knowledge of the heating rate β is not required. Figure 6.4 shows plots of

the HS of equations 4 and 5 vs. 1/T. In both plots, the contours of constant reaction

progress can not reasonably be described by straight lines. In particular, the deviations at

low heating rates are strong, reproducible, and form consistent trends over a range of

heating rates. This strongly suggests that at least over the range of heating rates

investigated, a single activation energy can not be assigned to a specific degree of

reaction progress. Instead, overlapping reactions that likely depend on each other, must

be considered in order to successfully model the observed DSC measurements. It is

worth pointing out that mechanical application of these isoconversion methods gives

apparently very similar and consistent results, as illustrated in Figure 6.5. This is clearly

deceptive if the poor linear fit in Figure 6.4 is considered.
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Figure 6.4 Isoconversion processing of DISC measurements to determine the activation
energy as a function of the reaction completeness Top: Staring, Bottom: Friedman.



Figure 6.5 Activation energy as a function of reaction progress as determined by
Freedman's and Shrink's isoconversion methods.

6.5 Coiiclusions

Analysis of exothermic reactions in Al-Mo03 system shows that kinetics of such

reactions cannot be meaningfully determined by isoconversion processing. The data

processing shows that activation energy cannot be meaningfully determined as a function

of reaction progress, as would be required for any type of model-free processing. In this

case, which is expected to represent a rather common situation, more measurements at

different heating rates are needed to identify trends, and a detailed model development is

necessary for meaningful description of the reaction ginetics.



CHAPTER 7

SYNTHESIS AND CHARACTERIZATION OF SODIUM-NITRATE BASED
REACTIVE COMPOSITES

7.1 Iiitroductioii

Sodium nitrate is known as an active oxidizer for its ability to generate gas [83, 84], and

optical emission properties useful for applications in pyrotechnic formulations [85, 86].

The reactions of this oxidizer with metallic fuels, e.g., Al and Mg [87, 88] are of

particular interest. Mixing sodium nitrate with metallic fuel is typically associated with

the risg of self-ignition, so that fairly large particle sizes are used in most practical

applications [89, 90]. At the same time, improved combustion characteristics were

reported when reduced size powders were used [91, 92]. Aecently, several types of

reactive naiiocomposite were prepared using Arrested Reactive Milling (ARM), a

technique based on high energy mechanical milling of starting components [18, 22]. This

preparation technique enables fine mixing and produces highly developed reactive

interfaces between the components, which result in enhanced reaction rates. ARM is a

modification of reactive milling [38], in which a blend of powders capable of an

exothermic reaction is ball-milled. If the reaction enthalpy is sufficiently high, a self-

sustained reaction is triggered mechanically after a certain milling time. The products are

no longer reactive. In ARM, highly reactive nanocomposite powders are formed as a

result of arresting (or stopping) the milling process prior to the initiation of the self-

sustained reaction. In this worg, three metallic powders, including aluminum,

magnesium, and mechanically alloyed A1o.5Mgο.5 [ 14, 15] have been used as fuels to

prepare composites with ΝaΝΟ3 as an oxidizer using ARM. X-ray diffraction, electron

117
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microscopy, and thermal analysis were used to characterize the prepared materials. In

addition, ignition tests using an electrically heated filament were conducted to determine

their ignition kinetics. Combustion tests in air were also performed and the emission

spectra were measured. The results of this investigation are reported.

7.2 Materials

Starting blends were prepared from sodium nitrate (99%, Alfa AAesar), magnesium (99.8

%, 50 - 100 mesh, Atlantic Bquipment Bngineers), aluminum (99.9%, -325 mesh,

Atlantic Bquipment Bngineers). Mechanically alloyed powder with the composition

Alo.5Mgο.5 was prepared using a Retsch 400 AM plaiietary mill, according to methodology

described in detail in Ref. [26]. The average particle size of the mechanically alloyed

powder was 20-30 m [26].

The bulk compositions of the prepared composite materials were stoichiometric,

targeting the complete oxidation of the respective fuel component, and leaving nitrogen

as the only gaseous reaction product. Compositions of the individual components are

listed in Table 7.1.

Table 7.1 Bulk Compositions aiid Component Mass Fractions for Composite Powders
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7.3 Experimeiital

7.3.1 Syiithesis of Reactive Composite Powders

Composite powders were synthesized by Arrested Aeactive Milling using a Aetsch 400

PM planetary mill. The rotation speed was set to 350 RPM. The mill was set to reverse

the direction of rotation every 15 min. Aowders were milled in custom made steel jars

suitable for high pressure applications (ID ø 64 mm x 52 mm, 18 mm wall thickness),

using 9.53 mm balls made of AISI/SΑΕ 1013 low-carbon steel. In addition, the mill was

equipped with an air conditioner which maintained the ambient temperature at 10 ± 4 °C.

To monitor the processing temperature, the milling jars were equipped with wireless

temperature sensors (Point Temperature Sensors including 418 MHz transmitters by

Point Six Wireless, Inc.). Thermistors were embedded in aluminum plates which were

placed on top of each jar. The transmitters were mounted on the clamps holding the

milling jars in place. Milling temperature was monitored using a receiver connected to a

personal computer-based multi-channel data logger. Measured temperatures of the

milling jars were in the raiige of 12- 20 °C.

Synthesis was carried out in argon environment. For each composite several 20 g

batches were synthesized with a ball to powder ratio (BARB) of 5. Preliminary

experiments were carried out to determine the time when self-sustained exothermic

reaction is mechanically triggered. The composites were milled with no additives as

follows: Al + ΝaΝΟ3 -145 min, Mg + ΝαΝΟ3 -124 min aiid Alo.5Μgο.5 + ΝαΝΟ3 - 26 min.

For safety aiid ease of handling of the prepared reactive composites, 25 ml of hexaiie was

added into each milling jar, also under argon. This was followed by a brief 5-min period

of wet milling, which was intended to break loose agglomerates, and did not affect the
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structure of the prepared composites. To prevent slow reaction of the respective metal

component with atmospheric oxygen, the samples were stored under hexane as well.

7.3.2 Sample Characterizatioii

Morphology and composition of the reactive composites were examined on a SEAM (LBO

1530 Field Bmission Scanning Electron Microscope) operated at 10 kV. The samples

were cross-section for examination. Powder samples were embedded in epoxy and

polished using SiC paper and gerosene. Special care was taken not to overheat the

samples during polishing to avoid inducing the reaction in the produced composite

particles. The phase composition was verified for each composite by x-ray powder

diffraction (XRD). The XXRD was performed on a Phillips X'pert MAD powder

diffraction operated at 45 kV and 45 mA using Cu Κα radiation (λ = 1.5438 A).

Differential thermal analysis (DTA) was performed simultaiieously with

thermogravimetry (TG) using a Netzsch Simultaneous Thermal Analyzer STA409 PC.

Alumina crucibles were used and the furnace was flushed with argon at approximately 10

mlimin. To avoid exposing the material to air during loading of the crucibles, the

samples were introduced as a slurry in excess hexane, the thermal aiialyzer's furnace was

closed and vigorously flushed with Argon until the hexane evaporated, and the aiialyzer's

internal balance was used to determine the initial sample mass.

DTA and TG traces were recorded between room temperature and 973 Κ with

heating rates of 1 aiid 5 K/min. Higher heating rates were avoided in order to prevent

accidental ignition within the STAB. At the same time, measurements at heating rates

lower thaii 1 K/min were not feasible due to long-term stability issues of the

measurement setup. The weight of the sample for DTA aiid TG measurements was
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selected to be 10-15 mg. However, a smaller, 0.7-1 mg sample of Α1o.5Mgο.5-NaNO3

composites was also used to avoid ignition, as described below. The temperature of

the DATA was calibrated using the gnown melting points of a set of metal standards. The

temperature is accurate within ±1 K.

In addition to thermal analysis, a preliminary investigation of ignition at high

heating rates in the range 10 2-104 K/s was conducted. The reactive powder was coated on

an electrically heated Nicbrome filament. The temperature of the filament was monitored

with an infrared pyrometer. Light emission from the powder coating was detected by a

photodiode. Α sharp onset of the light emission was taken as evidence of ignition. The

setup is illustrated in Figure 2.3; in Chapter 2 (Section 2.4.4). The relation of thermal

aiialysis and filament ignition experiments will be discussed further below.

7.3.3 Spectral Emissioii of Combustioii of the Composite Powders

Since the composites studied here are of interest as pyrotechnic materials, initial

characterization of the spectral emission of the combustion of prepared composite

powders has been performed as a point of reference. Spectra were collected using the

experimental setup shown in Figure 7.1. The powder to be tested was placed on a

7.5 X7.5 X 1.0 cm aluminum plate and formed a 50 mm-long rectaiigle with the height of 1

mm aiid width of 1.2 mm. The light was collected from a cylindrical volume of

10±0.3mm diameter, just above the powder surface. The axis of the cylindrical volume

was horizontal, parallel to the rectaiigle's axis, aiid lifted approximately 5 mm above the

aluminum plate. All spectra were taken with a spectrometer integration time of 4 ms.

The exposure was adjusted by chaiiging the opening of the iris aperture.
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The intensity calibration of the spectrometer has been performed at the same

integration time value as that used for the measurements. A NIST-traceable tungsten

strip-lamp RSa2000 by the Ayrometer Instrument Co., Inc. was used as a light source.

The lamp manufacturer's data on the brightness temperature of the tungsten ribbon versus

DC current was used. The tungsten spectral emissivities at different temperatures from

ref. [93] were used to calculate both the real temperatures of the tungsten ribbon based on

its brightness temperatures and the respective normal spectral intensities Ιλ(λ, T) of the

tungsten ribbon at the temperatures used for calibration.

Figure 7.1 Experimental setup for the evaluation of light emission from combustion of
the prepared composite powders.

7.4 Results aiid Discussioii

7.4.1 Morphology aiid Structure

All produced powders examined under SEAM showed the presence of composite particles

as well as mixed powders of the starting materials. SEAM images of the produced



composite powders are shown in Figure 7.2. Both Alb and Mg powders form flages

sandwiched with particles of ΝαΝ03. The average thicgness of Mg flages is greater than

that of Al, which could be explained by slightly higher hardness (Brinell) of Mg metal as

compared to Al [94]. The composite particles made with the mechanically alloyed Al-

Mg powder appear different. No flages were formed; instead, three-dimensional

composite particles were observed. It also appeared that the interface between metal and

oxidizer was larger for the mechanically alloyed powder as compared to either of the pure

metal powders.

X-ray diffraction patterns collected for all three prepared composites are shown in

Figure 7.4. For both samples prepared with the pure metal powders, peags corresponding

to NaNΟ3 and respective metal component were clearly observed. For the sample

prepared using mechanically alloyed powder, peags of NaNΟ3 appear together with the

characteristic XXRD pattern of the mechanical alloy in which a broad peag of the Al-Mg y

phase (ΑΙ 12Mg17) can be distinguished [25]. The specially marged broad peag between

36-38°, in the Α10.5Mgο.5-ΝaΝΟ3 XRDA pattern belongs to the Al12Mgι7 intermetallic.

For all three materials, the preparation of composites did not affect the CORD

patterns of the starting components and, therefore, the crystal structures of the

components.



7.4.2 Thermal Aiialysis

Differential thermal analysis and simultaneous thermogravimetric analysis was

performed on all three prepared samples of composite powders. Figures 7.4 — 7.6 show

DTA and TG traces recorded as each of the powders was heated in argon from room

temperature to 973 K at 1 K/min and 5 Kimin.

Sodium nitrate melts at 573 K (not shown), reasonably close to 580 K, the melting

point reported in the literature [95, 96]. Melting can also be clearly seen in the DTA

traces of Α1-ΝaΝΟ3 (Figure 7.4) and Alo.5Mgο.5-ΝaΝO3 composites (Figure 7.6).

However, it is barely distinguishable for the Mg-ΝaΝO3 composite powder (Figure 7.5),

possibly due to overlap with simultaneous decomposition of the nitrate aiid oxidation of
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Mg. The melting of sodium nitrate is observed to start at somewhat lower temperatures

for the composite powders: melting onset is observed at 559 K and at 568 K for Al-

ΝaΝO3 and Al-Mg-ΝaΝO3 composites, respectively.

The TG trace for pure ΝaΝΟ 3 is nearly constant up to 845 K, while at higher

temperatures a rapid weight decrease indicates decomposition of the material. This

behavior is consistent with the decomposition temperature for sodium nitrate reported in

the literature [96]. According to mass spectrometric measurements [96], the first

decomposition step of ΝaΝΟ3 results in the evolution of oxygen gas and the formation of

sodium nitrite, ΝaΝΟ2. Only at temperatures above 1050 K does the nitrite decompose

accompanied by the release of NO gas.

For the composite powders, the decomposition of sodium nitrate starts at

significantly lower temperatures, as indicated by the respective TG traces in Figures. 7.4-

7.6. For the purpose of evaluation of the observed weight changes, the following bulk

reaction will be considered:

where M indicates Al, Mg, or the mechaiiically alloyed material. This reaction

assumes that the decomposition of the nitrite, resulting in the removal of NO gas, is

immediately followed by the quaiititative reduction of NO by the respective metal,

although that may or may not actually occur in the experiments. With this assumption,

the observed weight loss indicates the reaction progress directly, as nitrogen gas is the

only volatile species. As a benchmark, all investigated compositions contain

approximately 10 wt-% N2 gas.
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Figure 7.4 DTA and TG traces for an ΑΙ-ΝaΝΟ3, composite heated in argon at 1 Kimin,
and 5 K/min, respectively.

For the ΑΙ-ΝaΝΟ3 composite, the weight of the sample decreases gradually,

starting at about 400 K (see Figure 7.4). Several inflection points are detected in the TG

signal, indicating distinct reaction steps. At a heating rate of 5 Kimin, a TG step occurs

at -690 K near a diffuse exothermic peak in the DTA signal. Although the observed

steps overlap, and are difficult to rigorously separate, it can be stated that the weight has

decreased by about 5 % as the temperature approaches 800 K. At -8 10  K, the onset of an

exothermic peak is observed in the DTA signal, accompanied by further, more rapid

weight loss. After this peak, aii endothermic peak indicates the melting of residual

aluminum at 919 K, aiid the sample weight continues to decrease. At the highest

temperature reached in the experiment, the weight has decreased by approximately 17 %.



Figure 7.5 DTA and TG traces for an Mg-NaΝΟ3, composite heated in argon at 1
Kimin, and 5 Kimin, respectively.

The weight loss of the Mg-NaΝΟ3 composite occurs in several distinct steps, as

shown in Figure 7.5. The first step starts at ~450 K, and the weight decreases by

approximately 4.5 %. The highest rate of weight loss is observed at 480 K. While a

complex feature is observed in the DTA signal between 480 and 500 K, its relation to the

weight loss is not yet clear. After this initial weight loss, a second, complex step is

observed over the temperature range 550 to 610 K. The presence of two distinct

inflection points in the TG trace at 562 K aiid 601 K, distinguishable only for the heating

rate of 1 Kimin, indicates that at least two processes contribute to the feature. The DTA

signal shows a weak endothermic peak with a peak temperature of 566 K and a stronger

exothermic peak with a peak temperature of 602 K. This suggests that the reaction
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started by decomposition of NaΝΟ3, and is followed by oxidation of the Mg component.

By the end of the exothermic peak, the sample has lost approximately 9.0 % of its initial

mass. This is however followed by a distinct mass increase over the temperature interval

~610 K — 690 K. It is suggested that the initial weight loss represents the evolution of

N02 gas, part of which remains in the vicinity of the sample and subsequently oxidises

the Mg metal further, while producing N2 gas. The final weight loss is approximately 5.5

%, which corresponds to a reaction progress of roughly 57 % according to Aeaction (7.1).

Figure 7.6 DATA and TG traces for an Alo.5Mgο.5-ΝαΝΟ3, composite heated in argon at 1
K!min, and 5 K/min, respectively.

The TG trace for the composite material with mechanically alloyed Al-Mg

powder remains relatively constant up to approximately 704 K. Note that the noise level
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of the measurement shown in Figure 7.6 is very high due to the small amounts that were

used in order to avoid ignition at higher temperatures. The observed small weight loss

has been confirmed in separate measurements with larger amounts of material that were

heated to max. 700 K.

It can not be decided with certainty whether the apparent exothermic DTA feature

between 550 and 600 K corresponds to a physical process, or is an artifact. However,

ΝαΝο3 melting is expected to occur in that temperature range, as is clearly detected in

the DTA traces at both heating rates. At 704 K, a relatively sharp weight loss is

observed, accompanied by a sharp exothermic peak. The observed peak is significantly

stronger than the strongest exothermic peaks observed in the DTA traces of the Al-

ΝαΝΟ3 and the Mg-NaNΟ3 composites. Note that the peak temperature coincides with

the temperature of the eutectic between Mg and the Al-Mg y phase (Α1 1 2Mg1 7) [97]. The

mass change caii be estimated to within 5 — 10 %. Further weight loss occurs up until

~890 K, with a cumulative mass chaiige of 20 — 30 %. These values exceed the total

amount of nitrogen present in the sample, aiid therefore clearly indicate that other

components — most likely NO2 — must have been expelled during the rapid reaction near

708 K.

The DATA aiid TG experiments conducted at two different heating rates were used

to establish the kinetics of the observed metastable processes. Specifically, the kinetics

characterizing the strongest exothermic event that could be causing ignition was of

interest. The results of the thermal aiialysis are summarized in Table 2. When

applicable, the results were processed using the isoconversion method according to

Kissinger [51]. Aeak temperatures were determined from the DTA signal as well as from
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inflection points of the TG signal unless indicated otherwise. Apparent activation

energies were estimated, and are shown in Table 2.

The strong exothermic peak observed for the composite powder with Al-Mg

mechanical alloy does not seem to be noticeably affected by the change in the heating

rate. As noted, the onset temperature of this peak coincides with a eutectic in the Al-Mg

binary system [97]. This and the very high apparent activation energy suggest that the

sharp exothermic reaction is triggered by melting processes in the mechanically alloyed

component rather than by continuous reaction at the metal/nitrate interface. It is further

significant that the simultaneous weight loss is characterized by a much smaller

activation energy.

The thermal analysis data indicate that the composite material in which Al-Mg

mechanical alloy was used is expected to be most stable during storage and low

temperature handling. This conclusion is based on the highest temperature at which the

weight loss is observed and on the fact that this temperature does not seem to be affected

noticeably by the heating rate.

7.4.3 Igiiition

Characteristic changes in the photodiode signal as a function of temperature of the heated

wire are shown in Figure 7.7 for different composite powders undergoing ignition in air.

The instant of ignition can be identified from the sudden increase in the photodiode

signal. These instaiits are readily identified for both Mg-ΝaΝΟ3 aiid Alo.5Mgο.5-ΝaΝΟ3

composites; however, it is more difficult to point out the ignition instaiit for the case of

ΑΙ-ΝaΝΟ3 composite powder, especially at lower heating rates. In such cases, ignition

instaiits were then identified from time derivatives of the photodiode signal. As shown in
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Figure 7.7, at the same heating rate, the ignition temperature of the Α1+ΝaΝΟ3 composite

is consistently the highest and that of the Alo.5Μgο.5+ΝaΝΟ3 sample is the lowest. This

trend was observed for all three heating rates used in these experiments. Results of the

ignition experiments performed at different heating rates are summarized in Table 7.3.



Figure 7.7 Recorded photodiode traces as a function of the simultaneously measured
filament temperature for different composite powders undergoing ignition in air. Two
heating rates are shown.

A set of measurements was performed in argon in order to determine whether

ignition was caused by the reaction of metal fuel with ambient oxygen or with sodium

nitrate. The ignition temperatures measured in argon were the same or even lower than

those measured in air. Argon, a mono-atomic gas, has a lower thermal conductivity than
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air [93], which results in lower heat losses by convection, and consequently in a smaller

temperature difference between the powder coating on the heated filament. As a result,

less "overheating" of the filament is needed to achieve the same temperature of the

powder coating. Thus, the difference in thermal properties of the atmosphere may well

explain the lower apparent ignition temperatures observed in argon. The fact that the

temperatures measured in argon were never higher than those measured in air allows to

conclude that the ignition was always caused by the reaction between metal and sodium

nitrate. The ignition results are also plotted together with the results of the thermal

analysis in Figure 7.8 in Arrhenius coordinates.

Figure 7.8 Arrhenius plot comparing the results of DATA (low heating rates) and ignition
experiments for different ΝaΝΟ3 based nanocomposites.

The ignition of the Al-ΝaΝΟ3 composite does not appear to follow an expected

trend. The ignition temperature initially decreases as the heating rate is varied from —102
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to 403  K/min. In addition, the ignition event at the lower heating rate looks qualitatively

different than at higher heating rates, as illustrated in Figure 7.8. The ignition

temperatures at the higher heating rates approximately follow the trend projected from

the thermal analysis experiments. This suggests that at lower heating rates ignition is

caused by a process that has not been detected in the DTA measurements, possibly

occurring outside the measurement range.

In the case of the Mg-NaΝΟ3 composite, the overall range of ignition

temperatures implied by DTA is in agreement with the experiment. The slight mismatch

between observed ignition temperatures and the extrapolation from the thermal aiialysis

may be due to errors in determining the ignition temperatures; more detailed aiialysis is

needed.

For both, the Mg-based and the Mg-based composite, the chaiige in heating rate

causes the temperatures of the TG inflection points and the DTA peaks to chaiige in a

parallel fashion. Thus, both are equally suited to project ignition temperatures to higher

heating rates. This is not the case for the Mgo.5Mgο.5-ΝaΝO3 composite, however. The

stepwise mass loss indicated by the 1st TG inflection point (see Table 2, TG step 1) is

consistent with the observed ignition temperatures. The DTA peak that accompaiiies the

mass loss does not chaiige significaiitly with the heating rate. This is consistent with the

idea that the reaction at this temperature and at low heating rates is triggered by melting

in the alloy. The discrepaiicy between the released heat (DTA) aiid the mass loss (TG)

indicates that the melting of the alloy is likely not the process triggering ignition at higher

heating rates.
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Table 7.3 reports activation energies determined independently from the ignition

experiments, as opposed to the activation energies determined from thermal analysis, and

shown in Table 7.2. The fact that the values determined from the wire ignition

experiments are slightly different is likely due to thermal gradients between the heated

filament and the powder coating. Indeed, the parallel measurement of ignition

temperatures for the Α10.5Mgο.5-ΝaΝΟ3 composite in air and in argon shows that

minimizing thermal gradients decreases the apparent activation energy.

*

* based  on me higher heating rages only

It is interesting that despite the highest thermal stability indicated by the thermal

analysis, the Α10.5Mgo.s+ΝaΝΟ3  composite has the lowest ignition temperature, and thus

will have the lowest ignition delay as compared to the composites in which pure Mg or

Mg powders were used.

In a previous thermoanalytical study of pyrotechnic formulations using Mg,

Mg, and Mg-Mg (cast) alloys as fuel and ΝaΝΟ3 as oxidizer, reaction temperatures were
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generally higher [87]. The onset of reaction in the Mg-based formulation was not

observed until 733 K, higher than either of the exothermic events observed in the present

study at 566 K and 602 K (see Table 2). The bulk of the material did not react until

above 800 K. In the case of the alloy, eutectic melting was observed, but no exothermic

reaction was associated with it.

In the same study, burn rates of test flares were measured, and it was found that

pyrotechnic formulations using Mg-Mg (cast) alloys combust more slowly thaii

formulations only using Mg as fuel [87]. This observation had also been explained by the

earlier melt formation in the alloy, and the tendency of the partially molten particles to

agglomerate. While rigorous combustion experiments with the composite powders of the

present study remain to be conducted, it can be concluded that the melting of the

mechaiiically alloyed powder is beneficial in enabling ignition, and that agglomeration at

heating rates of 103 — 104 K/s does not occur, at least not to the extent to impede the

reaction.

Based on the rapid increase in the photodiode signal upon ignition for the

composites with Mg aiid mechaiiically alloyed Alo.5Μgο.5 powders, it caii be suggested

that the ignition is caused by a vapor phase reaction between the volatilized Mg aiid

products of decomposition of ΝaΝΟ3. Mgternatively, for the composite with Al powder,

the ignition caii also be caused by heterogeneous reaction on surface of aluminum

particles, with its rate limited by diffusion of reagents through the alumina layer. Results

in Table 3, show that the activation energy of the composite of Mg is lower thaii that of

Mg and Alo.5Mgο.5 powders.
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It is worth noting that ignition temperatures of the nitrate-based nanocomposites

determined in the present study are generally higher than previously determined ignition

temperatures of similar ARM nanocomposites that were based on metal-oxide/aluminum

thermites [21, 22]. This may, however reflect differences in the nano-structure of the

respective composites rather than chemistry-based differences in the reaction

mechanisms. The nitrates investigated here are mechanically softer and at the same time

more easily reduced than the previously studied oxides (Fe203, ΜοΟ3), leading to

generally coarser composite particles compared to oxides.

7.4.4 Flame Emissioii

The observed lines in the emission spectra can be compared to atomic emission lines as

published in literature references [86, 98]. Mgl spectra are dominated by the Nay D

emission line at ~589 m. Further observed lines have been attributed to other sodium

traiisitions, or to Na-N2 interactions. A peak at 500.7 Om was identified in Aef. [86] as

due to a MHO molecular traiisition. Here, it is also observed in the nominally Mg-free

Al-ΝaΝΟ3 composite. A potassium emission doublet is observed near 767 iiim, likely due

to contamination introduced by sample handling. Similarly, the peag at 670.8 m may be

due to Li contamination. Further, a broad peak is observed near 800 m, but has not been

identified. There is little apparent difference in the emission spectra of the three samples.

The peak near 800 nm appears to increase in intensity as the amount of Al in the sample

increases. For the Mg-ΝaΝO3 composite, two additional weak peaks are observed at 373

aiid 384 Om, respectively.



Figure 7.9 Flame emission spectra for the prepared composite materials. Emission lines
marked by (*) correspond to lines reported in Ref. [86]. Other lines have been identified
from Ref. [98]

7.5 Coiiclusioiis

Highly reactive composites have been synthesized from starting blends of sodium nitrate

as oxidiser and Mg, Mg, and Mg-Mg mechanical alloys as fuels respectively, using arrested

reactive milling. The materials have been characterised by ORD and SEM. Reaction

characteristics were determined by thermal analysis (DATA, TG), and ignition

characteristics have been determined by a coated-filament technique.

The scale of the composite powder varies from 100 m to several m, and further

changes to the milling process may be required to refine the scale of mixing. Thermal

analysis shows that the decomposition of ΝaΝO3 in these composites occurs earlier than

pure ΝaΝO3 due to the presence of metals.
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Comparison of the activation energies obtained from DATA and ignition

experiments show that an ignition mechanism can be identified for Mg and Mg based

composites. Differences were observed for the Mgo.5Mgο.5-ΝαΝ02 composite, indicating a

different reaction mechanism at low and high heating rates, respectively. While at low

heating rates the strong exothermic reaction is triggered by melting processes in the alloy,

heterogeneous oxidation drives ignition for all composites at high heating rates. For

thermal analysis experiments at low heating rates to be useful for extrapolation to high

heating rates, the consistency of the reaction mechanism must therefore be confirmed.

Emission spectra in the visible and near MV range have been recorded for the

combustion of the composites. Comparison to previously published results for coarse

pyrotechnic blends shows that the spectra of the milled composites have largely the same

features.

The lowest ignition temperature was observed for the Mgo.5Mgο.5-ΝαΝ03

composite; together with the high apparent decomposition threshold at low heating rates,

this suggests that this material is the most promising for practical applications, where

haiidling aiid storage are concerns.



CHAPTER 8

CONCLUSIONS

Optimized milling conditions were determined for the synthesis of reactive Mg-Mo03 and

Ag-CuO composites powders by ARM.. Milling media with densities in the range of

5 to 8 g/cm3 result in the highest structural refinement accompanied by the lowest degree

of partial reaction. Powders produced with such milling media are most reactive as

indicated by the lowest amounts of oxidizer aluminum remaining upon their slow

heating to 935 K. The highest reactivity of these powders is also supported by the

observed strongest exothermic feature in the DSC traces. Filament ignition tests showed

that the same sample powders have the lowest ignition temperatures as compared to other

powders with the same bulk compositions.

Highly reactive composites have also been synthesized from starting blends of

sodium nitrate as oxidizer and Mg, Mg, aiid Mg-Mg mechaiiical alloys as fuels

respectively, using arrested reactive milling. The materials have been characterized by

XRD and SEM. Reaction characteristics were determined by thermal analysis (DTA,

TG), and ignition characteristics have been determined by a coated-filament technique.

The scale of the composite powder varies from 100 m to several m, and further

chaiiges to the milling process may be required to refine the scale of mixing. Thermal

aiialysis shows that the decomposition of ΝaΝO3 in these composites occurs earlier than

pure ΝaΝO3 due to the presence of metals.

Comparison of the activation energies obtained from DTA and ignition

experiments show that aii ignition mechaiiism caii be identified for Mg and Mg based

composites. Differences were observed for the Α1ο.5Mgο.5-ΝaΝ03  composite, indicating a

140
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different reaction mechanism at low and high heating rates, respectively. While at low

heating rates the strong exothermic reaction is triggered by melting processes in the alloy,

heterogeneous oxidation drives ignition for all composites at high heating rates. For

thermal analysis experiments at low heating rates to be useful for extrapolation to high

heating rates, the consistency of the reaction mechanism must therefore be confirmed.

Emission spectra in the visible and near UV range have been recorded for the

combustion of the composites. Comparison to previously published results for coarse

pyrotechnic blends shows that the spectra of the milled composites have largely the same

features.

The lowest ignition temperature was observed for the Α10. 5Μg0.5-ΝαΝ03

composite; together with the high apparent decomposition threshold at low heating rates,

this suggests that this material is the most promising for practical applications, where

handling aiid storage are concerns.

Reactions in stoichiometric 2Α1+Μo02 composites thermite powders have

been investigated using thermal analysis and heated filament ignition experiments. Α

preliminary reaction model was fit to the experimental data. The reaction model is the

superposition of four reaction steps assumed to be independent. The comparison of the

activation energies determined for the reaction steps observed in this study with

activation energies reported earlier for elementary reactions in the Mg-Mo02 system

suggests that the first, low-activation energy reaction is associated with decomposition of

M002 while following reaction steps are controlled by the diffusion through growing

layers of Α1203. Preliminary comparison with ignition experiments suggest that a
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relatively small heat release at the onset of the exothermic reaction causes ignition at high

heating rates.

The highly exothermic heterogeneous reaction between Alb and CEO was found to

start at relatively low temperatures (~ 400 K) and can also be described by four parallel

reaction steps. Barlier measurements did not resolve the temperatures exothermic

events and focused on the strongest, fourth reaction step. However, ignition of the

nanocomposites Al-CEO materials was shown to be driven primarily by the lower-

temperature oxidation processes.

Specific mechanisms aiid ginetic parameters were determined to describe the

individual reaction steps for the prepared nanocomposites powders. These mechaiiisms

include the frequency factors specific for the powders used in this study aiid activation

energies that should remain valid for any Al-CuO composite materials. The identified

reaction steps were tentatively assigned to specific processes of CEO decomposition

followed by diffusion of reacting species through amorphous aiid then crystalline Α1203

polymorphism. It was shown that ignition of Al-CEO nanocomposites powders can be

described reasonably well using the proposed kinetics of Al-CEO heterogeneous

reactions. Future work will focus on development of a complete, quaiititative ignition

model.

Fuel rich Mg-Mo03 naiiocomposite with varying compositions have been

synthesised. Mniform mixing of Mo0 3 nano-domains in Al matrix is achieved for all

samples. Aarticle size of the naiiocomposite powders increases with increase in

aluminum concentration. Thermal aiialysis showed that exothermic processes start when

the nanocomposites powders are heated to only about 350 K. Multiple and overlapping
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exothermic processes are observed and further work is needed to understand the reaction

mechanisms in these materials. At the heating rates varied in the range of 3000 — 30000

K/s, all naiiocomposite powders ignite at temperatures well below the Mg melting point.

Ignition temperatures of samples containing 4, 8, and 12 moles of Mg per mole of Mo03

are similar and lower than those of the sample containing 16 moles of Mg. It is noted that

for the former set of samples, the ignition mechanism changes as the heating rate

increases. Constaiit volume explosion experiments indicate that the flames produced by

nanocomposite thermite powders in air propagate much faster than those produced by

pure Mg powder. The maximum rate of pressure rise indicative of the highest burn rate

was measured for the 8Α1+Μο0 3 naiiocomposite powder. Maximum reaction pressure

indicative of the overall combustion energy is highest for pure Mg, closely followed by

that for 8Α1+Μο0 2 aiid followed by those for the 12Α1+Μo02 aiid 4Α1+Μο03

naiiocomposite powders. The reaction energy normalized per unit mass of aluminum is

the highest for naiiocomposite materials with bulk compositions 4Α1+Μο0 3 aiid

8Α1+Μο03 and lowest for pure Mg and for the 16Mg+Μο03 nanocomposite sample. This

reduced efficiency of combustion inferred from the measured pressure traces correlates

with the analyzed combustion products, containing respectively greater amounts of

urireacted aluminum. It is suggested that a reduced efficiency of combustion for very

aluminum-rich naiiocomposite powders is explained by relatively coarse particle sizes

obtained for these materials.

A more detailed analysis of exothermic reactions in Mg-Mo0 3 system shows that

kinetics of such reactions cannot be meaiiingfully determined by isoconversion

processing. The data processing shows that activation energy cannot be meaiiingfully
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determined as a function of reaction progress, as would be required for any type of

model-free processing. In this case, which is expected to represent a rather common

situation, more measurements at different heating rates are needed to identify trends, and

a detailed model development is necessary for meaningful description of the reaction

kinetics.
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