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ABSTRACT

DESIGN AND PERFORMANCE OF CDMA CODES
FOR MULTIUSER COMMUNICATIONS

by
Radharani Poluri

Walsh and Gold sequences are fixed power codes and are widely used in multiuser

CDMA communications. Their popularity is due to the ease of implementation.

Availability of these code sets is limited because of their generating kernels. Emerging

radio applications like sensor networks or multiple service types in mobile and peer-to-

peer communications networks might benefit from flexibilities in code lengths and

possible allocation methodologies provided by large set of code libraries.

Walsh codes are linear phase and zero mean with unique number of zero

crossings for each sequence within the set. DC sequence is part of the Walsh code set.

Although these features are quite beneficial for source coding applications, they are not

essential for spread spectrum communications. By relaxing these unnecessary

constraints, new sets of orthogonal binary user codes (Walsh-like) for different lengths

are obtained with comparable BER performance to standard code sets in all channel

conditions.

Although fixed power codes are easier to implement, mathematically speaking,

varying power codes offer lower inter- and intra-code correlations. With recent

advances in RF power amplifier design, it might be possible to implement multiple level

orthogonal spread spectrum codes for an efficient direct sequence CDMA system. A

number of multiple level integer codes have been generated by brute force search



method for different lengths to highlight possible BER performance improvement over

binary codes.

An analytical design method has been developed for multiple level (variable

power) spread spectrum codes using Karhunen-Loeve Transform (KLT) technique.

Eigen decomposition technique is used to generate spread spectrum basis functions that

are jointly spread in time and frequency domains for a given covariance matrix or

power spectral density function. Since this is a closed form solution for orthogonal code

set design, many options are possible for different code lengths. Design examples and

performance simulations showed that spread spectrum KLT codes outperform or closely

match with the standard codes employed in present CDMA systems.

Hybrid (Kronecker) codes are generated by taking Kronecker product of two

spreading code families in a two-stage orthogonal transmultiplexer structure and are

judiciously allocated to users such that their inter-code correlations are minimized. It is

shown that, BER performance of hybrid codes with a code selection and allocation

algorithm is better than the performance of standard Walsh or Gold code sets for

asynchronous CDMA communications.

A redundant spreading code technique is proposed utilizing multiple stage

orthogonal transmultiplexer structure where each user has its own pre-multiplexer. Each

data bit is redundantly spread in the pre-multiplexer stage of a user with odd number of

redundancy, and at the receiver, majority logic decision is employed on the detected

redundant bits to obtain overall performance improvement. Simulation results showed

that redundant spreading method improves BER performance significantly at low SNR

channel conditions.
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CHAPTER 1

INTRODUCTION

1.1 Communication System Design

Fundamental research on wireless communications took place more than 100 years ago.

Subsequently, first commercial mobile system was installed in 1960's by Bell Labs.

Further research led to the development of analog cellular mobile communication system

in 1980's to increase number of users in the system. Cellular system enables reuse of

spectral resources in non adjacent cell zones. More recently, digital cellular systems are

introduced in 1990's to transmit digital data consisting of not only voice but also data and

images at faster data rates. Apart from conventional voice communication, a number of

new applications like sensor networks, mesh networks and others are using a variety of

communication standards for data transfer.

Theoretical performance of wireless communication systems can be evaluated

using computer simulations without the need for actual prototype development and field

testing. Digital wireless communication can be categorized into three types: point-to-

point communication, point-to-multipoint communication and multipoint-to-multipoint

communication. Point-to-point communication corresponds to information sharing

between one transmitter and one receiver, point-to-multipoint corresponds to one

transmitter communicating with several receivers, and multipoint-to-multipoint means

several transmitters are capable of sending information to many receivers at any time. In

this dissertation point-to-point communication systems are only considered.

Point-to-point communication concept is shown in Figure 1.1. Even though, input

data from a user is usually generated in continuous time domain, it is advantageous to

1
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transmit discrete information over the digital communication channel. Accordingly, input

data is first digitized and compressed in the source encoder. In addition, several input

data bits can be combined together and transmitted in the form of a symbol to increase

data rate. Compressed data is then fed to channel encoder which adds appropriate

redundant bits to the data that help in the reduction of transmission errors at the receiver.

Different error correction codes such as convolution codes, BCH codes or Reed-Solomon

codes are widely used in practical systems.

Figure 1.1 Typical point-to-point communication system block diagram.

Channel encoded data is then fed into a digital modulator which modulates the

carrier signal and finally transmitted over the communication channel. Carrier signal can

be mathematically represented as

(1.1)
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where Α(t), ff , θ(t) are amplitude, frequency and phase of carrier signal, respectively.

Based on the input data signal, digital modulator changes one of these characteristics of

the carrier signal to achieve required modulation. In this dissertation, change of phase

characteristics of the transmitted signal, so called phase modulation is only considered.

At the receiver, baseband signal is detected in the digital demodulator. Then,

detected bits are fed to channel decoder, where error correction logic is applied to recover

the channel compensated data bits. Finally, data is fed to source decoder in order to

retrieve transmitted data bits.

Multiple access of the communication channel for different users is accomplished

by allotting different time slots (TDMA), different transmission frequencies and

subchannels (FDMA) or different orthogonal spreading codes (CDMA) for modulation.

Channel performance is measured in terms of either bit error rate (BER), frame error rate

(FER) or packet error rate (PER) depending on the data structure used for the

transmission. Performance of the channel is affected by receiver noise level, level of the

received signal (in turn depends on the transmitted signal), fading environment and level

of interference signals, including multiuser and multipath kinds.

In this dissertation, CDMA multiple access system is studied and simulated for its

BER performance under AWG noise, Rayleigh fading channel conditions and multiuser

interference. Furthermore, simulation studies are performed at baseband level without RF

band modulation / demodulation as lot of sampling data is required to represent signals at

RF band.
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1.2 Review of Previous Work

Basic building blocks of any multirate signal processing systems are decimators and

interpolators, and they are well discussed in the tutorial article given in [1}. Multirate

systems result in efficient processing of signals as sampling rates of the signals at various

internal points of the system are kept at optimal value according to the Nyquist theorem.

Multirate systems found applications in various fields such as communications, speech

processing and spectral analysis. Review of multirate filter banks, polyphase networks

and their applications to audio signal processing are presented in [2, 3]. Applications of

transmultiplexers for frequency division multiplexing and time division multiplexing are

explained in [4, 5, 6]. Digital function sets of discrete Fourier transforms (DFT) rather

than continuous analog functions are used to implement filter banks in [6].

Transmultiplexers for CDMA communications, time-frequency spreads of the basis

functions, various criteria for optimal basis functions are well documented in [7, 8, 9, 10 ] .

Orthogonal transmultiplexers for DSL applications are discussed in [11].

Walsh, Gold and Kasami codes are presently used in various CDMA systems as

spread spectrum codes [12, 13]. Correlation properties of these popularly used CDMA

codes are presented in [14, 15, 16, 17, 18]. System analysis for performance evaluation of

phase coded CDMA multiple access systems in terms of signal to noise ratios is shown in

[ 19, 20] . Lower bounds on the cross- and auto-correlation sequences of the binary codes

are analytically presented by Welch, Sidelnikov and Sarwate in [21, 22, 23] and are also

reiterated in [20, 24]. It was shown that Walsh codes have the lowest total sum of square

of cross-correlation values as mentioned in [25]. Variants of Gold and Walsh codes that

can be used for spread spectrum applications are generated in [26, 27, 28]. Similarly,
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references [29, 30, 31, 32, 33, 34] describe the methods for increasing capacity of the

system in synchronous communication without considering their asynchronous

performance.

Golay complementary sequences and zero correlation sequences are defined in the

context of minimizing total periodic auto- and cross-correlation values and peak to mean

power ratios in the case of quasi-synchronous multiuser transmission [35, 36, 37, 38].

These sets of spreading codes give good performance in the quasi-synchronous zone, but

the availability of number of codes for multiuser communication is limited.

1.3 Dissertation Overview

This dissertation is a presentation of design methodology for generating different types of

new spread spectrum code sets that can be used in CDMA systems for both synchronous

and asynchronous communication. Few examples of such designed code sets and

performance comparisons are made with presently used CDMA codes under various

channel conditions.

In Chapter 2, basic digital signal processing concepts, terminologies and

multirate signal processing techniques are introduced. Conditions required for perfect

reconstruction of the signal are discussed in the context of a two-band perfect

reconstruction quadrature mirror filter (PR-QMF) bank. Later, PR-QMF bank concepts

are extended for the design of an M-band filter bank. Multirate orthogonal

transmultiplexer architecture is in turn derived from M-band orthogonal filter bank which

acts as a fundamental tool to implement any digital communication systems.
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In Chapter 3, implementation of transmultiplexer architectures for different

applications such as TDMA, FDMA and CDMA are discussed in terms of the design

features of transmultiplexer's synthesis / analysis filters. The spreads of basis functions in

time and frequency domains are discussed and conditions for the design of CDMA

spreading codes with good performance in multiuser environment are presented.

Theoretical analysis for multiuser detection in DS-CDMA systems is presented in

Chapter 4. Critical dependence of multiuser detection performance on low cross-

correlation values between the code sequences is mathematically explained.

Mathematical kernels for the generation of spread spectrum codes used in existing

CDMA systems and their limits are discussed.

In Chapter 5, a novel design methodology for new binary spread spectrum code

families is presented and new codes are generated using computer search method. New

binary code families are divided into three groups- linear phase orthogonal codes, near

orthogonal codes and non-linear phase orthogonal (Walsh-like) codes. With this new

design, a number of independent code sets can be generated with flexible code length

options compared to existing code families. BER performance characteristics of these

new code sets are compared with the performance of standard code families in all types

of noise channels. Then, performance characteristics are justified in terms of various

correlation metrics and also in terms of their time and frequency spreads. Few sample

codes are listed.

Limitations of using binary valued spread spectrum codes for CDMA applications

are discussed in Chapter 6. To overcome these limitations, a new design methodology is

presented for the generation of multiple sample valued, varying power, integer spread
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spectrum codes. Pulse amplitude modulation (PAM) values are chosen as spread

spectrum chips in this new design. Number of independent, multiple level code sets are

generated by computer search method. Performance characteristics of these multiple

valued spread spectrum codes are compared with binary standard codes. Performance

improvements by increasing the number of chip levels for spreading input data and by

keeping code length fixed are presented. Few sample codes are also listed in this chapter.

In Chapter 7, an analytical method to design multiple valued, varying power

orthogonal spread spectrum codes is presented. An eigen-analysis based orthogonal block

transform design methodology for the given signal statistics of spread spectrum, so called

Karhunen-Loeve Transform (KLT), is extended to the design of varying power spread

spectrum codes that might also be suitable for direct sequence CDMA communications.

BER performance of the proposed orthogonal spreading codes is compared with the

standard codes like Walsh and Gold families under AWGN channel conditions. Few

design examples and sample codes are also described in the chapter.

Multiple stage orthogonal transmultiplexer structure is extended for the design of

hybrid or Kronecker product codes in Chapter 8. Kronecker product codes have been

generated and appropriately allocated to different users with the goal of reducing total

correlation values, thus improving overall BER performance. Performance characteristics

of different hybrid codes of both binary and multiple leveled codes are compared with the

performance of standard code families in multiuser communication scenario.

A design method is proposed to improve the multiuser CDMA performance at

low SNR conditions using multiple stage orthogonal transmultiplexer structure with fixed

or varying power codes. Each user data is redundantly spread in the pre-multiplexing
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stage of a user with odd number of redundancy codes and combined synchronously

before transmission. Majority based decision logic is applied on the detected bits at the

receiver to get an overall performance improvement.

Conclusions and future research are presented in Chapter 9.



CHAPTER 2

MULTIRATE FILTER BANKS AS SPECTRAL TRANSFORMS

Multirate signal processing tools have applications in diverse fields such as

communications, speech processing, data compression and many others. They provide an

efficient method for reconfiguring the signals by means of resampling of the original

signal, up- and down-sampling, depending on the requirement. Multirate systems have

different structures with single input-single output (SISO) multirate filter banks and

multiple input-multiple output (ΜΙΜΟ) transmultiplexers being the most popular ones. In

this chapter, discrete-time signal processing and multirate signal processing concepts will

be briefly reviewed to better understand their use in communication systems.

2.1 Discrete-Time Signal Processing: Fundamentals

Discrete-time signal {x(n)} is obtained by sampling a continuous time signal x(t) , where

n is the time index. The discrete system of interest in this dissertation is of linear, causal

and time invariant in its nature.

Let {h(n) } be the unit sample response of a discrete-time system. Output { y(n) } of

such a system, corresponding to an input data sequence {x(n)} can be obtained by the

discrete-time convolution operation [39]

(2.1)

where * is the linear convolution operator.

9
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Two-sided z — transform of {χ(n)} is defined as

(2.2)

The discrete-time Fourier transform (DTFT) of {x(n)} is defined as

(2.3)

and the inverse transform is defined as

(2.4)

When w is evaluated at N equally spaced points on the unit circle of the z-plane,

Equation (2.3) becomes the discrete Fourier transform (DFT) of {χ(n)} with size N .

(2.5)

For finite length discrete-time signals, size N DFT is defined as

(2.6)

and the corresponding inverse Fourier transform (IDFT) is defined as

(2.7)

The z-domain counterpart of time domain convolution of Equation (2.1) can be written as

γ(z) = H(z)Χ(z) 	 (2.8)

where H(z) is the z-transform of the discrete- time system.

In the frequency domain, where z = of ωΡn , Equation (2.8) is equal to

(2.9)
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2.2 Basic Operators of Multirate Signal Processing

Basic building blocks of multirate signal processing are up- and down-samplers for

changing the sampling rates of the original signal [8, 11]. In multirate systems, signals

must be properly conditioned with filters of proper spectral prior to or after sampling rate

conversions to avoid aliasing.

Decimation or downsampling is the process of reducing the sampling rate of a

signal by an integer number M as shown in Figure 2.1. This process involves passing

input signal {u(n)} through anti-aliasing filter {h(n)} and then downsampling the filtered

signal. Downsampling retains every M th sample of the input signal and relabels the

time axis.

Figure 2.1 Downsampling or decimation.

Intermediate signal {x'(n)} can be expressed in terms of the signal {χ(n)} as

(2.10)

The down-sampled signal {y(n)} obtained from {χ(n)} can be represented as

(2.11)

In frequency domain, the down-sampled signal can be expressed as



12

(2.12)

Time compression corresponds to stretching in frequency domain. If the original

signal X (e) is in the interval [0, π] , then down-sampled signal is in the

interval [0, π / M}. An anti-aliasing filter {h(n)} is connected before downsampling of the

signal to reduce input bandwidth to by [0, π / M] . Thus, time domain representation of

decimator is equal to

(2.13)

Similarly, interpolation or up-sampling refers to increasing the sampling rate of

the input signal by an integer factor of M as shown in Figure 2.2. This is achieved by

the combination of up-sampler followed by a low pass filter {g(n)} to limit the high

frequencies. Up-sampling inserts M —1 zeros between sample values and reindexes the

time axis.

Interpolated signal {y(n)} can be written as

(2.14)
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Interpolation corresponds to stretching the signal in time domain or equivalently

compressing in the frequency domain. In the frequency domain, the signal can be

represented as

(2.15)

Low pass filter {g(n)} eliminates the high frequency signals or images that occur

due to up-sampling. Time domain representation of the interpolator {v(n)} can be

expressed as

(2.16)

2.3 Two-band PR-QMF Filter Bank

Purpose of subband filter bank is to decompose signal spectrum into a number of

frequency bands or subbands. Multirate signal processing blocks defined in Section 2.2

are necessary tools for the perfect reconstruction (PR) of input signal at the output of

analysis / synthesis filter bank. Two channel subband analysis / synthesis filter structure

is displayed in Figure 2.3.

Figure 2.3 Two-band PR-QMF filter bank.
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Input signal spectrum is divided into two equal subbands using low pass filter

{ h o (n)} and its quadrature mirror filter (QMF) high pass filter V/, (n)} . Signals are then

down-sampled by 2 in the analysis stage and are transmitted. At the receiver, signals are

up-sampled by the rate of 2 in the synthesis section and are combined to get the input

signal back. For perfect reconstruction of the input signal at the output of the synthesis

section, if {h o (n)} is a low pass filter of FIR type, then {h, (n)} is a high pass filter.

These two filters are related as [7, 8, 9]

(2.17)

If the normalization

(2.18)

is imposed, then PR requirement in time domain can be expressed in terms of auto-

correlation lags ρ(n) as

(2.19)

(2.20)

PR-QMF conditions for 2-band filter bank can be summarized as

If PR-QMF conditions are satisfied by all filters of two-band PR-QMF bank, then output

signal {y(n)} is a delayed version of the input signal as
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(2.21)

where no is a delay constant related to filter durations.

2.4 Single Input-Single Output M-band Orthogonal Filter Bank:
Analysis / Synthesis Structure

Two-band filter bank analysis can be easily extended to M-band filter sections in both

directions as shown in Figure 2.4. In this maximally decimated filter bank, input signal

{x(n)} is decomposed into Μ equal bands using analysis filters {h0 (n), h, (n),...h, (n)} .

The symbol 4, Μ corresponds to downsampling of the signal by M , and the symbol

T M corresponds to up-sampling by a factor of M . In the synthesis section, after up-

sampling, outputs of {go (n), g, (n), ...g. 1 (n)} filters are combined to obtain the

reconstructed signal {y(n)} .

Figure 2.4 M-band PR-QMF filter bank (analysis / synthesis configuration).

Synthesis filters {g,. (n)} are related to analysis filters {hr (n)} as [7, 8, 9]
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gr (n) = h, (nο — n)	 (2.22)

These conditions are similar to a match filter pair conditions.

PR-QMF conditions for the analysis filters in the time domain are written as [8]

(2.23)

(2.24)

The output signal of M -band filter bank will be

2.5 Multiple Input-Multiple Output M-band Orthogonal Transmultiplexer:
Synthesis / Analysis Structure

Another popular application of multirate filter bank called transmultiplexer, which is of

particular interest in this dissertation, is a structure in which synthesis filter bank is

followed by analysis filter bank. This type of filter bank structures is useful for a variety

of multiuser communication systems.

Figure 2.5 displays an M-band synthesis / analysis filter bank. Μ independent

input signals {χο (n), χ1 (n), ..., χ (n)} are first up-sampled by a factor of Μ . Then

these signals are interpolated using synthesis filter bank {gο (n), g , (n), ... , χ  (n) } .

Outputs from synthesis filters (subchannel signals) are summed together to form output

{y(n)} which is transmitted over the channel. Channel noise distorts signal {y(n)}

into { y'(n)} .
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Figure 2.5 M-band transmultiplexer (synthesis / analysis configuration).

At the receiver, with the assumption of ideal channel, signal {y'(n)} is split into

M subchannels at the outputs of analysis filters {k (n), h, (n), ..., h,_, (n)} and these

subchannels are down-sampled by a factor of M . This operation retrieves the original

signal with a constant delay if { g, (n)} and 0,0)1 are properly designed. Outputs of the

analysis filters are denoted as { (n), Ζ, (n), ..., i (n)} . Perfect reconstruction (PR)

conditions for the synthesis and analysis and filters in Figure 2.5 are the same as for the

analysis / synthesis filter bank configuration described in Section 2.4.



CHAPTER 3

TRANSMULTIPLEXER APPLICATIONS

The orthogonal synthesis / analysis filter bank structure of transmultiplexer provides

theoretical basis for multicarrier modulation techniques with single and multiple users in

the communication system. Subchannel (multicarrier modulation) concept has been

utilized for a single user in ADSL applications. The most popular application of

transmultiplexer has been in multiuser communications for decades. Frequency division

multiple access (FDMA), time division multiple access (TDMA) and code division

multiple access (CDMA) are the three popular multiple access techniques used to share

the available bandwidth in communication systems for multiple users. Synthesis /

analysis filters need to be appropriately designed based on the requirements of the

application in hand.

3.1 FDMA Systems

Most popular version of the orthogonal transmultiplexer configuration is of frequency

division multiple access type. In FDMA, communication channel spectrum is divided

into a number of non-overlapping sub-spectra (subchannel) and each user is allotted to

one of them. Both synthesis and analysis filters are of frequency selective with the same

subbands and ideally should have a brick wall frequency response.

18
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3.2 TDMA Systems

In contrast to FDMA, in a TDMA communication system, each user is allocated a

dedicated time slot. Each user is allowed to use full frequency spectrum during the given

time slot only. Here, each synthesis filter is a simple delay of sampling interval with the

Fourier transform representation as Gk (ern ) = e k"', Ο ≤ k ≤  M -1. This can also be

interpreted as an all-pass like user codes or synthesis filters with spectral response

3.3 CDMA Systems

In CDMA systems, all users are equally allotted to all available time and frequency slots,

with the aim of optimizing the overall throughput by maximizing the number of users in

the system. In CDMA systems, user spreading codes (filters) cannot be unit sample

functions as in TDMA or frequency selective as in FDMA. Instead, filters or orthogonal

spreading codes are designed such that they are simultaneously spread in both the time

and the frequency domains with minimum inter- and intra-code correlations.

3.4 Time-Frequency Localization of a Discrete -Time Function

Concentration or shaping of signal energy in the time-frequency plane is an important

criterion for the detection of signals. A wide signal in the time domain has a narrow

bandwidth in the frequency domain and a time domain localized signal has wide

bandwidth in the frequency domain. The "uncertainty principle" describes the limits of

simultaneous realization of a function in both the time and the frequency domains. These
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are opposing requirements for a function to be simultaneously and maximally spread in

both time and frequency domains [40] .

For discrete-time signals, let h(n) H Η(e) denote the discrete-time Fourier

transform (DTFT) pair satisfying the relations

(3.1)

By Parseval's theorem, signal energy is the same in both time and frequency domains and

is equal to [40]

Time and frequency centers of a discrete sequence are calculated as [8]

Time and frequency domain spreads of that sequence are defined as [8]

For band pass signals, σ 2 needs to be defined in the range of [0, π] rather than [—π, π] .

(3.2)

(3.3)

(3.4)

In such a scenario, equations ώ, σ are modified as [8]
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(3.5)

(3.6)

Figure 3.1 shows the time-frequency tile of a discrete-time function with σ; and σ

defined as in Equation (3.4). Shape and location of the tile is adjusted by properly

designing time and frequency centers and spreads of the user code (filter) functions. In

addition to shaping the time-frequency tiles, orthogonality requirements are also imposed

on the basis function design problem.

Figure 3.1 Time-frequency tile of a discrete-time function.
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For designing CDMA codes, in addition to the PR-QMF conditions of

Equation (2.18), inter- and intra-code correlations between the basis functions need to be

minimized in order to improve detection performance.

Inter- and intra-code correlations for a two-user case are defined as

An objective function Jmax  is set to optimize the criterion [7, 8, 9]

where α, β, y, η are constants. By optimizing the objective function, it is possible to

obtain many different solutions for different values of weighting parameters α, β, y, η .

Next, chapters describe the design of spreading code basis functions based on

orthogonality principles and minimization of inter- and intra-code correlation values for

CDMA communication applications.

(3.7)

(3.8)



CHAPTER 4

CODE DIVISION MULTIPLE ACCESS SYSTEMS

In CDMA systems, multiple access capability is primarily achieved by means of coding.

All users in a CDMA system are assigned different code sequences. Input data from each

user is modulated with the assigned code and is transmitted. Receiver, with the

knowledge of the code sequence used at the transmitter, decodes the received signal and

recovers the original data bits. As the bandwidth of the code signal is much larger than

the input data rate, encoding process spreads the spectrum of the information signal and

hence CDMA systems are also known as spread spectrum systems. Based on the

modulation method employed, CDMA protocols are divided into mainly three groups:

direct sequence (DS-CDMA), frequency hopping (FH-CDMA) and time hopping (TH-

CDMA). Encoded information signal modulates the transmitted carrier phase in DS-

CDMA systems. It changes the transmitted carrier frequency in FH-CDMA systems. In

TH-CDMA, carrier frequency is sent in bursts of time depending on the information

signal. In this dissertation, only DS-CDMA systems are considered.

4.1 Direct Sequence CDMA Systems

In DS-CDMA systems, every data bit is directly multiplied (spread) with a code signal,

known as spreading code. The resulting signal modulates the radio frequency (RF)

carrier. Spreading signal consists of a number of code bits called chips. Ratio of the

spreading signal chip rate to the original data bit rate is called the spreading gain or

23
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processing gain. In DS-CDMA systems, all users use the same transmitting carrier

frequency and can simultaneously transmit their data.

Receiver employs coherent demodulator to despread the received data using a

locally generated code sequence. To be able to perform the despreading, receiver needs to

know not only the code sequence that was used in the transmitted to spread the data, but

also to synchronize the received signal with the locally generated code. After despreading

and detection, original data bits are recovered.

Due to simultaneous transmissions of multiple users over the same channel, signal

detection at the receiver for each user is limited by the interference caused by other users

known as multiple access interference (ΜΑΙ). MAI depends on the number of users,

cross-correlation values among the user codes, delayed versions of the code of interest

due to multipath, transmitted power levels of other users as well as their timing

synchronization. Utilization of orthogonal codes for data spreading in a synchronized

system eliminates ΜΑΙ. Non-orthogonal codes or asynchronous system worsens ΜΑΙ,

resulting in lower system capacity. ΜΑΙ in such situations can be lowered by choosing

code sequences with lower cross-correlation values.

In systems with lower number of users, interested user signal coming from farther

distance will be masked if other user signals are received at higher power levels. This is a

classic near-far problem exists in all CDMA systems [41, 42] and typically occurs when

the signal of interest is coming from cell boundaries. To combat this problem, power

control is provided at the base station which ensures signals from all mobiles are received

at the same power level irrespective of their distance. In this dissertation, power control



25

problem is avoided and all signals are assumed to be received with the same power level.

Hence, their power levels are not considered in the detection process.

4.2 Mathematical Model for CDMA Communications

Received signal in a synchronized Kuser CDMA system embedded in additive white

Gaussian (AWGN) noise can be modeled as [ 19, 20, 42]

(4.1)

where Αk is the received amplitude from k-th user, bk E [-1, +1] is the k-th user's

transmitted data bit, and s k (t) is the spreading code assigned to k-th user's data bits. Αk

is assumed to be unity for all users in a power controlled system. Spreading code s k (t) is

normalized to have unit energy,

(4.2)

Then, performance of the receiver using a matched filter detector depends only on the

cross-correlation or similarity between two spreading code waveforms defined as

(4.3)

Maintaining synchronization among different users is possible in the case of base

station to mobile communication. In the case of mobile to base station communication, it

is impossible to maintain synchronization among users since users can be switched on at

random service initiation times.
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The received signal of such a Kuser asynchronous communication system can be

mathematically modeled as

(4.4)

where τ k are the relative time delays between different user codes received at the

Figure 4.1 Bit durations and associated time delays, cross-correlations for a two-user
asynchronous CDMA system.

Bit durations, associated relative delays and cross-correlations between the two users

(k, i) are shown in Figure 4.1 for the examples of two intervals i = 0 and i =1. User k is

switched on after user i with a delay of τ . It might be noted that for synchronous users,

τ , = τ 2 = ...τ «= 0, implying that all code sequences start at the same instant. Therefore,

orthogonality of spreading codes redeems all ΜΑI.

In asynchronous CDMA, two cross-correlation values Ρk» Pk, ' between a pair of

code sequences, depend on the timing offset between them. If k > 1, cross-correlation

values are defined as [ 19, 20]
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(4.5)

(4.6)

The output of the correlator, matched to the waveform s; (t) , with the received signal

y(t) as its input, is expressed as

Where ρk; , ρk, are defined in terms of a periodic cross-correlation Ck, for the sequences as

in [ 19, 20]

(4.7)

Ck, for sequences ak and a, is defined as

(4.8)

Periodic cross-correlation 0k, (1) for two sequences ak and al is given by [ 19, 20]

(4.9)

(4.10)

Then,
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θk, (1) is also called even correlation because θk, (1) = 8k, (N —1) and δkt (1 ) is called odd

correlation as θki (1) = - θki (N -1) .

If data symbols bk (-1) = bk (0) , then the matched filter output for the i-th receiver

depends on the even correlation values and is given by

(4.11)

On the other hand, if bk (-1) #14(0), then, the matched filter output depends on the

odd correlation values and is equal to

(4.12)

Hence, it is essential to have low valued even and odd cross-correlation values

among code sequences in order to have proper matched filter output.

4.3 Popular CDMA Spreading Codes

Binary valued Walsh and Gold codes are widely used as spreading codes in wireless

CDMA systems [12]. Walsh codes are perfectly orthogonal codes and are ideal for

synchronous CDMA communications, so called forward link or downlink transmission

from base station to mobile. For asynchronous CDMA systems, where relative delays

between transmitter code sequences are arbitrary, it is ideal to have spreading sequences

having both impulsive auto-correlation and zero cross-correlation to reduce ΜΑC.

Mathematically, it is not possible to design such ideal spreading sequences with finite

lengths for all possible delays [24]. Hence, spreading sequences with low auto- and cross-
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correlation values such as m-sequences, Gold sequences and Kasami sequences are used

in asynchronous reverse links or in uplink communicatiοns[12, 13].

IS-95 wireless communication standard uses orthogonal 64-length Walsh codes in

the forward link transmission and m-sequence of length (2 15 —1) for reverse link. Most

recent CDMA versions like Wideband CDMA (WCDMA) employ variable length

orthogonal Walsh codes in the forward link and large Kasami sets or long Gold codes for

the reverse link [12].

4.3.1 Orthogonal Walsh Codes

Walsh codes are generated by mapping rows of special square matrices called Hadamard

matrices [ 14, 15, 16] . Walsh matrices are obtained from Hadamard matrices with the

mapping of the elements {0,1} onto {1, —1} , respectively. These matrices contain one row

of all zeros and other rows of equal number of zeros and ones. They are recursively

generated from using the following identities

(4.13)

Walsh matrices of higher dimensions can also be obtained by taking Kronecker

matrix product of Walsh matrices with lower lengths. Walsh functions thus generated

have a size of N = 2, where n is of any integer.

Variable length orthogonal Walsh codes, also known as orthogonal variable

spreading factor (OVSF) codes are recursively generated from a layered tree structure.
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Here, not only the spreading sequences in the same layer but also sequences in different

layers are orthogonal to each other. As bandwidth of system remains constant, due to

variable length spreading codes, it is possible to have multiple data rate users in such a

system [ 12].

Walsh code sets have unique number of zero crossings within the set. In a typical

Ν x Ν size Walsh matrix, row indices (i = 0, 1, 2, ..., Ν -1) also indicate the number

of zero crossings for the corresponding row sequences. First code in the Walsh code set

of any size is a constant sequence comprising of all 1 's. Remaining sequences in any

Walsh code set have zero mean values. In addition, all Walsh basis functions are linear

phase sequences. They are either even or odd symmetric sequences in time. While many

of these features are useful for other applications, such restrictions on code sequences are

not necessary for spread spectrum applications.

4.3.2 Gold Codes

Gold codes of length (N = 2" —1) are generated from modulo-two addition of two m-

sequences that are preferred polynomials of each other [13, 17]. From one m-sequence of

length Ν (a) , another sequence (a') is generated by decimating the sequence (a) with

rate of q and the decimated sequence is denoted by a' = a[q] .

Sequence a' is of length Ν only if gcd(N, q) = 1 where gcd is the greatest common

divisor. Two sequences a and a' are considered preferred pair only if

n ^ (0 modulo 4), implying n is odd or n = (2 modulo 4)

a' = a[q] where q is odd and either q= 2" +1 or q=22k -2 k +1

1 for n odd
gcd(n, k) =

2 for n = 2(mod 4)
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Auto- and cross-correlation values between two preferred pair of codes is a three-

valued function with the values [—t(n), — 1, t(n) — 2] where

For large values of N, peak auto- and cross-correlation values of Gold codes compare

with the Welch correlation bound values by a factor of (2^.5) for n odd and by a factor of 2

for n even [ 19, 20] .

4.3.3 Kasami Codes

Procedure for generating Kasami codes is similar to that of Gold code generation. Small

Kasami set of Μ = 2" / 2 sequences and length N = 2" —1 (n is even) is obtained by

decimating the first m-sequence with 2 12 - 1 to get second m-sequence and then taking

modulo-two addition of both m-sequences [13, 18]. Small Kasami set have three

correlation values that match with Welch correlation bound values.

Large Kasami set consists of both Gold codes and small Kasami code sets as its

subsets. m-sequences are generated by decimating sequence (a) by 2 "/2 + 1 and

2+2)12 + 1 to obtain (a') and (a") and then modulo-adding these two sequences. Large

Kasami sets have 5 valued correlation sequences [ —1, —1 ± 2/2,_1±  2" / 24Ι ]

All these types of codes are easier to generate from their mathematical kernels.

But, number of such spreading sequence sets is limited in the binary sample space for any

spreading length. For example, Walsh codes are available only for the lengths that are

powers of 2 and Gold / Kasami codes are available for lengths equal to 2" —1 for certain
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(n) values. Emerging applications like sensor networks, peer-to-peer communication will

have greater flexibility in their design if spreading sequences of various and shorter

lengths exist. Also, at each code length, if a number of independent spreading code sets

exists, then users will have the flexibility of switching from sequence set to another set.

Security of such a system might be improved if receivers have the pre-determined

knowledge of the code updating patterns.

This dissertation is focused on the design concepts, evaluation metrics and

generation of such independent, orthogonal binary and multiple level spreading sequence

sets for various lengths that can be used in both synchronous and asynchronous

communication systems.



CHAPTER 5

ORTHOGONAL BINARY SPREADING CODES

In Chapter 4, widely used binary spread spectrum codes in existing CDMA systems were

discussed. Popularity of these codes is due to the ease of their implementation using

mathematical kernels, but the availability of such code sets is limited in number and in

their length. Additional code sets might be generated if unnecessary restrictions on

certain code features are waived. This chapter describes some design features, search

methodology and performance of such newly generated binary code sets under different

channel conditions. Designed binary code sets are broadly divided into three major

groups: Orthogonal linear phase codes, Near orthogonal codes and Non-linear phase

(Walsh-like) orthogonal codes.

5.1 Linear Phase Orthogonal Binary Codes

5.1.1 Design Methodology

Walsh codes are linear phase, zero mean (except the first code) and binary valued

orthogonal transforms. These codes have unique number of zero crossings per sequence

within the set which is not a relevant condition for spread spectrum applications. Hence,

such a condition is waived in the search for new orthogonal binary code sets.

Binary representation of an n -length code requires a sample space of 2 '  values.

Integer numbers in the sample space are first represented in radix-2 format with [0,1]

elements for a given length of the code. For example, in radix-2 format, number 45, for 8-

length code is represented as {0, 0,1, 0,1,1, 0,1} . Binary spreading codes have two possible

33
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chip levels [1,—i]. Accordingly, radix elements [0,1] in the n-length code are mapped

into [1,—I], respectively, to generate corresponding spreading code. Since mapping of

[0,1] elements into [-1,1] generates complementary codes with equivalent but opposite

polarity, any one of these two mappings can be considered. Hence, orthogonal code

search in the sample space of [0, 2" -' —1] is sufficient since numbers in the range

[2"- ' , 2] are complementary to the codes in the range [0, —1] . Furthermore, sample

space for the binary codes is restricted to only zero mean and linear phase codes. With all

these restrictions, for 8, 16 and 32-length codes, eligible sample space consist of only 22,

326 and 38000 codes, respectively.

Walsh code sets have poor performance if absolute value of the normalized

periodic cross-correlation between any pair of codes within the set is equal to 1 for any

possible delay value between them. This condition arises if a code sequence becomes

shifted version of the another code sequence or its complement for any particular delay.

For example, if two 8-length Walsh code sequences [1,1,-1,—1,1,1,-1,-1],

[1,—i, —1,1,1,—i, —1,1] are allotted to two different users in an asynchronous CDMA

system, then for modulo delay of 1, both sequences become equal and result in poor

detection at the receiver.

In the present design, code sequences with absolute normalized peak cross-

correlation value of 1 are avoided. Also, it was observed that all Walsh sequences in n -

length binary code set are multiples of either (2"Ι2 +1) or (2 12 —1) . For example in 8-

length code set, all code sequences are multiples of either 15 or 17. As these code
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sequences result in high cross-correlation values, multiples of (2n 12 +1) or (2"' 2 —1) are

minimized in the new code search.

Exhaustive computer search is performed on the limited binary sample space to

generate desired orthogonal code sets. For n-length code, n —1 orthogonal code

sequences are obtained with this search method. Constant sequence of either all 1's or

-1's is added to the set to make it a complete orthogonal code set. Since the sample space

is small for 8-length codes (22 codes), orthogonal code set with good correlation

properties is not available. For code lengths of 16 or higher, and for powers of 2, (16, 32,

64 ...), a number of unique orthogonal code sets are available. It may be noted that only

the constant code sequence is common in all these orthogonal code sets. Table 5.1 shows

two new 16-length linear phase orthogonal code sets along with corresponding Walsh

code sets represented in integer number format. It can be observed from the Table 5.1

that only the first code of constant 1's is common with Walsh code set. Appendix A

shows a number of 32-length linear phase orthogonal code sets represented in integer

format. More sample codes can be found in the references [43, 44, 47].

5.1.2 Bit Error Rate (BER) Performance Comparisons in AWGN Channels

BER performance of the proposed spreading code sets are simulated under additive white

Gaussian noise (AWGN) conditions for 2-user case in asynchronous communication

channel. For asynchronous channel performance, average BER performance is simulated

for all possible pairs of code sequences within a set and for all possible delays between

the code sequences. For the 16-length code set, 16* l5/2=120 sequence pairs are possible

with 16 possible delays between them. Figure 5.1 displays average BER performance for

two users with 16-length linear phase orthogonal codes along with 16-length Walsh code
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set as a function of signal to noise (SNR) ratio. Average BER performance of Walsh code

set is poor due to the fact that certain code pairs have a normalized cross-correlation

value of 1 for certain delays between user codes. BER performances of both proposed

linear phase code sets far exceed that of Walsh codes and improve further with increase

in SNR.

Table 5.1 Sample 16-Length Linear Phase Orthogonal Code Sets along with
Corresponding Walsh Code Sets Represented in Integer Format

Index

16-Length
Linear Phase

Orthogonal
Code Setl

16-Length
Linear Phase

Orthogonal
Code Set1

16-Length
Walsh

Code Set

1 65535 65535 65535

2 703 4471 43690

3 3407 6120 52428

4 4080 7815 39321

5 12659 8891 61680

6 13740 11220 42405

7 14940 11595 50115

8 16003 15420 38550

9 21717 18205 65280

10 22122 18669 43605

11 22938 19890 52275

12 23333 23130 39270

13 25542 26214 61455

14 26393 29070 42330

15 26857 29905 49980

16 27702 31521 38505
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Figure 5.1 BER performances of proposed 16-length linear phase orthogonal code sets
and Walsh code set for 2-users in asynchronous AWG noise channel.

Figure 5.2 BER performances of proposed 32-length linear phase orthogonal code sets,
Walsh code set and 31-length Gold code set for 2-users in asynchronous AWG noise
channel.
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Figure 5.2 shows the BER performance of 32-length linear phase orthogonal code

sets along with 32-length Walsh code set and 31-length Gold code set. Here also, all

proposed linear phase code sets outperform Walsh codes and their performances closely

match with the similar length Gold codes. It is observed that there are a good number of

orthogonal sets available in the sample space that gives comparable performance to

standard codes used in CDMA systems at different code lengths.

5.2 Near Orthogonal Binary Codes

5.2.1 Design Methodology

Near orthogonal code sets have a cross-correlation value of -1 between any code pairs

within the set for zero delay between them. Similarly, Gold codes are near orthogonal, as

they have cross-correlation value of -1 between code pairs for zero delay. Gold codes

exist for lengths of only 2" —1, where n is not a power of 4. In addition, the number of

available code sets for any given length is limited due to the restrictions of generating

them from preferred polynomials.

Gold codes are widely used as spreading codes in asynchronous CDMA

communication standards. Gold codes are nonzero mean as well as non-linear phase

codes. Gold code sequences do not have a unique number of zero crossings per code

within the set. Still, Gold codes are known for their good BER performance. Hence,

sample space is searched for more near orthogonal code sets with only one condition of

maximum absolute normalized correlation value being less than 1. For n -length code,

sample space consists of 2 " —1 values.
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Number of unique near orthogonal code sets for lengths of 7, 11, 15, 19, ... chips

are obtained using brute force search. For n -length code, near orthogonal code set

consisting of n +1 sequences are generated. It should be noted that for this family of

sequences, constant sequence of all 1's is not part of a set. Table 5.2 shows proposed 7-

length near orthogonal code sets along with 7-length Gold code and 8-length Walsh code

in integer format.

Table 5.2 Sample 7-Length Near Orthogonal Code Sets, Gold Code Set and 8-Length
Walsh Code Set Represented in Integer Format

Index

7-Length
Near

Orthogonal
Code Set1

7-Length
Near

Orthogonal
Code Set2

7-Length
Gold

Code Set

8-Length
Walsh

Code Set

1 5 7 106 255

2 18 8 30 170

3 43 49 119 204

4 60 62 36 153

5 78 82 3 240

6 89 93 77 165

7 96 100 80 195

8 119 107 57 150

5.2.2 Bit Error Rate (BER) Performance Comparisons in AWGN Channels

Two-user BER performance of proposed 7-length near orthogonal code sets given in

Table 5.2 are simulated for all possible pairs of codes and for all possible delays in an

asynchronous AWG noise scenario and displayed in Figure 5.3. For comparison
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purposes, performances of 7-length Gold and 8-length Walsh code sets are also shown in

the Figure 5.3.

Performances of near orthogonal code sets closely match with that of

corresponding Gold set and outperform the 8-length Walsh set. Near orthogonal sets

shown in Table 5.2 are unique sets without having any common code sequences between

them or with the Gold code set. Simulation results for codes with other lengths are

presented in [44, 47].

Figure 5.3 BER performances of proposed 7-length near orthogonal code sets, Gold code
set and 8-length Walsh code set for 2-users in asynchronous AWG noise channel.

5.3 Non-Linear Phase (Walsh-like) Orthogonal Binary Codes

5.3.1 Design Methodology and Search Algorithm

Non-linear phase orthogonal code set features are similar to that of near orthogonal code

set features. Code sequences have nonzero mean, they are non-linear in phase and

without any restrictions on the number of zero crossings per code within the code set.
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After all these restrictions of linear phase orthogonal code sets are waived, sample space

for n-length non-linear phase orthogonal code set is of [0, 2" —1] . Sample space can be

reduced to [0, 2" -1 -1] since code sequences in the range [2" -1 , 2] are complementary to

the sequences in the range of [0, 2" -1 -1] . Orthogonal code sets are searched in the sample

space using brute force search method. Search algorithm can be summarized as follows.

• Sample space consists of [0, 2" -1 -1] sequences for n -length code sets.

• First basis function in the orthogonal code set is selected by representing an
integer number in the sample space as n -length binary code with radix-2
elements [0,1] . Furthermore, [0, 1] elements of this binary code are mapped
into [-1, 1] , respectively, to generate n -length spreading code.

• Select the next basis function by checking the orthogonality with the first basis
function. In addition, absolute value of the maximum normalized periodic cross-
correlation value between the basis functions should be less than 1 for all
possible chip delays.

• Repeat the process n —1 times to obtain a complete N x Ν orthogonal code set.

• With this search process, a number of orthogonal code sets are formed with the
first basis sequence as the common basis sequence for different orthogonal code
sets. By choosing a different integer as the first basis sequence of the set, a
number of unique orthogonal sets can be formed.

• Finally, select orthogonal code sets that have minimum cross-correlation values
among all pairs of codes as a performance metric for further analysis.

• Complexity of the search algorithm is n(2" —1) for an n -length code set.

A number of non-linear phase (Walsh-like) orthogonal code sets are obtained for

lengths that are multiples of 4 (8, 12, 16, 20, ....). As previously observed in Section 5.1,

for 8-length, new orthogonal sets couldn't be obtained with linear phase properties

although it is possible to obtain with non-linear phase properties. Table 5.3 displays two

examples of 8-length Walsh-like code sets along with 8-length Walsh code set in integer
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format. Several 32-length Walsh-like code sets are also listed in Appendix Β. Design

features and sample codes are also presented in [45, 46, 47].

Table 5.3 Sample 8-Length Walsh-like Code Sets and Walsh Code Set Represented in
Integer Format

Index
8-Length

Walsh-like
Code Sett

8-Length
Walsh-like
Code Set2

8-Length
Walsh

Code Set
1 4 19 255

2 11 28 170

3 55 32 204

4 56 47 153

5 81 70 240

6 94 73 165

7 98 117 195

8 109 122 150

5.3.2 Time, Frequency and Correlation Properties of 32-length Walsh-like Codes

Time domain representations of a typical 31-length Gold code, 32-bit orthogonal Walsh

code and 32-length proposed Walsh-like code are displayed in Figure 5.4. Proposed

Walsh-like and Gold sequences have non-linear phase responses and nonzero mean

values while Walsh sequences are linear phase functions with zero mean.

Magnitude and phase functions of these sample codes are shown in Figures 5.5

and 5.6, respectively. Note that the sample sequence of the proposed Walsh-like codes

has more evenly spread frequency spectrum compared to the sample Walsh code of the

same length.
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Figure 5.4 Time domain sequences of a typical 31-length Gold code, 32-length Walsh
code and 32-length proposed Walsh-like code.

One sided auto-correlation sequences for the typical codes of the three families

considered in Figure 5.4 are displayed in Figure 5.7. Similarly, one sided cross-

correlation sequences between typical pairs of codes are displayed in Figure 5.8 for the

three binary families under consideration. It is observed from the Figs. 5.7 and 5.8 that

the Gold and the proposed non-linear phase Walsh-like orthogonal codes have similar

auto-correlation (intra-code correlation) and cross-correlation (inter-code correlation)

sequences while sample Walsh pair has worse correlation properties than the others.
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Figure 5.5 Magnitude functions of Gold, Walsh and proposed Walsh-like binary codes
plotted in Figure 5.4.

Figure 5.6 Phase functions of Gold, Walsh and proposed Walsh-like binary codes plotted
in Figure 5.4.
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Figure 5.7 Auto-correlation functions of Gold, Walsh and proposed Walsh-like binary
codes plotted in Figure 5.4.

Figure 5.8 Cross-correlation functions between a typical code pair for 31-length Gold
and 32-length Walsh and proposed Walsh-like binary codes.
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5.3.3 Bit Error Rate (BER) Performance Comparisons for 2-Users in AWGN
Channels

Figure 5.9 displays the BER performance of proposed 8-length Walsh-like code sets

given in Table 5.3 averaged over all possible code pairs and for all possible delays in an

asynchronous AWG noise scenario as a function of SNR. Also shown in Figure 5.9 are

BER performances of 8-length Walsh code set and 7-length Gold code set. The proposed

Walsh-like codes outperform Walsh codes significantly and are marginally better than

comparable Gold codes at higher SNRs.

Similarly, Figure 5.10 displays BER performances of proposed 32-length Walsh-

like code sets given in Appendix Β along with 32-length Walsh and 31-length Gold code

sets. Improved performance of Walsh-like code sets over Walsh code set is also

consistent here and performances of proposed Walsh-like code sets closely match with

that of Gold code set.

Figure 5.9 BER performances of proposed 8-length Walsh-like, Walsh and 7-length
Gold code sets in asynchronous AWGN communication channel for 2-user case.
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Figure 5.10 BER performances of proposed 32-length Walsh-like, Walsh and 31-length
Gold code sets in asynchronous AWGN communication channel for 2-user case.

Figure 5.11 BER performances for proposed 16, 20, 24, 28 and 32-length Walsh-like
code sets in asynchronous AWGN communication channel for 2-user case.
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With the proposed simulation method, a number of proposed Walsh-like code sets

with code lengths that are multiples of 4 (8, 12, 16, 20, 24, ....) are obtained. Figure 5.11

displays the BER performances for 16, 20, 24, 28 and 32-length Walsh-like code sets for

2-user case in asynchronous communications scenario. Performance improvement as a

function of increased code length increases is observed from Figure 5.11.

Section 5.1 explained the design of linear phase orthogonal code sets and their

BER performance simulations. In this section, non-linear phase (Walsh-like) orthogonal

code sets are generated and BER performance characteristics are simulated. Figure 5.12

displays the relative performance of linear phase code sets and non-linear phase code sets

for 16 and 32-length codes. Performance of non-linear phase code sets is better than

linear phase code sets. For comparison purpose, linear phase 16 and 32-length Walsh

code performances are also shown in Figure 5.12.

Figure 5.12 BER performances of proposed 16, 32-length linear phase and non-linear
phase (Walsh-like) code sets along with 16, 32-length Walsh code sets in asynchronous
AWGN channel for 2-user case.
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5.3.4 Multiuser Bit Error Rate (BER) Performance Comparisons in AWGN
Channels

BER performance for multiuser scenario is simulated by allotting unique spreading

sequences to different users with random delays between them and taking average BER

performance over a large number of independent simulation runs.

Figure 5.13 displays the multiuser performance comparisons of 8-length Walsh-

like orthogonal code sets along with 8-length Walsh and 7-length Gold code sets for

SΝR20 dB as a function of number of users. Similarly, Figure 5.14 displays the

multiuser performance of 32-length Walsh-like code sets, Walsh code and 31-length Gold

code families evaluated at SΝR20 dB.

Figure 5.13 Multiuser BER performances of proposed 8-length Walsh-like, Walsh code
sets along with 7-length Gold code set in asynchronous AWGN channel at SΝR20 dB
as a function of number of users in the channel.

As the number of simultaneous users in the communications system increases,

inter-code (multiuser interference) and intra-code correlations (self-induced multipath

interference) dominate the BER performance. Therefore, BER performances of the three
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types of code sets merge together at higher number of users in a  multiuser

communication system as observed in Figs. 5.13 and 5.14. In order to improve detection

of such a scenario, multiuser detection techniques such as decorrelator or MMSE type of

receivers need to be used in the system [48, 49].

Figure 5.14 Multiuser BER performances of proposed 32-length Walsh-like, Walsh code
sets along with 31-length Gold code set in asynchronous AWGN channel at SΝR20 dB
as a function of number of users in the channel.

5.3.5 Bit Error Rate (BER) Performance Comparisons in Rayleigh Flat, Slow
Fading Channel

Rayleigh fading occurs in a wireless communication system when there are multiple

reflective paths between the transmitter and receiver without any line of sight component.

This is usually the scenario when the receiver is in motion. Under Rayleigh flat fading

conditions, multipath components of a symbol arrive at the receiver within the symbol

duration. Hence, such components are not resolvable. Channel is assumed to have a
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constant gain over a bandwidth which is greater than the transmitted signal bandwidth

[50, 51, 52].

For slow fading conditions, Doppler signal spread due to receiver motion is much

smaller than the transmitted symbol bandwidth. Therefore, fading characteristics are such

that, channel conditions are assumed to remain the same during a symbol interval.

Spectral characteristics of the transmitted signal are preserved at the receiver where as the

amplitude of the received signal changes in time. There will be performance degradation

due to fading since unresolved received components can add up destructively during the

symbol interval. Fading channel for each user is modeled independently of the other users

in the uplink scenario.

Rayleigh fading is a multiplicative distortion and received signal y(t) is modeled

as y(t) = h(t) s(t) + n(t) , where h(t) is the impulse response of the channel waveform,

s(t) is the transmitted signal, n(t) is the AWG noise. For flat fading channel,

h(t) consists of a single tap with zero delay. h(t) is a wide-sense stationary (WSS)

complex Gaussian process, with zero mean and unity variance, uniform phase

distribution and Rayleigh probability density function (pdf) amplitude distribution.

Clark's model is used to define the spectral characteristics of the channel that are

controlled by the Doppler frequency of the mobile [54]. Smith's simulation model is

employed for generating the fading model [54].

Auto-correlation sequence of the random process h(t) is controlled by the Doppler

frequency fd and it is equal to

(5.1)
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where J0 is the zero-order Bessel function of the first kind [53].

Hence, complex Gaussian samples generated for h(t) are masked with a filter

whose power spectral density (PSD) function is given by

(5.2)

where fd is the Doppler frequency [50, 54].

Inverse FFT followed by a square root operation is applied on the resulting

samples to generate Rayleigh distributed amplitude pdf.

Figure 5.15 displays the BER performances of the proposed 32-length Walsh-like

code sets, Walsh code set and 31-length Gold code set for both synchronous and

asynchronous Rayleigh flat, slow fading channel conditions for 2-user case.

Figure 5.15 BER performances of proposed 32-length Walsh-like, Walsh code sets along
with 31-length Gold code set in synchronous and asynchronous Rayleigh flat, slow
fading channel for 2-user case.
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Figure 5.16 Multiuser BER performances of proposed 32-length Walsh-like, Walsh code
sets along with 31-length Gold code set in asynchronous Rayleigh flat, slow fading
channel at SNR=20 dB as a function of number of users in the channel.

The figure displays that the performance of the proposed Walsh-like code sets

closely matches with the standard code sets performance in asynchronous channel

conditions and in synchronous conditions, and Walsh-like codes perform better than Gold

code set. Performance for all types of code sets is poor in asynchronous channel scenario.

Figure 5.16 displays the asynchronous multiuser BER performance of the same codes as

a function of the number of users in the channel at SNR = 20 dB. It is observed from

these curves that all code sets perform similarly in Rayleigh flat fading channels.

5.3.6 Correlation Performance Metrics

Performance of different code families can also be analyzed by numerically evaluating

their cross-correlation parameters such as aperiodic, even and odd correlation values.

Signal to noise ratio (SNR) which is the most important performance characteristic

of any CDMA system can be calculated as [ 19, 20],



where

(5.4)

(5.5)
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(5.3)

where 2Ε/Ν0 is energy/bit ratio , Ν is the length of the code sequence, K is the number

of users and γk i is the interference power generated due to multiple access defined by the

cross-correlation parameters. To obtain the worst case performance of the system, it is

essential to get the highest bound values for 'k'•

γk,i is defined as [ 19, 20],

Here, 8k,' 0k,i , Ck i are even, odd, aperiodic cross-correlation values as defined in

Equation (4.6). From these three basic correlation values, their maximum, mean,

deviation, sum of square of correlation values are calculated [55]. Here, the deviation is

defined as the ratio of standard variance to the mean.

Table 5.4 lists the absolute values of the normalized maximum, mean, deviation,

sum of square of three types of correlation values for 8-length Walsh, the proposed

Walsh-like codes (a typical one), and 7-length Gold code sets. It is observed from the

table that the normalized maximum cross-correlation value for Walsh set is 1, resulting in

its poor asynchronous BER performance while Walsh-like code set has the lowest

maximum cross-correlation value, explaining its superior performance compared to other
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code sets. Deviation value for the proposed Walsh-like codes is comparable to Gold

codes where as it is much higher for Walsh codes. Walsh code family has the lowest

sums of square of correlation values compared to code sets of other two families. But,

some Walsh code pairs have maximum correlation values, resulting in poorer average

performance. Hence, sum of square of correlation values can not be considered in

evaluating the average performance of the entire code set.

Similarly, Table 5.5 lists the absolute values of the normalized maximum, mean,

deviation, sum of square of three types of correlation values for 32-length Walsh,

proposed Walsh-like codes (a typical one) and 31-length Gold code sets. Here also,

normalized maximum cross-correlation value for Walsh code set is 1. For both Walsh-

like and Gold sets, correlation value is less than 1. Walsh-like parameters match closely

with that of Gold parameters in all metrics considered in Table 5.5, explaining their

similarity in BER performance curves.

These inter-code and intra-code correlation properties (multiuser interference)

along with the channel noise conditions imposed on them dictate the performance of a

multiuser communication system at the receiver. Therefore, choosing the best possible

user codes with minimum intra-code and inter-code correlation properties will

significantly improve the performance of a DS-CDMA communication system

particularly when the number of users in the system is low.
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Table 5.4 Cross-correlation Metrics for Proposed 8-Length Walsh-like, Walsh and 7-
Length Gold Codes
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Table 5.5 Cross-correlation Metrics for Proposed 32-Length Walsh-like, Walsh and 31-
Length Gold Codes
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5.3.7 Time-Frequency Localization

Time domain center and spread values, frequency domain center and spread values

, ώ and σ^2 ,) are calculated as discussed in. Section 3.4 [7, 8] for proposed 32-

length Walsh-like, Walsh and 31-length Gold code sets and are plotted in Figure 5.17.

From the figure, it is observed that all the three code families considered have constant

time spread σn^2 as they are binary in nature with the same fixed power level. Walsh code

sequences have less frequency domain spread values (σ ι,) compared to Gold code

sequence values. Walsh-like codes and Gold codes have similar σ values. These spread

values justify their BER performance characteristics in all types of channel noise

conditions.

Figure 5.17 Time-frequency localizations for proposed 32-length Walsh-like, Walsh and
31-length Gold code sets.



CHAPTER 6

MULTIPLE LEVEL INTEGER VALUED ORTHOGONAL SPREADING CODES

Binary valued Walsh and Gold codes are widely used as spreading codes in existing

CDMA systems. In Chapter 4, limitations of these code families in terms of available

code lengths and in numbers are discussed. In Chapter 5, design issues and sample codes

for various types of binary orthogonal code sets are presented. It was shown that the

proposed new set of codes either exceed or closely match standard families in

performance. In this chapter, limitations of binary level codes, design issues of multiple

level codes and their performance characteristics are discussed.

Multiple level polyphase sequences and their applications to CDMA systems are

explained in references [56, 57]. Polyphase codes generate fixed power envelope creating

similar kind of problems as binary leveled code sets. Synthesis of multiple level

complementary sequences and construction of multiple level Hadamard matrices are

described in [58, 59]. Availability of these code sets is limited and these sequences are

not useful for asynchronous communication with random delays.

6.1 Limitations of Binary Codes

Binary code sets have the chip values (+1, -1) and generate constant envelope or fixed

power modulating signal at the RF power amplifier. Amplifiers usually operate as a linear

device under small signal conditions and become more non-linear and distorted with

increase in input drive level. Amplifier distortion increases inter modulation components

and adjacent channel interference [60, 61].

59
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On the other hand, amplifiers are less efficient in their linear range of operation.

Power efficiency, Pae (t) of the amplifier is defined as [60]

(6.1)

where 1,.,, (t) and P,. (t) are the input and the output RF signal power at the amplifier and

Ρ', (t) is the dc power supplied.

Average total power consumed by the amplifier is [60]

(6.2)

where X is the average value of X and w is the fractional average power not converted

into the RF power. Increasing the input drive signal in turn increases the efficiency of the

RF amplifier and thus increases the total transmitted power. Lower efficiency results in

power loss at the RF amplifier, thus limiting the battery life of the communication

system. Higher efficiency amplifier increases the distortion in the system. Hence, an

optimum operating point has to be arrived which results in better efficiency and lower

distortion.

Current research on RF amplifier design is aimed at increasing the linear range of

RF amplifiers with lower distortion levels and higher efficiency. With such technological

advances, implementation of varying power codes is becoming feasible for wireless and

radio communications.
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6.2 Design Methods for Multiple Level (Varying Power) Spreading Codes

6.2.1 Multiple Level Integer Codes

In multiple level integer coding, discrete amplitude levels, similar to the pulse amplitude

modulation (PAM) levels, are used as chip signals for spread spectrum codes. Chip

amplitudes are chosen such that they are zero mean. For example, for a 4-level coding,

chip amplitudes are of {-3, —1,1,3) and for 8-level coding, chip amplitudes are of

{-7,-5, —3,—i, 1, 3, 5, 7) .

An n -length code with 4-level chip values requires a sample space of 4" integer

numbers. This is equivalent to 2 2 n numbers in binary sample space. It is known that for

representing integer numbers in binary level coding requires radix-2 elements {0,1) .

Similarly, 4-level coding requires radix-4 elements {0,1,2,3) and 8-level coding requires

radix-8 elements {0, 1,2,3,4,5,6,7) and so on. Higher level coding representation requires

more radix elements.

Weights of the coding elements in radix-4 for n -length code are

{4n_1, 
4n-2  

‚ 41,40)  and similarly in radix-8, element weights are {8" - ' , 8"2, , 8  ‚
80 ) .

For example, number 125 in radix-4 format for 8-length code is represented as

(0, 0, 0, 0,1, 3, 3,1) as this is equivalent to {43 .1 +423+  4 1 .3 + 4°.1} . Furthermore, these radix

numbers are mapped into corresponding PAM chip levels with the mapping as

(0 —>-3,1 —> —1,2 -41, 3 —> 3) for radix-4 and (0 —>-7,1 —> —5,2 —> —3,3 —> —1,

4—> 1,5—>3,6--> 5,7—> 7) fοr radix-8.
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Exhaustive computer search is performed within the sample space in order to

obtain orthogonal code sets in an iterative manner. The procedure to generate n -length,

m -level orthogonal code sets is summarized as follows.

• Sample space consists of [0, m"- ' —1] sequences for m -level, n -length code
sets.

• As the first step, select any number in the sample space as the first basis function
and convert the number into corresponding m -level radix format for n -length
code. Map these radix elements into corresponding chip levels.

• Convert all numbers within the sample space into m -level, n -length code.
Check for the orthogonality with the first basis function. In addition, maximum
absolute normalized cross-correlation value should be less than 1. If both of
these conditions are met, select that code as the next basis function.

• Repeat the process to get N basis sequences of the orthogonal set.

• Conditions for selecting orthogonal codes are similar to the binary Walsh-like
codes described in Section 5.3.1. Basis sequences are non-linear phase and non-
zero mean codes. No restrictions are imposed on the number of zero crossings
within code set.

• By selecting a different integer as the first basis function, an entirely
independent orthogonal set can be obtained.

• For multiple chip level codes, in addition to these constraints, norm of the basis
function is also considered as another design parameter. All the basis sequences
in the orthogonal set are designed to have the same norm. Table 6.1 lists
different possible norms for 4-level, 8-length codes.

Sample space is searched with these constraints and a number of multiple level

orthogonal sample codes are obtained.



Table 6.1 Possible 4-Level, 8-Length Code Elements and Their Norms
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As an example, a typical 4-length, 4-level orthogonal code set obtained through computer

search is given below

4-length orthogonal set with good correlation properties are not available with

binary level coding. However, it is possible to obtain good orthogonal set with 4-level

coding. Table 6.2 lists the integer representation of 8-length, 4-level and 8-level

orthogonal sets. Integer representations of few other multiple level codes are also shown

in the reference [62].



Table 6.2 Integer Representation of 8-Length, 4-Level and 8-Level Orthogonal Code
Sets
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6.2.2 Multiple Level Short Length Codes

Short length codes are more useful for applications like wireless sensor networks or mesh

networks where communication nodes are placed at close proximity and system

complexity is of great concern. Zigbee protocols are defined for such short range and low

cost applications. Typical communication ranges in sensor nodes are of the order of 10-

75 meters with an output power of 0 dBm and their data rates vary from 20 Kbps to 250

Kbps. CDMA techniques are used in this standard for multiple access of the radio

channel [63].

Longer ranges in traditional wireless communication require higher processing

gain for the receivers, thus requiring longer spreading codes in CDMA. Operational

conditions are different in sensor networks as they operate at shorter ranges with less
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available power. Shorter code lengths can be generated off-hand and stored as in look up

tables. This process reduces the expensive power requirements at each sensor node.

Multiple level code searches are also extended to find near orthogonal code sets

for odd code lengths. For some code lengths, minimum basis elements required for

finding orthogonal / near orthogonal code sets are ternary chip values {—1, 0, l} . All basis

sequences within the code set are designed to have the same norm.

Table 6.3 Basis Elements for Representing Short Length Spreading Codes and Their
Norms
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Table 6.3 lists the minimum basis elements required for generating code sets with

good correlation properties for short length codes of lengths up to 16 and their

corresponding norms. For example, 4-length codes require minimum basis elements

{-3, —1,1,3) for good orthogonal code set representation with square of norm as 20. In

Table 6.3, near orthogonal code set refers to a cross-correlation value of -1 between any

pair of codes for zero delay between them.

It is well known that communication performance improves as the spreading code

length increases, by keeping the number of basis elements the same. From Table 6.3, it

can be inferred that among the 2-level code families, performance of 16-length code set

will be better than 12-length code set which in turn will be better than 8- length code set.

Basis elements shown in Table 6.3 for representing orthogonal / near orthogonal

code sets are the minimum chip levels needed for a given length of the code.

Communication performance significantly improves by keeping the length of the code

same and increasing the number of chip levels. For example, for 6-length, orthogonal

code sets are obtained with chip levels of 3, 5, 7, 9, 11, and 13. Orthogonal code sets with

2, 4, 6, 8, 10 chip levels are not available for 6-length codes.

Table 6.4 lists the absolute values of normalized maximum and sum of square of

even, odd and aperiodic cross-correlation values discussed in Section 5.3.5 for different

6-length multiple level codes. As the number of levels increases, maximum cross-

correlation values decrease. As the maximum cross-correlation values are lowest for 11-

level code sets, these code sets should give best performance for all the types of code

sets. As the number of levels is increased further, cross-correlation values increase,
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resulting in performance deterioration. Table 6.5 lists the integer representation of

different multiple level 6-length codes.

BER performances of different multiple level codes are discussed in the next

section.

Table 6.4 Cross-correlation Metrics for Different Multiple Level, 6-Length Codes



Table 6.5 Integer Representation of Different Multiple Level, 6-Length Codes
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6.2.3 Bit Error Rate (BER) Performance Comparisons in AWGN Channels

Mathematically speaking, BER performance of multiple level codes will be better than

binary level codes since inter-code correlations become smaller with the increase in

spreading code chip levels. BER performances for different multiple level codes are

simulated for 2-user and multiuser scenarios in AWG noise environment. BER

performance is averaged over all the possible combinations of user codes and for all

possible code delays.

Figure 6.1 BER performances for proposed 4-level, 4-length code set and 4-length binary
Walsh code set in asynchronous AWGN channel for 2-user case.

Figure 6.1 displays the BER performance of proposed 4-level, 4-length multiple

valued code set and standard 4-length Walsh code set. As some Walsh code pairs have

poor cross-correlation properties for certain delays, average performance for the set is

poor. The proposed 4-length, 4-level code set does not have such cross-correlation
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limitations, thus providing significantly better performance than Walsh code set under the

same test conditions. During simulations, all binary and multiple level codes are

normalized to unity for uniform performance comparison.

Figure 6.2 displays the BER performance of 8-length, 4-level and 8-level codes

along with 8-length Walsh-like and Walsh codes, and 7-length Gold codes for 2-user

scenario. It is observed from this figure that the performance of 4-level codes is better

than 2-level Walsh-like codes and performance of 8-level codes is better than 4-level

codes.

Figure 6.2 BER performances for proposed 8-length, 4-level and 8-level code sets,
binary 8-length Walsh-like and Walsh code sets, and 7-length Gold code set in
asynchronous AWGN channel for 2-user case.

Similarly, Figure 6.3 displays the 2-user performance of proposed 16-length, 4

and 8-level varying power code sets along with binary Walsh-like and Walsh code sets.

Here also, performance of multiple level code sets is better than 2-level code sets.
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Figure 6.3 BER performances for proposed 16-length, 4-level and 8-level code sets,
binary Walsh-like and Walsh code sets in asynchronous AWGN channel for 2-user case.

At short code lengths, BER performance improvement with increasing the chip

levels and keeping the code length fixed is observed more clearly. Figure 6.4 displays the

BER performance of different multiple level code sets given in Table 6.5 for 6-length

codes in a 2-user scenario. From Figure 6.4, it can be observed that BER performance

improves as the number of chip values is increased up to a certain level and there after no

significant improvement is observed. 11-level code set provides an improvement factor of

about 3 dB at 10-4 BER. BER performance deteriorates beyond 11-level coding. Similar

conclusions have been drawn while analyzing the maximum correlation values of Table

6.5 for multiple level 6-length code sets.
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Figure 6.4 BER performances for proposed 6-length 3, 5, 7, 9, 11 and 13-level code sets
in asynchronous AWGN channel for 2-user case.

Figure 6.5 BER performances for proposed 6-length 9 and 11-level code sets along with
binary 7-length Gold and 8 and 12-length Walsh-like code sets in asynchronous AWGN
channel with 2-users.
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Shorter length codes with higher number of chip values may perform as good as

longer spreading codes with binary chip values. As a case in point, Figure 6.5 shows that

BER performance of 9-level, 6-length codes closely matches with 2-level, 7-length Gold

codes and performance of 11-level, 6-length codes matches with the performance of 2-

level, 12-length binary Walsh-like codes at high SNRs.

Figure 6.6 Multiuser BER performances for I 6-length code sets with 4, 8 levels of
coding along with binary Walsh-like and Walsh code sets in asynchronous AWGN
channel evaluated at SΝR20 dB.

Figure 6.6 displays the multiuser performance of 16-length, 4 and 8-level varying

power code sets along with 16-length Walsh-like and Walsh code sets in asynchronous

environment as a function of number of users simulated at SΝR20 dB. As number of

users increases, performances of all types of codes deteriorate due to increase in inter-

code correlations and advantages of multiple level codes diminish. System performance

can be improved by using decorrelator or MMSE type of receiver instead of a matched

filter detector.



CHAPTER 7

VARYING POWER SPREAD SPECTRUM KLT CODES

The design and performance of binary and multiple valued orthogonal integer code sets

are discussed in the previous chapters. All of those code sets were generated using

exhaustive computer search method within the predefined sample space. In this chapter,

an analytical method to generate multiple and real valued orthogonal code sets with

varying power property and their performance characteristics are presented.

7.1 Karhunen-Loeve Transform (KLT) Basics

Let {s(n)} be the n-length discrete -time signal satisfying the DTFT pair relation

s(n) H S(e ω) .

Input covariance matrix for signal {s(n)} is expressed as

RS = E{ssT }	 (7.1)

where E[ ] is the expectation operator.

KLT which is the optimal block transform for the given input covariance matrix R, has

the unique property [8, 64, 65],

(7.2)

(7.3)

With this transformation, covariance matrix for the spectral coefficient vector is diagonal

and is defined as
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(7.4)

The maximum possible energy compaction of a N x N unitary transform, so

called gain of transform coding over pulse code modulation (G 1 ), is defined as [8]

(7.5)

where { σ^2k } are the diagonal elements of A .

G value goes down to one whenever the input power spectrum is of white. At

small values of G,, transform domain processing and coding of the input signal does not

bring any improvements over the time domain pulse code modulation (PCM) coding. In

contrast, G value is higher than 1 whenever the input spectrum has uneven energy

distribution. In such cases, transform domain coding brings performance improvements

over PCM coding. This metric has been widely used in the source coding field to rank

and compare the energy repacking performance of orthogonal transforms for the given

input signal spectrum.

Design examples for generating orthogonal spread spectrum KLT code sets with

varying power basis functions that are eigen-vectors for a known covariance matrix R, or

power spectral density function are explained in the next section. Variety of power

spectrum signal models like auto-regressive (AR) and auto-regressive moving average

(ARMA) can be used as input signal statistics in the design of spread spectrum KLT code

sets.



(7.7)

(7.8)

(7.9)
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7.2 Spread Spectrum KLT Design Examples

7.2.1 AR(1) Source Model

As a first example to highlight the proposed design method, auto-regressive order one

AR(1) source model is considered and is defined as [8, 66]

(7.6)

where η(n) is a zero mean, unit variance white noise, and the correlation coefficient is in

the range of —1 < ρ <1.

For the white noise,

Auto-correlation sequence for this discrete-time random signal is expressed as

and its covariance matrix is defined as

Eigen-values for this covariance matrix, for N even, are given by [8]

(7.10)

where {wk) values are the positive roots of the polynomial
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(7.11)

(7.12)

Therefore, maximum energy compaction measure for this input signal model can be

expressed as [8]

(7.13)

with the upper bound value, as N -> ∞  ,will be
Ι π

(7.14)

where

(7.15)

For white noise, p = 0 and G(->inf)KLT=1and coding gain is not achieved with transform

coding over the signal domain coding.

Figure 7.1 displays energy compaction (GTc ) performance of 8-length KLT

codes designed for AR(1) source model as a function of correlation coefficient p. Figure

7.2 shows corresponding power spectral density function for AR(1) source model with

different p values. It is well known that several source coding applications like speech

and image require p > 0.8 . In this correlation region, the discrete cosine transform

(DCT), a fixed transform successfully used in image and video compression standards

and the resulting KLT matrix of size N x N is calculated as
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matches very closely with that of the optimum performance achieved using KL Τ. From

Figure 7.2, it is observed that in the region where p <0.5, power spectral density is more

uniformly spread.

Figure 7.1 Energy compaction (GTC ) performance of 8-length KLT designed with

AR(1) source model as a function of its correlation coefficient.

Figure 7.2 Power spectral density function for various AR(1) source models.
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7.2.2 Modeling from Power Spectral Density

As second example, a known spread spectrum power spectral density (PSD) function is

considered and modeled as AR process [66]. Normalized auto-correlation sequence is

generated from the power spectral density function using inverse Fourier transform (IFT).

Furthermore, covariance matrix and the corresponding eigen-values and vectors are

generated. Figure 7.3 shows the sample power spectral density function used and Figure

7.4 displays the corresponding auto-correlation sequence.

Figure 7.3 Power spectral density (PSD) function used for the generation of 8 Χ 8 spread
spectrum KLT codes.

For higher code lengths, auto-correlation sequences and power spectral density

(PSD) functions are generated in a reverse manner. Normalized auto-correlation sequence

is obtained from any of the sequences of standard Gold or Walsh-like code sets and

subsequently covariance matrix is formed. PSD function is generated from the auto-

correlation sequence. This PSD function in turn can also be modeled as an ARMA

sequence for generating other spread spectrum KLT codes.



Figure 7.4 Auto-correlation sequence generated from the PSD plotted in Figure 7.3.
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Figure 7.5 A typical auto-correlation sequence obtained from a 31-length Gold code
sequence.
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For example, typical 31-length Gold code is given in Equation (7.16) and its

normalized auto-correlation sequence is shown in Equation (7.17). Auto-correlation

sequence is plotted in Figure 7.5 and the corresponding power spectral density function is

plotted in Figure 7.6.

Figure 7.6 Power spectral density function for the auto-correlation sequence plotted in
Figure 7.5.
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Covariance matrix and eigen-vectors are generated from this auto-correlation

sequence. Normalized correlation sequences can also be obtained from taking cross-

correlation sequence of two code sequences and substituting the value l at zero delay

position. An important criterion is that the resulting correlation sequence should be well

spread in time and frequency domains to give good BER performance.

Similarly, Equations (7.18) and (7.19) are two typical 31-length Gold code

sequences considered for generating the correlation sequence and Equation (7.20) is their

corresponding correlation sequence.

Figure 7.7 A typical correlation sequence obtained from the cross-correlation of two 31-
length Gold code sequences.
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Figure 7.7 displays the correlation sequence obtained from cross-correlation of

these two Gold sequences and Figure 7.8 shows the corresponding power spectral

density.

Figure 7.8 Power spectral density function for the correlation sequence plotted in
Figure 7.7.

Different covariance matrices and in turn different eigen-vectors can be obtained

by utilizing correlation sequences of different Gold / Walsh-like sequences. Similar

procedure can be applied for generating spread spectrum KLT codes of any desired

length. In the next section, performance characteristics of different types of KLT codes

are discussed.
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7.3 Performance Characteristics of Varying Power Spread Spectrum KLT Codes

7.3.1 Bit Error Rate (BER) Performance Comparisons in AWGN Channels

BER performance of 8-length spread spectrum KLT code sets designed by using AR(1)

model discussed in Section 7.2 is simulated for 2-user case in asynchronous

communication channel under AWG noise environment. BER performance is averaged

over all possible pairs of codes and for all possible delays and compared with the industry

standard spreading codes.

Simulations have shown that spread spectrum KLT row vectors rather than

column vectors give better BER performance. This is due to the fact that row functions

are more spread in frequency domain than column functions. Figure 7.9 and 7.10 display

the magnitude response functions of the column and row vectors of 8x 8 spread spectrum

KLT codes generated using AR(1) method. This is a valid observation for all the types of

KLT codes considered in this dissertation.

Figure 7.9 Magnitude response functions of the column vectors of 8 x 8 spread spectrum
KLT codes generated using AR (1) model with p = 0.07 .
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Figure 7.10 Magnitude response functions of the row vectors of 8x8 spread spectrum
KLT codes generated using AR (1) model with p = 0.07.

Figure 7.11 BER performances of 8-length Walsh, Walsh-like and different AR(1)
model spread spectrum KLT code sets for asynchronous AWGN channel with two users.
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Figure 7.11 displays the BER cures of 8-length orthogonal KLT code sets

generated with AR(1) model with auto-correlation coefficients of θ = 0.07, 0.5 and 0.9

along with 8-length Walsh-like and Walsh code sets. It is observed from Figure 7.11 that,

BER performances of AR(1) source model based KLT code sets improve as the auto-

correlation value decreases. This is due to the fact that at lower values of auto-correlation,

power spectrum is whiter resulting in better spread basis functions. On the other hand,

BER performances of all AR(1) model based spread spectrum KLT codes considered are

inferior to binary Walsh-like codes, implying that higher order AR models are needed for

better performance.

Figure 7.12 BER performances of 8-length spread spectrum KLT, Walsh, Walsh-like and
7-length Gold code sets for asynchronous AWGN channel with two users.
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BER performance of 8-length spread spectrum KLT code set derived from the

auto-correlation sequence plotted in Figure 7.4 is displayed in Figure 7.12. For

comparison purposes, BER performances of 8-length Walsh-like and Walsh code sets

along with 7-length Gold code sets are also displayed. Performance of multiple level 8-

length KLT codes is better than Walsh-like and other binary codes. Table 7.1 lists typical

8-length spread spectrum KLT basis vectors. KLT basis elements shown in the Table 7.1

are real and have a minimum of 4 decimal positions. It is not practically feasible to

choose basis elements with such accuracy. Even by rounding the basis elements to only

two decimal digits, negligible performance degradation is observed.

Figure 7.13 BER curves of two 31-length spread spectrum KLT, Gold and 32-length
Walsh, Walsh-like code sets for asynchronous AWGN channel with two users.



Table 7.1 Typical 8-Length Spread Spectrum KLT Values
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Figure 7.13 displays the BER performances of both 31-length KLT codes

discussed in Section 7.2.2 along with standard 31-length Gold, 32-length Walsh-like and

Walsh code sets. Performances of both spread spectrum KLT codes far exceed that of

Walsh codes and closely match with Gold codes and Walsh-like codes performance at all

SNRs. Advantage of KLT codes is that number of such independent code sets can be

generated using eigen value methods. B y extending the design method to ARMA

methods, innumerable design solutions are available and this is a topic of future studies.

Figure 7.14 Multiuser BER performance curves of two 31-length spread spectrum KLT,
Gold and 32-length Walsh, Walsh-like code sets for asynchronous AWGN channel
evaluated at SNR=20 dB.

Multiuser BER performances are simulated for the two 31-length spread spectrum

KLT codes at SNR=20 dB in AWG noise and is displayed in Figure 7.14 as a function of

the number of users. For comparison purposes, multiuser performances of comparable

length Gold, Walsh-like and Walsh code sets are also displayed.
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From Figure 7.14, it is observed that at higher number of users, performances of

all types of codes considered are the same and they are poor. Other processing methods

like decorrelator or MMSE receiver need to be incorporated at the receiver in order to

improve the BER performance in a multiuser scenario.

7.3.2 Time-Frequency Localization

Time and frequency spreads (σ) and (σ) for the basis functions are calculated for both

31-length spread spectrum KLT codes, Gold codes and 32-length Walsh-like, Walsh

code sets according to Equations (3.4) and (3.5) and they are plotted in Figure 7.15. It is

observed that Gold, Walsh-like and KLT codes have similar (σ) values, explaining their

similarity in BER performance. Walsh codes have smaller (σ) value, indicating their

poor performance in asynchronous communication channel. Binary level codes have

constant time spread (σ) as they have fixed power level where as multiple valued

spread spectrum KLT codes have variable (σ) values.

Figure 7.15 Time-frequency localizations for two 31-length spread spectrum KLT, Gold
and 32-length Walsh-like, Walsh code sequences.



CHAPTER 8

KRONECKER PRODUCT (HYBRID) INTEGER CODES IN MULTIPLE
STAGE ORTHOGONAL TRANSMULTIPLEXERS

Different types of orthogonal code sets proposed in the previous chapters, namely, fixed

power binary, varying power multiple level integer codes and spread spectrum KLT codes

with real values are all of fixed length. Multiple stage orthogonal transmultiplexer

structures help to better understand the mathematical foundations for generating

Kronecker product or hybrid codes by taking product of two or more code families.

In this chapter, two unique applications employing multiple stage orthogonal

transmultiplexers are proposed. First application is, to generate Kronecker product codes

for two or higher number of code families of any type or any length. These Kronecker

product code sequences are judiciously allotted to users based on their correlation

properties to improve overall BER performance in a multiuser system. Second

application is to allot a number of hybrid codes to each user as redundant spreading codes

in a CDMA environment in order to improve the detection performance particularly at

low SNR channels. Design concepts and performance improvements with these proposed

applications are discussed in the following sections,

8.1 Multiple Stage Orthogonal Transmultiplexer Theory

8.1.1 Kronecker Product Codes

Let A = [au ] be an n x n matrix and let B be an m x m matrix. Then, the Kronecker

matrix product of A and B is an mn x mn block matrix equal to [ 16, 67]
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Hybrid Code = Α X Β = 	 Ι 	(8.1)

where the notation x indicates the Kronecker matrix product operator.

Note that the Walsh transform of size N = 2?  is obtained by applying Kronecker product

operation on the 2 x 2 kernel matrix, m times as [ 16]

(8.2)

For Walsh code generation, both matrices Α and Β are of binary in nature and resulting

in hybrid code of binary type.

8.1.2 Relationship between Multiple Stage Transmultiplexer and Kronecker
Product Codes

The mathematical relationship between multiple stage orthogonal transmultiplexer and

Kronecker product code operation can be easily shown by taking an example and

deriving the resulting codes from both methods.

Kronecker product of 4-length Walsh sequence Α4x4 and 2-length Walsh

sequence Β2.2 is calculated as follows.
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(8.3)

For a two-stage orthogonal transmultiplexer, equivalent diagrams are shown in

Figure 8.1 with 4-length Walsh sequence Α4x4 as Η0 (z) matrix and 2-length Walsh

sequence Β2.2 as H1 (z) matrix [8].

Figure 8.1 Equivalent structures for two-stage orthogonal transmultiplexer.

the 3rd equivalent structure is represented by the polynomial
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polynomial as the first row of Kronecker product in Equation (8.2). Product of Η0  (z 2 )

and second row of Η1 (z) , which is 1— z -' , gives

polynomial same as second row of Kronecker

product in Equation (8.2). Similarly, other rows of Kronecker product are obtained by the

multiplication of other rows of Η0 (z) matrix with Η 1 (z) matrix.

Hence, mathematical operations of either multiple stage orthogonal

transmultiplexer structure or Kronecker product operation can be used for generating

hybrid codes.

8.2 Hybrid Spreading Codes

8.2.1 Generation of Hybrid Spreading Codes

Hybrid integer code sets are generated by taking Kronecker matrix product of two

orthogonal code matrices Α and Β of any type (binary or multiple level), without any

restriction on their code lengths. In addition, these code matrices need not belong to the

same code family. For example, code matrix Α can be a Walsh code set and B can be

Walsh-like code set. In this section, binary Walsh-like and multiple level orthogonal code

families designed in the previous chapters are used as matrix A and Walsh code set is

used as matrix B. Values in Table 5.4 and 5.5 indicate that Walsh code sets have low sum

of square of cross-correlation values where as Walsh-like code sets have lower maximum

cross-correlation values. Kronecker product codes generated using such codes families

give better performance results than the standard single family codes.
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8.2.2 Hybrid Spreading Codes Assignment to Users

Spreading codes generated with Kronecker product method have to be judiciously

allocated to different users in order to take advantage of resulting low cross-correlation

values among certain code pairs.

Figure 8.2 displays block diagram of a two-stage orthogonal transmultiplexer for

the 32-length hybrid codes generated using 4-level, 4-length integer codes as stage 1

codes (Α4x4 ) and binary 8-length Walsh codes as stage 2 codes (Β8 8 ). Input data is up-

sampled first by four and convolved with the first stage spreading code. Then the data is

further up- sampled by eight and convolved with the second stage spreading code to

generate the final hybrid code set.

Figure 8.2 A two-stage orthogonal transmultiplexer for the generation of 32-length
hybrid spreading codes.
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Figure 8.3 Block diagram for generating 32-length Kronecker product (hybrid) code set
by using 4-level, 4-length varying power code set and binary, 8-length Walsh code sets
along with their groupings.

Figure 8.3 displays the block diagram for the generation and rearrangement of 32-

length hybrid codes for spread spectrum application. The first Walsh code, constant

sequence in the set, is not considered for hybrid code set generation. Hybrid product

codes obtained from the Kronecker product of 2" 1 Walsh code in the set with the 4-level

code family are formed in Group]. Similarly, spreading codes obtained from the

Kronecker product of 3 rd Walsh code with 4-level code family are stored in Group2 and

so on. Spreading code for User] is selected from Group], spreading code for User2 is

selected from Group2 and spreading code for User7 is selected from Group 7. For User8,

code is selected once again from Group], for User9 from Group2 and the process

repeats.
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After allocating these spreading codes to different users, data is spread and

asynchronously combined over the multiuser communication channel. At the receiver,

reverse operation is performed on the received data to recover the transmitted bits.

The reason for such a grouping is that codes in different groups have less cross-

correlation values among themselves than the codes within the same group. Identifying

the inter- and intra-code correlations of user codes in a library of codes will improve the

overall performance of a multiuser communication system. This particular way of

generation of hybrid spreading codes and allocating these codes to different users can be

easily extended to any number of multiple stages of orthogonal transmultiplexers with

dynamic spreading code allocation algorithm in a system. BER performance of hybrid

code sets along with the performance of existing single code families are presented in the

next section.

8.2.3 Bit Error Rate (BER) Performance Comparisons in AWGN Channels

Average BER performance for hybrid spreading codes of different lengths are simulated

for multiuser environment under asynchronous AWG noise conditions.

Figure 8.4 displays BER performances of 32-length hybrid code set discussed in

the previous section for the two cases of 7 and 14 users along with comparable 31-length

Gold code set performance. Performance of hybrid codes with proper code assignment to

different users is better than Gold codes performance for both 7 and 14 users in the

system.
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Figure 8.4 BER performance curves for 32-length Kronecker product (hybrid) and 31-
length Gold code sets in asynchronous AWGN channel with 7 and 14 users.

Figure 8.5 BER performance curves for 16-length Kronecker product (hybrid) and 16-
length Walsh-like code sets in asynchronous AWGN channel with 3 and 6 users.
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Similarly, Figure 8.5 displays BER performance of 16-length hybrid code set

generated with the Kronecker product of 4-length, 4-level code and 4-length, binary

Walsh code set for 3 and 6 users in asynchronous channel scenario. It is seen from

Figure 8.5 that performance of the hybrid codes is much better than Walsh-like codes

which in turn perform comparable to Gold codes and significantly outperform Walsh

codes. In general, it can be concluded that the proposed hybrid codes clearly outperform

Gold, Walsh and Walsh-like spreading code families for all lengths. This is another

aspect that deserves further studies in the future.

Figure 8.6 BER performance curves for 16-length Kronecker product (hybrid) and
Walsh-like families at SNR=20 dB as a function of the number of users for asynchronous
AWGN channel scenario.

Figure 8.6 displays the multiuser performance of 16-length hybrid codes and

Walsh-like codes as a function of the number of users in the channel simulated at

SNR=20 dB. Similarly, Figure 8.7 shows multiuser performance of 32-length hybrid and

31-length Gold codes at 20 dB SNR.
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It is observed from these figures that existing code families perform marginally

better than hybrid codes at smaller number of users in the system, but at higher number of

users, hybrid codes outperform. Hence, the multiuser communication system

performance might be improved by judiciously selecting orthogonal spreading codes

based on number of users in the system. Moreover, dynamically changing user spreading

codes will offer additional layer of system security and data integrity.

Figure 8.7 Multiuser BER performance curves for 32-length Kronecker product (hybrid)
and 31-length Gold code sets at SNR=20 dB for asynchronous AWGN channel scenario.

8.3 Redundancy Codes in a Multiple Stage Orthogonal Transmultiplexer

8.3.1 Introduction

In CDMA communication, it is a common practice, to allot each user a unique code for

spreading input data before its transmission. Data from different users is combined

asynchronously over the channel. At the receiver of interest, corresponding spread
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spectrum code is used for despreading and detection of data. As the number of users

increases in the system, multiuser interference increases. Detectors at the receiver

typically operate at a signal to noise plus interference ratios of the order of 5-10 dB. At

lower signal to noise ratios, reliable detection is not possible.

Redundant (or repetition) coding has been used with different modulation

techniques for improving channel performance under Rayleigh fading conditions. Data

transmission is repeated over number of independent diversity channels and a combined

decision is made at the receiver. One of the simplest methods of redundant coding used is

time diversity method where transmitted data streams are repeated at different time

intervals, hence independent channel states are maintained. In another method,

independent channels are realized through data transmission with a number of

transmitting frequencies as in frequency division keying (FDK), orthogonal frequency

division multiplexing (OFDM) or multicarrier CDMA [68, 69, 70]. Recently, multiple

input-multiple output (ΜΙΜΟ) techniques have been developed to use independent

transmitting antennas as a space time diversity technique [71]. More recent versions of

CDMA implementations employ multicode [72] techniques (MCCDMA) where each

user is allotted number of spreading codes to increase data rate for that user. User data is

split into a number of parallel data streams and different spreading codes are used to

simultaneously transmit these data bit streams.

In this dissertation, redundant codes or repetition coding is proposed in order to

improve detection performance particularly at lower signal to noise ratios. Each user is

allotted an odd number of codes for data spreading in the first stage of orthogonal

transmultiplexer. Input data is spread using these codes and the spread data is
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synchronously combined, resulting in varying power input data at the user's RF power

amplifier in the transmitter. Data bits from different users are asynchronously combined

with random delay over the channel. At the receiver, simple majority logic decision

(reason for odd number of spreading codes for each user) is employed on the detected

bits to get overall bit error performance.

Users can be allocated either standard single family codes or hybrid codes

generated with the transmultiplexer structure.

8.3.2 Redundant Code Generation

Figure 8.8 displays the block diagram for allocation and processing of 3 redundant codes

for each user at the transmitter and receiver in asynchronous CDMA system.

Figure 8.8 Block diagram for 2-user, 3-channel redundancy coding with single family of
spreading codes.

Data from user] is spread simultaneously with three codes code], code2 and

code3 and is combined, resulting in having a variable power data at the RF power
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amplifier in userl transmitter. user2 data is similarly spread with three other spreading

codes code4, codes and code6 and is combined. Data from both users is asynchronously

combined over the channel. At user1 receiver, received data bits are despread using

code], code2 and code3 and are detected. Majority logic decision of at least 2 out of 3

detections is applied on the individually detected code channels to get overall detection

performance.

Let N be an odd number of spreading codes using which each user data is

simultaneously spread, combined and transmitted. Majority logic decision is the

probability of finding detections in at least (N + 1) /2 spreading channels out of a total of

N channels.

As these N spreading code channels are independent, Bernoulli trials can be used

to analytically express the bit error rate performance (Pn) [68]

(8.4)

where P is the bit error probability with single spreading code.

This expression is equivalent to

(8.5)

for 3, 5, 7 and 9 redundancy codes per user.

As 1e is less than 1, Ρ„ value will become smaller as the number of spreading

codes keeps increasing.
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Redundant code generation method using a two-stage orthogonal transmultiplexer

for 2-users with three spreading codes for each user is displayed in Figure 8.9. Input data

bit is first up-sampled by eight and convolved using three spreading codes in first stage

transmultiplexer and the combined data is further up-sampled by eight and convolved

with spreading codes in second stage transmultiplexer. Spreading codes for different

users can be the same in the first stage transmultiplexer but 2 ' stage spreading codes

have to be unique for each user. Reverse operation of downsampling and despreading is

performed on the received bits using two stages of orthogonal transmultiplexer in order to

obtain detected bits. This design can be extended to any number of users or stages of

orthogonal transmultiplexers with the same number of redundancy codes for each user.

Figure 8.9 Block diagram for 2-user, 3-channel redundancy coding with two-stage
orthogonal transmultiplexer.

This method of allocating number of spreading codes for each user decreases the

number of available users compared to a single code per user system. On the other hand,
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it is preferable to have fewer numbers of users with good BER performance than having

more number of users with poorer performance in a low SNR channel.

8.3.3 Bit Error Rate (BER) Performance Comparisons

Two-user BER performance is simulated and displayed in Figure 8.10 for 16-length

Walsh-like codes in asynchronous channel by allocating 1, 3, 5 and 7 numbers of unique

spreading sequences to each user. It is noted that allocating one spreading code to each

user corresponds to regular CDMA channel. BER performance improves with increase

in number of spreading codes allocated to each user at low SNRs. At higher SNR, BER

performance with higher number of spreading codes for each user is poorer than single

spreading code performance. This phenomenon is due to the fact that multiuser cross-

correlations or multiuser interference rather than noise dominates at higher SNRs.

Figure 8.10 BER performances of 16-length Walsh-like code set with 1, 3, 5 and 7
redundant spreading codes for 2-users in AWG noise.
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Similarly, Figure 8.11 displays the BER performance of 31-length Gold codes for

2-users with 1, 3, 5 and 7 unique spreading codes allocated to each user. Here also,

communications performance improves at lower SNRs with increase in the number of

spreading codes for each user.

Figure 8.12 displays asynchronous BER performance variation of 31-length Gold

codes for 2-users with the increase in the number of spreading channel codes per user at

different SNRs. BER performance is improved at low SNRs (up to 10 dB) as the number

of spreading codes per user is increased from 1 to 7. If spreading codes are increased

further, performance rather deteriorates. Single code performance is better than having

more number of codes per user at high SNRs. Hence, based on the channel conditions,

number of spreading codes should be judiciously allocated to each user.

Figure 8.11 BER performances of 31-length Gold code set with 1, 3, 5 and 7 redundant
spreading codes for 2-users in AWG noise.
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Figure 8.12 BER performance variations with number of spreading codes for 31-length
Gold code set at different SNRs in AWG noise for 2-user case.

Performance improvements with redundancy coding are also observed using

hybrid or Kronecker product codes. As an example, 64-length product codes are

generated using two unique Walsh-like code sets in a 2-stage orthogonal transmultiplexer

and redundant spreading code performance is simulated by allocating three codes to each

user. User 1 data is spread with any three codes in 1 st stage and 1 st code in 2 nd stage. User2

data is spread with any three codes in 1 st stage and 2 nd code in 2 nd stage. This process is

repeated for up to eight users. For 9 th user, 1 st stage spreading codes different from

user 1's codes are used with the same 1 st code in 2 nd stage. Similar code assignment is

repeated up to 16 number of users.

Figures 8.13, 8.14 and 8.15 display the multiuser performance of hybrid codes by

allocating three spreading codes for each user evaluated at SNR = 5 dB, 10 dB and 20

dB, respectively.
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Figure 8.13 Multiuser BER performances of 64-length hybrid and Walsh-like code sets
with 1, 3 redundancy spreading codes in AWG noise at SNR=5 dB.

Figure 8.14 Multiuser BER performances of 64-length hybrid and Walsh-like code sets
with 1, 3 redundancy spreading codes in AWG noise at SNR=10 dB.



Figure 8.15 Multiuser BER performances of 64-length hybrid and Walsh-like code sets
with 1, 3 redundancy spreading codes in AWG noise at SΝR20 dB.

These figurem indicate that BER performance improvement is significant with

redundant spreading channels at low SNRs and for smaller number of users in the system.

As the number of users in the system increases, performance of all types of codes

becomes poor. Also, at low SNRs, hybrid codes tend to give better BER results compared

to standard single family codes like Walsh-like and Gold codes. At higher SNRs,

performance improvement with redundant coding is marginal and performance advantage

of hybrid codes compared to standard codes is minimal.

Figure 0.16 displays synchronous and asynchronous BER performance of 64-

length hybrid codes with 1, 3, 5 and 7 codes for 2-users in Rayleigh flat fading

conditions. Performance improves in the case of synchronous channel with the increase

in the number of spreading codes for each user, where as improvement is negligible in the

case of asynchronous channel.
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Figure 8.16 BER performances of 64-length hybrid code set for synchronous and
asynchronous Rayleigh flat fading channel with 1,3,5,7 spreading codes for 2-user
scenario.

Figure 8.17 displays multiuser performance of 64-length hybrid and Walsh-like

codes with 1, 3, 5 and 7 redundancy codes in Rayleigh flat fading channel evaluated at

SNR = 5 dB. This figure also indicates that performance improvement is negligible for

asynchronous channels in Rayleigh flat fading channel.

It is noted that in the case of AWGN noise, performance improvement with

channel coding at 5 dB SNR is substantial, as shown in Figure 8.12, where as in case of

Rayleigh channel, improvement is minimal. This is due to the fact that as each user data

is simultaneously spread with different codes, same channel conditions are applied for all

code sequences. There is no significant improvement in Rayleigh flat fading conditions

as channel diversity is not available for user data bits. To improve performance in

Rayleigh flat fading conditions, diversity techniques like frequency hopping, space code

or time diversity techniques need to be incorporated in the system.
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Figure 8.17 Multiuser BER performances of 64-length hybrid and Walsh-like code sets
with Ι & 3 redundancy spreading codes in asynchronous Rayleigh flat fading channel at
SΝR=5 dB.



CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH

Orthogonal transmultiplexer configuration suitable for CDMA communications scenario

is chosen as the theoretical frame work for this dissertation. Transmultiplexer basis

functions are designed based on the orthogonality principle as well as minimization of

inter- and intra-code correlation values among the basis functions.

Growing demand for new spread spectrum communication applications

necessitates the design of additional orthogonal code sets with flexible code lengths and

power requirements. New linear phase, near orthogonal and non-linear phase (Walsh-

like) code families are proposed and designed for different code lengths by relaxing the

constraints on the code design not pertinent for spread spectrum applications.

Performance characteristics of these proposed new sets of codes are closely matching

with the widely used CDMA codes in all channel conditions.

With recent advances in RF amplifier design, varying power codes are becoming

feasible for an efficient CDMA system. In this dissertation, design methodology for

multiple valued integer spread spectrum codes is proposed. BER performance of multiple

level orthogonal code sets is better than corresponding binary valued codes. It is shown

that system performance improves as the number of spreading code levels increases with

fixed code length. Short length codes with multiple level spreading codes are particularly

useful for short distance communication scenarios like sensor node networks. Sample

short length codes have been given in the dissertation. More research is required for the

design of optimal short length codes suitable for Zigbee applications.
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KLT technique is extended for designing multiple valued, varying power

orthogonal spreading codes suitable for DS-CDMA communications. It is shown that

spread spectrum KLΤ code sets outperform Walsh codes and are comparable to or

marginally better than the widely used Gold codes in all channel conditions and examples

considered. An important advantage of the proposed technique is its analytical nature that

provides infinitely many orthogonal spreading code solutions with flexible code lengths

and good BER performance for given input signal statistics. In the dissertation, spread

spectrum PSD function has been modeled as an AR process. Further study is needed in

modeling PSD function with accurate ARMA models. As spread spectrum KLT code

generation requires lot of mathematical computations, an efficient algorithm for

practically implementing KLT codes needs to be developed.

Hybrid codes are generated by taking Kronecker product of two or more

orthogonal spreading code matrices in a multiple stage transmultiplexer structure. Code

families considered can be of any size, any family and can be of binary or multiple level

chip values with the aim of minimizing total cross-correlation values. BER performance

improves by optimally allotting hybrid spreading codes to different users compared to

single family code assignment.

In this dissertation, a design method is proposed to improve system performance

by means of redundant spreading codes. Each user data bit is simultaneously spread with

odd number of spreading codes and is synchronously combined prior to transmission in

the first stage of a multiple stage orthogonal transmultiplexer. With redundant spreading

codes, significant improvements in BER performance are observed particularly at the low

SNR conditions. As the number of spreading codes is increased for each user,
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performance improves in asynchronous channel as long as cross-correlation values are

lower than noise level. Hence, an optimum choice for redundant codes needs to be

defined based on the channel conditions. An efficient switching algorithm for

dynamically changing the spreading codes based on the channel conditions needs to be

investigated.

In the dissertation, BER performance characteristics improvements with different

multiple level, varying power spreading codes compared to the corresponding binary

spreading codes have been shown at the code level. Effect of varying power codes on RF

power amplifier in terms of its peak to average power ratio (PAPR) or crest factor needs

to be studied. Furthermore, entire CDMA system needs to be simulated using multiple

level spreading codes with RF band modulation / demodulation.



APPENDIX A

32-LENGTH LINEAR PHASE ORTHOGONAL CODE SETS

Table A.1 Four Sets of 32-Length Linear Phase Orthogonal Code Sets Represented in
Integer Format

Index No Orthogonal
Set 1

Orthogonal
 Set 2

Orthogonal
Set 3

Orthogonal
Set 4

1 4294967295 4294967295 4294967295 4294967295
2 98303 _180223 5973503 319487
3 16679167 16597247 116291424 16457983
4 41942592 31456128 199813167 25165440
5 231461808 246836592 304520119 244314480
6 252612367 _252530447 429217383 252391183
7 267481103 258578160 446421336 267702287
8 364277160 267563023 477474360 384929640
9 731228628 858878771 593345220 733105620

10 858960691 859155660 629325403 859247411
11 869092403 869174323 699821460 868805683
12 870848460 880434732 774992779 899430828
13 1009628220 998920668 902022060 980170332
14 1010648003 1010729923 939458579 1010361283
15 1019395267 1019313347 _1011666371 1019681987
16 1045580412 1019585340 1059591420 1027850940
17 1320689010 1390659402 1193068317 1306798002
18 1431622997 1431770453 1202818530 1405768650
19 1437280853 1437133397 1286539981 1431401813
20 1455793002 _1437349290 1292890290 1437502037
21 1499216538 _1515775397 1366974090 1516144037
22 1515922853 1515993690 1455520917 1520532133
23 1520753317 1520900773 1539580890 1528146138
24 1529070810 _1561577658 1567797573 1547328570
25 1701940902 1712320614 1634031993 1716939366
26 1718032793 1717885337 1760139030 1717746073
27 1721296537 1721443993 1792447657 1721583257
28 1728999654 1741687782 1850886774 1730778342
29 1759930134 1756994838 1891164913 1759091478
30 1768483177 1768318614 1915216974 1768769897
31 1771509353 1768630633 1956395310 1771222633
32 1889261838 1771361897 2064330529 1890051342
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APPENDIX B

32-LENGTH NON-LINEAR PHASE (WALSH-LIKE)
ORTHOGONAL CODE SETS

Table B.1 Two sets of 32-Length Walsh-like and Walsh Code Sets Represented in
Integer Format

Index Νο Walsh-like32
Set1

Walsh-like32
Set2

Walsh-32

1 58392308 58386676 4294967295
2 136970343 136975975 2863311530
3 366559442 366565074 3435973836
4 512343617 512337985 2576980377
5 627959339 627958315 4042322160
6 775755960 775756984 2779096485
7 869160973 869161997 3284386755
8 949921438 949920414 2526451350
9 1141297881 1141299929 4278255360

10 1331047498 1331045450 2857740885
11 1386573055 1386571007 3425946675
12 1509266028 1509268076 2573637990
13 1645310470 1645312518 4027576335
14 1765903509 1765901461 2774181210
15 1957874720 1957872672 3275539260
16 2145530547 2145532595 2523502185
17 2262016061 2262021693 4294901760
18 2374196910 2374191278 2863289685
19 2423266843 2423261211 3435934515
20 2602623112 2602628744 2576967270
21 2697246946 2697247970 4042264335
22 2878621297 2878620273 2779077210
23 3060205252 3060204228 3284352060
24 3174561879 3174562903 2526439785
25 3249482256 3249483280 4278190335
26 3405763715 3405762691 2857719210
27 3607925814 3607924790 3425907660
28 3697044133 3697045157 2573624985
29 3887631055 3887632079 4027518960
30 3974657116 3974656092 2774162085
31 4045092073 4045091049 3275504835
32 4199271034 4199272058 2523490710
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