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ABSTRACT

CENTRAL AND PERIPHERAL AUTONOMIC INFLUENCES:
ANALYSIS OF CARDIOPULMONARY DYNAMICS USING NOVEL

WAVELET STATISTICAL METHODS

by
Anne Marie Petrock

The development and implementation of novel signal processing techniques, particularly

with regard to applications in the clinical environment, is critical to bringing computer-

aided diagnoses of disease to reality. One of the most confounding factors in the field of

cardiac autonomic response (CAR) research is the influence of the coupling of respiratory

oscillations with cardiac oscillations.

This research had three objectives. The first was the assessment of central

autonomic influence over heart rate oscillations when the pulmonary system is damaged.

The second was to assess the link between peripheral and central autonomic control

schema by evaluating the heart rate variability (HRV) of people who were able or unable

to adapt to the use of integrated lenses for vision, specifically accommodation, correction

(adaptive and non-adaptive presbyopes). The third objective was the development of a

wavelet-based toolset by which the first two objectives could be achieved. The first tool

is a wavelet based entropy measure that quantifies the level of information by assessing

not only the entropy levels, but also the distribution of the entropy across frequency

bands. The second tool is a wavelet source separation (WavS) method used to separate

the respiratory component from the cardiac component, thereby allowing for analysis of

the dynamics of the cardiac signal without the confounding influence of the respiratory

signal that occurs when the body is perturbed.



With regard to hypothesis one, the entropy method was used to separate the COPD

study populations with 93% classification accuracy at rest, and with 100% accuracy

during exercise. Changes in COPD and control autonomic markers were evident after

respiration is removed. Specifically, the LF/HF ratio slightly decreased on average from

pre to post reconstruction for controls, increased on average for COPD. In healthy

controls, respiration frequency is distributed across multiple bandwidths, causing large

decreases in both LF and HF when removed. With respiration effect removed from

COPD population, LF dominates autonomic response, indicating that the frequency is

concentrated in the HF autonomic region. Decrease in variance of data set increases

probability that smaller changes can be detected in values.

The theory set forth in hypothesis two was validated by the quantification of a

correlation between peripheral and central autonomic influences, as evidenced by

differences in oculomotor adaptability correlating with differences in HRV. Standard

Deviation varies with grouping, not with age. Increasing controlled respiration

frequencies resulted in adaptive presbyopes and controls displaying similar sympathetic

responses, diverging from non-adaptive group. WayS reduced frequency content in

ranges concurrent with breathing rate, indicating a robust analysis.

The outcome of hypothesis three was the confirmation that wavelet statistical

methods possess significant potential for applications in HRV. Entropy can be used in

conjunction with cluster analysis to classify patient populations with high accuracy.

Using the WayS analysis, the respiration effect can be removed from HRV data sets,

providing new insights into autonomic alterations, both central and peripheral, in

disease,
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CHAPTER 1

INTRODUCTION

1.1 Objective

This research sought to understand how autonomic function changes as a result of

disease. The systems investigated are influence by the autonomic nervous system. This

chapter will discuss the systems under investigation, and the physiological background of

the methods developed and described in chapter three.

This research seeks to clarify cardiac autonomic response in disease and aging by

developing new statistical methods. These methods are validated in three ways. First, a

model was created to simulate the  ΙΙΒ' signal as a summation of cardiac and respiratory

oscillatory signals to test the separation technique at  &equencies in the cardiac autonomic

range. Once the method is verified in this way, it is applied to clinical data sets in an

effort to understand the central autonomic changes in  cardio-pulmonary interactions. The

first clinical application of the methods was a data set consisting of ECG and respiration

signals, for COPD subjects and controls. This application evaluated the central

autonomic influence of pulmonary changes in disease. The next application was in the

analysis of the cardiac autonomic response of a subject population with varying levels of

visual adaptability, as measured &om their ability to adapt to the use of progressive

lenses for a condition called presbyopia. This application evaluated the peripheral

autonomic influence over the oculomotor system, and how it changes with aging, and

combined it with the central autonomic influence over heart rate variability to determine

how, if at all, the two systems interacted.

Ι
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There are two signal processing approaches taken in this research. The first aids

in the classification of the level of health of Chronic Obstructive Pulmonary Disease

patients clinically by the use of information contained within the  ilBI signal. This

method is a non-linear dynamics approach to quantifying variability via an entropy

analysis at each scale in a wavelet analysis, and using that information in a k-means

cluster separation. The second enables the assessment of cardiac autonomic response

with the influence of the respiration, which confounds the analysis of the underlying

neural control patterns, removed. The method is a wavelet based statistical source

separation technique that employs the correlation between the respiration and  irni signals

at various frequencies to remove the influence of the respiration from the dynamic

cardio-pulmonary signal. The foundation for the development of these methods will be

discussed in more detail in Section 2.2.

1.2 Hypotheses

There are three hypotheses being tested in this research. The first is that the central

autonomic influence over heart rate variability, as evidenced in  cardio-pulmonary

interactions, is modulated in pulmonary disease. It was hypothesized that lower levels of

entropy and cardiac autonomic markers exist in the COPD population than in the control

population.

The second hypothesis is that the peripheral autonomic influence over the visual

system is linked to the central autonomic influence over  cardio-pulmonary interactions.

It was further hypothesized that changes in near vision that occur with age are not due

solely to lens crystallization and weakening of the muscles. It was also hypothesized that
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lowered visual adaptability would be linked with lowered heart rate variability.

The third hypothesis is that the validation of the first two theories would be facilitated

by the development of methods that are based upon wavelet transforms. The third

hypothesis consists of the development of two specific tools to aid in the analysis of the

data sets described above. This hypothesis consists of two parts:

1) The difference in cardio-pulmonary activity between subject populations may
be evidenced in the energy of the heart rate signal at different frequencies,
which should be distributed differently for people with different levels of
health. Further, this difference in energy can be employed to classify the level
of cardio-pulmonary health in a clinical setting. Specifically, the development
of a wavelet entropy analysis, coupled with the application of a k-means
clustering algorithm, will aid in the computer based diagnosis of level of
health in COPD. This method will be referred to as the Wavelet Entropy
method.

2) Respiration artifact can be successfully removed from a dynamically changing
heart rate variability signal to reveal the cardiac changes that occur with aging
and disease. This separation can take place in the frequency domain by
employing the correlation of coefficient sets generated by a wavelet
transformation as a basis for the separation. The signal, now free from
respiration artifact, can then be reconstructed into the time domain. This
method will be referred to as the Wavelet Source Separation method.

1.3 Background

All human systems exhibit a certain amount of variability. Among other systems, it is

evidenced in the cardiovascular system, in the activation/deactivation of

neurotransmitters and receivers resulting in behavioral changes and even in the circadian

(day/night) cycle of sleep and wake. Typically manifesting itself as a change in power in

a specific frequency range, the level of variability has been observed to be associated

with various states of health and disease, ranging from behavioral to neurological to

physiological abnormalities. In recent years, there has been an increased effort at
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understanding this variability in terms of the amount of information that it can provide [1,

2, 3].

1.3.1 Physiological Research Studies

The term information is used in many ways in engineering. With respect to this research,

it is in reference to the level of variability of the system. The level of auto-correlation of

the data points in a time series is indicative of the amount of information contained

within the signal. At one end of the spectrum, when data are too correlated, they become

periodic. This indicates a low level of information within the system, because there is

little to no variation from one point to the next and therefore gaining one small sample of

data is sufficient to understand the entire system. At the opposite end of the spectrum is

data that are not correlated at all, a state that is commonly referred to as noise.

Somewhere between these two extremes lies the "healthy level of variability." In this

state, there are sufficient interactions occurring within the system being investigated

which preclude it from being described by one linear, time-invariant equation, but not

enough interactions to preclude the system from being defined by one or a set of

equations. While there is still disagreement about the level of co rrelation at which the

signal becomes noise, there is agreement that in any system, a lower level of co rrelation

is indicative of a higher level of variability, and thus, a higher level of information that is

available to the researcher regarding the system status. The level of information

contained within a signal is directly proportional to the level of complexity within the

signal.

Research on physiological systems has begun to acknowledge that although it is
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easier to model a system using linear parameters and models, it is not accurate and it is

often not appropriate to assume that a physiological system behaves in a linear, stationary

manner [4, 5, 6]. The reason for this is that biological systems vary with time. This is an

adaptive mechanism which serves to protect the system from damage when

environmental conditions change and place stress upon the system. An inability of the

system to respond to stress, either real or perceived, is detrimental to the long-term

survival of the organism. This inability to adapt is evidenced by depressed or

exaggerated variability and complexity in a system [5, 7, 8, 9, 10, 11]. When the

variability is too low, the system cannot respond effectively to the perturbation and will

fail to provide an adequate level of physiological response over an extended period of

time. When the variability is too high, the system overreacts to stresses and cannot

recover properly. The problem that exists is that currently, there is little understanding of

what is too low and what is too high, only that those states exist. Perhaps if more was

known regarding the underlying neural processes that create this variability, it would

become more apparent how to use this information as a tool to classify levels of health of

a system.

The objective of this work was to investigate autonomic behavior at the system

level as evidenced in the coupling of the cardiovascular and pulmonary systems in

control and diseased populations, as well as the cardiac autonomic response to  ANS

stimulation via respiratory changes in an aging population that displayed varying levels

of ability to adapt to the use of corrective lenses. Both populations displayed alterations

in variability and control scheme at rest as well as with altered input from the respiratory

system.
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The maimer in which this objective was accomplished was twofold. First, a

toolset was developed with the express intent of deciphering underlying neural control

processes for biological signals. This includes wavelet based entropy analysis combined

with a data clustering technique for distinguishing between subject populations which can

be employed in a clinical setting. The toolset also includes a wavelet based source

separation (WayS) technique that extracts neural response information from stimuli

signals, providing control system information that can be compared across subject

populations.

The second step is to employ this toolset on clinically relevant data to delineate

physiological changes in neural processes that occur during aging and disease.

Specifically, it is of interest to understand how cardio-pulmonary interactions are altered

with Chronic Obstructive Pulmonry Disease (COPD), a class of lung disease that

incorporates emphysema, chronic bronchitis, or a combination of both. Further, it is of

interest to determine how the cardiac neural control scheme is altered in the aging visual

tracking system before and afler the onset of the condition typically referred to as

presbyopia, a stiffening of the lens of the eye or a weakening of the muscles that control

the curvature of the lens or a combination of both. Presbyopia affects all people as they

age, with the onset typically starting at the age of forty.

Traditional signal processing techniques are not appropriate in the analysis of

biological signals because they are based upon the assumption that the signal being

analyzed is stationary and/or linear, for ease of analysis. In reality the systems generating

the signals, in addition to the signals that are generated, are oflen non-linear, time-varying

signals. To account for this, efforts at investigating physiological systems can make the
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assumption that the system is a black box [12], an assumption which can often lead to

confounding and contradictory results. This research helps to open this box and

investigate the activity of the systems within by using time-varying, non-linear analysis

methods.

The tools that were developed in this research involve the use of wavelets, either

through the analysis of the resultant time series generated as a result of performing a

wavelet analysis, or via the use of a wavelet series as the basis of separation in a source

separation and subsequent reconstruction technique. The methods were developed based

upon a combination of non-linear techniques published in the literature and knowledge of

the parameters of the systems to which they will be applied. Calculated wavelet

coefficients were be used to determine the amount of information within the system via a

Wavelet Entropy study. Α cluster analysis of the data was then employed because it was

hypothesized that it is possible to separate subjects according to various levels of health

and age, based upon the information content, or variability, displayed by the system.

This method proved able to classify subjects with greater than 90% accuracy.

The tools developed were used to analyze the neural underpinnings of two

physiological systems that are both innervated by the autonomic nervous system. It is

well known that cardio-pulmonary interactions are heavily interdependent. The typical

measure of interdependence, also believed to be indicative of the level of activity of the

parasympathetic nervous system, is respiratory sinus arrhythmia (RSA), which looks at

the connection between variations in the heart rate and the respiration cycle. Currently,

the gold standard method used in research of this phenomenon is limited to a Fourier

analysis of power in the frequency range of 0.14-0.4 Hz [5, 13].
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The neural control mechanisms that determine how the two systems are coupled

and the control signal of the cardiac system remain unclear, as the gold standard seeks

only to quantify, not specify, the level of activity resulting from stimulation. This

research employs respiratory and cardiac data from populations that are healthy and also

populations suffering from various degrees of Chronic Obstructive Pulmonary Disease

(COPD). Using these data, the methods proposed in this research will attempt to remove

the respiratory signal from heart beat fluctuations using a blind source separation

technique. This should enable fuller analysis of the neural control signal that is present,

since it is believed that the fluctuations in the heart rate signal are a result of the

interaction of the branches of the autonomic nervous system and the respiratory system.

It is proposed that this technique will enable investigation of changes that occur in

disease and aging, particularly with regard to the neural input to the heart when the lungs

are damaged and with respect to populations with decreased adaptability evidenced in

other systems influenced by the autonomic nervous system. As will be seen, the signals

change in amplitude, phase and frequency with various stimulations and levels of health.

The results of the information analysis were effectively implemented to

objectively categorize varying levels of health within the disease population. It also

validates variability theory by setting different levels of variability for health and disease.

In an effort to investigate the influence of the autonomic nervous system (ANS) on the

body, activity in the cardio-pulmonary system, known to be influenced by the activity of

the two branches of the ANS, will be investigated simultaneously. It was hypothesized

that the two systems will display similar changes in disease. The method employed to

investigate whether there are cardiac differences in apparently healthy subjects who are
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able to adapt to visual tasks is a standard controlled breathing task. This experiment is

significant because there have not been experiments that specifically examine system

level interactions of the ANS. Studies of the ANS input to the visual system are not

reported in the literature, although ANS input to the cardiovascular system has been

reported extensively. This study builds upon a vast pool of knowledge of autonomic

activity in one physiological area to understand farther reaching implications of the

system to indicate that the physiological variability that has been observed and attributed

to the interacting branches of the  ANS may influence the levels of adaptability in systems

other than the cardio-pulmonary system. The findings of this study suggest that cardiac

autonomic response differences may be measurable, even in apparently healthy

individuals, when investigating adaptability in other systems influenced by the autonomic

nervous system.

Controlled breathing was performed by having the subjects follow a light emitting

diode (LED) display placed in a dark room, such that the LEDs were placed parallel to

their line of sight. The subjects were instructed to control their breathing to match

inspiration to the lights on the LED display when they illuminate in the direction toward

the subjects, and expiration to match the outward travel of the LED display. The

electrocardiogram (ECG) and respiration signals were be recorded to investigate the

cardio-pulmonary interactions. In order to appreciate why this work is important, it is

necessary to understand what is known about the physiological systems discussed above,

as well as the changes that are known to occur in the systems with disease and aging.

There is a vast amount of knowledge of the system and diseases that affect it that exists,

and yet neural influence remains largely a mystery. Chapter two discusses the systems,
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changes that occur in them with aging and disease, and the methods that are proposed to

investigate the ANS activity.

1.3.2 Signal Processing Research Studies

The wavelet entropy analysis applied in this research was applied by  Kowaiski, et al., in

an effort to determine the classical and quantum interface of particles. As the system

consists of coupled oscillations, the wavelet entropy method was employed to determine

if the change from classical to quantum particle behavior could be detected using the

information level contained within specific bandwidths [54]. This application was

significant because it attempted to quantify non-linear coupled interactions using wavelet

entropy, and was the basis for the application of the method in this research.

The wavelet entropy approach has also been employed in physiological

applications such as scalp electroencephalogram (EEG) analysis for detection and

analysis of seizures, event-related potential derived from the EEG (ERP), using the

electrocardiogram (ECG) to differentiate no rmal from ischemic episodes, and cardiac

valve disease analysis [96, 98, 99, 100]. It has not been used to classify patient

populations in an effort to augment clinical  toolsets, as is done in this research.

Some of the earliest applications of wavelets were for  denoising and compression

of data, and those applications continue to be prevalent in the literature [111, 110]. This

research employed the theory of wavelet denoising with a priori knowledge of the noise

signal, which in this case is the respiration influence in the  interbeat interval. The

influence of respiration on the HRV signal has been a confound in research and has been

investigated [104, 105, 108, 109]. Barbieri's group investigated the use of time-varying

spectral analysis to quantify continuous respiration and  baroreflex influences of heart
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rate. This group was able to model the influence of respiration, but not to quantify the

underlying dynamics of the physiology. Byrne, et al. quantified RSA using a peak-valley

estimator, which did not have good time resolution. This resulted in errors in the analysis

when short time-periods were being investigated, or if analysis of transient episodes was

required. Of note is the finding by Mm that the LF and LFιΗF ratios were elevated in

subjects with hypoxia. The finding is in agreement with the findings regarding the

COPD population in this research, which found that afler removal of respiration the LF

content was higher in COPD than control subjects, driving the LF/HF ratio higher afler

the analysis. Further, in healthy subjects, LF/HF ratio was lower afler removal of

respiration due to the removal of low frequency content as well as high frequency

content. Nagata, et aL used neural networks to observe that sympathetic activity

dominates during vigorous conditions, while 19 markers of general autonomic activity

declined during fatigue. The question remains, however, whether the increase in

sympathetic activity was respiration mediated.

Methods to derive and quantify the respiration signal based upon ECG and/or

blood pressure waveforms have been presented, but methods to remove the influence of

respiration from the 1181 signal are limited [103, 106, 107, 112]. DeMeersman et al.

derived a method of estimating respiratory information from the pulse signal. This

method quantified, rather than using as a basis for extraction, the respiration signal. As a

first phase of analysis, when only the pulse information is available but not the

respiration data, this method may be used in conjunction with the separation method

developed in this research. Yildiz et al. developed a model that assessed respiratory

influence on HRV. Significantly, as with Mm's finding, the model analysis derived
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significant influence of respiration over the HF peak, but also plays an important role in

the genesis of the LF activity. The group also suggests that LF/HF ratio may not be a

suiTable measurement of sympatho-vagal tone unless there is first a respiration

correction performed in the HRV data.

Time-frequency methods have successfully been employed to perform blind-

source separation of signals [115, 116]. Belouclirani and Amin developed an algoiithm

to remove noise from signals. The basis for their work was to employ the distribution of

noise in the time-frequency domain, and the local frequency activity the source signal to

remove the noise from the signal. In the case of HRV analyses, the "noise" is a

continuous signal throughout the course of the entire signal, with spectral power in the

same region as the signal of interest. Zhang and Amin use time-frequency distributions

to whiten the signals and for subsequent separation of the source signals. The limitation

is that the time-frequency distributions of each of the signals must have disjoint

distributions. In the WayS method, the similarity of the time-frequency distributions is

exploited to separate the two sources.

1.4 Significant Contributions of this Research

With regard to central autonomic pathways, evidence was presented that the removal of

respiration does not remove the entire variability from the signal. Further, cardio-

pulmonary correlation in controls is measurably different from that of COPD subjects,

evidenced by different minimum requirements for correlation required to effectively

separate the respiration from the heart rate variability signal. The level of complexity in

the HRV signal is also distributed differently in COPD than in the control population.
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The distribution of the complexity in specific frequencies is significant during exercise,

while the actual entropy values are the significant components employed to distinguish

between COPD and control populations at rest.

With regard to the peripheral and central autonomic link, several key findings of

this research goal exist. First, the presbyopic group unable to adapt to the use of lenses

exhibited different HF content than the adaptive presbyopic and control groups. In

addition, the non-adaptive presbyopic group exhibited lowered levels of heart rate

variability, as evidenced by standard deviation and HRV markers of HF, LF and LF/HF

ratio, in comparison to the control and adaptive presbyopic groups.

Finally, wavelet statistical methods possess significant potential in applications to

cardiac autonomic function. The wavelet entropy method was able to classify patient

populations with classification rates of 93% and 100% for resting and exercising

populations, respectively. With regard to wavelet source separation, the potential of this

method to delineate autonomic modification with disease is very significant. The model

indicated a 0.9988 correlation between the original subcomponent of interest and the

signal that the WayS program extracted. The presbyopic data, which were controlled to

three different breathing rates, resulted in decreased low &equency HRV marker when

breathing at 8 breaths/mm, and decreased high frequency HRV markers when breathing

at 12 and 16 breaths. This validates the method clinically due to the removal of spectral

content relative to the breathing influence that was created. The COPD study yielded

interesting results, which point to other mechanisms underlying the variability in the
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timing of successive heart beats. This information was confounded previously by

respiration. The WayS holds significant potential for future research, in cases where the

influence of respiration is unclear.



CHAPTER 2

BACKGROUND

This research seeks to understand how autonomic function changes as a result of disease.

The systems investigated are influence by the autonomic nervous system. This chapter

will discuss the systems under investigation, and the physiological background of the

methods developed and described in chapter three.

This research seeks to clarify cardiac autonomic response in disease and aging by

developing new statistical methods. These methods are tested in three ways. First, a

model was created to simulate the  ΙΙΒ' signal as a summation of cardiac and respiratory

oscillatory signals to test the separation technique at frequencies in the cardiac autonomic

range. Next, the methods were applied to the clinically obtained data, consisting of ECG

and respiration signals, for COPD subjects and controls. Finally, the methods were

applied to analyze the cardiac autonomic response of a subject population with varying

levels of visual adaptability, as measured from their ability to adapt to the use of

progressive lenses for a condition called  presbyopia, which will be discussed more fully

in Section 2.1.

There are two signal processing approaches taken in this research. The first aids

in the classification of the level of health of Chronic Obstructive Pulmonary Disease

patients clinically by the use of information contained within the ΠΒΙ signal. This

method is a non-linear dynamics approach to quantifying variability via an entropy

analysis at each scale in a wavelet analysis, and using that information in a cluster

separation. The second enables the assessment of cardiac autonomic response with the

influence of the respiration, which confounds the analysis of the underlying neural

15
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control patterns, removed. It does this by the development of wavelet-based statistical

measures. The next method is a wavelet based source separation technique that employs

the correlation between the respiration and  ΙΙΒ' signals at various frequencies to remove

the influence of the respiration from the cardiac autonomic signal. The foundation for the

development of these methods will be discussed in more detail in Section 2.2.

2.1 Physiological Background

2.1.1 The Nervous System

The nervous system is affected by environmental conditions, both real and perceived, and

affects all physiological and emotional systems of the body. There are two branches of

the nervous system that are interdependent. One branch, the Central Nervous System

(CNS), is composed of the brain and the spinal cord. The other branch is called the

Peripheral Nervous System (PNS). This branch is composed of electrically conductive

cells (nerves) that connect the CNS to the remaining organs and tissues of the body.

The PNS consists of 43 pairs of nerves, distinguished as twelve pairs of cranial

nerves and 31 pairs of spinal nerves. The scope of this research is interested in the

neuromotor signals carried on two cranial nerves: the Oculomotor (III) and Vagus  (Χ).

As the name might suggest, the Oculomotor nerve influences the motor control of the

muscles that move the eye. The Vagus nerve has an influence over the activity of the

heart, among other organs, although for the scope of this research, the Vagal influence

over the cardio-pulmonary activity is of significance. The influence of both cranial

nerves with reference to specific systems under investigation is discussed later in this

chapter.
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The PNS is comprised of two parts: the afferent division and the efferent division.

The nerves leaving the CNS are part of the efferent division. They carry the commands

from the CNS to the target, or effector, organs. The afferent division carries sensory

information from the effector organs back to the CNS for processing and resultant

adjustment of systems to maintain homeostasis, the relative equilibrium of the internal

environment. Table 2.1 illustrates the role of the afferent and efferent nerve fibers of the

cranial nerves mentioned above.

Table 2.1 Afferent and Efferent branches of Cranial Nerves III and  Χ

III. Oculomotor Nerve X. Vagus Nerve

Afferent Efferent Afferent Efferent
Transmit
information from
receptors in
muscles

Innervate muscles
that move eyeball
up, down,
medially, as well
as muscles that
constrict pupil &
alter lens for
near/far vision

Transmit
information from
receptors in thorax
and abdomen

Innervate muscles
of pharynx and
larynx, as well as
muscle and glands
of thorax and
abdomen

The efferent division of the PNS is composed of two systems: the Somatic

Nervous System and the Autonomic Nervous System  (ANS). The primary difference

between the two types of systems in this division is based upon the type of tissue that

they innervate and how they innervate it. The somatic nervous system innervates skeletal

muscle and can only perform excitatory stimulation. The  ANS innervates smooth and

cardiac muscle cells, glands and GI neurons and can carry either an inhibitory or an

excitatory stimulus. Efferent innervation of most tissue other than skeletal muscle is

carried out by the ANS. The ANS is further subdivided into three parts: the Sympathetic
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branch, the Parasympathetic branch and the Enteric branch. Figure 2.1 reflects the

sympathetic and parasympathetic branches of the  ANS and identifies effector organs.

Note the difference in exit points for the nerves in both branches of the  ANS as they

leave &om the CNS. The parasympathetic branch leaves &om the brainstem and sacral

Section of the spinal cord, while the sympathetic branch exits  &om the CNS in the

remaining Sections. Although the two branches  imiervate many of the same systems,

they receive their commands &om very different locations within the central nervous

system. In addition, the physiological roles of the two branches are dramatically

different.

The sympathetic nervous system serves as an excitatory pathway for the response

to a stressful situation while the parasympathetic branch acts as an inhibitory pathway to

return the system to normal operation  afler the stress has passed. The interaction of the

two branches creates quite a bit of variability within the system and results in what has

been termed "tone." It is this interaction of both branches that enables the body to

respond to quickly changing environmental conditions. Research has shown that the

more these two systems interact, generating larger variations in activity, the better able

the system is to respond to changing external conditions. In essence, the research has

indicated that the stronger the give and take interaction is between the two systems, the

stronger the ability to adapt to changing conditions. Note that the cardiac, respiratory and

visual systems are innervated by both branches of the ANS (refer to Figure 2.1 and Table

2.2).
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Figure 2.1 Parasympathetic (left) and Sympathetic (right) branches of the  ANS, and
effector organs.
Source: Vander, Human Physiology, 8th ed. 2001
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The scope of this research involves both the Sympathetic and Parasympathetic

branches of the ANS. It is hypothesized that the proposed methods will provide a deeper

understanding of the specific control schemes of the aforementioned two branches of the

ANS by building upon the currently accepted theories of  ANS impact on cardio-

pulmonary dynamics of healthy and diseased subject populations, which will be

discussed in further detail later in this chapter. In addition, the research will seek to

identify neuromotor control schemes from Cranial Nerve III and how it is impacted by

aging. Table 2.2 outlines the sympathetic and parasympathetic influences on the effector

organs of the eyes, heart and lungs. Although the proposed methods will be applied to

Table 2.2 ANS Interaction with Specific Organs Relative to Research

Effector
organ

Receptor
Type

Sympathetic Effect Parasympathetic Effect

Eyes

Iris Muscles Alpha Contracts Radial muscle Contracts sphincter muscle
(dilates pupil) (contracts pupil)

Cilliary Beta Relaxes muscle (flattens Contracts muscle (increases
Muscle lens for far vision) lens curvature for near

vision)

Heart
SA Node Beta Increase heart rate Decrease heart rate

Atria Beta Increase contractility Decrease contractility

AV Node Beta Increase conduction
velocity

Decrease conduction
velocity

Ventricles Beta Increase contractility Slightly decrease
contractility

Lungs
Bronchial Beta Relaxes Contracts
Muscle
Bronchial Alpha Inhibits secretion Stimulates Contraction
Glands

Beta Stimulates Secretion
Source: Vander, Human Physiology, 2001
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two distinct physiological systems, it is hypothesized that the tools will be able to

delineate heretofore unknown neural control processes and their alteration with disease

and aging.

2.1.2 Cardiovascular System

The cardiovascular system is composed of the heart, an electro-mechnical pumping

device, and its associated periphery. The periphery, or systemic circulation, consists of a

closed system of conduits of various sizes, which serve different purposes. It consists of

three components: the arteries, the veins and the capillaries. The lungs have a separate

system in which gas exchanges occur. This system is termed the pulmonary circulation,

and also consists of arteries, capillaries and veins.

The arteries in the systemic system serve as the pathway through which

oxygenated blood is passed &om the heart to the body. This system is composed of

arteries, which are large diameter highly elastic structures, and arterioles, which are

smafler in diameter but are also highly elastic structures. Running parallel to the arteries

are the veins. The two systems are connected via capillaries, thin walled structures that

are only wide enough to allow one cell to pass through at any given time. Oxygen

saturated blood travels through the arterial system and passes through the capillaries. Gas

transfer occurs in these structures, which allow the surrounding tissue access to oxygen

while absorbing waste products. The waste laden blood then passes to the veins and is

returned to the heart to get pumped to the pulmonary system for re-oxygenation via the

capillaries in the pulmonary circulation. The heart, then, is the pump that drives the

exchange of gasses within the body.
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The heart is composed of four chambers, two atria and two ventricles. The left

side of the heart is responsible for passing the blood into the periphery. The periphery is

composed of the vascular structures that transport the blood through all of the systems of

the body, except the lungs. The right chambers of the heart pump the blood into the

pulmonary system to be oxygenated in the lungs. The blood enters the respective sides of

the heart via the atria and exits via the ventricles. Unoxygenated blood from the

periphery enters the right atrium via the superior and inferior vena cavae and is passed

into the right ventricle. From the right ventricle, the blood passes to the lungs via the

pulmonary arteries. From the lungs, oxygenated blood returns to the heart via the

pulmonary veins to the left atrium. The blood then passes to the left ventricle and out to

the periphery via the aorta. Figure 2.2 illustrates the anatomical location of these

structures within the heart. In a healthy heart, there is a septum which prevents the blood

from passing between the left and right sides of the heart. The passage of blood in a

healthy heart from the atria to the ventricles occurs in a unidirectional, pulsatile manner.
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Figure 2.2 The heart.
Source: Vander, et al., Human Physiology, 8th ed. New York: McGraw-Hill, 2001

The heart is capable of acting as an entirely autonomous organ. If necessary, it is

capable of spontaneously generate heart beats, assuming that it is in a solution that

contains the proper chemical prope rties. Figure 2.3 illustrates the electrical conduction

pathways of the heart. The electrical aspect of the heart beat begins at the  sinoatrial (SA)

node, the heart's internal pacemaker. This small cluster of cells in the right atrium

generates the action potential in the heart that ultimately results in the contraction of the

heart. The electrical impulse passes from the SA node to the  atrioventricular (AV) node,

located at the bottom of the right atrium, just above the tricuspid valve. The AV node

serves as a delay mechanism in the conduction of the electrical signal from the atria to the

ventricles. This enables the atria to completely empty into the ventricles before the signal

is passed to the ventricles, causing them to contract. From the AV node, the signal passes
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from the atria to the ventricles via the Bundle of His, located in the Inter-ventricular

septum and down through the left and right bundle branches. The bundle branches

spread to their respective vent ricles, and ultimately terminate at the  Purkinje Fibers of

each ventricle. It is the action potential on the Fibers that cause the contraction of the

ventricles and the subsequent coordinated ejection of blood to the systemic and

pulmonary circulation systems that is commonly referred to as the "heartbeat."

Figure 2.3 Intrinsic conduction system of the heart and associated conduction pathways
from the SA node to the ventricles.
Source: http ://www.guidant.com/webapp/emarketing/compass/comp.j  sp?lev Ι =resουrc&1eν2g1οssaτy
Printed 12/1/2005.
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However, in addition to internal pacemaking and feedback mechanisms, it is

known that the heart is innervated by the sympathetic and parasympathetic branches of

the autonomic nervous system. Figure 2.4 indicates the pathways that are employed by

the body to control the arterial pressure generated by the heart in a loop that is commonly

referred to as the arterial baroreflex. The direct sympathetic inputs (see Figure 2.5) to the

cardiac vasculature serve to control the aterial and venal tone, which in turn Impacts the

blood pressure. This type of control mechanism is generated electrically rather than

using mechanoreceptors, as are used in the baroreceptor control loop.

Figure 2.4	 Neural pathways for the arterial baroreflex. Primary  afferents in the ΙΧ and Χ
cranial nerves project to the nucleus tractus solitarii  (NTS). As shown on the right,
interneurons form sympathetic pathways between the  NTS and caudal ventrolateral medulla.
Pathways from the NTS to the nucleus ambiguus form the major parasympathetic arm of the
reflex.
Source: Guyenet, 1990
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The vagus nerve (Nerve Χ, see Section 2.1.1) acts as the main parasympathetic

input to the heart. The  Vagus also innervates pulmonary  vasculature, aiding in the

coordination that is inherent between the cardiac and pulmonary systems. The interaction

between mechanoreceptors, chemoreceptors and electrical stimuli from both the

sympathetic and parasympathetic branches of the  ANS serve to counteract each other to

maintain a healthy level of activity, as well as ensuring a healthy response to  stressors.

When one of the mechanisms does not function properly, it impacts this interchange and

lessens the give and take between relaxation and stress responses within the

cardiopulmonary system. This, in turn, results in lowered levels of variability that can be

recorded non-invasively via the continuous electrocardiogram (ECG) or blood pressure

signals.

The heart rate is controlled in many ways. Ways in which it is affected include

changes in mechanoreceptor and electrical stimulation. The interaction of respiratory and

cardiac pathways is illustrated in Figure 2.5. Note the proximity of cardiac and

pulmonary afferents. Changes in oxygen demand result in increased lung volume, which

Figure 2.5 Horizontal View of Preganglionic parasympathetic cardiac and pulmonary
motoneurons in the nucleus ambiguus (nΑ) and dorsal motor nucleus of the  vagus (dvn)
Source: Jordan, 1995
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in turn actives the cardiopulmonary stretch receptors. Changes in the perceived or real

states of stress result in sympathetic stimulation of the vascularture, which results in the

stimulation of carotid sinus baroreceptors as a result of the changing vascular resistance

as part of the baroreceptor control loop. Figure 2.6 displays the inverse relationship that

these types of receptors display in terms of changes in mean arterial pressure.

Figure 2.6	 Contrasting responses of mean arterial pressure, heart rate, renal vein, and renal
venous—arterial (v-a) plasma renin activity  (PRA) to 5 min of head-up tilt to unload
cardiopulmonary stretch receptors (open circles, dashed lines) or positive neck pressure to
unload carotid sinus baroreceptors (closed circles, solid lines). Compared to the control state
(C), unloading low-pressure cardiopulmonary receptors (S) decreased arterial pressure and
reflexly increased heart rate and PRA. Conversely, reduced stimulation of high-pressure
arterial baroreceptors reflexly increased blood pressure and heart rate but did not significantly
influence PRA.
Source: Mancia et al. 1978

2.1.3 Heart Rate Variability

The rate at which the heart contracts to pump blood (heart rate, or HR) is influenced by

many factors. The most significant influence over the timing between successive heart

beats is the innervation of the heart by the two branches of the autonomic nervous system
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(ANS). The opposing interaction of the two branches of the ANS, the sympathetic and

parasympathetic branches, causes the heart rate to increase and decrease, respectively

(see Table 2.2). If the heart was allowed to self pace, the sino-atrial (SA) node would

cause the heart to beat at a rate of approximately 100 beats/minute at rest. Dominant

innervation from the parasympathetic nervous system via the Vagus nerve lowers the

resting HR to approximately 60-70 beats/minute. Due to sympathetic iiinervation,

however, the heart rate is the result of constantly interacting branches of the  ANS, and

constantly increases and decreases, depending on which branch of the  ANS dominates

the control schema at any given time. Measurement of the variations in heart rate called

heart rate variability (HRV) can yield information about the health of the  ANS and

ultimately, about the overall health of the person [14, 15, 16]. HRV has been called an

all-cause mortality indicator due to the absence or depression of the variations present

during various classifications of disease, such as chronic obstructive pulmonary disease

(COPD), bipolar behavioral disorder, depression, myocardial infarction, AIDS,

Parkinson's Disease, diabetes, various types of cancer and more. It typically decreases

with age.

The role of respiration in the modulation of heart rate cannot be overlooked.

Akselrod, et al. [17] investigated the relationship of the activity in various frequency

ranges with the activity of specific branches of the autonomic system. This landmark

HRV study found that fluctuations at the respiratory frequency, today referred to as the

high frequency content (0.14 through 0.4 Hz), were almost entirely attribuTable to

centrally mediated input to the heart rate. In addition, they found that the low frequency

content (0.04 through 0.14 Hz) was directly correlated with changes in the musculature
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that controls the constriction and dilation of the vasculature 17, 18]. Malliani, et al. later

found that sympatho-vagal balance is reflected by the ratio of the power in the low to

high frequency ranges. Further, they found that low frequency oscillations increased

during sympathetic stimulation and high frequency power increased during

parasympathetic, or vagal, stimulation [19, 20]. In 2003, Pyetan, et a!. described via a

model of cardiac vagal response the small range of values into which heart rate variability

and resting sinus arrhythmia fall and suggested that it may be possible to clinically

quantify levels of cardiac and or neural disease with great accuracy using the variability

parameters [21].

2.1.4 Pulmonary System

The primary function of the pulmonary system is to maintain proper levels of gas in the

bloodstream and tissues. The system provides oxygen, eliminates carbon dioxide,

regulates the levels of hydrogen ions (i.e., the pH level of the blood), defends against

microbes and traps and dissolves blood clots [22]. The pulmonary system is dependant

upon several types of receptors to ensure healthy control of the amount of oxygen

entering the bloodstream, and the amount of carbon dioxide leaving the body. It does this

via a complex set of interacting neural pathways, as shown in Figure 2.7, Ramon  Υ

Cajal's neural model of respiratory control. Respiratory neurons in the solitary tract (C)

process signals from pulmonary afferents [K; cell bodies in nodose ganglion (J)] and

some blood factor present in local capillaries (A). Descending control signals go to

spinal motor neurons (D), innervating the diaphragm (E) or intercostal muscles (F). The

diaphragm and intercostal muscles will not contract unless stimulated to do so neurally.
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Figure 2.7	 Ramon Υ Cajal's model for respiratory control.
Source: Squire, 2003.

The control of the inspiration-expiration cycle is mainly organized in the medulla

oblongata, which also is the main control center for cardiovascular activity [22].

Expiration is frequently the result of the cessation of motor neuron stimulation of the

inspiratory muscles. Neurons called the medullary inspiration neurons discharge during

inspiration and are quiescent during expiration. It is this pattern of activation and silence

that causes the inspiratory muscles to contract during inspiration and to be at rest during

expiration. The inspiratory neurons possess internal pacemakers, not unlike cardiac

tissue, which also influence the breathing pattern. The majority of the stimulation of the

inspiratory neurons arrives at the medulla from the pons, part of the brain stem located
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above the medulla. It is believed that the pons influences the respiratory pattern by

inhibiting the action potential received at the medulla.

In addition to input &om the pons, pulmonary stretch receptors, located in the

smooth-muscle layer of the airway, send inhibitory signals to the medulla via the Hering-

Breur inflation reflex (see Figure 2.8). Slowly adapting pulmonary stretch receptor

afferents (SAR) arise from receptors located in airway smooth muscle (pulmonary stretch

receptors) and cells in the nucleus of the solitary tract  (NTS). These neurons are believed

to activate F-Dec neurons in the ventral respiratory group  (VRG) that inhibit inspiratory

neurons, thereby prolonging expiration. The stretch receptors send signals via afferent

pulmonary fibers to the medulla when large levels of lung inflation occur. These action

potentials received from the mechanical receptors inhibit the medullary inspiratory

neurons, and as a result, cause the cessation of inspiration.

Figure 2.8 Dorsal view of rat brain stem showing hypothesized central pathway for
producing reflex termination of inspiration and prolongation of expiration (the Breuer—
Hering reflex).
Source: Squire, 2003
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Chemoreceptors play a significant role in the formation of a respiratory pattern.

Because it is the role of the pulmonary system to maintain proper gas concentrations, it is

critical that the system has a means of monitoring the concentrations  for  Ρ02 and H±

in the blood. There exist both central and peripheral chemoreceptors within the

pulmonary system.

Central chemoreceptors are located within the medulla. Stimulated by a change

in the pH level of the extracellular fluid in that region of the brain, they provide

excitatory stimulation of the medullary inspiratory neurons to increase the level of

inspiration in an effort to remove excess H± ions from the bloodstream. It is believed that

the change in pH is the result of elevated  Ρ0. The primary means of removing excess

concentrations of CO2 from the bloodstream is via increased exhalation, and small

increases in the amount of CO2 in the bloodstream result in marked increases in

inspiration. Pathologies of the respiratory system result in abnormal levels of CO2 in the

bloodstream. Α retention of excess CO2 results in increased ventilation while low

concentrations of CO2 result in inhibition of inspiratory action potentials [23].

Peripheral chemoreceptors are located in either side of the neck at the branches of

the carotid artery (carotid bodies) and in the thorax on the aortic arch (aortic bodies).

Figure 2.9 illustrates the location of these receptors. The role of these receptors is to

monitor arterial blood for increases in arterial H± and, conversely, decreases in the

concentration of arterial 02. Either of these conditions trigger an excitatory response on

the afferent neurons to the medullary inspiratory neurons.
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Figure 2.9 displays the interaction of pathways that influence the respiratory pattern.

This pattern, however, can also be controlled voluntarily and can influence the

cardiovascular system. Vascular resistance is part of the pulmonary control  ioop and can

be instrumental in altering the cardiovascular response. Figure 2.10 illustrates pathways

of the interactions of chemo- and mechano-receptors in terms of the origination of

changes in airway resistance and external stimuli.

Figure 2.9 Location of Peripheral chemoreceptors, the Carotid and Aortic bodies.
Source: Vander, Sherman, Luciano. Human Physiology, 8th ed. 2001
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2.1.5 Cardio-Pulmonary Interactions

The cardiac system responds to an increased demand for oxygen by increasing the heart

rate to provide the appropriate amount of oxygenated blood to the muscle, coupled with

pumping more blood to the lungs for oxygenation. This increase is thought to be

triggered in several ways. Figure 2.11 illustrates the response of the cardiac and

pulmonary systems to the detection of a low Ρ at the peripheral chemoreceptors.

Opening of the veins, or  vasodilation, occurs to pass more blood through the vasculature

in an attempt to allow more oxygen to pass from the lungs to the tissues. This results in a
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drop in blood pressure. Note that the heart rate increases in conjunction with the

vasodilation.

Conversely, the Central Nervous System works to increase the blood pressure via

vasoconstriction and an increase in heart rate (HR). The responses are a composite of the

influence of low arterial Ρ02 on the peripheral chemoreceptors, and their subsequent

influence on both respiratory and cardiovascular centers in the brain stem (solid arrows),

as well as direct effects of low  Ρσ2 on the central nervous system (CNS) and effector

organs, including the heart and blood vessels (dotted arrows). Note the conflict between

the responses of the cardiovascular and respiratory centers in the brain stem, and the CNS

response [23].

Figure 2.11 Cardiovascular and respiratory responses induced by systemic hypoxia. Note
that peripheral chemoreceptors are at the start of the mechanism driving respiration, which
ultimately affects central chemoreceptors and baroreceptors to influence HR and
vasodilation.
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The interaction of heart rate variability (HRV) and respiration is commonly referred to as

Respiratory Sinus Arrythmia (RSA) [24]. Varying schools of thought apply to the

physiological necessity for the coupling of the two systems, which research suggests

"disappears" the farther from rest the systems move. Recent research by Grossman, et a!.

[25] suggests that normalization for respiratory alterations when the body moves away

&om a restful state can improve recognition of RSA coupling.  Α problem with the

current methods of detection of the coupling phenomenon is that it is based upon the

power of the spectral content in the high &equency range. It is believed that the

respiratory rate is the primary influence in the high &equency range. It is further believed

that the stimulation of the sympathetic nervous system removes the influence of this

system [26]. It is hypothesized that the proposed research will account for changes in

respiratory amplitude and &equency by identifying the respiratory signal in the heart rate

variability signal and allow for fuller investigation of the signal(s) that link the two

systems. This will aid in the understanding of the complex neural activity controlling the

RSA. It is further hypothesized that the interaction of the two systems does not

"disappear" as the literature suggests, but rather that it changes state and is obscured by

larger influences of increased oxygen demand and increased amplitude and &equency of

the heart beat.

2.1.6 Chronic Obstructive Pulmonary Disease (COPD)

According to the American Lung Association, COPD is a term used to describe two

specific lung diseases: chronic bronchitis, which leads to scar tissue of the respiratory

tract, and emphysema. The diseases are characterized by the restriction of normal airflow
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due to an obstruction. The two diseases conimonly coexist. It is estimated that nearly 16

million Americans suffer from COPD, with another 14 million undiagnosed because they

are in the early stages of the disease. Beginning in 2000, the percentage of deaths of

women with the disease surpassed the percentage of male mortality as a result of this

disease. The main risk factor of COPD is smoking, whether first or second-hand.

Additional risk factors include air pollution, second-hand smoke, history of childhood

respiratory infections and heredity. Occupational exposure to certain industrial pollutants

also increases the odds for COPD. A recent study found that the fraction of COPD

attributed to work was estimated as 19.2% overall and 31.1% among never smokers.

Chronic bronchitis is the inflammation and eventual scarring of the lining of the

bronchial tubes. When the bronchi are inflamed and/or infected, less air is able to flow to

and from the lungs and a heavy mucus or phlegm is coughed up. The condition is defined

by the presence of a mucus-producing cough most days of the month, three months of a

year for two successive years without other underlying disease to explain the cough.

This inflammation eventually leads to scarring of the lining of the bronchial tubes.

Once the bronchial tubes have been irritated over a long period of time, excessive mucus

is produced constantly, the lining of the bronchial tubes becomes thickened, an irritating

cough develops, and air flow may be hampered, the lungs become scarred. The bronchial

tubes then make an ideal breeding place for bacterial infections within the airways, which

eventually impedes airflow.

Emphysema begins with the destruction of air sacs (alveoli) in the lungs where

oxygen from the air is exchanged for carbon dioxide in the blood. The walls of alveoli are

thin and fragile. Damage to them is irreversible and results in permanent "holes" in the
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tissues of the lower lungs. As air sacs are destroyed, the lungs are able to transfer less

and less oxygen to the bloodstream, causing shortness of breath. The lungs also lose their

elasticity, which is important to keep airways open. This results in the patient

experiencing great difficulty exhaling.

Emphysema doesn't develop suddenly. It comes on very gradually. Years of

exposure to the irritation of tobacco smoke usually precede the development of

emphysema. Of the estimated 3.1 million Americans ever diagnosed with emphysema, 95

percent were 45 or older.

The quality of life for a person suffering from COPD diminishes as the disease

progresses. At the onset, there is minimal shortness of breath. People with COPD may

eventually require supplemental oxygen and may have to rely on mechanical respiratory

assistance. A recent American Lung Association survey revealed that half of all COPD

patients (51%) say their condition limits their ability to work. It also limits them in

normal physical exertion (70%), household chores (56%), social activities (53%),

sleeping (50%) and family activities (46%).

None of the existing medications for COPD has been shown to modify the long-

term decline in lung function that is the hallmark of this disease. Therefore, the goal of

pharmacotherapy for COPD is to provide relief of symptoms and prevent complications

and/or progression of the disease with a minimum of side effects. Bronchodilator

medications (prescription drugs that relax and open air passages in the lungs) are central

to the symptomatic management of COPD. They can be inhaled as aerosol sprays or

taken orally. Additional treatment includes antibiotics, oxygen therapy, and systemic

glucocorticosteroids. The efficacy of inhaled glucocorticosteroids continues to be under
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study, however short-term benefit has been demonstrated. Chronic treatment with

systemic steroids involves the risk of serious side effects; therefore these are used mostly

for acute exacerbations. Lung volume reduction surgery  (LVRS) is recommended in

acute cases of COPD to reduce the workload on the lungs [27].

2.1.7 The Visual System

There are two distinct classes of eye movements. These are conjugate and disjunctive.

The focus of this research is on the class of movements called vergence eye movements,

which are classified as disjunctive because during these movements, the eyes move in

either a convergent or divergent manner. This means that they mirror each other in

movement, consisting of both eyes either both moving inward in a convergent movement

Figure 2.12 Schematic diagram of the human eye. Note the location of the fovea at the
opposing side of the eye from the lens and cornea.
Source: Squrie, 2003.
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or both moving outward in a divergent movement. The physiology underlying such

movements is examined in this Section.

The eye consists of several components which are instrumental in the scheme that

determines whether a conjunctive or disjunctive eye movement is initiated. The

initiation of a vergence eye movement happens as a result of the interaction of several

parts of the eye and brain. The structures are shown in the image of the eye in Figure

2.12, below. An inverted image is focused through the curvature of the cornea and lens

and passes through the vitreous fluid and travels to the retina, which is the 0.5 mm thick

multi-layered bundle of nerves that surrounds the back of the eye. The retina contains

three layers of neural cell bodies and two layers of synapses. The most densely packed

region of color receptors, or cones, in the retina occurs in a circular region that is

approximately 200 microns in diameter and is referred to as the fovea. The fovea is

located in the macula, which is located approximately in the center of the retina near the

optic nerve and is responsible for central vision in the human.

The objectives of the cornea, which possesses a curvature that is not pliable, and

of the lens, which can adjust its curvature, are to focus the image on the fovea. The lens

continuously adjusts the focus of the image by employing the suspensory ligaments,

cilliary muscles and zonule fibers to flatten or compress its curvature. When the  cilliary

muscles contract, the lens flattens and enables the eye to focus on objects that are farther

away from the resting position of the eye. The optic disc contains no photoreceptors and

thus is not the region of the retina that the lens focuses the image upon. Because of this,

the optic disc is described as a blind spot in the eye, but is the beginning of the optic

nerve. [23]
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Figure 2.13 The retino-geniculo-cortical pathway in the human. Optic nerve axons from
the nasal retina cross at the optic chiasm and join axons from the temporal retina of the
other eye. Together, these contralateral and ipsilateral axons make up the optic tract,
which projects to the LGN. Each of the six layers of the LGN receives input from only
one eye. Axons from the LGN make up the optic radiations, which project to the striate
cortex.
Source: Squire, 2003

When the image reaches the retina, the signal travels through the retinal ganglia up the

optic nerve to the primary visual cortex, Vi, for further processing via the optic nerve, as

can be seen in Figure 2.13, below. The image travels to the Lateral Geniculate Nucleus

(LGN) via the optic tract once the post-ganglion retinal  efferents pass through the optic

chiasm.
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The component of the visual system that is of relevance in this research involves

the control mechanism that determines direction, amplitude and velocity of eye

movements in an effort to focus an image on the fovea. This motion is called  foveating,

and it serves to remove the disparity between what the image actually is and what the eye

and brain perceive it to be. There are different directions in which the eye can move.

These include left and right, up and down, and torsionally counter-clockwise and

clockwise, as shown in Figure 2.14.

A pair of muscles is assigned to facilitate each type of movement, with each

member in a pair acting to move the eye in specific opposing directions. The muscle

groups are illustrated in Figure 2.15, a cutaway profile view of the eye in its socket. The

muscles attach to the eyeball at the sciera, the white outer layer of the eye (refer to Figure

2.12). The muscles differ from skeletal muscles because they are not classified into fast

or slow twitch and are not subjected to varying recruitment rules. All muscles actively

participate in the initiation and sustaining stages of eye movements.

Figure 2.14 Axes of eye rotations. The eye muscles can rotate the eye along three
axes; horizontal, vertical, and torsional.
Source: Squire, 2003.



43

The extraocular muscle pairs are named the media! and lateral  rectus muscles, the

superior and inferior rectus muscles, and the superior and inferior oblique muscles. The

medial and lateral retci are the only pair of extraocular muscles that perform specific

inward (adduction) and outward (abduction) movements of the eye. The two other pairs

each influence the movement of the eye in combinatorial manners. Because of their

location on the eye, the two remaining muscle pairs can influence in a small way

movements that are not intuitively part of their function. For example, the oblique eye

muscles can influence the upward and the downward movement of the eye, while the

superior and inferior recti can influence the torsional movement of the eye.

The muscles which su rround the eye, also referred to as the extraocular muscles,

are moved according to control signals that are sent from the brain to the eye via three

Figure 2.15 Muscles of the eye. Six muscles, arranged in three pairs, control the
movements of the eye as shown here in a cutaway view of the eye in its socket, or orbit.
The grey chord exiting the back of the eye socket is the optic nerve.
Source: Squire, 2003.
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nerves which innervate the three muscle pairs. The nerves have their origin in the

brainstem. The nerves are referred to as the  oculomotor nerves due to their influence

over the movement of the ocular system. Gray's Anatomy depicts the dissected eye, with

the Section of the eye muscle and relevant nerves shown as they exist in the human eye

socket. Figure 2.16, the dissected eye, is shown below. As can be seen, the  oculomotor

nerve, which is also referred to as cranial nerve number III, has two branches, the

Figure 2.16	 Gray's Anatomy Dissection of Eye Muscles and Nerves to display
intercoiinection of each.
Source: education.yahoo.com, printed Dec. 2005.

superior and inferior rami, which innervate the eye muscles. Of all three oculomotor

nerves, this nerve innervates the largest number of  extraocular muscles, in addition to

exerting control over the muscles that raise the eyelid, muscles that const rict the pupil

and alter the curvature of the lens via parasympathetic fibers contained in the  oculomotor
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nerve bundle. This nerve controls the inferior oblique, the inferior and superior  recti, and

the medial rectus extraocular muscles. The oculomotor nerve has its root in the superior

colliculus of the midbrain. The trochlear nerve, also referred to as the IV cranial nerve,

innervates the superior oblique, which has its origin in the inferior  colliculus of the

midbrain. Cranial nerve VI, the abducens nerve, innervates the lateral  rectus and

originates from the fourth ventricle, in the pons.

Vergence eye movements are the only eye movements in which the two eyes are

not yoked together. This special circumstance requires that special neural circuitry be

employed to control this type of movement. German scientist Ewald Hering proposed

that there are in fact two physiologically distinct neural pathways that are responsible for

smooth pursuit and saccadic eye movements versus the pathway of  vergence movements.

Figure 2.17 Oculomotor, trochlear and abducens illustrated by cranial nerve
number (3, 4 and 6, respectively).
Source: Squire, 2003.
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It is the intent of this research to better understand the neural underpinnings of such

movements. Figure 2.17 illustrates the neural pathways involved in vergence eye

movements. Note the locations in the brain of the oculomotor neurons, cranial nerves

three, four and six. There exists an additional pathway in the neural processing of

vergence movements, indicated by the blue aιτows in the center of the image, which is

under investigation. There are theories and research that have shown that there exist

standard control system processing pathways between the eye and the brain which dictate

eye movements.

As with any feedback control system, the brain generates error signals upon

which the eye movement is based. The eye is then moved to minimize the error signal.

There are four known types of vergence motor error signals. These are accomodation,

binocular or retinal disparity, proximal vergence and tonic errors.

The accommodation error occurs when the eye tries to accommodate for, or adapt

to, differences in distance to an image, resulting in a blur effect. This occurs when the

eye must shift the gaze to adapt to a different location of the target, either nearer or

farther. To adjust, the cilliary muscles either contract or relax to change the shape of the

lens (refer to Figure 2.12), which in turn focuses the light image that enters the eye and

reaches the fovea. This information is then used to compute the proximal vergence error.

The human visual system is binocular. This means that there are two eyes that

work in conjunction as the sensors that send the image that reaches the brain for further

processing. When a target appears in a location that causes it to strike the retina

differently in each eye, there is a binocular disparity, or a difference between the position

of each eye relative to the other. This stimulates one or both eyes to foveate, or move to
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a new position in which the target strikes the fovea of each eye and is referred to as

binocular disparity. It is the error that accounts for depth perception and is responsible

for the majority of disjunctive eye movements.

Proximal vergence errors are generated when accommodation errors occur that

force the brain to reposition the eye to adjust for modified distances to targets. This error

uses as its sensor a monocular system in which the depth sensing is based upon cognitive

activity. The image is pre-processed, in a sense, to determine if the perceived depth is

correct. This type of error is not based purely upon what is detected, but rather what is

interpreted to exist.

Tonic error is the position of the human eye at optical infinity. This means that if

the subject is in complete darkness, with no target to gaze upon, the eye would converge

inactively at a certain angle. In humans, this position is located at about three degrees of

convergence.

Angle of convergence is depicted in Figure 2.18. This term refers to the angle to

which the eye is turned inward to focus upon an image. Note that in near convergence,

the angle is more acute than it is in far convergence eye positioning. When moving from

a closer target to a farther target, the eyes move outward and the resultant angle is more

acute than the original. This movement is referred to as a divergent movement. When

the eyes change focus from a far target to a near target, the eyes move inward causing the

angle to increase. This movement results in what is termed a convergent movement.
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Figure 2.18 Convergence angle relationship to target distance in vergence eye
movements. Note that the fovea, shown in blue, is the location at the posterior of the
eye, in the retina, upon which the image strikes, and the angle in purple is the angle of
convergence.
Source: Squire, 2003.

The neural circuitry underlying vergence eye movements remains a topic for

debate. However, there is evidence from landmark  neurophysiology studies performed

by Mays [28, 29] that suggests that there is specific neural circuitry involved with

convergence and specific circuitry involved with divergence. He and his colleagues

discovered the existence of a small group of neurons in the region of the brain stem

referred to as the mesencephalic reticular formation (MRF). These neurons are broken

down into two types: vergence burst and vergence burst-tonic cells. The former cell type

generate high frequency impulse trains that occur prior to the onset of a  vergence

movement. Mays and Gamlin [29] suggested that these cells are limited by the activity of

saccadic omnipause neurons, which control conjunctive eye movements called saccades.

They also suggested that because the firing frequency of the vergence burst cells is

inhibited by the saccadic omnipause neurons, the velocity of the vergence movement can
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be altered by the activity of saccadic oiTmipause neurons, because the velocity of the

vergence movement is dependant upon the firing rate of the burst neurons. It is further

suggested that during a saccadic movement the saccadic pause neurons are silenced to

allow for the vergence movement to occur. When the saccadic movement is finished, the

oninipause neurons reactivate and cause the velocity of the remaining vergence

movement to slow.

This work is the strongest physiological basis of support for a theory called the

Dual Mode theory. This theory hypothesizes that there are two systems, or modes, at

work in a vergence eye movement. These two systems are called the initiating and

sustaining components. It is believed that the initiating component is the faster and

coarser response of the brain during three dimensional tracking. It is theorized that this is

a pre-programmed response that is open loop and occurs as an impulse response. It is

further theorized that a sustaining component then takes control of the movement. The

proposed purpose of this portion of the movement is to focus on the target in finer

increments. This portion of control implements a slower, feedback controlled movement.

It is theorized that this aspect of the movement is a step response. It remains unclear

how, if at all, the accommodation system influences the vergence movement. It is

hypothesized that the influence of the accommodative system will occur in the movement

signal as a delayed, low amplitude step response. This research will attempt to

distinguish between types of movements and control schemes in vergence eye

movements to clarify how the accommodation system interacts with the vergence system,

and how this affects the dual mode theory. In addition, it will seek to provide a simple

method of quantification of motor neuron control schema changes with aging.
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2.1.8 Presbyopia

Presbyopia is a progressive inability to focus on near images. It is an age-related far-

sightedness condition. It is not congenital. It is estimated that approximately 90 million

people in the United States have this condition today or will develop it by 2014. The

National Institute of Health (NIH) suggests that the onset of the condition begins between

the ages of 40 and 50, with full onset occurring by the age of 65.

The mechanism underlying the onset and subsequent progression of presbyopia is

unknown. It is known that all people will develop this condition, with the likelihood of

occurrence increasing as the eyes age. It is unknown whether the condition is caused by

a loss of plasticity within the lens of the eye, or whether this change occurs within the

musculature that surrounds the lens and is instrumental in changing the shape of the lens.

Figure 2.19-Α illustrates the focus of objects in an eye that is presbyopic. Note that the

focal point is behind the eye. Figure  2.19-Β illustrates the refocusing of the image onto

the retina via the use of a corrective lens. This subject population is of interest to this

research to determine if an autonomically influenced system that shows signs of reduced

adaptability would have cardiovascular autonomic correlates. This was investigated by

collecting cardiac autonomic information from three groups of people: young controls,

adapTable presbyopes arid non-adapTable presbyopes.
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Figure 2.19 Lens alterations with aging. Α - Theoretical underlying cause of presbyopia
is the loss of near vision due to loss of lens elasticity or weakening of the muscles that
adjust the curvature of the lens. Β — Corrective lenses help focus the image on the fovea.
(http://www. essilor. corn/Products! VisionAnd VisionDefects/presbyopia. htrn)
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2.2 Engineering Background

Engineering terms used in this research are explained in this Section. Wavelet techniques

are discussed in this Section in some detail because it the third hypothesis of this work

relies upon wavelet theory as the basis for the tools that were developed. Improvements

over standard time or &equency techniques using wavelets are discussed in this Section.

In addition, terms such as stationarity, regularity, linearity and independence are defined

and discussed with reference to their role in the analysis of biological systems. Α

discussion of non-linear variability measures follows and builds upon the discussion of

the wavelet analysis technique. The importance of wavelet decomposition in time series

variability analyses is discussed, specifically in the form of Total Wavelet Entropy. Α

comparison of blind source separation techniques follows that discussion to clarify the

utility of a wavelet-based source separation technique in the analysis of autonomic

control systems in comparison to other methods that are currently employed to delineate

input and control signals.

2.2.1 Wavelet Time-Frequency Distribution

Α method of combining the two attributes of time and &equency without losing critical

time or Fourier parameter information is through the implementation of a time-&equency,

or multi-resolution, decomposition. This method of evaluating non-stationary signals that

contain transient components has been gaining increasing popularity, with the first

implications for applications to signal analysis in the 1940s. Recently, a time-&equency

method has come to the forefront as a powerful method of analyzing transients and

allowing the researcher to investigate frequency components over the length of the signal.
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This method, known as the Wavelet Time-Frequency Multi-Resolution analysis, makes it

possible to have good time and frequency resolution due to a shape that is other than a

sinusoid and is applied to the signal using a scalable window. It is a form of adaptive

filtering technique that can be applied to non-stationary signals and be used to generate

independent time series.

A shortcoming of time-frequency decompositions based upon the Fourier

transform is the inability to use a scalable window, which results in the loss of time

resolution. Fourier transform based methods of time frequency analysis are based upon

scaling and shifting a sinusoid and convolving it with signal to be analyzed, using a fixed

window of time for all frequencies. Another shortcoming of this method is that because

sinusoids are infinite signals, they are not contained completely in the window that is

chosen for the analysis. For this reason, the use of a sinusoid introduces artifact into the

analysis due to the fact that the window captures different quantities of periods of the

sinusoid at different frequencies, depending on window size being used.

The wavelet transform uses the theory of time- frequency decomposition and

employs an adaptive window size that changes based upon the frequency being

examined. It also employs si gnals other than sinusoids in the analysis, called wavelets.

The signals employed in the wavelet analysis decay to zero exponentially outside of the

frequency of interest, reducing the problem of the base extending outside of the window

and the associated introduction of artifact. They also oscillate about zero in the time

domain and therefore possess a zero mean value. Translated to the frequency domain, the

Fourier transform of the wavelet must approach zero at the zero frequency, which forces

a band-pass behavior of the wavelet. This time and frequency characteristic of the
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wavelet is referred to as the admissibility condition, which must be met in order for

reconstruction of the signal using wavelet coefficients [30]. The requirements for

wavelet construction and implementation are discussed in detail in 2.2.3.

The Fourier transform utilizes the infinitely bound sine wave as the basis for

analysis. This increases the likelihood of missing small transients in signals that the

wavelet would detect due to its limited duration. The wavelet, then, is well suited to

analyze a local area of a signal that would otherwise be missed by the traditional Fourier

analysis. The shape of the wavelet is typically asymmetrical as compared to the Fourier

transform, which utilizes the uniformly shaped sinusoid. The shape of the wavelet

renders it well suited to detection in signals that contain sharp changes in &equency

content.

Another quality of certain wavelets which makes them a useful technique in non-

stationary signal analysis is orthogonality (refer to Section 2.2.5). This attribute causes

the wavelet coefficients generated from the analysis to be orthogonal. In turn, this causes

each wavelet coefficient series to be representative of independent signal components

[31, 32].

The wavelet method is unlike other time-frequency decomposition methods

because it is not based upon the traditional Fourier base of sinusoids and does not use

fixed windows of time to analyze the signal at all frequencies. The window size varies

depending upon the scale, or &equency, that is being investigated. In addition, the

wavelet method convolves a "mother wavelet," of shape and duration varied by the class

of wavelet and the scale being assessed, with the signal to be analyzed. This mother

wavelet is scaled and shifted based upon the &equency band of interest. This scaling and
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shifting allows for the detection of small transients as well as larger trends within the

data. It also allows for better time and frequency resolution than traditional methods

have provided. A wavelet analysis is the method employed as the basis for the statistical

measures of this work. The construction and implementation of the Continuous Wavelet

Transform (CWT) as well as differences between that and the Discrete Wavelet

Transform (DWT), will be discussed in this chapter.

2.2.2 Brief Background of the Wavelet Transform

The wavelet time frequency decomposition is a mathematical theory that has been in

development since the early 1900s. Al fred Haar, in 1909, is credited with the first written

description of the theory that has since become referred to as wavelet analysis. Since

then, the theory has gained increasing popularity. In 1988, Stephane Mallat derived the

algorithm that is the basis for this approach to time-frequency analysis [33]. Since then,

engineers have embraced this method in various fields of research, including but not

limited to acoustic emission [34, 35], transmission line fault detection and protection [36]

and detection and classification of material attributes [32]. In 1995, biomedical

applications of the wavelet analysis, such as the analysis of motor unit action potentials

[37] and the use of electromyography for the detection of back muscle fatigue [38], began

to appear in the literature.

The theory of wavelet based decomposition of signals is founded upon the

nineteenth century theory presented by Joseph Fou rier, which has come to be known as

the Fourier analysis or Fourier transform, whereby a signal is decomposed into its

frequency components via the use of sinusoids. The wavelet transform replaces the time

information lost in the Fourier transform. Wavelet analysis performs a frequency
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analysis that assesses frequency band activity over time, rather than calculating the sum

of all &equency activity during the life of the signal of interest. Today, United States

mathematicians, such as  Daubechies and Coiflet, lead the advancement of wavelet theory

[33].

2.2.3 Properties and Implementation of the Wavelet Transform

The Continuous Wavelet Transform (CWT) uses a main si gnal, referred to as the "mother

wavelet" and convolves a shifted and scaled version of this signal with the signal to be

analyzed. Mathematically, this approach is represented by the equation

(2.1)

where C represents the coefficients that are a result of the product of the o riginal function

and the conjugate of the mother wavelet, φ». The scaling factor, a, of the mother

wavelet, p is the shifting factor of the mother  wavelet,f (t) is the original signal and yj*(a,

p, t) is the conjugate time-dependant mother wavelet, scaled and shifted by a and p,

respectively. The mother wavelet is decomposed via scaling and translation, into a set of

smaller basis functions, represented by ψ *,aρ (t),where

(2.2)
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and a1/2 provides unity energy nοnτιaΙizatiοn across scales. 	 Consider

*αρ (t) = ψ * (a,p,t) as a function of time. Then, Ψ(ω) = F{ψ(ή} . The Coiflet family,

order 3 wavelet (cοίf3) was employed in this research. The Coiftet mother wavelet in

time is represented in Figure 2.20, below.

Figure 2.28. Time representation of ψ * (α, p, t), for the cioiΞ3 wavelet.
(from Matlab wavemenu function)

Scaling is the process by which the wavelet is stretched or compressed at a certain

level, as seen in Figure 2.21. This scaling or compressing enables the wavelet to capture

frequency information at various frequency levels. Higher frequency content is captured

at lower scales and conversely, lower frequency content is captured with higher scales.
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Figure 2.21. Scaling the mother wavelet. Note that the signal becomes increasingly
short in duration at smaller scales. This yields information about quickly changing, or
the high frequency content, of signals.
Source: www.mathworks.com, 2005.

Scales are in powers of 2. For example, a scale factor of 9 corresponds to a level of  2Λ9,

or 512, wavelet coefficients. At higher scale levels the wavelet analysis possesses greater

frequency resolution, whereas lower scale levels yield better time resolution because

decreasing the scale parameter increases the bandwidth of the wavelets, as shown in

Figure 2.21 [39]. Therefore, it is useful to describe the wavelet transfo rm as a bank of

band-pass filters, with a pass frequency defined by the scaling and central frequencies of

the mother wavelet. The bandwidth, ω, decreases by half at every scale, and ω0 ος

Wavelet representations are typically referred to as time-scale decompositions due to the

fact that the mother wavelet is compared to the original signal in scales, not frequency.

However, frequency roughly correlates to the inverse of the scale value and is

related to the scale in the following way:

(2.3)
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where F, is the frequency correlating to a specific scale, F is the sampling frequency, F

is the center frequency of the specific mother wavelet at the scale being analyzed and a is

the scale being analyzed.

Shifting is the process by which the onset of the application of the mother wavelet

is delayed or hastened, as can be seen in Figure 2.22 [39]. This allows for the time

component in the wavelet analysis. Rather than looking at specific windows of time, the

Figure 2.22	 Shifting the mother wavelet. In this case, k is the shifting factor, or the
length of time by which to delay the onset of the application of the wavelet.

wavelet analysis looks at all time in the duration of the signal being analyzed, at varying

scales. Higher scales will yield larger shifts in time in order to capture the activity at

lower frequencies. Likewise, lower scales will yield smaller shifts in time, which will

capture the higher frequency, or rapidly changing, content of the signal.

2.2.4 Properties of a Signal Required to be Considered a Wavelet

Wavelets address problems with inaccuracies of representation of the frequency content

of a signal as a result of Fourier analysis based time-frequency analyses. It does this by

convolving the signal to be analyzed with a signal that meets two specific properties: the
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admissibility and the regularity conditions. The admissibility condition requires that the

wavelet decays quickly to zero outside of the time and frequency of interest. This

property of wavelets is known as the localization property of the wavelet. In the time

domain, this is equivalent to saying that the wavelet must oscillate about zero and have a

mean value of zerO, in the frequency domain, this is equivalent to the statement that the

wavelet is compactly supported, or band limited, and must decay quickly to zero outside

of the frequency of interest. The concept of localization in both time and frequency is

represented mathematically in equations 2.4 and 2.5.

(2.4)

(2.5)

(2.6)

Equation (2.4) indicates that the mean value of the signal must be zero. In addition, the

signal must possess unity area, which controls the height of the signal, as shown in (2.6).

Equation (2.5) indicates that the frequency content when w ≠  ωο is equal to zero, or that

the signal is contained within a specific bandwidth in the frequency domain.

Collectively, this means the mother wavelet signal exists only in the local region of the

signal. These two combined attributes of the wavelet transform are collectively referred

to as the admissibility condition, which is part of the requirement that must be met for the

signal to be considered a wavelet.



61

The fact that wavelets decay in both the time and frequency domains results in an

analysis that possesses very good time and frequency localization. However, it is

impossible to have perfect accuracy of analysis due to Heisenberg's uncertainty principle.

In the application of this theory to signal analysis, the principle states that it is impossible

to obtain information about an exact frequency and exact time at which that frequency

occurs. That is, it is impossible to get exact information about both time and frequency

for any given time or frequency [40].

This research employs the wavelet coefficient sets, C(a,p), as the basis for

separation and analysis of the neural components of the cardio-pulmonary signals of the

COPD and presbyope populations. As a requirement to perform this type of analysis, the

coefficient sets must be orthogonal to, and therefore independent of, each other.

Orthonormality is discussed and proved in the proceeding Section using the Haar wavelet

for simplicity. The orthonormal wavelet families are the I{aar, Meyer, DauBechies,

Coiflet, Symlet, and biorthogonal wavelets.

2.2.5 Haar Wavelet as Illustration of Orthonormality

Certain wavelets are orthonormal. An inherent property of wavelets is that they possess

unity area. This means that for each given scale, the amplitude is adjusted to ensure that

the area under the curve is equivalent to 1, as in (2.6). This further means that for specific

wavelet kernels, the wavelet basis is orthonormal. Using the simple example of the Haar

wavelet, the orthonormal basis can be illustrated. The Haar wavelet is defined as follows,

and is illustrated in Figure 2.23:



Note that the area under the wavelet is 1. For larger time bases, the amplitude will be

smaller. For smaller time bases, the amplitude increases, as shown below, to ensure that

this remains true over the course of the analysis, as shown in Figure 2.24.
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Fig. 2.24 Haar Wavelet Dilated. Note the change in amplitude as the scale changes to
ensure unity area. Amplitude is equivalent to 1/2a and support width is 2a.
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The support width is 2, where a is the scaling, or dilation, factor from (2.1). Let the

signal start at p * 2" and end at (p ±i)* 2", where p is the shifting factor from (2.1). If

Figure 2.25 Haar Wavelet shifted. Note that the amplitude remains the same due to the
scale, a, remaining fixed, with the shifting factor changing from p to  Ι.

Figure 2.26 Haar Wavelet scalar relationships. Note the amplitude (Ι/2') varies
according to the scale, a. Note also that with each successive scale, the signal is
increasing in duration. This is a display of the inverse relationship between scale and
frequency. As the scale increases, the frequency that is evaluated at that scale decreases.



the system is truly orthonormal, then

Revisit Figure 2.24 and shift the Haar function for unequal p and 1, as shown in

Figure 2.25, below. The signal in blue is Haar at p = 0, while the red signal is Haar at  Ι =

2, with a = Ο held constant for both signals. It can be seen in Figure 2.25 that for a held

constant, the two systems are disjoint for given start times, and their resultant dot product

is zero for all points. Figure 2.26 displays the scaling aspect of the wavelet

product is zero. Note also that the amplitude, per (2.6), must equal

it is impossible for the start of

to be completely contained within, or completely outside of

In summary, the wavelet should meet the conditions of admissibility and

orthonormality for the purposes of this research. The admissibility condition allows the

wavelet to be used in applications where perfect reconstruction of the original signal is

necessary. The admissibility condition also enables the signals to be orthonormal, as per

the above discussion. Orthonormality allows the coefficient sets generated by the

wavelet analysis to be treated as independent signals, which enables the individual

treatment of the coefficient sets for the purposes of source separation and entropy at

specific frequencies.
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2.2.6 Heart Rate Variability  (HRV) Analysis and Wavelets

The wavelet analysis will be performed using Matlab version 6.5, with the Wavelet

toolbox. The data files will be created &om continuous blood pressure signals and

filtered in a Labview version 7.0 program. The I{RV data are square wave signals

created by the timing between successive heart beats. As a result, the mother wavelet

that will be employed in the analysis of these data will need to be simply shaped and have

high &equency resolution to capture the sharp changes in the time signal. It has been

suggested that the Monet mother wavelet [41] is the most appropriate for this application.

However, because the coefficients generated &om the wavelet decomposition may be

used for reconstruction and each time series will be used as an independent component of

the HRV signal, it is inappropriate for this research to use the Morlet wavelet. The

wavelet is not orthogonal, is not compactly supported, and the coefficient set that it

generates cannot be used to reconstruct the signal. The appropriate wavelet basis for this

research is the coiflet family of wavelets, due to their orthogonality and compact support,

as well as the center frequency of the wavelet, which allows for better &equency

resolution in the bands of interest for autonomic studies. The coefficient time series' can

also be used to reconstruct the signal and are orthonormal.

The coiflet family of wavelets can also be used in continuous or discrete

transformations. This is an important aspect to consider, depending upon the desired

application. The Discrete Wavelet Transform (DWT) is necessary for the reconstruction

of the wavelet coefficients into the original signal. This is true because the discrete

wavelet transform down-samples the signal by a factor of two per scale during the signal

decomposition. Down Sampling is necessary because in the wavelet analysis, both the
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details (low &equency component of the signal at a given scale) and approximations

(high &equency content of the signal at a given scale) create a signal that is the same

length as the original signal. The difference in numbers of coefficients between the

discrete and continuous analyses is illustrated in Figures 3.4a and b. The images

illustrate the filtering of the original signal, S. The signal is low passed to create the

Approximations set of coefficients. S is also high passed to create the details set of

coefficients.

Notice that in Figure 2.27 a, the continuous wavelet transform (CWT), the details

and approximations values are not down-sampled. This results in approximation and

detail signals that are each the length of the o riginal signal. If the two sets of coefficients

from the CWT are combined, the resultant signal contains twice the amount of data as is

contained in the original signal.

In Figure 2.27 b, the discrete wavelet transform (DWT), the details and

approximations are down-sampled by two. The discrete wavelet decomposition removes

every other point from the details and approximations, yielding decomposition signals

that are each half the length of the original signal. The signal integiity is not lost.

Figure 2.27a CWT Filtering. Techniques
involved with the continuous
wavelet traιsfοrm (CWT).

Figure 2.27b DWT Filtering. Techniques
involved with the discrete
wavelet transform (DWT).
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During reconstruction of the signal, the algorithm needs to upsample the details and

approximations signals by a factor of two, as illustrated in Figure 2.28, which can only be

done if the original decomposition was done discretely. Upsampling involves placing a

Figure 2.28 Reconstructing the original signal using the DWT coefficients.

zero between discrete points in the details and approximations signals, as shown in Figure

2.29. The resulting reconstructed signal is equal in length to the original signal.

The CWT does not provide a signal that can have a zero inserted at every other

point and not lose the signal integrity. The CWT yields a smoother frequency analysis

and ultimately yields a more complete picture of the frequency activity in the original

signal. However, the DWT ability to remove noise from a signal and to reconstruct a

denoised signal may be useful when trying to assess finer points in the signal. The Blind

Source Separation that will be performed using a wavelet kernel will be performed on a

denoised signal, which may be provided using a wavelet denoising algorithm that will be

developed in Matlab ν6.5.

The use of time-frequency distributions in biomedical signal processing has become

increasingly popular due to the quantity of information that it can provide, as well as the

ability to use this information to quantify health in a clinical setting. The search for the

appropriate time-frequency distribution for biological signal processing is still underway.
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In 1998, Keseibrener and Akselrod developed a time-frequency analysis method that

detected cardiac transients, but in 2001, Akselrod, et al. suggested that independent time

scales were an appropriate method of analyzing cardiac activity, using the standard

Figure 2.29 Zero insertion between coeffkients during reconstruction. The arrow
pointing upwards indicates that the upsampling has taken place. Note that the same
arrow is present in Figure 3.5, which displays the filtering that takes place during
reconstruction.

Wigner-Ville time-frequency distribution to first separate the data into various time

series' based upon frequency activity and then using a varying time scale to investigate

frequency activity according to specific events. That is, they investigated the utility of an

adaptive time scale for the analysis of heart rate variability [42, 43]. The significance of

investigating cardio-pulmonary activity at various time scales, using wavelets and other

time-frequency distributions is presented increasingly in the literature [18, 44, 45, 46].

2.2.7 Measurement of Non-Linear Variability with Wavelet Entropy

In biological recordings, it has been observed that a bounded level of variability is

present in healthy systems. Contrary to intuitive thinking, which would suggest that a

sTable system would exhibit "sTable" dynamics, research has shown that the higher a

system's variability, the higher a system's state of health. The boundaries for healthy

levels of variability are still being defined. It is believed that at one end of the spectrum,
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too high of a variability level, the signal becomes random and contains little information

about the system. It is believed that the variability must be deterministic for the level of

variability to continue to be considered "healthy." Uncorrelated variability, which would

yield the highest non-linear variability parameter values, suggests a lack of coherent

function within the system which is a result of a disturbance within the system. When

variability becomes too low, the system becomes almost periodic in nature, and is

indicative of a system that cannot adapt to changing conditions.

In physiological terms, examine cardiac health. Uncorrelated variability equates

to a state of fibrillation, where the cardiomyocytes are firing in an uncontrolled,

uncoordinated manner, and the cardiac cells, as well as the resultant signal obtained &om

the heart, are in a state of uncorrelated randomness (see Figure 2.30). The heart must be

stopped to allow for the cells to return to a cohesive contraction/relaxation relationship.

This healthy relationship displays a level of coordinated variability. It is believed that the

interaction of the sympatho-vagal branches of the nervous system contribute to this

robust modulation of heart rate and pressure. It is this variability which allows the

system to adapt and react quickly and safely to perturbations in the system. When the

level of variability falls, the level of health has been shown to fall. In cardiac terms,

conditions such as Tachycardia present an almost periodic signal that varies very little

with time, and becomes a "single scale" signal, which in terms of a wavelet analysis, can

be represented by a single scale, or &equency (see Figure 2.30).  Α low level of

variability is evidence of an inability of a system to respond to stressors placed upon it

[47, 48]. People with congestive heart failure (CHF), sleep apnea, hypertension, affective
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mood disorder and chronic obstructive pulmonary disease  (COPD), among others, have

shown

Figure 2.30 Representation of periodic versus random signals, the two sides of the
spectrum of variability.
Source: Goldberger AL, Amaral LAN, Glass L, HausdorffJM, fvanov PCh, Mark RG, Mietus JE, Moody
GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research
Resource for Complex Physiologic Signals. Circulation 101(23):e215-e220.
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decreased levels of cardiac variability. Decreased Heart Rate Variability has been

identified as an all-cause mortality indicator [49, 50, 51, 52, 53].

The research also investigated something as apparently different &om cardiac

activity as the visual tracking system. It was hypothesized that, not unlike the

cardiovascular system, the visual tracking system adaptability is dependant upon the level

of health of the visual control system. Cardiac autonomic function of people with

adaptive versus more rigid tracking patterns in presbyopic individuals was also

investigated in this research.

The method developed to assess autonomic function of the heart and lungs in

aged and diseased populations is based upon the creation of several independent time

series using a wavelet transform. The level of entropy, or information content, of each

individual time series was investigated for physiological relevance. It is theorized that

levels of entropy for healthy subjects will be statistically higher than the subject

populations in the cardiac and visual systems. Total Wavelet Entropy (TWE) was

developed in mechanics to analyze the classical limit of particles [54]. It was not used in

cardiac or visual health assessments, beyond work published by the author of this

research [55]. Related work includes a multiscale entropy analysis proposed by Costa, et

al. in 2002, in which a time series is repeatedly decimated to obtain varying coarseness of

a signal in time [56,57] and Shaimon entropy measure of the Instantaneous Frequency

[58]. In 1994, Wessel et al. [59] proposed a renormalized entropy measure that calculates

the Shannon entropy of a normalized &equency distribution, and other variants of

information analyses have since been proposed [60, 61, 62]. It was hypothesized that the

separation of signals into independent, orthogonal components before performing a non-
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linear analysis would provide a greater level of insight into the dynamics of the systems

than traditional non-linear analysis methods because the frequency and time information

will be assessed independently, thus avoiding the cloaking of the dynamics that results

from analyzing the combined signals. It is also conceivable that further analysis can be

performed based upon the wavelet time series.

2.2.8 Wavelet Source Separation

Blind Source Separation (BSS) is a method of processing data from systems that are a

mixture of signals from various sources. The objective of such an analysis is to separate

the sources of the signal for discrete processing and analysis using various statistical

measures [63, 64, 65, 66]. The analysis is called a "blind" separation because it is

assumed that no a priori knowledge of the system generating the mixed si gnal is present

because the source signals are not being directly observed and because there is no

information present about the manner in  wbich the source signals are being mixed [67].

There exist several types of commonly used BSS techniques, the most prominent of

which is Independent Component Analysis ('CA). 'CA is a linear transformation

technique that attempts source separation based upon a minimization of statistical

dependence of the sources, and can only impose up to second order statistical

independence [68, 69]. Most BSS methods are based upon statistical measures that

typically go beyond second order measures, although some simpler separation techniques

exist which are based upon second order statistics [67,70, 71, 72]. The method developed

in this research is not a blind source separation, as the respiration provides a p riori

knowledge of one part of the system dynamics and is used as a template for the

separation of the cardiac and respiratory source signals.
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One popular method of source separation is Independent Component Analysis

('CA). This analysis requires a level of independence of the signal components and a

level of stationarity that oflen does not exist, or is often not practical to obtain non-

invasively, in most physiological signals. A new method of source separation employing

a wavelet kernel provides a platform for analysis that can compensate for both

stationarity and independence requirements of 'CA which are unrealistic in physiological

applications. A wavelet based analysis will have greater success in separating sources

from a combined output signal because it can distinguish signals that are Gaussian in time

and/or frequency, rather than basing the separation upon variance within the time series

only, which is how 'CA performs the separation.

The method of using Cohen class time frequency distributions as discriminators

has been used successfully to separate speech signals directly recorded and those that are

frequency modulated [75]. Wavelet transforms produce fewer cross-terms than

traditional Cohen class time-frequency distributions and have good time and frequency

localization. Thus, they are better suited for separation of multi-component physiological

signals. Also, as proven in Section 2.2.3, the wavelet bases chosen for this analysis are

orthonormal, which means that they are independent in time and scale. This property

results in independent time series being generated from the wavelet analysis at all scales,

which may each be independently analyzed for content.

In terms of heart rate variability and respiratory interaction, literature is

unavailable on the concept of separating the interbeat interval into several components.

There is a defined control mechanism from both the sympathetic and vagal branches of

the autonomic nervous system. The wavelet-based Source Separation (WayS) technique
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enhances the understanding of the neural control of the cardiovascular system by

pinpointing the separate mechanisms contained within the signal. This is in contrast to

the current state-of-the art methods of quantifying HRV information into specific clusters

of levels of health, which the use of wavelets also enhances. While the respiratory and

cardiac oscillations are intertwined, the frequency activity is a result of the neural control.

The individual ANS control signals are now discemable, rather than assuming that

activity in a specific frequency range is representative of the control schema. This

method may be considered a deconvolution method, as it divides the frequency content of

one signal by the frequency content of another. This is equivalent of a deconvolution in

the time domain. To remove the input signal from a system that operates based upon

non-linear interactions of the system is no trivial task. There are methods that are being

developed in the cellular communications industry that may fit this application [76, 77].

This method is essentially an adaptive filtering method which employs time-scale

decompositions that are not sensitive to the non-linear nature of the signals being

analyzed. Other adaptive filtering methods are also being developed for the purpose of

separating source signals [78].

In terms of cardio-respiratory interactions, the respiratory signal can be

considered the input because modulation of this signal results in modulation of the output

signal, which in this case is the interbeat interval signal. The resultant output signal that

will be used for the system is the interbeat interval signal, derived from the

electrocardiogram (ECG) as the time between successive heartbeats. Research has shown

that there is a frequency dependence of heart rate variability on the frequency of the

respiration signal [79]. This research distinguishes the control signal by which this
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interdependence occurs, and in the process provides clinical indicators for varying states

of health.



CHAPTER 3

METHODS

In chapter 2, background information was presented on the physiological systems and

engineering methods used in the research. Chapter 3 presents information about the data

collection methods employed to sample those systems, as well as signal processing

methods developed to analyze those data. In addition, a simple model of the cardio-

pulmonary oscillations is presented as a validation of the mathematical methods.

3.1 Cardio-Respiratory Coupling Simple Model

The objective of this dissertation is to develop novel time-&equency methods for the

assessment of changes that occur in the cardio-pulmonary coupling circuitry as a result of

disease and aging. To validate the wavelet source separation method, a model was

developed that roughly approximated the Interpolated Inter-Beat-Interval (ΙΙ) signal as

a sum of sinusoids. The sampling &equency of the signal was 200 Hz, to approximate

the sampling rate of the clinical ΙΙΒ' signals. In addition, the signals were decimated to

40 Hz, as was done with the clinical signals. The sinusoids represented the oscillations of

the respiration and the cardiac cycles at frequencies of 0.2 and 1.0 Hz, respectively. The

two signals and their sum are shown in Figure 3.1. The left two images are the

respiration and cardiac cycles, and the image on the right is the combination of the two

signals resulting in the simulated basic 1181 signal.

76



77

In addition to a steady state model, it is important to understand how the program

would perform under dynamic situations, for example during exercise. The model was

altered to include a steady state of five minutes followed by a transition to exercise state

for another five minutes. As a result, the model output was a sum of sinusoids for two
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specific conditions, rest and exercise, composed of four sinusoids, as shown in Figure

3.2. Seconds 290 through 300 are the rest simulation, and seconds 300 through 310 are

the exercise simulation.

Figure 3.2 Rest and exercise simulations.
Note the change in frequency and amplitude at point 300.

For the simulated exercise model, a range of frequencies were employed to create

a series of rest/exercise coupings to test the program. For example, Fresp_ex =

Ι.5*Fresp, Aresp ex = 0.5 * Aresp, Flirv ex = 2.25 *Flirv, Abrv ex = Abrvex. As in

(3), the system during exercise is modeled by the sum of the two sinusoids, with

frequencies altered as listed, with Fresp replaced by Fresp_ex, Aresp replaced by

Arespex, Fhrv replaced by Fhrv ex and Ahrv replaced by Abrv_ex. Model resting

heart rate (HR) is 60 beats/mm, with the exercise heart rate = 2.4 * 60, or 144 beats/mm.

The amplitude was not modified for the heart rate signal, so Ahrv = Ahrv_ex. Model

resting respiratory rate is approximately 12 breaths/mm, compared to 1.5 * 12 = 18

breaths/min in the exercise model simulation. With reference to the respiration signal,

increased frequency is typically associated with decreased amplitude, so the amplitude of

the respiration model during exercise is decreased from resting by a factor of 2. The

frequencies tested for exercise are listed in Table 3.1.
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TABLE 3.1. Index of Simulation Frequency Multipliers for Transition &om Rest to
Exercise

CARDIAC

FREQUENCY

MULTIPLIER

CYCLE
HEART RΑτΕ
[BEATS/MIN]

FREQUENCY

MULTIPLIER

RESPIRATION

BREATHING RATE
[ΒRΕΑΙΗS!ΜΙΝJ

1.4 85 1.1667 14
1.6 95 1.333 16
2.1 125 1.5 18

2.3333 140 1.6667 20
2.9333 175 1.8333 22

3.2 Cardio-Respiratory Data for COPD Study

All data were collected in a non-invasive manner on human subjects. Although the

COPD and presbyopic cardiac data were recorded at different locations, all 'RB protocols

were strictly enforced for both studies.

3.2.1 Heart Rate Variability

Heart Rate Variability (HRV) requires as an input an inter-beat interval signal that is a

measure of milliseconds between successive heartbeats. For this research, a study of

normals and patients with Chronic Obstructive Pulmonary Disease (COPD) that was

conducted at Columbia University's College of Physicians and Surgeons is the source of

heart rate variability data. The testing was performed in the Human Performance

Laboratory in Atchicy room 327 of the Columbia Presbyterian Hospital in New York

City, NY. The protocol included a Pulmonary Stress Test at 30% supplemental Oxygen,

as per the NETT protocol. Continuous Respiration, Electrocardiogram (ECG) and Blood

Pressure (BP) were acquired during the study.
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3.2.2 Subject Population

The subjects that participated in the study included individuals with severe pulmonary

disease that were being enrolled in the National Emphysema Treatment Trial (NETT)

with the goal of studying lung volume reduction surgery  (LVRS) as well as healthy

individuals with no known cardiac or pulmonary disease. Data of 10  COPD subjects

were analyzed in the course of the research. The data of 5 normal subjects were

employed for the research.

3.2.3 Data Acquisition

All exercise stress testing was performed on a bicycle ergometer with a SensorMedics

Vmax 229 series workstation. The protocol was a ramp exercise with five minute

baseline data collection, followed by a three minute warm-up at no load and then a

maximum exercise test with a 5 " Watt/min ramp. All exercise was perfo rmed on 30%

supplemental oxygen. The autonomic  biopotentials were obtained through an interface

board (BNC 2080, Naitonal Jnstruments, Austin, TX) and fed into a 12-bit analog-to-

digital converter (DAQcard 700, National Instruments, Austin, TX). The data were then

recorded by a Pentium computer (Hitachi Vision Book Plus, San Jose, CA). Five minute

resting data collections were also done in a counter-balanced order on room air and 30%

supplemental oxygen. Post acquisition data analyses were carried out separately.

Various levels of testing were performed. Testing was performed during rest and

during exercise, which consisted of three minutes of unloaded warm-up, one minute

exercise increments to maximum ventilatory threshold, and then followed by a three

minute unloaded recovery period. These are established, non-invasive methods to

perturb the autonomic system for analysis of autonomic tone using the variability of the
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R-R interval as a result of the perturbations. The laboratory employed an established and

validated routine to extricate and interpolate the inter-beat interval (Ι) from the ECG

data.

The heart rate variability data were obtained using a  Labview program. The

program extracts the inter-beat interval (IBI) by recording the time stamp between

successive R-wave peaks in the ECG signal. The program then perfo rms a reverse

interpolation to ensure that the sampling rate is evenly  resampled to 200 Hz. The process

is shown in Figure 3.3, and the front panels of the program are included in Appendix A.

Note that the height of the square wave is the length of each successive inter-beat interval

in milliseconds. The time periods are different between any successive two beats if the

heart is healthy. The length of time between beats is called the inter-beat interval (ml).

The time interval becomes the height of a square wave that is generated from these data.

The sampling rate of the square wave is 200 Hz and is created by reverse interpolation of

the IBI data.

Figure 3.3 ECG Waveform conversion to Interpolated Inter-Beat Interval, a) ECG
signal. b) Inter-beat interval (WI) Signal. The height of each pulse becomes the time
between each pulse. c) Interpolated Inter-beat Interval  (lIB') Signal. The pulse train is
reverse interpolated to generate an evenly sampled square wave for analysis.
Source: Reisman, S. Lecture Notes,  ECE 667, 1999.
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3.3 CARDIO-RESPIRATORY DATA FOR PRESBYOPE POPULATION

All data were collected in a non-invasive manner on human subjects. Although the

COPD and presbyopic cardiac data were recorded at different locations, all IRB protocols

were strictly enforced. The 1KB for this study is included in the Appendix.

3.3.1 Heart Rate Variability

For this research, a study of controls and apparently healthy subjects with Presbyopia

was conducted at the Laboratory for Visual Processes in the Department of Biomedical

Engineering at New Jersey Institute of Technology. Continuous Respiration and

Electrocardiogram (ECG) were recorded for three different controlled breathing levels: 8

breaths/mm, 12 breaths/mm, and 16 breaths/min in an effort to obtain respiration rates in

the low and high HRV cardiac autonomic response ranges.

3.3.2 Subject Population

As this was a pilot study, a small data set was collected. The data were collected from 10

subjects, six presbyopic and four control human subjects. The ages of the controls ranged

from 18-35. The ages of the presbyopic group ranged from 50 — 75. The presbyopic

group was further divided into two groups, those who are able to adapt to wearing

integrated lenses and those who are restricted to the use of traditional bifocal lenses.
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3.3.3 Data Acquisition

ECG and respiration were recorded using Grass  bioamplifiers that fed data through a

National Instruments DAQcard. The ECG was measured using passive electrodes that

were passed to the Grass -Telefactor model IP3511, which is an industry standard isolated

physiological pre-amplifier. Measurement of the respiration signal was performed by

passing the output from a Grass -Telefactor Respiratory Effort Transducer to the Grass

isolated pre-amplifier. The measurement was obtained by placing a band containing a

piezo-electric (this type of material generates a very low level voltage when it changes

size, either by being stretched or compressed) crystal film around the subject's ribcage.

The measurement was obtained by recording the difference in the microvolt level signal

that is generated when the piezo film is stretched or compressed due to the

expansioII/compression of the chest during inhalation/exhalation.  The band was directly

connected to the pre-amplifier, and no external power supply was required. The

connectors are touch-proof safety connectors and the instrument to which it was attached

employs both optical and transformer isolation.

Each subject was seated in a dark environment that was created by enclosing an

area with black felt to block stray light from entering the area. The subject was instructed

to focus on a green light emitting diode (LED) array, which illuminated from a near to a

far target at a specific frequency (8, 12 or 16 breaths/mm). The subject was then

instructed to pace their breathing with the target presentation. The data were then sent to

the computer where they were recorded by a custom LabView program at 500 Hz to

ensure high frequency resolution.
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3.4 Data Analysis

The problem of non-linearity and non -stationarity in a time series is increasingly

confounding to biomedical researchers. As more research is performed upon biological

systems, it is increasingly apparent that there is a need for an expanded signal processing

toolbox. In this research, the data form the two sources discussed above will be analyzed

using similar but not identical methods. Adjustments will need to be performed to

accommodate for the different physiological systems. For instance, a wavelet kernel that

is appropriate for heart rate variability is not appropriate for  vergence eye movements. In

addition, frequency ranges of interest differ, and thus differing scales of  time-frequency

distributions will be used as appropriate. All kernels will be  orthonormal in order to

generate independent time series' that can be analyzed individually.

3.4.1 Critical Variables

Before delving into the algorithms employed in this research, it is important to specify

certain parameters and their impact on the analysis. As the research is based upon a

wavelet analysis, there are certain parameters that are c ritical in the application of this

technique for the implementation described in the following Sections. This Section

specifies these terms and their impact on the analyses. It also provides default values for

these terms, which should be adjusted based upon the desired application of the methods.

Threshold. This variable sets the minimum level of correlation between wavelet

series. Above this value, a specific mathematical function is applied to the wavelet series.

Varies according to patient population and data recording condition. Regarding dynamic
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sessions, or diseased populations, this value must be decreased (held constant within a

specific study) as the level of correlation between cardiac and respiratory patterns

decreases during these times. For  COPD, this value was set to 0.6, and may need to be

lower, depending on the health of the subject. For healthy  normals, it can be set as high

as 0.85.

Sampling frequency. Beside the obvious Nyquist requirements, sampling

frequency becomes critical when determining the appropriate number of scales to be used

in the analysis. For HRV, frequencies of interest range between 0.04 and 0.4 Hz. This

requires a certain number of scales to implement. When the sampling frequency changes,

the number of scales, as well as the scales of interest, must change, as well. Refer to

equation (2.3), or Section 2.2.3 for the mathematical basis of this statement. The default

was set to 40 HZ for this study. This allowed for a decent frequency resolution in the

frequency range of interest using the coitlet wavelet.

Scale. Tied directly to sampling frequency, this variable must change depending

on the wavelet chosen and the frequency resolution. The center frequency of the wavelet

used will dictate the pseudo- frequencies employed in the analysis. Again, refer to

Section 2.2.3 (in particular, equation 2.3) for details. The resulting signal will contain

spurious frequency components if too many scales are employed for the WayS analysis.

Afler a certain number of scales, the info rmation contained in the wavelet series is not

valid. That is, after a certain level of decomposition, the calculated coefficients are not

long enough to contain any valid information. The program is designed to perfo rm signal

extension so that the output will not be affected by spectral wrap-around effects inherent

in the wavelet series. This si gnal extension allows the wavelet analysis to run to
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whatever level is specitkd, even though the infιiι·rnaiοn- cQntained is not valid. Using

extra levels of invalid information in correlations introduces spurious frequency

components into the reconstructed signals. The extra levels of information. will typically

have a correlation > 0.95 and -will cause- artifact. Use caution , when selecting the

maximum scale for the analysis. The wavelet used in this study was cοif3, so the scales

employed were 2[6Ι0}, correlating to frequency values of 0.03 to 0.44 Hz.

Wavelet basis. The value controls the efficacy of the separation. This variable

will determine whether a discrete wavelet transform is possible in addition to whether the

coefficient sets generated form the analysis will be orthonormal. The order of the

wavelet basis chosen, if that is an option within the specific wavelet chosen, will

determine how regular (smooth) the wavelet is In terms of filtering, this is equivalent to

the filter length of a discrete filter. In digital signal processing, this parameter affects the

length of the coefficient set generated and also impacts the phase of the output. The

wavelet shape should match closely with the signal being analyzed as the values

generated are, in essence, measures of how well the signal correlates with the wavelet at a

specifk frequency. If the shape is very different from the signal being analyzed, the

analysis will not be as powerful and may even introduce artifact.

Window size. This value determines the length of the correlation signal at each

scale, a. This parameter is significant because when dynamics are varying quickly, it is

critical to be able to capture those changes. For each instant in time, the signal

correlations between dynamically recorded signals will be changing.

If this parameter is too large, the correlations will not be high enough to change the signal

and the reconstmction vector will pass the original signal through as the output.
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Similarly, if the window is too small, the frequencies being analyzed will not have time

to manifest change. Specifically, the LF range (0.04 — 0.15 Hz) equates to approximately

Ι oscillation every 25 seconds at the low end, and  Ι oscillation every 6.7 seconds at the

high end of the range. The use of window lengths less than the period of the signal being

analyzed will not result in an accurate quantification of the &equency content in these

signals at those levels.

In addition, the sampling frequency becomes and issue with the length of the

window, since the number of samples contained in the window is a direct outcome of this

value. The length of the signal decreases by two for each successive scale employed in

the analysis. The number of samples may not be sufficient for a useful analysis at lower

scales if the window is not sufficiently large.

Decimation level. This value sets the &equency resolution for the signal being

analyzed. When this number is adjusted, it changes the sampling frequency, which in

turn requires that the maximum scale be adjusted. The reason for this variable being used

in the study is that by increasing the decimation level, you decrease the time it takes for

the analysis in two ways. First, the length of the signal is reduced so there are fewer

calculations to be performed, resulting in a decreased processing consumption. The next

important aspect is that it creates a lower Nyquist &equency, which is defined in Matlab

as half of the sampling frequency, whether or not this is the case. Again, it is important

to be WARY of over-decimating the signal and lowering the sampling frequency too

much. The significance of a lowered Nyquist frequency is that the total number of scales

required to attain the autonomic frequencies of interest can be reduced. However, this

also means that the resolution will not be as good and potentially means that the high and
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low frequency autonomic regions will overlap. The default level is set to 5, so F equates

to 200 (the original re-sampled rate of the  ΙΙ) divided by 5 (the decimation level), or 40

Hz.

3.4.2 Wavelet Entropy

Wavelet analyses are being used increasingly for biomedical applications, among other

adaptive time-frequency methods of analysis [80, 81, 82, 83, 84, 85]. Α recent

international conference of the IEEE EMBS showcased over 45 papers using wavelets in

the anlaysis and classification of biological signals. Of rising interest in various signal

processing arenas is the non-linear assessment of the coefficient time series generated by

this analysis. Wavelet entropy in specific bands has been used in both classical and

quantum mechanics, in communications arid, more recently, in biological applications

[86, 87,88, 89].

In this research, the wavelet transform is used to decompose the biological signals

into sets of independent, orthogonal time series. The wavelet entropy program was

written using the wavelet toolbox in Matlab ν6.5, employing the continuous wavelet

transform (CWT) of the cοit3 mother wavelet. The program generates wavelet time

series for all data sets and further calculates the entropy of the calculated data sets in

accordance with Shannon entropy principles. Figure 3.4 illustrates the algorithm for the

wavelet entropy method, which creates a matrix of time-frequency distributions for each

scale. Entropy measures are then calculated based on that matrix, as indicated in (3.1).

(3.1)
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In this equation, S' represents the Shannon energy of the wavelet transformed

data, Pa represents the probability density of the wavelet coefficients at each scale, a.

Another measure of wavelet information used in this research will include the normalized

Wavelet energy, Q. The normalized energy is calculated based upon (3.2).

(3.2)

A heart rate variability measure of entropy was calculated based upon the knowledge of

&equency bands of interest, namely the low frequency  (LF, 0.04-0.14 Hz) and high

frequency (HF, 0.14-0.4 Hz) bands, in addition to the LF/HF ratio, which is believed to

Figure 3.4. Wavelet analysis basis for entropy quantification. The top Figure is the
original raw data set, ΙΙΒ' (blue) and Respiration (green). The bottom Figure is the set of
wavelet coefficient series from scales 6:10, the frequencies of interest, over the same
course of time.
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be indicative of the sympatho-vagal activity. These indices were determined as per (3.3)

and (3.4). The use of a different wavelet kernel or sampling frequency (refer to Section

3.3.1) would necessitate modification of (3.3) and (3.4). The frequency bands for this

analysis were the low frequency (0.03 — 0.11 Hz) and high frequency (0.11 to 0.44 Hz).

The wavelet entropy method provides useful information about neural control of

individual systems.

(3.3)

(3.4)

3.4.3 K-Means Cluster Analysis

Α cluster analysis provides objective classification of varying levels of health of the

examined systems. The reason for selection of K-means cluster analysis in lieu of any

other clustering technique is that the number population types is known a priori, but the

distance between mean values for any given group is unknown. To perform most

methods of cluster analysis, it is necessary to have an estimate of the distribution of the

statistics of the data set, such as mean value and variance for each group. K-means

approaches subject classification without knowledge of statistical parameters, only the

number of groups within data sets. The algorithm creates k groupings of the data, based

upon dividing the sample population, n, by the number of groups, k. For example, if

there are 100 subjects and it is known that there are 5 groups, the algoiitlim will seek five

mean values around which the data fall, within a certain distance to (or va riance from) the
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mean value. The method will then seek to minimize within group distance. This method

provides a significant, straight forward tool for classification of level of health based

upon neural variability. The distance calculation employed in this analysis was the

Euclidean least squares distance, which is a basic distance calculation, whereby:

(3.5)

Note that the square root sign is missing for least squares measures in cluster analyses.

The centroid is defined by the mean of the distances between all points in the specific

cluster. Before the analysis was performed, the entropy matrix was normalized using the

z-score normalization technique, as in (3.6):

(3.5)

where Znorm is the normalized value, x is the vector being analyzed, Υ is the mean value of

the vector x, and σ is the standard deviation of the original data set, x.

3.4.4 Wavelet Source Separation

Wavelet Source Separation was performed in several steps, with the variables listed in

Section 3.4.1 playing a critical role in the performance of the algorithm. Figure 3.5 is a

flow chart overview of the algorithm developed for the analysis. Essentially, this

program makes use of the fact that division in the &equency domain is equivalent to a

deconvolution in the time domain. Because each of the wavelet time series generated at
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each scale is statistically independent, each can be treated as such for further

manipulations.

The process began by loading the IIBi and respiration signals into the workspace

in Matlab 6.5 (the program has also been validated for  Matlab 2006a). The signals are

decimated by a factor of 'dec', described in Section 3.4.1. The wavelet analysis is then

performed on the two pre-processed signals. The vector representation is presented in

(3.6) and (3.7). Figure 3.5 illustrates the actual signals and their correlations. Note that

in this Figure, the subject was breathing at a rate of 16 bpm, or a &equency of 0.2667

(a 8), the top red and blue image in the wavlet analysis bank Figure. The details

matrices are represented as follows in this research:

(3.6)

(3.7)

where dHR Υ11 through dHR Vln represent the details vector for scale 1 for the entire

length, n, of the analysis, and C/HR V7, through dHR V7n represent the vactor for scale 7,

the lowest &equency band of the analysis.

Α range of scales from 1:7 is used in conjunction with the cοif3 wavelet for the

analysis, which correlates with a frequency range of 0.03 Hz 3.84 Hz. The data were

manually phase adjusted to match the first onset of respiration and HRV signal peaks

using velocity tracings, due to the offset that results from the generation of the 118I
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signal. Once the data were transformed into the time-scale domain, they were squared

and a unity offset was introduced to ensure that neither the respiration nor  HRV signals

crossed zero, as in Equation 3.9. This ensured that no large, spurious artifact was

introduced into the reconstructed series by introducing large numbers into the

reconstruction vector as a result of a divide by zero effect. Once the division was

performed, the square root of the quotient was obtained and the unity offset was removed.

100

Ο

-100

-208
0 	 68 	100 	150 	200	 260 	 300 	 360 	 400 	 450

ό0

Figure 3.5. Wavelet series correlations of both respiration (red) and  HRV (blue) to form
basis of WayS analysis. The top Figure is the raw respiration (green) and  ΙΙΒ' (blue)
signal. Correlations between the two signals at each scale is displayed.
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The data pre-processing step was important for several reasons. First, for optimal

wavelet performance, it is necessary to ensure that the signal length is a power of two.

There are several mechanisms by which to do this in  Matlab. The wavelet toolbox has an

extension mechanism called dwtmode which extends the signal in specific scales to the

appropriate length. There are several methods of extension. For this research, the

periodic extension was chosen to ensure that no unnecessary DC component, or abrupt

changes were introduced to the signal content.

It is also important to extend the signal to ensure that wavelet domain wrapping

does not occur during the analysis. This phenomenon occurs at the edges of the wavelet

time series, where information content gets shifted between wavelet subbands, and

Respiriitlon Artifact Removal from ΠΒΙ Signal
Implementing Wavelet Statistical Techniques

Figure 3.6. Flow chart of WayS algorithm.
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introduces a large artifact at these points. This problem can be avoided by using a

symmetric (about zero) wavelet and extending the signal when necessary, which will

cause the artifact to cancel itself [92]. The coiflet wavelet used in this analysis is

symmetric, highly regular, possesses a high number of vanishing moments, and is

orthogonal.

Once each signal is decomposed via the DWT into time series of varying

resolutions, respiration  (dResp) and HRV (dHR V) signals are correlated at each scale.

When a correlation above a specific threshold exists, in this case  r»RVRESP > 0.6 — 0.85,

depending upon subject population, for a given window, win, of time as in (3.8) the

signals are sent to an array to be divided into each other, as in (3.9). They are first

squared and then the FIRV is divided by the respiration signal. Division was chosen

because the signals are in the &equency domain and division in that domain equates to

deconvolution in the time domain. Α unity offset is introduced because when dHR V is

divided by dResp, if dResp is zero (or very close to zero), it creates a spike in the output

that is several orders of magnitude greater than the remainder of the data. The offset is

removed afler the division is performed and before replacing the values into the

reconstruction vector, dRECONST, where a is scale.

(3.8)

(3.9)
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The reconstruction vector is the vector of wavelet coefikients that will be used to

reconstruct the signal. It is a set of numbers that is generated when the discrete wavelet

deconstruction is performed. As can be seen in Figure 3.6, if a correlation is below the

threshold, it is not manipulated. Rather, the entire wavelet series for that specific scale is

passed unaltered directly to the reconstruction vector. If r > threshold, the wavelet

coefficient series dHR V and dRESP for that specifk scale is passed to the remainder of

the analysis program. dHR Va and dRESPa are offset and squared, then the square root of

the quotient is offset by -1 and entered into the reconstruction vector (dRECONSTa), as

in (3.9). Note that this calculation is performed at each scale and for each window, win,

of time within that scale. Then  'IRECONSTa is passed to a larger vector,  dRECONST,

which concatenates the reconstruction vectors at all scales. The variable  dRECONST is

then passed to the waverec function, part of the wavelet toolbox in Matlab, for

reconstruction into the time domain. Figure 3.5 displays the flow of decisions for

calculations and manipulations performed in the analysis.



CHAPTER 4

RESULTS

4.1 Cardio-Pulmonary Coupling Model

The model results indicated several key findings that were in agreement with the findings

from the clinical studies. The first finding is that the WayS method output had an

average correlation between the simulated cardiac cycle and extracted cardiac cycle of

0.9975, as in Figure 4.1. The average coherence between the two signals was 0.9988.

These values are averaged for the five different model signals that were used in the

validation segment of the research. Figure 4.1 illustrates the original cardiac signal used

to create the simulated ΙΙΒ' signal in blue, as well as the signal that was reconstructed as

a result of the analysis in red dashes. The correlation value for these specific signals is

listed on the Figure. The red signal was extracted from the combined cardiac and

respiratory signal, using only the respiration signal as the template for removal.

Figure 4.1 Correlation and coherence of input simulated cardiac cycle signal (solid blue)
and reconstructed cardiac cycle (red dashed).

97
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The second result of the model data is that although frequency content within a

signal can change, this does not necessarily alter the low  frequency/high frequency ratio

of the signal. Figure 4.2 illustrates the changes in frequency content in each of these sub-

bands. It also illustrates that the change in  LF/HF ratio is not orders of magnitude,

although the spectral power in each component individually change by orders of

magnitude. Significant differences were obtained between the  LF and HF content of the

pre and post processed signal, although the ratio of LF to HF did not yield significantly

different values for the data set. The results are presented in Table 4.1. This supports the

observation that the LF/HF ratio can be unaffected, although trends may be seen, even

when the individual components change by orders of magnitude. The small sample size

(n = 6) and large variance suggest that a larger model application may show different

values.

Another significant finding is that when the respiratory wavelet coefficient value is at

zero, the output si gnal approaches infinity, introducing large artifacts. To compensate for

this, the program squares  dRESPa and dHRVa, performs the division, takes the square

root of the quotient and then reduces the value of the result by 1. On the output, a
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spectrum with two distinct peaks at each frequency of the new signal is created when two

harmonic sinusoids are combined, as shown in Figure 4.2, below. The top Figure

Figure 4.2 WayS output for model data analysis. The top Figure is the sum of the cardiac
and respiratory (green) signals to create the simulated  ΙΙΒ' signal (blue). (a) The spectrum
of the original HRV signal. (b) The Spectrum of the reconst ructed HRV signal. (c) The
spectrum of the original respiration signal. (d) The spect rum of the reconstructed
respiration.
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illustrates the model signals. The dark blue signal is the approximated irni signal. The

green dashed signal is the simulated respiration signal, and the red is the reconstructed

output of the analysis program, simulating the ΙΙΒ' with the respiration signal removed.

The four spectral graphs, color coordinated with the top Figure, plotted below the Figure

are discussed clockwise from top left. Listed at the top of images (Figures 4.2a and b)

are the values for the LF, HF and LF/HF ratios calculated for those specific spectra. At

the top left (Figure 4.2a) is the original spectrum of the simulated 118I signal. This is the

spectrum correlating to the dark blue signal in the top image. Next, the red spectrum in

Figure 4.2b is that of the reconstructed signal after the wavelet removal of the respiration

from the I181. The bottom two green spectra are the respiration spectra, reconstructed

4.2d and original 4.2c. Note that the spectrum of Figure 4.2a has a peak at the respiration

frequency of approximately 0.2 Hz, in coordination with the respiration signal in Figure

4.2c. Note also that the respiration peak is missing from the spectrum of the

reconstructed signal, shown in Figure 4.2c. The spectral power of the two signals

changed dramatically from pre to post processing, as can be seen at the top of Figures

4.2a and 4.2b. The HF and LF values changed, on average, by orders of magnitude.

The local frequency content of the signals became important when assessing the

global correlation of the two signals. Because the periods of harmonically related signals

would change in a coordinated manner, the wavelet was able to perform a more global

correlation analysis of the data. When the signals were not harmonically related, the

correlation over large time scales decayed and resulted in a poor signal separation. It is

for this reason that the window becomes important again. This was one of the most

significant outcomes of the model analysis. Further, the onset time of the frequency
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influenced the correlations. Interestingly, in the model the  LF component of respiration

is removed from the HRV signal in conjunction with the HF component, causing

negligible changes in the LF/HF ratio after removal of the respiration signal. This result

is in keeping with the findings of the WayS analysis of the healthy subjects in the  COPD

study.

4.2 Wavelet Entropy

The wavelet entropy analysis was performed on both the  COPD and presbyopic subject

populations. Both groups showed trends, but the sample size was quite small, yielding a

large variance, and did not yield significant results. To address this, the method of

ZSCORE normalization was employed, which normalizes the distribution statistically in

an effort to do comparisons between populations with largely different mean values. The

results for each study are discussed in this Section. While applying the wavelet entropy

method to both sets of heart rate variability data, patterns of control emerged in addition

to patterns within the probability distribution and wavelet entropy calculated. It is also of

significance that the distribution of entropy differs between control and subject

populations.

4.2.1 COPD Wavelet Entropy Results

The wavelet entropy for this patient group contained large variances within populations.

However, the zscore normalization algorithm in combination with a  PCA component

reduction enabled a highly accurate separation of each of the groups, which were control

or COPD. For the files taken at rest, the classification rate is 93%, with one control

getting classified as a patient. For the files taken during rest-exercise-recovery, the



102

classification rate is 100%. The confusion plots for the classification scheme are in

Tables 4.2a and 4.3b. The high classification rate at rest suggests that there are

significant differences in the physiology that are measurable. Differences in populations

are evident during exercise with visual inspection. At rest, the differences are more

subtle, but still produce significant results.

Table 4.2a Confusion Plot of
COPD Study Subjects at Rest
Classifcation rate is 93 %

Table 4.2b Confusion Plot of
COPD Study Subjects in Exercise
Classifcation rate is 100 %

Another result of this analysis was the individual components that were found to

be major contributors to the separation algorithm. A Principal Components Analysis

(PCA) was performed on the matrices for rest and exercise to determine the components

that influenced the distribution the most. This type of analysis provides information

about which variable provide the largest portion of the variance, and therefore

information, within the distribution. Interestingly, during the resting state the variables

which contained the most significant amount of information were based upon the entropy

values in the low and high &equency ranges, SWIHF and SWtLF, as well as the percentage of
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energy contained in scale 3,  Ρ3. During exercise, the percentage of entropy contained in

scales Ι and 5, Ρ1 and Ρ5, were of significance, as was the percentage of entropy

contained within the LF and HF ranges, PLF and PHF.

4.3 Wavelet Source Separation

The WayS method yielded some interesting results for the subject group tested. The

main intent of this aspect of the research was to determine if the respiration effect could

be removed from the IIΒI signal. Further, could the results obtained from analyzing the

separated data provide clinical implications for diagnosis? The two subject populations

yielded some striking results, but again, the research was a pilot study by design, and the

sample sizes were not robust enough to fo rm any statistical determinations. However,

interesting trends exist and should be further investigated.

Phase alignment was performed to ensure that the content in the time-frequency

distributions were appropriately aligned for the removal of the respiration signal.

Because the coefficient series are time-dependant, shills introduced by the interpolation

of the inter-beat-interval signal at the beginning of the signal may not accurately reflect

the initial HRV and may result in offsetting the si gnal by a small amount, depending on

where in the cardiac cycle recording of the ECG began. To address this, it is necessary to

align the signals initially for the analysis.

The window applied to the segment ensured that if at points in time during the

acquisition the signals lost synchrony, the impact on the correlation remained localized.

That is, the program employed a local rather than global correlation. This ensured that if

there were parts of the signal that contained large transients, the correlation would only
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be affected in that one specific segment of the signal. If this was not implemented, the

signal may have a correlation lower than the threshold and the respiratory influence

would not be removed, even though the loss of correlation was only in one small part of

the signal.

Due to the time-dependant nature of this analysis, even if the frequency activity

between the respiration and ΙΙΒ' signals was highly correlated, the analysis may not have

detected a correlation because the onset time of the frequency activity was not the same

between the two signals. As can be seen in Figure 4.3, the  aΙigιment of the signals in

time is quite important to the analysis. Figure 4.3a is the signal analysis result before the

phase alignment. Figure 4.3b is the signal analysis output after phase ali gnment. The top

Figure 4.3a Unmatched signals in time.	 Figure 4.3b Signals matched in time.



185

image in each Figure illustrates the change in onset time of the signal. Note the

relationship between the matched signals at the top of Figure 4.3b in contrast to the offset

between the two uiimatched signals at the top of Figure 4.3a. There is a significant

impact on the separation algorithm when the two signals are not correlated in time. This

effect can be seen in the differences in the original and reconstructed HRV spectra of

Figures 4.3a, where the respiration is not removed, in contrast to 4.3b, where the

respiration peak is removed.

A gain was applied to the amplitude of the respiration and HRV signals to ensure

that the maximum amplitude of each was equivalent. As can be seen in Figures 4.4a and

4.4b, the amplitudes of the respiration and HRV signals differed from subject to subject

due to the gain on the amplifier. Because a unity ratio between HRV and respiration is

desired if the two signals are correlated, the amplitudes of the two signals should be

equivalent. The gain value was a constant for the entire signal.

Figure 4.4a Gain of Respiration is much Figure 4.4b Gain of Respiration is more
higher than cardiac gain.	 proportional with cardiac gain.
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4.3.1 COPD Population

This population was characterized by a significant difference in values of  HF and LF

between the two groups, particularly after the separation of the respiration influence.

After separation, the LF spectral content of the control subjects was decreased by

approximately 50%. This was in contrast to the  COPD population, where the HF values

decreased disproportionately with the  LF values. This resulted in the LFιΗF ratio

increasing for the COPD population and decreasing for the control population after the

source separation.

The minimum correlation threshold necessary to separate the si gnals varied

according to subject population. As a result, the lower end of the correlation range was

used for both sets of data. The correlation for the  COPD subjects often went as low as

0.5 and the healthy subjects were able to employ an average separation threshold of least

0.8. The windowing of the signal made it possible to detect correlations even when the

system was subjected to stimuli because the transients that would typically cause the

analysis to fail were overcome by the time-varying nature of the &equency analysis.

The LF and HF values changed &om pre to post analysis, and the results are

tabulated in Tables 4.2 and 4.3. Figures 4.5 and 4.6 are a sample of the  COPD study

WayS output at rest and exercise, respectively. The values changed significantly from

pre to post processing, and there were smaller or larger changes in the si gnal from pre to

post processing during different times within the signals. Note the difference in

respiration spectra between rest mid exercise for both samples. At rest, the control and

COPD spectra are not significantly different. However, during exercise there is a
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difference in the distribution of the spectral content of the signal that is particularly

evident during the smaller windows of time illustrated in Figures 4.6 c and d.

Figure 4.5c Output of WayS for control
subject at rest, for a 30 second window of
time.

Figure 4.5d Output of WayS for COPD
subject at rest, for a 30 second window of
time.
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Figure 4.6c Output of WayS for control
subject during exercise, for a 30 second
window of time.

Figure 4.6d Output of WayS for COPD
subject during exercise, for a 30 second
window of time.
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The variance of the data sets decreased by orders of magnitude between pre- and

post-processing. More data are needed to perform statistically robust tests on this data

set. This trend suggests that smaller changes in activity may be detected in the time

series after it has been processed. If the variance is smaller between samples, then the

statistical power analysis suggests that changes in the mean values will become more

significant for the same number of samples. Table 4.3 lists the mean, variance and t-

statistic values for the data. Note the change in the variance in all samples. Table 4.4 is

the same statistics, but separated for the individual control and COPD patient

populations.
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The specific HRV indices become more similar after the analysis has been

performed, as per the decreased level of variance, although the changes in discrete

windows of time are significantly different, as in Figure 4.6. The results may suggest that

the respiration may have been driving a significant portion of the frequency activity that

has been studied for so long in HRV. This would imply that sinus arrhythmia (SA) at rest

and during stress or exercise, may be of the greatest significance in the study of HRV.

However, the fact that the LF and HF frequency content is not completely removed with

the respiration may indicate that another physiological mechanism is at work in the

variability exhibited in the heart rate.

Within the ΒΕ (rest) data set, the LF values overall changed from a mean of

194.20 to 67.20, variance changing from 31403.60 to 4702.33, with Ρ(T<=t) of 0.015.

HF values overall changed from a mean of 123.57 to 58.21, var from 13063.33 to

4723.96, p value of 0.039. Within the ΜΕ (exercise) data set, the LF frequency content

changed from a mean value of 11.44 to 6.52, var from 98.61 to 18.30, p = 0.08. HF

content changed from a mean value of 8.96 to 5.77, var from 106.38 to 19.13, p value

0.21. The ratio changed from a mean value of 1.97 to 1.32, var of 1.29 to 0.20, p value of

0.07. Recall the small sample size. Larger sample sizes may likely yield significant

changes in these areas. Values are tabulated in Tables 4.5 and 4.6.
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Table 4.5 LF, HF and LF/HF Ratio Values Before and After the WavS Analysis for
the Resting Segment of the COPD Study

Table 4.6 LF, HF and LF/HF Ratio Values Before and After the WavS Analysis for the
Exercise Segment of the COPD Study

4.3.2 Presbyope Population

The presbyope population saw changes in the frequency content between pre and post

processing, as well as the COPD group. Tables 4.7, 4.8 and 4.9 display the results from

the analysis of this data set. Note that the separation of each group cannot be considered

statistically significant due to the small sample size, and must be increased in future

studies. Figure 4.7 is the output of one of the normal subjects breathing at 12 [bpm].

Note the correlation between the respiration and IIBI signals, and the corresponding clean
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separation of the spectral components. This correlation of respiration and IIΒ' and the

subsequent separation of the respiration from the ΙΙΒI was similar for all breathing rates,

and for all subjects. The differences existed between the autonomic markers of the

groups, as indicated in Tables 4.5, 4.6 and 4.7.

Figure 4.7 Output of the WavS analysis of adaptive presbyope subject breathing at 12

[bpm]

As a clinical validation of the WavS method in addition to the model the LF value

changed nearly significantly during controlled breathing at 8 breaths/min [bpm], as listed

in Table 4.7, and the HF content changed nearly significantly during controlled breathing

at 12 and 16 [bpm], as indicated in Table 4.8.
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Results for 8, 12 and 16 breaths/min.

In terms of standard deviation, differences between the control and presbyope

groups were evident not only in the standard deviations, but in the frequency content of

the signals. Figure 4.6 illustrates the differences in IIΒ' signals by group. Figure 4.7

groups the differences in values by age, indicating that the differences are specific to the

category of the visual adaptability, not the age, of the subject.

Results for 6, 12 and 16 breaths/min.

Results for 8, 12 and 16 breaths/min.
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Table 4.10 summarizes the standard deviations statistically. Note that the trends

indicate that at higher breathing rates, the controls and presbyopes who like the lenses

approach the same behavior, while the presbyopes who are unable to adapt to the use of

the lenses deviate from the group.

Figure 4.6 Presbyope IIBI data grouped by level of visual adaptability.

Figure 4.7 Presbyope ΙΙΒΙ data grouped by age.
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Table 4.10 Standard Deviations of IIΒI Signals of Presbyope Study Populations

Mean Values 8 breaths/min 12 breaths/min 16 breaths/min

Controls 67.29 50.19 47.72

Likes 49.19 47.20 43.73

Dislikes 33.73 23.41 16.90

The results indicate many possibilities for the application of these analyses, with

important clinical implications. The next phase of this study must include larger data sets

to statistically validate the trends witnessed with all data sets. The two data sets

displayed similar trends in terms of the frequency content changes when the respiration

removal algorithm was employed. Further, the implications for differences in autonomic

function correlating with oculomotor function is significant in that it has not been

reported in this way in the literature.



CHAPTER 5

CONCLUSIONS

There were three main hypotheses of this research. First, the research sought to examine

changes in central autonomic influence during pulmonary disease. Next, links between

central and peripheral autonomic control were investigated. Finally, the research sought

to provide tools to enable the clinical quantification of level of disease and classification

of subject through these objectives, and to provide new insight into those mechanisms

with novel wavelet statistical measures.

5.1 Central Autonomic Influences

The first goal of the research was to provide new insights into the central autonomic

influence over cardio-pulmonary interactions (COPD population). It was hypothesized

that different information content, or entropy, existed in specific frequency ranges

depending on the subject's level of health. Also, this distribution of entropy varies with

subject population and can be classified statistically, enabling computer-aided separation

of clinical populations. It was hypothesized that HRV markers would be altered during

aging and disease. It was further hypothesized that the Wavelet Source Separation

method would alleviate the need to perform controlled measures like paced breathing

during clinical assessments of health. This would in turn allow researchers to investigate

the dynamics of the system during activity without concern for respiratory effect.

The results indicate that wavelet entropy can be used effectively to characterize central

autonomic influences and objectively separate clinical populations with a high level of

116
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accuracy. This is supported by the impressive performance of 93% classification

accuracy of COPD study participants at rest and 100% classification accuracy of COPD

study participants during exercise using the both the wavelet entropy values and the

distribution of that entropy across frequency sub-bands as the input to the cluster

analysis.

Changes in COPD and control autonomic markers are, in fact, evident after

respiration is removed. LF/HF ratio slightly decreased on average from pre to post

reconstruction for controls, increased (sometimes significantly) on average for COPD.  In

healthy controls, respiration frequency seems to vary, causing large decreases in LF and

HF autonomic markers. This results in the LF/HF ratio decreasing significantly after the

removal of the respiration artifact from the data. With respiration effect removed from

COPD population data, LF dominates autonomic response. Subsequently, this results in

a significant increase in LF/HF ratio in COPD due to the concurrent decrease in HF

content as a result of respiration removal.

Α decrease in variance by orders of magnitude after the removal of the respiration

increases the probability that smaller changes can be detected in values. This can have a

significant impact on data sets where the intra-subject variability is quite high,

confounding the data sets and reducing the likelihood of significant findings in a study. It

may also indicate that the physiological response to respiration, in terms of mechanical

and chemical alterations, may be a large contributing factor of differences in levels of

health rather than direct sympatho-vagal influence.

It is hypothesized that the signal content that remains after the removal of direct

pulmonary influence may be indirect indicators of the indirect influence of respiration
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through mechanical and chemical pathways on HRV. The link between chemoreceptors

and mechanoreceptors in modulation of heart rate cannot be overlooked. Sections 2.1.4

and 2.1.5 provide the physiological basis of this statement. The outcome of this study

suggests that the direct influence of respiration is not the only component driving the high

frequency or, interestingly, low frequency content of the HRV signal which serve as the

markers of cardiac autonomic response. The collective outcome of this segment of the

research suggests that the direct influence of respiration may mask other indirect

indicators of respiratory influence occurring through chemical and mechanical pathways

and new insights into autonomic function in disease may be obtained with these methods.

5.2 Central and Peripheral Autonomic Linkage

The second goal of the research was to provide new insights into the links between

central and peripheral autonomic influence. It was hypothesized that peripheral

autonomic influence over the visual system is linked to the central autonomic influence

over cardiopulmonary interactions, and that this link would be evidenced by a decrease

in HRV in people with lower levels of oculomotor adaptability.

As a result of the assessment of pilot data obtained from the presbyopic

population, there is strong evidence in favor of a correlation between peripheral and

central autonomic influences on HRV, as evidenced by oculomotor adaptability. There

are several results that support the linkage hypothesis.

The first result is the standard deviation of the data sets across populations.

Differences between populations were quantified, not between age group as is the typical

assumption, but rather by level of oculomotor adaptability. The standard deviation of the
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adaptive presbyope and control data sets displayed similar trends at increasing

frequencies of controlled breathing. The non-adaptive presbyopes showed significantly

lower values at the higher respiratory frequency of 16 [bpm]. This suggests that controls

and adaptive presbyopes have similar sympathetic responses. The question that remains

to be answered is in what way the sympathetic response of non-adaptive presbyopes

varies from that of the adaptive presbyopes and controls.

Not unlike the COPD data set, the presbyopic population displayed different

autonomic markers before and after the respiration was removed from the IΙΒ' signal. As

with the COPD population, the frequency content did not completely disappear in the

reconstructed ΙΙΒ' data sets with the effect of respiration removed. This suggests that a

mechanism other than pure sinus arrhythmia is driving the variability at all breathing

rates. Of significance is that the autonomic markers for each breathing rate were

different from each other after the removal of respiration. If they were the same, this

would indicate that the primary influence of the variability is the respiration. The fact

that they are different supports, once again, the hypothesis that there may be something

more than respiration driving ARV. A larger data set must be employed to validate

whether the differences in autonomic markers after respiration extraction are significantly

different between various controlled breathing rates.

The subjects in the presbyope group displayed some interesting, and in some

cases significant, trends in the Wave methods, although the sample size must be larger to

accurately assess the results obtained. In addition, it would be of interest to assess

entropy levels after the influence of the respiration is removed. This would address

questions regarding the influence of respiration in the level of variability in cardiac
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oscillations. Based upon the findings of this research, it is hypothesized that the levels of

entropy would be greatly reduced after removal of the respiration. Aowever, the variance

in the series would also be reduced and would likely yield significant results regarding

even small changes in the vagal modulation of ARV.

5.3 Wavelet Statistical Methods

The final goal of this research was to assess the utility of novel Wavelet etatistical

Methods with respect to cardiopulmonary dynamics. This included the development

and application of wavelet statistical measures to aid in assessment of autonomic

health. This was accomplished in two ways:

a. Development and application of wavelet entropy measure specifically with
application to ARV, and combination of this with k-means cluster analysis for
separation of level of health of clinical populations. Entropy and density
distribution of energy within and between specific bandwidths can be used to
separate clinical groups.

b. epecific frequency of respiration and HRV signal components correlate highly
in time. This correlation can be used to remove the confounding influence of
respiration from central autonomic neural control signals.

This research indicates that there is significant potential for wavelet based statistical

measures applied to cardiopulmonary dynamics to provide information that can be

implemented clinically for computer-aided assessments of autonomic health.

The wavelet entropy method possesses potential for classification of level of

health because it employs not only the complexity measure of entropy, but also

incorporates the distribution of complexity in different bandwidths into the classification.

This resulted in a highly accurate classification scheme.
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The model illustrates the power of the Waye analysis. As a result of the model

analysis, many considerations important in the development of the Wave algorithm, as

discussed in Chapter 3, were evaluated for significance in the algorithm. The model

served as a validation that the analysis could be performed, with a high level of accuracy,

on dynamic signals to separate a known component from a signal.

The first validation of the Wave method came from the model, where the

correlation between the input and the reconstructed signals was 0.9988. The method was

able to capture changes in frequency content due to changing respiration with a high level

of accuracy. The second validation of the Wave method came from the presbyope

population in the differences between autonomic markers at different breathing rates.

Wave reduced frequency content in ranges concurrent with breathing rate, indicating a

robust analysis. The Wave method reduced frequency content in ranges concurrent with

breathing rate, indicating a robust analysis. Specifically, at 8 [bpm], which is a content in

the LF range, the LF autonomic marker is the only one that showed significant changes

after the removal to the respiration signal. Further, at 12 and 16 [bpm], which are

evidenced in the ARV spectrum as content in the AF range, the AF autonomic marker is

the only one that showed significant, or nearly significant, changes after the removal to

the respiration signal. This suggests that the WavS method successfully removes the

influence of respiration from clinically obtained data.

The main intent of this aspect of the research was to determine if the respiration

effect could be removed from the IBBI signal. The model results indicate that this can be

done. Aowever, what clinical implications for diagnosis does this method possess? The

two subject populations yielded some striking results, but again, the research was a pilot
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study by design, and the sample sizes were not robust enough to form any statistical

determinations. However, interesting trends exist and should be further investigated via

the use of a larger sample size.

A significant outcome of the model, as well as in both subject populations, is that

even with a spread spectrum respiration signal, the analysis was able to separate the

respiratory from the cardiac fluctuations. The respiration spectra were illustrated in

Chapter 4, including the standard Fourier content measures as numerical validation, and it

is clear that the overlap was removed for small and large band peaks in the spectra. Of

particular interest is the fact that some frequency activity is still evident at specific

frequencies that must be attributed to the cardiac cycle, as the bulk of the respiration

spectral activity is removed from the lIBI spectra. Further investigation should be

performed in the assessment of changes in the ratio, as the values for each group are now

much closer together. The algorithm performed in a normalizing capacity by removing

large fluctuations induced by the pulmonary system and revealing underlying cardiac

autonomic function. With a smaller variance, smaller changes in mean value can be

detected and therefore, a smaller sample size can be used for analysis.

The COPED population was characterized by a significant difference in values of

HF and LF between the two groups. The minimum correlation threshold necessary to

separate the signals varied according to subject population. As a result, the lower end of

the correlation range was used for both sets of data. The correlation for the COPD

subjects often went as low as 0.6 and the healthy subjects were able to employ an average

separation threshold of least 0.8. Specifically, the larger removal of LF content in the

control population than in the COPD population leads to questions of whether
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sympathetic stimulation occurs in COPD patients with each breath, as opposed to the LF

content being an artifact of the noise. Interestingly, Min et al. found that acute hypoxia in

fetal lambs increased low-frequency and LF/HF ratio content, suggesting an increased

sympathetic activation compared with baseline [ 105]. The results of this research

indicate that the LF content may represent true sympathetic content in the COPD

population, where it may be more driven by sinus arrhythmia in controls.

The WavS method showed some interesting trends in terms of the Presbyope

population data. Of significance is the change in each of the cardiac response parameters.

Although the samples size was not large enough for statistical significance, there are

some noTable results. It is of significance that the separation algorithm employed a

correlation value of 0.85 for each subject as it was assumed that they were all ostensibly

of the same general level of health. There were different levels of signal separation for

each group based upon the level of correlation, which is evident in the varying degree of

change in frequency content values from one breathing rate to another. It may also be

appropriate to investigate non-linear correlation measures to more fully capture trends

over larger windows of time.

In addition, the onset adjustment varied from population to population, suggesting

the existence of some intrinsic factor that differs among populations, which resulted in a

delay the cardiac loop. The same differences in both onset time and level of correlation

were seen for both presbyopic and COPD populations. Although a certain degree of that

is due to the change in signals from ECG to IIBI, there is a certain degree that is

unaccounted for. Alterations in the cardiopulmonary tissue may account for the change



124

in onset time as the system ages or is diseased and should be investigated as a possible

source for the variation.

There are points within the signals of both populations during which the

respiration and ECG lose coordination, even during steady state. Although the signals

typically return to the coordinated state, there are significant points during which control

and subject populations have a decrease in the level of correlation of their cardio-

pulmonary dynamics. Perhaps the threshold must be adaptive to account for this.

Perhaps this loss of coordination, and the extent to which this loss occurs, may yield

significant information regarding autonomic control.

It is also evidenced that if the signals are out of phase with each other, the signals

are not separated in the WavS algorithm, although the program performs well for

respiration signals that are 180 degrees out of phase. This occurs even if there is a

significant peak in the ARV spectrum that correlates with the respiration peak in the

Fourier domain. When the signals are aligned, the separation accuracy increases. It is

possible that a wavelet spectral alignment occurring before the analysis would improve

the robustness of this analysis.



CHAPTER 6

FUTURE WORK

This work was primarily a pilot study. The most important consideration for future work

is the expansion of the data sets employed in these analyses. The analyses had some

significant results with the small sample size. It is hypothesized that with larger data sets,

more significant relationships can be established between central and peripheral

autonomics, as well as between healthy and diseased populations.

6.1 Cardio-Pulmonary Coupling Model

The model can be expanded for testing the adaptability of the analysis in quantifying

activity of signals which contain frequency content that is not harmonic. First the phase

matching must be performed. Then, the analysis must be performed in small windows to

capture the changes accurately. This may prove a valuable way to assess methods of

implementing adaptive windowing of the signal for correlations.

6.2 Wavelet Entropy

The wavelet entropy analysis was performed on both the COPD and presbyopic subject

populations. Both groups showed trends, but the sample size was quite small, yielding a

large variance, and did not yield significant results.

The subjects in the presbyope group displayed some interesting, and in some

cases significant, trends in the WavS methods, although the sample size must be larger to

accurately assess the results obtained. In addition, it would be of interest to assess
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entropy levels after the influence of the respiration is removed. This would address

questions regarding the influence of respiration in the level of variability in cardiac

oscillations. It is hypothesized that the levels of entropy would be greatly reduces after

removal of the respiration. However, the variance in the series would also be reduced

and would likely yield significant results regarding the vagal modulation of ARV.

6.3 Wavelet Source Separation

The main intent of this aspect of the research was to determine if the respiration effect

could be removed from the CBI signal. The model results indicate that this can be done.

However, what clinical implications for diagnosis does this method possess? The two

subject populations yielded some striking results, but again, the research was a pilot study

by design, and the sample sizes were not robust enough to form any statistical

determinations. However, interesting trends exist and should be further investigated via

the use of a larger sample size.

What was seen in the model, as well as in both subject populations, is that even

for spread respiration spectra, the analysis was able to separate the signals fairly well.

The respiration spectra were illustrated in Chapter 4, including the standard Fourier

content measures as numerical validation, and it is clear that the overlap was removed for

small and large band peaks in the spectra. Of particular interest is the fact that some

frequency activity is still evident at specific frequencies that must be attributed to the

cardiac cycle, as the bulk of the respiration spectral activity is removed from the 1181

spectra. Further investigation should be performed in the assessment of changes in the

ratio, as the values for each group are now much closer together. The algorithm
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performed in essentially a normalizing capacity. With a smaller variance, smaller

changes in mean value can be detected and therefore, a smaller sample size can be used

for analysis.

The COPD population was characterized by a significant difference in values of

HF and LF between the two groups. The minimum correlation threshold necessary to

separate the signals varied according to subject population. As a result, the lower end of

the correlation range was used for both sets of data. The correlation for the COPD

subjects often went as low as 0.6 and the healthy subjects were able to employ an average

separation threshold of least 0.8. epecifically, the larger removal of LF content in the

control population than in the COPD population leads to questions of whether

sympathetic stimulation occurs in COPD patients with each breath, as opposed to the LF

content being an artifact of the noise. Interestingly, Min et al. found that acute hypoxia in

fetal lambs increased low-frequency and LF/HF ratio content, suggesting an increased

sympathetic activation compared with baseline in hypoxia [105]. The effects of

hypercapnia were not discussed in that study. The results of this research indicate that

the LF content may represent true sympathetic content in the COPD population, where it

may be more driven by sinus arrhythmia in controls.

The WavS method showed some interesting trends in terms of the Presbyope

population data. Of significance is the change in each of the cardiac response parameters.

Although the samples size was not large enough for statistical significance, there are

some notable results. It is of significance that the separation algorithm employed a

correlation value of 0.85 for each subject as it was assumed that they were all ostensibly

of the same general level of health. There were different levels of signal separation for
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each group based upon the level of correlation, which is evident in the varying degree of

change in frequency content values from one breathing rate to another. It may also be

appropriate to investigate non-linear correlation measures to more fully capture trends

over larger windows of time.

In addition, the onset adjustment varied from population to population, suggesting

the existence of some intrinsic factor that differs among populations, which resulted in a

delay the cardiac loop. The same differences in both onset time and level of correlation

were seen for both presbyopic and COPD populations. Although a certain degree of that

is due to the change in signals from ECG to IIml, there is a certain degree that is

unaccounted for. Alterations in the cardiopulmonary tissue may account for the change

in onset time as the system ages or is diseased and should be investigated as a possible

source for the variation.

There are points within the signals of both populations during which the

respiration and ECG lose coordination, even during steady state. Although the signals

typically return to the coordinated state, there are significant points during which control

and subject populations have a decrease in the level of correlation of their cardio-

pulmonary dynamics. Perhaps the threshold must be adaptive to account for this.

It is also evidenced that if the signals are out of phase with each other, the signals

are not separated in the WavS algorithm, although the program performs well for

respiration signals that are 180 degrees out of phase. This occurs even if there is a

significant peak in the HRV spectrum that correlates with the respiration peak in the

Fourier domain. When the signals are aligned, the separation accuracy increases. It is
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possible that a wavelet spectral alignment occurring before the analysis would improve

the robustness of this analysis.



APPENDIX

PRESBYOPE STUDY IRB CONSENT FORM

This appendix contains the Institutional Internal Review Board (IRB) approved consent

form that was administered when the Presbyope study was performed at the Laboratory

for Visual Processing at NJIT.
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NEW JERSEY INSTITUTE OF TECHNOLOGY
323 MARTIN LUTHER KING BLVD.
NEWARK, NJ 07102

CONSENT TO PARTICIPATE IN A RESEARCH STUDY

TITLE OF STUDY:
Autonomic Influences on the Body: Examining the Link Between Cardio-Pulmonary Interactions
and Vergence Eye Movements

RESEARCH STUDY:
I, 	 , have been asked to participate in a
research study under the direction of Dr. Tara Alvarez and Anne Marie Petrock. Other
professional persons who work with them as study staff may assist to act for them.

PURPOSE:
The purpose of this study is to understand how the body changes when I look at different targets
and breathe in a controlled way by recording my eye movements, ECG and respiration.

DURATION.
My participation in this study will last for 1 to 3 experimental sessions which are approximately 1.5
hours long.

PROCEDURES:
I have been told that, during the course of this study, the following will occur:

An eye movement monitor (which meets the ANSI and OSHA specifications as well as an
independent ophthalmologist safety recommendations) will be placed on my head. Three
electrodes will be placed on my left and right arms to record my ECG. I will be shown how to
place a respiration recording band on my ribcage and I will place that on myself to record my
breathing signal. I will be handed a button, which will control the experiment. Once I feel
comfortable, I will push the button and follow the target movement and try to pace my breathing
as closely as possible to the movement of the lights. This will take a maximum of 5 minutes to
complete. At that point, I may rest until I am ready to look at a new target movement.

PARTICIPANTS:
I will be one of about 10 participants to participate in this trial.

EXCLUSIONS:
I will inform the researcher if any of the following apply to me.

+ During experiments any stress or fatigue is experienced.
•• My eyes feel dry.
v I have had LASIK surgery or any other types of eye surgery.
v 1 have worked around metal where potential metal files may be within my eyes.
v I have consumed caffeine or another stimulant in the past two hours.
v I am currently taking any medications.
• I am under the age of 18.

Approved by the NJIT IRB on 3129/06.
Modifications may not be made to this consent form without NJIT IRB approval.
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RISKS/DISCOMFORTS:
I have been told mat the study described above may involve the following risks and/or
discomforts_

I may experience fatigue during the experiments and possibly drying of my eyes. If drying of my
eyes occurs, I should blink. if I get tired, I can ask for a rest period.

I may experience lightheadedness during this experiment due to control of breathing rate_ if this
occurs. I should stop and start breathing at a normal rate.

1 will not wear my contact or glasses during an experiment. I will be given a lens that matches my
prescription if needed.

There also may be risks and discomforts mat are not yet known.

I fully recognize that there are risks that I may be exposed to by volunteering in this study which
are inherent in participating in any study; I understand that I am not covered by ΝJΙT's insurance
policy for any injury or loss I might sustain in the course of participating in the study.

CΟΝFIDΕΝΤΙΑLIΤΥ:
I understand confidential is not the same as anonymous. Confidential means that my name will
not be disclosed if there exists a documented linkage between my identity and my responses as
recorded in the research records. Ever( effort will be made to maintain the confidentiality of my
study records. If the findings from the study are published, I will not be identified by name. My
identity will remain confidential unless disclosure is required by law.

PAYMENT FOR PARTICIPATION:
1 have been told that I will not receive compensation for my participation in this study.

RIGHT TO REFUSE OR WITHDRAW:
I understand that my participation is voluntary and I may refuse to participate. or may
discontinue my participation at any time with no adverse consequence. I also understand that the
investigator has the right to withdraw me from the study at any time.

INDIVIDUAL TO CONTACT:
if I have any questions about my treatment or research procedures. I understand that I should
contact the principal investigator at:

Tara Αlvarez, PhD.
'ssistant Professor
Department of Biomedical Engineering
New Jersey Institute of Technology
University Heights, Newark. NJ 07102
Phone: (973) 596-5272 Fax: (973) 596-5222
Email: tara.l.alvarez@njit.edu 

if I have any addition questions about my rights as a research subject, I may contact:

Dawn Hall Apgar. PhD. IRB Chair
New Jersey Institute of Technology
323 Martin Luther King Boulevard
Newark, NJ 07102
(973) 642-7616dawn.apgar@njit.edu

NJIT
Approved by the NJIT IRB on 3/29/06

Modifications may not be made to this consent form without NJIT IRB approval
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SIGNATURE OF PARTICIPANT 
I have read this entire form, or it has been read to me. and I undetstand it completely. All of my
questions regarding this form or this study have been answered to my complete satisfaction. I
agree to participate in this research study.

Subject Name: 	  Signature: 	

Date: 	

SIGNATURE OF READERITRANSLATOR IF THE PARTICIPANT DOES NOT READ ENGLISH 
WELL

	The person who has signed above. 	 , does not
read English well, I read English well and am fluent in (name of the lαnguage)
	. a language the subject understands well_ I have
translated for the subject the entire content of this farm_ To the best of my knowledge, the
participant understands the content of this form and has had an opportunity to ask questions
regarding the consent form and the study. and these questions have been answered to the
complete satisfaction of the participant (his/her parenVlegal guardian).

Reader/Translator Name: 	

Signature: 	

Date: 	

SIGNATURE OF INVESTIGATOR OR RESPONSIBLE INDIVIDUAL 
To the best of my knowledge, the participant. 	 , has
understood the entire content of the above consent form, and comprehends the study. The
participants and those of his/her parentt?egal guardian have been accurately answered to
his/her/their complete satisfaction.

Investigators Name: 	  Signature: 	

Date: 	
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