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ABSTRACT

IN VITRO STUDIES OF DEGRADATION AND BIOACTIVITY

OF ALIPHATIC POLYESTER COMPOSITES

by

Georgia Chouzouri

In spite of numerous publications on the potential use of combinations of aliphatic

polyester composites containing bioactivity fillers for bone regeneration, little information

exists on the combined in vitro mechanisms involving simultaneously diffusion for

polymer degradation and bioactivity through nucleation and growth of apatite in

simulated body fluid (BF) solution. The objective of this study is to contribute to the

understanding of the fundamentals in designing nonporous, solid materials for bone

regeneration, from experimental data along with their engineering interpretation.

Bioactivity, in terms of apatite growth, was assessed through several experimental

methods such as scanning electron microscopy (SEAM), energy dispersive X-ray analysis

(EDX), X-ray-diffraction (CORD) and changes in ion concentration. In the case of the six

neat fillers evaluated, the filler shape, form and chemical structure showed significant

differences in bioactivity response. Bioglass and calcium silicate fillers showed faster

nucleation and growth rates in the screening experiments.

Aomposites at 30 % by weight filler were prepared by solution and/or melt

mixing. Polycaprolactone (PAL) composites containing five different fillers were

evaluated. Solution processed PCL/calcium silicate (AS) samples showed faster

bioactivity, as determined by apatite growth, compared to melt mixed samples. The onset

time for bioactivity was different for all PAIL composites. The limited bioactivity in the



PAL composites over longer periods of time could be attributed to the PAL

hydrophobicity leading to a slow polymer degradation rate, and also to the lack of BF

replenishment. For both polylactic acid (PLA) composites containing AS and biomass

significant growth was observed after one week and in the case of AS was still evident

after four weeks immersion. However, at prolonged time periods no further bioactive

was observed, although ion release results indicated a faster release rate that would

eventually lead to a faster polymer degradation and possibly continuing bioactivity.

The presence of silicate fillers enhanced the hydrolytic degradation rate of both

PAIL and PLA as shown from kinetic data calculations based on molecular weight

measurements. Unfilled PLAN samples showed significant embattlement after two weeks

immersion, whereas for the AS filled system more significant changes could be observed

in the compressive strength and modulus after the same time period.

Experimental data were also fitted into an equation proposed to calculate erosion

number; in the case of unfilled PLAN predictions were found to agree with literature

results suggesting bulk erosion. By assuming impermeable, randomly dispersed mass

flakes, water transport in a composite system, prior to significant polymer degradation

could be modeled. However, modeling of transport in the case of the composite

consisting of a degrading polymer and a reactive decaying filler was challenging,

particularly in the case of directional bioactivity reinforcements, due to the occurrence of

simultaneous time dependent diffusion phenomena that altered the integrity of the

sample.



IN VITRO STUDIES OF DEGRADATION AND BIOACTIVITY

OF ALIPHATIC POLYESTER COMPOSITES

by
Georgia Chouzouri

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
In Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Chemical Engineering

Otto H. York Department of Chemical Engineering

May 2007



Copyright © 2007 by Georgia Chouzouri

ALL RIGHTS RESERVED



APPROVAL PAGE

IN VITRO STUDIES OF DEGRADATION AND BIOACTWITY
OF ALIPHATIC POLYESTER COMPOSITES

Georgia Chouzouri

Dr. Marino Xanthos, Dissertation Advisor 	 Date
Professor, Otto H. York Department of Chemical Engineering, NJIT

Dr. Treena Liviττgstοn Arinzeh, Committee Member 	 Date
Associate Professor, Biomedical Engineering, NJIT

Dr. Michael Jaffe, • ' ittee Member 	 Date
Research Profess • , ' iomedical Engineering, NJIT

Dr. ÍJaυrent Simon, Cómmittee Member 	 l Date
Assistant Professor, Otto H. York Department of Chemical Engineering, NJIT

Dr. Jing Wu, Committee Member 	 Date
Assistant Professor, Otto H. York Department of Chemical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author: 	 Georgia Chouzouri

Degree: 	 Doctor of Philosophy

Date: 	 May 2007

Undergraduate and Graduate Education:

• Doctor of Philosophy in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Master of Science in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2003

• Bachelor of Science in Chemical Engineering.
National Technical University of Athens, Athens, Greece, 1998

Major: 	 Chemical Engineering

Presentations and Publications:

G. Chouzouri, M. Xanthos, "Bioactive Fillers", Chapter 22, pp. 387-399 in M. Xanthos,
Ed., "Functional Fillers for Plastics ", Wiley-VCH, Weinheim, Germany (2005).

G. Chouzouri and M. Xanthos, "Degradation of Aliphatic Polyesters in the Presence of
Inorganic Fillers", Journal of Plastic Film and Sheeting, 23, 19-36 (2007).

G. Chouzouri and M. Xanthos, "In vitro Bioactive and Degradation of Polycaprolactone
Composites containing Silicate Fillers", Act Biomaterialia. Available on line.
doi:10.1016/j .actbio.2007.01.005 .

G. Chouzouri and M. Xanthos, "Polycaprolactone Composites for Biomedical
Applications", Proc. 2312' Annual Meeting of the Polymer Processing Society,
PPS 23, Salvador, Brazil, Accepted for presentation May 27-31, 2007.

M. Xanthos, G. Chouzouri and Q. Zhou, "Effects of Fillers-Nanofillers on the
Degradation Characteristics of Aliphatic Polyesters", Intertech-PIRA Conference,
San Antonio, Texas, February 21-23, 2007.

iv



G. Chouzouri and M. Xaiithos, "Assessment of Bioactive of Aliphatic Polyester
Composites", Proc. 64`h Annual Technical Conference Society of Plastics
Engineers, SPEC, 52, 1361, (2006).

G. Chouzouri and M. Xaiithos, "Degradation of Aliphatic Polyesters in the Presence of
Inorganic Fillers", Proc. 64 t Annual Technical Conference Society of Plastics
Engineers, SPEC, 52, 1750, (2006).

G. Chouzouri, D. Abdeljabbar and M. Xaiithos, "Biodegradable Polymeric Matrix
Composites for Tissue Regeneration Applications", Proc. 21st Annual Meeting of
the Polymer Processing Society, PPS 21, Paper SL10.5, Leipzig, Germany, June
19-23, 2005.

N. S. Patel, T. G. Gopakumar, G. Chouzouri and M. Xaiithos, "Effect of Nanofiller
Aspect Ratio on the Properties of Polymer Naiiocomposites", Proc. 21 st Annual
Meeting of the Polymer Processing Society, PPS 21, Paper SL12.10, Leipzig,
Germany June 19-23, 2005.

G. Chouzouri and M. Xaiithos, "Bioactive Composites for Tissue Regeneration", Proc.
63rd Annual Technical Conference Society of Plastics Engineers, SPE, 51, 1363,
(2005).

G. Chouzouri, S. Patel and M. Xaiithos, "Naiiocomposites based on Poly(L-lactic acid) and
a Functional Synthetic Filler", Proc. 62nd Annual Technical Conference Society of
Plastics Engineers, SPEC, 50, 3366, (2004).

G. Chouzouri and M. Xaiithos, "Naiiocomposites Based on a Degradable Polyester and a
Novel Functional Filler", Proc. Polymer Processing Society, PPS 2003 Regional
Meeting p. 211, Athens, Greece, September 14-17, 2003.

M. Xaiithos, G. Chouzouri, S. Kim, SOH. Patel and MAW. Young, "Functional Additives
as Sensors in Intelligent Polymer Coatings", Farce & Lack, 109, 8, 18-23 (2003).
(In German).

M. Xaiithos, G. Chouzouii, S. Kim, SOH. Patel and MAW. Young, "Functional Additives
as Sensors in Intelligent Polymer Coatings", Proc. European Coatings
Conference, SMART COATINGS II, June 161h -17th, 2003 Berlin, Germany.

G. Chouzouii and M. Xaiithos, "Modification of Biodegradable Polyesters with Inorganic
Fillers", Proc. 61 s1 Annual Technical Conference Society of Plastics Engineers,

SPEC, 49, 2561, (2003).

ν



To my beloved husband for his encouragement, love and unceasing support

vi



ACKNOWLEDGMENTS

First and foremost, I would like to express my deepest gratitude for my thesis advisor,

Prof. Marino Xanthos. I could not begin to explain my appreciation for his constructive

guidance and invaluable teaching in polymer chemistry and processing, which

strengthened and provided a solid basis for my future endeavors in this field. It was a

great privilege to have Prof. Marino Xanthos as my mentor. It would be impossible for

me to fully express how his moral and emotional support helped me persevere through

circumstances that would otherwise be overwhelming.

I would also like to thank Prof. Treena Arinzeh, Prof. Michael Jaffe, Prof. Laurent

Simon and Prof. Jing Wu for serving as members of my committee. I appreciate their

input, and I thank them for their constructive comments.

I would also like to thank the staff of the Polymer Processing Institute (BPI),

Newark, NJ for providing a friendly and productive environment. Their invaluable

assistance and cooperation is greatly appreciated.

In addition, I would like to thank Dr. Victor Tan of PPS for his guidance and help

with the characterization experiments and Dr. Subhash Patel of ΆΡΙ for providing

guidance in developing my experimental skills. Also, Mr. Dale Conti for his timely

support and assistance with experimental equipment in the ΆΡΙ laboratory. Last, but not

least, Mr. Chandrakant Patel of NJIT for his help with solution analysis experiments. I

would also like to thank Professor Jing Wu and Mr. Jing Chang of NJIT for providing the

PELLA polymer.

vii



The following undergraduate and high school students, Diva Abdeijabbar, Dina

Shah and Dana Abdeijabbar, contributed to this research through their internship in our

labs during 2005-2006.

It would be inexcusable not to mention my colleagues and friends Dr. Shoaling

Gautam, Mr. Admit Goal, Mr. Kill Park, Mr. JinUk Ha and Mr. Kuan-Yin Lin for their

unconditional help and emotional support they provided. They created a pleasant working

environment and made the days at NJIT more enjoyable.

Lastly, I take this opportunity to sincerely thank my family and friends for their

love and understanding. Specifically, my mother's advice has encouraged and inspired

me to stay focused and head towards the right direction. Last, but not least, I am thankful

to my husband for love, patience, understanding and his confidence in me. Without his

help I could not have done it. I thank him for always being there for me.

viii



TABLE OF CONTENTS

Chapter 	 Page

1 INTDODUCTION.. 	 1

1.1 General   	 ..	 1

1.2 Human Bone 	 ..	 8

2 COMPONENTS OF BIOCOMPOSITES FOD BONE DEGENEDATION — A
DEVIEW 	 .. 15

2.1 General  	 15

2.2 Classification of Fillers According to their Functions 	 16

2.3 Types of Bioactive Fillers  	 21

2.3.1 Calcium Phosphates 	 21

2.3.2 Calcium Carbonate 	 24

2.3.3 Silicates  	 25

2.3.4 Complex Glass Ceramics 	 27

2.4 Mechanisms of Filler Bioactivity 	  28

2.5 Polymers Used as Biomaterials 	 34

	

2.6 Polymer Degradation Mechanisms   38

3 PDEPADATION AND PDOPEDTIES OF POLYMED BIOCOMPOSITES — A

	

DEVIEW   43

3.1 General   	 .....	 43

3.2 Polylactic Acid and Polycaprolactone Composites  	 48

4 SCOPE OF THE THESIS 	  55

5 EXPERIMENTAL  	 .. 57

ix



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.1 Materials  	 57

5.1.1 Fillers   	 ....	 57

5.1.2 Polymers 	 58

5.1.3 Degradation and Bioactivity Media 	 60

5.1.3.1 Phosphate Buffer Saline Solution (PBS) 	 60

5.1.3.2 Simulated Body Fluid (SBF) 	 60

5.2 Processing  	 61

5.2.1 Preparation of Filler Samples 	 61

5.2.2 Preparation of Polymer Samples 	 61

5.2.3 Preparation of Composite Samples 	 62

5.3 Testing and Characterization of Fillers for Bioactivity  	 63

5.3.1 Immersion in Simulated Body Fluid (SBF) 	 63

5.3.2 Analysis of Surface Structure and Morphology 	 64

5.3.2.1 Scanning Electron Microscopy 	 64

5.3.2.2 Energy Dispersive X-Ray Analysis ... 	 64

5.3.2.3 X-Ray Diffraction 	 64

5.4 Testing and Characterization of Composites and Unfilled Polymers for
Bioactivity  	 64

5.4.1 Immersion in Simulated Body Fluid (SBF) 	 64

5.4.2 Analysis of Surface Structure and Morphology 	 65

5.4.2.1 Scanning Electron Microscopy 	 65

χ



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

5.4.2.2 Energy Dispersive X-Day Analysis ... 	 65

5.4.2.3 X-Day Diffraction 	 65

5.4.3 SBF Solution Analysis  	 65

5.4.3.1 Atomic Absorption Spectroscopy 	 65

5.4.3.2 UV - Visible Spectroscopy 	 66

5.5 Hydrolytic Degradation of Composites and Unfilled Polymers ... 	 66

5.5.1 Weight and pH Changes as a Function of Time 	 66

5.5.2 Intrinsic Viscosity as a Function of Time 	 67

5.5.3 Thermal Properties as a Function of Time 	 67

5.5.4 Mechanical Properties as a Function of Time 	 68

6 DESULTS AND DISCUSSION 	 .. 69

6.1 Bioactive of Neat Fillers  	 69

6.1.1 Fillers in the Form of Powders and Tablets  	 69

6.1.1.1 Calcium Silicate  	 70

6.1.1.2 Bioglass 	 75

6.2 Bioactive of PAL Composites 	 82

6.2.1 SEM Characterization 	 82

6.2.1.1 PCL/HA Composites 	 84

6.2.1.2 ΡCL/β-TCΡ Composites  	 87

6.2.1.3 PAL/CaCO3 Composites  	 89

xi



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

6.2.1.4 PCL/bioglass Composites 	 90

6.2.1.5 PCL/CS Composites 	 92

6.2.2 ORD Data and Concentration Changes in SBF 	 95

	

6.2.3 Summary    100

6.3 Bioactivity of PLA Composites  	 102

	

6.3.1 SEM Characterization    102

6.3.1.1 PLA/bioglass Composites  	 103

6.3.1.2 PLA/CS Composites  	 105

	

6.3.2 ODD Data and Concentration Changes in SBF   108

6.3.3 Summary 	 111

6.4 Degradation of Unfilled Polymers ..... 	 113

6.4.1 Weight Changes as a Function of Time 	 113

6.4.2 Intrinsic Viscosity Changes as a Function of Time 	 114

	

6.4.3 Thermal Properties as a Function of Time    116

6.5 Degradation of PAL and its Composites  	 117

6.5.1 Weight and pH Changes as a Function of Time ..... 	  117

6.5.2 Thermal Properties as a Function of Time 	  122

6.6 Degradation of PLA and its Composites  	 123

6.6.1 Weight and pH Changes as a Function of Time .... 	  123

	

6.6.2 intrinsic Viscosity Changes as a Function of Time   128

xii



TABLE OF CONTENTS
(Continued)

Chapter	 Page

6.6.3 Thermal Properties as a Function of Time.. 	 129

6.6.4 Mechanical Properties as a Function of Time 	 131

6.6.4.1 Tensile Properties of Unfilled PLA   	 131

	6.6.4.2 Compressive Properties of Filled PLA    133

	6.6.5 Degradation and Modeling     138

7 CONCLUSIONS AND DECOMMENDATIONS 	 ... 148

APPENDIX A SEM OF CALCIUM SILICATE AND BIOGLASS POWDEDS 	  154

	A.1 Calcium Silicate Powder   154

	

Α.2 Bioglass 45S5 Powder    155

APPENDIX B PREPADATION OF SBF SOLUTION 	  156

APPENDIX C STANDADDS AND SAMPLES PDEPADATION FOD SOLUTION
ANALYSIS 	 . 159

	C.1 Ascorbic Acid Method    159

	C.2 Direct Air-Acetylene Flame Method    160

APPENDIX D BIΟACTIVITY OF NEAT FILLEDS 	 .. 161

	D.1 Hydroxyapatite     161

	D.2 Tricalcium Phosphate    162

	D.3 Calcium Carbonate    164

	D.4 Bioactive Glass 1393     166

APPENDIX E COMPRESSIVE PDOPEDTIES OF PLA COMPOSITES 	  168



TABLE OF CONTENTS
(Continued)

Chapter 	 Page

DEFEDENCES    171

xiv



LIST OF TABLES

Table Page

1.1 Classification of Biomaterials for Bone Grafting   	 ..... 5

1.2 Parameters for a Successful Scaffold as Indicated by Autografts 	 6

1.3 Bone Composition    10

1.4 Biomechanical Properties of the Bone   	 ..... 14

2.1 Bioactive Fillers Used in Tissue Engineering Applications    17

2.2 Index of Bioactive of Implant Materials   18

2.3 Tissue Attachment Mechanisms for Bioceramic Implants 	 19

2.4 Different Forms of Calcium Phosphates, their Molecular Formula, and the
Corresponding Ca/P ratio    22

2.5 Bioactive Glasses and their Composition in Weight Percent 	 26

2.6 Glass Ceramics and their Composition in Weight Percent 	 28

2.7 Examples of Polymers Used in Tissue Engineering Applications 	 34

2.8 Aliphatic Polyesters   36

2.9 Mechanical Properties of Polymers 	 ..   37

5.1

	

Characteristics of Fillers       57

5.2 Characteristics of Polyesters (Suppliers information)    59

5.3 Ion Concentrations of the Simulated Body Fluid and Human Blood Plasma 	 61

6.1 Thermal Data for PAL before and after Immersion in PBS   117

6.2 Thermal Data for PST before and after 28 days Immersion in PBS 	 .... 117

6.3 Thermal Data for PAL Composites before and after Immersion in PBS ......... 122

6.4 Thermal Data for PLAN and its Composites 	 130

xv



LIST OF TABLES
(Continued)

Table 	 Page

B.1 	 Deagents for Preparation of SBF 	  157

xvi



LIST OF FIGURES

Figure	 Page

1.1	 A typical stress-strain relationship of a variety of bone implants  	 4

1.2	 Illustration of how some biological and engineering material properties should
be integrated in order to achieve successful tissue regeneration materials ... 	 7

1.3	 Evolution of materials in bone grafting applications  	 8

1.4	 The seven hierarchical levels of organization of the bone family of materials
according to Weiner and Wagner (1998) Level 1: TEAM micrographs of
individual mineral crystals from human bone (left side) and a part of an

mineralized and unstained collagen fibril from turkey tendon observed in
vitreous ice. Level 2: TEAM micrograph of a mineralized collagen fibril from
turkey tendon. Level 3: TEM of a thin section of mineralized turkey tendon
composed of multiple fibrils. Level 4: Four fibril may organization patterns
found in the bone family of materials. Level 5: SEAM micrographs of a single
human bone osteon. Level 6: Light micrograph of a fractured section through
a 5500 year old fossilized human femur. Level 7: Whole bovine bone (scale:
10 cm)   11

1.5	 Structural organization of the bone in the body 	 12

2.1	 Delative rates of bioactive for various ceramic implants .... 	 19

2.2	 Time dependence of formation of bone bonding at an implant interface 	  20

2.3	 Comparison of interfacial thickness (gm) of reaction layers of bioactive
implants of fibrous tissue of inactive ceramics in bone 	  20

2.4	 Schematic representation of the origin of negative charge on the surface of
HA and the process of apatite formation in BF    29

2.5	 Sequence of interfacial reactions involved in forming a bond between tissue
and inactive ceramics 	 30

2.6	 Schematic illustration of the surface stages (1-5) reactions on inactive
glasses, forming double Si02 — rich and Ca, P — rich layers  	 31

2.7	 Common clinical applications and polymers used 	 35

5.1	 Isomers of lactic acid 	 59

xvii



LIST OF FIGURES
(Continued)

Figure 	 Page

6.1 	 CS powder before and after immersion in DW and SBF. (a) Before
immersion. (b) After six hours immersion in DW. (c) After six hours
immersion in SBF. (d) After 24 hrs immersion in SBF. (e) After 168 hrs (one
week) immersion in SBF  .. 71

6.2 	 SEAM micrographs of calcium silicate molded surface showing growth of
mineral precipitates. (a) Before immersion in SBF. (b) After one week
immersion; globules of mineral precipitates are shown on the exposed
surface. (c) Higher magnification of the globular structure shows needle like
deposits   73

6.3 	 XXRD spectra of CS before and after immersion in DW and SBF   74

6.4 	 Bioglass powder before and after immersion in DW and SBF. (a) Before
immersion. (b) Before immersion at higher magnification. (c) After six hours
immersion in DW. (d) After six hours immersion in SBF. (e) After six hours
immersion in SBF at higher magnification. (1) After 24 hers immersion in SBF.
(g) After 168 hers (one week) immersion in SBF  76

6.5 	 SEAM micrographs of biomass molded surface showing mineral growth on the
exposed surfaces over one and two weeks periods immersion in SBF. (a)
Before immersion. (b) After one week immersion; clusters of mineral
precipitates are observed on the surface. (c) Higher magnification of (b);
closer view of the clusters reveals needle shaped nanosized crystallites. (d)
After two weeks immersion; area appears to be fully covered with mineral
precipitates  .... 77

6.6 	 ED elemental analysis of biomass compressed surface as a function of
exposure time showing a Ca/P ratio approaching 1.67. (a) Before immersion;
Ca/P ratio equals to 5.36. (b) After one week immersion; Ca/P ratio equals to
2.43. (c) After two weeks immersion; Ca/P ratio equals 2.41   78

6.7 	 DODD spectra of biomass powder before and after immersion in DW and
SBF 	 79

xviii



80

81

83

LIST OF FIGURES
(Continued)

Figure 	 Page

6.8 	 SEAM micrographs of bioglass disc surface showing mineral growth on the
exposed surfaces over three, five and seven day periods immersion in SBF. (a)
Before immersion in SBF; surface irregularities are present. (b) After three
days immersion; clusters of mineral precipitates are observed on the surface.
(c) After five days immersion. (d) After seven days immersion; area appears
to be homogeneously covered with mineral precipitates above and beneath the
irregularities  

6.9 	 ED elemental analysis of biomass discs as a function of exposure time
showing a Ca/P ratio approaching 1.67. (a) Before immersion; Ca/P ratio
equals to 5.36. (b) After three days immersion; Ca/P equals to 1.59. (c) After
five days immersion; Ca/P equals to 1.60, (d) After seven days of immersion;
Ca/P equals to 1.72  

6.10 ED elemental analysis of biomass discs as a function of exposure time
showing a Ca/P ratio approaching 1.67. (a) Before immersion; Ca/P ratio
equals to 5.36. (b) After three days immersion; Ca/P equals to 1.59. (c) After
five days immersion; Ca/P equals to 1.60, (d) After seven days of immersion;
Ca/P equals to 1.72  

6.11 SEAM micrographs of extrusion processed PCL/HA samples before and after
immersion in SBF solution showing some initial mineral precipitation. (a)
Before immersion; some surface roughness due to processing conditions can
be observed. (b) After one week immersion; formation of some cracks
possibly due to polymer degradation and some mineral precipitation is evident
on the surface. (c) Higher magnification for after one week immersion
samples; clusters of mineral precipitates are detected on the sample surface   85

6.12 SEM micrographs of solution mixed PCL/HA samples before and after
immersion in SBF solution showing some mineral precipitation in the form of
spherical crystals. (a) Before immersion. (b) After one week immersion;
formation of some cracks possibly due to degradation and some mineral
precipitation is evident on the surface. (c) Higher magnification for after one
week immersion; clusters of mineral precipitates were detected on the sample
surface  86

xix



LIST OF FIGURES
(Continued)

Figure	 Page

6.13 SEAM micrographs of melt mixed PCL/TCP samples before and after
immersion in SBF solution showing some mineral precipitation in the form of
spherical crystals. (a) Before immersion. (b) After one week immersion;
formation of some cracks possibly due to degradation and some mineral
precipitation is evident on the surface. (c) Higher magnification for after one
week immersion; clusters of mineral precipitates were detected on the sample
surface. (d) After four weeks immersion; Similar structures with the one week
exposure. Some salt crystals from the solution are evident on the sample
surface  88

6.14 SEAM micrographs of solution mixed PCL/TCP samples before and after
immersion in SBF solution showing some mineral precipitation in the form of
spherical crystals. (a) Before immersion. (b) After one week immersion;
formation of small spherical crystals appear on the surface (c) Higher
magnification for after one week immersion; clusters/globules of mineral
precipitates were detected on the sample surface  89

6.15 SEAM micrographs of extrusion mixed PAL/ CaCΟ 3 samples before and after
immersion in SB solution showing some mineral precipitation in the form of
spherical crystals. (a) Before immersion; sample surface free of roughness
and cracks. (b) After one week immersion; formation of many small mineral
globules appear on the surface (c) Higher magnification for after one week
immersion; clusters/globules of mineral precipitates have a needle like
structure. (d) After four weeks immersion; limited mineral precipitation .. 90

6.16 SEAM micrographs of extrusion mixed PCL/bioglass composites after
immersion in SBF solution showing mineral precipitation on the polymer
surface. (a) After one week immersion; mineral precipitation can be observed
on the surface of the composites. (b) Higher magnification of (a); small
spherical crystals appear on the surface of the composite. (c) After eight
weeks immersion; similar spherical crystals have precipitated on the surface ... 92

6.17 SEAM micrographs of extrusion mixed PCL/CS composite surface before and
after SBF immersion. (a) Before immersion. (b) After one week immersion;
some surface roughness can be observed corresponding to slower nucleation
and growth than in the biomass composite. (c) After four weeks immersion;
clusters of mineral precipitate on the polymer surface. (d) After eight weeks
immersion; mineral formation has uniformly covered the composite surface ... 93

Mx



LIST OF FIGURES
(Continued)

Figure 	 Page

6.18 SEAM micrographs of solution mixed PCL/CS composite surface before and
after SBF immersion. (a) Before immersion. (b) After one week immersion;
nucleation and growth appears in one of the cracks. Many spherical
precipitates are present. (c) Higher magnification of 6.18(b); different sized
globules of mineral precipitate on the polymer surface. (d) Higher
magnification of 6.18(c); mineral precipitation at higher magnification appears
as needle like crystallites. (e) After two weeks immersion; spherical mineral
precipitates cover the surface along with degradation residues  94

6.19 ADD spectra of PCL/HA composite before and after immersion in SBF. The
peaks at 310 and 32° that formed after one week exposure in SBF will
eventually become a peak at 32 ° . This peak, along with the peaks at 25 ° , 40°
and 49° correspond to hydroxyapatite 

620 ADDS spectra of PCL/β-ΤCP composite before and after immersion in SBF.
The peaks at 31 ° and 32° that formed after one week exposure in SBF will
eventually become a peak at 32 ° . This peak, along with the peaks at 25 ° and
49° correspond to hydroxyapatite and appear weaker after four weeks
immersion 	 . 	

621 	 RD spectra of PCL/CaCO3 composite before and after immersion in SBF.
The peaks around 32°, 40° and 49° first appear after one week immersion and
are weaker after four weeks immersion 	 . 	

6.22 XRD spectra of PCL / biomass composite before and after immersion in SBF.
The peaks at 310 and 32° that formed after one week exposure in SBF
eventually became a peak at 32° after four weeks. This peak corresponds
to hydroxyapatite and becomes even more intense after eight weeks 

623 XRD spectra of PCL/HA composite before and after immersion in SBF. Peaks
at 310 and 33 ° appear after one week immersion and will eventually become a
peak at 32° with longer immersion periods 	. 	

624 Delative changes in calcium concentration for the PCL composites after
soaking in SBF. The changes in calcium concentration is a two way process
that involves its release by the fillers and also its consumption from SBF to
the surface of the bioactive material. Values shown are mean of two samples
per group  	 . 	

96

96

97

97

98

99

xi



100

103

105

107

108

109

LIST OF FIGURES
(Continued)

Figure 	 Page

625 Delative changes in phosphorus concentration for the PAL composites after
immersion in SBF. In all cases phosphorus is being consumed by the
composites. In the case of PCL/BG, phosphorus releases only after eight week
period. Values shown are mean of two samples per group 	 ..

626 SEAM micrographs of melt processed unfilled PLAN samples before and
after immersion in SBF solution showing no nucleation and growth. (a)
Before immersion. (b) After one week immersion; no mineral
precipitation, only some surface roughness occurs. (c) After eight weeks
immersion; no precipitation, just surface roughness and salt deposition from
the SBF   	 ..

627 SEAM micrographs of PLA / bioglass composites before and after immersion in
SBF showing mineral precipitation on the polymer surface. (a) Before
immersion. (b) After one week immersion; mineral precipitation can be
observed on the composite surface. (c) After four weeks; small spherical
crystals appear on the surface of the composite. (d) Higher magnification of
(c). (e) After eight weeks; mineral growth is still evident on the surface of the
composite 

628 SEM micrographs of PLA / CS after immersion in SBF. (a) - (b) After one
week immersion in SBF; mobules of mineral precipitates are shown to fully
cover the exposed area. (c) - (d) Higher magnification of (a) and (b);
globular structures appear in two different forms: needle-like and spherical
deposits. (e-g) After four weeks immersion in SBF; globular mineral
precipitates and polymer degradation by-products appear on the surface. (h)
Higher magnification of (e-g) showing again the needle-like structures. Black
spots maybe attributed to polymer degradation by-products. (i) After eight
weeks; Mineral precipitation appears to a less extent in the form of spherical
crystals 

629 XRD spectra of PLA/bioglass composite before and after immersion in SBF.
The peak at about 320 that formed after one week exposure in SBF
corresponds to hydroxyapatite 	 . 	

6.30 ORD spectra of PLACES before and after immersion in SBF. Peaks at 29.30
and 320 after one week immersion are attributed to calcite and hydroxyapatite
respectively 	 . 	



114

114

LIST OF FIGURES
(Continued)

Figure 	 Page

6.31	 Delative changes in calcium concentration for the PLAN composites after
immersion in SBF. Values shown are mean of two samples per group 	 ... 110

6.32 Relative changes in phosphorus concentration for the PLAN composites after
immersion in SBF. Values shown are mean of two samples per group 	 .. 111

633 % Weight change versus time for PLLA AM and PLLA EXIT. The
designation CM and ΕΑΤ denote compression molded and extruded samples,
respectively. Two samples were tested per point. The points are the average
of two determinations with an excellent reproducibility  113

6.34 % Weight change versus time for PST CM and PST ΕΧΤ. The designation
CM and ΕΧΤ denote compression molded and extruded samples, respectively
Two samples were tested per point. The points are the average of two
determinations with an excellent reproducibility 

635 % Weight change versus time for PAL, PST, PELLA and PLAN compression
molded specimens. Two samples were tested per point. The points are the
average of two determinations with an excellent reproducibility 

636 IV measurements for polyesters as a function of immersion time. The
designation CM and ΕΑΤ denote compression molded and extruded samples,
respectively. The average of at least three measurements per sample is shown. 115

637 IV measurements for PLA under different processing methods as a function of
immersion time. PLAN BM and PLA CM correspond to batch mixer and
compression molded samples, respectively. The average of at least three
measurements per sample is shown  116

638 Percentage weight change vs. time for PAL and its composites. The fillers
appear to have an effect on degradation by increasing water uptake. The
polymer alone does not show any significant weight change. Two samples
corresponding to 1 and 2 were tested for each system  119

639 The pH of PBS solution as a function of immersion time for PAL and its
composites. The fillers appear to neutralize the acidic degradation products
and compensate for the pH decrease. Two samples corresponding to 1 and 2
were tested for each system  121



LIST OF FIGURES
(Continued)

Figure 	 Page

6.40 Water Absorption for PLAN and its composites as a function of immersion
time. Average values are shown. Initial number of samples was six and was
reduced to two by the end of the degradation period 

6.41 pH changes as a function of time for PBS solution containing for PLA and its
composites. AVM corresponds to the average number of samples at existing
time. Initial number of samples was six and was reduced to two by the end of
the degradation period 

6.42 'V measurements as a function of immersion time in PBS for PLAN in the
presence and absence of bioglass filler. The average of at least three
measurements per sample is shown 

6.43 % Elongation at Break of PLAN before and after immersion 	  131

	

6.44 % Elongation at Yield of PLAN before and after immersion   132

	

6.45 Stress at Yield of PLAN before and after immersion   132

6.46 Stress at Break of PLA before and after immersion 	  133

	

6.47 Initial Compressive Modulus of PLA before and after immersion     134

6.48 Compressive Strain at Break % of PLA before and after immersion 	  134

6.49 Compressive Stress at Yield of PLA-CS before and after immersion 	 135

6.50 Compressive Stress at Break of PLACES before and after immersion ..... 	  135

6.51 Initial Compressive Modulus of PLACES before and after immersion 	  136

6.52 PLA specimens for compression testing after 0, 1, 2, 3, and 4 weeks in
PBS 	 137

6.53	 PLAN - CS specimens for compression testing after 0, 1, 2, 3, and 4 weeks in
PBS 	  138

6•54 Hydrolytic degradation data for PLA based on 1 / Ay  and Equation 6.3 ..... 	  140

125

127

129

xxiv



LIST OF FIGURES
(Continued)

Figure	 Page

6.55 Hydrolytic degradation data for PLA/bioglass based on 1 / A ye and Equation
6.3 	  141

6.56 Hydrolytic degradation data for PLA based on 1n My and Equation 6.4 	 .. 142

6.57 Hydrolytic degradation data for PLA/biomass based on In 4 v and Equation
6.4 	 .. 	 142

6.58 Hydrolytic degradation data up to 56 days for PLA/biomass based on 1/M
and Equation 6.3  	 143

6.59 Hydrolytic degradation data up to 56 days for PLA/bioglass based on In A d

and Equation 6.4  	 143

6.60 % Water absorption versus t 112 for PLAN and its composites. Average values
are shown. See comments on method of testing in Figure 6.40    145

Al 	 SEAM micrographs of CS powder. (a), (b) 10,000 magnification. (c)5,000
magnification. (d) 1,000 magnification   154

A2 	 SEAM micrographs of biοglass powder. (a), (b) 1,000 magnification. (c), (d)
500 magnification. (e) 200 magnification 	 ... 155

D.1 	 HA powder before and after immersion in DW and SBF. (a) Before
immersion (χ5000). (b) After 6 hrs immersion in DW (χ5,000). (c) After 6 hrs
immersion in SBF (x5,000). (d) After 24 hours immersion in SBF (x5,000).
(e) After 168 hers (1 week) immersion in SBF (x 10,000)  ... 161

	

D2 XRD spectra of HA after exposure to DW and SBF    162

D3 MCP powder before and after immersion in DW and SBF. (a) Before
immersion (x10,000). (b) After hrs immersion in DW (χ10,000).(c) After
hrs immersion in SBF (x10,000). (d) After 24 hers immersion in SBF
(x10,000). (e) After 168hrs (1 week) immersion in SBF (x 10,000)  ... 163

D.4 XRD spectra of MCP after exposure to DW and SBF   164



LIST OF FIGURES
(Continued)

Figure	 Page

D.5 	 Calcium carbonate powder before and after immersion in DW and SBF. (a)
Before immersion (x10,000). (b) After hrs immersion in DW (x10,000).(c)
After hrs immersion in SBF (10,000). (d) After 24 hrs immersion in SBF
(x 10,000). (e) After 168hrs (1 week) immersion in SBF (10,000)  ... 165

D.6 ORD spectra of CC after exposure to DW and SBF   166

D.7 	 BG1393 powder after immersion in DW and SBF. (a) After hrs immersion in
DW (x10,000).(b) After hrs immersion in SBF (10,000). (c) After 24 hers
immersion in SBF (x 10,000). (d) After 168hrs (1 week) immersion in SBF
(10,000)  ... 167

D.8 ORD spectra of BG1393 after exposure to DW and SBF   167

E.1 	 Compressive Stress at Yield of PLA before and after immersion   168

Ε2 	 Compressive Stress at Break of PLA before and after immersion   168

Ε3 	 Compressive Strain at Yield % of PLAN before and after immersion ... 	 169

Ε.4 	 Compressive Strain at Yield % of PALACES before and after immersion 	 ... 169

Ε.5 	 Compressive Strain at Break % of PALACES before and after immersion 	  170

xxvi



LIST OF SYMBOLS

CCC

D

D0

Dcomp

ΔΗ

ΔΗ
ΔΗρf

h

lb

Κ

k

Mm

Μη

Μ1

A

Ν

ΝΑ

t0.5bbTcc

Concentration

Carboxyl content of the pellet

Diffusion coefficient

Polymer diffusion coefficient

Composite diffusion coefficient

Heat of cold crystallization

Heat of fusion

Heat of fusion for a perfect crystal

Mhickness

Bioactivity Index

Constant for Mark-Houwink equation

Rate constant

Effective moisture equilibrium

Number average molecular weight

Weight gain from moisture absorption

Viscosity average molecular weight

Average degree of polymerization

Avogadro's number

Mime taken for more than 50% of the interface to bond to bone

Cold crystallization temperature



LIST OF SYMBOLS
(Continued)

diffusion 	 Characteristic time for diffusion

Kg	 Glass transition temperature

Am 	Melting temperature

Treaction 	 Characteristic time for reaction

W0 	Weight of the starting dry disc

Ad 	 Initial weight before water exposure

Wt 	Weight of the wet disc at time t

W», 	 Weight after water exposure

α 	 Flake aspect ratio

a 	 Constant for Mark-Houwink equation

δ 	 Mhickness

Δ 	 Difference or change

ε 	 Erosion number

[η] 	 Intrinsic viscosity

nrei 	 Delative viscosity

asp 	 Specific viscosity

p 	 Density

ψ 	Flake volume fraction

<χ> 	 Half thickness of polymer matrix



LIST OF SYMBOLS
(Continued)

subscript

ο 	Initial condition



LIST OF ACRONYMS

AA	 Atomic absorption

ASTM 	 American Society for Mesting and Materials

ATR-IR 	 Attenuated Total Reflectance Infrared Spectroscopy

AVMS 	 Average

AWGC	 Apatite wollastonite glass ceramic

BCP	 Aphasic calcium phosphates

As-GMA	 Asphenol-α-glycidyl methacrylate

AMP 	 Bone morphogenic protein

C	 Carbon

CAS No.	 Chemical Abstract Number

CC	 Calcium carbonate

CDHA	 Calcium deficient hydroxyapatite

CF	 Carbon fibers

c-HA	 Calcined hydroxyapatite

CM	 Compression molded

CR	 Silicone rubber

CS	 Calcium silicate

DSC	 Differential scanning calorimeter

DW	 Distilled water

ED 	 Energy dispersive X-ray

EXAM 	 Extruded



LIST OF ACRONYMS
(Continued)

FETID	 Fourier Transform Infrared Spectroscopy

MBAR 	 Guided bone regeneration membrane

GF	 Glass fibers

HA	 Hydroxyapatite

HAPEXTM Hydroxyapatite polyethylene composite

HOPE 	 High density polyethylene

GF 	 Insulin growth factor

IV	 Intrinsic viscosity

KF	 Kevlar fibers

LAP 	 Liquid crystalline polymer

BFI 	 Melt flow index

MSC	 Marrow stroll cells

MW	 Molecular weight

OCR 	 Octacalcium phosphate

PBS	 Phosphate buffer saline

PC	 Polycarbonate

PAL 	 Polycaprolactone

PE	 Polyethylene

PEA	 Polyethylacrylate

PEEK	 Polyetheretherketone

BELA 	 Polyethylene glycol-co-lactic acid)



LIST OF ACRONYMS
(Continued)

PET	 Polyethylene terephthalate)

PGA	 Polyglycolic acid

FHB 	 Polyhydroxybutyrate

ΠΗΕΜΑ 	 Poly(2-hydroxyethyl methacrylate)

PLAN 	 Polylactic acid

LOLA 	 Poly(L-OL-lactide)

PALMA 	 Poly(lactic-co-mycolic) acid

PELLA 	 Poly(L-lactic) acid

EMMA 	 Polymethylmethacrylate

PP	 Polypropylene

HSK	 Poly(1,4-butylene adipate-co-  Ι ,4-bυtyΙene vaccinate)

HSU 	 Polysulfone

PTFE	 Polytetrafluoroethylene

PUB	 Polyurethane

BF 	 Simulated body fluid

SCORIM ® 	Shear controlled orientation injection molding

SEAM 	 Scanning electron microscopy

SAVAGE 	 Blends of starch with ethylene vinyl alcohol

MCP 	 Tetracalcium phosphate

TEAM 	 Transmission electron microscopy

TTCP	 Tetracalcium phosphate



LIST OF ACRONYMS
(Continued)

u-HA	 Uncalcined hydroxyapatite

UHMWPE Ultra-high-molecular weight polyethylene

UV-Vis	 Ultraviolet-visible

FRO 	 X-ray diffraction



CHAPTER 1

INTRODUCTION

1.1 General

According to data reported by the American Academy of Orthopedic Surgeons, each year

the need for materials supporting bone growth and regeneration is constantly

increasing (American Academy of Orthopedic Surgeons website). There are more than

six and a half million cases of bone fracture in the United States, where 15% of the cases

are difficult to heal. Over one million orthopedic operations involving bone repair,

disease and injury are performed annually in the United States. Although, orthopedic

prostheses using bioinert materials have fifteen-year varvivability of 75-85%, the demand

for greater than thirty-year survivability increases along with the percentage of ageing

population (Bench, 1998). Specifically, with life expectancy of more than 80 years,

lny more patients need prostheses and the quality of bone of the patients deteriorates

with age. In order to satisfy this growing demand, research shifts to solutions that deal

with regeneration rather than replacement of tisvaes. Taking into account the dental

applications as well as the craniofacial operations performed annually, it is

understandable why researchers study systems that can promote bone regeneration and

try constantly to find even more improved and precise solutions through the principles of

tissue engineering.

The current methodologies used for bone regeneration make use of autographs,

autografts and autografts. When autographs are used, the bone tissue is harvested from

and implanted into the same patient. Autographs have a success rate of 80 to 90% and

they are considered the gold standard of bone graphs since there is a guaranteed

1



2

biocompatibility and no risk of transmitting a disease. In addition, the harvested tissue is

biologically intact, possessing the cells, proteins and factors that are necessary for proper

healing (Laurencin and Khan, 2006).

ln the case of allografts, the bone tissue is harvested from another human body

(usually cadavers), processed to minimize potential disease transmission and

biocompatibility and then implanted into the patient. Oespite all the precautions to

minimize the immunogenic responses between donor and recipient, xenografts are still in

risk of disease transmission, and recently (November 2001) they have been implicated to

transmit a disease in a patient undergoing knee surgery (Laurencin and Khan, 2006).

Alternatively, in allografts, transplant of bone tissue takes place from one species

to the other (e.g. from one animal to a different animal). Bowever, as mentioned above,

all these techniques have certain limitations due to the limited donor supply (there are

constraints of the amount of tissue that can be harvested from the site), donor site

morbidity including infection, pain, possible mechanical weakening of the donor site and

genetic differences along with anatomical and structural differences and high levels of

resorption during healing (Wei and Ma, 2006, Wang, 2003, and Leaner et al. 2005).

It is evident that common grafting procedures are not adequate for the current

clinical demand. For this reason, researchers are trying to improve these techniques with

the help of tisvae engineering principles and strategies. An important statement that has

provided the foundation for various clinical applications regarding skeletal disorders is

Wolf's law that states: "Every change in the form and function of bone or of its function

alone is followed by certain definite changes in the bone internal architecture, and equally

definite alteration in its external conformation, in accordance with matheltical laws"
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(Sikavitsas et al. 2001). Taking all the aforementioned into account, alternative routes

that have been proposed and used for bone fixation and regeneration have focused in

materials vach as metals and ceramics (Wang, 2003). Metals used for internal fixation of

fractured bones, although provide the strength and toughness required for load-bearing

parts of the body (Wang, 2003), face the biggest disadvantage of second surgery that will

be eventually required to remove the corroded material over time. In addition, they

demonstrate poor overall integration with the tissue at the site of the implantation, along

with infection. Furthermore, metals are too stiff which results in "stress-shielding"

induction (Leaner et al. 2005). Specifically, when a stiffer lterial is placed into a bone,

the bone will be subjected to reduced mechanical stresses that will lead to bone resorption

according to Wolf's law (Murugan and Ramakrishna, 2005). Α typical stress-strain

relationship for different materials (abbreviations can be found in the beginning of this

thesis) used as bone implants is illustrated in Figure 1.1 in comparison with huln bone.

It is of great importance to match the stiffness of the implant with that of the host tisvae

to avoid the stress-shielding effects (Murugan and Ramakrislma, 2005).

On the other hand, many ceramics, although ideal candidates due to their

bioactive, exhibit drawbacks due to lower tensile strength and elasticity, and also

brittleness and limited use in sites of significant torsion, bending or shear stress (Leonor

et al. 2005). To further improve on these drawbacks, synthetic polymers that are

considered biocompatible have been developed and used to correct bone fixation

problems. Since polymers alone have not been reported to be bioactive (cannot form a

bond with the tissue) and since it is also well known that natural bone is a

collagen/hydroxyapatite composite researchers were prompted to investigate composites



4

of bioactive ceramics in polymer matrices (Chouzouri and Xanthos, 2005). Such

materials are the focus of this dissertation. Additionally, the absence of corrosion, patient

discomfort and severe allergic reactions are major advantages for polymer composite

development (Leaner et al. 2005). Table 1.1 presents several materials, both bioinert

and bioactive, used for bone grafting along with their advantages, disadvantages and their

intended applications.

Figure 1.1 A typical stress-strain relationship of a variety of bone implants.
(Source: Murugan and Ramakrislma, 2005)



5

(Source: Murugan and Ramakrisima, 2005)

In order to achieve a vaccessful bone tisvae engineering implant Laurencin and

Khan (2006) suggested that one should look to autographs to form a list of requirements,

which are described below:

• Naiiocompatibilityty: the lack of immunogenic response

• Osteoinductivity: the quality of a structure that is interconnected and permits
new cells to attach, proliferate and migrate. This structure also allows
nutrient/waste exchange and new vessel penetration.

• Osteoinductivity: the ability to posses the necessary proteins and growth factors
that can induce mesenchymal stem cells and other osteoprogenitor cells toward
the osteoblasts lineage. This is a very important parameter, especially when the
defect is of critical size and spontaneous healing cannot be achieved.

• Osteogenicity: the osteoblasts at the site of the new bone formation are able to
produce minerals to calcify the collagen matrix that will form the substrate for
the new bone.
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• Osteointegrity: the bone formation that takes place between the newly formed
mineralized tissue and the implant material.

• Mechanical match: the autograph have similar mechanical properties to the
varrounding tissue, in order to prevent stress shielding and bone resorption.

Table 1.2 shows the parameters for a successful scaffold (same parameters could

be taken into account for any biomaterial used for bone regeneration in tissue

engineering) as indicated by autograph.

Table 1.2 Parameters for a Successful Scaffold as Indicated by Autograph

Naher polymers nor ceramics can accompiish all parameters alone, but this can he achieved when formed into a
, Μnho`ite.

(Source: Laurencin and Khan, 2006)

The aforementioned characteristics are very important for a bone tissue

engineering biolterial. There is not one biolterial that can satisfy all the requirements

and for that reason researchers try to combine materials into a composite structure

(Laurencin and Khan, 2006).

Following a similar concept for achieving a successful biolterial for tissue

regeneration, Seal et al. (2001) illustrate in Figure 1.2 how some biological and medical

requirements of a lterial should be integrated.



7

Figure 1.2 lllustration of how some biological and engineering lterial properties should
be integrated in order to achieve successful tissue regeneration biolterial.
(Source: Seal et al. 2001)

The idea of using composite lterials that could combine all the desired

properties and characteristics for a vaccessful tissue engineering biolterial is not only

derived from the parameters used in an autograph and the right medical and engineering

properties, but also from the bone structure itself. Bone, as will be discussed in section

1.2, is a composite material consisting of an inorganic and organic phase with a complex

structure and several levels of organization.
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Over the past decades, several materials have been developed and used as

materials for bone regeneration. Figure 1.3 illustrates the evolution of materials

used in bone graphing. Abbreviations can be found in the beginning of the thesis.

1.2 Human Bone

It is essential to understand the structure and organization levels of the huln bone and

all the biological templates involved, before developing a biomaterial for bone

regeneration. Bone must perform multiple, but sometimes quite contrary, functions. It is

required to have high strength, but low weight; vapport remodeling when stresses are

applied, but not deform under them; have a certain porosity to allow oxygen and nutrients

to reach the cells, but these pores should not result in fractures; and, finally, act as a

reservoir for minerals, but not demineralize and hence weaken (Braun, 2003).
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Bone is a natural composite material whose major components are type I

collagen, calcium phosphate minerals (hydroxyapatite is the predominant one), carbonate

substituted apatite and water (Button et al. 2001, Chouzouri and Xanthos 2005). Bone

also has non-collagenous proteins, lipids, vascular elements and cells in its composition.

An overall composition of the bone can be seen in Table 1.3 (Mumgan and Ramakrishna,

2005). The mineralized collagen fibril is the basic building block of the bone family of

materials. It is composed of fibrous protein collagen in a structural form present also in

skin, tendon, and a variety of soph tisvaes (Weiner and Wagner, 1998). The collagen

represents the main component of a three dimensional matrix into which the mineral

forms to strengthen the bone. The mineral is dahllite (carbonated apatite with structure

Ca5(PO4, CO3)3(ΟΗ)) (Weiner and Wagner, 1998). Bone mineral shows a Ca:P ratio

ranging from 1.3:1 to 1.9:1. Bone mineralization involves nucleation until a critical sized-

nuclease is formed. Crystal growth occurs as ions or clusters are added to the critical

nucleus. Nucleation may occur again due an increase in ion concentration, increase in

temperature or change in solution composition. Beterogeneous nucleation occurs on

already formed surfaces facilitated by proteins and lipids. Other growth proteins, except

collagen, facilitate mineral formation by nucleatiow'regulation of the process (Bosky,

2005).
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Table 1.3 Bone Composition

(Source : Murugan and Ramakrishna, 2005)

The proportions of all the bone major components can vary considerably between

bone family members. In addition, the manner in which the building blocks are

organized into highly ordered structures can also vary, differentiating the members of the

bone family (Weiner and Wagner, 1998). The organization of the bone can be further

complicated, since some of the materials are composed of two different organizational

patterns, and in return, the whole structure may be folded into even larger substructures.

Therefore, there is no term such as bone structure, but rather the hierarchical levels of

organization in different bone families (Weiner and Wagner, 1998). The seven

hierarchical levels of organization of the bone family of materials according to Weiner

and Wagner (1998) can be seen in Figure 1.4.



Figure 1.4 The seven hierarchical levels of organization of the bone family of materials
according to Weiner and Wagner (1998). Level 1: TEAM micrographs of individual
mineral crystals from human bone (left side) and a part of an mineralized and
unstained collagen fibril from turkey tendon observed in vitreous ice. Bevel 2: ΤΕΜ
micrograph of a mineralized collagen fibril from turkey tendon. Bevel 3: ΕΜ of a thin
section of mineralized turkey tendon composed of multiple fibrils. Bevel 4: Four fibril
array organization patterns found in the bone family of materials. Level 5: SEM
micrographs of a single human bone osteon. Bevel 6: Bight micrograph of a fractured
section through a 5500 year old fossilized human femur. Bevel 7: Whole bovine bone
(scale: 10 cm).
(Source: Weiner and Wagner, 1998)

In view of the fact that bone has such a complex structure with several levels of

organization, it is understandable why mimicking a bone structure is so challenging. In

developing bone substitutes at a microscopic level, two structural levels are considered.

The first one is a bone apatite reinforced collagen that forms lamellae at the nm to gm
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scale and the second one is the osteon reinforced interstitial bone at the μ,m to mm scale.

Figure 1.5 represents a form of structural organization of the bone in the human body

(Chouzouri and Xanthos 2005, Wang, 2003).

Figure 1.5 Structural organization of the bone in the body.
(Source: Wang 2003)

At the microscopic level, bone has two forms: woven and lamellar. Woven or

primary bone is immature bone characterized by coarse fiber arrangement with no

orientation and varying mineral content — isotropic properties. It is resorbed by one year

of age. Bamellar bone begins forming after 1 month of birth and by age 4 most normal

bone is lamellar. It is highly organized and anisotropic, having different mechanical

behavior depending on the orientation of applied forces (Ooll, 2005).



13

Bone tisvae as shown in Figure 1.5 is arranged in two architectural forms,

trabecular, otherwise called cancellous or spongy (around 20% of the total skeleton) and

cortical or compact form ( the remaining 80% of the skeleton) (Salgado et al. 2005,

Sikavitsas et al. 2001). The trabecular bone exhibits high porosity (in the range of 50-

90%) and it is arranged as a honeycomb of branching bars, plates and rod called

trabeculae. Khe cortical bone is almost solid (10% porosity). The compact bone

functions mechanically in tension, compression and torsion, whereas the spongy bone

functions mainly in compression. At the microstructural level, the structural unit that is

repeated for compact bone is mostly of osteon or Baversian system. Baversian bone is

the most complex type. Vascular channels are varrounded by lamellar bone in

arrangements that are called osteons, oriented in the long axis (Ooll, 2005). By contrast,

the spongy bone contains no such osteon units, but it is made of an interconnected

framework of trabeculae (Murugan and Ramakrishna, 2005). An outer bone sheath,

called periosteum covers both cortical and cancellous bone (Sikavitsas et al. 2001). Basic

types of bones are long, round, irregular-shaped and flat; they can be modeled as beams,

columns, rods and cylinders, depending on their mechanical requirements and how are

they loaded in vivo (Ooll, 2005).

Bone is a brittle anisotropic material with low elongation at fracture (3-4%)

whose properties may vary broadly via changes in preferred collagen fiber orientation.

The amount of water present in the bone is also an important parameter for its mechanical

behavior. Biomechanical properties of the bone are presented in Table 1.4 (Murugan and

Ramakrishna, 2005). Specifically, tensile modulus and strength for a human long bone

are reported as 17.4 MPa and 135 MPa, respectively, in the axial direction and much
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lower in the radial direction: 11.7 GPa and 61.8 MPa , respectively (Xanthos 2005,

Callister, 2003). Compressive strength, a property more relevant to actual use of the

bone, is higher approaching 196 MPa and 135 MPa in the axial and transverse directions,

respectively. Polymer composites for biomedical applications attempt to reach these high

modulus/strength levels through the introduction of high volume loadings (as high as

45%) of reinforcing fibers or other fillers in a biocompatible matrix.



CHAPTER 2

COMPONENTS OF BIOCOMPOSITES FOR BONE
REGENERATION — A REVIEW

2.1 General

In addition to increasing uses of polymer composites for biomedical applications, over

the past decade, there is an increasing interest in the development of polymer matrix

composites for bone regeneration materials. This interest was triggered by the desire to

develop composite materials with the properties of the natural collagen / apatite

composite. Polymer composites are mixtures of polymeric matrices with inorganic or

organic fillers that have particular geometries (fibers, flakes, spheres, particulates)

(Xanthos, 2005). The properties of a polymer composite are affected by the properties of

the fillers, the composition, the interaction of components at the interface and the method

of fabrication. A composite is designed to revalt in a combination of the best

characteristics of each of its components and the minimum undesirable characteristics.

Specifically, a biocomposite for bone regeneration applications should provide distinctive

mechanical performance, analogous to the bone one, as well as biocompatibility and

biological active response known as bioactivity (Chouzouri and Xanthos, 2005).

According to Bench (1996), bioactivity is the ability of a material to elicit a specific

biological response at its interface with a living tisvae, which revalts in the formation of a

bond between the tissue and the material. Aoactivity in polymer composites is achieved

through the addition of specific inorganic additives (fillers) whose bioactive is

independent of the presence of the biocompatible polymer matrix and as vach can be used

alone.

15
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2.2 Classification of Fillers According to their Functions

Several ceramics, glasses, and mass-ceramics have been used to repair or replace

musculoskeletal hard connective tissues. Materials for clinical use can be classified into

three categories depending on the relative level of reactivity of an implant and,

consequently, of the interfacial layer between the material and the tissue. Firstly,

resorbable materials are designed to degrade slowly and replaced by the natural host

tissue through a very thin interfacial layer. This is the optimal solution if the

requirements of strength and short term performance can be met as the natural tissues can

repair and gradually replace themselves throughout life (Bench, 1996, Oavis, 2003).

Kricalcium phosphates, calcium phosphate salts and calcium carbonate minerals are

common bioresorbable ceramics. Secondly, inert and nearly inert materials are the ones

where the fibrous tissue at the interface is very thin. In the case of devices implanted

with a very tight mechanical fit and loaded in compression, then the implants are very

successful. By contrast, when the interface is not chemically or biologically bonded and

there is an interfacial movement, then the implant can deteriorate. Common examples

are alumina and zirconia. Bastly, reactive materials are an intermediate between

bioresorbable and nearly inert materials, since they can elicit a specific biological response

at the interface, which will lead in the formation of a bond between the tissue and the

material. Typical examples are hydroxyapatite, bioactivity glasses and bioactive mass

ceramics. Table 2.1 summarizes the most significant ceramics that have been reported to

show reactivity in vitro and in most cases in vivo (Chouzouri and Xanthos, 2005).
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The level of bioactive of a material is related to the time taken for more than 50% of the

interface to bond to bone (to.5bb), and can be expressed by the following equation:

Materials with an Ib value greater than 8 (class A) will bond to both soft and hard

tisvae. Materials with an Ib value less than 8, but greater than 0 (class B) will bond only

to hard tisvae (Bench, 1996). Table 2.2 includes several implant materials along with

their bioactivity index (Hench, 1998).
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The success of the fillers depends on the type of attachment to connective tissue.

The mechanism of tisvae attachment is related to the type of tissue response at the

biomaterials — tisvae interface. There are four different tissue attachment mechanisms for

ceramic implants as shown in Table 2.3 (Blench, 1996, Oavis, 2003) depending on

type and their porosity. In Figures 2.1 and 2.2, a comparison of the relative chemical

activities and a time dependence of formation of bone bonding at the ceramic implant

interface can be observed, respectively. In Figure 2.1 the letters refer to class of

bioactivity as shown in Table 2.2. In Figure 2.3, a comparison of interfacial thickness of

reaction layers for different types of ceramic implants is included. These Tables and

Figures facilitate the classification of different types of biomaterials used.
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Figure 2.1 Relative rates of bioactive for various ceramic implants.
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Figure 2.2 Time dependence of formation of bone bonding at an implant interface.
(Source: Bench, 1998)
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Figure 2.3 Comparison of interfacial thickness (gm) of reaction layers of inactive
implants of fibrous tissue of inactive bioceramics in bone.
(Source: Hench, 1996)
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2.3 Types of Bioactive Fillers

2.3.1 Calcium Phosphates

Among bioactive materials, BA is considered to be both biocompatible and

osteoproductive, exhibiting only an extracellular response leading to bone growth at the

bone —filler interface (Wang, 2003). By contrast, osteoinductive fillers such as

reductive masses elicit both an extra- and intracellular response at the interface (Bench

website). None of these fillers are osteoinductive, since the presence of bone

morphogenic proteins, AMPS, and/or other growth factors (e.g. invalin growth factor IGF-

I) are required. Researchers have used several ceramics along with osteoinductive

materials in order to promote faster bone regeneration. One of the main reasons that

hydroxyapatite (BA) has been investigated as a bioactive filler is its similarity with the

biological hydroxyapatite in impure calcium phosphate form found in the human bone

and teeth. BA has a Ca:P ratio of 10:6 and its chemical formula is Caιο(ΡO4)6(ΟΗ) 2 . The

biological BA, in addition, contains magnesium, sodium, potassium, and a poorly

crystallized carbonate containing apatite phase as well as a second amorphous calcium

phosphate phase (Ashman and Gross, 2000).

Oifferent phases of calcium phosphate ceramics have also been used in tissue

engineering depending on the application. These differences in forms and phases, along

with variations in morphology and stoichiometry introduced by the complexities of

different modifications during processing, add to the complexity of calcium phosphate

systems (Kumta et al. 2005). Calcium phosphates have many crystallographic features

that are similar to the ones of the human bone. Table 2.4 presents the different forms of

calcium phosphate along with their molecular formula and their corresponding
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Calcium/Phosphorous ratio (Laurencin and Khan, 2006). The stability of these ceramics

depends on temperature and the presence of water. In the body (Τ=37 °C and pΗ=7.2-7.4)

calcium phosphates are converted to BA. At lower pB (< 4.2) Tricalcium phosphate

(CaΗPO4.2Η2O) is the stable phase. At higher temperatures other phases of phosphate

minerals, such as tetracalcium phosphate (Ca3(PO4)2 ), chemically similar to BA with

Ca:P ratio of 3:2, and Tricalcium phosphate (Ca 4P2O9) are present. calcium

phosphate (KCP) is not a natural bone mineral component, although it can be partly

converted to BA in the body according to the following reaction (Bench, 1996):

MCP is an osteoconductive and resorbable material, with a resorption rate dependent on

its chemical structure, porosity and particle size (Ashman and Gross, 2000).

Table 2.4 Oifferent Forms of Calcium Phosphate, their Molecular Formula, and the
Corresponding Ca/P Ratio

(Source: Laurencin and Khan, 2006)

All calcium phosphate ceramics degrade at increasing rate in the following order:

a-TCP> a-TCP> BA. Their degradation rate increases as surface area and ionic

substitution of CO 3- , Mg + and Sr2  in BA increase, and crystallinity, crystal perfection

and crystal and grain size decrease.
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Aphasic calcium phosphates (BCP: HA/TCP) appear to be even more bioactive

and efficient than HA and MCP alone, for the repair of several orthopedic and

maxillofacial applications (Toquet et al. 1999). The degradation rate of BCP can be

adapted to the one needed for vafficient bone ingrowth by determining the optimum

balance of the HA and TCP phases (Begot dD'Arc and DDaculsi, 2003). HA is more

similar to natural bone tissue apatite and more stable than MCP. Khus, the incorporation

of MCP into BCP ceramics can control the rate of degradation needed for adequate new

bone formation (Begot D'Arc and Daculsi, 2003, Femedez et al. 1999, Daculsi, 1999).

As the material dissolves gradually in the body, it releases calcium and phosphorous ions

into the biological medium that consequently transform into carbonated hydroxyapatite

that is similar to the biological apatite needed for bone growth. This osteocoalescence

process contributes to the strong bone formation at the bone/material interface (Daculsi,

1999, Daculsi et al. 2003).

BCP is obtained by sintering a synthetic or biological calcium deficient apatite at

temperatures higher than 700 °C. The degree of calcium deficiency (Ca/P molar ratio less

than 1.67) depends strongly on the preparation method used. BCP can be produced by

precipitation, hydrolysis or mechanical mixing. The calcium deficiency also depends on

the reaction pB, the temperature in the preparation of unsintered apatite and the

morphological characteristics. The calcium deficiency affects the HA/TCP ratio in the

BCP. This ratio determines the ceramic reactivity, specifically the lower the ratio the

higher the reactivity (Oaculsi et al. 2003, Manjubala et al. 2001).

BCP ceramics have proven to be useful for clinical applications involving small

bone defects or regions that have large contact with bone (Toquet et al. 1999). Bowever,
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they exhibit no osteoinductive properties and as a result, cannot be used on their own for

the reconstruction and repair of large bone defects. For this reason it is proposed that

BCP ceramics should be used along with osteogenic cells to provide solutions for long

bone regeneration (Toquet et al. 1999, Bagot D' Arc and Daculsi, 2003, Livingston et al.

2003). When osteogenic cells will be implanted in a BCP ceramic scaffold, the rate of

bone formation will increase and as a result, rapid restoration of the long bone defect will

take place (Bivingston et al. 2003).

2.3.2 Calcium Carbonate

Calcium carbonate (CaCO3) minerals, is another class of bioactive materials that can

exist in the forms of vaterite, aragonite and calcite. All forms have the same chemistry,

but different crystal structure and symmetries. Aragonite is orthorhombic, vaterite is

hexagonal and calcite is trigonal. Calcium carbonate in the form of aragonite (>98%

CaCO3) is the natural coral. It is a porous, slowly resorbing material with an average

pore size of 150gm and very good interconnectivity. When it is necessary to be used for

periodontal osseous defects it can be provided with average particle size of 300-400gm.

Calcium carbonate's major advantage is that when other reactive materials vach as HA

have to go through the formation of carbonate containing structures, calcium carbonate

can pass over that step; consequently, this can revalt to a more rapid bone ingrowth

(Ashman and Gross, 2000).
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2.3.3 Silicates

Wollastonite, which is a form of calcium silicate (CS), has also been shown to be

reactive and biocompatible. Biu et al. (2004), used commercially available wollastonite

to coat Ti-6Α1-4V vabstrates through a plasma-sprayed method. When the vabstrates were

immersed in simulated body fluids (SBF), an apatite layer was formed through surface

reactions. Various forms of calcium silicates vach as psuedowollastonite (a — CaSiO3)

(Sahai and Anseau, 2005, De Aza et al. 2000) tricalcium silicate (Ca3S10 5) (Zhao et al.

2005), a-dicalcium silicate (Cheng, 2006), a-wollastonite (a-CaSiO3) (Wan, 2005, Li and

Chang, 2005) and commercially available mineral wollastonite (Risbud, 2001) have been

shown to exhibit bioactivity.

Special compositions of glasses appear to have the ability of developing a

mechanically strong bond to the bone. The so-called bioactive glasses contain SiO2,

Νa2O, CaO and P205 in specific ratios (Chouzouri and Xanthos, 2005, Bench, 1996,

Ashman and Gross, 2000, Hench, 1988). Bioactive glasses differ from the traditional

soda-lime-silica glasses, as they need to contain less than 60 mol% SiO2, high Νa2O and

CaO amounts and also a high CaO/ Ρ205 ratio. As a revalt, when these glasses are

exposed to physiological liquids they can become highly reactive. This feature

distinguishes the bioactive glasses from bioactive ceramics, such as HA. When the latter

contacts physiological fluids both its composition and physical state remain unchanged,

in contrast with the bioactive mass that undergoes a chemical transformation. A slow

exchange of ions between the glass and the fluid takes place (Krajewski and Ravaglioli,

2002) resulting in the formation of a biologically active carbonated HA layer that

provides bonding to the bone and also to soph connective tissues. Silicon and calcium
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slowly dissolved from the masses activate families of genes in old bone cells that then

form new bone cells (Hench website).

Most of the reactive glasses are based on bioglass designated as 45S5, which

implies 45 wt% SiO2 and CaO/ Ρ2O5 molar ratio of 5:1. Glasses with lower CaO! Ρ2O5

ratio will not bond to the bone. Nevertheless, based on modifications of the 45S5 bioglass

a series of other reactive glasses have been investigated by substituting, for instance, 5-

15 wt% Β2O3 for 8102 or 12.5 wt% CaF2 for CaO (Chouzouri and Xanthos, 2005, Blench.

1996, Ashman and Gross, 2000, Krajewski and Ravaglioli, 2002, Fujibayashi et al. 2003,

Brink et al. 1997). Table 2.5 provides typical compositions of reductive glasses (Hench,

1996).
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2.3.4 Complex Glass Ceramics

A/W glass ceramics (AWGC) consist of crystalline fluoroxydroxyapatite

[Ca ιο(ΡO4)6(ΟΗ)F2)] and wollastonite (CaSiO3) in a MgO-CaO- Si02 glassy matrix.

Nominal composition by weight is: Mg, 4.6; Cab, 44.7; Si02, 34.0; Ρ205, 16.2; CaF2 ,

0.5, (Shinzato et al. 2000). They have been used as bone replacements due to their high

bioactive and also to their ability of instantaneously bonding to living tissue without

forming a fibrous layer. The mechanical properties of AWGCs are better than those of

both bioactive glass and BA (Bench 1996, Shinzato et al. 2000, Yamamuro et al. 1998,

Juhasz et al. 2004). In addition, AWGCs appear to have long-term mechanical stability

in vivo, as they chemically bond with the living bone 8-12 weeks apher implantation

(Yamamuro et al. 1998, Juhasz et al. 2004). According to Blench (1996), additions of

Α1203 or Si02 to the AWGC may inhibit bone bonding. Kable 2.6 presents the

composition and structure of several mass ceramics (Bench, 1996).



Table 2.6 Glass Ceramics and their Composition in Weight Percent
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2.4 Mechanisms of Filler Bioactivity

Along with the development of bioactive ceramics, numerous studies have been

conducted in order to understand the mechanisms under which the crystalline carbonated

hydroxyapatite layer that indicates bioactivity is being formed. Many complex

physiochemical reactions take place at ceramic — bone tisvae interfaces depending on

the elemental composition and the surface properties of each ceramic (Ballot, 2005).

In the case of hydroxyapatite or a-TCP ceramics, an acidic attack leads to partial

dissolution of the material. Consequently, changes in porosity, density, loss of material

and changes in particle diameter and average crystal size occur. This dissolution releases

Ca and POD  ions in the varrounding environment. By exposing hydroxyl and

phosphate units in the crystal structure of BA, negative charges can occur on its surface.
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These ions can be combined with ions from the biological fluids to form other calcium

phosphate phases (including Ca-rich amorphous calcium phosphate ACC). Thus, there is

an increase of calcium and phosphorous concentration in the surrounding fluids that leads

to supersaturating and precipitation of other apatite crystals such as brushite, octacalcium

phosphate, carbonated hydroxyapatite, etc. at the material interface. The mechanisms of

apatite formation upon immersion in the SBF can be observed in Figure 2.4 (Kim et al.

2005). It is apparent, that these apatite crystals may include Ca b+, Μgb+, CO 3- , CO 4 , Ε

and other organic molecules revalting from the biological fluids. Depending on the ions

included on the precipitated apatite, the formation of carbonated apatite that is needed for

bone growth may be inhibited or induced. In the case of Μgb+, the forms of brushite and

octacalcium phosphate are predominant, whereas in the case of CO 3- and Ε , there is

mainly apatite formation which leads to the formation of a 200-800 nm thick layer (JJallot,

2005).

Figure 2.4 Schematic representation of the origin of negative charge on the varface of
BA and the process of apatite formation in BF.
(Source: Kim et al. 2005)
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In the case of bioactive masses, HHench (1998) describes five reaction stages (1-5

in Figure 2.5) and also a sequence of cellular events that are also related to forming a

bioactive bond (reaction stages 6-11). Although there are details in molecular biology as

well as in genetic level that still need to be established, the physiochemical reactions

include dissolution, diffusion, ionic exchange and precipitation (Ballot, 2005).

Figure 2.5 Sequence of interfacial reactions involved in forming a bond between tissue
and bioactive ceramics.
(Source: Bench, 1998)

Specifically, the varface reactions stages 1-5 are described (Ballot, 2005, PPeitl et al. 2001,

Filgueiras et al. 1993) as follows:

Stage 1: Rapid exchange of alkali ions (Nab ± or K+) with B+ or Η3O+ from

biological fluids through an exchange layer with 200 urn thickness.

-Si-O- Nay+ + Η+ + OH -± -Si-OH + Nay + (soiution) + OB

Stage 2: Loss of soluble silica in the form of Si(ΟΗ)4 to the solution revalting

from breaking Si-O-Si bonds and forming silanols Si-OB at the glass/solution interface

-Si-O-Si- + ΗbO -^ -Si-OB +OH-Si-
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Stage 3: Condensation and repolymerization of a hydrated Si0 2  rich layer

depleted of alkalis and alkaline earth cations.

Stage 4: Cat+ and CO 4- groups migrate from a Si02 rich layer to the varface

forming CαΟ-C 2O5 on the top of a 5i02  rich layer followed by the growth of an

amorphous CαΟ-C2O5 film by incorporation of soluble calcium and phosphate ions from

the bulk material as well as from the biological fluids.

Stage 5: The amorphous CαΟ-Ρ2O5 film crystallizes by incorporation of OW,

CO 3- or Κ anions from the solution to form a mixed hydroxyl (BACA), carbonate

fluoropatite layer (HHCFA).

The above in vitro reactions are shown schematically in Fig. 2.6 (Peitl et al.

2001).

Figure 2.6 Schematic illustration of the surface reactions (1-5) on reductive glasses,
forming double 5i02 — rich and Ca, P — rich layers.
(Source:Peitl et al. 2001)
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The in vivo stages that involve the sequence of cellular events to form the bioactivity bond

are as follows (Ballots, 2005):

Stage 6: Adsorption and desorption of biological growth factors in the HHCA layer

from the surrounding tisvaes. Aochemical growth factors facilitate the differentiation of

stem cells.

Stage 7: Macrophages help to remove debris from the site, in order for cells to

occupy the space.

Stage 8: Stem cells are attaching to the bioactive glass surface.

Stage 9: Stem cells differentiate to form osteoblasts (known as bone growing

cells).

Stage 10: Osteoblasts generate the extacellular matrix to form bone.

Stage 11: The inorganic calcium phosphate matrix crystallizes to enclose bone

cells in a living composite structure.

It is essential to control the solubility of bioactive materials. If an implant is

required to last for a long time period, then low solubility is an important parameter. In

the case of reactive glasses, other elements could be added in order to improve the long

term stability by reducing the dissolution of the glass network. Optimization of the

bioactivity glass properties requires a compromise between bioactive and solubility. The

addition of Α12O3 could control the dissolution of the glass, but as mentioned earlier it

could also inhibit bone bonding (Ballot, 2005, HHench. 1996).

Given the similarities in composition between biomass and CS many authors (Biu

et al. 2004, De Aka et al. 2000, Chao et al. 2005, Li and Chang, 2005)] suggested that the

formation of apatite on the CS surface may follow a similar mechanism. De Aka (2000),
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as well as Sahib and Anseau (2005), reported that in the case of pseudowollastonite

immersed in SBF, there is a rapid increase in the concentration of dissolved Ca and Si

that leads fa a pB increase for the first few days followed by steady state values. They

suggest that Ca and Si are leached out from surface layers with profanation of the

ceramic. This transforms the pseudowollastonite crystals into an amorphous silica phase.

Khe reaction proceeds and further leaching of calcium leads to an increase of the

surrounding fluid pH that creates optimal conditions for partial dissolution of the

amorphous silica and further nucleation and precipitation of the calcium phosphate phase.

Filgueiras et al. (1993) studied the in vitro surface reactions the take place in the

reductive glass 45S5 in simulated body fluid (SBF) with different compositions. A

simulated body fluid is a solution that has been proposed by Kokubo et al. (1990) and has

the same ion concentration as in the human blood plasma. Apher intentionally changing

the ion composition in the SBF, Filgueiras et al. (1993) observed that calcium and

phosphate ions in SBF accelerate to a small extent the stage 3 reaction that involves the

repolymerization of silica and the formation of an amorphous calcium phosphate layer

(stage 4) on the biomass surface. The higher the calcium and phosphorous concentration

in the SBF, the more rapidly the amorphous calcium phosphate layer crystallizes to form

hydroxy-carbonate apatite. This is in agreement with Kokubo (1998) who states that the

silanol groups can induce apatite nucleation and the calcium ions can accelerate this

nucleation. Similarly fa the case of calcium phosphate materials (Jallloft, 2005), the Mg t+

ions slow down the formation of the amorphous layer and retard the crystallization of

hydroxy-carbonate apatite on the mass surface (Filgueiras et al. 1993).
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2.5 Polymers Used as Biomaterials

Polymers have been widely used as biomaterials for permanent and temporary

applications during the last decades. Permanent applications make use of biostable

polymers that are not vabject fa degradation in the body. By contrast, temporary

applications will eventually degrade in the body, with a life expectancy close fa the

required healing time. Table 2.7 shows several examples of biostable and biodegradable

polymers. Figure 2.7 illustrates the use of polymeric biomaterials in the form of

composites for a variety of clinical applications.

Table 2.7 Examples of Polymers Used in Tissue Engineering Applications

Polyethylene (PE, HDPE)	 Polylactic acid (PBBA)

Polyetheretherketone (PEEK) 	 Polyglycolic acid (PGA)

Polysulfone (HSU)	 Poly-ε-caprolacfane (PCL)

Polyurethane (PUB)	 Poly-a-hydroxybutyrate (ΠΗΒ)

Polymethylmethacrylate (EMMA) 	 Polyorthoesters

Bisphenol-α-glycidyl methacrylate (bis-GMA) Poly-δ-valerolacfane

Blends of starch with ethylene vinyl

alcohol (EVA)

(Source: Chouzouri and Xanthos, 2005)
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In the case of biodegradable polymers, hydrolyzable linkages, namely ester,

orthoester, anhydride, carbonate, amide, urea and urethane are present in their backbones.

Aliphatic polyesters are commonly used as biomaterials because of their biocompatibility

and their variable physical, chemical and biological properties (Li, 2006). Table 2.8 lists

the structures of the most important aliphatic polyesters used as biomaterials.

Asymmetric carbon atoms are shown by asterisks.
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The standard requirements, as described by Neves et al. (2005), for a polymer to

be used as a biomaterials include resistance to aging in saline aqueous media, dimensional

stability, biocompatible, absence of harmful additives that could migrate to the body,

fatigue resistance and the ability for the material to be sterilized without significant loss

of its properties. A polymer is defined as biocompatible when the material itself or its

degradation fragments do not elicit any toxic, inflammatory or allergic reactions in the

surrounding tissue. The challenging part in using biodegradable polymers is the ability to

control their degradation characteristics, by modifying the polymer hydrophobicity and

crystallinity, in order to tailor the properties of the final device. Although polymers have

great advantages due to their characteristics, they also exhibit drawbacks due to their low

stiffness. Kable 2.9 shows the mechanical properties for some polymers used as

biomaterials.

Table 2.9 Mechanical Properties of Polymers

(Source: Murugan and Ramakrishna, 2005)
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2.6 Polymer Degradation Mechanisms

Although, many studies have been conducted on the synthesis and hydrolytic degradation

of these polyesters, the role of the low molecular weight fragments in the degradation

process is still unknown. Schliecker et al. (2003), proposed that the hydrolytic

degradation process is affected by four parameters; specifically, the degradation rate

constant, the amount of water that has been absorbed, the diffusion coefficient of the

chain fragments and the solubility of degradation byproducts in the aqueous media.

In addition, Gópferich and Bang (1993) suggested that since hydrolysis is the

most important part of degradation, factors that influence the rate of this reaction, as the

type of the chemical bond, the pH, the copolymer composition and the water uptake play

an essential role. The molecular weight changes and the loss of mechanical strength are

important parameters for monitoring degradation. The reactivates that are based either

on hydrolysis kinetics data or are extrapolated from low molecular weight fragments that

have the same functionality can most times successfully predict the rate of degradation.

Anhydride- and ortho-ester bonds are the most reactive ones followed by esters and

amides (Gópferich and Lang 1993). Changes of the chemical neighborhood of the

functional group through steric and electronic effects may in tum influence the

degradation rates. Changes in pH may change the reaction rates of esters by some orders

of magnitude due to catalysis. Also, by introducing a second monomer into the chain,

properties such as crystallinity and glass transition temperature may be altered, which in

tum will influence degradation rates. Specifically, Tserki et al. (2006) synthesized and

tested a series of aliphatic copolyesters and polyesters from 1,4 butanediol and

dimethylesters of succinic and adipic acids. They showed that the lower the crystallinity,
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the higher the degradation rates; also by incorporating the secondary comonomer in the

polymer structure, mechanical and other physical properties decreased.

Molecular weight, as mentioned earlier, is considered to be the most sensitive

parameter for modeling polymer degradation. Particularly, with the Μ„ (number average

molecular weight) directly related to the scission of polymer chains, several relationships

have been derived relating the changes in Μ„ with time and the hydrolysis rate of ester

linkages. Specifically, Anderson (1995) and Chu (1995) proposed a statistical method for

relating Μ„ and hydrolysis rate. Assuming that the extent of degradation was not large

they suggested the following relationship:

relationship should exist between 1 / A„ versus time, up until mass loss takes place (Weir

et al. 2004). A disadvantage of this mechanism is that it does not take into account the

possibility of autocatalytic that would significantly influence the degradation rate.

Pitt and Gu (1987) derived an equation based on the kinetics of the ester-

hydrolysis reaction and taking into account the autocatalytic effect.

By asvaming that the ester and water concentrations remain constant and the

concentration of acid groups is equal to 1 /An it can be shown that

(2.4)
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If this relationship holds true, a linear relationship should exist between the

The degradation of a polymer matrix could proceed through the following

mechanisms (Proikakis et al. 2006): i) varface or heterogeneous erosion and ii) bulk or

homogeneous erosion. In the first case (Schliecker et al. 2003), water is being absorbed

by the polymer and hydrolytic ester cleavage occurs at the polymer surface. This

generates chain fragments that have acidic end groups. Initially, polymer degradation is

faster than water intrusion into the bulk polymer; this revalts in degradation mainly at the

outermost and not in the inner part of the matrix. Khus, a decrease in molecular weight,

along with an increase in polydispersity without polymer mass loss occur. After an

elapsed short time, water diffusion is relatively rapid in comparison to polymer

degradation. Reaction / diffusion phenomena, that involve water soluble low molecular

weight degradation products at the surface and the inner part of the polymer, are thought

to govem polymer degradation (Schliecker et al. 2003). In small size devices soluble

oligomers can escape before the devices are totally degraded. By contrast, in large

devices, only soluble oligomers that are located close to the outer surface can escape,

whereas the ones inside the device remain entrapped as a result of their relatively small

diffusion coefficients. Consequently, carboxyl end groups are more concentrated in the

center, and the degradation rate increases due to the autocatalytic effect of carboxyl

groups on the ester hydrolysis (Schliecker et al. 2003, Proikakis et al. 2006).

In the second case of homogeneous erosion, polymers degrade slowly and the rate

of water diffusion into the system is faster than that of polymer degradation. As a revalt,
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the whole system hydrates rapidly and the polymers when changed, are cleaved

throughout. It should be noted that degradable polymers could erode via both pathways

depending on the erosion conditions, the geometry of the samples and the

hydrophilic/hydrophobic characteristics of the polymer (Proikakis et al. 2006, Au et al.

2006).

A parameter that indicates which way a degradable polymer will erode is the ratio

of the rate of bulk to varface erosions. Applying penetration theory, it can be shown that

the thickness (δ) associated with each mechanism is related to a characteristic time, by

the following equations:

where tdiffusion and reaction  are characteristic times of the two processes and D is the

diffusion coefficient.

In order to identify parameters that determine varface or bulk erosion pathways,

Burkersroda et al. (2002) proposed a model in which the two characteristic times of Ens.

2.6 and 2.7 are expressed in terms of a dimensionless number (can be considered as a

Deborah number) named "erosion number" to predict varface or bulk erosion.

In the case of amorphous polylactic acid, material degradation proceeds through

varface erosion and is faster in the inner part than at the surface due to the autocatalysis

phenomena. On the contrary, the degradation of semi-crystalline polylactic acid proceeds

in a more complex way. Initially, degradation proceeds though the amorphous regions,
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since these have higher water uptake ability than the crystalline ones. The degraded

fragments diffuse and then recrystallize. Degree of crystallinity could increase along

with degradation. Apher the major part of the amorphous area degrades, hydrolysis

proceeds from the edge to the center of the crystalline domains (Proikakis et al. 2006,

Mango et al. 2004).

Polycaprolactone is also a recrystallize aliphatic polyester but with higher

crystallinity and hydrophobicity than polylactic acid, and as a result, it exhibits a different

degradation behavior. The hydrophobicity of polycaprolactone could lead to a varface

erosion/degradation behavior as shown by Auk et al. (2006). Polycaprolactone has lower

degradation rates than polylactic acid, but being highly compatible with osteoblasts is

used for long term implant applications (Mango et al. 2004).



CHAPTER 3

PREPARATION AND PROPERTIES OF POLYMER
BIOCOMPOSITES — A REVIEW

3.1 General

Similarly to other fillers in conventional composites, shape, size, size distribution, pH,

and volume percentage of the bioactive filler and filler distribution in the matrix and, in

addition, type and level of bioactive play important roles on the properties of the

composites. In addition, the matrix properties, the filler-matrix interfacial state as

well as the processing parameters are of great importance in the performance of the final

biomaterial (Wang, 2003). The majority of vach composites are prepared by

conventional melt processing methods (extrusion compounding followed by injection or

compression molding) although some composites are prepared by solution casting

techniques. The state of the art and recent developments in bioinert, biodegradable and

injectable polymer composites for hard tissue replacement have been recently reviewed

by Mango et al. (2004). Attempts have been made to simulate bone structure and

properties through specialized forming technologies including shear controlled

orientation injection molding (SCORIA ®) (Mano et al. 2004), and hydrostatic extrusion

(Wang, 2003).

Also, the biocompatibility of the composite could be enhanced with the addition

of the bioactive fillers (Neves et al. 2005). ln addition, foreign body reaction due to

acidic degradation fragments could be minimized by the neutralizing capacity of some

ceramics. Specifically, Li and Chang (2005) have demonstrated that when wollastonite

and bioglass are incorporated in poly (lactic-co-glycolic acid) (ALGA) they maintained

43
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the pH of the soaking media during degradation and ultimate release of acidic byproducts

in the physiological range. In the case of hydroxyapatite, there was no pH compensation

since the pH exhibited an almost linear decrease from 7.4 to 5.6. Similarly, Schiller and

Apple (2003), demonstrated that carbonated calcium phosphates are also suitable as pHs-

stabilising fillers for polyester degradation whereas hydroxyapatite and a-TCP are not

capable of buffering at pH 7.4. In addition, the polymer degradation characteristics can

also be affected by the incorporation of the ceramic phase, since the ceramic can act as

hydrolysis barrier, delaying the polymer degradation (Neves et al. 2005). This was

demonstrated by Bi and Chang (2005), for the case of wollastonite and bioglass that delay

the degradation of the ABGA. When hydroxyapatite was incorporated in the ALGA

matrix degradation was accelerated which makes evident the complexity of each

composite system.

A major breakthrough in biocompatible occurred when Bonfield et al. (Wang

2003) filled high density polyethylene (HOPED), a biocompatible and biostable polymer

broadly used in orthopedics, with hydroxyapatite. The composite known as HAPEXTM,

firstly introduced by Smith & Nephew Richards in 1995, (Wang, 2003, Chouzouri and

Xanthos, 2005) was the revalt of pilot studies, laboratory testing, clinical trials and pilot

plant production efforts spanning a period of about 15 years until regulatory approval was

attained. A range of 0.2 to 0.4 volume fraction HA was determined to be the optimum.

HAPEXTM was the first composite designed to mimic the structure and retain the

properties of the bone, and is mainly used for middle ear implants. It has mechanical

properties similar to the bone and it is easy to trim, which allows the surgeons to

precisely fit it at the time of implantation. By varying the type, amount and particle size
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of HA and the polyethylene type, a range of mechanical properties approaching those of

bones at different parts of the body, and different degrees of bioactivity can be obtained

depending on the application (Wang, 2003). As an example, in order to produce

composite materials that could carry higher loads, Wang et al. (2000), hydrostatically

extruded HAPEXTM at different extrusion ratios after compression molding. Tensile and

flexural properties were considerably increased. The higher the extrusion ratio, the

stronger and the stiffer the extruded rods appeared. The composites produced through

hydrostatic extrusion exhibit mechanical properties similar to the human cortical bone,

which make them a potential candidates for load-bearing implant applications. The in

vitro and in vivo responses have also been assessed extensively. In human osteoblast cell

primary cultures used for in vitro experiments the osteoblast cells appeared to attach to

HA; cell proliferation followed, thus confirming the bioactivity of the composites. ln in

vivo experiments with adult rabbits the composite implant varface was covered by newly

formed bone.

Sousa et al. (2001) investigated HOPE filled with 25% wt commercially available

HA with average particle size of 10 gm, produced by melt mixing and followed by shear

controlled orientation injection molding (SCORIA ®) to simulate the bone structure.

Sousa et al. (2002) also produced composites of blends of starch with ethylene vinyl

alcohol (SEVA-C) with 10, 30 and 50% wt hydroxyapatite by twin screw extrusion

compounding followed by SCORIA ®, as well as conventional injection molding.

SCORIAE ® processing appeared to improve the stiffness of the composites, compared to

conventional injection molding. Νο data were reported regarding the bioactivity of these

composites. Similarly, (SEVA-C) filled with 30% wt commercially available HA was
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produced by Leaner et al. (2003) by melt mixing followed by injection molding to create

circular samples used to study the formation of a calcium phosphate layer in SBF.

composites of Polyvalfone (HSU) filled with 40 viol % HA have also been

produced for hard tisvae replacement (Wang, 2003). Polysulfone is a better matrix

candidate for load bearing applications than HDPE due to its higher strength and

modulus. The PPSU/HA composites were produced by conventional compounding

methods, followed by compression or injection molding. By increasing the HA content,

the stiffness of the composite was increased to levels close to the lower bounds for

human bone. Of particular importance in this and other composites containing HA and

bioactive glass is the control of the polymer/filler interfacial strength, a complex problem

as bioactivity is also an interface related phenomenon.

Yu et al. (2005) produced HA-reinforced polyetheretherketone (PEEK)

composites by mixing HA and PEEK powders, compaction and presvareless sintering.

Filler loadings from 10 to 40 viol % were used and the composites were evaluated for

bioactivity in SBF. The surface of the 40 viol % composite was covered by an apatite

layer in a short immersion period of 3 days, whereas the surface of the 10 viol %

composite required 28 days to be fully covered with apatite. Thus, growth rate constant

and, thus, bioactivity of the composite increase with increasing HA volume fraction.

In another study, Nib and Wang (2002) introduced different loadings (10, 20 and

30 viol %) HA particles into polyhydroxybutyrate (FHB) matrix and conducted in vitro

studies. After a short period of time (within 1 day in SBF) formation of apatite was

observed. The number of nucleation sites of apatite crystals was proportional to the HA

content, and the composite with the higher loading had a faster apatite layer growth as
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expected. Dynamic mechanical analysis (DMA) showed that the storage modulus of the

composite increased initially, due to apatite formation, and eventually apher prolonged

immersion periods decreased due to polymer degradation.

Chen and Wang (2002) introduced HA and MCP into polyhydroxybutyrate-

polyhydroxyvalerate (PHB-PHV). In composites containing up to 30 viol % of fillers,

well distributed in the polymeric matrix, the degradation temperature of the composite

was significantly reduced, the melting temperature was slightly affected and the matrix

crystallinity varied. Both storage and loss moduli increased with increasing bioceramic

content. Finally, a preliminary in vitro study showed bioactivity through the formation of

bone-like apatite.

Shinzato et al. (2000) evaluated an AWGC filler with an average particle size of 4

Um in bisphenol-A-glycidyl methacrylate (bis-GMA) composites at 70 wt%. The

composite had both an uncured and cured varface on each side in order to evaluate the

differences in bone bonding strength. Such composites were implanted into the tibiae of

male white rabbits. Direct bone formation through a Ca-P rich layer was observed

histologically only for the uncured surfaces, prevamably due to enhanced diffusion in the

uncrossliiiked state and faster expovare to the filler surface.

In another study, JJuhasz et al. (2004) investigated composites of HDPE filled with

AWGC of average particle size from 4.4 to 6.7 Am at filler content ranging from 10 to 50

viol %. With an increase in AWGC volume fraction, increases in Young's modulus, yield

strength and bending strength were achieved while the fracture strain decreased.

Specifically, a transition in fracture behavior from ductile to brittle was observed at
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certain filler concentrations. Based on mechanical and bioactivity test data, composites

with 50 viol% AWGC appear to have potential as implants for maxillofacial applications.

3.2 Polylactic Acid and Polycaprolactone Composites

ABTA and PAL are common matrices for composites. Hasegawa et al. (2005) have

evaluated in vivo the biodegradability, osteoconductivity and biodegradability of a porous

composite consisting of HA and PDLLA by implantation into rabbit femoral condoles.

They compared the composite with porous HA and concluded that the composite

resorted faster than HA alone. The porous HA was made by sintering HA whereas the

HA in the composite was calcined and nonsintered, and thus was considered to have

lower crystallinity. As a result, not only the degradability of the PDLLA, but also the

degradability of HA plays an important role in the final performance of the material. The

HA/PDLLA composite showed excellent osteoconductivity and faster resorption than HA

alone.

In an in vivo study that lasted 5-7 years, Hasegawa et al. (2006) investigated the

biodegradability and biodegradation of HA/PLLA composite bone rods using uncalcined-

HA (c-HA) and calcined HA (c-HA) that were implanted into the distal femurs of 25

rabbits. Apher the implantation, 4 rabbits lived for more than five years whereas 1 rabbit

lived for 7 years and 4 months. For the rabbits that died naturally, samples were retrieved

and specimens were examined by light microscopy and SEAM. The HA/PLLA

composites showed excellent biodegradability and osteoconductivity. Newly formed

bone surrounded the residual material and trabecular bone bonded to the rod was
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observed towards the center of the implant. As expected, the mechanical properties of

the rods decreased due to polymer degradation.

Kasuga et al. (2003), prepared PLA/calcium carbonate (vaterite) composites by

solution mixing and hot pressing of the dried mixture. The weight ratios of vaterite/PLA

varied from 10/90 to 7/30. The 10% vaterite composite showed no apatite formation

even after 28 days in SBF since the vaterite particle were completely embedded in the

ALA matrix and were, thus, unable to dissolve. At 30 wt % vaterite, the modulus of

elasticity improved to twice that of the modulus of ALAN. The composite exhibited no

brittle fracture behavior and a high bending strength of about 50 MPG. In addition, the

composite formed a stonelike hydroxy-carbonate apatite layer throughout its surface even

apher one day in SBF.

Zhang et al. (2004), prepared porous ALGA/bioglass composites by phase

separation of polymer solutions containing bioactive glass particles. Silage pretreatment

of the mass resulted in better incorporation in the matrix. Increasing the glass content,

increased the elastic modulus of the composites, but decreased their tensile strength and

break at strain. The silage pretreated glass particles in composites delayed the in vitro

apatite formation since fewer glass surfaces were exposed and the intervening layer of

PPLLA decreased the ion release rate from the bioactive mass with untreated mass

composites soaked in SBF at body temperature formed bone like apatite layer inside and

on their surfaces.

In a similar study, Boccaccini and Maquet (2003), developed porous

PLGA/bioglass composites and examined the in vitro bioactivity and degradability in

PBS. Solution mixing of PPLGA was used to incorporate 10, 25 and 50 wt % of bioglass
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and a thermally induced phase separation method was developed to produce porous

samples. Weight loss, water absorption and molecular weight measurements were taken

to monitor the degradation characteristics after a period of up to seven weeks in PBS.

The study concluded that the degradation of ALGA was retarded by the presence of

bioactive glass. In terms of bioactive, rapid formation of carbonated hydroxyl apatite

crystals was confirmed by SEM, XXRD and Raman spectroscopy.

In an analogous study, Lao et al. (2005), reported on the optimal synthesis

parameters and the kinetics of formation of calcium phosphate layer at the surface of

PLGA/bioglass composites. Apatite formation was studied through SEAM and energy

dispersive X-ray analysis on 30 wt % porous composites. Khe porous structure supported

marrow strolls cells (ASC) proliferation and promoted MSC differentiation into

osteoblast phenotype cells. The porous composite was found to be bioactive and

demonstrated a significant potential as a bone vabstitute.

Kazarian et al. (2004) produced bioglass/PDLLA in the form of foams. The

formation, size and distribution of 10μm average size apatite apher immersion in a PBS

solution after 14 and 28 was observed by FAIR imaging on the composite surface.

Longer immersion periods (e.g. 63 days) resulted in the formation of a broader apatite

layer. The composite scaffolds investigated in this study exhibited a combination of

reductive and bioresorbable properties.

In another study, Maeda et al. (2006), fabricated a PLLPLLA/calcium carbonate

hybrid membrane that contained polysiloxane prepared using aminopropyltriethoxysilane

(ANTES); this was coated with a silicon containing hydroxy-carbonate apatite layer using

a biomimetic process since the presence of silicon apparently enhances the apatite
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forming ability. Specifically, when Porter et al. (2003), incorporated silicates into

hydroxyapatite the rate of bone formation significantly increased due to an increase of the

number of defects related to the specific sites within the ceramic that are most likely to

dissolve. Thus, an increase in the number of defects leads to an increased HA solubility

and consequently to an increased rate of osseointergation. At the surface of 1.5 wt % Sib-

HAD, larger needle like crystallites in the deeper regions of the implant were observed,

whereas smaller plate like apatite crystallites were observed at the bone-HA interface.

This suggests that two different biological processes are taking place. The needle-like

crystallites are generated by a loss of material from the grains of Si-HA and are not due

the heterogeneous nucleation of the biological apatite (Porter et al. 2003). In another

study, Maeda et al. (2006) by incorporating silicon into their membranes showed a

hydroxy-carbonate apatite formation after 3 days in BF. In addition, the silicon

containing membrane had higher cell proliferation ability.

With regard to PCL composites, Lowry et al. (1997), developed a composite of

phosphate glass fibers embedded in PCL in the form of rods that were implanted in a

rabbit humerus structure model and compared with stainless steel pins. Specimens were

removed at 0, 6 and 12 weeks. Histological results revealed minimal inflammation

around the PCL pin. Although, mechanical testing showed that PAL pins were weaker

than stainless steel pins, there was a significant stress shielding effect for the stainless

steel pins.

In another study, Biang et al. (2005) prepared PCL/continuous biomass fiber

composites by a monomer transfer moulding technique coupled with surface initiated

polymerization. The fibers were surface treated with an aminofunctional silage in order
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to initiate polymerization. The surface initiated polymerization improved the Loung

modulus, the flexural strength and also the water resistance of the interface. As a result,

rapid degradation of the composite mechanical properties was prevented.

Fujihara et al. (2005), designed a new type of guided bone regeneration

membrane (BR) using PCLCEaCO3 composite nanofibers, produced by the

electrospinning method. Composites with two different PAL: CaCO 3 ratios (75:25 wt%

and 25:75 wt%) were produced. The GBR membranes showed good cell attachment and

proliferation when observed under SEAM.

Composites of PCL with HA were also produced by Causal et al (2006) and Halo

et al. (2002). In the former case, phase inversion and casting were used to prepare porous

scaffolds with different vol. % of HA. At 20 vol. % of HA the composite exhibited

mechanical properties close to those of the human bone. In the latter case, solid PAL

composites with HA nanocrystals were prepared by a solvent casting method and

analyzed for thermal and mechanical properties.

Azevedo et al. (2003), also prepared PCL/HA composites by two different

methods. Composites were either melt mixed in an extruder, or PAIL was grafted on the

surface of HA particles by ring opening polymerization of caprolactone in the presence of

HA where OH groups acted as initiators. Different percentages of filler were used to

obtain composites whose mechanical properties as well as degradation characteristics

were investigated. Higher amounts of filler lead, as expected, to an increase in the

modulus. The mechanical properties of the materials in the wet state were considerably

lower than in the dry state. This was more significant for composites obtained by

extrusion rather than the ones obtained by grafting. Degradation results agreed with this
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observation since the grafted composites appeared to have slower water uptake and, thus,

degrade at a slower rate.

Researchers have also used copolymers of PAL with other biodegradable

polymers in order to tailor their degradation characteristics. Ural et al. (2000),

synthesized poly(D,L lactide/ε-caprοlactone) with two different molecular weights and

then incorporated HA by solution mixing. The percent elongation decreased, where as

both Loung's modulus and yield point increased with increasing HA content. The

presence of HA resulted in a reduction in the composite degradation rate.

In another study, Prabhakar et al. (2005), examined degradation properties and the

ion release characteristics of PAL containing calcium phosphate glasses. Analytical

techniques such as dynamic mechanical analysis and ion chromatography were utilized to

investigate the behavior of these composites. It was shown that a modification of the

calcium content of the glass structure significantly affected the stiffness, weight loss and

pH behavior.

Similarly, Rich et al. (2002) and Jaakkola et al. (2004), synthesized a copolymer

of pοly(ε-caprοlactone-cο-DL-lactide) (96/4 molar ratio) and produced composites with

two different ranges of granule size (<45gm and 90-3 Ι5μm) of biomass in a batch mixer

at concentrations ranging from 40-70 wt%. They concluded that the higher the glass

content and the glass surface/voiume ratio in the matrix, the faster the apatite formation.

Narhi et al. (2003), explored the biological behavior of a composite filled with glass

S53P4 in experimental bone defects in rabbits. The size of the glass granules varied from

less than 45 Um to 90-315 gm. Bone ingrowth was mainly observed in the superficial

layers of the composites containing larger particle size filler and higher concentrations.
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Using a biomimetic approach, Oliveira and Reis (2004), produced bioactive

coatings on the varface of starchi'PCL scaffolds. The scaffolds were pre-incubated in a

calcium chloride supersaturated solution, and then impregnated with a sodium silicate

gel. The water uptake ability of the samples, as well as the apatite layer formation were

investigated. Apher 12 hours of immersion in SBF, an apatite layer, with Cai'P ratios in

the range of stoichiometric HA, was observed.

In another study of Dee (2003), silanol groups appear to provide nucleation sites

to favor the formation of apatite crystals in organic polymer/silica hybrids of low and

high molecular weight polycaprolactone (PCL) prepared through the sol-gel method. In a

SBF solution fast and uniform nucleation and growth occurred for the low molecular

weight hybrid, due to increased interaction points with the silica and decreased size of the

silica domain. Additionally, the lower molecular weight of PAL meant faster degradation

and faster exposure of the silica phase in the SBF solution.



CHAPTER 4

SCOPE OF THE THESIS

There is a significant amount of work that has been conducted in the tissue engineering

field to produce materials capable of bone regeneration. It is apparent that the number of

parameters that affect both bioactivity and degradation is very large and can be very

specific for each material. Composites for bone regeneration could be used in different

parts of the human body where load-bearing may or may not be essential. This makes

every material unique in terms, not only of properties, but also composition and

processing characteristics. Taking all these into account, it is understandable why

research in the field is so demanding but also so challenging.

In spite of numerous publications on the potential use of combinations of polymer

/ bioactivity fillers for bone regeneration, little information exists on the assessment of

solid, non porous composites prepared via solventless routes and consisting of

unmodified, slowly degrading homopolymers with relatively low amounts of reactive

fillers.

The scope of this thesis was to fabricate such composites, consisting of

degradable polymers and a variety of inorganic fillers, and investigate them in terms of in

vitro bioactivity, degradability and mechanical properties. A comparison between these

composites containing a semicrystalline or an amorphous polymer, along with phosphate

and silicate fillers would provide an understanding of the degradation rates and the

different reactions between polymers and fillers leading to bone regeneration. Results

would allow further optimization of filler properties, vach as surface/volume ratio,

surface chemistry and size range at the required filler volume fractions. The work
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described in the following pages would be expected to contribute to the establishment of

a relationship between process conditions, degradability and bioactivity.



CHAPTER 5

EXPERIMENTAL

5.1 Materials

5.1.1 Fillers

A variety of fillers were chosen and used in this experimental study. One of the

objectives was to screen these fillers for bioactivity, in terms of apatite formation, and

then incorporate them in biodegradable polymers to form biocomposites that could

eventually be used for tissue regeneration applications. Kable 5.1 shows the properties

and characteristics of the fillers used for the initial screening.

Table 5.1 Characteristics of Fillers
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The pH of the calcium silicate (CS) and the bioactivity glass 45S5 (biomass) of 5

wt% aqueous slurry solution is 9.6 and 10.8, respectively. SEAM micrographs of CS and

biomass powders are shown in Appendix A.

5.1.2 Polymers

Several aliphatic polyesters were chosen and used for the experimental study. All of them

are reported to be biodegradable and can be processed as conventional thermoplastic

polyesters. Khey are as follows:

1. Poly (1, 4-butylene adipate-cο- l ,4-butylene vaccinated) [PST], extended with 1,6-

diisocyanatohexane, a biodegradable thermoplastic polyester (CAS No. 119553672)

obtained from Sigma-Aldrich. The measured carboxyl content CC of the pellets was

0.0535 eq./106g, corresponding to an acid number of 3.0.

2. Poly-L-lactic acid [PLLA] (trade name Aomer L9000) (CAS No. 26680-10-4), a

semicrystalline polyester, obtained from Aomer. Polylactic acid is derived from

naturally occurring lactic acid, which has two isomers as shown in Figure 5.1. The (S)

L(+) isomer was used in this work. The measured carboxyl content CCp  of the pellets

was 0.0247 eq./10 6g, corresponding to an acid number of 1.4.

3. Polylactic acid [PLAN] (trade name ALΑ4060D) obtained from NatureWorks ®. This

resin is amorphous and was used for comparison with other semicrystalline polyesters

with regard to degradation and the resulting bioactivity of the composites.

4. Poly-ε-caprolactοne [PAIL] (trade name TONE P767) recommended among others for

computable applications, with density of 1.145 g/cc, number average molecular weight
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of 50,000 and melt flow index (MMFI) of 1.9g/10min were supplied by Dow Chemicals.

Deported melting temperature was 60 °C.

The properties and characteristics of the polyesters are summarized in Table 5.2.
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5.1.3 Degradation and Bioactivity Media

5.1.3.1 Phosphate Buffer Saline Solution (PBS). In order to follow the degradation

behavior of the aliphatic polyesters and their composites, pouches of phosphate buffer

saline (PBS) were obtained from Sigma Aldrich. Contents of one pouch, when dissolved

in one liter of distilled or demonized water, yielded 0.01 A phosphate buffered saline

solution (NaC1 0.138 A; KCB 0.0027 a) with a pH 7.4, at 25 °C. The composition of the

PBS aqueous solution is 1.38 ma Nail, 1.15 ma Na2ΗΡΟ 4, 1.2 mM ΚΗ2PO4 and 2.7

mM KCI. PBS is a buffer solution that is commonly used by researchers for hydrolytic

degradation and in vitro controlled release experiments.

5.1.3.2 Simulated Body Fluid (SBF). Kokubo (1990, 2006) developed a simulated body

fluid that has inorganic ion concentrations similar to those of human extracellular fluid in

order to study the formation of apatite on reductive materials in vitro. The simulated

body fluid is ophen abbreviated as SBF. Its ion concentrations are given on Table 5.3. It

was prepared by dissolving appropriate amounts of NCI, ΝαΗCO3, KCI, Κ2ΗΡ04 .3H2O,

agCB2 .6Η2O, CaCB2 and Na2SO4 in distilled water and buffering to pH 7.4 at 36.5 °C with

tris(hydroxymethyl)aminomethane and 1 a HC1 solution. The complete procedure and

the reagents used for the preparation of SBF can be found in Appendix B. The SBF is

known to be a metastable solution and it was kept refrigerated throughout the course of

these experiments.



5.2 Processing

5.2.1 Preparation of Filler Samples

Fillers were compression molded to form tablets (in the absence of binders) in a 13mm

diameter mold used to prepare KB samples for FAIR analysis. Fillers were also used in

their original powder form for screening bioactivity.

5.2.2 Preparation of Polymer Samples

Polymers used in this study underwent different processing steps depending on the testing

method that followed. Polymers used as controls for degradation and bioactivity

experiments underwent the same processing and shaping procedures as their composites,

discussed in 5.2.3.

Neat PPLLA, HST and PCL polymers were fed in a 15mm twin-screw extruder

(APB ΜP-2015) at 200°C, 130°C and 80°C barrel temperatures respectively in order to

obtain control samples. Neat PLAN was fed in a Bartender Plasticorder ΡL2000 at 190 °C

and 60 rpm for 10 minutes under a nitrogen blanket in order to obtain a control sample.

Extruded and batch processed unfilled polymers were then compression molded

in a FHI press at their processing temperatures using a 44kΝ force for 5 minutes;
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standard test disc specimens with nominal thickness of 0.75 mm and diameter ranging

from 20 to 33mm were prepared for the degradation and bioactivity studies. Similarly,

compression molded samples of unprocessed polymers in a film form were prepared and

used for degradation studies that followed intrinsic viscosity changes.

PLAN pellets were predated and extruded through a Bartender single screw

extruder (D1.9cm and L/D=15), equipped with a 10 cm flat sheet die to obtain film

samples (0.15 mm in thickness) for mechanical testing.

Cylindrical samples of unfilled ALA, apher being processed in the batch mixer,

were used for testing their compressive properties. The samples were 5.96 mm in

diameter and 27 mm in length and were produced using a 15 — cavity transfer mold by

compression molding.

5.2.3 Preparation of Composite Samples

Composite samples were prepared by solution mixing as well as melt mixing. PAL was

dissolved in 40 cc dichioromethane at room temperature and each filler was added at a

PAL / filler weight ratio of 7:3. The samples were leph in the fumehood ovemight at room

temperature. Apher most of the dichioromethane had evaporated, the remaining solids

were transferred into Pyrex dishes and dried under vacuum.

Neat polymers (PLLA, PAL) were predated and ground to a fine powder under

liquid nitrogen (when possible) and then premixed with powdered fillers at a 7:3 polymer

: filler weight ratio, before feeding the mixture in a co-rotating 15 mm twin screw

extruder (APB ΜP-2015) at each polymer's processing temperature. In the case of the
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PLA composites, mixing took place in a Bartender Plasticorder (PL2000) at 190 °C and

60 rpm for 10 minutes under a nitrogen blanket.

Composite samples were ground into powders and compression molded in a PHI

press at processing temperatures using a 44 kJ force for 5 minutes to form standard test

disc specimens with nominal thickness of 0.75 mm and diameter ranging from 20 to 33

mm for the degradation and bioactivity studies.

PLAN composite samples used for testing of their compressive properties were

produced in a cylindrical shape in a 15 — cave transfer mold, as their unfilled

counterparts.

5.3 Testing and Characterization of Fillers for Bioactivity

5.3.1 Immersion in Simulated Body Fluid (SBF)

In order to test the bioactivity of the neat fillers, 1 g of each filler was dispersed in 100m1

of SBF solution. The flasks containing the dispersion were then immersed in a water

bath and shaken at 36.5 °C for predetermined time periods (6h, 9h, id and 1 week) (Kim

et al. 2005). After removing the samples by decanting the SBF, the powders were

washed with ethanol and dried under vacuum at room temperature ovemight. Distilled

water (DW) instead of SBF was also used as a control. Compression molded samples in

the form of tablets (in the absence of binders) were also immersed in SBF at 36.5°C.
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5.3.2 Analysis of Surface Structure and Morphology

5.3.2.1 Scanning Electron Microscopy. The surface of the neat filler samples in powder

and tablet form, before and apher exposure to the SBF solution (or distilled water for the

powder fillers) , was examined by SEAM (LEO Field Emission Gun 1530-VP Digital

SEAM). The specimens were carbon coated using a Bal-Tec Aged 020 Sputter Coster and

then viewed by varying the working voltage (from 1 to 10 kB).

5.3.2.2 Energy Dispersive X-Ray Analysis. Elemental analysis was performed on all

filler samples before and after immersion in the SBF solution or distilled water. In

addition to apatite growth, bioactivity was investigated by analyzing for elements like Ca

and P that could be part of an apatite type layer formed at the surface. The Ca/P ratio was

calculated and compared with the Ca/P ratio of 1.67 which according to Clifford et al.

(2001) is equivalent to the one in the carbonated hydroxyapatite needed for bone

ingrowth.

5.3.2.3 X-Ray Diffraction. The powdered fillers before and after immersion in the SBF

were analyzed using a Philips KW 3040AΡD DY715 X-ray diffractometer in order to

detect and analyze the precipitated apatite layer. The specimens were scanned through

the 28 range between 150 and 60° .

5.4 Testing and Characterization of Composites and Unfilled Polymers for

Bioactivity

5.4.1 Immersion in Simulated Body Fluid

The compression molded composites and unfilled polymer samples were immersed in

duplicates in the SBF solution at a surface area/volume ratio of 0.1 and a temperature of
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36.5 °C. After predetermined time periods (1, 4 and 8 weeks), the samples were removed,

rinsed with PBS followed by ethanol, and then dried under vacuum at room temperature

ovemight.

5.4.2 Analysis of Surface Structure and Morphology

5.4.2.1 Scanning Electron Microscopy. The surface of the composites and unfilled

polymers before and after exposure to the SBF solution was examined by SEAM as

described in Section 5.3.2.1.

5.4.2.2 Energy Dispersive X-Ray Analysis. Elemental analysis was performed on all

samples before and after immersion in the SBF solution. Bioactivity was investigated,

similarly to the neat fillers, by analyzing for elements like Ca and P that could be part of

an apatite type layer formed at the surface.

5.4.2.3 X-Ray Diffraction. The composite and unfilled polymer discs before and after

immersion in the SBF were analyzed as described in Section 5.3.2.3.

5.4.3 SBF Solution Analysis

5.4.3.1 Atomic Absorption Spectroscopy. Atomic Absorption (AA) Spectroscopy was

used to evaluate changes in the concentration of Cat+ ions in the SBF solution at different

immersion times. A Perkin Elmer Analyst 400 with detection limit of less than 1 pm

was used. Standards and samples were prepared according to the Direct Air-Acetylene

Flame method that is described in Appendix C. Average values are reported from

measurements on duplicate samples that showed good reproducibility.
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5.4.3.2 UV — Visible Spectroscopy. An HP 8453 UB-Bis spectrophotometer was used

to detect changes in the concentration of phosphorous in the BF solution at different

immersion times. Standards and samples for UB-Bisible analysis were prepared

according to the Ascorbic Acid method described in Appendix C. Average values are

reported from measurements on duplicate samples that showed good reproducibility.

5.5 Hydrolytic Degradation of Composites and Unfilled Polymers

5.5.1 Weight and pH Changes as a Function of Time

Degradation experiments for the composites and unfilled polymers were conducted by

immersing the specimens in triplicate in a PBS solution of pH 7.4 at 36.5 °C. Weight

changes were monitored after predetermined time periods by removing the samples from

the solution and wiping the excess liquid. Weight changes were calculated at each time

period using the following equation:

where Wt and W0, respectively are weights of the wet and starting dry discs at time t.

The pH of the buffer solution at different degradation periods, apher sample

removal, was measured to monitor changes that could be a combination of acidic

degradation byproducts resulting from the polymer and any nuetralization effects

resulting from the fillers. When the tests were completed, the specimens were washed

with distilled water and dried under vacuum at room temperature for further

characterization.
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5.5.2 Intrinsic Viscosity as a Function of Time

The intrinsic viscosity [n] of 1% w/o solutions of PAL in dichloromethane and ALGA,

ALAN and HST in chioroform, before and apher several immersion periods of their discs or

films in PBS was measured at 25 °C in a constant temperature bath using an Ubbelohde

viscometer (Bannon Κ879) by using the Solomon-Ciuta Eon. 5.2 (Xanthos et al. 2001)

for a sinme point measurement:

where asp and nrei are the specific and relative viscosity respectively, and C is the

concentration.

The solvents were filtered three times using disposable Teflon filters (CR syringe

filter Acrodisc® PTFE, 25 mm diameter, 1.0 gm pore size, Luer fitting). In the case of

the composite samples, the filler was removed by dissolving the polymer in the filtered

solvent, centrifuging and decanting the polymer solution. The polymer solution was then

filtered and dried in order to obtain the neat polymer that was redissolved to 1% w/o

solution.

5.5.3 Thermal Properties as a Function of Time

lnformation on glass transition temperature (Kg ), melting temperature (Am ), cold

crystallization temperature (Τ cc) as well as heat of fusion (ΔΗ) and % crystallinity was

obtained by Differential Scanning Calorimeter, DSC (TA Instruments, QA100). For all

samples, heating and cooling rates were 20°C/min.
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5.5.4 Mechanical Properties as a Function of Time

Tensile stress at yield and break and elongation at yield and break of ALAN films (Type 5)

were measured by a Tinius-Olsen (Lo Cap Universal) testing machine as per ASTM

method D882, at a rate of testing of 12.7 mm/min. Khe average of five determinations

per sample is reported along with standard deviations.

Compressive stress and strain at yield and break and compressive modulus were

measured by a Tinius-Olsen (Lo Cap Universal) testing machine as per ASTM method

D1621, at a rate of testing of 1.27 mni/min. The average of five determinations per

sample is reported along with standard deviations.



CHAPTER 6

RESULTS AND DISCUSSION

6.1 Bioactivity of Neat Fillers

6.1.1 Fillers in the Form of Powders and Tablets

Biocomposites capable of stimulating bone regeneration reouire a combination of

properties vach as bioactive, biocompatibility and degradation characteristics with

adeouate mechanical properties. Aaterial selection and proper combination of the

selected materials are critical parameters in order to achieve the above reouirements. The

rate and the uniformity at which the apatite layer is forming on the surface of the

bioactivity filler are very important and need to be coupled with the right polymer

degradation characteristics in order to support bone formation with the desirable

mechanical properties. This is the main reason that initial experiments in this study

involved SEAM with ED elemental analysis and XXRD characterization of the neat fillers

in the form of powders or tablets apher immersion in SBF.

A variety of fillers were tested for bioactive, in terms of apatite growth, after

immersion in SBF. In this section results with CS and biomass will be reported. Results

with other fillers are included in Appendix D. Formation of carbonated apatite, which is

a characteristic of bioactive materials, is reproduced in vitro upon immersion in SBF that

has the same ion concentration as human blood plasma. Literature has suggested that

materials with high ionic solubility readily form apatite precipitates on their surface. This

takes place through a chain of reactions including dissolution, precipitation and ion

exchange accompanied by absorption and incorporation of biological molecules

(Ducheyne and Qiu, 1999). Specifically, in the case of silicon containing bioactive

69
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materials, dissolution of calcium ions and simultaneous formation of a silica-ńch layer at

the material interface is the proposed mechanism for HA formation (Siriphannon et al.

2002). The dissolution of the calcium ion increases the degree of supersaturating of the

surrounding fluid with respect to HA and the silica-rich layer supplies the needed

nucleation sites by dissolving silicate ions. The nucleation and growth of the HA layer

proceeds by reaction with the calcium, phosphate and hydroxide ions from the SBF;

sometimes, ions such as carbonate or fluoride are also incorporated in the final structure.

The method that was followed in this work gives only an indication of activity.

In the case of powders, the results are more complicated than in the case of tablets, since

different particles may show different nucleation activity and the area of interest in SEM

images is highly localized. An additional drawback is that the materials used in this

study are commercially available and not in-house synthesized. Several researchers have

synthesized and used bioactive fillers in order to control purity and, at the same time, the

amorphous and crystalline phases which exhibit different microtextures and specific

surface areas (Siriphaiinon et al. 2002, De Aka et al. 2000, Chaco et al. 2005, Wan et al.

2005, Lin et al. 2005, Peiti et al. 2001). Although some powders have been used by

researchers ((Sińphannon et al. 2002, Bim et al. 2005), the majority uses scaffolds or

bioactive materials in pellet form.

6.1.1.1 Calcium Silicate. Figure 6.1 shows SEAM micrographs of calcium silicate (CS) in

powder form before and apher one week immersion in DW and SBF. Jo obvious changes

are observed on the surface of the particles even after a week. Calcium silicate in the

form of wollastonite has been shown in the literature (Liu et al. 2004) to have a bioactive

and biocompatible response. Barious forms of calcium silicate such as



71

pseudowollastonite (a — CaSiO3) (Sahib and Anseau, 2005, De Aka et al. 2000)

calcium silicate (Ca3 S10 5) (Chao et al. 2005), a-dicalcium silicate (Chang, 2006),

wollastonite (a-CaSiO3) (Wan et al. 2005, Li and Chang, 2005), amorphous calcium

silicate, calcium silicate and calcium silicate (Siriphannon et al. 2002), and

commercially available mineral wollastonite (Risbud et al. 2001) have been shown to

exhibit different degrees of bioactivity.

Figure 6.1 CS powder before and apher immersion in DW and SBF. (a) Before
immersion. (b) After six hours immersion in DW. (c) After 6 his immersion in SBF. (d)
After 24 his immersion in SBF. (e) After 168 hrs (one week) immersion in SBF.
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Figure 6.1 CS powder before and after immersion in DW and SBF. (a) Before
immersion. (b) After six hours immersion in DW. (c) After 6 his immersion in SBF. (d)
After 24 hrs immersion in SBF. (e) After 168 his (one week) immersion in SBF.
(Continued).

Figure 6.2(a) represents the molded surface of a CS tablet before SBF immersion.

Globules of mineral precipitates appeared on the exposed CS surface after one week (Fig.

6.2(b)) whereas at higher magnification (Fig. 6.2(c)) the precipitates appear as needle-like

deposits. It is evident that the pressed sample shows mineral growth that could not be

observed for the sample in powder form. This could be due to the formation of additional

active nucleation sites as a result of the sample manufacturing method.



Figure 6.2 SEAM micrographs of calcium silicate molded surface showing growth of
mineral precipitates. (a) Before immersion in SBF. (b) After one week immersion;
globules of mineral precipitates are shown on the exposed surface. (c) Higher
magnification of the globular structure shows needle like deposits.

Figure 6.3 shows XRD spectra of CS before and after immersion in DW and SBF.

The intensities of the 31.7 ° [211] and 40 ° peaks of apatite increased with immersion time.

Active can be seen as early as after 6 hours immersion in SBF. After 168 hours (one

week) immersion, apatite formation at 31.7 ° was observed. In addition, a peak at 29.3 °

can be observed in the CS as early as six hours immersion in SBF. This is in agreement

with results of Siripharmon et al. (2002) who observed this peak as early as after two

hours and attributed it to the crystallikation of an amorphous CaCO3 constituent in the

original CS. Similarly to our study, Siriphannon et al. (2002) clearly observed by the

ORD pattern the formation of crystalline HA that seemed to cover the bioactive material

surface as early as 24 hours after immersion. A residual calcite peak at 29.3 ° and at 40°
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was also strong in both Siriphannon et al. (2002) and our own studies. Formation of

apatite structures in our work is also confirmed by ED data (not shown) that showed

differences in the Ca/P ratios ranging from 8.09 after 9 hers, to 5.3 after 168 hours in SBF.

Although the Ca/P ratio does not appear to be the one of biological apatite (1.67), it

certainly shows a tendency towards that value. Jote that the different crystalline and

amorphous phases of the material are important for its bioactivity behavior as shown by

Siriphannon et al. (2002) in the case of a-CS and a-CS for apatite layers with different

formation behavior, microstructure and particle sike. Based on data from these authors

and our CORD data, it appears that the CS used in the present work is mostly amorphous

with an expected different nucleation and growth behavior than that of crystalline CS

fillers.

Figure 6.3 XRD spectra of CS before and apher immersion in DW and SBF.
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6.1.1.2 Biomass. Figure 6.4 represents SEAM micrographs of bioactive glass 45S5

(bioglass) in powder form before and after immersion in SBF and DW. Bioglass has a

reported decay rate of 150 μg/ cm2/day (Mo-Sci, 2007) and appears to be very reactive,

since some type of precipitation is noted even after immersion in DW. When biomass

was immersed in SBF, fast mineral precipitation (after 6 hours in SBF) appeared. In

Figure 6.4(e), mineral precipitates can be seen in the form of globules that will eventually

cover the entire filler surface  at longer immersion periods. After only 6 hours the

coverage appears to be nearly homogeneous.

Figure 6.5 includes SEM micrographs of the molded bioglass surface before and

after one and two weeks immersion periods in SBF. Figure 6.5(a) shows the molded

bioglass surface before immersion as free of mineral precipitates. After one week

immersion, nucleation and growth have occurred on the exposed surface resulting in

clusters of mineral precipitates. These precipitates, at a higher magnification (Fig. 6.5(c)),

appeared as needle shaped nanosized crystallites, in agreement with results reported in

the literature (Fujibayashi et al. 2003). After two weeks of immersion (Fig. 6.5(d)), the

bioglass area appeared to be fully covered with mineral precipitates.
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Figure 6.4 Bioglass powder before and after immersion in DW and SBF. (a) Before
immersion. (b) Before immersion at higher magnification. (c) Apher six hours immersion
in DW. (d) After six hours immersion in SBF. (e) After six hours immersion in SBF at
higher magnification. (1) After 24 hrs immersion in SBF. (g) After 168 hrs (one week)
immersion in SBF.
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Figure 6.5 SEAM micrographs of biomass molded surface showing mineral growth on the
exposed surfaces over one and two weeks periods immersion in BF. (a) Before
immersion. (b) After one week immersion; clusters of mineral precipitates are observed
on the surface. (c) Higher magnification of (b); closer view of the clusters reveals needle
shaped nanosized crystallites. (d) After two weeks immersion; area appears to be fully
covered with mineral precipitates.

ED results (Fig. 6.6) for the biomass molded surface showed the changes in Jab,

Ca, P and Si concentrations at different immersion periods. The ratio of calcium to

phosphorus changed towards a 1.67 value as a function of exposure time presumably due

to the formation of hydroxyapatite on the biomass surface.
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Figure 6.6 ED elemental analysis of bioglass compressed surface as a function of
exposure time showing a Ca/P ratio approaching 1.67. (a) Before immersion; Ca/P ratio
equals to 5.36. (b) After one week immersion; Ca/P ratio equals to 2.43. (c) After two
weeks immersion; Ca/P ratio eouals 2.41.

Figure 6.7 shows ORD spectra for bioglass powder before and after immersion in

DW and SBF. For amorphous biomass, an apatite peak [212] appearing at 32° after six

hours immersion became less broad with respect to longer immersion times, suggesting

formation of apatite with higher crystallinity. This is in agreement with data of

Fulgueiras et al. (1993) showing that the amorphous CaO-P2O 5-rich layer starts forming

in as little as 5-10 minutes, whereas the crystalline phase develops after 90-360 minutes

on biomass. Kontonasaki et al (2002) showed that the crystallization of the HA layer for

PerioGlass powder (a Bioglass® Synthetic Bone Graft Particulate) appears to be

completed after 24 hours immersion in SBF, and the precipitation that could be observed

after 18 hours was an amorphous CaO-P 2O 5-rich layer. These results are in reasonable

agreement with the results of our study for the initial testing periods.
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In order to compare the different rates in nucleation and growth for different filler

sample preparation procedures, non polished rods of biomass were cut in discs measuring

12 mm diameter and 2.65 mm thickness and tested in SBF solution. Figure 6.8 shows

SEAM micrographs of the discs before and after three, five and seven days of SBF

immersion. Results in surface morphology are similar to the results for the compression

molded samples, as expected. Khe irregularities on the disc surface appear to have acted

as nucleation sites for apatite formation. It should be noted that results with polished

discs showed zero nucleation/growth.
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Figure 6.8 SEAM micrographs of bioglass disc surface showing mineral growth on the
exposed surfaces over three, five and seven day periods immersion in SBF. (a) Before
immersion in SBF; surface irregularities are present. (b) After three days immersion;
clusters of mineral precipitates are observed on the surface. (c) After five days
immersion. (d) After seven days immersion; area appears to be homogeneously covered
with mineral precipitates above and beneath the irregularities.

Figure 6.9 represents ED results for the bioglass disc, showing the changes in

Nay, Ca, P and Si concentrations with respect to different immersion periods. The ratio of

Ca/P changed from 5.36 before immersion to 1.70 after seven days immersion in SBF.

This value is very close to the biological apatite (1.67) and confirms the formation of

hydroxyapatite on the disc surface. Discs appear to reach terminal Ca/P values earlier

than compressed surfaces, which would be due to the different manufacturing processes.
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SEAM analysis of data obtained with biomass powder 1393 (1393) after

immersion in DW and BF showed little or no apatite growth. CORD data were very

much different that those obtained with biomass showing peaks at different 20 locations

than those corresponding to apatite. The composition of this mass is significant different

than that of bioglass (see Table 5.1); furthermore, no decay rates are available from the

manufacturer that would assist in the interpretation of the observed behavior. SEAM and

CORD data for this particular mass are shown in Appendix D.
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6.2 Bioactivity of PCL Composites

In the case of PAL composites five fillers (HA, a-TCP, CaCO 3 , biomass CS) and two

different processing methods were used: solution and melt mixing. The results and the

effect of both processing methods are presented in a parallel manner for better

understanding.

6.2.1 SEM Characterization

Figure 6.10 includes SEM micrographs of extrusion processed unfilled PAL before and

apher immersion in BF. Figure 6.10(a) representing the polymer surface before

immersion showed some surface roughness and cracks, possibly the result of defects

during sample preparation. Jo obvious changes, as expected, were evident on the

polymer surface apher immersion (Figs. 6.10(b), 6.12(c)) with no mineral nucleation and

growth.



Figure 6.10 SEAM micrographs of extrusion processed unfilled PAL samples before and
after immersion in SBF solution showing no mineral precipitation. (a) Before immersion;
some surface roughness due to processing conditions can be observed. (b) After one week
immersion; no obvious changes, only formation of some cracks. (c) After four weeks
immersion; no precipitation, just cracks and surface roughness similar to previous time
periods.

In the case of composites described below, the diffusion of the SBF through a thin

layer of the surface polymer is followed by attack of the bioactive fillers; these will

eventually start decaying and partially dissolve, while exhibiting apatite forming ability

as per the mechanisms discussed by Kim et al. (2005) for calcium phosphates, Hench

(1988) for bioglass and De Atka (2000) and Siriphannon et al. (2002) for calcium silicate.

It is generally expected in tissue engineering (Lei et al. 2007) that the degradation rate



84

should be slower than the bone formation since the biomaterial needs to have sufficient

mechanical properties to support the bone regeneration process.

6.2.1.1 PAL/HA Composites. Figure 6.11 represents SEAM micrographs of extrusion

processed PCL/HA surfaces. Khe non immersed in SBF surface appears to be rough,

possibly as a result of the processing conditions. This roughness could result to more

nucleation sites for apatite formation. After one week (Figs. 6.11(b), 6.11(c)),

degradation of the thin layer of the polymer surface has brought HA particles in contact

with the SBF solution and some mineral precipitates in the form of small spherical

crystals are evident. According to ED analysis (results not shown), the Aa/P ratio was

1.67 and 1.52 after one and four weeks respectively. Lei at al. (2007) suggested that a

Ca/P ratio of 1.67 is the one of the apatite needed for bone regeneration, whereas the 1.50

ratio implies a-KCP formation that will act as a template for further apatite formation. A

possible explanation for this opposite effect could be that apatite has already been formed

in one week time period through other calcium phosphates; since SBF was not

replenished throughout our experiments calcium reservoirs (for the four week period)

were not sufficient for further surface reactions and apatite formation.
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Figure 6.11 SEAM micrographs of extrusion processed PAL/HA samples before and after
immersion in SBF solution showing some initial mineral precipitation. (a) Before
immersion; some surface roughness due to processing conditions can be observed. (b)
After one week immersion; formation of some cracks possibly due to polymer
degradation and some mineral precipitation is evident on the surface. (c) Higher
magnification for after one week immersion samples; clusters of mineral precipitates are
detected on the sample surface.

Figure 6.12 shows SEM micrographs of the surfaces of solution mixed PAL/HA

samples. Khe surface for the non exposed PCL/HA (Fig. 6.12(a)) appears to be smooth

and free of defects. Apher one week immersion in SBF (Fig. 6.12(b)), cracks have formed

and small spherical crystals appear on the composite surface, initiating the formation of

apatite layer that would eventually cover the entire surface. Figure 6.12(c) shows a

higher magnification of the one week exposed surface. It appears as if mineral

precipitation covers an area further inside the sample surface than in the sample prepared

by extrusion.

Differences in apatite formation behavior may be related to differences of

extrusion vs. solution mixed samples in terms of: a) thermal history and its effects on the

stability of the calcium phosphate fillers (Bench, 1998), b) crystallinity and thickness of

the outer surface polymer layer and their effects on permeation rate and degradation, and

c) distribution of filler particles at/or near this outer layer and its effect on uniformity of
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mineral coverage. In addition to the mixing method, differences in chemical structure,

impurities, porosity and particle size of the bioactive ceramic (Laurencin and Khan,

2006) play an important role in the behavior of the composite material. Many researchers

have synthesized the bioactive HA filler (Yu et al. 2005, Higashi et al. 1986, Halo et al.

2002) in order to control the resorption rate and, thus, the bioactive.

Figure 6.12 SEAM micrographs of solution mixed PCL/HA samples before and after
immersion in BF solution showing some mineral precipitation in the form of spherical
crystals. (a) Before immersion. (b) After one week immersion; formation of some cracks
possibly due to degradation and some mineral precipitation is evident on the surface. (c)
Higher magnification for after one week immersion; clusters of mineral precipitates were
detected on the sample surface.
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6.2.1.2 ΡCL/β-TCΡ Composites. Figure 6.13 represents SEAL micrographs of extrusion

processed PCL/a-TCP surfaces. Before immersion (Fig. 6.13(a)) the surface appears to

be rough with some cracks. After one week immersion (Fig. 6.13(b)), some precipitation

through the formed cracks appears on the surface, similarly to the HA composite. At

higher magnification (Fig. 6.13(c)), the structure of the precipitates appears to be

spherical crystallites and remains the same even after four weeks immersion (Fig.

6.13(d)).

In a study conducted by Ain et al. (2005), out of all bioactive ceramics (including

HA, mass ceramics, biomass, a-TCP and a-TCP), a-TCP although having a very good

ability of osteointegration, shows poor ability of apatite formation both in vitro and in

vivo. In the work of Lei et al. (2007) 20% PCL/TCP composite scaffolds showed the

initiation of formation of an apatite layer on the scaffolds surface after 17 days of SBF

immersion. Mineral precipitates vach as octacalcium phosphate (OCR) and a-TCP were

the precursors for the formation of apatite. After four weeks immersion, apatite had

formed continuously on the surface of the scaffold. It is important to note the differences

between our solid samples and scaffolds. Scaffolds with certain porosities have higher

water uptake, which could lead to higher degradation rates, and also more nucleation

areas that could be exposed to SBF. ln addition, the different crystallographic features of

TCP could lead to different apatite formation rates and uniformity.



Figure 6.13 SEAM micrographs of melt mixed PAL/KCR samples before and after
immersion in BF solution showing some mineral precipitation in the form of spherical
crystals. (a) Before immersion. (b) After one week immersion; formation of some cracks
possibly due to degradation and some mineral precipitation is evident on the surface. (c)
Higher magnification for after one week immersion; clusters of mineral precipitates were
detected on the sample surface. (d) After four weeks immersion; Similar structures with
the one week exposure. Some salt crystals from the solution are evident on the sample
surface.

In the case of solution mixed PCL/a-TCR composites, it is evident from Fig. 6.14

that after one week immersion mineral precipitation in the form of small spherical

crystals appears on the composite surface. Morphology is different and more pronounced

compared to the case of melt mixed composites. Once more the effect of different

processing conditions is apparent.
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Figure 6.14 SEAM micrographs of solution mixed PCL/TCP samples before and after
immersion in SBF solution showing some mineral precipitation in the form of spherical
crystals. (a) Before immersion. (b) After one week immersion; formation of small
spherical crystals appear on the surface (c) Higher magnification for after one week
immersion; clusters/globules of mineral precipitates were detected on the sample surface.

6.2.1.3 PCL/CaCO3 Composites. In the case of PAL/CaCO3 extrusion mixed

composites, SEM micrographs can be seen in Figure 6.15. After only one week

immersion (Fig. 6.15(b)), many globules of mineral precipitates can be observed on the

composite surface. At higher magnification (Fig. 6.15(c)), the globules seem to have a

needle like, presumably apatite, structure that is similar to the one that had been observed

in the case of biomass filler. After four weeks immersion (Fig. 6.15(d)), the growth

appears to be limited, possible due to the lack of SBF replenishment.
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Figure 6.15 SEM micrographs of extrusion mixed PAIL/ CaCO3 samples before and after
immersion in SBF solution showing some mineral precipitation in the form of spherical
crystals. (a) Before immersion; sample surface free of roughness and cracks. (b) After
one week immersion; formation of many small mineral globules appear on the surface (c)
Higher magnification for after one week immersion; clusters/globules of mineral
precipitates have a needle like structure. (d) Apher four weeks immersion; limited mineral
precipitation.

6.2.1.4 PAL/biomass Composites. Figure 6.16 represents extrusion mixed SEAM

micrographs of PCL/bioglass surfaces. There was mineral precipitation after only one

week exposure in SBF (Fig. 6.16(a)). At higher magnification (Fig. 6.16(b)), the small

spherical crystals represented a precipitated mineral morphology that was similar to that

reported in literature (Lu et al. 2005, Change et al. 2004). The crystals would have been

expected to grow and form a layer of apatite on the surface that would later crystallize to

stonelike apatite. However, this was not evident in our case even after eight weeks of

immersion, as shown in Figure 6.16(c) taken at lower magnification, where no significant
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differences from the first week were observed. The reason could be that the human body

is a constant reservoir of SBF, whereas under the present experimental conditions SBF

was not replenished. In addition, the hydrophobic nature and slow degradation kinetics

of the PAL may have also affected apatite formation. The sporadic mineral growth that

appeared on the examined sample surfaces may also be related to the partial dissolution

of the Ca-P deposition during immersion, due to changes in ion saturation, as suggested

by Jaakola et al. (2004). The same authors showed considerable bioactivity of biomass in

a 96/4 molar ratio poly(ε-caprolactοne-co-DL-lactide) matrix at high filler concentrations

(over 40 wt%) and high filler surface area'volume ratio over a six month period.

Proactive was, in general, assessed through SEAM microscopy, FTIR and ion

concentration analysis and, in addition, SBF was replenished over the testing period. It is

of interest to note that in spite of the presumed higher hydrophobic of the copolymer

matrix vs. our copolymer and the presence of more nucleation sites due to its easier

hydrolysis, comparison of the copolymer composites containing 40 wt% biomass

(particle size 90-31 5μm) with the present copolymer composites containing 30 wt%

bioglass (particle size 90-212gm) indicated limited apatite growth in both cases up to

three months exposure.
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Figure 6.16 SEM micrographs of extrusion mixed PCL/bioglass composites after
immersion in SBF solution showing mineral precipitation on the polymer surface. (a)
Apher one week immersion; mineral precipitation can be observed on the surface of the
composites. (b) Higher magnification of (a); small spherical crystals appear on the
surface of the composite. (c) After eight weeks immersion; similar spherical crystals have
precipitated on the surface.

6.2.1.5 PAL/CS Composites. Figure 6.17 includes a series of SEM micrographs of

extrusion mixed PCL/CS composites as a function of immersion time. Figure 6.17(a)

represents a non exposed area free of any precipitates. By contrast to Figure 6.16(b) for

PCL/bioglass composites, one week exposure (Fig. 6.17(b)) results in much lower surface

coverage. However, significant surface coverage could be observed after four and eight

week periods in the form of spherical calcium phosphate crystals. This may be due to the

presence of non consumed Ca, Si and P in the SBF as a result of the slower nucleation

active during the first week. Jote that the spherical agglomerated texture of the

precipitates after four and eight weeks (Figs 6.17(c) and 6.17(d)) are not appreciably
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different than that observed by Ghee (2003) after only seven days. The faster and more

uniform nucleation and growth of apatite crystals observed by this author may be due to

the much lower molecular weight PCBs (MW from 1960 to 4167) and the type and more

uniform distribution of the silica nano-hybrid filler used.

Figure 6.17 SEAM micrographs of extrusion mixed PAIL / CS composite surface before
and after SBF immersion. (a) Before immersion. (b) After one week immersion; some
surface roughness can be observed corresponding to slower nucleation and growth than in
the biomass composite. (c) After four weeks immersion; clusters of mineral precipitate on
the polymer surface. (d) After eight weeks immersion; mineral formation has uniformly
covered the composite surface.

In the case of solution mixed PCL/CS composites, Figure 6.18 represents SEAM

micrographs before and after SBF immersion. There is an apparent growth of nano-

feature flake- and needle-shaped microparticles on the exposed surfaces similar to bone-

like apatite layer (Liu and Ma (2004)). Jucleation and growth seems to be faster for the
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solution mixed PAL/CS composites. As mentioned earlier, this could be due not only to

different processing temperatures and history, but also differences in surface morphology

(thinner outer layer for the solution mixed composites).

Figure 6.18 SEAM micrographs of solution mixed PCL/CS composite surface before and
after BF immersion. (a) Before immersion. (b) After one week immersion; nucleation
and growth appears in one of the cracks. Many spherical precipitates are present. (c)
Higher magnification of 6.18(b); different sized globules of mineral precipitate on the
polymer surface. (d) Higher magnification of 6.18(c); mineral precipitation at higher
magnification appears as needle like crystallites. (e) After two weeks immersion;
spherical mineral precipitates cover the surface along with degradation residues.
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6.2.2 ORD Data and Concentration Changes in BF

The time for initial formation of apatite crystals on the surface of the composites is

shown in the RD data of Figures 6.21 to 6.25. For the HA composite (Fig. 6.19), the

apatite peaks at 25 °, 32°, 40° and 49° are attributed to apatite formation (Lu et al. 2005,

Ni and Wang, 2002). Khese peaks are more evident after one week, whereas apher four

weeks are weaker. For the a-TCP composite, (Fig. 6.20) apatite peaks appear at 25°, 310,

32° and 49° and are again more pronounced apher one week immersion than apher four

weeks. For the CaCO3 composite (Fig. 6.21), apatite peaks appear apher 1 week at around

32°, 40° and 49° and are weaker apher four weeks immersion. For the BIOMASS

composite (Fig. 6.22) the apatite peak at 32° (Fujibayashi et al. 2003, Lu et al. 2005 and

KKasuga et al. 2003) appearing first apher one week, was more evident apher eight weeks,

although still very weak. For the CS composites (Fig. 6.23), in addition to a peak at 32 °,

a second peak attributed to apatite at about 26° could also be observed apher one week.

Both peaks appeared to be very weak apher four and eight weeks immersion suggesting

slow and random nucleation and growth of the apatite crystals in the high molecular

weight PAL of the present work, in relative agreement with similar findings by Rhee

(2003).



Figure 6.19 ODD spectra of PCL/HA composite before and apher immersion in SBF. The
peaks at 310 and 32° that formed after one week exposure in SBF will eventually become
a peak at 32 ° . This peak, along with the peaks at 25 °, 40 ° and 49° correspond to
hydroxyapatite.

Figure 6.20 XRD spectra of PCL/a-TCΡ composite before and after immersion in SBF.
Khe peaks at 310 and 32 ° that formed after one week exposure in SBF will eventually
become a peak at 32 ° . Khis peak, along with the peaks at 25 ° and 49 ° correspond to
hydroxyapatite and appear weaker after four weeks immersion.



Figure 6.21 XXRD spectra of PCL/CaCO3 composite before and after immersion in BF.
The peaks around 32 ° , 40° and 49° first appear after one week immersion and are weaker
after four weeks immersion.

Figure 6.22 XXRD spectra of PCL / bioglass composite before and after immersion in
SBF. Khe peaks at 310 and 32 ° that formed after one week exposure in SBF eventually
became a peak at 32 ° after four weeks. This peak corresponds to hydroxyapatite and
becomes even more intense after eight weeks.



Figure 6.23 XRD spectra of PCL/CS composite before and after immersion in SBF.
Peaks at 310 and 330  appear after one week immersion and will eventually become a peak
at 32° with longer immersion periods.

The results from ΑΑ spectroscopy on SBF used in the immersion of PCL/bioglaass

and PCL/CS composites (Fig. 6.24) showed that the calcium present in both fillers

diffuses out as a function of time. Jote that there is a higher rate of release of calcium in

the CS composites. In the case of the bioglass composites, initially there was a lack of

change in calcium concentration that may be the result of balancing of the release and

consumption processes since calcium diffuses out of the fillers but is also consumed from

the SBF solution towards the surface of the immersed sample. This may indicate a faster

rate of apatite formation for the biomass composites although this is not corroborated by

the previous ORD and SEAM results. In Figure 6.24, the slightly abnormal behavior of the

unfilled polymer may be related to the presence of precompounded additives/impurities.



Figure 6.24 Gelative changes in calcium concentration for the PCL composites after
soaking in SBF. Khe changes in calcium concentration is a two way process that involves
its release by the fillers and also its consumption from SBF to the surface of the bioactive
material. Balues shown are mean of two samples per group.

Similarly, UB-Bis spectroscopy (Fig. 6.25) revealed that phosphorus is being

consumed from the SBF solution towards the surface of the PAL and the surfaces of both

composites. However, the PCL/bioglass composite started to release phosphorus to the

SBF solution after about four weeks immersion period, whereas the PCL/CS composite

continued consuming phosphorus. This may be another indication of the faster rate of

apatite formation on the bioglass composites. It should be noted that the calcium and

phosphorous ionic concentrations of the SBF solution used in this work was shown to be

somewhat higher than the calculated concentrations based on Kokubo's ideal recipe

(1990). For example phosphorous concentration in our control SBF prior to immersion
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was 44 ppm versus 31 ppm. As a result, Figures 6.24 and 6.25 are using relative ion

concentration changes instead of absolute numbers.

Figure 6.25 Delative changes in phosphorus concentration for the PAL composites after
immersion in BF. In all cases phosphorus is being consumed by the composites. In the
case of PCL/bioglass, phosphorus releases only after eight week period. Values shown
are mean of two samples per group.

6.2.3 Summary

In summary, SEAM images for the melt processed PCL/bioglass composites showed

mineral precipitation after the first week of immersion and lack of additional

precipitation for the remaining testing period (four and eight weeks). This was not in

agreement with the OGD data of the same composites that showed an apatite peak at 32 ° ,

which increased in intensity as a function of immersion time up to eight weeks. By

comparison, apatite growth from XRD results was evident from the initial experiments

(up to one week) with the neat biomass filler; SEM and ED data for the neat filler also

showed coverage and uniformity of an apatite layer apher immersion. The limited
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bioactivity in the biomass composite could be due to the PCL hydrophobicity and the

resulting slow degradation rate. The longer immersion periods for the composite samples

vs. the neat fillers could explain these differences. In addition, the coverage area

examined in SEA and ED is much more localized compared to the larger testing area of

the XXRD samples.

Results from AA and UB-Bis spectroscopy on biomass composites, showed no

change in Ca concentration during the first four weeks, possibly due to eouilibrium in Ca

concentration diffusing in and out of the composite sample, and a continuous

consumption of P from the SBF up to four weeks. These results suggest that the biomass

composite could show additional apatite growth after the four week immersion period;

this was delayed due to the slow degradation kinetics of the outer PCL layer and since

SBF was not replenished throughout the testing period, ion concentrations were

insufficient for reactions leading to the apatite layer formation.

In the case of melt processed CS composites SEM data showed mineral surface

coverage apher the first four week period. Jucleation and growth were slow and as a

result Ca, Si and P ions had not been consumed up to four weeks. After four and eight

weeks, there was significant coverage. As in the case of PCL/bioglass composites, CORD

data were not in agreement with SEM results since the apatite peaks that appeared apher

one week were weaker apher four and eight weeks. Again, these results could be due to

the different testing areas used in the experiments.

ΑΑ and UV-Vis spectroscopy experiments were in agreement with SEM data

since there was a continuous Ca release and P consumption, denoting that reactions could

still take place apher four weeks. In the case of solution mixed CS composites there was a
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faster nucleation and growth that could be due to different processing temperatures and

history, but also due to differences in surface morphology. A similar behavior was

shown for the neat filler in the case of powder vs. molded surface. It appeared that the

molded surface of the filler showed more apatite growth due to the different sample

manufacturing method.

6.3 Bioactivity of PLAN Composites

6.3.1 SEAM Characterization

Figure 6.26 includes SEM micrographs of melt processed PLAN before and after SBF

immersion. Figure 6.26(a) represents the unfilled polymer surface before immersion in

SBF. Figure 6.26(b) and (c) represent the PLAN surface apher one and eight weeks

immersion, respectively. Khere is no apparent nucleation and growth, only some surface

roughness due to degradation and possibly some salt deposition from the SBF solution.

Gesults with PLAN filled with biomass and CS are discussed below.
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Figure- 6.26 SEAM micrographs of melt processed unfilled PLAN samples before and apher
immersion in SBF solution showing no nucleation and growth. (a) Before immersion. (b)
After one week immersion; no mineral precipitation, only some surface roughness
occurs. (c) After eight weeks immersion; no precipitation, just surface roughness and salt
deposition from the SBF.

6.3.1.1 PCL/biomass Composites. Figure 6.27 represents SEM micrographs of melt

processed PCL/biomass surfaces. There was mineral precipitation after only one week

exposure to the SBF (Fig. 6.27(b)). After four and eight weeks, the mineral crystals

would have been expected to grow and form a crystalline bonelike apatite. However, as

for the PCL/bioglass composites, this was not evident as no significant differences from

week one were observed. Khis could again be due to the experimental conditions of this

study, i.e. that SBF was not replenished, thus, not allowing more Ca and P ions to react

and form the final bonelike apatite. ED results support this argument, as Ca/P ratios

were only 1.19 and 0.502 (results not shown) after one and four weeks, respectively. The

mineral morphology of the spherical crystals that appeared after immersion in the SBF

were similar to the ones reported in the literature (Chang et al. 2004, Lu et al. 2005).

Specifically, Chang et al. (2004) reported that the apatite formation in the case of porous

PLLA (composite scaffolds) was related to the PELLA hydrolysis, which resulted in a

negatively charged PLLA surface. The Ca ions from the solutions were positively
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charged and as a result attracted to the hydrolyzed PELLA surface. Apatite formed

through the attraction of phosphate groups from the solution and the increase of local

apatite ion active product. According to the authors, the apatite formation on porous

PLLA was enhanced by the addition of bioglass particles, similarly to this study. For the

lower bioglass content, apatite formation was rapid, whereas this was not the case for the

higher content. The delayed apatite formation for the higher biomass content was,

according to the authors, due to the greater bioactivity content, which resulted in more

exposed glass surfaces and larger immersion ratio (the ratio of the immersed glass surface

to the SBF volume).

In the study of Lu et al. (2005), composites of polylactide-co-glycolide (PLAYA)

with bioglass were fabricated using the solvent-casting process. The rate of apatite

formation was dependent on the biomass content. The immersion time required for

apatite formation decreased with increasing bioglass content. This is in agreement with

the study of Change et al. (2004), although the critical parameter for such a comparison is

the immersion ratio. Lu et al. (2005) found that the size and the overall surface coverage

visibly increased with immersion time. This is not the case in the present study, since as

has been already discussed above SBF was not replenished.
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Figure 6.27 SEM micrographs of PLA / bioglass composites before and after immersion
in SBF showing mineral precipitation on the polymer surface. (a) Before immersion. (b)
After one week immersion; mineral precipitation can be observed on the composite
surface. (c) After four weeks; small spherical crystals appear on the surface of the
composite. (d) Higher magnification of (c). (e) After eight weeks; mineral growth is still
evident on the surface of the composite.

6.3.1.2 PLA/CS Composites. Figure 6.28 includes a series of SEM micrographs of

surfaces of melt mixed PLA!CS composites as a function of immersion time. Figures

6.28(a)-(b) are SEM micrographs after one week immersion in SBF. It is evident that

globules of mineral precipitates fully cover the exposed area. Figures 6.28(c)-(d)

represent higher magnifications of (a) and (b) where globular structures appear in two

different forms: needle-like and spherical deposits. This could be due to the different

extent of reaction during the various stages of apatite formation. Figures (e-g) are SEM

micrographs after four weeks immersion in SBF. Similarly to the earlier time period,

globular mineral precipitates are present on the polymer surface. In addition, solid
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polymer degradation by-products appear on the surface. Figure 6.28(h) is the higher

magnification of (e-g) showing again the needle-like structures. Black spots maybe

attributed to polymer degradation by-products. Figure 6.28(i) shows an SEAM micrograph

after eight weeks immersion in SBF. Mineral precipitation appears to a lesser extent in

the form of spherical crystals. Again, a possible reason for the effect of diminishing

mineral precipitation after longer periods is that SBF was not replenished and as a result

all the Ca, Si and P ions needed to form the apatite layer had already been consumed.

Similar mineral precipitation was observed by Li and Chang (2004) for

PDLLA/wollastonite composite scaffolds after one week immersion in SBF. Mineral

deposits were evident on the scaffold surface. At higher magnification, the crystals had

the typical morphology of apatite crystals and their size was 100-200nm in length. In the

present study, the precipitates are similar to the apatite crystals of zZhang et al. (2004) and

their size is about 10 Om after one week immersion. These results of PLA!CS composites

at different time periods are confirmed by ED results (data not shown) indicating that

the Ca/P ratio is 1.67 (equal to that of biological apatite), 1.57 and 1.21 after one, four

and eight weeks, respectively.
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Figure 6.28 SEM micrographs of PLA!CS after immersion in SBF. (a)-(b) After one
week immersion in SBF; globules of mineral precipitates are shown to fully cover the
exposed area. (c)-(d) Higher magnification of (a) and (b); globular structures appear in
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two different forms: needle-like and spherical deposits. (e-g) Apher four weeks immersion
in SBF; globular mineral precipitates and polymer degradation by-products appear on the
surface. (h) Higher magnification of (e-g) showing again the needle-like structures. Black
spots maybe attributed to polymer degradation by-products. (i) After eight weeks;
Mineral precipitation appears to a less extent in the form of spherical crystals.

6.3.2 ΧRD Data and Concentration Changes in SBF

The time for initial apatite formation on the surface of the composites is shown in the

ΧGD data of Figures 6.29 and 6.30 for the PLA/bioglass and PLA!CS composites,

respectively. For the PLA/bioglass composite, there are no peaks before immersion since

both compounds are amorphous. After one and four weeks in SBF, the apatite peak is

observed at about 32 ° . This peak is not evident after eight weeks, possibly due to reasons

that mentioned above (limited SBF ionic active due to non replenishment). These

results are in agreement with Zhang et al. (2004) who observed apatite peaks at 25 ° and

32° after one and two weeks immersion.

Figure 6.29 XRD spectra of PLA/biomass composite before and after immersion in SBF.
The peak at about 32 ° that formed after one week exposure in SBF corresponds to
hydroxyapatite.
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Figure 6.30 is the XRD spectra of PLA/CS composite before and after SBF

immersion. After one week immersion two peaks at 29.3 ° and 32° are present. Khese

peaks are attributed to calcite and hydroxyapatite, respectively (Siripharmon et al. 2002).

These peaks are still evident apher four weeks, but appear very weak after the eight week

period. These results are in agreement with the EDX data that show initially formation of

HA that is no longer present after eight weeks. This may be due to the non representative

area observed by SEAM or ED vs. the entire sample analyzed by XRD.

Figure 6.30 XXRD spectra of PLA/CS before and after immersion in SBF. Peaks at 29.3 °
and 32° after one week immersion are attributed to calcite and hydroxyapatite
respectively.

Khe results from AA spectroscopy on SBF used in the immersion of PLAN

composites (Fig. 6.31) showed that the calcium present in the two fillers diffuses out as a

function of immersion time. Khe changes in the calcium concentration involves a two

way process, since the calcium can be released by the fillers and can also be consumed
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from SBF to the surface of the bioactive material. For the CS composites there is a

higher rate of release of calcium, which after the initial 350 hours starts to decrease

denoting consumption from the SBF on the composite surface. This is in partial

agreement with Li and Change's data (2004) showing that Ca ion concentrations increased

rapidly for the first three days of immersion, followed by a slower increase up to 21 days.

In the case of biomass composites there is an initial increase in the rate of release of

calcium, followed by a decrease after 700 hours. This is in agreement with Lu et al.

(2005) who observed an initial burst of Ca release from the substrate followed by Ca

precipitation as immersion continued.

Figure 6.31 Relative changes in calcium concentration for the PLAN composites after
immersion in SBF. Balues shown are mean of two samples per group.

Figure 6.32 presents the results of the UB-Bis spectroscopy. Phosphorus is being

consumed from the SBF solution towards the surface of the PLA composites. Both

composites appear to consume phosphorus from the SBF fast. The PLACES composite
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appears to have a faster consumption than the PLA/bioglass composite; this suggests a

faster rate of apatite formation on the surface of the CS composites which is in agreement

with the SEM and ED results presented above. In comparison with the PAL

composites, the rate of phosphorus consumption is overall higher (70% vs. 18%) for the

PLA composites. This could be due to faster degradation rates of the PLAN matrix and the

hydrophilicity enhancement of the PLAN composites due to the presence of fillers. In the

case of the unfilled PLAN, there is an initial phosphorous consumption that follows a

release and consumption again over the total period of the study.

Figure 6.32 Delative changes in phosphorus concentration for the PLA composites after
immersion in BF. Balues shown are mean of two samples per group.

6.3.3 Summary

In summary, SEAM images of the biomass composites showed mineral precipitation apher

one week immersion. For longer time periods, up to eight weeks, lack of additional

apatite growth was also shown by ED data. CORD data were in agreement with SEAM
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and ED data, since the peak at 32° was evident after one and four weeks, but no longer

visible after eight weeks immersion. Calcium ions appeared to diffuse out of the sample,

through an initial burst after one week, followed by a slower release. Khis could mean

that concentration changes may have reached eouilibrium since Ca is also consumed by

the sample from the SBF. Phosphorous was consumed from the SBF during the entire

testing period. AA and UB-Bis results imply that, in the case of ALAN composites, faster

degradations rates apply, possibly due to the higher polymer hydrophilic enhanced by

the hydrophilic nature of the filler.

In the case of PPLA/CS composites the SEAM images showed globules of mineral

precipitates that fully covered the exposed area after one and four weeks immersion.

After eight weeks, and possibly due to limited ionic activity (since SBF was not

replenished), mineral precipitation appears to a lesser extent. These data were also

supported by EDX analysis. ORD results showed apatite peaks apher one week

immersion becoming weaker after four weeks and not present at all after eight weeks.

Similarly to biomass composites, Ca diffuses out of the CS composites, but the process

reaches eouilibrium after eight weeks immersion. In the case of P consumption, a similar

trend as for the bioglass composite is observed, but at higher consumption rates implying

higher hydrophilic for the CS composites. It appears that after the eight week period,

ionic active is limited; thus, activity of the composites (as shown by SEM, EDX and

XRD data) is also limited.
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6.4 Degradation of Unfilled Polymers

6.4.1 Weight Changes as a Function of Time

Figures 6.33-6.35 represent % weight changes of the different polymer and composite

samples as a function of time. Figures 6.33 and 6.34 show that for both PLLA and PST

polymers, extruded samples show slightly higher water uptake than compression molded

samples, although within experimental error only slight differences as a function of time

from 1 up to 120 days are observed. This will lead to a faster degradation rate for the

extruded samples, since the additional processing step may have lowered the molecular

weight of the sample. Figure 6.35 shows slight changes in the degradation behavior of all

aliphatic polyesters used in this study over the first 30-day period with the amorphous

PLAN appearing to have a faster degradation rate.

Figure 6.33 %Weight change versus time for PLLA CM and PELLA EXIT. The
designation CM and EXIT denote compression molded and extruded samples,
respectively. Two samples were tested per point. Khe points are the average of two
determinations with an excellent reproducibility.



Figure 6.34 %Weight change versus time for PSK CM and PST EXIT. Khe designation
CM and EXIT denote compression molded and extruded samples, respectively. Two
samples were tested per point. Khe points are the average of two determinations with an
excellent reproducibility.

Figure 6.35 %Weight change versus time for PAL, PST, PELLA and PLAN compression
molded specimens. Two samples were tested per point. Khe points are the average of
two determinations with an excellent reproducibility.

6.4.2 Intrinsic Viscosity Changes as a Function of Time

The intrinsic viscosity of the unfilled samples, before and apher immersion, was calculated

using the Solomon-Aiuta eouation (5.2) for a single point measurement. Results are

shown in Figure 6.36 and 6.37. Although no weight losses are shown above, there is
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already an onset of degradation confirmed by the reduction in intrinsic viscosity (which

corresponds, in turn, to reduction in MW) after immersion. Also, in Figure 6.36, the

extruded PCL samples appear to have a lower IV than the compression molded samples,

which confirms once more that thermal degradation of PCL occurred during extrusion.

Figure 6.37 shows the reduction in intrinsic viscosity of the PLAN samples that have been

prepared by mixing in a batch mixer and by compression molding. Jo significant

differences can be noticed between the two methods and, as a result, IV measurements

for batch mixed samples were discontinued after 28 days. Both samples follow similar

Figure 6.36 IB measurements for polyesters as a function of immersion time. The
designation CM and EXIT denote compression molded and extruded samples,
respectively. The average of at least three measurements per sample is shown.



Figure 6.37 IB measurements for PLA under different processing methods as a function
of immersion time. PLAN BM and PLAN CM correspond to batch mixer and compression
molded samples, respectively. The average of at least three measurements per sample is
shown.

6.4.3 Thermal Properties as a Function of Time

Tables 6.1 and 6.2 represent thermal data obtained by DSA for PCL and PST. %

crystallinity was calculated from (ΔΗ  f — ΔΗ )/ΔΗ f, where ΔΗ f is the heat of fusion,

ΔΗ is the heat of cold crystallization, and ΔΗ f is the heat of fusion for a perfect crystal.

For PAL and PSK the values for ΔΗ pf are 139.5JIg (Seretoudi et al. 2002) and 122.75 JIg

(Tserki et al. 2006) (assuming a 50/50 comonomer content), respectively. In the case of

unfilled PAIL (Table 6.1), the method of processing appears to affect crystallinity, since

the extruded samples show higher % crystallinity than the compression molded ones. For

PST compression molded films, there are only slight differences, at the second heating, in

the T11 and the % crystallinity before and after 28 days immersion.



Table 6.1 Thermal Data for PAL before and after Immersion in PBS
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Table 6.2 Thermal Data for PST before and apher 28 days Immersion in PBS

6.5 Degradation of PCL and its Composites

6.5.1 Weight and pH Changes as a Function of Time

crystallinity polyesters, such as PAL, degrade in two stages (Mango et al. 2004,

Proikakis et al. 2006); initially water diffuses into the amorphous regions resulting in

random hydrolytic scission of the ester groups and this may result in additional

crystallization and overall increase of crystallinity. After degradation of the major
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amorphous regions is initiated, hydrolytic attack shiphs towards the center of the

crystalline domains. Molecular weight reduction occurs during the water uptake step,

although mass loss has not begun as yet.

Figures 6.38(a-c) represent the effect of the presence of the filler on the

degradation of PAL. Weight change measurements were carried out on only two samples

per time period and as a result data are presented in a form of a range. The hydrophilic

fillers appeared to increase the water uptake of the otherwise hydrophobic PCL, up to

about 5% apher 119 days; this, in the long term, may be related to an enhanced rate of

degradation of the composite vs. the unfilled polymer, which will eventually be

accompanied by weight losses. The relatively short testing period (4 months) in the

present work did not readily allow extrapolation to the complete degradation of PAL that

is commonly believed to occur over a period of 24 months. It has been shown (Pena et al.

2006), however, that compression molded PAL samples with molecular weight of 65,000

(similar to the one used in this work), but much thinner (100gm), retain as much as 80%

of their molecular weight apher 18 months in PBS. The results are in reasonable

agreement with data from Dich et al. (2002) who showed water absorption values of

about 7% after 120 days for composites containing a slightly more hydrophilic PAL

based matrix and a higher amount (40 wt%) of bioglass of similar particle size.



Figure 6.38 Percentage weight change vs. time for PAIL and its composites. The fillers
appear to have an effect on degradation by increasing water uptake. The polymer alone
does not show any significant weight change. Kwo samples corresponding to 1 and 2
were tested for each system.
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Figure 6.39 shows the pH change of the PBS solution as a function of immersion

time. As shown earlier (Lu et al. 2005), the pH of solutions containing bioglass

composites will be elevated due to the release of alkaline ions but will still remain within

the physiological range, in agreement with our results. This behavior could compensate

for the pH decrease due to the polymer degradation involving acidic byproducts. The Ca

and Si ions released from the CS composite may act in a similar manner (De Aka et al.

2000, Sahib et al. 2005, Chaco et al. 2005). Degradation of PAL appears to occur very

slowly, without appreciable weight changes, throughout the degradation period used in

this study. Slow degradation is also supported by the small intrinsic viscosity changes as

a function of immersion time for extruded PAL (see Section 6.4.2). Since no noteworthy

degradation of PAL was observed, the release of a significant amount of acidic products

that could produce considerable weight and pH changes would have not been expected.

Khe data in Figure 6.39 show only small decreases from the original pH of 7.4 apher 119

days.



Figure 6.39 The pH of PBS solution as a function of immersion time for PAL and its
composites. The fillers appear to neutralize the acidic degradation products and
compensate for the pH decrease. Two samples corresponding to 1 and 2 were tested for
each system.
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6.5.2 Thermal Properties as a Function of Time

Table 6.3 represents thermal data for the PCL composites. It appears that % crystallinity

increases in both PCL/bioglass and PCL/CS composites compared to the unfilled PAL

with respect to immersion time (see Table 6.1). There are no significant differences in

the peak melting temperature between the unfilled PCL and its composites.

Table 6.3 Thermal Data for PAL Composites before and after lmmersion in PBS
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6.6 Degradation of PLA and its Composites

A material for bone regeneration applications should firstly bond to the bone and then

slowly degrade in such a way that mechanical properties of the implant will be adeouate

to support the regeneration process. Aliphatic polyesters that are tested in this study are

known to degrade through hydrolysis. In the case of polylactic acid resins, degradation

usually takes place in the bulk of the material and does not start from its surface. The

cleavage of the ester bond that happens through hydrolysis, proceeds preferentially in the

amorphous regions, and as a result, for crystallinity materials crystallinity increases.

Thus, the hydrolysis rate is expected to be higher in the amorphous ALAN polymer, rather

than in the crystallinity PELLA. The chain cleavage leads to formation of lactic acid

oligomers, which result in an increase of carboxylic groups that are known to catalyze the

degradation reaction. Therefore, the hydrolytic degradation of PLA is considered as a

self-catalyzed and self-maintaining process (Paul et al. 2005). The degradation

mechanisms can be affected by several factors, such as chemical structure, molar mass

and its distribution, purity, morphology, shape and history of the sample, as well as the

conditions under which the degradation tests are conducted (Vert et al. 1995). In the case

of composites, the processing parameters, as well as the hydrophobicity or the

hydrophobicity of the filler along with the filler morphology and reactivity are expected

to play important roles in the overall hydrolysis performance of the material.

6.6.1 Weight and pH changes as a Function of Time

Figure 6.40 shows the changes in water absorption for PLAN and its composites during

PBS immersion. It is obvious that the unfilled polymer shows no significant water
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absorption, whereas each of the fillers appears to affect differently the water

absorption/time curves, and conseouently the degradation of the composite. For the

PALACES composite the water absorption increases significantly during the first week (up

to 50%), and reaches a plateau for the remaining 215 days. This is not the case for the

ALA/biomass composite whose water absorption continues to increase for the entire

experimental period, up to a maximum value of 220% following an initial linear increase.

Towards the end of the 215 day period, the process for the PLA/bioglass composite

appears to have reached eouilibrium. These results are in partial agreement with the

study of Li and Chang (2005), who tested poly(lactic acidic glycolic acid) (ALGA)

composite scaffolds filled with 20 weight % wollastonite and bioglass. Both wollastonite

and bioglass exhibited a similar water absorption profile that eventually showed a linear

decrease from the fourth to eighth week. According to the authors, this decrease in water

absorption could be correlated to a significant weight loss. Ara et al. (2002) suggested

that the changes in water absorption could be the result of a balance between the

dissolution of oligomers in the solution and the water uptake of the residual material.

The differences between the results of this study and the one of Li and Chang

(2005) are due not only to the different polymer matrix, but also to the sample shape and

history (melt processed solid compression molded samples vs. scaffolds prepared using a

solvent casting-particulate leaching method), and differences in the filler content. A

possible reason that in the present work no decrease in water absorption and conseouently

weight loss are observed, could be that the species formed by hydrolysis (shorter PLAN

chains and cyclic oligomers) are not soluble in the buffer solution (Paul et al. 2005).
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Only dimers and trimers of lactic acid as well as lactic acid itself are soluble in the

phosphate buffer solution.

Figure 6.40 Water Absorption for PLAN and its composites as a function of immersion
time. Average values are shown. Initial number of samples was six and was reduced to
two by the end of the degradation period.

In conclusion, although water absorption is evident for the ALAN composites, ALAN

itself does not seem to absorb any significant amount of water. Each of the composites

follows a different trend in their water absorption curves, possibly due to different

degradation mechanisms that are controlled by particle size, as well as hydrophilicity and

filler reactivity. Regarding hydrophilicity, Paul et al. (2005) suggest that degradation is

directly related to the relative hydrophilic of the filler, since water molecules penetrate

more easily within the material to trigger the degradation process. In the present work,

both AS and bioglass fillers are hydrophilic, but with different particle sizes and

dissolution characteristics. The dissolution rate, according to Prabhakar et al. (2005)

produces greater percentages of weight loss. Specifically, it is suggested that in the case

of bioactive glasses, the glass components diffuse at various rates from the samples into
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the solution, thus creating voids and microcracks within the sample. This will result to

easier diffusion of water in the sample and, conseouently, weight losses due to hydrolytic

degradation. However, it is important to note that bioglass is highly reactive with a decay

rate of 150μg/cm2/day. This could also contribute to weight loss of the composite. A

similar behavior is expected in the case of CS where Ca and Si ions will diffuse out of the

composite.

Figure 6.41 shows pH changes vs. time of the PBS solution. Although it would

be expected for PLA to exhibit a lower pH after a period of 215 days due to acidic by-

products, it still holds a value of about 6.8. This is lower than the initial pH value of the

solution, but still not acidic. PLA shows an initial pH decrease after a period of 70 days.

Based on the low water uptake, no significant degradation of PLAN would be observed and

as a result no significant amount of low molecular weight, water soluble acidic by-

products that could produce considerable pH change.

Although degradation has been initiated even for the unfilled PLAN, it is probably

not at the same stage as for the filled systems. For the PLA/bioglass composite, there is

an initial pH increase that is probably related to the dissolution of the bioglass and the

diffusion of its alkaline ions to the solution. This is in agreement with Boccaccini and

Maquet (2003) who suggested that the elevated pH of their bioactive glass composite

could be correlated with the dissolution of alkaline ions from the bioactive glass particles

that locally compensate for the acidification of the solution due to acidic by-products of

the polymer degradation. pH values for the PLA/bioglass composite are as high as 9.6

after 42 days and then gradually decrease to the original pH of 7.4 at 133 days and a

value of 6.6 at the end of the immersion period of the study. These considerable changes
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over the experimental period can be attributed to the combined effect of the filler alkaline

ions and to the continuing hydrolytic degradation of the polymer, perhaps catalyzed by

the filler. Khe pH values of this work are in general agreement with those of a

PLGA/bioglass composite in the study of Li and Ahang (2005) who observed a pH

increase of 8.15 in the first seven days that eventually dropped to 7.1 after 56 days.

For the PLA-CS composite the pH values are stable for the first 133 days and

drop to a value of pH 7.0 afterwards. At the end of the period of the study the pH drops

to 6.02. Khis differs from the pH values reported by Li and Ahang (2005) for the

wollastonite composite that varied from 7.7 to 7.3. Possible reasons could be the

differences not only between the polymer matrices, but also type and crystallinity of the

CS filler.

Figure 6.41 pH changes as a function of time for PBS solution containing for PLAN and
its composites. ABBY corresponds to the average number of samples at existing time.
Initial number of samples was six and was reduced to two by the end of the degradation
period.
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In summary, although pH measurements could give an indication of extent of

degradation by observing the development of acidity due to degradation by-products, the

results with the present filled systems are more complicated due to high water absorption

values and alkaline ion diffusion to the solution.

6.6.2 Intrinsic Viscosity Changes as a Function of Time

lntrinsic viscosity (ΙV) changes provide an indication of molecular weight changes

according to the Mark-Houwink equation:

where [n} is the intrinsic viscosity, B and a are constants eoual to 2.21 x 10-4 and 0.77

respectively (for chioroform as a solvent and 25 °C), and Αν  is the viscosity average

molecular weight (Proikakis et al. 2006).

Figure 6.42 shows IB changes for PLAN in the absence and presence of bioglass

filler during immersion in PBS solution. lt is evident that there is a significant reduction

in the MW of the PLAN matrix after melt processing in the presence of BIOGLASS

compared to the unfilled ALAN. Calculated initial A values from Equation 6.1 are

108,000 and 33,000 in the absence and in the presence of biomass filler, respectively. In

both cases MW decreases exponentially with time, which for the PLA/bioglass system

agrees with the observations from the weight and pH changes studies. For the unfilled

PLA it seems that changes in weight and pH would take place after IB has been reduced

below a certain critical value.
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Figure 6.42 IB measurements as a function of immersion time in PBS for PLA in the
presence and absence of biomass filler. The average of at least three measurements per
sample is shown.

6.6.3 Thermal Properties as a Function of Time

Table 6.4 represents thermal data for PLA and its composites. It is interesting to note that

the presence of bioglass appears to decrease somewhat the Tg of the composite after

immersion (both first and second heating), whereas CS decreases Kg to a much lesser

extent. Gesults for PLAN do not allow the establishment of a definite decreasing trend,

although all Tg values are higher than those of the PLA/bioglass and PALACES composites.

Navarro et al. (2005), when incorporating a soluble calcium phosphorus containing

bioglass in a PLAN matrix, reported similar decreases in g that were consistent with the

decrease in MW during the immersion period.



Table 6.4 Thermal Data for PLAN and its Composites
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6.6.4 Mechanical Properties as a Function of Time

6.6.4.1 Tensile Properties of Unfilled PLAN. Figures 6.43-6.46 show tensile properties

of PLAN films as a function of immersion time in PBS. Elongation at break of PLAN

decreases as early as after two weeks of immersion (Figure 6.43), whereas the other

properties are less sensitive to immersion in PBS for the same time period. Elongation at

break is the only mechanical property that shows significant reduction even after two

weeks- immersion, indicating significant embrittlement associated with a reduction in

MW of about 13% as per Fig. 6.42. Other properties show little or no difference even

after eight weeks immersion. For longer time periods though, stress at yield as well as

stress at break appear to decrease with immersion time.

Figure 6.43 % Elongation at Break of PLA before and after immersion.



Figure 6.44 % Elongation at Yield of PLAN before and after immersion.
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Figure 6.45 Stress at Yield of PLA before and apher immersion.



6.6.4.2 Compressive Properties of Filled PLAN. Figures 6.47-6.51 show the

compressive properties of PLA and PALACES composites as a function of immersion time

in PBS. Delatively large changes can only be observed for compressive modulus and

strain at break of the unfilled PLAN (Figs. 6.47-6.48). Other compressive properties show

little or no changes similarly to the tensile data reported in Section 6.4.4.1. Data for

stress at yield, stress at break and % strain at yield are shown in Appendix E. In the case

of the CS filled system, more significant changes can be observed in the mechanical

properties even after two weeks immersion. Significant changes for the PALACES system

can be observed in the compressive stress at yield (Figure 6.49), compressive stress at

break (Figure 6.50) and the initial compressive modulus (Figure 6.51). Data for % strain

at yield and % strain at break are shown in Appendix Ε. These changes in mechanical

properties could be due, as per Prabhakar et al. (2005), to voids and microcracks formed
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on the sample as the filler components diffuse into the solution. When water diffuses

back into these cavities, the mechanical integrity of the samples is lost.

Figure 6.47 Initial Compressive Modulus of PLAN before and after immersion.

Figure 6.48 Compressive Strain at Break % of PLAN before and apher immersion.



Figure 6.49 Compressive Stress at Yield of PLA/CS before and apher immersion.

Figure 6.50 Compressive Stress at Break of PLACES before and after immersion.



Figure 6.52 includes photographs of unfilled PLA as a function of immersion time

in PBS. Samples appear to maintain their integrity even after a four week period. By

contrast, hydrolytic degradation and loss of integrity has been initiated for the PLA-CS

composites even after a short period of one week as can be seen in the photographs of

Figure 6.53. Significant dimensional changes on wet samples are as high as 19.6%

increase in length, 38.4% increase in diameter apher four weeks; weight increase (88.1%)

are also observed. Composite degradation is accompanied by desponding of the

hydrophilic filler since no additional coupling agent is present in the composite. Khe

alkaline CS could also affect catalytically the hydrolytic degradation of PLAN although IV

data are not available. It is important to note that the sample dimensions in compressive

testing are different than those of samples used for viscosity measurements (cylinders vs.

discs).
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Figure 6.52 PLA specimens for compression testing after 0, 1, 2, 3, and 4 weeks in PBS.



Figure 6.53 PLACES specimens for compression testing after 0, 1, 2, 3, and 4 weeks in
PBS.

6.6.5 Degradation and Modeling

Many researchers have studied the degradation mechanisms of aliphatic polyesters and

derived mathematical models to fit experimental data.

According to Burkersroda et al (2002), all the water insoluble degradable

polymers could undergo surface erosion or bulk erosion depending on process conditions.

Equation 6.2 was based on a theoretical model, proposed to predict the hydrolytic

degradation mechanism of polymers. A polymer matrix erodes depending on the

diffusive of water inside the matrix, the degradation rate of the polymer functional
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groups and the matrix dimensions. Taking into account these parameters, the model

allows to calculate for an individual polymer matrix a dimensionless "erosion number" ε

(Qian et al. 2004). This number can be considered as a Deborah number (the ratio of a

characteristic material time to a characteristic process time) and its values fall into three

categories: a) for polymer matrices with ε » 1 the reaction between water and polymer is

faster than water diffusion and as a result the systems undergo surface erosion; b) for

polymer matrices with ε « 1, the diffusion of water is faster than the erosion resulting to

systems that undergo bulk erosion; c) for polymer matrices with ε = 1 the erosion

mechanism cannot be predicted unequivocally.

where <x)  is the half thickness of polymer matrix, k is the rate constant that accounts for

the differences in the reactive of polymer functional groups (k is equivalent to a first

order rate constant such as used in reaction kinetics), D0 is the effective diffusion

coefficient of water inside the polymer, A„ is the number average molecular weight, Ν

is the average degree of polymerization, ΝΑ is Avogadro's number, and p is the density

of the polymer.

The half thickness of the polymer matrix, <x>,  is in our case equal to 0.03 75 cm

for ALAN samples. The rate constant, k, can be calculated through numerous relationships

that have been derived relating the changes in A„ with time to the hydrolysis rate of the

unstable ester linkages (Weir et al. 2004). Anderson (1995), assuming that the extent of

degradation was not large, reported a statistical method to relate number average

molecular weight to the hydrolysis rate, resulting in Equation 6.3:
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where Μ. is An  at time t=0 and k is the rate constant.

In this study, intrinsic viscosities were measured for PLAN in the absence and

presence of the bioglass filler and from their values viscosity average molecular weights

(Μ^ ) were calculated from Equation 6.1. ΜV was considered to be directly proportional

to Μ, , and 1/ ΜV values were plotted according to Equation 6.3 (Figures 6.54-6.55) with

respect to time. The derived regression k values were 8χ10 -13 s-i and 4x10-i2 s-1 for the

PLA and the PLA/bioglass composite, respectively. Correlation was excellent in the case

of PLA and poor in the case of the PLA/bioglass as shown by the D2 values. Please note

that the k value for the PLA/biomass system is higher by an order of magnitude than that

of the unfilled PLA.

Figure 6.54 Hydrolytic degradation data for PLA based on 1 / Μv and Equation 6.3.
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Figure 6.55 Hydrolytic degradation data for PLA/bioglass based on 1 / Μ V and Equation
6.3.

However, Equation 6.3 has the disadvantage that does not account for the

possibility of autoacceleration due to the generated carboxylic acid end groups during

hydrolysis.

Pitt and Yu (1987) used the following relationship that accounts for autocatalysis

by the carboxyl end groups.

ΜV values measured in this work were considered again to be directly

proportional to M» . ln( Μ / Dv o ) was plotted vs. time according to Equation 6.4

(Figures 6.56-6.57) and the derived new k values were 5χ 10 -g s1and 9χ 10 -g s-1 for PLAN

and the PLA/biomass composite, respectively. As before, correlation is excellent in the

case of PLAN and very poor for PLA/bioglass. Jote that the value for PLAN is fairly close

to the one estimated by Burkersroda et al. (2002) (6.6x10 -9 s -1 ) for poly(a-hydroxy esters),

and higher than that calculated from Equation 6.3.



Figure 6.56 Hydrolytic degradation data for PLAN based on lnΜ v and Equation 6.4.
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Figure 6.57 Hydrolytic degradation data for PLA/bioglass based on 1nΜν and Equation
6.4.

The poor fit of the PLA/biomass data to the first order kinetic Equations 6.3 and

6.4 suggest a complex degradation mechanism controlled by the presence and reactive

(decay) of the fillers. In the case of filled systems, only the initial points up to 56 days

obey linearity. This allows the calculation and comparison of the initial rate constants.

The graphs up to 56 days for both autocatalyzed and autocatalyzed PLA/bioglass systems

are shown in Figures 6.58 and 6.59. The calculated rate constant values by both

equations (although different in absolute terms) are still higher for the composite by an
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order of magnitude. This further confirms the catalytic effect of the biomass filler on the

hydrolytic degradation of PLAN.

Figure 6.58 Hydrolytic degradation data up to 56 days for PLA/biomass based on 1/M V

and Equation 6.3.

Figure 6.59 Hydrolytic degradation data up to 56 days for PLA/bioglass based on InΜν
and Equation 6.4.

The weight gain (Μΐ ) resulting from moisture absorption can be expressed in

terms of the diffusion coefficient or diffusivity, D o, and the effective moisture

equilibrium content %, M m, as shown in Equation 6.5.
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where h is the thickness of the sample (Yew et al. 2005).

According to ASTM Standard D5229 (ASTM Book of Standards, 1992), the diffusive

can be calculated from the following equation:

absorption plot in the initial linear portion of the curve.

D0 can be calculated from the initial linear slope of the absorption curve (slope of

MΑ vs. ti12). The percentage gain at any time t, MΑ , can be determined by Equation 6.7.

where WW and Ad refer to the weight of the material after exposure to water and the

initial weight of the material before exposure.

In order to calculate Do, plots of ΜΑ  versus ti12 were generated (Figure 6.60) and

the initial linear slopes of these plots were used for further calculations.



From the initial portions of the curves, the derived slope values for PLAN (after

magnification of the y axis) was 0.0031 (D2=0.9608) and for PLACES was 0.0919

(G2=0.9966). The % Mm , as shown in the curves, is 1.2 and 43.1 for PLAN and PLACES,

respectively, and the calculated D0 value from Equation 6.6 is 7.66χ10 -9 cm2s1 . It is

evident that PLA/bioglass does not follow Fiction behavior since no equilibrium is

observed for Mm . As mentioned earlier, bioglass is a highly reactive material with a

decay rate of 1 5ΟOg/cm2/day. For such materials, the mechanism of the composite

degradation could be very complex and not easily predictable by mathematical models.

In order to ascertain the type of erosion mechanism for PLAN in the present work

the following values were substituted into equation 6.2: Ν=1180, p=1.25 g/cm 3 and ΝΑ =

6.023 x 1023. D0= 7.66* 10 -9 cm2 s-i , and k from Equation 6.4 is equal to 5χ10 -8 s-i .

D, =85,000 and this value falls within the expected range from our calculated D value
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(see section 6.6.2). It is also in agreement with a value reported by Paul at al. (2005) on

an amorphous PLA by the same manufacturer. Again, by substituting the values into

Equation 6.2, the erosion number ε = 5.29 x 10 4« 1, which confirms that PLA undergoes

bulk erosion as expected.

Diffusion behavior of composite systems containing fillers has been modeled by

several authors (Lapel et al. 2002, Moggridge et al. 2003, Nuxoll and Cushier, 2005). The

flakes are usually considered impermeable to the permeate and mostly perfectly aligned.

In this study, for PLA/bioglass composites, the processing method used does not promote

flow induced orientation, and aspect ratios do not remain the same as in the original after

mixing and processing. It would be safe to assume that flakes are equally aligned and

misaligned apher processing. According to Moggridge et al. (2003), in the case of a flaked-

Killed film, where flakes have alignment and misalignment with equal probability, the

following equation describes a transport for a particular arrangement of long ribbon-like

flakes in layers model:

where D0 is the diffusion coefficient in the absence of flakes, a is the flake aspect ratio,

and ψ is the flake volume fraction. D0 for ALA from the above data is equal to 7.66* 10 -9

cm2 sly, a taken as 8.7 (from SEAM images for bioglass after taking the average of 6

measurements, see Appendix Al),  and ψ is equal to 0.1765. Substituting into Equation

6.8, Dcomp is equal to 3.149* 10 -9 cm2 s 1 . This would indicate reduction of permeability

due to the presence of flakes. However, due to the hydrophilicity and reactivity of
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polymer and bioglass filler, flakes may not reduce permeability or increase the lag before

permeation as predicted by reactive membrane models described by Moggridge et al.

(2003).

The issue of the presence of additives reactive towards the permeate in thin films

have been considered in the above reference. It has been shown that immobilized

reactive groups do not alter steady state permeability, but increase lag before penetration.

The time decaying biomass maybe considered as a mobile reactive species which can

actually enhance transport by facilitating diffusion. Modeling in the present case

becomes extremely difficult due to occurrence of simultaneous time dependent diffusion

phenomena that alter the integrity of the samples. For example, microcracks and voids

accompanying the degradation of the glass result in acceleration of the polymer

degradation process (Prabhakar et al. 2005). At the same time, degraded ALAN becomes

negatively charged and attracts positively charged calcium ions resulting in apatite

formation through the attraction of phosphate groups from the solution. Uniform

coverage by the formed HA will further affect permeation of the solution contributing to

the complexity of the process.



CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

General: Although, there is a significant amount of research conducted in the tissue

engineering field to produce composite materials capable of bone regeneration, a

thorough understanding of all the mechanisms involving degradation and bioactivity has

yet to be accomplished. The experimental data of this study along with their engineering

interpretation could provide an initial step in understanding the fundamentals in

designing materials for bone regeneration. Previous investigations in this field have

focused on the in vitro bioactivity mechanisms of neat ceramic fillers, in terms of apatite

growth, without taking into account the interactions between polymer and filler, which in

the case of the composites, could also affect the kinetics of apatite formation. Diffusion

mechanisms along with nucleation and growth kinetics are of great importance and

should be considered simultaneously. In addition, degradation studies and hydrophilicity

enhancement resulting from both the filler and the polymer, filler surface area, as well as

processing characteristics are parameters that should be taken into account.

Experimental: Regarding bioactivity mechanisms, several experimental methods

to test bioactive as SEM, EDX, XRD and changes in ion concentration were used in this

work. There were experimental limitations due to the adopted testing procedures that

created challenges in the interpretation of the experimental results. Examples are: a) non

replenishment of the SBF, b) SEM and EDX analysis results specific to localized small

areas, whereas ORD results reflected the entire macroscopic sample area and c) P and Ca

ion concentrations inferred from wet chemistry experiments that would not necessarily

correspond to surface changes due to mineral deposition.

148



149

Jeat fillers: In the case of the neat fillers, the form at which the fillers were tested

for apatite growth (powders, tablets, rods that were cut in polished and non polished

discs) was of great importance and showed significant differences as a result of the

different manufacturing conditions. From the six fillers tested, bioglass and CS powders

were the ones that showed faster nucleation and growth rates in the screening

experiments. Other experiments showed that polished vs. non polished bioglass rods

exhibited differences in bioactivity. For the non polished rods, mineral precipitation did

not occur, whereas the non polished ones showed a fast apatite layer formation. This is

due to irregularities of the non polished rods that act as nucleation sites for further

nucleation and growth of the apatite layer.

PCL composites: PCL composites containing five different fillers were evaluated.

Different processing methods (solution vs. melt processed samples) showed differences

in apatite growth. For the PAL'ΗΑ and PCL/a-TCP composites, differences in apatite

formation behavior may be related to differences of extrusion vs. solution mixed samples

in terms of: a) thermal history and its effects on the stability of the calcium phosphate

fillers, b) crystallinity and thickness of the outer surface polymer layer and their effects

on permeation rate and degradation, and c) distribution of filler particles at/or near this

outer layer and its effect on uniformity of mineral coverage.

For melt mixed PCL/CaCO 3 composites, a fast precipitation of mineral globules

can be seen after one week immersion and is limited after four weeks possibly due to the

lack of SBF replenishment. This is in agreement with ORD data that apatite peaks are

evident after one week and weaker apher four weeks.
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SEM images for the melt processed PCL/bioglass composites showed mineral

precipitation after the first week of immersion and lack of additional bioactive for the

remaining testing period. This was not in agreement with the XXRD data. A possible

explanation could be that the coverage area examined in SEM and ED is much more

localized compared to the larger testing area of the ORD samples. The limited apatite

growth in the bioglass composites could be also due to the PCL hydrophobicity and the

resulting hiow polymer degradation rate, as well as the relatively low concentration of the

bioactive filler. Results from ΑA and UV-Bis spectroscopy on biomass composites,

showed no change in Ca concentration during the first four weeks, possibly due to the

establishment of equilibrium as Ca diffuses in and out of the composite and a continuous

consumption of P from the SBF up to four weeks.

ln the case of melt processed PAL/CS composites SEM data showed mineral

surface coverage after the first four week period. ΑA and UV-Vis spectroscopy

experiments were in agreement with SEM data since there was a continuous Ca release

and P consumption, denoting that reactions could still take place after four weeks. In the

case of solution mixed CS composites there was a faster nucleation and growth that could

be due to different processing history, but also due to differences in surface morphology.

PLA composites: PLA composites containing two different fillers, both melt

mixed, were evaluated for bioactivity, in terms of apatite growth. PLA/bioglass

composites showed mineral precipitation after one week immersion. ORD data were in

agreement with SEM and EDX data, since the peak at 32 ° was evident after one and four

weeks, but no longer visible apher eight weeks immersion. AA and UV-Vis results
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suggest that, in the case of PLA composites, faster degradations rates apply, possibly due

to the higher polymer hydrophilicity enhanced by the hydrophilic nature of the filler.

In the case of PLACES composites the SEM images showed mobules of mineral

precipitates that fully covered the exposed area after one and four weeks immersion.

Similarly to bioglass composites, Ca diffuses out of the CS composites, but reaches

equilibrium after eight weeks immersion. In the case of P consumption, a similar trend as

for the bioglass composite is observed, but at higher consumption rates implying higher

hydrophilicity for the CS composites. It appears that after the eight week period, ionic

activity is limited; thus, bioactivity of the composites (as shown by SEM, EDO and XRD

data) is also limited.

Degradation: Regarding degradation results, there were indications that the

hydrolysis rate was higher in an amorphous polymer vach as PLA, than in the

semicrystalline PCL from weight changes and IV measurements. The presence of CS

and biomass fillers appeared to enhance the degradation behavior of both PCL and PLA.

pH changes, during hydrolytic degradation, depend not only on the polymer used, but

also on the filler; bioglass due to its reactivity and decay results in significant pH increase

in the case of PLA, but not in the case of PCL. In the case of PLA composites, there is a

significant reduction in MW of the matrix after melt processing in the presence of

bioglass as compared to the unfilled PLA. The presence of CaO in biomass that is known

to catalyze thermal degradation of PLA would be responsible for this phenomenon. MW

decreases exponentially with time for both unfilled and filled PLA; for the filled system

this agrees with observations from weight and pH change studies.
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Thermal data showed crystallinity increase with immersion time in all samples,

although crystallinity appears to increase more in extruded vs. compression molded

samples. Bioglass appears to affect more the crystallinity of PCL than the CS. ln the

case of PLA, biomass appears to decrease somewhat the Tg of the matrix as immersion

time increases, whereas CS decreases Tg to a much lesser extent. Mechanical testing

showed a significant decrease of elongation at break for unfilled PLA even after a two

week immersion period, indicating significant embrittlement associated with a reduction

in MW of about 13% as suggested by lV measurements. For the compressive properties

of unfilled PLA, relatively large changes can only be observed for compressive modulus

and strain at break. In the case of the CS filled system, more significant changes can be

observed in the compressive stress at yield, compressive stress at break and in the initial

compressive modulus even apher two weeks immersion.

Modeling: IV data for PLA and PLA/bioglass composites were fitted in two

models after hydrolytic degradation. lV data for unfilled PLA in the absence of bioglass

were well represented by both predictive models up to 215 days. However, for

PLA/biomass systems significant deviations from linearity were observed apher 56 days.

Based on these models, initial degradation rates were calculated and were found to be

affected by the presence of the bioglass filler which presumably acted catalytically.

Experimental data were also fitted into an equation proposed to calculate erosion number,

and in the case of unfilled PLA were found to agree with literature findings suggesting

bulk erosion. Available models for systems recognizing the presence of non reactive

misaligned flakes, confirmed the reduction in the diffusion coefficient vs. the unfilled

polymer. Modeling of transport in the case of a composite consisting of a degrading
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polymer and a reactive decaying filler, becomes extremely difficult due to the occurrence

of simultaneous time dependent diffusion phenomena that alter the integrity of the

sample.

Recommendations:  The following are recommendations for future work.

• Future work should include experiments on composites containing degradable

polyesters with different crystallinity and molecular weight and the most

promising bioactive silicate fillers studied in the present work. In particular,

polyester blends or copolymers could be used to tailor the mechanical properties

of the composite and promote the desirable physiochemical interactions with the

surface of the bioactive filler.

• Α more detailed investigation is required to explore the reasons for the

diminishing bioactivity, in terms of apatite growth, of certain aliphatic

polyester/filler systems at longer immersion time periods.

• Further efforts should be made to model water transport in the case of composites

containing degrading polymers and reactive decaying fillers , and to determine the

required assumptions for the case of anisodimensional bioactive reinforcements.

• Selected systems of this work should be evaluated on bioactive and degradation

in the presence of biological growth factors that will participate in a series of

cellular events.



APPENDIX A

SEM OF CALCIUM SILICATE AND BIOGLASS POWDERS

A.1 Calcium Silicate Powder

Figure A.1 SEM micrographs of CS powder. (a), (b) 10,000 magnification. (c) 5,000
magnification. (d) 1,000 magnification.
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Α.2 Biomass 45S5 Powder
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Figure Α.2 SEM micrographs of biomass powder. (a), (b) l,000 magnification. (c), (d)
500 magnification. (e) 200 magnification.



APPENDIO B

PREPARATION OF SBF SOLUTION

The procedure followed for SBF preparation is described below (Ohtsuki website).

Cleaning

Firstly, all the bottles including flasks, beakers etc. should be cleaned with dilute

hydrochioric acid solution and distilled water.

Dissolution of chemicals

Put 750 ml of DW into a 1 liter beaker. Stir the water and keep its temperature at 36.5°C

with magnetic stir with heater.

Add each chemical given in Table B 1 into the water until #8, one by one in the order

given in Table B1, apher each reagent was completely dissolved. Weigh each chemical

with weighing bottle. Add it in the water. Wash the remaining chemical on the weighing

bottle with DW water and add the solution in the water.

Addition of reagent #9 should be little by little with less than about 1 g, in order to avoid

local increase in pH of the solution.
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Adjustment of pH

Calibrate the pH meter with fresh standard buffer solution.

Apher #9 on the order in Table B1, check the temperature of the solution in the beaker,

and place the electrode of pH meter in the solution. Measure its pH while the

temperature is at 36.5 °C. At this point, pH of the solution is approximately 7.5. Titrate

lkmol/dm3-HC1 solution with pipette to adjust the pH at 7.25 (or 7.40).
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After the adjustment of pH, transfer the solution from the beaker to a mass volumetric

flask of 1000 ml. Wash the inside of the beaker with DW several times and add the

solution to the flask. Add DW water to the solution, adjusting the total volume of the

solution to 1 liter, and then shake the flask well.

Storage 

Store the flask in a refrigerator at 5-10 °C.

Stability of the solution must be examined. Put 50 ml of the solution in a polystyrene

bottle and place it in incubator at 36.5 °C. Apher 2-3 days, check whether the solution has

any precipitation or not. lf any precipitation would be found, do not use the solution.



APPENDIO C

STANDARDS AND SAMPLES PREPARATION
FOR SOLUTION ANALYSIS

C.1 Ascorbic Acid Method

The standards and the samples for the Ascorbic Acid Aethod were prepared according to

Stannous Chioride method 4500-P E (Standard Methods for the Examination of Water

and Wastewater).

Reagents 

1) Sulfuric Acid Η2SO4, 5N: Slowly dilute 70 ml concentrated Η2SO4 to 500 ml with

deionized water.

2) Potassium Antimonyl Tartrate solution: Dissolve 1.3715 g Κ(Sbο)C 4Η406 .1/2Η20 in

500 ml deionized water.

3) Ammonium Molybdate solution: Dissolve 20 g (ΝΗ4)6Μο 7024 •4Η20 in 500 ml

deionized water.

4) Ascorbic Acid 0.01 A: Dissolve 1.76 g ascorbic acid in 100 ml deionized water. Beep

solution refrigerated. It is stable for one week if it is kept refrigerated at 4 °C.

5) Combined Reagent: Aix above reagents in the following proportions.

50 ml 5N Η2SO4, 5 ml K(Sbο)C4Η406.1/2Η 20, 15 ml (ΝΗ4)6Μο7024•4Η20 and 30 ml

ascorbic acid solution. Mix it well until all combined reagent solution reaches room

temperature. The solution is stable for four hours.

Preparation of standards 

Standard 50 ppm phosphate solution: Dilute 219.5 mg anhydrous ΚΗ2Ρ0 4 to 1 liter

deionized water.
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1) Blank.

2) 0.15 ppm phosphate solution: Dilute 6 ml of 50 ppm phosphate solution to 100 ml.

3) 0.50 ppm phosphate solution: Dilute 1 ml of 50 ppm phosphate solution to 100 ml.

4) 1 ppm phosphate solution: Dilute 2 ml of 50 ppm phosphate solution to 100 ml.

5) 1.3 ppm phosphate solution: Dilute 2.6 ml of 50 ppm phosphate solution to 100 ml.

Procedure

Put 50 ml sample into 250 ml flask. Add 0.05 ml (one drop) phenolphthalein. If a red

color develops, add 5J H 2SO4 drop wise to discharge the color. Then add 8 ml combined

reagent and mix well. Wait at least 10 minutes but no more than 30 minutes to test the

samples. Absorbance of each sample/standard should be measured at 880 nm. Prepare

the calibration curve and test the samples.

C.2 Direct Air-Acetylene Flame Method

The preparation of the standards and the samples for the Direct Air-Acetylene Flame

method is described bellow.

Reagents 

Calcium chioride: Suspend 0.2497 g of calcium carbonate, CaCO 3 , dried for 1 hour at

180 °C, in deionized water and dissolve cautiouhiy by adding a minimum amount of

dilute HCl. Dilute to 1 liter with deionized water.

Lanthanum chioride solution: Dissolve 58.65 g of La 203 , hiowly and in small portions, in

250 ml conc. HCI and dilute to 1 liter with deionized water.

Prepare 1, 2, 3, 4, 5 ppm calcium standards and plot calibration curve. For samples, put 5

ml sample, add 2 ml La203 and dilute to 100 ml.



APPENDIO D

BIOACTWITY OF NEAT FILLERS

D.1 Hydroxyapatite

Figure D.1 HA powder before and after immersion in DW and SBF. (a) Before
immersion (x5000). (b) After 6 hrs immersion in DW (x5,000). (c) Apher 6 hrs immersion
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in SBF (x5,000). (d) After 24 hours immersion in SBF (x5,000). (e) After 168 hrs (1
week) immersion in SBF (x10,000).



163

Figure 0.3 TCP powder before and after immersion in DW and Si3r. (a) Before
immersion (x10,000). (b) After 6hrs immersion in DW (x10,000).(c) After ohrs
immersion in SBF (x10,000). (d) After 24 hrs immersion in SBF (x10,000). (e) After
168hrs (‚week) immersion in SBF (x10,000).



Figure D.4 XRD specΐra of TCP after exposure to DW and SBF.
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Figure D.5 Calcium carbonaΐe (CC) powder before and after immersion in DW and SBF.
(a) Before immersion (x10,000). (b) After όhrs immersion in DW (x10,000).(c) After
6hrs immersion in SBF (10,000). (d) After 24 hrs immersion in SBF (x10,000). (e) After
168hrs ('week) immersion in SBF (10,000).
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Figure D.7 ΒG1393 powder after immersion in DW and SBF. (a) After όhrs immersion
in DW (x10,000).(b) After 6hrs immersion in SBF (10,000). (c) After 24 hrs immersion
in SBF (x10,000). (d) After 168hrs (leek) immersion in SBF (10,000).

Figure D.8 ORD spectra for BG1393 after immersion in DW and SBF.



APPENDIX E

COMPRESSIVE PROPERTIES OF PLAN COMPOSITES

Figure E.1 Compressive Stress at Yield of PLA before and after immersion.

Figure E.2 Compressive Stress at Break of PLA before and after immersion.



Figure E.3 Compressive Strain at Yield % of PLAN before and after immersion.

Figure E.4 Compressive Strain at Yield % of PLACES before and after immersion.
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Figure E.5 Compressive Strain at Break % of PALACES before and after immersion.
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