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ABSTRACT

TITANIUM NITRIDE AS AN ELECTRODE MATERIAL FOR HIGH CHARGE
DENSITY APPLICATIONS

by
Mustafa Khan Patan

Present day neural prostheses require electrodes with high current densities. Traditional

electrodes are not capable of delivering such high current densities. Titanium nitride as an

electrode material and other techniques like reactive ion etching, platinization of titanium

were studied in this thesis towards improving charge density of electrodes.

Titanium nitride (TiN) was sputtered in a custom designed pattern of electrodes

with silicon as substrate, at a deposition rate of 2 Α 0/sec. Atomic Force Microscopy

(AFM) analysis of TiN film showed a smooth surface for a film thickness of 1 μm. X-Ray

Diffraction (XRD) analysis of the film showed the presence of TiN and Ti on the

substrate.

Reactive Ion Etching (RIE) of the electrode surface with CF4 and SF6 for different

combination of chamber parameters gave a peak CIC of 65.2 μC/cm 2 . Platinization of Ti

in chloroplatinic acid (Η2PtC1 6) provided a maximum Charge Injection Capacity (CIC) of

2.6mC/cm2 .

Electrodes made at University of Michigan were used as reference for all

measurements conducted on NJIT patterned electrodes. Other methods to investigate CIC

dependencies showed that CIC is not scalable with size, although CIC is calculated per

unit surface area. Large surface area electrodes (4000μm 2) had higher CIC per unit

surface area and it decreased for smaller electrodes (1250μm 2 and 177μm2). Electrodes



tested within the water window of hydrolysis showed CIC was dependent on bias voltage

and pulse width.

An extended voltage limit in the cathodic cycle increased CIC of TiN coated

electrodes significantly. The maximum injectable charge was 4.45mC/cm 2 for a bias

voltage of -0.8V.

It can be concluded that electrodes with rough surface had higher charge injection

capacity and the charge injection capacity dependencies show that simple elements are

not enough for modeling the electrode-electrolyte interface.
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CHAPTER 1

INTRODUCTION

An action potential (Figure 1.1) is a wave of electrical discharge that is generated in the

soma and travels along the axon of a neuron. Each cell contains ions distributed inside

and outside the cell, the distribution of ions across the cell membrane and the

permeability of the membrane to these ions generate a voltage (potential difference). The

voltage is negative inside the cell with respect to outside. Resting potential is the

potential difference between inside and outside the cell at rest and approximately equals

to -70 mV [1].

An action potential is generated when an excitatory stimulus causes a local

membrane depolarization, in which at somevoltage; gated sodium channels of the nerve

cell membrane open and sodium ions diffuse inside the cell. The sodium ions continue

moving inside until the action potential reaches a peak which is approximately around

+30 mV [2]. Positive sign means inside of the cell membrane is positive with respect to

outside.

After reaching the peak the sodium channels will close and the potassium

channels will open. The potassium ions will start diffusing outside the cell. As a result,

the re-polarization of the cell membrane would occur and inside will be negative with

respect to outside. In this way, the action potential is generated in the soma and would

continue to propagate along the axon.

1
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Figure 1.1 Simulated action potential (A) and real action potential (B) generated in the
soma [3].

Biopotential electrodes have been widely used for recording currents in the body,

and as stimulating electrodes as well. An interface is necessary in order to measure

biopotentials from the body. Biopotential electrodes functioning as transducers serve as

this interface.

In order to sense electrical signals from the body there must be an exchange of

current across the interface. When measuring the resistance of a metal using a voltmeter,

the complexity of interface between voltmeter probe metal and the measuring metal is not

of concern as the exchange of current across these two metals is due to the movement of
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electrons in both entities. This is not the case when measuring the resistance of a solution

(electrolyte), because the flow of current in metal is due to electrons and in electrolyte it

is due to ions. Hence the phenomena occurring at the electrode-electrolyte interface is of

concern.

The electrode-electrolyte interface is schematically illustrated in Figure 1.2. The

total current that crosses the interface, passing from the electrode to the electrolyte,

consists of electrons-moving in a direction opposite to that of the current in the electrode,

cations in the same direction as the current and anions moving in a direction opposite to

that of the current in the electrolyte. For the charge to cross the interface there are no free

electrons in the electrolyte and there are no cations or anions in the electrode. Some thing

must occur between the interfaces that transfers the charge between the carriers. What

actually occur are chemical reactions at the interface. These chemical reactions can be

represented in general by the following equations: [4]

n+
C(»C + ne-	 (1.1)

Αm- 4 Α +me-	 (1.2)

Figure 1.2 Schematic of electrode-electrolyte interface.
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Here n and m are valence of C and A respectively. The reaction involving cations

is shown by the equation 1.1. Here the metal of the electrode at the interface can oxidize

to form cation and one or more free electrons, the cation is discharged into the electrolyte

and the electrons remains as charge carriers in the electrode. Similarly the reaction

involving anion is shown by the equation 1.2. In this case an anion coming to the

electrode-electrolyte interface can be oxidized to a neutral atom, giving off one or more

free electrons to the electrode.

An important note here is, these reactions are completely reversible, meaning

reduction reaction moving from right to left can occur as well. The direction of reaction is

determined by the direction of flow of current in the Figure 1.2, if the current direction is

to right then oxidation reactions dominates if the current direction is opposite, reduction

reactions dominates. These reactions attain equilibrium with rate of oxidation equal to

rate of reduction when there is no current.

The equilibrium attained when there is no current flowing is a dynamic

equilibrium. When a metal is placed into a solution containing ions of that metal, reaction

in eqaution 1.1 starts immediately, initially, the reaction goes predominantly either to left

or to right, depending on the concentration of cations in the solution and the equilibrium

condition for that particular reaction. As result the concentration of cations and the

concentration of anions get affected. The overall result is the neutrality of charge is not

maintained around this region. Thus the electrolyte surrounding the metal is at different

potential from rest of the solution. This difference in potential is known as half cell

potential.
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This half cell potential in the immediate vicinity of electrode is determined by

metal involved the concentration of ions in the solution and temperature. It is not possible

to measure half cell potential with out a reference electrode, as the secondary electrode

also has half cell potential. What we finally end up measuring is the difference of

potential between these two electrodes. To standardize these measurements, the half cell

potential of the standard hydrogen electrode is arbitrarily set to zero. Half cell potential of

other electrodes is expressed as a potential difference with this standard electrode.

The half cell potentials of many metals used for electrodes are known and

measured with respect to the hydrogen electrode under STP (Standard Temperature

(2700c) and Pressure (1 atmosphere)) conditions. When measurements are made in the

lab atmosphere, STP conditions are not maintained, as a result half cell potential is

altered from that of standered measurements. As the electrode comes in contact with the

solution concentration- the activity would change (availability of an ionic species in

solution to enter into a reaction). These variations in the half cell potential is modeled by

Nernst and is as shown.

(1.3)

where

Ε : half-cell potential

Εo : standard half-cell potential

n : valence of electrode material

acn+ : activity of Cation Cn+
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T : temperature in Kelvin and

F : faraday's constant.

Studies should that, as the current flows between the electrode and electrolyte,

the measured half cell potential is often altered from conditions in which there is no

current flow. This variation in half cell potential is due to polarization of the electrode

and is termed as overpotential. Overpotential is a sum of three basic components: the

ohmic overpotential (V t), the concentration overpotential (V a) and the activation over

potential (Va).

The ohmic overpotential is as a result of resistance offered by the electrolyte,

when current flows between the two electrodes immersed in the electrolyte. This drop is

proportional to current and the resistivity of the electrolyte; follows not necessarily

Ohm's law as it is dependent on the concentration of the ions in the solution.

The concentration overpotential results from the change in the distribution of ions

at the electrode-electrolyte interface. When a metal is introduced into the solution

containing its ions, the reactions in equation 1.1 and 1.2 start instantanously and will

reach equilibrium as there is no current flowing across the interface. The equilibrium is

not attained if there is current across the interface assisting a direction of reaction. Thus

an expected change in the concentration of ions is observed. This change results in a

different half cell potential at the electrode. The difference between this and the

equilibrium half cell potential is termed as concentration overpotential.

In order that a metal atom gets oxidized to a metal ion and move into the

solution, the atom most over come a energy barrier, similarly in the reverse reaction; in

which the a cation is reduced and is depositing as metal on the electrode also involves an
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activation energy. These two energies are not necessarily same. When there is current

between the electrode and electrolyte, the direction of current assists either oxidation or

reduction and hence the height of the energy barrier is determined by the direction of

current. This difference in energy appears as a difference in voltage across the interface

and is know as activation overpotential.

Depending on what happens to an electrode when current passes between it and

the electrolyte, there are two types of electrodes- Perfectly non polarizable electrodes are

those electrodes in which current passes freely across the interface, requiring no energy to

make the transition. Perfectly polarizable electrodes are those in which no actual charge

crosses the electrode-electrolyte interface when a current is applied. In these electrodes

the current across the electrodes is displacement current, and the electrode behaves as a

capacitor.

Neither of these two electrodes is possible to make- but some electrodes come

close to perfectness. Electrodes made of silver/silver chloride behave close to non-

polarized electrodes and electrodes made from noble metals behave close to polarized

electrodes.

The electrode-electrolyte interface must be able to transfer electrical stimulation

and sense neural response. This requires the material to interact electrochemically with

the surrounding tissue in a predicted and controlled manner to ensure adequate operation

in the body. This can only be achieved by proper modeling of this interface; modeling

also helps in improving repeatability. Primary understanding of this interface as a

capacitor was proposed by Helmholtz. Electronic circuit pioneer Varlet' [5] in 1871

measured this interface capacitance using 1-inch square platinum electrode in contact
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with sulphuric acid and reported its value as 311 μF . Later in the year 1879 Helmholtz

made attempts to model this interface, according to him a double layer of charge exits at

the interface as shown in the Figure 1.3. Moreover, because the voltaic cell delivers direct

current which has to pass through interface, resistance must also be a component of any

model.

Figure 1.3 Electrode-electrolyte interface models.

Randles based on his experiments with dropping mercury electrode synthesized a

circuit model consisting of Helmholtz double layer (C), polarization capacitance (C r) and

a series resistance (R) as shown in Figure 1.3 (b).

Recently a model explaining the variation of electrode-electrolyte impedance with

frequency as shown in Figure 1.3 (c) was proposed. In this model, when the frequency is
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very low, the capacitor (C) effectively blocks current 12 and the resulting impedance is

due to current Ιl flowing through Rd and R S, hence the total impedance is Rd+R, which is

very high. However if the frequency is high, capacitor (C) is effectively short circuited

and only current I2 will flow through RS resulting in a impedance of only R S which is

acceptable. These models are in evolution adapting to explain various phenomena

occurring at the interface.

As the ambitions of scientist grow to enhance the spacitial resolution of specific

neural stimulation or sensing devices, the need for micro electrodes with high charge

transfer capabilities are of critical importance. The sizes of these micro electrodes are

shrinking to accommodate more of them in a given area, especially for vision prosthesis.

On the other hand, the electrical limits for these electrodes are below empirically

established neural damage limits (400μC/ cm 2 versus 1mC/cm2) [8, 9, 10], thus posing a

challenge to fabricate electrodes with high effective surface area and consequently with

high charge injection capacities. This can only be achieved by investigating composite

materials with micro porous structures in regular fashion like titanium nitride (TiN) [11].

When choosing material for micro electrodes, material properties, surface

structure and charge transfer characteristics have to be considered. The charge transfer

should take place by double-layer charging/discharging and reversible faradic reactions,

as the reversibility of the reaction on an electrode is essential for both biocompatibility

and life time of the electrode. Reversibility prevents degradation of electrode and

formation of by-products that can harm the body [12]. The surface of the electrode is

important for electrode stimulation since it affects the growth of electrode into the tissue

and also influences parameters like charge injection capability, electrode impedance and
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electrode polarization. Biocompatibility of an electrode is also an important issue as, it is

expected to be non-toxic and the threshold values of stimulation should not increase with

the growth of fibrous tissue around it [13].

Rough electrode surface structures (TiN columnar structure) have been reported

to exhibit high effective surface area, i.e. low impedance and high charge capacity

[14,15]. As TiN electrodes have excellent mechanical stability, it is obvious to expect

electrodes made of TiN to behave as electrode made of noble metals (close to polarizable

electrodes). In polarizable electrodes the charge transfer across the electrode-electrolyte

is mainly due to capacitive mechanism. TiN uses capacitive charging of the electrode

surface to effectively cause current to flow in the tissue by charge redistribution. The

electrode/electrolyte interface impedance can be modeled as a capacitive element.

As shown in Figure 1.4 if we model the electrode-electrolyte interface with Rd

and C as resistor and capacitor of the interface respectively, R S as resistance of the

electrolyte. Capacitance is due to presence of double layer of charge on the surface of

electrode. As discussed previously, when frequency is very low, the total impedance is

Rs+Rd which is high. However if the frequency is high the impedance is only RS, which is

acceptable. This clearly indicates the impedance of the electrode-electrolyte interface is

frequency dependent. Another way to alter this impedance is, by fabricating electrodes

with high effective surface areas.
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W11Gι G

p: resistivity

1: length

A: surface area

Ε 0 : permittivity of free space

d: distance of separation

The fact that resistance is inversely proportional to surface area (1.4) and

capacitance is directly proportional to surface area (1.5) can be explored to achieve

higher charge delivering electrodes, even as the size of electrodes shrink's to micro

scales.

Since body is tolerant to TiN coating [ 16] and because of its excellent Mechanical

and Chemical stability it is being used in numerous medical (Pace maker electrodes [ 17],

implants, surgical tools etc) applications. Additionally it has an advantage that it is

commonly used in the integrated circuit fabrication process, so devices that are fabricated

in this fashion will not require special methods for material deposition. Studies showed
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that TIN coatings synthesized using vacuum based techniques like magnetron sputtering,

ion-plasma, cathodic vacuum arc etc, at relatively high pressures and low substrate

temperatures [18], usually have nano or sub-micro crystalline structures [19] and as result

have enhanced physical and mechanical properties [20]. Table 1.1 and Figure 1.5 shows

formation of grains of different sizes on samples prepared by different vacuum based

techniques.

Figure 1.5 Schematic images of the coating grain microstructures: (a) PVD, (b) CVD and
(c) PMD.

Table 1.1 Grain Size of Samples Prepared by Different Techniques
TiN coating Mean grain size

1.PVD — Low voltage high current

2.PVD cathodic arc

3.CVD Surface zone

4.CVD — 1 μm below Surface

5.PMD

0.1 μm

0.2μm

0.6μm

0.4μm

0.06μm

Not until recently, owing to its remarkable properties and growing applications in

the field of medicine efforts were made to understand the physical properties of titanium

nitride. Table 1.2 lists the physical properties of TiN coating on a substrate using physical

vapor deposition.
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Table 1.2 Physical Properties of Titanium Nitride (TiN) Coating 1-21
Composition	 1 TiN. >99% purity.

Process PVD Vacuum Deposited Coating.

Appearance Metallic Gold.

Thickness
Ranges from 0.25 to 12 microns. 	 Typical applications are 1 to 5

microns.

Uniformity Coating conforms uniformly to the substrate.

Hardness
Hardness > 2000 kg/mm2 Knoop or Vickers Micro hardness.

Toxicity

Non-toxic. Meets FDA guidelines and has been approved for use in

numerous medical/surgical devices, including implants. Meets

requirements of FDA and USDA for food contact.

Temperature

Resistance

Begins to oxidize at 600° C. (1100° F.) in air. More resistant in an inert

atmosphere.

Melting Point 2930° C.

Deposition

Temperature
Ranges from 200 to 450° C.

Electrical Resistivity
25 μOhm-cm.

Chemical Resistance Highly inert to acids, bases, solvents, caustic, etc.

Thermal	 Expansion

Coefficient
9.4x 10-6 /°C.

Thermal Conductivity 0.046 Cal/sec-cm-°C.

Density 5.22 g/cm3 .

Crystal Structure Face Centered Cubic.

Young's	 Modulus,

Modulus of Elasticity
600 GPa.

Poisson's Ratio 0.25

Heat of Formation 80,750 Cal/mole. (3.5 eV/molecule).

Band Gap 3.35 - 3.45 eV



CHAPTER 2

X-RAY DIFFRACTION ANALYSIS

The x-ray region is a part of the electromagnetic spectrum lying between 0.1-100 A °
wavelengths. According to the fundamental Quantum law, E=hc/λ (where h is plank's

constant, c is velocity of light in vacuum and λ is wavelength), such shorter wavelengths

means high energy, multi-layer penetration. Since the discovery of x-rays, many studies

were conducted on the use of x-rays for understanding the chemical and physical

properties of materials.

What makes x-rays unique for the study of material is their wavelength. The

wavelengths of x-rays are in the order of spacing between the atoms in solids. Thus, by

studying how x-rays are diffracted and scattered when they interact with materials, a

prediction how atoms are arranged in crystalline compounds can be made.

2.1 X-Ray Diffraction

2.1.1 Interaction of X-Ray with Material

Let us study how an x-ray behaves when a monochromatic beam of x-rays falls on the

surface of the crystal.

Single Particle

When a wave interacts with a single particle, the particle scatters the incident wave

uniformly in all directions as shown in Figure 2.1

14
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Figure 2.1 X-rays after hitting the atom scattered in all directions.

Solid Material or Crystal

A crystal is made up of atoms or molecules in a regular pattern in space. It is this

regularity which is responsible for the diffracted waves. But if the arrangement of atoms

was random, then the scattered waves would randomly add or cancel with each other.

One Atomic Layer

Figure 2.2 shows a coherent beam of radiation falling on the surface at an angle Theta.

Of this beam few rays hit the atoms, few get scattered and few pass through the lattice

spacing. Let us consider two such scattered waves A and B. Since the two beams are a

part of the same original beam, they are in phase on reaching the crystal. If they travel the

same distance, i.e. x=y and if the incoming angle is equal to the outgoing angle, then they

reinforce each other giving a diffracted beam. This is also known as Bragg's Law I.
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Figure 2.2 Rays A and B diffracted by two atoms on the same layer.

Two Atomic Layers

As in Figure 2.3, let us imagine that the radiation coming from a coherent source falls at

an angle Theta;,, to the surface; some of the rays falls on the top plane and some on the

second plane. Let us consider two such beams A and B. The two beams are in phase on

reaching the crystal and they interact constructively reinforcing each other only when the

distance traveled by beam A is equal to beam B or if the extra distance abc is a whole

number of the wavelength. This is called Bragg's Law U.

According to Bragg's Law Ii, the coherence occurs only when abc=nλ. Using

simple trigonometry it can be shown that nλ= rdSin[Theta], where d is the distance

between two layers, λ is the wavelength of incident light, Theta is the angle of incidence

of the coherent beam, r is a perpendicular from first layer to ray B as shown in Figure 2.3.

and n is an integer [22].
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Figure 2.3 Ray Α and B diffracted by atoms on different layers.

Reciprocal Lattice

Rearranging the Bragg's Law in the form SinTheta = nλ/2 (lid). It can be seen that

SinTheta is inversely proportional to d- the interplanar spacing between the crystal

lattice. Since, Theta is a measure of the deviation of the diffracted beam, it is obvious that

the structures with a larger "d" will have compressed diffraction patterns and is opposite

for structures with a small d.

Interpretation of x-ray diffraction patterns will be facilitated if the inverse relation

between "SinTheta" and "w" can be replaced by a direct relation. This can be achieved

by constructing a reciprocal lattice based on lid.

2.1.2 X-rays and Fourier Transforms
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Studies show that the diffraction patterns are related to the object diffracting the waves

through a mathematical operation called Fourier transform. Fourier transform of the

scattered waves in the Figure 2.4 for single atom is as shown in the Figure 2.4 (a) the

intensity drops off continuously with increasing scattering vector. Similarly Fourier

transforms for two atoms is shown in Figure 2.4 (b). These transforms are unique for

each material.

u

Figure 2.4 Fourier transforms for single atom (a) Fourier transforms for two atoms (b).

Figure 2.4 Fourier transforms for single atom (a) Fourier transforms for two atoms (b)

(continued).

2.1.3 X-ray Setup
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For diffraction to occur, it is necessary to satisfy Bragg's Law. An arbitrary setting of a

single crystal in an x-ray beam will not generally produce any diffracted pattern. Hence,

there would be little or no information in the diffraction pattern using monochromatic

radiation. This problem can be solved either by using x-rays with large range of

wavelengths or by rotating the crystal about its own axis. In later case, the x-rays are

incident along an axis normal to the sample surface. As the sample rotates, the lattice

planes will at some point make the correct Bragg angle for the monochromatic incident

beam resulting in a diffracted beam.

The set up x-ray diffraction can be put into three basic units.

1. A source of radiation- x-ray tube along with high voltage generator.

2. Diffractometer.

3. Detector and counting system.

2.2 X-Ray Diffraction Analysis of the Sample

2.2.1 Sample Preparation

X-ray analysis of the TiN on substrate was done using Philips PW 3040 XRD instrument

with Cu Κα radiation. Sample was cleaned thoroughly with IPA and dionized water

before analysis, as traces of grease and/or finger prints can shift the spectrum

significantly. The reference peaks for Ti and TiN under control conditions are as shown
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in Figure 2.5 and Figure 2.6. These plots were taken from X-pert high score library

(closely matched plots after pattern match).

Intensity [ 96 ]
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Figure 2.5 Reference diffraction lines for titanium.
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Ref. Pattern: Titanium Nitride, 04-001-9125
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Figure 2.6 Reference diffraction lines for titanium nitride.

Two samples with TiN sputtered under different conditions were prepared for

ΧRD analysis. ΧRD parameters for first round and second round of sample are:
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Table 2.1 Scan Parameters for First Round of TiN SDutterin
Start 2Theta 15 End 2Theta 140

Step Size [2Theta] 0.02 Scan Speed 1.35s

KV 45 mA: 40

Table 2.2 Scan Parameters for Second Round of TiN Sputtering
Start 2Theta 20 End 2Theta 145

Step Size 0.02 Scan Speed 1.35s

KV 45

ι
mA: 40

And all other parameters like temperature (25 °C), anode material (Cu), etc. were kept

exactly same for both runs. The start 2Theta and stop 2Theta are selected by looking at

the standard diffraction lines for Ti and TiN.

2.2.2 Results



Figure 2.7 Diffraction peaks for (a) Sample (b) Ti on wafer (c) just silicon wafer.
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Figure 2.7 Diffraction peaks for (a) Sample (b) Ti on wafer (c) just silicon wafer
(continued).
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In Figure 6.1 (a) Shows diffraction pattern for sample, with peak positions at

2Theta=33 ° , 35 ° , 36.8° 38° ,42° ,61 ° ,68.8° ,69° and 116.5 ° (approximately), (b) Shows

diffraction patterns for Ti on wafer, with peak positions at 2Theta=33 ° , 35° , 38° ,61 °
,68.8° ,69° and 116.5 ° and (c)Shows diffraction patterns for just silicon wafer, with peak

positions 2Theta=33 ° , 61 ° ,68.8° ,69° and 116.5° .

Sample has all the diffraction peaks (2Theta=33 ° , 35 ° , 36.8° 38° ,42° ,61 ° ,68.8°
,69° and 116.50), these peaks positions match exactly with the peak positions in standard

diffraction peaks for TiN, Ti and Silicon (see Figure 1.2.). The peaks at positions

2Theta= 36.8° and 42° are missing in diffraction patterns for Ti on wafer (Figure 6.1(b))

as they correspond to TiN only. Similarly the peaks for angle 2Theta = 35 °, 36.8 ° 38° and

42° are missing in diffraction patterns for just silicon wafer (Figure 6.1 (2.c)) since these

peaks correspond to Ti and TiN only. This analysis and the presence of Ti and TiN peaks

exactly at positions as in the standard diffraction peaks prove the presence of Ti and TiN.

Other peaks at positions 2Theta= 61 ° ,68.8° ,69° and 116.5 ° in diffraction patterns for

sample are due to the presence of Silicon and its compounds.

Table 2.3 Shows Peak Positions and their Presence
Peak Positions 2Theta

33 ° 35 ° 36.8° 38° 42° 61 ° 68.8° 116.5 °
Just Silicon Wafer Yes No No No No Yes Yes Yes

Ti on Wafer Yes Yes No Yes No Yes Yes Yes

Sample Yes Yes Yes Yes Yes Yes Yes Yes



CHAPTER 3

ATOMIC FORCE MICROSCOPY

Atomic Force Microscopy (AFM) is a technique used for the study of colloidal properties

of surfaces. AFM works on the principle of cantilever beam. A micro cantilever beam

probes sample surface with a sharp tip, protruding normal to the surface of the beam.

Cantilever beam usually has a spring constant of 0.1 to 3Ν/m hence an AFM can measure

a force range of the order of 10 -6 to 10 -9 Ν. A schematic of typical AFM setup is as

shown in Figure 3.1.

Figure 3.1 A typical contact mode AFM. The shift in the reflected laser beam is
proportional to deflection of the cantilever beam. Detector and feedback electronics are
used to correct the deflection.

24
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Modes of Operation

The AFM studies can be split into three popular modes of operations: In contact mode,

the separation distance between the tip and the sample is small and the detected force is

the result of core-core repulsion. The contact mode can provide a resolution of the order

of atoms, provided the surface is rigid. In non-contact mode, the separation between the

tip and the surface is significant and the detected forces are the Vander Waals forces. The

spatial resolution of the non-contact mode AFM is poor as compared to the contact mode

AFM. However, non-contact mode AFM is less susceptible to imaging artifacts resulting

from deformation of the surface by the tip. In order to have the resolution of contact

mode and overcome the limitation of image artifacts, a third mode called tapping mode

AFM is evolved. In this mode, the cantilever is forced to hover at a certain frequency

over the surface. A change in the resonant frequency of the cantilever will result in a

change in the amplitude of oscillation, which is directed by the laser- PSD system. When

this happens, the feedback control lowers the sample so that the original amplitude of the

cantilever is restored. Figure 3.2 shows the relationship between inter atomic force and

separation distance.
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Figure 3.2 The curve shows the relationship between inter atomic force and separation
distance.

As discussed previously in contact region the separation between sample and tip

is few angstroms and the forces are repulsive. In non-contact region the tip is held in the

order of tens to hundred angstroms above the sample and the interatomic forces are long-

range Vander Walls forces (attractive).

3.1 Understanding the Data

3.1.1 Roughness Average (Ra)

It is defined as the ratio between the integral of the absolute value of the roughness

profile height over the evaluation length.

Ra=1/L fir (x )μx.
0
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Graphically the average roughness is the sum of the absolute values of the shaded region

over the length `L' as shown in the Figure 3.3.

Figure 3.3 L is the evaluation length shaded area represents evaluation area, Ρ 1 is the
highest peak and V i is the deepest valley.

3.1.2 Rq- Root Mean Square Roughness

The root mean square roughness is calculated by using the formula

Rq = 1/L Jr 2 (x )dx
0

Rq and Ra are used as synonyms of each other.

Rq is proportional to Ra; it's about 1.11 times larger than Ra .

Rq is used mostly in optical applications where it is more directly related to the optical

quality of a surface.

3.1.3Rt,Rp and R,

The peak roughness Rp is the height of the highest peak in the roughness profile over the

evaluation line. R is the depth of the deepest valley in the profile and R t (Rmax) is the

sum of these two or the vertical distance from the highest peak to the deepest valley.

Figure 3.3 illustrates these parameters.



28

3.2 AFM Analysis of Sample

3.2.1 Roughness Analysis

Roughness analysis of TiN sputtered substrate was carried using contact mode Digital

Instruments, Nanoscope AFM. A piece 2mm x 2mm area was cut from the wafer. Sample

was cleaned for any grease using Iso Propane Alcohol and then with distilled water.

Keeping in mind roughness to be expected, cantilever beam of appropriate tip size was

selected. Two rounds: first with 3 μm x 3 μm plane area over the TiN pads and second

with 100μm x 100μm across the interface between the substrate and TiN layer with

scanning parameters as: Scan rate 0.9537 Hz and Data scale 80nm were run.

First run:

A.

Figure 3.4 Roughness profile of a plane 3 μm x 3 μm surface area over the TiN coated
electrodes. (A) shows top view of surface and (B) oblique of the same image, peaks and
valleys are clearly seen in this view.
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Figure 3.4 Roughness profile of a plane 3 μm x 3 μm surface area over the TIN coated
electrodes. (A) shows top view of surface and (B) oblique of the same image, peaks and
valleys are clearly seen in this view (continued).

Table 3.1 Image Statistics of Scand Area is Summarized as Follows
Img. Z range 7.496 nm

Img. Mean 0.117 nm

Img Raw Mean 27.468 nm

Img. Rq 7.903 nm

Img. Ra 6.175 nm

Img. Rrnax 76.660 nm

Img. Srf. Area 9.806 μm2

Img. Prj . Srf. Area 9.000 μm2

Img. Srf. Area diff 8.952 %
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Figure 3.4 Roughness profile of a plane 3 μm x 3 μm surface area over the TiN coated
electrodes. (A) shows top view of surface and (B) oblique of the same image, peaks and
valleys are clearly seen in this view (continued).

Table 3.1 Image Statistics of Scand Area is Summarized as Follows
Img. Z range 7.496 run

Img. Mean 0.117 nm

Img Raw Mean 27.468 rim

Img. Rq 7.903 run

Img. Ra 6.175 nm

Img. Rmax 76.660 rim

Img. Srf. Area 9.806 μm2

Img. Prj . Srf. Area 9.000 μm2

Img. Srf. Area diff 8.952 %



30

3.2.2 Section Analysis

Thickness of TiN is estimated by scanning across the interface. Offline section analysis

was done on data from the second run. Figure 3.5 summarizes the analysis. A section line

is drawn with an angle across the interface, two points one on the substrate and other on

the TiN layer is selected and are moved alternately along the horizontal axis to find

maximum vertical distance. For a scan angle of 16.959 ° and horizontal distance of 3.516

μm, maximum vertical distance was 1.072 μm. Hence an approximate TiN thickness is 1

Figure 3.5 Shows section analysis. (a) and (b) shows the section line across, red
triangles can be moved to find maximum vertical distance. (c) shows three dimensional
roughness profile of the same image, a clear difference between these two entities is seen
in this view.
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Figure 3.5 Shows section analysis. (a) and (b) shows the section line across, red
triangles can be moved to find maximum vertical distance. (c) shows three dimensional
roughness profile of the same image, a clear difference between these two entities is seen
in this view (continued).

Measurements by detecting change in resonant frequency due to accumulation of

mass on a piezoelectric crystal performed during sputtering in clean room suggested a

thickness of 800nm.
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Figure 3.5 Shows section analysis. (a) and (b) shows the section line across, red
triangles can be moved to find maximum vertical distance. (c) shows three dimensional
roughness profile of the same image, a clear difference between these two entities is seen
in this view (continued).

Measurements by detecting change in resonant frequency due to accumulation of

mass on a piezoelectric crystal performed during sputtering in clean room suggested a

thickness of 800nm.



CHAPTER 4

FABRICATION PROCEDURE

4.1 Thin Film Deposition Techniques

4.1.1 Plasma Enhanced Chemical Vapor Deposition

Plasma Enhanced Chemical Vapor Deposition (PECVD) or Plasma Assisted CVD

(PACVD) is a special case Chemical Vapor Deposition (CVD). CVD can be defined as

the deposition of solids on the surface from a chemical reaction. This process takes the

advantage of formation of solid materials during chemical reactions between reactants in

gas phase or liquid or with the substrate material. CVD is a popular technique in

semiconductor industry as high deposition rates and thick coating can be readily achieved,

moreover CVD equipment is relatively simple. The negative side of CVD is, CVD is

productive at temperatures 600 °C and above [23,24], where thermal stability of the

substrate and other metal coatings (Aluminum) may limit its applicability. Hence

(PECVD) or (PACVD) is used as an alternative. In PECVD the reaction is assisted by

creation of plasma in the chamber. As a result, the substrate temperature can be kept

considerably low [25,26].

As the temperature of gas is increased, the atoms are gradually ionized, that is

there are stripped of their electrons and a plasma is formed which consist of Ions,

electrons and atoms which are not ionized. Pressures close to vacuum are maintained in

the chamber to increase ionization of plasma by reducing average distance traveled

between collisions, as a results the collisions are more frequent and an improved rate of

deposition is achieved [27,28,29].

32
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PECVD is popularly used for deposition of oxides of silicon in the clean room.

Silicon oxide (S102) is formed when saline SiΗ4 reacts with Ν20 [30]. First, SiΗ4

decomposes to deposit Si on substrate as in polysilicon growth, producing Η2

byproduct. Then the deposited Si is oxidized by Ν2O reaction, producing Ν2 byproduct

[31].

4.1.2 Physical Vapor Deposition

Physical Vapor Deposition (PVD) is a thin film technology used mostly for deposition of

metals in the clean room. PVD is different from chemical vapor deposition in the sense

that films are deposited automatically by means of flux of individual neutral or ionic

species [32]. The most common methods of physical vapor deposition (PVD) of metals

are evaporation, e-beam evaporation, plasma spray deposition and sputtering. Metals

like ,Au Al, Cu and Ti are most commonly deposited using PVD. Evaporation occurs

when a source material is heated above its melting point in an evacuated chamber. The

evaporated atoms then travel at a high velocity in straight line trajectories. The source can

be melted by resistance heating, by RF heating, or with a focused electron beam.

In ion beam sputtering, a source of ions is accelerated toward the target and ions

impinge on its surface sputter some of the surface atoms, these sputtered ions get

deposited onto the wafer which is placed facing the target. The ion current and energy

can be independently adjusted. Since the target and the wafer are placed in a chamber that

has lower pressure, more target material and less contamination are transferred to the

wafer.
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Many other techniques are employed to increase the ion density and hence the

sputter deposition rate, like using a third electrode that provides more electrons for

ionization or the use of magnetic field, such as ECR (Electron Cyclotron Resonance) to

capture and spiral electrons, increasing their ionizing efficiency in the vicinity of

sputtering target.

The material we wish to sputter is made as target which is biased at high negative

voltage. Argon gas is introduced into the chamber at some pressure. The role of the

electric field is to accelerate an electron which in turn collide with argon, breaking some

of argon atoms into ions and more electrons. When these ions hit the target they may

sputter some of the target atoms, these sputtered atoms fly off randomly in all directions,

and some of them land on the substrate- condense and form a thin film. The phenomenon

of sputtering is summarized in the Figure 4.1.

A special technique called reactive sputtering is used for deposition of compounds;

reactive gases are introduced into sputtering chamber during deposition allowing material

sputtered from the target to combine with gasses forming chemical compound films. The

reaction could take place at target, in the gas phase or at surface of the substrate [33].

Sputtering is essentially involves knocking out atoms off the surface of a film by

impact of ions, hence it is also used for removal of metals or for etching.
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Figure 4.1 The phenomenon of sputtering in side a sputtering chamber is shown [34].

PVD and PECVD both have there pro and cons. The choice of the process is

governed by the achievability of reacting species in the chamber to deposit required

material in least time with defined quantity and quantity.

4.1.3 Electron Beam Evaporation

Electron beam (e-beam) evaporation is also an evaporation technique in which the

material to be coated (source material) is placed in crucible. The source material is then

heated using electromagnetically accelerated particle beam of electrons with inherently

high density of energy which are focused over very small area, this results in local

melting and evaporation of the source material. A schematic of e-beam evaporation

system is as shown in Figure 4.2. Vacuum pressures are maintained in the chamber to

facilitate free molecular evaporations and subsequent condensation on all surfaces.
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Figure 4.2 Α typical electron beam setup [35].

Thermal emission of electrons from a tungsten filament biased to a negative

potential with respect to a collimating slit is typically the source of electrons. e-beam is

guided on to the metal using a deflecting magnet. The source of e-beam is kept bellow

the crucible as shown in the Figure 4.2 to minimize contamination.

4.2 Lithography

Lithography is the key to planner processing. The process of selectively removing

material to transfer patterns on to the substrate is achieved by spin coating the substrate

with a light sensitive material called photoresist. Photoresist is a radiation sensitive

compound that can be classified as positive or negative depending on how it responds to

radiation. For positive resists, the exposed regions become more soluble and are thus

easily removed in the development process. The net result is that the patterns formed in

the positive resist are the same as those on the mask. For negative resist, the exposed
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regions become less soluble and the patterns formed in the negative resist are the reverse

of the mask patterns. Positive photoresist consist of three components: a photo sensitive

compound, a base resin and an organic solvent. Negative photoresist are polymers

combined with photo sensitive compound. After exposure the photo sensitive compound

absorbs the optical energy and converts it into chemical energy to initiate polymer cross

linking reaction. The cross linked polymer becomes insoluble in developer solution. One

very common positive photoresist used is based on a mixture of Diazonaphthoquinone

(DNQ) and Novolac resin (a phenol formaldehyde resin). One very common negative

photoresist is based on epoxy based polymer. The common product name is SU-8

photoresist.

Positive photoresist Developer is hydrated alkaline material which dissolves

readily in water, giving a buffered alkaline solution for economical development of

novolac polymer films used in micro imaging.

UV light is used to expose the wafer protected by a mask which has features to be

transformed on to the substrate. UV light polymerizes the photoresist by breaking inter

molecular chains, making them readily soluble in organic solvents (developer)

4.3 Wafer Clean

Cleaning is a critical step in enhancing the yield for a semiconductor process. Cleaning

depends up on finding a cleaning agent with greater affinity for contaminants then the

surface being cleaned. The common contaminants on the silicon substrate are grease, dust

particles, left over from previous process (e.g.: photoresist) and static charge (ions). A

sequential three step procedure is used frequently in the clean rooms for primary cleaning
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of substrates. Is Propane Alcohol (IPA) to remove any grease due to improper handling,

followed by acetone to remove any organic contaminants and finally with deionized

water to rinse IPA , Acetone and also a to remove any static ions. A more rigorous

cleaning using acids and strong organic solvents is used as the fabrications steps mature

and demand.

4.4 Fabrication of Electrodes

The mask design is done using Mentor Graphics IC station Version 8.4. Mask are made

of soda lime with chrome coating and had critical dimension of 5 μm. Ten different

electrodes five circular (d=10μm,20μm,40μm,80μm and100μm) and five squire (s=

10μm,20μm,40μm,80μm and ΙΟΟμm) with four channels each where designed. These set

was repeated allover a 5" mask. The distance between the contact and bonding pads is at

least 3 mm. Each bonding pad is 0.5 mm x 0.5 mm in area. There are total three masks.

The layout of each mask is shown in Appendix.

The first mask is a clear on black type of mask; patterns on this mask are used for

depositing Ti as a first layer. Dimensions on this mask are one unit more than the

required dimensions for each electrode.

The second mask is also a clear on black type of mask. This mask is used to

sputter TiN only on the contacts. The features on this mask are corresponding to features

on the first mask in size.

The third mask is a black on clear type of mask. This mask is for opening

windows only for contacts and bonding pads and covering rest of the wafer with silicon

oxide. The dimensions of the features on this mask are exactly same as required for each
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electrode. Patterns consisting of cross, rectangle and, an L shape are made on the mask

and are used as alignment marks for subsequent layers.

Fabrication of electrodes was carried out in the class 10 clean room at NJIT. The

starting material was p-type, 5", single side silicon oxide coated <100> silicon wafer

with 500μm thickness.

First step was to deposit titanium as a base metal for electrodes. Using mask one

required pattern was transferred on to substrate as described. Substrate was cleaned first

with Is propane alcohol (IPA), then with acetone followed with deionized water rinse.

After dehydrating the wafer at 120 °C on a hot plate, primer was spread across the wafer

at an a speed of 800 rpm for one minute followed by photoresist at a speed of 1000 rpm

for one minute which would correspond to a resist coat thickness of 1.5 μm. Later wafer

was pre-backed at 110 °C before placing it in a mask a-liner. UV light at 15mW for 25 sec

was used for exposing the wafer. Then the wafer was agitated in developer and deionized

water alternately till sharp edges were visible under the microscope. Finally it was post

backed at 120°c before sending the wafer for metal layer deposition using electron beam

vaporization.

Titanium (Ti) was deposited as a base layer using e-beam vaporization machine.

With chamber set to vacuum pressures, 99.9% pure Ti pallets where filled into the

crucible up to % mark. The system was water cooled at 50 °F, with pressure inside the

chamber as 2x 10 -όtorr a deposition rate of 2A °/s was achieved. The distance between

target and substrate was about foot and half. This set up run for 30 min. crystal

measurements showed a thickness of around 1 μm of Ti.
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Ti coated wafer was dipped in acetone bath for Ti lift off. Altering wafer in

acetone bath and in running water gave a thoroughly cleaned wafer.

The next step was to insulate the metal lines using silicon oxide coating; this was

achieved by doing lithography as explained before with same parameters. A negative

mask (black on clear) was used for protecting the contacts and bonding pads with a

photoresist. After hard baking the wafer, it was introduced into oxidizing chamber.

400ccm saline and 900ccm of nitrous oxide at 25 kV of RF power was set. Target

thickness of 1 μm was achieved in 30 minutes for process pressure of 900mtοrr,

temperature in the chamber set to 120 °C. Oxide lift-off was done in an acetone bath for

four to five hours for clearing the pads and contacts off the oxide film.

One more lithography step on oxide film to open window for titanium nitride

(TiN) sputtering was done using mask II. Steps involved in order for lithography were;

Spin coating of wafer with primer at 800 rpm for 1 minute, photoresist coat at 2000 rpm

for 1 mintue, soft baking of substrate at 110 0c, UV exposure at 15mW for 25 sec,

developing, inspection and finally hard baking.

At this stage wafer was cut into two pieces, one piece was sent for TiN PVD and

the other piece was used for Ti, CIC measurements. Photoresist coat on the wafer was

used as insulation for Charge Injection Capacity (CIC) measurements.

Last step was to perform PVD of TiN, it was done using Varian DC 3125

machine. Hard backed photoresist was used as mask for TiN deposition only on contacts.

TiN was spurted using a titanium target in an atmosphere of nitrogen (N2) and argon (Ar)

for two hours. Power was kept between 4900w — 5400w (I=7Αmp; V=700 tο770 volts).

Efforts where made to keep Ν2 and Ar pressure at 1:1 proportion, but resulted in arcing
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inside the chamber. Ν2 pressure at 1.2mtorr and Ar at 5.3mtorr was stable and resulted in

deposition rate 2 Α0/sec (display value). Excess TiN was lift-off in an acetone bath as

described previously. Figure 4.3 shows the schematic of wafer after each process step.

Figure 4.3 Schematic of wafer after each process step



Figure 4.3 Schematic of wafer after each process step (Continued).
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The sequence of Νteps for fabricating these electrodes can be summarized using following

process flow.

• Wafer clean- IPA, acetone, deionized water; dehydrated at 120 °C.

• Photo lithography — Mask one, primer at 800 rpm for 1 minute, photoresist at

1000 rpm for 1 minute. Soft bake 110 °C, hard bake 120°C.

• Metal deposition- Electron beam vaporization.

• Lift off- Ti.

• Wafer clean- IPA, acetone, deionized water, dehydrated at 120°C.

• Photo lithography- Mask two, primer at 800 rpm for 1 minute, photoresist at 1000

rpm for 1 minute. Soft bake 110°C, hard bake 120 °C.

• Oxidation-Plasma Enhanced Chemical Vapor Deposition- SiH 400ccm, NO2 at

900ccm, process pressure 900mtorr, temperature 120°C, RF power 25kV, target

thickness 1 μm.

• Lift-off- Sio2

• Wafer clean- IPA, acetone, deionized water, dehydrated at120 °C.

• Photo lithography- Mask three, primer at 800 rpm for 1 minute, photoresist at

1000 rpm for 1 minute. Soft bake 110°C, hard bake 120°C.

• Sputtering- Power 4900W-5400W (I=7Αmp; V=700 to770 volts), pressure: N2 at

1.2mtorr and Ar at 5.3mtorr, deposition rate 2 A °/sec (display value).

• Lift-off- TiN.

• Wafer clean- IPA, acetone, deionized water; dehydrate 120°C.
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Figure 4.4 Image of the wafer with patterned electrodes of different size. The large
squares are bonding pads and the small circular or square shapes are electrode contacts.

Figure 4.4 shows of the wafer with patterned electrodes of different size. The

large squares are bonding pads and the small circular/square shapes are electrode contacts.

The distance between bonding pads and contacts is at least 3mm. The contacts are at least

150 μm apart. A set ten different electrodes-five square and five circular were designed

and are step-repeated allover the wafer with step size 300μm.



CHAPTER 5

CHARGE INJECTION CAPACITY

Many applications for neural stimulation demand high current densities from the electrodes

to effectively active neural tissue [36]. Electrodes of micro scale are needed to localize the

volume of activation and also to accommodate more on an array, specially in applications

related to central nervous system, vision [37] etc. These pioneering techniques urge

electrodes to be fabricated that are capable of handling larger current and higher charge

densities. Electrodes made traditionally from noble metals like platinum and tantalum oxide

or capacitor electrodes are not able to deliver such high current densities.

Microelectrode for neural stimulation is typically characterized by charge injection

limit, which represents the maximum charge that can be injected into tissue without

exceeding some practical set limits (typically defined as water window of hydrolysis) within

which the electrode is considered to operate reversibly [38]. Reversibility of charge is critical,

as pH shifts in biological environment due gas evolution, or introduction of by products, can

potentially have adverse effects on the surrounding neural tissue [39,40] resulting tissue

damage by increased cell death.

Charge injection into biological tissue is achieved through both faradaic and non-

faradaic reactions at the electrode/tissue interface. Electrical stimulation of metallic

electrodes in an aqueous electrolyte introduces charges into the environment via

electrochemical reactions. At low intensities, charge injection is dominated by capacitive

mechanisms [41]. With increasing current intensities, reversible and irreversible faradaic

reactions may occur [42]. Almost all faradaic reactions produce or consume hydrogen or

hydroxyl ions. Since the presence of these ions at the electrode surface alters hydrogen ion

45
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concentration, one can expect stimulus induced pH shift. Stimulation parameters for neural

prosthesis must be controlled to ensure minimal pH changes. [43]. Table 5.1 shows reactions

associated with platinum electrode stimulation.

Table 5.1 Example of Reversible and Irreversible Electrochemical Reactions Associated
with Platinum Electrode Stimulation [44]
Oxidation and reduction Pt + Η2O » PtO + 2Η+ + 2e-
Corrosion of electrode metal Pt + 4C1- - [PtCl4]2- + 2e-
Hydrogen generation 2Η20 + 2e- 4 Η2(g) + 2OΗ
Oxygen generation 2Η20 4 02(g) + 4Η+ + 4e-

Water hydrolysis is the most common electrical reaction during pulse stimulation,

which limits charge injection capacity of the electrode. The potential range defined by

hydrogen evolution at the cathode and oxygen evolution or surface oxidation at the anode is

termed as water window of hydrolysis [45]. Experiments with TiN electrodes showed that the

electrode potential range within which hydrogen absorption occurred before hydrogen gas

evolution starts in the cathodic direction was observed as -0.75V to -1.25V and thereby the

limit within which electrode is considered to operate reversibly for a cathodic pulse was

determined as -1.0V conservatively. Figure 5.1 shows a typical cyclic voltammogram of a

TiN coated electrode, no visible oxidation/reduction peaks are visible within the water

window of - 1V to +1.2V. This suggests that if pulsed within water window, charge injection

of TiN is through non-faradaic processes, i.e. mainly via capacitive mechanism. At the

voltage higher than the water window potentials, the sharp increase in both cathodic and

anodic current is due to the oxidation and reduction reactions, mainly water hydrolysis and

gas evolution.
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Figure 5.1 Cyclic voltammograms of a TIN electrode at a potential scan rate of 100 mV/s
[46]

Reversibility of charge is achieved with the use of charge balanced waveforms. These

current pulse waveforms retain overall zero net charge by employing rectangular geometry,

with each pulse having cathodal and anodal components with current amplitudes and

durations identical for the pulse, as shown in Figure 5.2. The importance of charge-balance is

to avoid corrosion of an electrode or damage to tissue from the accumulation of

electrochemical byproducts. A number of other strategies for achieving charge-balance using

capacitor discharge or by shorting to a large-area counterelectrode have also been employed,

All measurements are made using similar waveform shown in Figure 5.2.
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 Time ►

Figure 5.2 Α typical bi-phasic, symmetric current pulse with charge balance (with zero net
charge).Ic = cathode current Ia = anodic current tc= cathodic half phase period (0.5 ms), ta=
anodic half phase period (0.5 ms) for charge balance Ic x tc =Ia x ta.

Michigan Electrodes were kindly provided by the Center of Neural Communication

Technology, University of Michigan were used as reference for all measurements conducted

on NJIT patterned electrodes. Fabrication of these electrodes is summarized in the following

schematic.

Figure 5.3 Thin film technology for the fabrication of microelectrode array.
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The Figure 5.4 shows the real picture of 5 channel single shank micro electrode.

Leads coming out of each channel are made of ploysilicon.

Figure 5.4 Real picture of 5 channel single shank micro electrode [47].

5.1 Surface Morphology and Charge Injection Capacity

For stimulating/ sensing electrodes, electrode-electrolyte is traditionally described as

capacitor in parallel with a resistor, and pure electrical elements like capacitors and resistors

are used for modeling the system. Moreover electrodes with rough surface areas have been

reported to have high effective surface area, i.e. low impedance and high charge capacity.

When a metal is introduced into solution containing its ions, the charge transfer takes place

by charging/discharging of interfacial double charge layer or by reversible faradic reactions.

For simplicity let us assume interface is capacitor as shown in Figure 5.5.
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Figure 5.5 Approximate model of an interface as a simple capacitor.

The capacitance of a parallel plate capacitor is given by C = ε A/d. where A is the

effective surface area of the plates, d is the distance between the plates and ε is dielectric

constant of free space. In case of electrode-electrolyte interface the distance d is in the order

of molecular radius hence resulting in high values of capacitance. But as the size of the

electrodes reaching in the order micro scale, the parameter area (A) is not significantly

explored to meet the requirements of present day neural prosthesis.

For a given surface, surface area can be defined in two ways:- (Normal) Surface Area

is the area that is usually shown and dimensioned on a drawing. The normal surface area

does not indicate anything about the surface and its roughness profile of the surface.

Projected Surface Area (Real Surface Area) is the actual surface area that depends on

the properties, structure, material etc. of the object. The Real surface area can be many times

larger than the Normal surface area. A ratio between the difference in the projected surface

area and the normal surface area over the normal surface area can be used as a significant

parameter to claim for the improvement in surface roughness.

For many applications roughness is analogous to surface finish and is used to claim

certain parameters like friction. Similarly for stimulating/recording electrodes in neural
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prosthesis, improvement in roughness of the electrode surface can be used intuitively, to

claim an improvement in the charge injection capacities of the electrodes.

Electrodes with rough surface areas have been reported to have high effective surface

area, i.e. low impedance and high charge capacity. Studies conducted on Pt, Ti and TiN

coated electrodes by Norlin et al. supported this fact. Figure 5.6 shows SEM pictures of Pt, Ti

and TiN coated with different degree of roughness used by Norlin et al.

Figure 5.6 SEM picture of (a) Rough TiN (b) cross section of rough TiN (c) smooth Ti
(d) smooth TiN (e) smooth Ti after 1000 eye at 1.7V/s (f) smooth TiN after 1000 cycles at
1.7V/s [48].
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Table 5.2 Numeric Values of Capacitance. Range of the Minimum of Three Measurements
Surface roughness C (F/cm2)

Smooth Pt 4.3-5.7 x 10-5

Smooth Ti 1.6-1.7 x 10"5

Smooth TiN on Ti 4.7-5.5 X 10 -5

Rough TiN 1.8-2.2 X 10-2

Table 5.2 compares these surfaces with respective to electrode capacitance. As seen

from the table `Rough TiN' has approximately thousand times improvement in capacitance in

comparison with the least numerical value of capacitance in the group (smooth Ti).

Capacitance values for Smooth Pt and Smooth TiN on Ti are of same magnitude.

5.2 Reactive Ion Etch

Reactive Ion Etch (RIE) is a non-conventional technique used for nonuniform eroding of

metal coating on the substrate to attain rough surfaces for specific applications. Wafer is

mounted on a electrode which is grounded and RF power is applied to another electrode

which is parallel to grounded electrode, a gas containing reactive species is flowed over the

wafer. Later this gas is exited into plasma using RF power which will create highly reactive

chemical species in close proximity to the wafer. The phenomena occurring during RIE can

be grouped into two: Chemical part of RIE: In this reactive species accelerate towards, react

at the surface of the material to be etched, forming gaseous byproduct. Physical part of RIE:

Ions hitting the surface to be etched, transfer enough energy to the surface atoms, that some

of the surface atoms get sputtered (knock out) without any chemical reaction. A typical

parallel plate RIE reactor is as shown in Figure 5.7
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Figure 5.7 Schematic of a typical parallel plate plasma reactor [49].

Ability to delivery controlled power in a plasma discharge is of most importance in

plasma assisted technologies like etching; usually predetermined radio frequency power

required for the optimal use of the system is obtained by using a matching network between a

radio frequency power source and the plasma discharge chamber electrodes or coupling coil.

The matching network transforms the impedance (capacitive reactance) of the plasma

discharge into a substantially resistive load for the radio frequency power source. The power

source is then set to a predetermined power level dependant upon the process parameters

desired.

The matching network between the radio frequency power source and plasma

chamber electrodes consists of variable capacitors and/or inductors as the matching

components. The matching network may be adjusted manually or automatically. This

matching can be disturbed frequently to shut on and off the plasma in the reacting chamber,

this is popularly termed as flickering technique and is used for nonuniform etching.
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5.3 Platinization

Platinization is a method of depositing platinum in the solution on to an object to be coated.

The essential components for platinization are the electrode or substrate to be coated, a

secondary electrode to complete the circuit and an electrolyte containing platinum ions. The

object to be platinized is connected to the negative terminal of a direct current source and the

positive terminal of the current source is connected to a secondary electrode as shown in

Figure 5.8. As the current is increased from zero, a point is reached where metal plating

begins to occur. The current flowing through the solution ionizes it into positive and negative

ions; metallic ions of the solution carry positive charge and are attracted towards negatively

biased object to be coated and get deposited eventually.

Figure 5.8 A basic platinizing electrochemical cell.

Essentially following reactions occurs at the electrodes:

cathode: Ρt2+(aq) + 2 e b Pt(s)

anode: Pt(s)	 Pt2+(aq) + 2 e
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Here valance of platinum is shown as 2, in reality platinum can exits in 1,2,3,4

valance states. The electrons need for reduction of Pt onto the cathode is provided by the

negative side of the current source and electrons released by oxidation of Pt in the solution

are drained by positive of the current source.

Almost all metals can be coated with platinum. But the rate of deposition is

determined by factors like amount of current, surface preparation, temperature, concentration

of the electrolyte, bath stability etc. Rate of deposition of Pt can be optimized at room

temperature by appropriately selecting other parameters.

5.4 Experimental

5.4.1 Reactive Ion Etch

Α p-type single side oxide coated <100> silicon wafer was patterned using a mask, which

had circular features with a diameter of 1 mm each. Wafer was spin coated first with primer at

800 rpm for 1 minute, later with photo resist for a thickness 1.5μ (approximately) at 1000

rpm for 1 minute. Followed by UV exposure, developing, inspection and hard baking (details

of each step is discussed in chapter 2)

Sputtering of Titanium (Ti) was done using Varian DC 3125 PVD system for a

thickness of 900nm. Then the wafer was put in acetone bath for lift off of excess of Ti.

Finally the wafer was cut into pieces; each sample having at least two of the circular features.

These cut samples were etched separately using either CF4 or SF6 along with 02 at different

power, gas pressure and amounts of reactants in Minilock Reactive Ion Etch system.

Impedance matching between RF generator and Plasma was manually altered between match
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and mismatched states; due to this plasma inside the chamber was flickering on and off, this

technique is reported to enhance non uniform etching of the surface.

Later charge injection capacity (CIC) for each piece was measured in phosphate

buffered saline (PBS) solution using biphasic symmetric current pulse, LabView program

was used to control pulse width to 0.5 ms. The circuit used for these stimulations is shown in

Figure 5.9 Potentiometer 1 in the circuit is to control the strength of stimulating current

within the water window of electrode assumed to be 1V and potentiometer 2 is used to set the

bias voltage to -0.5 V.

Figure 5.9 Custom designed circuit for charge injection capacity measurements.



57

The Table 5.3 gives details how each sample was treated in the RIE chamber. Samples 1 and

2 are not treated, samples 3 was treated CF4 but with no flickering, sample 4 was treated with

SF6 and with flickering, samples 5, 6, 7 are treated with CF4 and with flickering.

Table 5.3 Sample Treatment in RIE Chamber and their Respective CIC
Sample No. Treatment Gas

CF4/SF6

Pressure

(mtorr)

RF Power

(Watt)

Flickering Time

(Sec)

C0C(WC/cm1)

1. Untreated - - - - 22.2

2. Untreated - - - - 25.4

3. CF4 10cc 100 200 ΝΟ 180 32.6

4. SF6 50 cc 300 150 YES 40 22.3

5. CF4 50 cc 300 250 YES 60 24.4

6. CF4 10 cc 80 200 YES 120 60.4

7. CF4 50 cc 150 250 YES 180 65.2

Here Table 5.3 gives details how each sample was treated in the RIB chamber and

corresponding CIC. Samples 1 and 2 are not treated, but cleaned with IPA and distilled water

before CIC measurements, samples 3 was treated CF 4 but with no flickering, sample 4 was

treated with SF 6 and with flickering, samples 5,6,7 are treated with CF4 and with flickering.
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Sample 4 treated with 50cc SF6 , at 150 Watt, at 300mtorr of gas pressure for 40

sec and with flickering has the least CIC (22.3mc/cm 2), Followed by the untreated

samples 1&2 (22.2 mc/cm2 and 25.4mc/cm2 ), then samples 3 treated with 10cc CF 4 , at

200 Watt, at 100mtorr of gas pressure for 180 sec and with ΝΟ flickering (32.6mc/cm 2).

Samples 6&7 treated CF4 at different pressures and power for longer time (120 sec and

180 sec) has approximately three times improvement in the CIC as compared with

untreated ones. A sample 5 treated with CF 4, at 250watt; at 300mtorr for 40 sec don't

show significant improvement in the CIC as similarly treated samples for longer time.

5.4.2 Platinization of Titanium

Platinization of Titanium electrodes was done using 0.0035 M platonic acid + 0.01M HC1

purchased from Sigma Aldrich. Platonic acid (H2PtC1 6) obtained from Sigma Aldrich was

0.019521M, 8% by weight solution and molecular weight of anhydrous H2PtCl6 was

409.81g. Required molarity of 0.0035M was obtained by adding 4.5m1 of distilled water

to 1 ml of H2PtC16,

Molarity: molarity of the solution is defined as amount of moles present in one

liter of solution.

Molarity of H2PtCl6 = 8/409.8
= 0.019521M (moles/liter)

Required molarity = 0.0035M

Amount of dilution = 0.019521/0.0035

= 5.5 times

Meaning 1 ml of H2PtC16 should be made 5.5 ml to obtain required molarity.
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Similarly HCl purchased from Sigma Aldrich was iN, a molarity of 0.01M was

obtained by diluting lml of iN HCl by 100 times, using distilled water.

(Molarity (M) = Normality (N) for HCl because, for HCl molecular weight equal to

atomic weight).

For a Charge = 10 C/cm 2 and current of 1 μΑ. time required for platinizing a

typical electrode was calculated as follows.

Charge = 10 C/cm2

Current = 1 μΑ => 1 μΑ/Α (5026μm2) = 1.99 x 104 μΑ/ cm2

where A is area of electrode
Time = 10 C/cm2 / 1.99X 104 μΑ/ cm2

= 502.51 sec.

CIC measurements were made in PBS using symmetric, bi-phasic current pulse,

with bias voltage of -0.5V and with pulse width of 0.5ms. Current amplitude was limited

to water window of stimulating electrode as 1V. The results in Table 5.3 shows

maximum CIC values obtained after platinization of Ti. Circuit for these recordings is

shown in Figure 5.9.

Table 5.4 CIC of Platinized Platinum
CIC

(mC/cm2)

Contact Area

(μm2)

Geometry

square / circular

Contact 1 2 6400 square

Contact 2 2.1 6400 square

Contact 3 2.3 5026 circular

Contact 4 2.9 5026 circular
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Here Table 5.4 shows CIC measurements of four samples after platinization.

Contacts 1 and 2 are square and Contacts 3 and 4 are circular.

Fixing the charge and amount of current for platinization; Square (6400μm 2)

contacts are platinized for 16 minutes and circular (area=5026μm 2) contacts were

platinized for 9 minutes. The average CIC is 2.3 (mC/cm 2).

5.4.3 Dependency of Charge Injection Capacity on Electrode Size

Model's of electrode-electrolyte interface shows that current-voltage characteristics of

the electrodes-electrolyte interface are non-linear, so a need to use a non-linear element.

Furthermore, the half-cell potential of the electrode is considered as a double-layer of

charge appearing on the surface of the electrode. Two layers of charge of opposite sign,

separated by distance, is simply a capacitor. Modeling of this interface helps in predicting

its behavior using different kinds of conditions, like using different amplitudes of input

voltages, different bias voltages, or different contact area sizes. But, measurements

involving mere particle elements are showing evidence that these elements are not

enough for modeling the interface, particularly as the electrode size goes in the order of

micro meters. As the electrode size becomes smaller, a question that needs to be

answered is how the electrode electrolyte interface properties effect the current and

voltage measurements near the electrode surface and do these measurements scale down

for electrodes with very small surface area.

Maximum injectable charge and double charge layer capacitance values were

reported for titanium nitride (TiN) electrodes before however, only for a selected contact

size. In this experiment we measured the charge injection capacity (CIC) of titanium
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nitride electrodes with three different surface areas for comparison. The pulse method

was used for the measurements.

Titanium electrodes of three different sizes (177μm2, 1250 μm2and 4000μm2)

fabrication of those electrodes is discussed previously, the electrodes were placed in a

phosphate buffer saline (ρΗ=7.4) and a charge balanced cathodic first biphasic current

stimulus pulse was applied. Both cathodic and anodic phase were either 0.2ms or 0.5ms

long with a 0.02ms break in between. The current stimulator was custom designed to

ensure a fast rise time (<0.5μs). The back voltage from electrode was first buffered with a

unity gain amplifier (TL084, Texas inst) and sampled into a computer using a data

acquisition board (PCI 6071) and LabView software ( Both from National Inst.) at a

sampling rate of 1.25Mhz.

The current pulse amplitude was increased incrementally until the double charge

layer voltage reached-1.0 Volts Figure 5.10 shoes the voltage waveform for a pulse

duration of 0.5ms at a current amplitude of 1 ΟΟμΑ measured with different surface

area electrode(177μm2 ,1250 μm2and 4000μm2). The instantaneous jump in the voltage at

the onset of the current pulse is due to the access resistance and the resistance of

interconnects. This initial voltage step is subtracted from the peak voltage for calculation

of the double charge layer voltage that develops during the cathodic phase of the current

pulse.
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Figure 5.10 Voltage across the current sink in response to a current pulse, measured with
surface area 177μm2, 1250 μm2and 4000μm2 .

The mean and standard deviation for the normalized CIC measured for all

electrodes sizes at both pulse durations (0.2ms and 0.5ms) are shown in Table 5.5. The

total number of electrodes for each kind are shown as n. The table shows that the total

CIC for unit area of the electrode is increasing with the electrode size.

Table 5.5 Mean and SD of CIC for Different Electrode Sizes
Mean ± SD

(177μm2)

Mean ± SD

(1250μm2)

Mean ± SD

(4000μm2)

Qinj2 (mC/cm2) 0.25 ± 0.06 0.49 ± 0.06 0.80 ± 0.06

(n=13) (n=9) (n=6)

Qinj5 (mC/cm2) 0.36± 1.0 0.88± 1.0 1.41 ± 1.0

(n=13) (n=9) (n=6)

Cp2(μF/cm2) 0.27 ± 0.08 5.92 ± 0.08 32.34 ± 0.08

(n=13) (n=9) (n=6)

Cρ2(μF/cm2 ) 0.40± 0.13 10.08± 0.13 58.43 ± 0.13

(n=13) (n=9) (n=6)
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5.4.4 Charge Injection Capacity and Bias Voltage

The electrodes were placed in a phosphate buffered normal saline (ρΗ=7.4) at room

temperature and the bias voltage was adjusted with a custom-built circuit with respect to

a large Ag/AgCI reference electrode. A charge balanced, cathodic first, biphasic current

stimulus pulse train was applied at 50Hz. Both cathodic and anodic phases were 0.5ms

long and of the same amplitude. The current stimulator was custom designed to ensure a

fast rise time (<0.5μs) and thereby allowing an accurate measurement of the access

voltage at the onset of the current pulse. The back voltage from the electrode was fist

buffered with a unity gain FET amplifier before sampled into a computer using data

acquisition board (PCI 6071) and LabVIEW software (both from National Inst.) at a

sampling rate of 1 MHz. Spike triggered averaging method was employed to remove the

noise from the signals.

The bias voltage was varied between -0.9V and -1.5V in steps of 0.1V and the

current amplitude was determined that generated an excursion of -1.0V in the electrode

back voltage. The initial voltage jump at the onset of each current pulse that was due to

the access resistance was subtracted in calculation of the back voltage. As a comparison,

the charge injection limit for a voltage excursion of -2.0V was also determined since

there was still no evidence of bubble generation at this potential. Fifteen contacts of size

177μm2, 12 contacts of size 1250μm2 , and 9 contacts of size 4000μm 2 were studied.
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Figure 5.11 Back voltage of a TiN electrode as a response to current pulses of 18μΑ
(solid line) and 1 5μΑ (dash line) amplitude and a pulse duration of 0.5ms. The plateau at
the end of the cathodic phase around -3.3V suggests H2 evolution in the first plot. The
second plot at a lower current seems free from any distortion. The electrode area is
177μm2 and the bias voltage is -1.0V. The initial jump due to the access resistance was
measured as 0.2V within the first 2μs.

Figure 5.12 Charge injection capacity as a function of the bias voltage measured from
TiN contacts of 177μm2 size (n=15). The measurements from each contact were
normalized with respect to the maximum charge within the bias voltage range of -1.0 to -
1.4V. Standard deviations are shown as vertical bars. The mean value of the charge
without normalization was 1.68±0.24mc/cm2 for the bias voltage of -1.1V.

Figure 5.12 shows the electrode voltage with one of the 177μm2 size contacts for a

bias potential of -1.0V where the current amplitude was increased until the H2 evolution
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was evident with a plateau at the end of the cathodic cycle. The voltage step due to the

access resistance was about -0.2V (measured within the first 2μs) and the plateau occurs

around -3.3V. In Figure 5.11, the electrode voltage is also shown when the peak-to-peak

electrode voltage was limited at -2.0V (-3.2V peak). Neither the anodic nor the cathodic

cycle exhibits any distortion suggesting a chemical reaction. The total injected charge in

this case was 4.24mC/cm2 .

The charge injection limit measured for a range of bias voltages are normalized

and plotted in Figure 5.12 for the 177μm2 contacts studied. The mean value of the

injectable charge is maximum for the bias voltages between -1.0V and -1.3V. Without

normalization, the maximum injectable charge was 1.68±0.24mc/cm 2 (n=15) at the

holding potential of -1.1V. Α small increase at the higher end is observed because of

possible hydrogen evolution, which allows the passage of larger currents without an

increase in the back voltage and thereby fictitiously inflating the measure of total charge

injected.

The electrodes with larger areas did not show a clear peak in the charge vs. bias

voltage plot. The injectable charge was 2.1±0.37mc/cm 2 (n=12) and 1.98±0.37mc/cm2

(n=9) at the bias voltage of -1.1V for the 1250μm 2 and 4000μm2 contacts respectively.

Similar measurements made with NJIT patterned electrodes with surface area

5026μm2, for three different bias voltages showed dependency of injectable charge on

bias voltage. Maximum charge was 1.9 mc/cm 2 ± 0.8 (n=4) for a bias voltage of -1.2V.
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Figure 5.13 Charge injection capacity as a function of the bias voltage measured from TiN
contacts of 5026μm2 size (n=4) for NJIT patterned electrodes.

5.4.5 Charge Injection Capacity for Extended Voltage Range

Several groups reported on maximum injectable charge of TiN electrodes within

the voltage window of the water electrolysis as -1.0V Recently, another group studied

TiN electrodes with rough surfaces using voltammetry in the voltage range of -3.0V to

1.0V and found that the CV plot became linear and independent of the sweep rate at fast

sweeping rates (>1 ΟV/s). The charge-transfer process was "almost completely reversible"

for this voltage range and no evidence of bubble generation was observed.

If it is proven to be safe, an extended voltage limit into the cathodic cycle can

increase the charge injection capacity of TiN electrodes significantly for neural

stimulation. Therefore, in this experiment, we investigated the maximum injectable

charge with TiN electrodes using current pulses for an extended cathodic voltage range.

Also a dependency CIC on electrode voltage and bias voltage was investigated.
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The electrodes were placed in a phosphate buffered normal saline (ph=7.4) at

room temperature and the bias voltage was controlled with a custom-built circuit with

respect to a large Ag/AgCI reference electrode. A charge balanced, cathodic first,

biphasic current stimulus pulse train was applied at 50Hz. Both cathodic and anodic

phases were 0.5ms long and of the same amplitude. The current stimulator was custom

designed to ensure a fast rise time (<0.5μs) and thereby allowing an accurate

measurement of the access voltage at the onset of the current pulse. The back voltage

from the electrode was first buffered with a unity gain FET amplifier before sampled into

a computer using data acquisition board (PCI 6071) and LabVIEW software (both from

National Inst.) at a sampling rate of 1MHz. Spike triggered averaging method was

employed to remove the noise from the signals.

The bias voltage was set within the range of -0.8V to -1.4V (as studies in section

5.4.4 gave maximum inject able charge for the bias voltages between -1.0V and -1.3V)

and the current amplitudes were determined that generated a range of electrode back

voltages from the bias voltage down to -3.0V in steps of -0.2V. The initial voltage jump

due to the access resistance was subtracted in calculation of the back voltage. Six TiN

contacts with an area of 177μm2 were studied.
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Figure 5.14 Injected charge as function of the electrode voltage for three different bias
voltages: -1.2(•), -1.0(■), and -0.8V (,) measured with Michigan electrodes.

The injected charge is shown in Figure 5.14 as a function of the electrode peak

voltage in the cathodic phase for three different values of the bias voltage (-0.8V, -1 .Οv

and -1.2V). The charge increases first slowly and then at a higher rate beyond the

electrode voltage of -1.6V in all three cases. The maximum inject able charge is

4.45mC/cm2 for a bias voltage of -0.8V.

Figure 5.15 Injected charge as function of the electrode voltage for three different bias
voltages:-1.2(♦ ), -1.0(ι), and -0.8V (•) measured with NJIT patterned electrodes.
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The Figure 5.15 shows mean charge injection capacity of seven electrodes plotted

against electrode peak voltage in the cathodic phase with bias voltages voltage (-0.8V, -

1.0V and -1.2V), as seen in Michigan electrodes, the injected charge increases slowly at

first and then rapidly beyond -2V. Maximum charge injection capacity for these electrodes

is 2.6mC/cm2 for a bias voltage of -1.2V.

5.4.6 Charge Injection Capacity Comparison

One of the objectives of this study was to study the charge injection capacity of

NJIT patterned electrodes in comparison with Michigan reference electrodes.

Table 5.6 shows the measurements made on six electrode (1-7853 μm 2, 2-

I 0000μm2 and 3-5026μm2) at three different bias voltages (-0.8V, -1.0V and -1.2V).



Table 5.6 Measurements Made with NJIT Patterned Electrodes
	70

Contact:1 	 Bias: -0.8V 	 Bias: -1V 	 Bias:-1.2V
Area:(μm 2) 	 7853.9

	

Ι (μΑ) 	 CIC 	 Ι (μΑ) 	 ClC 	 Ι (μΑ) 	 CIC
	1 	 3 	 0.019099
	1.2	 7 	 0.044564 	 1.2 	 6 	 0.038198
	1.4	 24 	 0.15279 	 1.4 	 22 	 0.140058 	 1.4 	 6 	 0.038198
	1.6	 60 	 0.381976 	 1.6 	 64 	 0.407441 	 1.6 	 20 	 0.127325

1.8
2

Conatct:2
Αεeα:(μm 2)

10000

	1 	 6 	 0.03
	1.2	 22 	 0.11 	 1.2 	 14 	 0.07
	1.4	 64 	 0.32 	 1.4 	 38 	 0.19 	 1.4 	 28 	 0.14
	1.6	 1.6 	 220 	 1.1 	 1.6 	 120 	 0.6
	1.8	 1.8

2
Contact:3
Area:(μm 2) 	 10000

	1 	 12 	 0.06
	1.2	 32 	 0.16 	 1.2 	 20 	 0.1 	 1.4 	 24 	 0.12
	1.4	 72 	 0.36 	 1.4 	 52 	 0.26 	 1.6 	 110 	 0.55
	1.6	 180 	 0.9 	 1.6 	 1.8 	 200 	 1
	1.8	 1.8

2

Contact:1
Area:(μm2) 	 5026

	1 	 3 	 0.029845
	1.2	 5 	 0.049741 	 1.2 	 5 	 0.011938
	1.4	 14 	 0.139276 	 1.4 	 12 	 0.119379 	 1.4 	 5 	 0.049741
	1.6	 24 	 0.238758 	 1.6 	 24 	 0.238758 	 1.6 	 10 	 0.099483
	1.8	 80 	 0.795862 	 1.8 	 38 	 0.378034 	 1.8 	 15 	 0.149224
	2 	 120 	 1.193792 	 2 	 100 	 0.994827 	 2 	 30 	 0.298448
	2.4 	 52 	 0.51731

Conatct:2 	 5026
Area: (μm 2)

1
	1.2	 1.2 	 0.011938 	 1.4
	1.4	 7.5 	 0.074612 	 1.4 	 7.5 	 0.074612 	 1.6 	 6 	 0.05969
	1.6	 12 	 0.119379 	 1.6	 14 	 0.139276 	 1.8 	 17.5 	 0.174095
	1.8	 36 	 0.358138 	 1.8 	 40 	 0.397931 	 2 	 52 	 0.51731
	2 	 80 	 0.795862 	 2 	 56	 0.557103 	 2.4 	 60 	 0.596896

Contact:3
Area:(μm 2) 	 5026

	1 	 5 	 0.049741
	1.2	 8 	 0.079586 	 1.2 	 4 	 0.011938
	1.4	 14 	 0.139276 	 1.4 	 8 	 0.079586 	 1.4 	 2 	 0.019897
	1.6	 40 	 0.397931 	 1.6 	 15 	 0.149224 	 1.6 	 10 	 0.099483
	1.8	 1.8 	 60 	 0.596896 	 1.8 	 30	 0.298448

2
Contact:4
Area:(μm 2) 	 5026

	1 	 1
	1.2	 6 	 0.05969 	 1.2 	 6 	 0.011938
	1.4	 12.5 	 0.124353 	 1.4 	 20 	 0.198965 	 1.4 	 7.5 	 0.074612
	1.6	 20 	 0.198965 	 1.6 	 40 	 0.397931 	 1.6 	 32 	 0.318345
	1.8	 40 	 0.397931 	 1.8 	 80 	 β.795862 	 1.8 	 80 	 0.795862
	2 	 88 	 0.875448 	 2 	 140 	 1.392758 	 2 	 140 	 1.392758
	2.2 	 170 	 1.691206 	 2.2 	 200 	 1.989654
	2.4 	 230 	 2.288102 	 2.4 	 220 	 2.188619
	2.6 	 270 	 2.686033
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The electrodes were placed in a phosphate buffered normal saline (pΗ=7.4) at

room temperature and the bias voltage was controlled with a custom-built circuit with

respect to a large Ag/AgCI reference electrode. A charge balanced, cathodic first, biphasic

current stimulus pulse train was applied at 50Hz. Both cathodic and anodic phases were

0.5ms long and of the same amplitude.

The bias voltage was set either -0.8V,-1 V or -1.2V and the current amplitudes

were determined that generated a range of electrode back voltages from the bias voltage

down to -2.6V in steps of -0.2V. The initial voltage jump due to the access resistance was

subtracted in calculation of the back voltage.

The maximum charge injection capacity for NJIT patterned electrodes was

2.68mC/cm2 for bias voltage of -12V and The maximum charge injection capacity of

Michigan electrodes was 4.45mC/cm2 for a bias voltage of -0.8V.



APPENDIX

MASK USED FOR FABRICATION OF NJIT PATTERNED ELECTRODES

Mask l : Used for Patterning Titanium as First Layer



Mask1: Detailed View 1
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See detail 2
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Mask1: Detailed View 2
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Mask 2: Used for Sputtering of Titanium Nitride on Electrodes
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Mask 2: Detailed View
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Mask 3: Used for Insulation of Titanium Metal Lines
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