

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.

ABSTRACT

DEVELOPMENT AND EVALUATION OF A
SIMULTANEOUS MULTITHREADING PROCESSOR SIMULATOR

by
Carla Verbena S. Nuńez

Modem processors are designed to achieve greater amounts of instruction level

parallelism (ALP) and thread level parallelism (ALP). Simultaneous multithreading (SMT)

is an architecture that exploits both ALP and ALP. At improves the utilization of the

processor resources by allowing multiple independent threads to reside in the pipeline

and dynamically scheduling the available resources among the threads.

The first part of this thesis presents the development of a simultaneous

multithreading processor simulator. The SMT simulator is derived from SimpleScalar, a

superscalar processor simulator widely used in the computer architecture research field.

The basic pipeline is expanded to allow multiple threads to be fetched, dispatched, issued,

executed, and committed simultaneously. Benchmarks that were executed on the SMT

simulator verified its functionality. The simulator produced the correct outputs and the

performance levels achieved were similar to those produced by the original authors of the

SMUT architecture.

The second part of this thesis explores the register file for SMUT processors. The

register file size grows with increased issue widths, instruction window sizes, and number

of thread contexts; as the register file size increases, so does its access latency. Solutions

to the register file problem have been proposed but most of these were designed for and

evaluated on superscalar processors. The use-based register cache is one such design and

its effectiveness on an SMT architecture is evaluated in this thesis.

The SMT simulator is a useful tool for evaluating components designed for

superscalar processors on a simultaneous multithreading environment and for testing

future designs of SMT architectural elements.

DEVELOPMENT AND EVALUATION OF A
SIMULTANEOUS MULTITHREADING PROCESSOR SIMULATOR

by
Carla Verbena S. Nuńez

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Engineering

Department of Electrical and Computer Engineering

May 2007

APPROVAL PAGE

DEVELOPMENT AND EVALUATION OF A
SIMULTANEOUS MULTITHREADING PROCESSOR SIMULATOR

Carla Verbena S. Nuńez

Dr. Jie Hu, Thesis Advisor	 Date
Assistant Professor of Electrical and Computer Engineering, NJAT

Dr. Satirise G. Ziavras, Thesis Co-Advisor 	 '	 Date
Professor of Electrical and Computer Engineering, NJAT

Dr. John D. Carpinelli, Committee Member 	 Date
Associate Professor of Electrical and Computer Engineering, NJAT

BIOGRAPHICAL SKETCH

Author:	 Carla Verbena S. Nuńez

Degree:	 Master of Science

Date:	 May 2007

Undergraduate and Graduate Education:

• Master of Science in Computer Engineering,
New Jersey Anstitute of Technology, Newark, NJ, 2007

• Bachelor of Science in Computer Engineering,
Ateneo de Manila University, Quezon City, Philippines, 2003

• Bachelor of Science in Physics,
Ateneo de Manila University, Quezon City, Philippines, 2002

Major:	 Computer Engineering

This work is dedicated to the two people
responsible for my presence in this world.

Pa and Ma,
thank you for all the sacrifices you have made

so that your children could pursue their dreams.

ν

ACKNOWLEDGMENT

A owe the timely completion of this thesis to my advisor, Dr. Jie Hu, who has guided me

through much of my work. When the long hours of programming and debugging take

their toll and cause me to lose sight of where A'm headed, A have been able to count on his

input to put me back on track.

A am grateful to Dr. Satirise Ziavras, who has co-advised this thesis and has given

invaluable suggestions that aided me in my research. Dr. Hu and Dr. Ziavras have

generously provided me with all the resources A needed and A greatly appreciate the

constant support they have extended to me.

My appreciation goes to Dr. John Carpinelli for having been part of my thesis

defense committee and for reviewing my work. A am also extending my heartfelt thanks

to Hangman Yang, Shuai Wang, and Donovan Jones, who assisted me during the hectic

preparation for my thesis defense.

A would also like to acknowledge the funding provided by the U.S. Department of

Energy under grant DE-FG02-03CH11 171.

Finally, I would like to thank my aunt, uncle and cousin. Life in a foreign country

has been made easier because of their constant love and support.

vi

TABLE OF CONTENTS

Chapter	 Page

1 ANTRODUCTION 	 1

1.1 Modem Processor Trends 	 1

1.2 Simultaneous Multithreading 	 3

1.3 The Register File: Future Bottleneck of SMT Processors 	 4

1.3.1 Redesigned Register File Organization 	 7

1.3.2 Effective Utilization of Register Resources 	 10

1.3.3 The Register File in SMT Processors 	 11

1.4 Objectives 	 12

2 SMT SAMULATOR DEVELOPMENT 	 14

2.1 The SimpleScalar Simulation Tool 	 14

2.2 Developing the SMT Simulator Sim-SMTP 	 16

2.2.1 Supporting Multiple Contexts 	 16

2.2.2 Loading Multiple Binaries 	 16

2.2.3 Translating Addresses 	 21

2.2.4 Fetching from Multiple Threads 	 22

2.2.5 Sharing Pipeline Resources 	 24

2.2.6 Redirecting Program Anput and Output 	 27

2.2.7 Tracking Thread Statistics 	 28

vii

TABLE OF CONTENTS
(Continued)

Chapter	 Page

3 SMT SAMULATOR EVALUATAON 	 30

3.1 Simulation Parameters 	 30

3.2 Verifying Functionality 	 31

3.3 Evaluating Performance 	 31

3.3.1 Fetch Policies 	 31

3.3.1 Sequential and Simultaneous Execution 	 33

4 USE-BASED REGASTER CACHE EVALUATAON 	 39

4.1 The Register Cache 	 39

4.2 Adopting Register Caching in SMUT 	 40

4.3 Use-Based Policies 	 41

4.3.1 Predicting the Number of Consumers 	 41

4.12 Register Cache Read and Write 	 44

4.3.3 Decoupled Indexing 	 45

4.4 Simulation Results 	 45

4.4.1 Evaluating the Degree of Use Prediction 	 46

4.4.2 Evaluating the Use-Based Register Cache 	 48

5 CONCLUSAON 	 52

REFERENCES 	 54

viii

LIST OF TABLES

Table Page

2.1 Segment Locations 	 18

3.1 Simulation Parameters 	 29

3.2 Test Sets with Two Threads 	 30

3.3 Test Sets with Four Threads 	 30

3.4 Test Sets with Eight Threads 	 30

ix

LIST OF FIGURES

Figure Page

1.1 Base SMT architecture 	 4

1.2 A single SRAM cell 	 5

1.3 The SRAM organization 	 5

1.4 SRAM cell with six read ports and three write ports 	 6

2.1 The sim-outorder superscalar processor model 	 14

2.2 The Alpha memory space 	 17

2.3 The object file sections 	 19

2.4 Initial set-up of the stack 	 20

2.5 Instruction address translation 	 22

2.6 Shared resources in the pipeline 	 24

3.1 Comparison of round robin and instruction fetch policies for two threads 	 32

3.2 Comparison of round robin and instruction fetch policies for four threads 	 32

3.3 Comparison of round robin and instruction fetch policies for eight threads 	 33

3.4 Comparison of sequential and SMUT 'PC for two threads (issue width 4) 	 34

3.5 Comparison of sequential and SMUT PC for four threads (issue width 4). 	 34

3.6 Comparison of sequential and SMT ‚PC for eight threads (issue width 4) 	 35

3.7 Comparison of sequential and SMUT CPC for two threads (issue width 8) 	 35

3.8 Comparison of sequential and SMT PC for four threads (issue width 8). 	 36

3.9 Comparison of sequential and SMT PC for eight threads (issue width 8) 	 36

3.10 SMT CPC for two threads with RUU sizes 256 and 512 	 37

χ

LIST OF FIGURES
(Continued)

Figure Page

3.11 SMT IPC for four threads with RUB sizes 256 and 512 	 38

3.12 SMUT IIPC for eight threads with RUU sizes 256 and 512 	 38

4.1 Degree of use training table 	 42

4.2 The degree of use predictor 	 42

4.3 The register cache 	 44

4.4 Hit rate and accuracy of the degree of use predictor for one thread 	 46

4.5 Hit rate and accuracy of the degree of use predictor for two threads 	 47

4.6 Hit rate and accuracy of the degree of use predictor for four threads 	 47

4.7 IPC with and without register caching for one thread 	 48

4.8 IIPC with and without register caching for two threads 	 48

4.9 IIPC with and without register caching for four threads 	 49

4.10 Register cache hit rates for one thread 	 50

4.11 Register cache hit rates for two threads 	 50

4.12 Register cache hit rates for four threads 	 51

xi

CHAPTER 1

INTRODUCTION

1.1 Modern Processor Trends

Superscalar architectures have the ability to concurrently evaluate multiple instructions in

the same clock cycle, achieving performances much greater than pipeline architectures

that can issue only one instruction per cycle. The key architectural features that enable

superscalar processors to dynamically issue instructions out of order [1] are:

• a fetching mechanism that retrieves several instructions from the instruction
cache for every cycle;

• branch prediction for fetching beyond conditional branch instructions, allowing
a continuous stream of instructions to be fetched and processed;

• decoding logic that handles multiple instructions simultaneously;

• register renaming that removes false dependences, which normally prevent
instructions from executing in parallel;

• parallel initiation of instructions ready for execution;

• several functional units for removing structural hazards;

• mechanisms for reordering instruction results so the process state is updated in
correct order; and

• mechanisms for recovering from incorrect branch predictions.

Ideally, a superscalar processor with an issue width of k can achieve a maximum

speedup of k over its scalar counterpart. The real performance gain, however, is limited

by the amount of parallelism that can be extracted from the instruction stream. David

Wall published a study [2] that explored the limits of achievable instruction level

parallelism (ALP). Results from his investigation revealed that, even with an ambitious

platform, ALPO was rarely greater than eight instructions per cycle. The results for realistic

1

2

models indicated that improving the key architectural structures (e.g., having better

branch prediction logic, a larger register file, etc.) would yield higher performance but

such investments would have diminishing returns. Α different architectural paradigm was

required to significantly ramp up the processor performance.

Α single program or thread usually does not have enough ALP to fully utilize the

issue bandwidth of the superscalar processor so issue slots are wasted for some cycles.

This case of resource under-utilization is referred to as horizontal waste. There are also

instances when no instructions are issued in a cycle, when instructions in the issue queue

are dependent on a long latency instruction. The case where the full execution bandwidth

is left idle is called vertical waste. To eliminate horizontal and vertical wastes, designers

began looking at running several threads on the processor.

The idea of multithreading has been around since the 1960s. Operating systems

use time sharing to allow several applications to utilize the resources of a single CPU.

This method increases the throughput since the processor is never left idle as long as

there are threads waiting to be executed. The same idea was incorporated by computer

architects into the design of the hardware and different types of multithreaded

architectures arose:

• Chip multiprocessors [3] have two or more superscalar processor cores
integrated in one chip; each processor core independently executes one thread.

• Fine-grained multithreading [4]-[7] allows two or more thread contexts to reside
on the chip. The processor switches from one thread to another on a fixed, fine-
grained schedule.

• Fine-grained multithreading [8]-[10] provides multiple thread contexts on
chip but context switching only occurs when the currently active thread stalls on
a long-latency event.

• Simultaneous multithreading (SMUT) [11], [12] provides multiple thread contexts
on chip and issues multiple instructions from multiple threads in one cycle.

3

Fine-grained and Fine-grained multithreading both reduce vertical waste but,

because only one thread issues per cycle, they are still likely to experience horizontal

waste. Simultaneous multithreading has the ability to fill all issue slots by allowing

different threads to compete for them and can thus be more effective in eliminating both

vertical and horizontal wastes [11]. Exploiting thread level parallelism (TLP) has

increased performance that used to be limited by instruction level parallelism.

Therefore, in addition to the trend of clocking at higher frequencies, modem

processor design will continue in the direction of greater parallelism through increased

ALPO and TLP. We thus expect processors to have greater issue widths, larger instruction

windows, and support for multiple thread contexts.

1.2 Simultaneous Multithreading

Α 1995 paper by Tulisen, Eggers and Levy introduced the technique of simultaneous

multithreading [11], which allowed several independent threads to reside in the processor

pipeline and issue to multiple functional units in the same cycle. There is a better

utilization of available resources through the dynamic scheduling of functional units

among multiple threads.

An a follow up paper, the authors showed that the basic superscalar pipeline did

not require a major overhaul to accommodate simultaneous multithreading [12]. The

following basic changes are required to enable support for multiple threads on a

superscalar pipeline: multiple program counters, mechanisms for choosing a thread to

fetch from per cycle, separate stacks for each thread, per-thread instruction retirement,

instruction queue flush and trap handling, a thread AD per branch target buffer entry, and

4

a larger register file. Figure 1.1 shows the base SMUT hardware architecture proposed by

the authors.

Figure 1.1 Base SMT architecture.
(Source: Tulisen, et al. [11])

1.3 The Register File: Future Bottleneck of SMUT Processors

One major hardware modification required to support simultaneous multithreading is a

larger physical register file. The register file holds the individual context of all threads as

well as additional registers required for register renaming. This becomes a major design

issue for reasons that will be discussed below.

The register file is the smallest and fastest component in the memory hierarchy

and is used to supply operands to the processor's execution unit. The register file is

usually implemented as a multi-ported SRAM (Figure 1.2); it is composed of address

decoders, an array of bit cells, and sense amplifiers (Figure 1.3). During the read phase,

the address decoders drive word lines that run across the bit cell array. When a word line

is activated, it causes a row of bit cells connected to it to dump their data on the bit lines.

Sense amplifiers connected to the bit lines detect bit-line changes and output the

corresponding logic levels to the data bus. The access time of the register file depends on

5

the time for address decoding, signal propagation delay through the word line wire, signal

propagation delay through the bit line wire, and delay across the sense amplifiers.

Figure 1.3 The SRAM organization.

When the issue width of the processor is increased, the number of ports that are

connected to the register file also increases. There is usually one write port and two read

ports for each execution unit. For every port that connects to the register file, one word

line is required for a row of bit cells; for every write port, two bit lines are required.

Ancreasing the number of ports to the register file therefore increases the size of the array

6

exponentially (Figure 1.4). Palacharla, et al. indicated that the RAM structure's access

time, due mostly to decoding and wire delays, increases linearly with the issue width

[13].

Figure 1.4 SRAM cell with six read ports and three write ports.

Another determinant of register file size is the instruction window size of the

processor. Ancreasing the number of in-flight instructions will require a corresponding

increase in the number of physical registers that are available for register renaming. This

translates to an increase in the number of bit cells, an increase in the number of word

lines, and an increase in the length of bit lines. The overall result is a larger register file

with longer access latency. An some systems, the register file becomes so large that it

exceeds the area of the cache. An the Alpha 21464 SMUT processor, for example, the

register file is five times the size of the Li data cache [14].

7

The register access time is obviously exacerbated by modem processor trends of

increased issue width (increases the number of read and write ports), instruction window

size (increases the number of registers), and the number of threads (increases the number

of registers). For example, in an SMUT processor that can support four threads, with each

thread described by 32 registers, a total of 128 registers are required simply to keep the

thread contexts. Additional registers are also needed to be able to take advantage of

register renaming. If register files become too big, there is a great possibility that in

future processors, the register file's access latency becomes the major limiting factor of

clock cycle time for the processor pipeline.

The register read and register write stages can be pipeline to allow higher clock

frequencies to drive the processor but such a design choice has adverse effects on the

processor performance. Adding more pipeline stages increases the branch resolution loop

and the load resolution loop [15]; consequently, there is an increase in the branch

misprediction penalty, which hurts the processor's performance. A two-stage write will

also require a more complicated bypass logic. Therefore, it is more ideal to redesign the

register file so that the access latency is reduced.

There have been different approaches to solving the register file problem. Some

studies have focused on changing the register file organization so that even for a large

number of registers, the access time remains fairly constant. Other studies have looked at

ways of improving the utilization of a small register file.

1.3.1 Redesigned Register File Organization

Cruz, et al. introduced the concept of dividing the physical register file into several banks

[16]. Banking enables register access time to be much smaller than that of a monolithic

8

register file. The multi-banked register architecture can either be homogeneous or

heterogeneous. An the former case, each bank has the same number of registers and the

same number of ports so the access time to each bank is uniform. An the latter case, the

number of registers and the number of ports can vary from bank to bank, giving rise to

faster banks and slower banks. Multi-banked architectures can also be classified as either

one-level or multilevel. Organizations that have only a single level have all banks

providing operands to the functional units and a result is written to only one bank. Multi-

level organizations have only upper level banks connecting to functional units and results

are usually written to the lower level and optionally to the upper level.

Register caching is a form of the heterogeneous, multilevel, multi-banked

architecture, which has a smaller, faster bank and a larger, slower bank. An the model

proposed in [16] the smaller bank, which contains a subset of the values residing in the

larger bank, provides source operands to the functional units. Results are always written

to the larger bank and sometimes also to the smaller bank if the value is expected to be

used soon. This model has an inclusive approach to data storage, similar to the cache

model of memory hierarchies. A register caching model with an exclusive approach to

data storage [17] was proposed by Balasubramonian, et a!. Values have only one copy in

the hierarchy, residing either in the upper or lower level.

Just like the memory hierarchy, register caching also requires management

schemes to determine which values should be inserted into the register cache and which

values in the upper level should be retired to the lower level. However, unlike a

program's instruction and data streams, register values do not possess temporal or spatial

locality properties. An [16], two types of caching policies for the multiple-banked register

9

file were suggested: non-bypass caching, which wrote to the upper level only results that

were not read from the bypass logic, and ready caching, which cached results that were

source operands for instructions in the queue that had all operands ready. Other studies

based the caching policy on the number of consumers. Balasubramonian, et al. tracked

pending consumers for a value and transferred a register value from the upper level to the

lower level once the pending consumer count reached zero [17]. Butts and Soh [18] had

the same idea when they proposed a register caching scheme that bases insertion and

replacement policies on the number of consumers that a value has. Basically, values that

have more consumers are maintained in the cache.

Although banked register files decrease access time, they normally also decrease

the instructions per cycle (IPC) because of bank conflicts. Note that a register bank

usually has a reduced set of register ports. If, for example, an banked register file has P

ports per bank, then there can be as many as NAP values accessed per cycle as long as

only P registers are accessed from any one bank [17]. Such register file architectures

therefore require mechanisms to resolve bank conflicts. A select logic suggested in [17)

takes into account the availability of the ports before granting the request. Tseng and

Asanovic suggested speculatively issuing instructions and having a pipeline recovery

scheme to repair the issue window in case of conflicts [19].

One proposed organization by Sangireddy, et al. splits the register file into two

equal banks [20] . Each bank has sufficient read and write ports to support the instruction

issue bandwidth. Since it is half the size of the monolithic register file, its access time is

much shorter. Results are always written to the first bank but they are transferred to the

second bank if a corresponding register is free. Because the whole issue bandwidth is

10

supported, there is no resulting IIPC degradation. This organization improves both

performance and access latency.

1.3.2 Effective Utilization of Register Resources

Another camp of designers has looked at improving the utilization of the register file so

that even with a reduced number of registers performance is unaffected. Amprovements

are introduced to various stages in the pipeline. Additional structures and logic circuitry

are often required.

Designers have observed the following regarding the lifetime of a physical

register:

• registers are allocated early but do not hold a value until the write-back stage;

• the register's active state is very small compared to its lifetime; and

• after the last consumption by a functional unit, there is a long latency before the
register is freed up.

Virtual-physical registers [21] target the latency between register allocation and

the write-back stage. As long as the value is not yet available, there is no need to tie up a

physical register. So during the rename phase, a virtual register (which is just a tag) is

assigned to the logical register. Only when the result is generated will a physical register

be assigned. Other studies have focused on earlier deallocation of registers. The work by

Erin, et al. uses a register file with a checkpointing facility [22] to implement several

techniques for early deallocation.

Another observation was that the value produced by an instruction is often the

same as the value produced by some other recently executed instruction. The proposed

architecture of physical register reuse [23], [24] keeps track of values that have been

11

generated and are currently resident in the register file. When a new result matches a

register value, the destination logical register is recapped to a physical register that

already contains the value. A value cache is kept to maintain the physical register values.

The work by Lipase, et al. [25] and other groups [26], [27] exploit narrow width

values. The technique of physical register inclining [25] stores register values with few

significant bits in the rename map and releases physical registers assigned to them.

1.3.3 The Register File in SMUT Processors

Because of the large number of registers required to save thread contexts and support

register renaming, some designers have proposed certain register file organizations for

multithreaded architectures. One such architecture uses multiple physical banks of

homogeneous structure that are dynamically allocated to threads [28]. When all threads

are running, there is a minimum one-to-one correspondence between a thread and a bank.

If fewer threads are active, then each thread may have more than one bank. The proposed

architecture keeps an allocation decision table that quickly provides the bank assignments

depending on which threads are currently active. Tseng and Asanovic [29] have also

evaluated banked register files on a simultaneous multithreading architecture. They

studied the performance of the register file with the banks shared by the different threads.

In addition to requiring a greater number of physical registers, simultaneous

multithreading also places a stress on the register file that is unique from the stress it

experiences for single-thread architectures. Proper resource allocation is critical in

making simultaneous multithreading effective and, like the instruction queue and

execution units, the register file is a resource for which threads must compete. If register

renaming does not consider thread properties in allocating registers, then the overall

12

performance of the processor can degrade. The technique of thread-sensitive register

renaming [30] was proposed by Yang, et al. Their work is one of the few that have taken

into account the inter-thread interference in simultaneous multithreaded processors that

adversely affect register file utilization.

Designing a register file for SMUT processors will have to be a blend of selecting

the appropriate register file organization to support multiple thread contexts and

implementing techniques that effectively utilize the register file in light of thread resource

competition.

1.4 Objectives

This thesis has two main objectives:

The first objective is to develop a simultaneous multithreading processor simulator. Such

a simulator would be a valuable tool for evaluating future designs targeted for SMT

processors. The SMUT simulator is based on an existing superscalar simulator, the

SimpleScalar tools [31], which models the functionality of an out-of-order superscalar

processor. Since SimpleScalar has been widely used in evaluating computer architectural

designs, developing the SMT simulator based on SimpleScalar will have a direct impact

on the computer architecture research community in the current transition from

superscalar to SMT architectures.

The second objective of this thesis is to use the SMT simulator developed in the

first part to assess novel register file designs. Many papers have addressed the problem of

the growing register file size but most of the solutions that have been proposed were

designed for and evaluated on superscalar processors. The effectiveness of these designs

13

in an SMUT architecture remains unclear, since no study implementing them in an SMUT

processor has been conducted. This thesis exemplifies such a study by evaluating the Buse-

bashed register cache proposed by Butts and Soh [18].

CHAPTER 2

SMUT SIMULATOR DEVELOPMENT

2.1 The SimpleScalar Simulation Tool

The SimpleScalar tools [31] developed by Todd Austin and Doug Burger has been

widely used in the computer architecture research field to simulate superscalar processor

designs. The sim-outorder tool, in particular, models an out-of-order issue superscalar

processor. At includes functional units, two-level cache, main memory, translation look-

aside buffers, and virtual memory. The simulator has six stages as shown in Figure 2.1: a

fetch stage, a dispatch stage, a scheduler stage, an execute stage, a writeback stage, and a

commit stage.

Figure 2.1 The sim-outorder superscalar processor model [31].

The fetch stage reads several consecutive instructions from the instruction cache

and places them in an instruction fetch queue. The fetching of instructions stops when

14

15

either the fetch bandwidth is reached or a conditional branch is encountered. Branch

prediction allows the fetching of speculative instructions in the succeeding cycles.

The instructions in the fetch queue are processed in order during the dispatch

stage and an entry is created for each instruction in the Register Update Unit (RUU). An

the simulator, the reorder buffer and reservation stations are unified in the RUU, which is

implemented as a circular queue of reservation stations. Each reservation station contains

information about the instruction (e.g., address, decoded instruction decode), the

instruction's status (e.g., queued, issued, completed), and the input and output operands.

During dispatch, when a new RUU entry is created, a vector table is checked for

each logical source register to determine the creator of the value. If the table reflects the

value to reside in the logical register file, then the operand is marked as ready. Otherwise,

the current instruction is added to the creator's dependency list. This list allows for faster

instruction makeup when the value becomes available after execution.

When all the operands are available, the RUU entry is marked as ready. The

simulator issues ready instructions out-of-order, placing them in a ready queue from

which they are sent to their respective functional units. Af an instruction retrieved from

the queue is unable to execute during that cycle (e.g., a functional unit is unavailable),

then it is placed back into the ready queue and is processed in the next or later cycle.

The vector table is updated during the write-back stage but the logical register file

does not contain the new values until after the producing instruction has been committed.

The RUU entry assigned to an instruction during the dispatch stage is released once the

instruction has committed. The commit stage graduates instructions in order.

16

2.2 Developing the SMUT Simulator Sim-SMTP

2.2.1 Supporting Multiple Contexts

To support multiple thread contexts, several structures in the simulator have been

replicated. Most of these structures have been redefined as arrays, with the thread ID used

as the array index when accessing a particular context. Each thread has its own set of

control registers and registers for integer and floating point data. The simulator also

maintains separate vector tables to keep track of the instructions producing the latest

result for a logical register and bit maps to track speculative execution.

2.2.2 Loading Multiple Binaries

The command to run a binary on the original Simplescalar simulator is of the form:

sim-outorder [-sir opt] program [-program opt]

For multiple threads, the option -threads has been added to the simulator's options

database. The default value is 1 and executing multiple threads requires including this

option in the command line followed by the number of threads (2 to 8). Following the

simulator options are the program files and their arguments. Thread binaries and

arguments are separated by the plus (+) sign:

1-ρλ V$1 u111_1 \ vYIj

The revised simulator compares the number of threads specified by the -threads option

with the number of binaries that follow. They must match in order for the simulation to

proceed. The command line input is parsed to determine each thread's program name and

options. Each thread will have its own stack segment with an initial set-up that is

determined by the program's arguments.

17

Additional revisions were made to the simulator's program loader to

accommodate multiple threads. Normally, the code segment is set to begin at

Figure 2.2 The Alpha memory space [32].

For eight threads to reside in the Alpha's memory space, the segments of each

thread are assigned particular locations in memory. To simplify program loading, the

18

segment sizes and addresses have been preassigned to eliminate size calculations at the

start of the simulation.

The SΡΕC2000 benchmarks were used to determine the segments sizes that would

be sufficient for the needs of typical applications. The code and data segment sizes can be

extracted from the executable binary. The stack segment size, however, can only be

estimated by running the application. The stack pointer register was monitored during

execution to determine the lowest stack address and this address was used to calculate the

stack's largest size during execution. The benchmarks were fast-forwarded for 200

million instructions and then simulated for 500 million instructions.

Table 2.1 Segment Locations

Results revealed that the text segment is normally very small. For the SΡΕC2000

suite, code did not exceed FMB while the data segment size was about a hundred times

larger than the code at 25 FMB. The largest stack size during benchmark execution was

only about 1 MA. Table 2.1 shows the segment addresses and sizes assigned to the eight

19

threads. The segments were intentionally made very large to ensure that the simulator had

sufficient space when running unknown binaries. The first thread resides in the original

segment locations while other threads have segments beginning at different offsets from

the original starting address.

Figure 2.3 The object file sections.

The different sections of the binary file are loaded to either the text segment or the

data segment (Figure 2.F). The data segment includes the sections BSS, SASS, DATA,

LΙΤ4, LIT8, LIMA, DATA, and DATA. The text segment includes the sections FINIS,

'ΝΙΤ, TEXT, DATA, DATA, and RCONST. The program loader parses through these

sections and places them in the correct memory locations. The stack is also set-up during

program loading using the arguments belonging to the thread as well as the environment

parameters associated with the user's terminal shell (Figure 2.4).

20

Figure 2.4 Anitial set-up of the stack.

Initial simulations could not properly execute relocated code. Analysis of small

Alpha binaries indicated that some programs used absolute addresses that were

apparently stored in the text segment, the data segment, or both. These addresses target

jumps to the original segment locations, causing invalid instructions to be executed. If

these absolute addresses had been isolated to the text segment, then the problem would

have been easily solved by filtering quad-word loads from this segment. However, it is

near impossible to determine whether a quad-word load or store in the data segment

involves data or an address to be used for jumps later on in the program. To confirm that

absolute addresses are indeed embedded within the binary file, the file was scanned for

quad words Ox 12χχxxχχx and Ox 14χχχχχχχ. The offset of the relocated segment was

added to each. After these changes were made, the binary file successfully finished

execution.

21

However, pre-processing the binaries is not a viable option to running relocated

code on the simulator. At is not guaranteed that all quad words replaced will actually be

used as addresses. To circumvent this problem, the processor state reflected in the

registers keep the original addresses of the code while an address translation stage has

been added prior to the cache and memory units. It will therefore appear to the processor

that all threads reside in the same segment, although they occupy different segment

locations in memory. When a thread performs a read or write, its AD is used to determine

the offset to be added to the effective address so that the address supplied to either the

cache or main memory points to the relocated code or data.

To check the validity of the approach, the benchmarks were run from relocated

segments on the superscalar processor. The simulation results were the same as the

original ones, except for the page table statistics. Relocation can change the number of

allocated pages to a program, causing a corresponding change in the number of page

table misses. The impact of the page table misses on performance, however, is negligible.

2.2.3 Translating Addresses

The basic functions for reading and writing perform address translation prior to accessing

the memory or the cache. The address is checked to determine the segment that is being

accessed: stack segment addresses are less than 0χ 120000000; data segment addresses

are equal to or greater than Ox 140000000; and text segment addresses are in between.

Once the segment is known, the corresponding segment offset for the thread making the

access is added to the address (Figure 2.5). The result is the address in memory where the

thread's code or data is stored. The cache module performs address translation prior to

determining the cache index and tags to use.

22

Figure 2.5 Instruction address translation.

Translated addresses are also used with the branch prediction unit, eliminating the

need for a thread ID to be integrated into the branch target buffer entries. The simulator's

branch prediction unit also maintains the return address stack. Call instructions push the

return address into the return address stack while return instructions pop off the address at

the top of the stack. Separate return address stacks have been created to correctly

maintain return addresses for each thread.

2.2.4 Fetching from Multiple Threads

The fetch unit requires a non-blocking instruction cache that can supply a continuous

stream of instructions to the SMUT processor. Two basic assumptions have been made:

first, only one cache replacement can occur at any time; second, other threads can still

access the cache while a replacement is being serviced. Threads that experience a cache

miss while a replacement is ongoing are placed in a queue.

The fetch unit now selects one program counter among the different threads for

every fetch cycle initiated. The simplest fetch policy is round-robin selection, where the

fetch unit cycles through the different threads in a predetermined order. This policy has

23

been adapted in the SMUT simulator but with some modifications to take into account

instruction cache misses. The implementation of this fetch policy involves maintaining a

status register and a priority selection circuitry. Each bit in the status register corresponds

to a thread's fetching status. The status bit is reset to 0 if the thread has experienced an

instruction cache miss that has not yet completed the necessary block replacement. The

status bit set to 1 if the thread has not experienced a miss or has just finished a block

replacement in the instruction cache. The thread selection circuitry picks the thread with a

set status bit that has the highest priority. The priority levels of the threads rotate for

every fetch cycle.

For example, consider the case where, out of eight threads, only threads 4 and F

have status bits set and the thread with the highest priority for the current fetch cycle is

thread 5. Thread 6 is considered to have the second highest priority while thread 4 has the

least priority. The circuitry will therefore fetch from thread F.

Another fetch policy implemented in the simulator is similar to the ACCOUNT

policy proposed in [12] that gives priority to threads that have the fewest instructions in

the decode, rename, and instruction queues. The instruction count policy adapted gives

priority to threads that have the fewest entries in the RUU. The number of RUU entries

reflects the number of instructions a thread has in the pipeline. This fetch policy ensures

that the resources are better distributed among threads, preventing threads with long

latency instructions from dominating the pipeline.

The fetch unit will get as many instructions from the thread as the instruction

fetch bandwidth can accommodate or until the instruction fetch queue is full. Fetching for

the thread also stops when a branch is predicted to be taken.

24

2.2.5 Sharing Pipeline Resources

Among the shared resources in the processor pipeline are the instruction fetch queue

(IFQ), the load/store queue (LSQ), and the register update unit (RUU). The instruction

fetch queue keeps fetched instructions that are yet to be dispatched. In the SMUT

simulator, instructions fetched from different threads are placed in the same queue so

each IF entry maintains a thread ID. In the case of a branch mispredicted, only

instructions belonging to the mispredicted thread are purged from the IFQ.

Figure 2.6 Shared resources in the pipeline.

The instructions in the IFQ are dispatched in the same order as they are fetched.

The dispatch stage involves creating an RUU entry for each instruction retrieved from the

IFQ. For load or store instructions, an LSQ entry is also created. RUU and LSQ entries

maintain the thread AD, which is used to access and update the correct thread context. If

the instruction produces a new value for a logical register, then the create vector table

belonging to the instruction's thread is updated to reflect the logical register's latest value

creator. If an instruction's operand has a value that is yet to be produced, it is added to the

consumer list of the instruction that produces the latest value. During branch

misprediction recovery, RUU and LSQ entries that have thread IDs matching the

mispredicted thread are removed from the queues.

25

Once all instruction operands are available, the instruction is added to the ready

queue. Ready queue entries are processed in order for each clock cycle. If the functional

unit required by the instruction is available, then the instruction is issued and the

corresponding resource is locked. Instructions that fail to issue due to unavailability of

functional units or issue bandwidth restrictions are reinserted into the ready queue.

Through the entire process, the order of instructions in the queue is always maintained.

Instructions that have been invalidated due to branch mispredictions are removed from the

queue.

Issued instructions enter an event queue, which sorts entries according to their

time of completion. During the writeback stage, instructions that have finished execution

are claimed from the event queue. Results are broadcasted to consuming instructions,

which are inserted into the ready queue if all their operands are already available. Aranch

misprediction are also detected and mispredictions recovery is initiated at this stage. The

instruction's thread ID determines which entries in the IFQ, RUU, and LSQ are squashed.

Instructions commit in program order. In the original simulator, a completed

instruction at the head of the RUU updates the processor state during the commit stage.

All completed instructions accommodated by the commit bandwidth are processed during

this stage. For the SMUT simulator, each thread maintains its own head pointer in the RUU

so that an earlier incomplete instruction from one thread does not prevent other threads

from committing. The oldest thread, which has an instruction at the head of the RUU, is

given first priority. If its completed instructions do not take up the entire commit

bandwidth, then the next thread head is considered. The simulator simply cycles through

26

the thread IDs when checking thread heads; for example, if the RUU head is occupied by

thread 2 then the next thread head to be considered for commit is thread F.

The queues were implemented as arrays in the original simulator. Having

multiple threads in the pipeline leads to discontinuities in the array queue when a thread

commits ahead of an older thread or if a misprediction leads to a thread's entries being

squashed. Making the array compact by eliminating the invalidated elements within the

queue takes additional processing time that is proportional to the size of the queue in the

worst case. In order to make updates to the queue more efficient, the implementation has

been changed from an array to a doubly linked list.

Pointers to the next and previous nodes in the queue were added to the definition

of the queue node. Instead of head and tail indices, the different queues maintain pointers

to the head and tail nodes. The head and tail pointers point to the same node when the

queue is empty and when the queue is full. Otherwise, the head pointer points to the first

valid node in the queue while the tail pointer points to the first empty node. The LSQ and

RUU also maintain head pointers for each thread, making it easier to commit completed

instructions from any thread during the commit stage. The queues keep track of the total

number of entries as well as the number of entries per thread.

• When a node is invalidated, the different pointers are adjusted depending on the
position of the node and the current size of the queue:

• If the node to be squashed is the head of the queue, then the queue head pointer
is adjusted to point to the next node.

• If the node is not the head of the queue and the queue is not full, then the node is
removed from its current position and inserted after the queue tail node.

• If the node is not the head of the queue and the queue is full, then the node is
removed from its current position and inserted before the queue tail node. The
queue tail pointer is then adjusted to point to the newly inserted node. For

27

threads with no entries in the queue, their head pointer is also adjusted to point
to the new tail node.

• In the case where the invalidated node was the head of a thread and the thread
still has entries in the queue, the thread head pointer traverses the queue until it
points to the first node belonging to the thread. If the thread no longer has
entries left in the queue, the thread head points to the new tail node.

Most of the operations run in constant time; only cases where the tail pointer or

thread head pointers are adjusted require operations with running times dependent on the

number of threads or the number of entries in the queue.

2.2.6 Redirecting Program Input and Output

The binary files running on the simulator often have system calls, which are executed by

the simulator. Among the system calls are those that involve standard input and output.

To keep input and output separate for each thread, the SMT simulator requires that input

and output files for each thread be specified so the necessary redirection is performed.

Command line options -redir:outX, and -redir:outX, where X, stands for the thread

number, have been added.

The command above runs two program binaries, prog2.bin and prog2.bin, that do not

require additional command line arguments. Standard inputs required for executing grog 1

are stored in the file in l .txt while standard inputs for prog2 are stored in in2.txt. The

outputs for grog 1 will be written to out l .txt and outputs for prog2 in out2.txt.

Redirection of the program output has been adapted from the original simulator,

which simply opens for the program an output file stream where output text is dumped.

The SMUT simulator uses the file stream corresponding to the calling thread when

28

processing a system call specifying a write operation. File streams cannot be used for

redirecting input, however, since many system calls implemented by the simulator

involve the standard input and they always assume a file descriptor of Ο. During a system

call in the SMUT simulator, the standard input's file descriptor is made a duplicate of the

file descriptor of the calling thread's input file. This means that the standard input

descriptor shares the locks, file position pointers, and flags of the input file. Whatever

operations are performed on the standard input will also reflect on the input file's

descriptor.

2.2.7 Tracking Thread Statistics

The results of the original simulator are from counters that track indicators of the overall

performance of the simulator, such as instructions committed, cache misses, branch

prediction hits, etc. For the SMT simulator, it is relevant to know how each thread

performs so additional counters have been introduced. The following information is now

available for each thread:

• total number of instructions, loads, stores, and branches committed

• total number of instructions, loads, stores, and branches executed

• total number of accesses, hits, misses, replacements, and invalidations for each
cache and TLB specified

• miss rate, replacement rate, writeback rate, and invalidation rate for each cache
and TLA specified

Individual thread results give an idea of how each thread performs during the simulator's

run. These results can reveal, for example, how threads compete for the processor's

resources.

CHAPTER 3

SMT SIMULATOR EVALUATION

3.1 Simulation Parameters

Two types of evaluation were performed on the SMUT simulator. The first set of

simulations involved verifying the functionality of the redesigned simulator. The second

set of simulations served to determine the effectiveness of simultaneous multithreading

over the original superscalar configuration.

For all simulations, the processor parameters listed in Table F.1 were used.

Table 3.1 Simulation Parameters

29

τη

31

3.2 Verifying Functionality

To check whether the simulator runs correctly, all SPEC2000 integer and floating point

benchmarks were executed on both the original simulator and the SMT simulator. For

each benchmark, the first 200 million instructions were fast forwarded and then simulated

for 500 million instructions.

The outputs of the programs were compared and no differences were found,

suggesting that the SMUT simulator functioned correctly. The simulation results were

close but not exact in value. The differences can be attributed to the changes that have

been made to the pipeline to process multiple threads.

3.3 Evaluating Performance

SMUT performance evaluations were made using combinations of the SPEC2000 integer

and floating point benchmarks. Tables F.2, F.F, and F.4 show the combinations of

benchmarks use for two, four, and eight threads, respectively. For simultaneous

multithreading simulations, all threads are fast-forwarded for 200 million instructions

then simulated for 300 million instructions multiplied by the number of threads being

executed (F00 million for two threads, 1200 million for four threads, and 2400 million for

eight threads).

3.3.1 Fetch Policies

The round robin and instruction count fetch policies were first compared. The issue width

was set to four and the RUB size to 25F. Simulation results shown in Figures 3.1, F.2 and

F.F indicate that the instruction count policy is superior to the round robin policy for two,

four, and eight threads. This supports the findings from previous studies on the

32

performance of different fetch policies [12]. For the rest of the simulations, the

instruction count fetch policy was used.

Figure 3.1 Comparison of round robin and instruction fetch policies for two threads.

Figure 3.2 Comparison of round robin and instruction fetch policies for four threads.

33

Figure 3.3 Comparison of round robin and instruction fetch policies for eight threads.

3.3.2 Sequential and Simultaneous Execution

To compare simultaneous multithreading with superscalar processing, the same threads

run on the SMT are executed on the superscalar processor and calculation of IPC and

other rates are determined from the sum of the results of individual threads. For

sequential execution of threads, each thread is fast-forwarded for 200 million instructions

and then simulation proceeds for F00 million instructions.

The first set of simulations were performed to compare sequential execution and

simultaneous multithreading for an issue width of four instructions and an RUU size of

25F. Figures F.4, F.5, and F.F show the results for two, four, and eight threads,

respectively. The SMT results were consistently higher than the calculated performance

for sequential execution. The simulations with four and eight threads showed greater IPC

increases (F4% and F2%, respectively) for simultaneous execution than the simulations

with only two threads (25%).

Ad

Figure 3.4 Comparison of sequential and SMT IPC for two threads (issue width 4, RUU
size 25F).

Figure 3.5 Comparison of sequential and SMUT IPC for four threads (issue width 4, RUU
size 256).

35

refigure 3.6 Comparison of sequential and SΜT IPU tor eight threads (issue width 4,
RUU size 25F).

The second set of simulations had the issue width increased to eight instructions

while keeping the RUU size at 25F. Figures 3.7, F.8, and F.9 show the results of this

configuration for two, four, and eight threads, respectively.

Figure 3.7 Comparison of IPC for sequential and simultaneous execution of two threads
(issue width 8, RUU size 25F).

Figure 3.8 Comparison of CPC for sequential and simultaneous execution of four threads
(issue width 8, RUU size 25F).

Figure 3.9 Comparison of CPC for sequential and simultaneous execution of eight
threads (issue width 8, RUU size 25F).

Similar to the first set, the results show the superiority of simultaneous

multithreading to sequential execution of threads on a superscalar processor. The IPC

gains in this set, however, are much greater because of the increased issue width. The

37

average IIPC increase is 41% for two threads, 54% for four threads, and 5F% for eight

threads. The average IIPC for running eight threads is around 4.0, similar to the results

obtained in [12].

Comparison of average execution bandwidth, which takes into account

speculative instructions, shows that for the processor parameters given in Table F.1 and

an issue width of four instructions, about 2.8 instructions are issued per cycle. For an

issue width of eight instructions, the average instructions issued per cycle is 4.4.

The third set of simulations had an issue width of eight instructions and an RUU

size of 512. The results shown in Figures F.10, F.11 and F.12 show that an RUU size of

256 is normally sufficient for the SMT processor. There is an increase in IPC but for

many of the tests simulated, the gain was not very significant. When eight threads are

being simultaneously executed, having an RUU of 512 entries offers no advantage over

an RUU of 25F entries (see Figure F.12).

Figure 3.10 SMT IIPC for two threads with RUU sizes 256 and 512.

Figure 3.11 SMUT IPC for four threads with RUU sizes 25F and 512.

Figure 3.12 SMT CPC for eight threads with RUU sizes 25F and 512.

In summary, the simulation results show that simultaneous multithreading

provides significant improvement over superscalar processing, especially when more

independent threads are being executed.

CHAPTER 4

USE-BASED REGISTER CACHE EVALUATION

4.1 The Register Cache

The register cache model is similar in rationale to the memory hierarchy model, where a

smaller but faster cache containing a subset of information from the main memory

directly interacts with the processor. In the case of the register hierarchy, a register cache

is a small bank of physical registers that directly provides the operands to functional

units. The register cache contains only a subset of the values that are stored in a larger

bank of physical registers called the backing file. Aecause of its small size, the register

cache has an access latency that is much shorter compared to the access latency of the

backing file.

Just like the memory hierarchy, the register hierarchy also requires management

schemes to determine which values should be inserted into the cache and which values in

the cache should be retired to the backing file. However, register values do not possess

the same temporal and spatial locality properties observed by instructions and data in a

program. The register cache management scheme, therefore, has to be designed

especially for the properties exhibited by register values. Such characteristics may be

highly program sensitive.

Early designs of the register hierarchy were dependent on compiler support to

manage the register cache [FF], [F4]. Implementations of a hierarchical banked register

file for dynamically scheduled processors were proposed in [1F] and [17]. The lather's

design was not strictly a cache, since the faster and smaller bank contained values that

were not part of the slower and larger bank. A problem with maintaining exclusive banks

39

40

is that the management of the register file hierarchy tends to be more complicated,

requiring additional structures to maintain information and requiring modifications to

other parts of the pipeline.

In 2004, Autts and Soh [18] proposed a register caching scheme that bases

insertion and replacement policies on the number of consumers that a value has. Values

that have more consumers are maintained in the cache. Also, the authors propose

decoupled indexing in assigning a set to a value. The basis of the index assignment is on

the number of consumers; use-based algorithms avoid assigning a value to sets with high

use registers. The use-based register cache with decoupled indexing was shown to

effectively improve performance.

4.2 Adopting Register Caching in SMUT

To support a register cache, several changes were made to the pipeline of the simulator.

• Physical registers corresponding to the backing file have been modeled. The
simulator also maintains the list of physical registers that are free. A physical
register is assigned to a logical register at the dispatch stage. The physical
register is freed once another instruction producing a new value for the logical
register commits or if the instruction is speculative and is squashed after a
branch misprediction is discovered. The dispatch stage stalls when no physical
register is available.

• A register mapping table is maintained to determine the most recent logical-to-
physical register assignment. It also maintains the index that is associated to the
physical register. The table is updated every time an instruction undergoes
register renaming at the dispatch stage.

• A decoupled index is assigned to the instruction's destination register and
maintained in the instruction's RUU entry. The RUU entry also maintains the
physical register ID and index of each source and destination register.

• The register cache supports all the read and write ports required by the issue
width. The backing file supports several write ports but only one read port.

41

When an instruction fails to issue because not all operands are in the register
cache, it is reissued once the operand value has been added to the register cache.

• The writeback stage updates the register cache if the produced value has at least
one consumer. At the same time, the value is written to the physical register in
the backing file.

• Several stages of bypass are required, the number of stages depending on the
number of cycles needed to write to the backing file. If source operands are
available through the bypass network, the issue stage skips the reading of the
register file but decrements the uses of the corresponding physical registers.

• Separate training tables and future control flow information are maintained for
each thread.

4.3 Use-Based Policies

4.3.1 Predicting the Number of Consumers

Autts and Soh estimate the number of consumers for a register value through a degree of

use predictor, which the authors developed in an earlier paper [F5]. The degree of use

predictor has two components: a degree of use training table and a set-associative

predictor table. The training table (Figure 4.1) keeps track of the uses of a register value

that has not yet been overwritten. When a register value produced by an instruction at

address PC has been replaced by a newer instruction writing to the same register, it is

retired to the predictor table (Figure 4.2) and is accessed the next time the instruction at

PC is encountered.

The training table has entries for each logical register. Whenever an instruction

commits, the use count of the source operands are incremented and the entry of the

destination register is updated. The old entry of the training table is then added to the

predictor table. Aside from the number of uses, the relevant information maintained in

42

the training table is the address of the instruction producing the latest value of the register

and a signature that contains future control flow information.

Figure 4.2 The degree of use predictor.

43

When a training table entry is forwarded to the predictor, the lower bits of the

address of the value-producing instruction are used as an index to the predictor table. The

higher bits are stored as a tag. The signature is copied to the table and the number of uses

tracked by the training table becomes the predicted degree of use. The predictor table also

maintains a bit to track the least recently used entry, which is used to select the table

entry to be overwritten to accommodate new information.

Aecause the number of consumers of a register value is dependent on the future

control flow, the signature makes the prediction more accurate by maintaining

information regarding future branch directions. It is possible to sample the future control

path since an instruction's predicted number of consumers is added to the degree of use

predictor table only when the physical register containing the instruction's result has been

freed. During the interval when the register value is considered to be live, a certain

number of branches will have entered the pipeline.

The signature can have one of two formats, as shown in Figure 4.2. When an

unconditional jump closely follows an instruction, the signature's most significant bit is

set to 1 and the succeeding bits contain the lower bits of the target address. In the

simulator, this format is used when an instruction is closely followed by a return

instruction. In the case where an instruction is followed by conditional branch

instructions, then the signature's most significant bit is reset and the rest of the bits

encode the number of branches encountered and the predicted directions of these

branches.

Α prediction is only made if there is both a tag match and a signature match. If

the predictor does not find a tag and signature match, the default degree of use is 1.

44

4.3.2 Register Cache Read and Write

The register cache (Figure 4.F) is set-associative and each entry maintains the physical

register ID, the value, and the number of remaining uses. The register cache is accessed

by using the index assigned to the physical register (saved in the instruction's RUU entry)

to access a register cache line. If the register cache has multiple ways, then each way's

register ID is compared with the ID of the physical register that is being looked up. Α

match will return the value stored in the register cache and decrement the corresponding

number of uses. Otherwise, the backing file is accessed to bring the value into the register

cache.

A register cache write can occur in two instances. The first case is when a register

cache read misses. The second case is when a value produced by a functional unit has a

predicted number of uses that is greater than zero. In both cases, the index assigned to

the physical register is used to select the register cache line. The entry that is overwritten

45

is the one with the least number of uses. In case of a tie, then the least recently used entry

is selected for replacement.

4.3.3 Decoupled Indexing

Previous register hierarchy management schemes derived indices that were associated

with the register ID, similar to how caches in memory hierarchies derive indices from

memory addresses. However, register values do not observe the spatial and temporal

localities exhibited by instructions so this kind of index assignment scheme is not

effective.

Autts and Soh proposed the use of decoupled indexing in assigning values to

cache lines. The basic idea is to assign indices corresponding to cache lines that have

minimal used. The best index assignment is to a cache line having the smallest number of

consumers. Finding the cache line with minimum uses is not very easy to implement,

though, so the authors proposed the use of a round robin scheme that filters out lines with

high-use entries.

The simulator implements the filtered round robin scheme that skips cache lines

when entries have high-use values. In the event that all of the cache lines have high-use

entries, then all the index assignment proceeds in a round robin fashion without filtering.

4.4 Simulation Results

The use-based register cache was simulated for one, two, and four threads using the

processor parameters listed in Table F.1, with the RUU size set to 512 and the issue width

at 8 instructions. The sets of benchmarks used for two and four threads are those

appearing in Tables F.2 and F.F. The degree of use predictor had 4K lines and four ways

46

(1FK entries), which is four times the size of the predictor used in the original paper [F5].

The register cache had 64 entries, organized in a 4-way set-associative table, while the

backing file contained 1024 physical registers. It has been assumed that a read operation

from the backing file requires F clock cycles.

4.4.1 Evaluating the Degree of Use Predictor

The degree of use predictor was first evaluated. Figures 4.4, 4.5, and 4.6 show the hit rate

and the accuracy of the predictor for one, two, and four threads, respectively. The hit rate

gives the percentage of predictor accesses that had a tag and signature match. This

reveals the code coverage of the predictor. The accuracy gives the percentage of

predictions that were later verified as correct.

For a single thread, the predictor has an average hit rate of 99% and an average

accuracy of 94%. When two threads are running simultaneously, the average hit rate is

98% while the average accuracy of the predictor remains at 94%. When four threads are

executed, the average hit rate is 9F% and the average accuracy is slightly lower at 92%.

Figure 4.5 Hit rate and accuracy of the degree of use predictor for two threads.

47

Figure 4.6 Hit rate and accuracy of the degree of use predictor for four threads.

The results indicate that the degree of use prediction table size chosen for the

simulations (1FK entries) is adequate for simultaneous multithreading of a number of

threads.

48

4.4.2 Evaluation the Use-Based Register Cache

The performance of the use-based register cache was first compared to the performance

of a monolithic register file with an access latency of three cycles. Three register cache

sizes were simulated: F2, 64, and 128 registers. Figures 4.7, 4.8, and 4.9 show the

simulation results for one, two, and four threads, respectively.

Figure 4.8 CPC with and without register caching for two threads.

49

Figure 4.9 IPC with and without register caching for four threads.

The effectiveness of the use-based register cache is obvious from the results

above. Simulations showed that the SMUT processor using register caching has a speedup

over the processor with a monolithic register file averaging 55% for a single thread, F8%

for two threads, and 17% for four threads. The SMT processor's ability to dynamically

select from independent threads allows it to perform well despite the long access latency

of the register file. This is why the effectiveness of register caching with multiple threads

is not quite as large as its effectiveness with a single thread.

Even with only F2 registers, the results in Figures 4.7 to 4.9 show that the SMT

simulator is able to achieve very high performance. The IPC values for register caching

are close to the ideal case where the access latency of the register file is just one cycle.

The next set of simulation results, shown in Figures 4.10 to 4.12, give the register

cache hit rates when the register cache is composed of either F2 or F4 registers. When a

single thread is running, the average register cache hit rate is 88% for F2 registers and

50

90% for 64 registers. When two threads are executed simultaneously, the hit rates are

87% and 91% for F2 and 64 registers, respectively. When four threads are running, the hit

rate are 81% for F2 registers and 87% for F4 registers.

Figure 4.10 Register cache hit rates for one thread.

LL 32 registers • 64 registers
Figure 4.11 Register cache hit rates for two threads.

51

The results for both IIPC (Figures 4.7 to 4.9) and register cache hit rates (Figures

4.10 to 4.12) indicate that the performance of the SMUT processor does not depend on the

register cache hit rate. This work has assumed an ideal case, where the issue slot of the

instruction experiencing a register cache miss can be filled in the same clock cycle with

another ready instruction. This is one reason why the performance of the SMUT processor

remains high despite a decrease in the register cache hit rate.

Smaller cache sizes were not evaluated. The choice of cache size will depend on

the acceptable performance for running single threads on the SMT processor, since it is

with single threads that the register caching scheme has the greatest impact.

CHAPTER 5

CONCLUSION

A simultaneous multithreading processor simulator was developed from the superscalar

pipeline of the SimpleScalar simulation tool, employing the basic changes that were

proposed by the original proponents of simultaneous multithreading. The benchmarks

executed on the SMT processor simulator verified the functionality of the developed tool

by producing correct outputs and achieving performance levels similar to those produced

by the original authors.

The SMUT simulator was also used to assess the use-based register cache that was

designed to improve the effective register file access time in superscalar processors. The

register cache provided an improvement in performance for different number of threads

but the gain diminishes as the number of threads is increased. When more threads are

available, the SMT processor is able to better utilize the resources and the negative

impact of the longer register file access latency is reduced. Results showed that the SMT

processor using a register cache with F2 registers achieves a performance similar to a

register file with an access latency of one cycle.

It is recommended that the simulator be further developed to model various

configurations of the SMT architecture (e.g., independent queues for threads, separate

integer and floating point queues). It is also recommended that more evaluations of the

register cache be made (e.g., varying register cache associativity and size, varying degree

of use predictor associativity and size, varying issue width and RUU size, updating the

degree of use training table at the dispatch stage).

52

53

This thesis has provided a simulator that can be used to evaluate previously

proposed components designed for superscalar processors on a simultaneous

multithreading environment. It will also serve as a tool for testing future designs of SMUT

processor elements.

REFERENCES

1. J. Smith and G. Soh, "The microarchitecture of superscalar processors," Proceedings
of the IEEE, Vol. 8F, pp. 1609-1F24, December 1995.

2. D. Wall, "Limits of instruction level parallelism." in Proceedings of the 4th
International Conference on Architectural Support for Programming Languages
and Operating Systems, 1991.

3. K. Olukotun, B.. Nayfeh, L. Hammond, K. Wilson and K. Chung, "The case for a
single-chip multiprocessor," in Proceedings of the Seventh International
Conference on Architectural Support for Programming Languages and Operating
Systems, October 1996.

4. B.J. Smith, "Architecture and applications of the HEAP multiprocessor computer
system," in SPICE Real Time Signal Processing IV, pp. 241-248, 1981.

5. R. Elverson, D. Callahan, D. Cummings, A. Koblenz, A. Porterfield, and Β. Smith,
"The Terra computer system," in International Conference on Supercomputing,
pp. 1-F, June 1990.

6. RAH. Halstead and T. Fuji, "ASA: A multithreaded processor architecture for
parallel symbolic computing," in 15th Annual International Symposium on
Computer Architecture, pp. 44F-451, May 1988.

7. J. Laudon, A. Gupta, and M. Horowitz, "Interleaving: A multithreading technique
targeting multiprocessors and work-stations," in Proceedings of the Sixth
International Conference on Architectural Support for Programming Languages
and Operating Systems, pp. F08-F18, October 1994.

8. A. Agarwal, B.H. Lim, D. Kranz, and J. Kubiatowicz, "APRIL: A processor
architecture for multiprocessing," in Proceedings of the 17th Annual International
Symposium on Computer Architecture, pp. 104-114, May 1990.

9. RAH. Saavedra-Barrera, DIE. Culler, and T. von Sicken, "Analysis of multithreaded
architectures for parallel computing," in Second Annual ACM Symposium on
Parallel Algorithms and Architectures, pp. 1F9-178, July 1990.

10. R. Thekkath and S.J. Eggers, "The effectiveness of multiple hardware contexts," in
Proceedings of the Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems, pp. F28-FF7, October 1994.

11. D. M. Tulisen, S. J. Eggers, and H. M. Levy, "Simultaneous multithreading:
maximizing on-chip parallelism," in Proceedings of the 22nd Annual
International Symposium on Computer Architecture, June 1995.

54

55

12. D. Tulisen, S. J. Eggers, H. M. Levy, J. L. Lo, and R. Stamm, "Exploiting choice:
instruction fetch and issue on an implementable simultaneous multithreading
processor," in Proceedings of the 23rd Annual International Symposium on
Computer Architecture, May 1996.

13. S. Palacharla, N. P. Jouppi and J. E. Smith, "Complexity-effective superscalar
processors," in Proceedings of the 24th Annual International Symposium on
Computer Architecture, 1997.

14. RAP. Preston et a1., "Design of an 8-wide superscalar RISC microprocessor with
simultaneous multithreading," in Proceedings of the International Solid State
Circuits Conference, January 2002

15. E. BArch, E. Tune, S. Manned, and J. Eimer, "Loose loops sink chips", in Proceedings
of the Eighth International Symposium on High-Performance Computer
Architecture, February 2002.

16. J. Cruz, A. Gonzalez, M. Valero, and N. Popham, "Multiple-banked register file
architectures," in Proceedings of the 27th Annual International Symposium on
Computer Architecture, 2000.

17. R. Balasubramortian, S. Dwarkadas, and D. H. Albonesi, "Reducing the complexity
of the register file in dynamic superscalar processors," in Proceedings of the 34th
Annual International Symposium on Microarchitecture, December 2001.

18. J. A. Butts and G. S. Soh, "Use-based register caching with decoupled indexing,"
ACM OLIGARCH Computer Architecture News, Vol. 32, No. 2, March 2004.

19. J. H. Tseng and K. Asanovic, "A speculative control scheme for an energy-efficient
banked register file," IEEE Transactions on Computers, Vol. 54, No. 6, June
2005.

20. R. Sangireddy, "Register organization for enhanced on-chip parallelism," in
Proceedings of the 15th IEEE International Conference on Application-Specific
Systems, Architectures and Processors, 2004.

21. A. Gonzales, J. Gonzales, and M. Valero, "Virtual-physical registers," in Proceedings
of the 4th International Symposium on High-Performance Computer Architecture,
1998.

22.0. Erin, D. Balkan, D. Ponomarev, and K. Chose, "Early register reallocation
mechanisms using checkpoint register files," IEEE Transactions on Computers,
Vol. 55, No. 9, pp. 115F-116F, September 2006.

2F. S. Jordan, R. Konen, M. Bekerman, B. Shofar, and A. Boaz, "A novel renaming
scheme to exploit value temporal locality through physical register reuse and
unification," in Proceedings of the 31st International Symposium on
Microarchitecture, 1998.

56

24. S. Balakiishnan and G. S. Sohi, "Exploiting value locality in physical register files,"
in Proceedings of the 36th annual IEEE ('M International Symposium on
Microarchitecture, 200F.

25. M. Lipase, B. Avestan, and E. Gunadi, "Physical register miming," in Proceedings of
the 31st Annual International Symposium on Computer Architecture, 2004.

26. O. Erin, D. Balkan, K. Chose, and D. Ponomarev, "Register packing: Exploiting
narrow-width operands for reducing register file pressure" in Proceedings of the
37th International Symposium on Microarchitecture, December 2004.

27. M. Condo and H. Nakamura, "A small, fast and low-power register file by bite-
petitioning", in Proceedings of the 11 th International Conference on High-

Performance Computer Architecture, February 2005.

28. N. Kato, M. Yamato, O. Fujimoto, M. Sato, K. Masada, K. Uchikura, M. Namibia, and
H. Navajo, "Impact of dynamic allocation of physical register banks for an SMUT
processor," in Proceedings of the Innovative Architecture for Future Generation
High-Performance Processors and Systems, 2004.

29. J.H. Tseng, K. Asanovic, "Banked register file for SMT processors," presented at the
Boston Area Architecture Workshop, Boston, MA, January 2004.

30. H. Bang, G. Cui, and X. Yang, "Elifinating inter-thread interference in register file
for SMT processors," in Proceedings of the 6th International Conference on
Parallel and Distributed Computing, Applications and Technologies, 2005.

31. D. Burger and T. Austin, The Simplescalar Tools, Version 2.0. Technical report,
University of Wisconsin-Madison, June 1997.

32. Digital Equipment Corporation, Digital Unix Assembly Language Prografmer's
Guide, March 1996.

33. J. Zalamea, J. Liosa, E. Ayguade, and M. Valero, "Two-level hierarchical register file
organization for VLIW processors," in Proceedings of the 33rd Annual
ACM/IEEE International Symposium on Microarchitecture, December 2000.

34. R. Russell, "The Cray-i computer system," in Readings in Computer Architecture,
Morgan Kaufmann, pp. 40-49, 2000.

35. J. A. Butts and G. S. Sohi, "Characterizing and predicting value degree of use," in
Proceedings of the 35th International Symposium on Microarchitecture,
November 2002.

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract (1 of 2)
	Abstract (2 of 2)

	Title Page
	Approval Page
	Biographical Page
	Dedication
	Acknowledgment
	Table Of Contents (1 of 2)
	Table Of Contents (2 of 2)
	List of Tables
	Chapter 1: Introduction
	Chapter 2: SMT Simulator Development
	Chapter 3: SMT Simulator Evaluation
	Chapter 4: Use-Based Register Catche Evaluation
	Chapter 5: Conclusion
	References

	List of Figures (1 of 2)
	List of Figures (2 of 2)

