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ABSTRACT

AUTOMATIC REGISTRATION AND SEGMENTATION OF ABDOMINAL
IMAGES AND DETECTION OF PANCREATIC CANCER

by
Girish Kumar Maiiiprasad

Localized and detailed analyses of 3D abdominal images obtained through different

imaging modalities help greatly in determining the progression of a disease or for post-

operative treatment / evaluation. However, such analyses become difficult and

sometimes unfeasible due to the effects of patient motion and breathing. This is

particularly evident during analysis of the pancreas for cancer, due to its proximity to

other intra-abdominal organs. Within subject registration thus becomes imperative for

pathological analysis of pancreatic cancer. An intensity-based, global image registration

algorithm was developed in the present work, for registration of pancreatic abdominal

images. The registration algorithm was automatic and could register three dimensional

MR and CT images of the abdomen. Once registered, localization and analysis of the

pancreas was facilitated by a semiautomatic k-means clustering based segmentation

procedure. Such a registration and segmentation based method could be used as a

valuable tool for pancreas cancer screening and analysis.



AUTOMATIC REGISTRATION AND SEGMENTATION OF ABDOMINAL
IMAGES AND DETECTION OF PANCREATIC CANCER

by
Girish Kumar Maniprasad

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Biomedical Engineering

Department of Biomedical Engineering

May 2007



 
 
 
 
 
 
 
 
 
 
 
 
 
 



APPROVAL SHEET

AUTOMATIC REGISTRATION AND SEGMENTATION OF ABDOMINAL
IMAGES AND DETECTION OF PANCREATIC CANCER

Girish Kumar Maniprasad

Dr. Bharat B. Biswal, Thesis Advisor 	 Date
Associate Professor of Radiology, UMDNJ

Dr. Richard A. Folds, ThesCo-advisor	 Date
Associate Professor of Biomedical Engineering, NJIT

Dr. Tara L. Alvarez, Committee Member 	 Date
Associate Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Girish Kumar Maniprasad

Degree:	 Master of Science

Date:	 May 2007

Major:	 Biomedical Engineering

Graduate aiid Uiidergraduate Education:

• Master of Science in Biomedical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Bachelor of Engineering in Electrical and Electronics Engineering
Anna University, Chennai, India, 2005

Poster Preseiitation:

Girish K. Maniprasad, Girish Shah, Bharat B. Biswal,
"Automatic Registration and Segmentation of Pancreatic Images",
The Fifteenth Joint Annual ISMRM-ESMRMB Meeting,
Berlin, Germany, 19-25 May 2007.



Το all the people who made this endeavor possible

ν



ACKNOWLEDGMENT

First of all, I would like to express my heartfelt thanks and deepest gratitude to my

mentor Dr. Bharat Biswal who guided me throughout this project and was available at all

times, providing me with valuable information and innumerable resources. Without his

constant presence and support, this thesis work would not have been possible. My sincere

thanks to Dr. Richard Foulds for his valuable and timely advice in the initial stages,

which have contributed towards the success of my thesis. Special thanks to Dr. Tara

Alvarez for agreeing to be my third committee and presiding over my defense.

I would also like to thank the Radiology Department of the University of

Medicine and Dentistry of New Jersey for their financial and technical support.

I also wish to thank Nirvish Shah for his invaluable time and for enlightening me

with valuable information during our numerous discussions. Many thanks to all my

family members, close friends and peers for their emotional support and encouragement.

Last but not least, I would like to thank NJIT for providing me with this

opportunity of doing such a good research in the field of Medical Image Processing.

vi



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Objective 	 ...	 1

1.2 The Human Abdomen and the Pancreas 	 ...	 2

1.2.1 Imaging of the Abdomen and Pancreas 	 3

1.2.2 Magnetic Resonance Imaging of Pancreas 	 ..	 4

1.2.3 Computed Tomography imaging of Pancreas 	 ..	 5

1.3 Pancreatic Cancer 	 6

1.4 Methodology - Overview 	 ..	 7

1.5 Organization of Chapters 	 ..	 9

2 DATA ACQUISITION AND PRE-PROCESSING 	 ... 10

2.1 Data Acquisition 	 10

2.2 Data Pre-processing 	 11

2.2.1 Intensity Adjustment. 	 11

2.2.2 Image Slices Stacking 	 13

3 IMAGE REGISTRATION 	 .. 15

3.1 Introduction 	 ..	 15

3.2 Theory 	 ...	 18

3.2.1 Mutual Information 	 18

3.2.2 The Downhill Simplex Optimization Routine 	 .. 20

3.3 Implementation and Testing 	 21

vii



TABLE OF CONTENTS
(Contiiiued)

Chapter	 Page

3.3.1 Intra-modality Registration 	 24

3.3.2 Inter-modality Registration.. 	 26

3.3.3 Simulation of the Test Images 	 27

3.4 Results 	 28

3.4.1 Inter-modality Registration 	 28

3.4.2 Inter-modality Registration 	 32

4 IMAGE SEGMENTATION 	  36

4.1 Introduction 	 36

4.2 Methods 	 38

4.3 Implementation 	 ..	 41

4.4 Testing and Results 	 44

4.5 Detection of Pancreatic Cancer 	 ..	 54

5 DISCUSSION AND CONCLUSIONS 	  58

APPENDIX A PRE-PROCESSING ALGORITHMS 	 .. 63

APPENDIX B REGISTRATION ALGORITHMS 	 ..	 66

APPENDIX C SEGMENTATION ALGORITHMS 	  76

REFERENCES 	 82

viii



LIST OF TABLES

Table	 Page

1 	 Error Values for Intra-modality Registration of CT Abdomen Volumes 	 29

2 	 Error Values for Intra-modality Registration of MR Abdomen Volumes 	 29

3 	 Average Percentage of Overlapping Regions for Hand-drawn Contour and
Contour Generated by the Segmentation Procedure for an MR Image
Volume 	

4 	 Average Percentage of Overlapping Regions for Hand-drawn Contour and
Contour Generated by the Segmentation Procedure for a CT Image 	 53
Volume 	

52

ix



LIST OF FIGURES

Figure Page

1.1 Location and regions of the pancreas 	 .. 2

1.2 An axial CT slice of the human abdomen 	 ... 3

2.1a A raw axial CT slice before intensity adjustment 	 ... 12

2.1b The same CT slice after pre-processing 	 .. 12

2.2a Raw axial MR image of the abdomen as obtained from scanner 	 13

2.2b The same MR image after intensity adjustment 	 .. 13

3.1 Different methods used in the optimization of a 3D simplex (a tetrahedron)
to yield the minimum value 	 21

3.2a Reference CT image 	 30

3.2b Simulated `target' CT image 	 30

3.2c registration in reference and target images before registration as
obtained by image subtraction 	

30

3.2d Target image after registration 	 30

3.2e registration in reference and target images after registration as obtained
by image subtraction 	 ...

30

3.3a Simulated `target' MR image 	 ..... 30

3.3b Target MR image 	 .. 	 .. 30

3.3c registration in reference and target images before registration as
obtained by image subtraction 	 .

30

3.3d Target image after registration 	 30

3.3e registration in reference and target images after registration as obtained
by image subtraction 	 ...

30

3.4a 2D joint histogram for two identical images 	 ... 31

3.4b 2D joint histogram for the unregistered CT volumes (NM = 1.1215) 	 .. 31

χ



LIST OF FIGURES
(Contiiiued)

Figure Page

3.5 Plot of misregistered pixels before and after registration of same patient
CT-MR datasets 	 .. 32

3.6a Four slices of the MR volume encompassing the pancreatic region 	 ... 33

3.6b Four slices of the CT volume encompassing the pancreatic region 	 33

3.6c Misregistration between the four slices before registration, shown by image
subtraction (NMI value = 1.0855) 	 ... 34

3.6d registration between the four slices after registration, shown by image
subtraction (NMI value = 1.2515) 	 ... 34

3.7a 2D joint histogram of the CT-MR datasets before registration 	 35

3.7b 2D joint histogram of the CT-MR dataset after registration 	 ... 35

4.1 The k-means clustering algorithm flowchart 	 41

4.2 Flow diagram showing the sequence of steps used for segmentation 	 42

4.3a An axial MR slice of the abdomen — pancreas segmented using 2 clusters 	 45

4.3b Enlarged view of the segmented pancreas 	 .. 45

4.4a An axial CT slice of the abdomen — pancreas segmented using 2 clusters.... 46

4.4b Enlarged view of the segmented pancreas 	 .. 46

4.5a An axial MR slice of the abdomen corrupted with a gaussian noise having
zero mean and variance = 0.001 	 .. 47

4.5b Pancreas segmented from the noise-corrupted image (number of clusters
chosen as 2) 	 47

4.5c Enlarged view of the segmented pancreas 	 .. 47

4.6a An axial CT slice of the abdomen corrupted with a gaussian noise having
zero mean and variance = 0.001 	 .

48

4.5b Pancreas segmented from the noise-corrupted image (number of clusters
assumed was 2) 	 48

xi



LIST OF FIGURES
(Contiiiued)

Figure Page

4.6c Enlarged view of the pancreas 	 48

4.7 Plot showing the percentage misalignment with increase in variance values. 49

4.8a Axial MR slice — Pancreas contour traced out by hand 	 .. 50

4.8b Enlarged view 	 50

4.8c Pancreas contour traced out by the segmentation procedure 	 .. 50

4.8d Enlarged view 	 50

4.9a Axial CT slice — Pancreas contour traced out by hand 	 ... 51

4.9b Enlarged view 	 .. 51

4.9c Pancreas contour traced out by the segmentation procedure 	 .. 51

4.9d Enlarged view 	 .. 51

4.10 Bar chart showing the percentage of overlap between manually drawn and
hand traced contours, before and after noise addition for MR image
volumes 	 53

4.11 Bar chart showing the percentage of overlap between manually drawn and
hand traced contours, before and after noise addition for CT image
volumes 	 53

4.12 Cancer tumor simulated in the head of the pancreas, in a CT-MR integrated
test image 	 56

4.13 Histogram of the pancreatic region with a simulated tumor in the head of
the pancreas 	 56

4.14 Simulated tumor in the pancreas head as detected by the segmentation
procedure 	

57

xli



CHAPTER 1

INTRODUCTION

1.1 Objective

The primary objective of this thesis project was to implement and evaluate image

registration and segmentation of pancreatic images obtained using single as well as

multiple modalities (CT and MARI). Once such a method was developed, the next step was

to illustrate the application of such a processing tool in the early detection of pancreatic

cancer.

1.2 The Human Abdomeii aiid the Pancreas

The anatomical location of the human abdomen is between the thoracic diaphragm

(below the lungs) and the pelvic brim (the notch atop the pelvis). The abdominal cavity

houses organs of the digestive tract, the liver, the pancreas, the kidneys and the spleen. It

also contains numerous blood vessels including the inferior venal Java and the aorta. The

entire abdominal cavity is encompassed by the abdominal wall which is divided as the

anterior wall, the posterior wall and the lateral walls respectively [1].

The pancreas is an important organ that lies transverse (parallel to the ground

when person is upright) in the posterior abdomen, behind the stomach region. It secretes

the pancreatic digestive juices and produces important hormones such as insulin thus

functioning as an exocrine as well as an endocrine organ. The pancreas is further

subdivided into three main regions viz., the head, the body and the tail. The head of the

pancreas is a bulky structure lying close to the duodenum. The body is the structure

following the head lying near the spine and bordering the stomach. The tail is an

1
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elongated structure extending towards the spleen [1, 2]. A typical image illustrating the

location of the pancreas is as shown below:

1.2.1 Imaging of the Abdomen and Pancreas

Images of the abdomen are typically acquired while the patient lies in a supine position

inside the scanner. A sequential set of images covering the abdomen is then obtained in a

rapid fashion. Typically, subjects are instructed to hold their breath for short periods of

time (between 20 — 50 seconds) while images are being acquired. This method thus

provides a significant challenge for high resolution anatomical imaging of the abdomen

and the antra abdominal organs. Thus, the number of sequential images and the spatial

resolution that can be acquired through the imaging modality is limited not by the physics

but by the underlying physiology. Depending on the requirements, an axial (Bross-
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sectional) view, a longitudinal (lengthwise) view or a sagittal (side) view of the abdomen

can be obtained by imaging.

Each of the sequential images obtained on scanning the entire abdomen represent

a fractional region of the abdomen and is called as a slice. Slices can be assumed as 2D

images with small but significant thickness. Each successive slice is then stacked or

grouped to form the entire abdominal region and this is referred to as a volume image.

Such volume images are digitally represented by a three dimensional spatial grid where

each point is called as a vowel (similar to a pixel or picture element in a 2D image). Each

vowel value corresponds to the image intensity value at a particular point in the 3D spatial

grid representing the entire volume image. A cross-sectional (axial) slice of the abdomen

and its various organs as obtained by a CT scan is illustrated in the Figure 1.2 shown

below:

Figure 1.2 An axial CT slice of the human abdomen.
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Each slice is represented by a 2D matrix of intensity values. Resolution of the

image slice is governed by the number of rows and columns of this matrix and is always

in powers of two. An image with 512 rows and 512 columns or a resolution of 512 x 512

displays more detail about the region than an image with a resolution of 256 x 256. A 3D

volume is a group of 2D slices and is thus represented by a three-dimensional matrix.

Resolution of a 3D image volume is governed by the number of rows and columns in the

individual slices as well as the slice thickness.

Developing an effective imaging procedure that depicts all the organs in the

abdomen with intricate details has always been difficult. This difficulty is primarily due

to the non-rigid nature of the abdomen. In other words, unlike the brain which is enclosed

inside a rigid cranium, the abdomen has no exoskeleton but only an elastic layer of fat

enclosing the intra-abdominal organs. Due to this, the breathing cycle greatly influences

the motion of the abdomen during the imaging procedure in addition to the patient

movement. Hence, image processing procedures that minimize the effect of such motion

in the abdomen images become imperative for further analysis of the imaged volumes.

Recent developments in digital imaging modalities, particularly Magnetic

Resonance Imaging (FRI) and Computed Tomography (CT) imaging, have resulted in

detailed imaging of the intra-abdominal organs, especially the pancreas [3].

1.2.2 Magnetic Resoiiance Imaging of Paiicreas

Magnetic Resonance Imaging (MFRI) is a non-invasive procedure of imaging the internal

details of the human body. This imaging procedure uses the concept of Nuclear Magnetic

Resonance (MR) to generate an energy signal in the radio frequency range of the

electromagnetic spectrum. The image is ultimately generated by reconstruction using the
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emitted radiations. Gradient coils and radio frequency coils are used to obtain different

orientations of the regions to be imaged and to adjust the image contrast respectively. The

strength of the magnetic field applied is measured in Testa, and 1 Testa is approximately

equal to 30,000 times the magnetic field of the earth.

MR imaging of the pancreas is done using a 1.5 Testa scanner with phased-array

torso coils for improved SNR. Fast spin echo or gradient echo sequences with echo

planar imaging are generally used for breath-hold acquisitions of abdominal images. Fat-

suppressed, high resolution Ti weighted protocol with injection of a contrast agent is

used for more precise detection of pancreatic masses [3].

1.2.3 Computed Tomography Imagiiig of Pancreas

Imaging via Computed Tomography (or Computed Axial Tomography) involves using

X-rays to generate a series of 2D images of the region of interest. The series images are

then reconstructed using a mathematical reconstruction algorithm to produce a 3D view

of the region. CT scanners use a set of X-ray emitters and detectors that are arranged in a

circular fashion, in parallel to each other encompassing the region to be imaged. Each

detector thus produces a respective 2D X-ray image. Scanning is done with or without

contrast agents depending on the requirements.

Multi-detector CT technology with dual phase imaging is generally used for

imaging the pancreas in the abdomen, in recent times. Image reconstruction is then done

by multi-planar 3D techniques such as volume rendering, maximum intensity projection

and shaded surface display reconstruction thus resulting in sharp images of the intra-

abdominal organs [3].
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1.3 Paiicreatic Caiicer

Cancer in the pancreas is a highly lethal disease that has resulted in high mortality rates in

the recent years [2, 4]. If detected in its early stages, the canceraceous tissues can be

completely removed through surgery. However, the difficulties in early detection of the

cancer, due to non-specific symptoms, have contributed greatly to the delays in diagnosis

and treatment of the cancer [4]. Research has also shown that the effects of chemotherapy

and radiotherapy on the cancer cells are very feeble [3]. Such therapeutic treatments also

result in significant toxicity in most of the cases [2, 3].

Majority of the pancreatic carcinoma is due to adenocarcinoma occurring in the

exocrine pancreas more clearly in the ductal epithelium. The exocrine pancreatic

carcinomas arise in the proximal part with about 30% of the cancer affecting the body

and tail of the pancreas [2, 4]. Another detectable sign of pancreas cancer occurrence is

an abnormal enlargement of certain regions of the pancreas due to the initial onset of the

cancer causing tissues [2]. Initial symptoms include anorexia, weight loss, abdominal

discomfort or pain, and nausea. Most cases have also exhibited jaundice as a symptom for

pancreas cancer onset typically from compression of the common duct in the head of the

pancreas [2].

Due to the proximity of pancreas to multiple organs and tissues in the abdomen,

invasion and propagation of cancer cells to neighboring regions is inevitable. Hence,

surgical removal of lesions becomes virtually impossible beyond a certain stage of cancer

onset, thus making the disease fatal. Screening of pancreatic cancer using serologic

cancer markers also has lost its reliability in the past years. Curative methods such as

radiotherapy, chemotherapy and laparoscopy have very little effect on the cancer tissue
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beyond a certain stage. Pancreas cancer is becoming one of the most fatal gastrointestinal

malignancies having less than a 5% survival of 5 years [4].

The advent of sophisticated diagnostic imaging methods has offered promising

results for early cancer detection and treatment [3, 4]. MR and CT imaging modalities

help to a great extent in determination of progression of the cancer and treatment

evaluation. CT imaging results in thinner image slices with intricate details in each slice.

MRI on the other hand is sensitive to the various organ tissues inside the abdomen and

hence can distinguish the independent organs in the abdomen more clearly (better spatial

resolution) compared to the CT images. Hence if the pancreatic images of a patient

obtained through both these modalities are aligned or registered, a great deal of

information can be inferred. Further, on segmenting the pancreatic region from the

abdomen, it can be screened effectively for the presence of cancer or for treatment

evaluation. Alignment of the intra-modality images can be facilitated by a suitable image

registration method and sectioning out the region of interest for analysis can be done

using a corresponding image segmentation procedure.

1.4 Methodology — Overview

Medical image registration is the process of matching or aligning two (or more)

radiological images representing the same regions of the body. The images to be

registered can be similar images obtained from two different imaging modalities (inter-

modality) or images obtained from the same modality (intra-modality) that were imaged

at different points of time. Optimal information regarding the medical condition of a
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patient can thus be obtained if all such images are spatially aligned. Most of the image

registration algorithms involve 2D (slices) or 3D (volume) images [5].

Medical image registration can be performed using extrinsic or intrinsic image

properties [6]. Extrinsic image registration involves using markers to identify certain

anatomically important landmarks and then registering the images based on the location

of these markers. Registration performed using intrinsic properties of images can broadly

be classified into (a) intensity-based [7-10] and (b) feature-based [11-14] methods.

Intensity-based registration methods basically register a pair of images by maximizing

the correlation [7, 13] or simply by using the intensity information inherent in the images

[8-10]. On the other hand, feature-based registration methods match common features

including geometric and contour properties present in the image pair. Intensity-based

methods are however less complex than the feature-based methods and hence can be

employed effectively in automatic image registration algorithms. Registration algorithms

can also be global or local based on the details attempted to be registered. Global

registration procedures tend to register the image as a whole whereas local procedures

refer to registration of certain selected organs only.

Intensity-based registration algorithms make use of the vowel intensity

information inherent in the images. Such methods involve the optimization of a similarity

measure of all the geometrically corresponding vowel pairs in the images. The greatest

advantage of the intensity-based methods is that they can be automated. Commonly used

intensity-based registration algorithms include minimization of variance, maximization of

correlation coefficient and maximization of mutual information. The maximization of
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mutual information has been demonstrated as a powerful criterion for automatic

registration algorithms [9, 10].

Image segmentation is the process of separating certain regions of interest from

the image background and from each other [15]. Segmentation algorithms make use of

the intensity information inherent in the images to achieve the desired segmentation of a

selected region of interest. Segmentation is usually achieved by sectioning out the region

of interest completely from the image or by tracing the contour of the region, depending

on the problem requirements. Earlier methods of segmentation involved region growing

and linking or using the image histogram to segment the desired region. Other, relatively

new methods involve using vectors and gradient to trace out the contours of a region [ 16-

18]. Clustering based segmentation methods fall under the region growing category and

are used widely in medical image segmentation problems because of their simplicity and

effectiveness.

1.5 Orgaiiization of Chapters

The next chapter describes the data that were collected for the testing and its pre-

processing. Chapter 3 explains in detail about the implementation and testing of the

registration algorithm, initially. Later sections of this chapter describe some of the results

that were obtained using the registration algorithm. Chapter 4 describes in detail about

the segmentation algorithm implementation, its testing and results. The thesis work

concludes with Chapter 5 where some discussions about the methodology developed are

made and the future scope of the thesis research work is outlined.



CHAPTER 2

DATA ACQUISITION AND PRE-PROCESSING

2.1 Data Acquisitioii

The data used for the testing of the developed algorithm were axial images of the

abdomen obtained using Magnetic Resonance Imaging and Computed Tomography

imaging. Three dimensional image volumes with about three to five slices, encompassing

the entire pancreas were used as input images to the algorithm. Data with individual slice

thicknesses of 3mm, 5mm, 3mm and 9mm were used in different trials to test the

algorithm. MR and CT images of the abdomen with and without contrast agents were

used. The initial testing phase for inter-modality image registration and segmentation was

done using about four different CT datasets and three different MR datasets. Later testing

phases involving inter-modality (MR and CT) image registration and segmentation were

done using five different MR and CT datasets. Each of these five datasets comprised of

abdomen images of the same region for a particular patient as done by MRI and CT

imaging. However, the individual slice thickness of the images obtained using the two

different modalities were not the same. Also, all the images were scarred during two

different sessions (for MR and CT respectively) with a significant interval of at least six

months between each of the sessions.

MRI data was acquired using a 1.5 Tesla GE scanner. The images were T 1

weighted and some images were also fat-suppressed. CT data was obtained using a spiral

(or helical) CT scanner. For CT images with contrast, oral contrast agents were

administered to the patient. The raw images thus obtained were in the popular DICOM

10
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format with a resolution of 512 voxels by 512 voxels and were 256 bit grayscale images.

Most the raw (or un-processed) MR images were corrupted with background noise and

contrast variations in the image. Almost all of the raw CT images had the ring artifact

inherent in them. These artifacts were eliminated from the test images by using certain

pre-processing methods as explained in section 2.2 of this chapter. The data resolution

was also reduced to half (256 x 256) prior to using them as inputs for testing the

algorithm developed in the present work. This was done to increase the speed of the

overall procedure.

2.2 Data Pre-processiiig

Different data pre-processing routines were developed in the present work to eliminate

some of the most commonly occurring intensity artifacts in the raw MR and CT images.

These pre-processing routines were implemented as functions in MATLAB (using image

processing toolbox and statistical toolbox) and used on the data prior to them being given

as inputs to the registration and segmentation algorithm. Numerous trials were run using

the different pre-processing routines and it was found that such kind of pre-processing

enhanced the accuracy of the developed algorithm as well as ensured clearly

distinguishable features in the abdomen. The pre-processing functions thus developed are

briefly explained below.

2.2.1 Iiitensity Adjustment

This routine corrected the nonuniform intensities along a particular organ in the

abdomen. This was done by adjusting the intensity value of each voxel to linearly stretch
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the image histogram and span the entire grayscale range. This pre-processing routine was

developed as a function in MATLAB. (Refer Appendix A)

In the case of CT images, the image contrast was improved by this pre-processing

routine and the resultant image showed various abdominal organs with clearly defined

borders as opposed to the raw CT image. In other words, image volumes with uniform

illumination were obtained thus increasing the amount of `information' that could be

inferred from the images. The MR images obtained by using a contrast agent had non-

uniform intensity thus making some parts of the abdomen look very bright (or white) and

certain parts very dark. This pre-processing routine reduced this non-uniform

illumination and in addition also removed background noise which occurred in certain

cases. Some of the results obtained on preprocessing CT and MR images are shown in the

Figures 2.1 and 2.2 respectively.

Figure 2.1 (a) A raw axial CT slice of the abdomen, before intensity adjustment, (b) The
same CT slice after pre-processing. Intra-abdominal organs are shown much clearly in
Figure 2.1b.



Figure 2.2 (a) Raw axial MR image of the abdomen as obtained from the scanner, (b)
The same MR image after intensity adjustment. Intensity distribution is comparatively
more uniform in Figure 2.2b.

2.2.2 Image Slices Stacking

In this procedure, individual slices of an image volume were stacked about the centroid

of the image volume and with respect to the preceding slice. More clearly, the entire

image volume was centered about the spatial grid representing the image volume. Then a

2D image registration technique was employed where initially the first slice was used as

the `reference' image and the next slice (above it) was assumed as the `target' image and

then aligned respectively. Then this registered slice became the reference image for the

next (i.e., the third) slice. After registration this third slice became the reference for the

fourth slice and so on.
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This helped to compensate for uneven alignment of slices in a large volume. Such

misalignment in slices can also be assumed as a shearing artifact along the X and Y

directions (that occurs due to patient breathing in the scanner) and the slice stacking

routine can be assumed as a crude shear pre-correction procedure.

Simulation results showed that such pre-processing procedure helped to improve

the overall registration process. These results are outlined in the next chapter.



CHAPTER 3

IMAGE REGISTRATION

3.1 Introductioii

Image registration is the process of mapping two images spatially such that

corresponding structures overlap [ 19]. A geometrical transformation estimates a

"transformation map" that aligns a `target image' with a `reference image' on a voxel-by-

voxel basis, in the process of registration [20]. Medical image registration finds its use in

aligning and comparing two images of a particular region of the human body, in both

intra-modality (e.g.: MRI scans done on different days) and inter-modality imaging (e.g.:

MR and CT) [21]. Image registration is broadly divided into manual, semiautomatic and

automatic registration methods.

Manual registration methods are interactive methods that require a trained user to

perform the registration using known anatomical landmarks. The user is assumed to have

familiarity with the anatomical structures and mathematical skills to identify and decide

about the kind of transformation required to facilitate registration of the images [5]. The

transformation is then used based on the annotated regions drawn by the expert user to

register the two or more images. A computer based numerical interpretation of the

registration between the images is used as a guiding factor by the user to carry out the

process. These methods are labor intensive as each of the objects (or organs) from each

image slice have to be labeled individually by an expert user prior to any kind of

registration. Such methods, apart from being time-consuming, also suffer from user

subjectivity and hence are not very effective.

15
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In semi-automated registration methods, the user interaction is limited to selecting

certain image features or parameters to be used in registration. The user might also have

to specify the algorithm to be used, the initial conditions and the convergence and

stopping criteria [5]. For example, contours of an object or organs may be used as a

parameter and correlation coefficients between the contours of the two images may be

used as the goodness of fit criteria to determine the alignment between the images. Such

user-interaction can increase the efficiency of the registration process in certain cases.

Automatic methods of image registration require minimal form of user interaction

during the registration process. The user needs to provide only certain basic criteria about

the image acquisition as input to the registration algorithm [6] . Automated registration

methods usually rely on intrinsic properties such as image contours (when a contour

definition criterion has been predefined) and image intensity. Examples of such

automated methods are geometrical landmark-based registration and vowel properly-

bashed registration. Even though automatic registration methods are widely preferred,

there always exists a trade-off between minimal interaction and speed, accuracy,

robustness of the automatic registration algorithm.

Signal intensity based correlation analysis is a typical example of an automatic

registration method. As per this method, two identical images, one of which is shifted

prior to registration, will have the highest possible correlation (= 1) once they have been

registered correctly. Thus, one can use this criterion to register images in an automated

fashion. However, there are certain assumptions made by this method. First, it assumes

that the two or more images to be registered have the same image characteristics (e.g.,

they are both CT images of similar intensities containing the same organs). Secondly, the
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motion is assumed to have caused all the features (organs or tissue types) to be shifted in

a similar fashion. Third, the noise properties between the two images are assumed to be

similar.

The above mentioned assumptions are not satisfied in a number of cases,

particularly when images are obtained using different modalities. Further, even while

using the same modality, if there is a growing tumor in the image whose size is changing,

then intensity based correlation analysis cannot be used. Hence, intensity based

correlation analysis is seldom used in image registration even though it is

computationally efficient

In recent years, a novel registration algorithm based on mutual-information has

been developed by Viola et al. [9] and Collignon et al. [22]. Mutual information (MI) is a

basic concept from information theory and measures the entropy (amount of information)

that one image contains about the other, statistically. Image registration by using mutual

information involves the maximization of mutual information (MMΙ) criterion [10]. The

ΜΜΙ registration criterion depends only on the relative occurrence of the vowels in the

images to be registered and it makes no assumptions regarding the image characteristics

[8-10]. As a result, this criterion is preferred over the intensity based correlation analysis

and is currently being used to automatically register both intra-modality as well as inter-

modality image volumes.

The next important criterion to be considered in the implementation of a

registration algorithm is the geometric transformation that will map or align one image to

another. The commonly used geometrical transformations in the registration problem are

rigid, affirm, projective and elastic (or curved) transformations [6, 19] . In rigid
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transformations (for example in the brain), only translations and rotations are allowed.

Affirm transformation maps parallel lines onto parallel lines. Projective transformation

maps lines onto lines while elastic transformation maps lines onto curves [6, 19]. The

geometric transformation that an image registration algorithm uses is directly related to

the type of distortions that might occur in the images during the imaging procedure.

In this thesis work, mutual information based registration algorithm was

implemented to register abdominal images obtained from subjects, using both CT and

MARI. The algorithm was implemented to take into account a number of displacement

parameters. In the case of abdominal images, the major distortions occur due to the

effects of patient motion and patient breathing in the scanner. These were modeled as

rigid transformations and affirm transformations respectively. Thus, the optimization

problem this thesis was the maximization of mutual information. Although, numerous

methods exist [25], in this thesis, a downhill simplew based optimization routine was

chosen. This method, apart from being simple, is also a quick and effective mathematical

technique that can be used for intensity-based image registration and hence was

employed in the registration algorithm developed.

3.2 Theory

3.2.1 Mutual Information

The Mutual Information (denoted as I) between two images A and Β can be represented

as:

Ι(Α, Β) = Η(Β) — Η(Β Ι Α) 	 3.1
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where, Η(Β) denotes the entropy of image Β or the amount of uncertainty about image Β

and Η(Β I Α) denotes the conditional entropy or the amount of uncertainty about Β when A

is known[8].

A decrease in the overlap between two images (more misregistration) would

result in reduced statistical power of the probability distribution estimation which

measures the entropy. Recent studies of Studholme et al [24] has shown that a

normalized mutual information measure can be used alternatively as it is less sensitive to

changes in overlap [8]. The normalized mutual information between two images A and Β

can be represented as below:

where ΗΙΑ) and ΗΙ) are called the marginal entropies of images A and Β respectively

and HΙA,B) denotes the joint entropy.

When the image intensity or the grey level values are used as a measure of

information, the entropy for an image can be computed using the probability distribution

of its grey values. This probability distribution can be estimated from the histogram of

the image. An image having a histogram with a sharp peak (all vowels of a single

intensity) would thus have a low entropy value as it contains very little information. An

image having a dispersed histogram that has many different intensity values would

contain a lot of information about the image, from an information theoretic sense. Such

an image would yield a high value of entropy. For two images, the FΙ is computed from

the joint probability of the image intensities. Joint and marginal distributions are

estimated from the joint and marginal histograms of the overlapping parts of the image

respectively. When two images are perfectly aligned, there is more overlap and the



20

resulting joint histogram has a characteristic sharp peak. This results in a low joint

entropy value which in turn results in a high MI value [8, 10]. Joint histogram thus

provides a measure of entropy between the images and the MI can therefore be computed

by constructing a joint histogram of the images to be registered [10].

3.2.2 The Downhill Simplex Optimization Routiiie

The mutual information measure was mawimized by using the downhill simplew

optimization routine as suggested by Felder and Mead [23]. This method evaluates a

function directly and does not require function derivatives to be computed. Hence, the

downhill simplew method gives an approwimate result only but is computationally less

ewpensive and faster compared to other traditionally used methods [25].

The method starts by defining a simplew based on the number of independent

variables of the function to be minimized. A simplew is a geometrical Figure in `F'

dimensions consisting of N+1 vertices (In three dimensions, a simplew is a Figure with

four vertices i.e., a tetrahedron). An initial starting guess for the vertices of the simplew is

required by this method. Once such a simplew is constructed, the method uses three basic

operations viz, reflection, ewpansion and contraction to find the local minimum of the

function. Each of these operations tends to reduce the size of the simplew structure to

converge around the `minimum' point. The convergence criteria and the step size for

each iteration that reduces the simplex size are specified by means of a tolerance

function. The method begins from the highest point (or peak of a hill) in the vertew of the

simplew and gradually works its way down to the minimum point — called the valley of a

hill. As this minimization technique goes `down the hill' from the peak to the valley
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point, it is termed as downhill simplew method [23, 25]. Figure 3.1 shown below

illustrates the concept of a simplex and its optimization.

Figure 3.1 Different methods used in the optimization of a 3D simplew (a tetrahedron) to
yield the minimum value. [25]

3.3 Implementatioii aiid Testiiig

The normalized mutual information measure with the downhill simplew optimization

routine was used in the registration algorithm. To register a pair of image volumes, a

reference image volume (or a source image volume) and a target image volume were

defined respectively. For MME based registration, the registration problem is defined as

finding a co-ordinate transformation that transforms the target image coordinates into

reference image such that the mutual information is mawimized [9, 10]. In the case of
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abdominal image volume registration implemented in this thesis, rigid body and affine

transformations were applied. The registration thus involved optimization of siw

parameters — three translations, one rotation, two affine scaling and one affine shearing.

The image registration algorithm was implemented in three basic sub-registration

steps. In the first step, the algorithm aligned the images to compensate for the linear shift

or translational shift between the target and reference images along the X, Y and Z

directions of the spatial grid representing the images. In step two, registration was

performed on the linear-shift corrected target image to compensate for affirm scaling and

shearing along the horizontal and vertical directions (the X and Y awes). The final step or

step three performed a sub-registration routine on the target image as obtained from step

two, to compensate for angular shift or rotational shift about the Z awis of the spatial grid

representing the image. The linear and rotational shifts were assumed to occur in the

images due to patient motion in the scanner. The affirm scaling and shearing were

assumed to be the effect of (uneven) patient breathing during the imaging procedure.

The initial guess values for the downhill simplew optimization algorithm were

estimated using the reference and target images automatically instead of the user having

to specify them. In the case of the linear-shift sub-registration procedure this was done by

initially computing the centroid of both the images. Then, by calculating the difference in

the centroid of the target image with that of the reference image, the approximate linear

shift of the target image was determined. The first sub-registration procedure then aligned

both images in the spatial grid to compensate for the difference in centroid values. This

was done by computing the mutual information between reference and target images and

optimization of the mutual information value in steps or iterations till the mawimum value
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was obtained. The parameters of the function for which maximum mutual information

was obtained yielded the values by which the target image had to be shifted to be best

aligned with the reference image.

Image alignment using an affine shearing and scaling transformation was also

done in a similar manner as the process described above. In this case an affine matriw, as

shown below, describing the shearing and scaling in the image was defined.

Mx and Sy denote the values of scaling along the Χ and Υ directions respectively and shay

denotes the shearing along the Χ-Υ plane.

The values of the matriw, corresponding to the best registration, were obtained by

mawimizing the mutual information between the reference image and the aligned target

image, as obtained in the previous step. The initial values for shear and scaling in the

affine matriw were assumed as `1' (i.e., Sx = s, = she = 1) and the mutual information

was computed. The optimization routine then mawimized the mutual information value

iteratively and yielded the affine matriw corresponding to the best registration between

the images.

Finally, the rotational shift correction was also done. To compute the best initial

guess value, the target image was aligned with the reference image for unit degree

increments of a range of values and the mutual information was computed for each

alignment. This was done as follows: the target image was shifted from -10 degrees to

+10 degrees (in 1 degree increments) with respect to the center of the reference image

(i.e., about the Z awis) and for each unit shift the mutual information was computed. The



24

best possible match thus yielded the mawimum mutual information value. The guess

value was simply chosen as the point where this mawimum mutual information value

occurred. This method however limited the accuracy of the angular shift correction

routine to ±10 degrees. Fumerous trials on test datasets showed that the assumption of a

rotational shift being more than ±5 degrees seemed unrealistic particularly for the set

objective in the present work.

Once the guess value was determined, the rotational shift sub-registration was

done by optimizing the mutual information between the reference image and the target

image as obtained after affine shift alignment. Thus, the overall registration was achieved

in three steps which corrected the linear shifting along Χ, Υ and Z awes, rotational

shifting about the Z awis and the affirm shape changes along the Χ-Υ plane.

The three step registration procedure was implemented in MATLAB. Independent

functions for determining the guess values at each stage were also developed.

3.3.1 Inter-modality Registration

MR and CT images of the abdomen imaged for the same patient at different points of

time were registered using the basic registration algorithm developed. Such inter-

modality registration becomes imperative to register certain anatomically important

sections in the abdomen images so that a comprehensive analysis of a pathological

condition can be done using the images from both the modalities. In the present case, MR

images which had clearly distinguishable features comparatively were used as reference

images and the CT images were assumed to be the target images and thus registered with

respect to the MR image volumes.
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The algorithm implemented for this purpose was robust in the sense that it could

be incorporated even if the CT and MR images of the abdomen did not encompass

ewactly the same regions. For example the MR image volume could have started from the

chest region all the way to the abdomen region and the CT could have covered only the

abdomen region. In such cases, the registration problem also includes initially identifying

and selecting the similar regions and then registering them. The registration algorithm for

inter-modality registration was developed so as to automatically identify and register

slices containing only the same anatomical features.

The initial step in the algorithm converted the individual slices in the MR and CT

volumes to a uniform thickness of 1 mm each. The median (center) three slices were then

selected from the target volume. The best match for these three slices in the entire

reference image volume was then determined by performing registration at reduced

resolution. This was done by reducing the resolution of the three median slices from the

target image volume and the reference image volume to half the original resolution. Then

registration was done between the first three slices of reference image volume and the

three median slices selected from the target image and the mutual information value of

the registered images was computed. Fewt the median slices of the target were registered

with the newt three successive slices of the reference in hierarchical order (i.e., slices 2, 3

and 4) and the MI value was computed. The newt registration was done between the

median slices and slices 3, 4 and 5 of the reference volume and the MI value was

computed.
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This process was continued till the three median slices were `compared' or

registered with each set of three successive slices in the reference image. Based on the

registration which yielded the mawimum mutual information value, the best match in the

reference image was found. This was the portion of the reference image which best

matched with the center of the target image and using this valuable detail, regions

representing similar anatomical structures in the reference and target image were

obtained. The final step was the registration (at actual resolution) of the two similar

anatomical regions represented in the reference (CT) and target (MR) image volumes.

The Intra-modality image registration procedure was tested using five different

CT and MR images of the abdomen, where each of the CT and MR combination

represented the same regions in the abdomen of a patient. In four of these five test

datasets the MR volume had a different individual slice thickness compared to the CT

volume individual slice thickness. One trial was run with MR and CT volumes having the

same individual slice thickness. In each of these trials the similar anatomical regions that

had to be registered was a subset of the image volume. The registration algorithm initially

identified the corresponding subsets of anatomically similar regions in both the reference

and target image volumes and then registered the regions successfully.

3.3.2 Intra-modality Registration

In some practical cases, two image volumes of the same region imaged using the same

modality but at different points of time need to be registered for analytical purposes. Α

typical ewample of a situation where intra-modality registration becomes necessary is

during post-operation or posttreatment analysis. In the present work, the registration
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algorithm described above was used to register similar slices from two different image

volumes imaged by the same modality, where one image volume was simulated as the

target image. Test simulations to register different set of consecutive slices from the same

image volume were also run to evaluate the efficiency and robustness of the algorithm

developed.

Abdominal images of different subjects were obtained using the standard imaging

protocols. The different effects of patient motion were then simulated on these images

and thus the reference and target images for registration were obtained. In most of these

trials, only those slices in the image volume that encompassed the entire pancreatic

region were considered while in some of the trials the entire image volume was

considered. MARI and CT abdominal images from 3 patients totally were used in this

study. The number of slices in each dataset varied from 3 to 9.

3.3.3 Simulation of the Test Images

The effects of patient motion were simulated by linear and rotational shifts that were

assumed to shift the target image volume by ±10 vowels units and ±10 degrees

respectively, with respect to the center of the reference image. Effects on the abdominal

image due to patient breathing were simulated by an affine transformation that sheared,

stretched and compressed the image dimensions in both X and Y directions. The image

volume was assumed to stretch and compress by a maximum of 20% of its original size

in the horizontal as well as vertical directions, due to patient breathing. A minimal

amount of shearing resulting in a 5% distortion along the Χ-Υ plane was also simulated

by the affirm transformation. Motion induced signal changes were simulated using 100

different possible combinations on a single dataset, and thus 100 trials were run using a
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single test dataset. Results obtained for each datasets were analyzed statistically which

facilitated the quantitative performance analysis of the developed registration algorithm.

The performance of the registration algorithm was evaluated based on the

simulated distortion values. The differences between the actual and the estimated

registration parameters were found after the reference image and the simulated target

images were registered. The registration was thus quantified based on the difference

values (or the error values).

For Intra-modality registration, the performance of the algorithm was evaluated

by subtracting the reference and target images before and after registration. This basically

showed the displacement between the images before and after the registration process,

visually. Further evaluation of the Intra-modality registration was done based on the

number of misregistered piwels before and after registration [26].

3.4 Results

3.4.1 Intra-modality Registration

Table 3.1 shows the average error values (meant standard deviation) obtained after

performing 100 trials of the registration procedure on four different CT datasets. Table

3.2 shows the same results obtained by using three different MR datasets. The error

values were computed as the difference between the actual registration parameters (that

were used to simulate a target image) and the registration parameters estimated by the

algorithm (when aligning the simulated target image with the reference image). The

overall average error rate with which the algorithm could register the images in the four

CT volumes was 0.115±0.19, 0.106±0.25, 0.116±0.23, 0.132±0.28 respectively. The
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overall average error rate with which the algorithm could register the images when the

three MR volumes were used was 0.164f0.26, 0.145f0.29, 0.162f0.34 respectively.

Table 3.1 Error Values for Intra-modality Registration of CT Abdomen Volumes

Table 3.2 Error Values for Intra-modality Registration of MR Abdomen Volumes
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Figures 3.2 and 3.3 show the results of registering the simulated target images

with the reference images, for CT and MR imaging respectively. The misalignment

between the reference and target images was indicated by subtracting both the images as

illustrated in Figures 3.2c, 3.3c and Figures 3.2e, 3.3e respectively.

Figure 3.2 (a) Reference CT image, (b) Simulated `target' CT image, (c) Misregistration
in reference and target images before registration, as obtained by image subtraction, (d)
Target image after registration, (e) Misregistration in reference and target images after
registration, as obtained by image subtraction.

Figure 3.3 (a) Reference MR image, (b) Simulated `target' MR image, (c)
registration in reference and target images before registration, as obtained by image

subtraction, (d) Target image after registration, (e) Misregistration in reference and target
images after registration, as obtained by image subtraction.

Figure 3.4a shows the joint histogram for two same CT images (i.e., images with

similar intensity distribution). As ewplained earlier in the chapter, when identical images

overlap their intensity distributions are perfectly aligned. Hence the joint histogram has a

sharp diagonal line as shown in Figure 3.4a.
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When the identical images do not overlap, the combined image would have a

dispersed joint histogram. This is because of the repetition of various structures of the

identical images in the combined image (as they do not overlap). This is illustrated in

Figure 3.4b which shows the joint histogram of the identical CT slices before registration

respectively.

When two images of the same scene do overlap, there is alignment of the

corresponding structures (i.e., no repetition of similar structures in the combined image).

In such a case, the joint histogram would appear less dispersed and more clustered

compared to when the images were misaligned. Figure 3.4c shows the joint histogram of

the aligned CT slices after the registration process. It can be seen that there is more

uniform clusters in this image compared to Figure 3.4b. However, the joint histogram

may not be a diagonal as in the ideal case because of registration and interpolation errors

that tend to affect the intensities of the similar structures in each of the images [10].

The normalized mutual information (NMI) values between the images before

registration and after registration were 1.1215 and 1.5398 respectively.
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3.4.2 Inter-modality Registration

Figure 3.5 shows the number of misregistered piwels in the CT-MR datasets containing

the same regions, before and after registration. Registration of the images reduced the

percentage of misalignment as evident from the Figure. However, as the data

corresponded to the same patient (but different modality) and was aligned to a certain

ewtent, there was a minor difference in the percentage of misregistered piwels before and

after registration as seen in the Figure.

Figure 3.5 Plot of misregistered piwels before and after registration of same patient CT-
MR datasets.

Figures 3.6a to 3.6d shown below displays the registration results for one of the

patients' CT and MR datasets. The target image volume was a CT volume image of the

abdomen having twenty slices of 2.5 mm thickness each. The reference image was an

MR image volume of the abdomen with seven slices and an individual slice thickness of
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8 mm. The four slices in the Figure 3.6a and 3.6b correspond to the slices of MR and CT

representing regions of similar anatomical regions respectively. The four slices in Figure

3.6c show the registration between the images before registration, by image

subtraction. The four images in Figure 3.6d show the difference between the images after

they are registered. The normalized mutual information (NMI) value of the volumes

before registration was 1.0855 and after registration was 1.2515. The reduction in

misalignment between the images is evident from Figure 3.6d and from the normalized

mutual information values before and after registration. Intensity stretching technique

was employed while displaying the difference between the images, in order to show the

misalignment more clearly.

Figure 3.6a Four slices of the MR image volume encompassing the pancreatic region.

Figure 3.6b Four slices of the CT image volume encompassing the pancreatic region.
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Figure 3.3 shows the joint histogram comparison of the CT-MR registration

procedure, before and after registration respectively. As seen from Figure 3.6a, the FRI

slices tend to have distinct intensity values for different intra-abdominal regions. The CT

slices (Figure 3.6b) however do show all the regions in the abdomen but individual

regions do not have much intensity difference as compared to the MR images. Hence,

even though both volumes represent the same regions / structures, their intensity

distribution or histograms are different. Due to the different intensity distributions in the

similar structures in both the images, the joint histogram of the registered images does

not have a distinct diagonal line. Hence, registration in this case is validated by the

dispersion of intensity values in the joint histogram.
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Figure 3.3a shows the joint histogram before registration of the MR and CT

slices. Due to misalignment in the corresponding structures, there is a pronounced

dispersion of the intensity values. Figure 3.3b shows the joint histogram after the

registration process. Here, the joint histogram has less dispersed and more compressed

(or clustered) intensity values due to the successful overlap of similar regions (with

different intensities).

Figure 3.3 2D joint histogram of the CT-MR dataset (a) before registration and (b) after
registration.



CHAPTER 4

IMAGE SEGMENTATION

4.1 Introduction

Image segmentation is the process of separating regions of interest from an image. Once

separated, specific information about the segmented region is typically inferred or

compared with other regions. The medical image segmentation problem involves

separating or segmenting regions pertaining to a particular organ or tissue type. These

regions typically have homogenous intensity in the image [14]. Segmentation of medical

images can help facilitate the study of anatomical structures from a region for diagnosis

and treatment of a certain pathological condition in that region. A typical ewample is

segmentation of the pancreas from the abdomen for the diagnosis and treatment of

pancreatic cancer.

Image segmentation methods are specific to the requirements of the problem and

hence a wide variety of segmentation algorithms exist in literature [14].  The

segmentation algorithms can broadly be grouped as clustering-based methods [ 18-23],

histogram-based methods [ 14], region-growing methods [ 14], contour-based methods

[ 15, 16] and model-based segmentation methods [ 13]. The segmentation procedure

employed using one of these algorithms can either be automatic or interactive (semi-

automatic). In the case of automatic segmentation methods, an `atlas' image is supplied

to the algorithm. The algorithm then identifies the region that best matches with the atlas

image provided and segments the region accordingly. Semiautomatic methods require

36
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user inputs that specify the seed points in the regions of interest or trace out contours of

the regions to be segmented.

Clustering-based methods segment the regions of interest by clustering or

grouping the piwels (or vowels in the case of a 3D image) of homogenous intensity values.

The procedure does not use any image context-related details such as the shape and

relative position but relies on the intensity values only [15]. This makes the segmentation

by clustering a relatively simpler and a faster process. Also, this method can be employed

effectively for segmentation in all kinds of different medical images, as it depends only

on the pixel (or vowels) intensity values. Due to these characteristics of the clustering-

based segmentation methods, an interactive (semiautomatic) segmentation procedure

based on the clustering algorithm was developed in this thesis for segmenting the

pancreas.

A digital, 2D image is represented by individual picture elements or piwels, which

describe the brightness (or resolution) of the image. In general, information about any

digital image can be described by primary or first-order features i.e., piwel value

(brightness) and spatial location of the piwel, and by certain higher order features that

describe the relation of each piwel with its neighbors. These features can collectively be

represented by an `n' dimensional vector called the feature space. The segmentation

problem by clustering is thus to partition the feature space into different mutually

ewclusive and collectively ewhaustive regions [ 19].

In the methodology used in this thesis work, the feature space was assumed as the

vector that describes only the first-order features of the images i.e., the image intensity.

Thus, the matrix or the grid of piwels (voxels in the case of a 3D image) was initially
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converted into a 1 dimensional vector representing the image. The data values in this

vector were grouped or clustered iteratively by the k-means clustering algorithm [23].

The clustered vector was again converted back to a grid of piwels (or voxels) now

representing the clustered image, where each cluster represented a homogenous region of

the original image. Finally, using morphological operations, a contour was drawn around

the region of interest, based on its clustering, thus achieving segmentation.

4.2 Methods

Clustering is the unsupervised process of grouping almost similar data based on certain

criteria [30]. Fumerous clustering procedures ewist in literature for data classification.

The initial phase in any clustering process is feature selection / ewtraction which involves

identifying the seed points or the centroid points to initiate the clustering process. The

newt phase in the clustering procedure is determination of the proximity of individual data

in each of the clustered patterns by a suitable distance measure. A variety of such

distance measures exist and are used generally based on the definition and requirement of

the clustering problem. Ultimately, based on the similarity of data within each pattern the

clustering process is accomplished.

The clustering algorithms are broadly classified as Hierarchical cluMtering and

Partition cluMtering procedures [30]. Hierarchical clustering methods result in a nested

series of partitions based on a similarity criterion for splitting or merging clusters [30].

However, such methods are computationally cumbersome. Partition clustering methods

attempt to identify a partition by optimizing a clustering criterion function that can be

defined either locally or globally pertaining to the data to be clustered [30]. Partition
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clustering methods work effectively when the amount of data to be clustered is very

large. However these methods require the number of desired output clusters to be

necessarily specified. Majority of the clustering procedures used in image segmentation

fall under this category. The k-means algorithm is one such partition clustering

algorithm which is widely used in image segmentation. The basic details about the k-

means algorithm and its implementation in the present thesis for segmentation of

pancreas from the abdomen images are explained later in this section.

Once the image was clustered into various regions, segmentation was achieved by

automatically tracing the contour of the region of interest. In the present thesis, the cluster

corresponding to the pancreatic region was selected and a series of mathematical

morphological techniques were then employed to trace the contour of this pancreatic

region. The traced contour was then overlaid on the original image to show the pancreas,

thus segmenting it from the rest of the abdominal regions.

The means Clustering Algorithm

This algorithm was first proposed by Mcqueen [23] in the year 1963. The k-means

method is a statistical clustering procedure used to partition data into `k' different groups

or clusters, where `k' is a positive integer. Each cluster is formed by minimizing the sum

of squares of distances between individual data and the corresponding cluster centroid

[31]. The Euclidean distance is the most commonly used distance measure to compute the

variation of data within a cluster [19]. In the present thesis, the most basic k-means

algorithm based on the squared Euclidean distance measure was implemented to facilitate

image segmentation because of its simplicity and fast computing power.
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The k-means clustering algorithm involves three basic steps:

1) Determination of individual cluster centroids (or seed points).

2) Computation of the distance of each data point from the respective cluster
centroid.

3) Grouping data into respective clusters based on the minimum distance.

Initially, the `k' cluster centroids are chosen either randomly or by a statistical process

(eg: mean of a subset of data) to begin the data clustering. The numbers of cluster

centroids thus chosen represent the desired number of clusters. Each of the data samples

are then assigned to the respective cluster based on the minimum distance of the sample

from the cluster centroid, which is the basic clustering or grouping process. Once these

initial clusters are created, each cluster centroid is updated using all the data samples in

that respective cluster. This step minimizes the distance between the samples and the

centroid point in each individual cluster. The clustering process is repeated using the

newly computed centroid values. Once the new clusters are obtained, the distance

minimization by recomputing the centroid point is done again and the clustering process

is repeated. This iterative process is continued till a termination criterion is reached (or

till the algorithm has converged). The termination criterion or the convergence criterion

denotes the point where no members of a cluster can change on further clustering.

The k-means clustering algorithm can be more clearly illustrated by the flowchart shown

in Figure 4.1:
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Figure 4.1 The k-means clustering algorithm flowchart.

4.3 Implementation

The segmentation procedure consisted of a set of functions developed using MATLAB,

specifically for the segmentation of pancreas from abdominal images. These custom-

defined functions served as processing tools to cluster the image initially and then trace

out the contour of the pancreas. The functions were developed for both 2D and 3D

abdominal images obtained from MARI and CT imaging modalities. This segmentation
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procedure could also be used for simple clustering-based segmentation of any 2D and 3D

images in general.

There were six basic functions in the segmentation procedure to pre-process,

cluster, segment and display the segmented sections. The flow diagram shown in the

Figure 4.2 illustrates the sequence of steps implemented in the segmentation procedure to

achieve the desired image segmentation.

Figure 4.2 Flow diagram showing the sequence of steps used for image segmentation.
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The initial step of the procedure allowed the selection of a particular region of

interest to be segmented, using a windowing technique. Once the region of interest was

selected, a histogram equalization step was also performed to improve the image contrast.

This basically resulted in a more homogenous clustering and thus better segmentation.

A necessary input to the means clustering algorithm is the number of clusters or

groups the input data has to be divided into. In the present work, this was determined

based on the number of distinct unimodal distributions in the image histogram [15]. As

different organs in the abdomen have different and almost distinct intensity values, they

manifest themselves as unique unimodal distributions in the overall image histogram. The

number of clusters possible for any given image is thus equal to the number of distinct

bimodal distributions seen in the image histogram. This logic was implemented in the

present thesis along with an image smoothing step using a Gaussian filter. Smoothing

removes spatial noise and thus helps to show the bimodal distributions more clearly.

The number of possible clusters in the sectioned region of interest was thus inferred

interactively.

Based on the number of clusters decided, the 3D image was clustered using the k-

means algorithm. Initial selection of the centroid points or seed points was done by

performing a preliminary clustering phase on a random sub-sample of the vector

representing the image. The clustering function developed here used the built-in routine

for means clustering available in the MATLAB statistical toolbox.

The cluster representing the region of interest was then selected interactively, by

looking at the clustered output image and specifying the desired cluster number. A binary

mask was then created by performing an image dilation operation on the selected cluster
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and subtracting the dilated image from the original image. The subtracted result hence

contained only the image contours. This mask was superimposed on the actual image,

therefore highlighting its contours. Segmentation was thus achieved by tracing the

contour of the region of interest, by this binary mask. The segmented region of interest

can also be completely sectioned out from the original image by making minor

modifications in some of the functions developed. Such a kind of masking-based, contour

tracing segmentation procedure was developed in the present thesis basically to highlight

the abnormalities in the pancreas

All the functions that were developed for the segmentation procedure are listed in

Appendix C.

4.4 Testing and Results

The performance of the segmentation procedure was evaluated by testing it on different

datasets under different test conditions. Initially, the procedure was used to detect the

contour of the pancreas in MR and CT abdomen volumes using different number of

clusters. Gaussian white noise with zero mean and different values of variance was added

to the pancreatic image volumes and the procedure was used to segment the pancreas

from such noise-corrupted image volumes. In such cases however, a morphological

closing operation was performed after the clustering stage to generate a smoother closed

contour around the pancreas. Finally, a comparison of this method with manually traced

contours (of the pancreas) was done without and with the presence of a similar gaussian

noise.
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Figure 4.3 shows the results of segmenting the pancreas from the MR abdominal

volume. A representative slice of pancreas is shown in the Figure. The approximate area

in the abdominal region containing the pancreas was chosen by the windowing technique,

prior to the clustering process. The number of clusters in the image was chosen as two

based on the image histogram of this selected region. Figure 4.3a shows the contour

traced region in the actual image and Figure 4.3b shows an enlarged view of the selected

pancreatic section after its contour was traced.

Figure 4.3 An axial MR slice of the abdomen. (a) Pancreas segmented using 2 clusters,
(b) Enlarged view of the segmented pancreas.

Figure 4.4a and 4.4b show the result of segmenting the pancreas from the

abdominal CT image volumes. Here again, only the results in one representative slice of

the pancreas is shown. The number of clusters chosen here was also two, based on the

image histogram of the selected region obtained. It can be observed in Figure 4.4a that

due to very little variation in intensities of the pancreatic regions and its neighboring
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structures, the contours of the regions bordering the pancreas were also detected in

addition to the contour of the pancreas.

Figure 4.4 An axial CT slice of the abdomen, (a) Pancreas segmented using 2 clusters.
(b) Enlarged view of the segmented pancreas.

Figures 4.5 and 4.6 show results of segmenting the pancreas from the MR and CT

image volumes after gaussian white noise (with mean = 0 and variance = 0.001) was

added to the images. The pancreas segmented from the noisy images was compared with

that obtained from the actual images and the variation between the two clusters

containing the pancreas was calculated. This gave an objective criterion about the

performance of the segmentation algorithm in the presence of noise. For the noisy MR

image shown in Figure 4.5a, the percentage non-overlap of pixels between the pancreas

segmented before and after addition of noise respectively was 0.01. For the noisy CT

image shown in Figure 4.6a, the percentage non-overlap of pixels between the pancreas
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segmented before and after addition of noise respectively was 0.089. Thus, the

segmentation had little statistical difference in the variation between clusters before and

after the addition of noise. Further, the performance of the procedure was better in noise-

corrupted MR images compared to the noise-corrupted CT images, due to the greater

sensitivity of MARI to the various tissue types.
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An increase in the noise variance added to the image results in an increase in the

dispersion of the histogram of the image. In other words, more noise variance would

mean more variance of the image intensity values from the average value. The effect of

noise variance on the segmentation process is illustrated in Figure 4.3. The percentage of

non-overlapping pixels between the pancreas segmented from the actual image and the
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pancreas segmented from the noise-corrupted image was determined for various intensity

levels of noise added to the images. The results showed that the percentage non-overlap

increased with increase in the noise variance. It is evident from Figure 4.3 that this

increase was more pronounced in the CT images compared to the MR images.

Figures 4.8 and 4.9 show the comparison between a manually traced contour and

the contour as detected by the segmentation procedure. Even though the manual tracing

method is not an efficient technique, it gives an approximate idea of the effectiveness of

the segmentation procedure for detecting the pancreas. Figure 4.8a and 4.8c show the

manually traced contour and the contour as detected by the segmentation procedure for

an MR image respectively. Figure 4.8b and 4.8d show the enlarged version of the results
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obtained in 4.8a and 4.8c respectively. Figure 4.9a and 4.9c show the same results for a

CT image with the enlarged version being represented by Figures 4.9b and 4.9d. It can be

visually perceived that both the segmented regions are almost alike except for some

background noise pixels in the results obtained by the segmentation procedure.

Figure 4.8 Axial MR slice (a) Pancreas contour traced out by hand, (b) Enlarged view,
(c) Pancreas contour traced out by the segmentation procedure, (d) Enlarged view.



Figure 4.9 Axial CT slice (a) Pancreas contour traced out by hand, (b) Enlarged view,
(c) Pancreas contour traced out by the segmentation procedure, (d) Enlarged view.

Table 4.1 lists the average percentage overlap (obtained by measuring the number

of overlapping pixels) between the manually-traced pancreas contour and the pancreas

contour as detected by the segmentation procedure, for the different MR datasets. The

overlap between the manually—traced contour and the contour detected by the
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segmentation procedure was determined for three different trials per datasets. Based on

these values the average percentage overlap (mean ± standard deviation) was found.

A comparison was also made between the manually-traced contour and a contour

generated by the segmentation procedure for the image corrupted with a zero-mean

gaussian random noise of variance 0.01. In the case of noisy datasets, 100 trials were

performed where in each trial a different gaussian random noise distribution (having

mean = 0 and variance = 0.01) was added to the image. For each case, the pancreas

contour was detected using the segmentation method and was compared with a manually-

traced contour as obtained from the image before noise was added to it. The mean ±

standard deviation value of the average percentage overlap in all the five MR datasets

before addition of noise was 98.23 ±0.089 and after addition of noise was 93.95 ±0.002.

Similar comparisons were also done for the CT images. Table 4.2 shows the results for

CT datasets. The mean ± standard deviation value of the average percentage overlap in

all the five CT datasets before addition of noise was 98.30 ±0.082 and after addition of

noise was 93.39 ±0.002. These values show that the method is less sensitive to lows-

valiance noise, statistically.

Table 4.1 Average Percentage of Overlapping Regions for Hand-drawn Contour and
Contour Generated by the Segmentation Procedure for an MR Image Volume
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Table 4.2 Average Percentage of Overlapping Regions for Hand-drawn Contour and
Contour Generated by the Segmentation Procedure for a CT Image Volume

Figures 4.10 and 4.11 shown below illustrate the noise sensitivity of the

segmentation procedure, by measuring the percentage of overlap between the manually

traced contour and the generated contour. It can also be inferred from the Figures that the

noise sensitivity of the segmentation procedure is more pronounced in CT image volumes

than in MR image volumes (by comparing the difference in the bars for each dataset in

Figure 4.10 and 4.11 respectively).

Figure 4.10 Bar chart showing the percentage of overlap between manually drawn and
hand traced contours, before and after noise addition for MR image volumes.
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Figure 4.11 Bar chart showing the percentage of overlap between manually drawn and
hand traced contours, before and after noise addition for CT image volumes.

4.5 Detection of Pancreatic Cancer

Cancer in the pancreas is characterized by an abnormal size increase due to the presence

of malicious tissue or tumors in the different pancreatic regions [24, 26]. Further, it has

also been observed that these tumors are clustered together in particular sections of the

pancreas (for eg: the head of the pancreas). Initial onset of pancreatic cancer is

characterized by the manifestation of the cancer causing tumors in the various sections of

the pancreatic mass. These tumors increase in size gradually thus also increasing the size

of the pancreas, ultimately resulting in obstruction of the organs neighboring the

pancreas.
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Integration of information from MR and CT pancreatic volumes would help

greatly to define the exact region and size of the pancreas in the abdomen. This would

help determine any abnormal size increase in the pancreatic mass. Such integration can

be done by simply aligning the images using the automatic registration algorithm

developed in the present thesis. Once the information is integrated, the clustering based

segmentation procedure can be used to cluster the pancreatic region and thus detect any

malicious tissue (having intensity different than that of the pancreatic mass) within the

pancreas. As the cancer causing tumors appear clustered in different sections of the

pancreas, they can be easily detected by the segmentation procedure.

This was demonstrated using a test dataset on which the pancreas cancer tumor

was simulated. This test dataset was obtained by combining the intensity information

from a CT image volume and an MR image volume of the same abdominal region of a

patient. Initially, these volumes were registered or aligned using the registration

algorithm developed in this thesis. The aligned images were then added together to yield

the integrated test dataset. The canceraceous tissue was then simulated as hyper-intensity

vowels in the head of the pancreas. The tumor has a higher intensity value compared to

the surrobding tissues and is clustered in the region. Practically, CT imaging of the

abdomen using intravenous contrast agents might show such hyper-intensity tumors in

the pancreas. However, sometimes the pancreatic mass itself might have high intensity

values thus making the visual perception of the tumor difficult. In such cases, clustering

would help detect the tumors. In the present thesis, the clustering-based segmentation

procedure was used on this test dataset to trace out the pancreas as well as the simulated

tissue within the head of the pancreas.
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Figure 4.12 shows the integrated test image with a simulated tumor in the head

region of the pancreas. Figure 4.13 shows the intensity distribution or the histogram of

the entire pancreatic region. It is evident from Figure 4.13 that a bimodal distribution is

obtained. The first distribution in the lower intensity range corresponds to the normal

pancreatic mass and the second distribution in the higher intensity range corresponds to

the canceraceous tumor.

Figure 4.12 Cancer tumor simulated in the head of the pancreas, in a CT-MR integrated
test image.

Figure 4.13 Histogram of the pancreatic region with a simulated tumor in the head of the
pancreas.
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Figure 4.14a and 4.14b show the results of the tumor as detected by the

segmentation procedure. In Figure 4.14b, the pancreas contour was also traced and this

image was overlaid on the tumor contour traced image (4.14a) to achieve the end result.

Figure 4.14 Simulated tumor in the pancreas head as detected by the segmentation
procedure.



CHAPTER 5

DISCUSSION AND CONCLUSIONS

Due to the low survival rate (< 5%) and high mortality rates caused by pancreas cancer in

the recent years, an effective diagnostic tool for early detection of the cancer becomes

imperative. Improvements in medical imaging technologies have resulted in well-defined

images of the abdomen, showing intricate details of its internal organs. Due to patient

breathing and its proximity to the lungs, the relative location of the pancreas changes

significantly with the respiration cycle. A comparison of the progression of the cancer or

treatment evaluation requires precise localization of the pancreas. Within subject

registration is imperative for comparison of the pancreas for both between-session and

between-session analyses. Once the motion artifacts are corrected, the pancreatic region

can be segmented and analyzed for cancer progression or treatment evaluation in an

automatic fashion.

Also, different imaging modalities highlight different complimentary features in

the radiological images obtained. For example, MR images of the abdomen are sensitive

to fat and the various tissues of the intra-abdominal organs and hence the MR images can

distinguish the pancreas with its neighboring regions effectively. CT images however,

show intricate details about the pancreatic mass, but in most of the images there is no

significant intensity difference between the pancreas and its neighboring organs. Hence,

if the information from both these modalities can be integrated, a more information can

be obtained that will facilitate detailed analysis of the pancreas.
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An intensity based registration algorithm was developed in the present thesis for

the exact localization of the pancreas and for also aligning two inter-modality images and

thus obtain the required information from the aligned image. The registration algorithm

was automatic and required only initial inputs. Once registered or aligned, the analysis of

the pancreas was done by a clustering-based segmentation procedure. The segmentation

procedure initially clustered the image and generated a contour around the region of

interest (pancreatic region), thus segmenting it.

The registration and segmentation based processing method developed in the

present thesis for the detection of pancreatic cancer is novel due to a number of factors.

Currently only a few registration and segmentation procedures exist independently for 3D

abdominal images, and as a consequence an effective integrated procedure for pancreas

cancer screening and evaluation is lacking. The methodology developed here is one such

integrated procedure for detection of pancreatic cancer. The algorithm can also accobt

for shear and scaling in addition to translation and rotation (valid only for rigid body).

The major advantage of the mutual information (MI) based automatic registration

method is that the ΜΙ is a statistical measure. Also, the ΜΙΑ value depends only on the

relative occurrence of similar intensity voxels. The marginal entropy used in computation

of mutual information avoids the error due to the image background overlap, which

occurs frequently while computing the joint entropy. Hence mutual information is more

accurate than joint entropy or cross-correlation measures, which were used popularly in

the past for intensity-based automatic registration algorithms [13].
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The segmentation methodology presented also has numerous advantages. As the

method solely depends on the image intensity values only, no sort of special data markers

and other data manipulation techniques are necessary. The registration algorithm is

dependent on the vowel intensity values in the corresponding sections of the images. The

clustering based segmentation process also depends on the first-order features represented

by the vowel intensity values and hence obviates the necessity of an image atlas or

reference for sectioning out the region of interest. These factors contribute towards the

simplicity of the algorithm.

The segmentation procedure generates a machine-drawn contour for desired

regions of interest based on their intensity distribution. Such a procedure also reduces the

time and labor to manually trace out contours from desired regions of interest, for

analysis. Segmentation by clustering is less complex than vector-based methods [ 15-13]

that also segment the images by tracing out the contours of the region of interest. Some of

the popularly used vector-based methods for image segmentation can only detect specific

contours and hence might not result in closed contours always [15, 16].

The overall algorithm is easy to implement (using MATLAB) in a commonly

used image processing software and also easy to use. The methodology presented also

enables users with minimal technical knowledge to use the algorithms efficiently.

The method developed has a few limitations also. The sub-vowel shifts in images

were not considered while performing the registration procedure. Such sub-voxel shifts

occurring in the images were rounded off to the nearest integer number during the

registration process. As a consequence, sub-voxel registration cannot be performed. The

sensitivity of the registration algorithm might also be affected to some extent due to the
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image interpolation done in such cases. Also, the registration algorithm developed in the

present work considers only the effect of an affirm scaling and shearing on the images.

Elastic deformations that have a minor effect on the images obtained were not considered

in the present thesis.

Effective results were obtained in the present thesis using MR and CT images of

the abdomen only. Ιt is possible that the performance of the algorithm, when images from

other modalities (PET for example) are used, may not be as reliable as the results

obtained in the present case. Other pre-processing or special processing methodologies

might have to be incorporated in the basic algorithm for obtaining satisfactory results in

such cases. Also, more detailed studies on the effect of different types of noise on the

images have to be done to further validate the efficiency of the algorithm.

A major application of the developed methodology would be in the screening and

detection of pancreas cancer in its initial stages. Present methods for pancreas cancer

detection have the ability to detect the cancer only beyond a certain stage when the

lesions cannot be resected effectively. This is because of the progression of the cancer to

the neighboring organs. Early detection of the cancer tissues would thus help to a great

extent to surgical remove the lesions without causing any damage to the neighboring

organs.

The methodology can also be used to study the effect of a drug on the cancer

causing tissues, in the pancreas. This can be facilitated by tracking the progress of the

cancer over a period of time, when the drug is being administered. Presurgical and post-

surgical comparisons can also be done, in a similar manner. Such studies on cancer
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progression in general, can be used for more effective research and development of

therapeutic and curative procedures for pancreatic cancer.

The methodology developed can also be used for the analysis of other intra-

abdominal organs, apart from the pancreatic region. This would help greatly in the

screening of multiple organs in the abdomen for pathological conditions.

The overall methodology developed in the present work is thus an initial step for

future developments in image processing methods for efficient prognosis and treatment

of pancreatic cancer. The proposed method can be improved further by making it fully

automatic and by including recent image processing techniques that can perform a more

detailed analysis of the region of interest. With ravod developments in technology and

image processing techniques, the future scope of such a method seems promising.



APPENDIX A

PRE-PROCESSING ALGORITHMS

The program codes listed in this appendix were used for the pre-processing of the raw

MR and CT data.
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APPENDIX B

REGISTRATION ALGORITHMS

The program codes listed in this appendix were used for the registration of inter-modality

(CT with CT or MR with MR) and inter-modality images (CT with MR) of the abdomen.
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%This function resides the slice thickness of a given target image %w.rt a given reference image.
target = siiceresizer(targtimg,tsmm); %Converts fgt to 1 mm thick slices
[r1 c1 h1] = size(targt2);fac1 = mod(h1,rsmm);
%Alf no of stray slices is greater than half the individual slice width %then extrapolate last slice to
create a net slice of thickness = rsmm.
%lf not just discard the stray slices
if fad >= rοund(rsmm/2)
for lip = 1:(rsmm-fact )
targt2(:,:,h1+ΙΙρ) = targt2(:,:,h1);
end
end
hhl = size(targt2,3);fac2 = mod(hhl ,tsmm);
resizes = hh1-fac2;new_img = zeros(r1,c1,(arrsize/rsmm));
count=l;
for kk = l:rsmm:arrsize
temp = target(: , : ,kk : (rsmm *count)) ;
new_img(:,:,count) = sum(ttemρ,3); %Leaves out the last few slices
count = count+l ;
end

function [new_img2] = sliceresizer4(targtimg,tsmm,reffimg,rsmm)
%tsmm -> Thickness of each individual slice in image, in mm
%targeting -> The image with slices having thickness = tsmm
%tsmm -> Thickness of each individual slice in targeting, in mm
%output imgl -> Resided output image, leaving out the 'stray slices in
%the last portion of the target image volume

%This function resides the slice thickness of a given target image %w.rt a given reference image.
new_img = sliceresizer3(targtimg,tsmm,rsmm);
%Making equal number of slices
zeel = size(new_img2,3);zee2 = size(reffimg,3);
if zee 1 == zee2
new_img2 = new_img;
else if zeel > zee2
new_img2 = new_img2(:,:,1:zee2);
else
new_img2 = new_img;
for lip = l:(zee2-zee1 )
targt2(:,:,zeel +ΙΙρ) = targt2(:,:,zee1);
end
end



APPENDIX C

SEGMENTATION ALGORITHMS

The program codes listed in this appendix were used to facilitate the clustering-based

segmentation process. Each of these functions was used in the same order as listed below

to perform the segmentation of the pancreas from the abdominal images (MR and CT).
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 co di splay the final segmented  result
if margin < 6
error ( 'Missing arguments in funct i on' ) ;
end
z = size(img,3); ref22 = double(img);
tan = ones(sizee(ref21));
tarΙ(γΙ:γ2,ΧΙ:Χ2,Ι:Ζ) = mssk; ‚Creates the 'bigger' version of the maskhaving

 same size as that of the .ι mage
ref22 = ref2Ι./(maχ(ref2Ι(:))); ‚Normalized version of input Ιmάe
tar22 = ref22.*tarl ;

dimg2 = ref22 (γΙ:γ2,ΧΙ:Χ2, Ι:Ζ) ;
tar2 = dimg2.*mssk; ‚Superimposing the mask on the imaqes
tar = tar22;
ncοmmenc the following line if mask borders are neecie cif no be white

I ιrιsteaαot black.. helps clear visualization in low contrast images
ar3 maser narl,reL2.2) ;

rrimg = tar;
for lip = size(img,3);
figure;
imshow(rrimg(:,: ,alp) , []);
end
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