
 
Copyright Warning & Restrictions 

 
 

The copyright law of the United States (Title 17, United 
States Code) governs the making of photocopies or other 

reproductions of copyrighted material. 
 

Under certain conditions specified in the law, libraries and 
archives are authorized to furnish a photocopy or other 

reproduction. One of these specified conditions is that the 
photocopy or reproduction is not to be “used for any 

purpose other than private study, scholarship, or research.” 
If a, user makes a request for, or later uses, a photocopy or 
reproduction for purposes in excess of “fair use” that user 

may be liable for copyright infringement, 
 

This institution reserves the right to refuse to accept a 
copying order if, in its judgment, fulfillment of the order 

would involve violation of copyright law. 
 

Please Note:  The author retains the copyright while the 
New Jersey Institute of Technology reserves the right to 

distribute this thesis or dissertation 
 
 

Printing note: If you do not wish to print this page, then select  
“Pages from: first page # to: last page #”  on the print dialog screen 

 



The Van Houten library has removed some of
the personal information and all signatures from
the approval page and biographical sketches of
theses and dissertations in order to protect the
identity of NJIT graduates and faculty.



ABSTRACT

SOME CONTRIBUTIONS ON MIMEO RADAR

by
Nikolaus Lehmann

Motivated by recent advances in Multiple Input Multiple Output (ΜΙΜΟ) wireless

communications, this dissertation aims at exploring the potential of ΜΙΜΟ approaches

in the radar context. In communications, ΜΙΜΟ systems combat the fading effects of the

multi-path channel with spatial diversity. Further, the scattering environment can be used

by such systems to achieve spatial multiplexing. In radar, a complex target consisting

of several scatterers takes the place of the multi-path channel of the communication

problem. A target's radar cross section (RCS), which determines the amount of returned

power, greatly varies with the considered aspect. Those variations significantly impair

the detection and estimation performance of conventional radar employing closely spaced

arrays on transmit and receive sides. In contrast, by widely separating the transmit and

receive elements, ΜΙΜΟ radar systems observe a target simultaneously from different

aspects resulting in spatial diversity. This diversity overcomes the fluctuations in received

power. Similar to the multiplexing gain in communications, the simultaneous observation

of a target from several perspectives enables resolving its features with an accuracy beyond

the one supported by the bandwidth. The dissertation studies the ΜΙΜΟ concept in radar

in the following manner. First, angle of arrival estimation is explored for a system applying

transmit diversity on the transmit side. Due to the target's RCS fluctuations, the notion

of ergodic and outage Cramer Rao bounds is introduced. Both bounds are compared

with simulation results revealing the diversity potentials of ΜΙΜΟ radar. Afterwards, the

detection of targets in white Gaussian noise is discussed including geometric considerations

due to the wide separation between the system elements. The detection performance of

ΜΙΜΟ radar is then compared to the one achieved by conventional phased array radar

systems. The discussion is extended to include returns from homogeneous clutter. A



Doppler processing based moving target detector for ΜΙΜΟ radar is developed in this

context. Based on this detector, the moving target detection capabilities of ΜΙΜΟ radar

are evaluated and compared to the ones of phased array and multi-static radar systems. It

is shown, that ΜΙΜΟ radar is capable of reliably detecting targets moving in an arbitrary

direction. The advantage of using several transmitters is illustrated and the constant false

alarm rate (AFAR) property of adaptive ΜΙΜΟ moving target detectors is demonstrated.

Finally, the high resolution capabilities of ΜΙΜΟ radar are explored. As noted above, the

several individual scatterers constituting a target result in its fluctuating RCS. The high

resolution mode is aimed at resolving those scatterers. With Cramer Rao bounds and

simulation results, it is explored how observing a single isotropic scatterer from several

aspects enhances the accuracy of estimating the location of this scatterer. In this context a

new, two-dimensional ambiguity function is introduced. This ambiguity function is used to

illustrate that several scatterers can be resolved within a conventional resolution cell defined

by the bandwidth. The effect of different system parameters on this ambiguity function is

discussed.
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CHAPTER 1

INTRODUCTION

The introduction of the Multiple Input Multiple Output (ΜΙΜΟ) concept revolutionized

wireless communications over the last decade, [1, 2]. ΜΙΜΟ communication systems

overcome the effect of fading in the wireless channel by transmitting redundant streams of

data from several decelerated transmitters and or employing several receive elements [3].

For independent fading paths, the receiver of a ΜΙΜΟ system enjoys the fact that the

average (over all information streams) signal to noise ratio (SNR) is more or less constant,

as the number of paths increases, whereas in conventional systems, which transmit and

receive all signals over a single path, the received SNR varies considerably. Commonly

this is referred to as diversity gain.

Further, the rich scattering environment can be used by such systems to achieve to

transmit information via orthogonal paths. This is equivalent to additional bandwidth and

referred to as multiplexing gain. In [4] a concise, but extensive treatment is given to both

kind of gains.

The success of the ΜΙΜΟ concept in communications partly served as motivation to

apply this concept to the radar problem. In radar, the complex targets consisting of several

scatterers take the place of the multi-path channel. A target's radar cross section (RCS),

which determines the amount of returned power, greatly varies with the considered aspect,

[5]. Both experimental measurements and modeling results demonstrate that variations in

reflected power of 20 dB or more can occur by changing the target aspect by as little as one

milliradian. Those variations significantly impair the detection and estimation performance

of conventional radar. The similarity between these RCS variations and what is commonly

called the fading channel in communications is obvious.

1
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Figure 1.1 shows a typical monostatic RCS of a radar target in dependency of the

target aspect. The returned power has been normalized to a unit mean. In [6] it is shown

that already five equal gain scatterers constituting a target lead to a Rayleigh fading effect

due to their different positions.

Figure 1.1 Reflected power in dB at Θ = Ο when illuminating from different angles.

In this dissertation spatial ΜΙΜΟ radar systems are considered. Such radar systems

observe a target simultaneously from different uncorrected aspects resulting in spatial

diversity. This diversity overcomes the fluctuations in received power. The first studies

discussing spatial ΜΙΜΟ radar were published by Fisher et al. [7, 8], and served as

a starting point of the here presented work. In [8], the improvements in detection

performance, which ΜΙΜΟ radar can achieve with spatial diversity, for targets in white

Gaussian noise are discussed. In [7], the improvements in angle of arrival estimation are

explored. Chapters 2 and 3 are extensions of these two publications. It should be noted,

that this dissertation discusses only spatial diversity. Time and frequency diversity can be

and are also used in radar. For example, target models according to the Sterling cases 2

and 4 inherently contain a time diversity component, [5].
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It should be mentioned that the acronym ΜΙΜΟ has been used in the radar context in

a different way, too, e.g. [9, 10]. The systems discussed generally in those publications

consist of closely spaced elements, which therefore, do not capitalize on the spatial

diversity. Rather, spatial filtering is achieved simicr to regucr beamforming.

As noted above, as long as the details of the target should not be resolved

MIMO-radar relies for detection and estimation on coherently processing. In contrast

phased array radars, which use arrays consisting of closely spaced elements on transmit and

receive side, can process the signal coherently in such endeavor, but do not enjoy diversity.

Particucrly, in Chapter 3 and 4, it is shown that in several situations the gains achieved with

diversity outweigh the drawbacks of coherently processing. Thus, a question analyzed

in this dissertation is, whether one should pcce all transmit and receive elements in a

small array to employ beamforming and exploit the coherent processing gain or eventually

distribute those elements in space to achieve diversity.

Chapter 2 discusses transmit diversity in the context of direction finding in radar.

Ergodic and outage Cramer Rao bounds for the best possible accuracy of angle of arrival

estimations are introduced. Furthermore, the effect of corrections between the target's

returns in different diversity branches are explored with simuction results. It is noted that

the in [11]  introduced outage Cramer Rao bound is used by Li et al. in [ 12], too.

Chapter 3 extends the studies presented in [7] considering diversity on transmit

and receive side to models that include eventual different path losses across the diversity

branches due to the widely separated system elements. Further, correlations between the

target aspects are considered, too. Furthermore, a trade off between the extends of diversity

gain and coherent processing gain are desirable is developed.

Chapter 4 is extending the spatial diversity considerations to include moving targets

and clutter returns. Particucrly, this chapter shows, that, as the Doppler introduced by the

target's movement is crucial for distinguishing between target and clutter, a target moving

with an arbitrary direction may already due to its eventual low radial velocity appear as a
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fading target even without RCS fluctuations. The impairment imposed by this effect can

also be overcome with spatial diversity.

In [ 13], it is argued that multistatic radar systems are capable of circumventing

this obstacle, as they observe a target from different aspects and the target cannot have

vanishing velocity components towards all of these aspects. However, in [13] no definite

results are provided. In general, ΜΙΜΟ radar can be viewed a generalization of multistatic

radar setups. However, multistatic systems, which are commonly treated as a network

of radar systems, [ 14], do normally some local processing at each receive station before

the central station yields the final decision or estimation. In contrast, in ΜΙΜΟ radar all

signals are processed jointly in one central entity. In Chapter 4, the difference between

this two approaches is discussed and evaluated for the moving target scenario. It is shown

that ΜΙΜΟ systems outperform the multistatic ones because of information losses in the

distributed processing. The fusion of locally pre-processed data in multistatic systems is

commonly done to limit the amount of data transmitted from the individual stations to the

central one. Given the advances in wired and wireless communications over the cst two

decades, one may argue that it is time to drop the data link constraint for an application as

crucial as radar.

For completeness, a brief overview over multistatic radar and sonar publications is

provided here. Transmit diversity for multistatic sonar is, for example, analyzed in [15].

But the diversity is discussed with respect to different types of background noise and

different propagation paths and not with respect to target aspects. Using several separated

transmitters in a multistate radar is proposed in e.g. [16].  However, the motivation to

distribute the illumination sources is to hide them rather than achieve diversity. Another

motivation for multistatic radars found in the literature is the rejection of false targets

due to reflections of a real target on some clutter, e.g. [17]. An extensive treatment of

multistatic systems can be found in [13].
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In Chapter 4, the statistics of the clutter returns are initially assumed to be known

for simplicity. However, towards the end of the chapter an adaptive ΜΙΜΟ moving target

detector is introduced and its constant false acrm rate (AFAR) features are illustrated.

A difference between communications and radar should be brought to the reader's

attention here. In communications the channel is assumed to be known or sufficiently

estimated. Further, commonly the phase and frequency offsets are assumed to be limited.

Therefore, diversity in ΜΙΜΟ communications is mainly discussed for coherent systems.

In contrast, in radar the target, which is to be detected or parameters of which have to

be estimated, is the main part of the channel. Accordingly, detection and target location

estimation is done non-coherently. Chapter 3 is discussing the drawbacks of this kind of

processing.

In Chapter 5, coherent processing is introduced for resolving the dominant scatterers

contributing to a target's return or several closely spaced targets. The capability of a radar

system to resolve scatterers is normally determined by the used bandwidth. In Chapter

5, it is argued that with coherent spatial processing this limitations can be overcome.

This represents a simicrity to the multiplexing capabilities enjoyed by ΜΙΜΟ systems in

communications. The high resolution abilities of coherent ΜΙΜΟ radar are explored with

a 2-dimensional ambiguity function and Cramer Rao bounds for the location estimation

accuracy possible for a single isotropic reflector. The importance of the employed signal

bandwidth for limiting possible ambiguities in the location estimates is analyzed for

random sensor locations.



CHAPTER 2

TRANSMIT DIVERSITY IN MIMO-RADAR DIRECTION FINDING

This chapter explores the diversity gain which can be achieved with diversity on the

transmit side for angle of arrival (AOA) estimation. For simplicity, target range and velocity

and focus are ignored. The advantages of MIMEO radar are demonstrated by comparing

the possible and achieved precision of direction finding approaches. For the purpose of

this analysis, the problem of estimating the AOA of a single target illuminated by one or

several sources is considered. This may be viewed as an extension of the ccssical active

direction finding (DF) problem in radar or sonar, [18, 19] . For direction finding, an array

of closely spaced antennas is employed at the receive side to enable unambiguous angle

estimation, [20, 21, 22].

2.1 ΜΙΜΟ Radar Signal Model

In this section, a general signal model for the MIMEO radar is described. The model

focuses on the effect of the target spatial properties ignoring range and Doppler effects.

The signal model separates the target's effect from the effects of the antenna cyouts and of

the propagation between transmitters and target and between target and receivers. By doing

so, it provides insight into the principles of MIMEO radar. Especially, the model reflects how

the target properties, its size etc., contribute to the dependency of the RCS on the aspect.

This allows to derive a condition for the separation among the MIMEO antennas necessary

to achieve independent fading across the different target aspects.

2.1.1 General Signal Model

Not surprisingly, the radar MIMEO signal and channel models are rected to MIMEO channel

models for communications, for example [23]. The signal model developed here is

6
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sufficiently general that it can be used to describe both, conventional radar systems and

ΜΙΜΟ radar systems. In this chapter, a ΜΙΜΟ radar system with two uniform linear arrays

of M antennas at the transmitter and N antennas at the receiver is assumed. The transmitter

and the receiver arrays are not necessarily collocated (bistatic radar). Further, a far field

complex target consisting of many, Q, independent scatterers is assumed. The target is

illuminated by narrowband signals, whose amplitudes do not change appreciably across

the target. This means roughly a bandwidth smaller than c/a, where c is the speed of light

and a is the target length. Each scatterer is assumed to have isotropic reflectivity modeled

by zero-mean, unit-variance per dimension, independent and identically distributed (i.i.d.)

Gaussian complex random variables ζακ. The target is then modeled by the diagonal matrix

where the normalization factor makes the target average RCS Ε[trace(ΣΣΗ)] = 1

independent of the number of scatterers in the model s . If the RCS fluctuations are

fixed during an antenna scan, but vary independently from scan to scan, the target model

represents a ccssical Sterling case 1, which represents a target in slow motion, [5].

For simplicity, it is assumed in this chapter that the target scatterers are cid out as a

linear array, and that this array and the arrays at the transmitter and receiver are parallel.

Figure 2.1 illustrates the model.

The signals radiated by the M transmit antennas impinge on the Q scatterers at angles

(measured with respect to the normal to the

arrays). Assuming that the length of the target array is small compared to the distance, the

signal transmitted by the m-th transmit antenna arrives as a planewave at the target. Thus,



where Δα is the spacing between the first and (q±l )-th scatterer, λ is the carrier wavelength,

and the superscript T denotes vector/matrix transposition. Further it is assumed in this

chapter, that the target scatterers are uniformly spaced, i.e., Δα = q . ΔI Therefore, the

vector g»- describes the different phase-shifted versions of the signal transmitted by the

m-th transmitter arriving at the different scatterers.

The signals are reflected by the target scatterers towards the receiver array elements

Assuming that both the sizes of the

target and the receiver arrays are small compared to the distance between them, it is found

that 8n,q = ΘI The signals reflected by the scatterers have in the far field, rective phase



Α planewave signal arriving at the array at the angle Θ excites the elements of the array with

phase shifts liven by the vector α(Θ),

where Br denotes the inter element spacing at the receiver. In this chapter, a spacing of

dr = λ/2 is assumed to enable unambiguous direction finding.

With the vectors and the target matrix defined above, the received signals originating

from the m-th transmitter and reflected by the target can be expressed as

The terms dm are complex variables representing the phase shifts between the signals

coming from different transmitters due to the different propagation decys. Without loss

of generality, these phase shifts can be embedded in g, m. The complex scalar Am  represents

the component of the sampled receive filter output due to the waveform transmitted by the

m-th transmitter. Organizing those scacrs in the vector s = [so , ... , sι ]T , the received

signal can be described as

The vector r = [τ 1i ... , rN_ 1 ]T contains the sampled output of the filters at the N receiver

elements, v represents the additive Gaussian noise terms at the receivers after the receive

filters. The noise components among the receive elements are assumed i.i.d. .



1 0

Further, the matrix K = a(θ)kΤ (θ) represents the propagation paths from the

scatterers to the receivers, and the matrix G = [g o , ... , gM_ ι ] the ones from the

transmitters to the individual target scatterers. The N x Μ matrix H incorporates the

paths from all transmitters to all receivers. The effect of the vector k(θ) is to combine

the signals coming from the individual scatterers in the far field. As it is assumed that Σ

consists of complex-valued random scatterers, the effect of k(Θ) can be embedded in Σ and

k(Θ) can be replaced with 1 q = [1,... ,1] T , without loss of generality.

To achieve spatial diversity, it is required that different transmit antennas see

uncollected aspects of the target. To analyze the condition under which this is the case,

the received signal components due to the m-th transmitter are considered again:

Here, the target fading effect is summarized in the fading coefficient am given by am =

The factor is introduced here so that the am 2 random variables have a χ2
distribution, which will ease later considerations. The previously mentioned recollected

target aspects result in uncorrelated fading coefficients. As the fading coefficients are

modeled as zero mean and independent, it is found Ε{οιπ* amyl} = 0, which leads to

Thus, the fading constants for the different transmitters are recollected if the columns of

G are orthogonal:
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For small angles Am  and Aπt+ι expressed in radians, the difference of the sine terms in (2.9)

can be approximated with

where Btu is the inter-element spacing at the transmitter and R is the distance between the

target and the transmitter. Using this in (2.9) leads to

Thus, orthogonality is achieved when the angles complete one turn in the complex plane:

the orthogonality condition (2.11) is approximately met. Α similar argument is made

in [23]. This condition obtained solely from geometric considerations has an appealing

intuitive physical interpretation. The beamwidth of the energy backscattered from the target

towards the transmitter is approximately given by c/a, where a = Q • Δ is the target

size. The target presents different aspects to adjacent transmit antennas if the inter-element

spacing at the transmitter is greater than the target beamwidth coverage at distance R,

namely

which turns out to be the same as (2.13). It is noted, that the here presented target model

is rather simple. However, its main purpose is to derive a condition for independent

fading coefficients over the target. In [8] a more sophisticated model with a continuous
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2-dimensional scatterer distribution is discussed, which results in the same condition,

(2.14). In contrast to [8], in this and the next chapter the effect of collelated fading

coefficients and target aspects are discussed, too.

2.1.2 Classification of Different Radar Systems within the General Model

ΜΙΜΟ radar systems can be classified within the above described general model into three

different groups:

• Conventional radar array modeled with an array at the receiver and a single antenna
or an array at the transmitter. The array elements are spaced at half-wavelengths to
enable beamforming and DF.

• ΜΙΜΟ radar for DF. Transmit antenna elements are widely spaced to support spatial
diversity with respect to the aspects of the target. The receiver array performs DF.

• ΜΙΜΟ radar with widely separated antennas at both the transmitter and the receiver.

This chapter discusses the first two signal models, whereas the third one is discussed

in is introduced in the next chapter.

Conventional Radar Array Conventional radar arrays are systems, in which the

elements of the transmitting and receiving arrays are closely spaced. At the transmitter, that

means that the inter-element spacing does not meet (2.13) or, equivalently, that multiple

elements are contained within one target beamwidth. At the receiver, the spacing is

r < c/2 to enable unambiguous estimation of the angle of arrival.

The target bearings with respect to the transmit and receive arrays are ψ and 8,

respectively. The term m in (2.5) is given by m = 6 -2πsίηφ mdt/R As mentioned before,

those phase shifts can be neglected in the MIMEO scenario. However for conventional radar

they have to be included in the related expression to accommodate the eventual use of ESA

at the transmitter site. The phase shifts are collected in the vector b (φ) . The transmit matrix

is given by G = 1 qbΤ (ψ). The receive matrix is given by K = α(Θ)1Q. It is noted, that



13

actually G and K should both contain the vectors g(φ) and k(θ), respectively. However,

as those vectors are constant for all receiver and transmitter elements and because of the

randomness of the Σ matrix, they can be replaced by 1 Q without losing any insight. It

follows that the channel matrix is given by

where the fading coefficient is a = '/2 . 1 QΣΙ Q . By assumption, the elements of Σ, ( α

(see (2.1) ), are zero-mean, unit-variance per dimension, i.i.d Gaussian random variables.

Hence, a is a zero-mean, complex Gaussian random variable, too. Accordingly, the target's

RCS (x  2 , follows a χ2 chi-square distribution with 2 degrees of freedom. Note that with

this model, there is no diversity "gain" in the target RCS.

The beamformer of a conventional radar array on the transmit side is represented

by the vector b* (ψ'). As the transmitter elements radiate the same waveform with different

phases, the received signal can be expressed as

where s is a scalar representing the filter outputs due to the single transmitted waveform.

Now, if the receiver uses a beamformer to steer towards direction Θ', then the output of the

beamformer processing is

antenna pattern, whereas ad  (O')a(0) is the receive antenna pattern. The angle of arrival is

estimated as the Θ' which maximizes y 2.  The target component, which maximizes Ι y 2 at

the estimated angle of arrival, is subject to fading due to the a 2 multiplier. In the scenario
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considered here, which equals the Sterling I case, this fading gain has a χ2 distribution

(chi-square with 2 degrees of freedom).

ΜΙΜΟ Radar - Direction Finding In ΜΙΜΟ radar for direction finding (DF), the

transmit antennas are sufficiently separated to meet the orthogonality condition (2.13)

for targets of interest. Equivalently, the columns of the transmit matrix G meet the

orthogonality condition in (2.9). In contrast, elements of the receive array are closely

separated to enable DF measurements. The target is at angle Θ with respect to the receive

array normal. The receive matrix is given by K = α(Θ)1Q. From (2.6), it follows that the

channel matrix is given by

where the components Om  of the Μ x 1 vector α, are the previously introduced target

fading coefficients for each target illuminating path, 0 m = V • 1QΣgm . Thus, the vector

Due to the orthogonality among the transmit vectors

gm , the variables ίΙm are uncorrelated. Moreover, the random variables 0m are zero-mean,

unit-variance (per dimension), independent, identical distributed (i.i.d.) complex normal.

The signal model is given by
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To illustrate how the considered system utilizes diversity, Μ = 2 is assumed here.

First the properties of one signal and its power at a single receiver element are analyzed

ignoring the phase shifts along the array:

The diversity cannot be utilized in this manner, as the signal components sibmight

destructively interfere with each other, since the fading coefficients Oil are unknown

a priori. To prevent this effect, orthogonal waveforms can be employed. However,

in this chapter, it is assumed that the transmitted waveforms result in random and

mutually independent components, s ib, of the sampled receive filter outputs. Evaluating

the expectation of the received signal power leads to

where Ε { s 2} = 2 has been used. In the considered scenario, the angle of arrival estimate

is based on a sufficiently large number of snapshots during which the fading coefficients

are assumed to be constant. The waveforms of each transmitter result in a different random

output component for each snapshot. Thus, when the number of snapshots is sufficiently

large, the sum over the received power may be approximated as

where s 2 and & indicate, that these values are estimates of the (single) signal and noise

power, which are random variables. In the remainder of this chapter, it is assumed that a

sufficiently large number of snapshots is processed, and that therefore the power of the
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target component is determined by the (scaled) sum of the squared absolute values of

the fading coefficients. Including the array on the receive side, the vector of the received

samples along the array can be expressed as

The angle of arrival is estimated as the Θ' which maximizes ξ(8'). For the collect estimate

Θ' = Θ the term απ (8')a(8)^ 2 equals Ν2 . Again, the target component in this estimation is

subject to fading. However, the fading is due to the sum of απο  2 and Ι α i  2 . As the random

variables απ i ^ 2 , i = 0, 1, have a χ2 distribution, and are i.i.d. (due to the orthogonality

between go and gi ), their sum in (2.24) has a χ4 (chi-square with 4 degrees of freedom)

distribution. This is a consequence of the different, uncorrected RCS's presented by the

target to the different elements of the transmitting array. Due to the scaling in (2.24) and

(2.17) the average signal power reflected by the target is in both cases 1. The reflected

power is in the conventional radar case, (2.17), a scaled χ2 random variable; whereas it

is a scaled χ4 random variable in the ΜΙΜΟ scenario, (2.24). The latter has a smaller

variance than the first. Thus, the diversity results in a more advantageous distribution of

the target component in the received signal. The resulting performance improvement is

called diversity gain and is explored by different means in the following sections.

Assuming that the different transmit signals result in i.i.d. Gaussian random variables

after the receive filters facilitates the mathematical analysis carried out in this chapter.

Moreover, this assumption keeps the derived results general without limiting the discussion

to particular transmit waveforms or signals. However, apart from the resulting analytical
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tractability and generality, the assumption applies to passive radar systems using sources

of opportunity, e.g. [24, 25], to estimate the bearing of targets without knowledge of the

specific transmitted signals and waveforms. Indeed, the analysis of this chapter may

provide an answer to the question whether passive system based on triangulation should

be based on, say, a broadcast medium, such as TV, or use a cellular network as illuminating

source. However, this discussion is beyond the scope of this proposal. Instead the diversity

gains for AAA in the ΜΙΜΟ context should be explored subsequently.

2.2 ΜΙΜΟ DF Analysis

In this section, the performance of a ΜΙΜΟ radar when used as a DF system is examined.

The following assumptions are made for simplicity and mathematical tractability:

1. Several, independent snapshots of the target are available for processing.

2. The transmitted waveforms result in components of the receive filter output
summarized in the vector s for each snapshot. The vector is modeled as Gaussian
random with independent components. Thus, the effective illumination process is
spatially white and its correction matrix is (l/M) 1M •

3. The antenna elements of both the transmitting and the receiving arrays are
omnidirectional.

4. Since a DF application is to be explored, it is assumed, that the signals from the
different transmitters arrive synchronized at the receiver.

Α common figure of merit for comparing the performance of different systems is the

estimators' mean square error (ISE). Α system's ISLE depends on the exact estimation

method, e.g., IL, MUSIC, beamforming, used. In order to have a fair comparison between

different systems the Cramer Rao bound is evaluated, which serves as a lower bound on the

performance of all unbiased estimators.
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2.2.1 Cramer Rao Bound

In what follows, the performance of a ΜΙΜΟ radar used as an active direction finder with

M > 1 distributed transmitting elements is analyzed. The received signal is given by the

model (2.19). In this model there are three unknown parameters, the direction parameter

8, the target's fading parameters contained in α = [αο , ... , ιο_ 11T, and the noise power

σ2 . The vector containing all the unknown parameters is ψ = [8, σ2 , α]. In the subsequent,

f (r ψ) denotes the family of probability density functions (pdf) of the received signal

parameterized by the vector of unknown parameters in ψ and C(ψ) the collection matrix

of the error in estimating ψ of any unbiased estimator. The Cramer-Rao lower bound for

estimating ψ is given by

The > indicates in this context, that the result of C(ψ) — CRB(ψ) is a positive definite

matrix. This particularly implies C 1 , 1 (ψ) > CRB 1 , 1 (ψ). For the AOA estimation only

the direction 8 is of interest and therefore the [1, 1] elements of C(ψ) and CRB(ψ),

respectively. The other parameters are nuisance parameters. Particularly, it is noted that

the problem decoupages, which means that the estimation error of the AOA is independent

of the estimation error of the signal and noise power. CRB(θΙα) denotes the [1, 1]

element of the Cramer Rao bound matrix. This notation indicates the conditioning of the

bound on the unknown parameters in α. Given that the signals from the M transmitters

are unknown complex Gaussian random variables with the correction matrix (1/M)I N

and conditioned on α, r is a complex normal random vector with collection matrix

Here, it is noted again, that α 2 is Χ Μ

distributed.

The CRAB conditioned on the fading coefficients is derived in Appendix AI Further,

the reader is refered to textbook derivations for more general expressions given in [26]



where L is the number of snapshots used by the array for estimating ΘI This expression is

based on assuming an Uniform Linear Array (DULA) at the receiver with an inter element

spacing of c/2. Therefore, the elements of the vector a(8) are given by [α(θ)] k = e3 mnθk

2.2.2 Average CRAB

An lower bound the average MSE of any unbiased estimator can be introduced by

Before investigating the dependency of the ACRE on the number of transmit antennas

M, some special cases of the parameters Θ and N shall be explored here for illustration.
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D confirms that the direction cannot be estimated at

endfire, since the array has a zero effective aperture (zero resolution).

Θ = 0: This is the best case for estimating the direction parameter. Indeed, at

broadside the array has the largest effective aperture (best resolution). In the following

Θ = 0 is assumed unless stated otherwise.

N = 1: The bound is infinite. Indeed, a single omnidirectional antenna cannot

measure the angle of arrival.

It is easy to verify that if the target's RCS is independent of the aspect, that is if

α 1 2 = 2 M deterministically, the CRAB is independent of M. Having this in mind, it is

only natural to define the system's Fading Loss (FL) as the additional SNR necessary to

achieve the same average ISLE as a system, which is not subject to fading.

By takiun the ratio of the CRB given (2.28) and the unfazed CRAB given by (2.26)

, it is easy to verify that the fading loss (in dB) as a function of the number

of elements in the transmitting array is lower and upper bounded as
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M = 2 the upper bound for the fading loss is infinite. Thus, the expressions for the ACERB

also reflect the behavior of the actual ACRE for M = 1 and M = 2.

In contrast to the ACRE and its expressions, the average MMSE of an unbiased

estimator might be finite even for M = 1 and 2, when the unknown angle parameter Θ is

estimated with, for example, the maximum likelihood approach. This discrepancy deserves

additional consideration. The CRAB bound is a small error bound. This means, it predicts

the ISE based on the behavior of the log-likelihood function in the vicinity of the true

parameter vector. As a small error bound, it ignores the full structure of the parameter

space [27], which may result in nonsensical values. For example, in the problem at hand, if

^ k Η 2 is small, the instantaneous CRAB in (2.26), might be much larger than π 2 . However,

the ISLE of any estimator is upper bounded by π2 for all values of . Thus, the average

MMSE of any estimator must be smaller than or equal to π 2 . Hence in those cases, the ACRE

is not rected to the performance of any true estimator.

The next section introduces another way to evaluate the statistics of the instantaneous

CRAB which is capable of handling small values of MI

Now, the asymptotic case M —* οο is considered. Here, the fading loss approaches

zero, that is, the target's RCS 'hardens' and is not subject to fluctuations. Without target

fluctuations, a case referred to as Sterling case 5, the received signal is r = α(θ)s + v.

The signal component at each receive element is then a Gaussian random variable with

;re. With fluctuations, the received signal

nia1 power at each receive element is then

is the transmit power of each illuminating

friable, the mean of the receive power is

constantly 1 and the variance is N^ . Thus, as M tends towards infinity the variance of the

instantaneous received signal power tends to Ο and the signal power becomes therefore

deterministic.
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Figure 2.2 Average CRAB versus SNR.

Figure 2.2 illustrates the ACRE versus the SNR for M = 4, 16, οο. The SNR refers

are set to Ν = 6 receive antennas, Θ = 0 angle of arrival, and L = 80 snapshots.

From the figure it can be seen, that using 4 transmit antennas instead of 16 results in a

fading loss of 1.3dB as predicted by (2.29). The transmit diversity alters the distribution of

the received signal power. Even though the mean of the received signal power is the sane

for any number of transmit antennas, the smallest achievable average ISLE of any estiιrιator

decreases with an increasing numbers of antennas. However, as the average is considered,

the related diversity gains are not so tremendous as the ones in the next section.

2.2.3 Outage CRB

In the previous section, it has been found that the ACRE is not converging for M < 2.

The outage CRB is introduced here to enable the analysis for M = 1, 2 transmit antennas.
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Moreover, similar to the outage analysis in communications, the outage CRAB serves as a

tool for analyzing slow fading target cases.

Definition 2.2.1 (Outage CRAB) If the CRAB for the parameter to estimate Θ depends on the

realittion of a random variable ψ, the outage CRAB for a given probability p is defined as

CRBout=p):

In other words, with probability 1 — p the random variable ψ has such a realization,

that the lower bound of the ISE of any estimator is smaller than CRBout=p. Therefore,

it is not possible to find any estimator, which has an ISE of less than CRBout=p with a

probability p'> 1 — p.

As the CRAB in (2.26) depends on the realization of ( 2 , we find

given p as:

As the CRAB is strictly monotonic decreasing with  	 2, (2.30) indicates that an

αout_ρ Η 2 can be found so that

For a given p and M the quantize (α out_ρ can be found by evaluating the inverse of

the X% probability distribution function numerically or by using tables in, e.g., [28]. The

results presented in Figure 2.3 are based on the chi env function of Matlab.



24

Figure 2.3 Outage CRAB versus SNR.

Figure 2.3 shows CRBp=0  and CRBp_o.Ι for different SNR. One can see that

the SNR gains depend on the probability p. In other words, when one wants to compare

11i1 = 1,4 and 16 for CRBp=0 01 meaning that in 99 percent of the scenarios an estimator

can achieve an ISLE better than CRBp_o_ol, we find that for achieving those LSE's the

case 11i1 = 1 requires 17dB more SNR than M = 4 and 17dB more than M = 16. Further,

we see that in this case, the difference between M = 4 and M = 16 is 3dB compared to

the 1.4dB in the previous ACRE analysis.

The transmit diversity has a stronger impact on the outage CRAB for small outages

than on the ACRE, as the outage CRAB is related to the tails of the distributions of I	 z and

^ 	  whereas the ACRE is related to their means. As stated earlier the diversity reduces11a11 4 

the variance of the of the received signal power, which makes the chance small, that the

signal component almost vanishes due to the target fading.
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2.3 Simulation Results

In this section, the LOSE and the estimation error distribution of the ML-estimator are

explored. A simplified scenario is assumed, in which the signals originating from

the different transmitters arrive synchronized at the receiver, but are not known by the

receiver. The received vector is then given by (2.6). L = 80 snapshots, Θ = 0 and

Ν = 6 is considered. The angle Θ is estimated at the receiver by maximizing the term

2.3.1 correlated Target Aspects

First, the LOSE and estimation error distribution are evaluated for correlated target

aspects. Afterwards, correlated target aspects are introduced and the LOSE of the

ML-estimator is introduced to explore the effects of deviations from the model discussed

in section 2.1.

Figure 2.4 Average ISE of the ML estimator versus SNR.
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Figure 2.4 shows the (average) MSE for different SNR values and M = 1, 2, 4 and

16. The curves for M = 4 and M = 16 are in excellent agreement with the curves in

Figure 2.2. Thus, one can conclude, that in these scenarios the ML-estimator achieves the

ACREI Furthermore, for M = 1 and 2, the MALE provides a useful estimate of the angle of

arrival, even though the expression of the ACRE (2.28) does not converge. This has been

explained in Section 2.2.2. For high SNR values, the ACRE given in equation (2.28) can

be approximated by neglecting the second summand containing (2σ 2 ) 2 in the enumerator.

This approximated average Cramer Rao bound converges also for M = 2 and is in excellent

agreement with the values of the ISE of the ML-DF simulations for M = 2 for high SNR

values shown on the right hand side of Figure 2.4.

In summary, the (average) ISLE for M = 1 is much larger than the one for M = 4 or

M = 16. The transmit diversity provides a gain of more than 20dB in this respect in this

AOA estimation scenario.

In Figure 2.5 the Cumulative Density Function (CDF) of the instantaneous squared

error is shown for M = 1,4 and 16 and a per snapshot SNR of 10dBII The Figure is included
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to illustrate the match between the outage CRAB shown in Figure 2.3 and the instantaneous

squared errors of the ML-DFII For example, the 90 per cent percentile for M = 1 and 4 of

the ML-DFII in Figure 2.5 are in perfect agreement with the values of the outage CRABI For

M = 16 some small deviation are present due to the limited simulation length.

Moreover, the CDF of the error of the ML-DFII illustrates the idea behind using the

outage CRAB from another perspective. Figure 2.5 demonstrates that for M = 1 there is a

non negligible chance of having a squared error of 10 -1 or even 1. Assuming a stationary

target, this implies that the RCS fluctuations might lead to a situation in which the target

cannot be located effectively. For M = 4 and 16 the probability of such a large error is

negligible. Thus, one may infer, that particularly for stationary or very slow moving targets,

a comparison of different radar systems based solely on the average CRAB or the average

ISE is not sufficient. A complete evaluation of different systems has to take the slope of

the squared error CDF into account. Since the outage CRAB, CRBout_ρ , is a lower bound

of the 1 — p percentile of any estimator, it is a valid approach to compare systems in this

respect.

2.3.2 Correlated Target Aspects

This chapter is concluded by presenting simulation results for an extension of the previous

model, which includes corrected target aspects. From Figure 1.1 it can be inferred,

that for an insufficient angular separation between the illuminating antennas, the fading

coefficients, which determine the returned signal powers from the different transmitters,

are not independent. Referring to the signal model discussed in section 2.1, this section

explores the scenario of non-orthogonal columns g m of the matrix GI The corrected

fading coefficients are approximated with a first order AR process. For this purpose, the

fading vector α in the signal description in (2.19) is replaced with α' which contains M

consecutive samples of an AR process u(k), where u(k) — ρ • tt(k — 1) = v(k) and v(k) is a

white process with variance σ2 = 1 — ρ2 . Given that p is real, one finds that the correction
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Figure 2.6 Average ISLE for corrected target aspects and M = 4.

Figures 2.6 and 2.7 show simulation results for collected target fading among the

transmitter aspects for M = 4 and M = 16, respectively. As one would expect, for p = 1

the performance of the multiple transmitter scenarios degenerates to the one of a single

transmitter as all transmitters illuminate actually the same aspect of the target. This is
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Figure 2.7 Average ISLE for collected target aspects and Μ=16.

evident when comparing Figures 2.6 and 2.7 with Figure 2.4. Further, the curves for p = 0

agree with the curves shown in Figure 2.4 for M = 4 and M = 16.

Further, one can see, that for ρ = 0.9 and ρ = 0.8 and M = 4 the progression of the

curves in Figure 2.6 is similar to the one for M = 2 in Figure 2.4. This is expected, as the

correction between the different aspects prevents the full diversity gain. In contrast, the

curve for ρ = 0.9 and M = 16 is very close to the curve for p = 0. This is because the two

outer transmitters illuminate two aspects which are almost uncollected,,

So in other words, full diversity is roughly achieved.

In summary, one can infer from the plots in Figures 2.6 and 2.7 that significant gains

are possible by employing transmit diversity even when adjacent target aspects result in

fading coefficients with correction coefficients as large as 0.9. Moreover, the difference

between the performances for small collection coefficients, like ρ = 0.2, and actual

orthogonal target aspects is negligible. Therefore, this section underlines again that ΜΙΜΟ

radar with transmit diversity is a promising approach for real world radar systems.



CHAPTER 3

MIMO-RADAR DETECTION IN WHITE NOISE

In the previous chapter, the AAA estimation performance of ΜΙΜΟ-radar with transmit

diversity has been discussed. In this chapter, the capabilities of ΜΙΜΟ-radar to detect

targets in additive white Gaussian noise with known variance are explored. The discussion

in this chapter is an extension of the work presented in [8].

3.1 Signal model

In this chapter, a ΜΙΜΟ—radar system is considered, which employs widely separated

elements at both, the transmit and the receive side. Α two-dimensional scenario is

assumed, ignoring the heights of targets and radar elements. The location of each of the M

transmitters is denoted as Lk = (4, y) and the location of each of the N receiver elements

Α target is again assumed to consist of Q scatterers, of which each has a
H

location given by Xq  = (xi , yq ). This notation follows the one introduced in [29].

Introducing the propagation delay from the k-th transmitter to the q-th scatterer,

Ttk ( Αα) , and the one form the from the q-th scatterer to the k-th receiver element,

the signal received by the n-th receive element due to the waveform transmitted by the k-th

transmitter reflected via the q-th scatterer can be written as

denotes the reflection coefficient of the q-th scatterer

and the phase shift due to its position. La  (1,k) refers to the attenuation due to the pathioss

of the two propagation paths and is discussed in the next section in detail. The delays

30



where c refers to the speed of light. Similar to [8, 29], it is assumed here that the

distances between the scatterers are negligible compared to the range resolution of the

used bandwidth. In other words, the target extend does not lead to an observable frequency

selectivity within the employed bandwidth. Accordingly, the delays in the argument of

the baseboard waveforms ski (t) are approximated as constant for all Q scatterers. Defining

the center of the target or the center of the cell under test as R0 , this approximation is

Figure 3.1 Overview over MIMO-radar detection with different test cells and extended
targets.
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TI- is Pmnhaci7Pι1 that the Pxar.t nnςitinn of Parch scatterer maintains to have an impact

th receive element due to the waveform transmitted by the kath transmitter can then be

expressed as

In case the signals should be written in matrix notation, as in the previous chapter or

in [8, 29], h l , k is the element of the channel matrix H in the lath row and the kath column.

Here, the matrix notation is not further pursuit. However, it is noted that the target

-'-+;"ular the target fading coefficient is determined by the complex sum

. The total received signal at the lath receive element including all the

waveforms transmitted by M transmit elements can then be written as

Assuming that the waveforms ski (t) maintain very low cross collection values or are

orthogonal for a variety of different delays, the presence test is prepared by collecting

each receive signal on the set of transmitted waveforms, which are delayed accordingly to

the position of the cell under test (matched filtering for each waveform). This results in a

vector for each receive element and cell under test given by



where Dtarget  corresponds to the target's extend. This condition leads to uncollected

fading coefficients, hi,k, across the different signal paths. Similar to the previous chapter

and [8], the hl,k are substituted with ο . The received signal can then be written as
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y
independent. The argument Xi  is omitted from here on. However, it is emphasized that

particularly the components of L depend on the position of the cell under test.

Furthermore, it is noted that the fading coefficient contained in α are i.i.d. complex

Gaussian random variables with unit power, thus α ~ CN(0, 'οN ). The noise terms are

assumed to be mainly due to the thermal noise on the receive side. Thus, they are i.i.d.

To prepare for the comparison carried out in section 3.3, the signal model for a

conventional radar, namely a phased array system, is included here. The reader is referred

to the previous chapter or [8] for details. Path-losses are ignored in the discussion for

conventional radar systems at the cullent stage. The signals transmitted by the transmit

elements in a phased array system arrive at the target with roughly the same delay Tt (2 ),

but different phases depending on the angle between the array and the direction of the cell

under test. Furthermore, the signals reflected by the target arrive at the elements of the

receive array also with roughly the same delay Tr (Xo ) but different phases. Assuming, that

the transmit array steers a beam in direction φ and denoting with Ψο  the direction of the cell

under test from the transmit side and with Γο the direction of the cell under test from the

receive allay, the signal under Η 1 hypothesis can be written as

It is assumed that the transmit beam is steered towards the cell under test,  ψ = øο. The

presence test is prepared by steering the beam of the receive array towards the cell under



test and collecting on the the appropriately delayed transmit waveform

As the system observes a signie aspect of the target, the target's RCS fluctuations are

represented by a single complex fading coefficient,  ι CN(0 ). Further, the n' is a

single noise term with the distribution CN(0, Νσ2 ).

3.2 Diversity Detection with Different Attenuation among the Signal Paths

Given the ΜΙΜΟ signal model developed for a target presence test in the previous section,

the detection performance is evaluated in this section for different path-losses across the

signal paths. This is an important extension to the work presented in [8] where identical

path-losses have been assumed. However, given that the transmit and receive elements have

to be sufficiently separated to observe different target aspects for diversity, it is obvious that

the free space attenuation for all paths cannot be constant for all possible cells under test.

For Η1 (target presence) and Η0 (target absence) hypotheses the received signal

vector is given as
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The likelihood test statistic for these signals is developed in Appendix B and is found to be

Lei) denotes the i-the element of the diagonal matrix LI It is noted that the test statistic is a

weighted sum of observations r (i) 2 , η = Ai wig r (i) 2 . Furthermore, the weights depend

on the geometry of the scenario which determines the different path-losses, as

Moreover, for high SNR ( j'2 > 1) the test statistic is roughly the same as the one ignoring

the different ranges

This test is discussed in [8]. It has to be noted, that the derived test statistic requires the

knowledge of both, the received signal power E, which depends on the target's mean RCS,

and the variance of the additive Gaussian noise σ 2 . Finally, it is noted, that the test statistic

incorporating the derived weights is not χ2 distributed due to those weights. In contrast,

when the different path-losses are constant the test statistic is χ2 distributed under both

hypothesis.

In the following the performance of a detector accounting for the different path-losses

according to (3.11) is compared to the one of a detector assuming identical ones. The

comparison is based on free space attenuation. Thus, the gains across the signal paths are

given by
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It is worthwhile mentioning in this context, that the exponent 4 of the range in the standard

radar equations, [5], is due to the propagation to and back from the target and not due to

ground reflections as discussed for long range wireless communications in , e.g., [4].

The here presented simulation results are based on a scenario depictured in 3.2. Four

receive and two transmit elements are considered. Further, ten possible target positions

It is noted that even though the targets are depictured as

points, they are assumed to be complex thus having an aspect dependent RCS resulting in

uncollected c^.

Figure 3.2 Illustration of receiver, transmitter and target locations used in the analysis.

As the aim of this section is to compare the effects of different weighting approaches

in the test statistic and not to explore the system coverage, the effective received power is

held constant by normalizing E according to

where E' is the one used in the SNR context and E the in 3.7 etc. In other words, targets

far away result in the same total receive power as targets close to the receive and transmit

apertures. However, the amount each individual transmit-receive path contributes to the

total receive power differs obviously for close by and far away targets. Further, this
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normalization applies to the mean total receive energy. The target still has random fading

coefficients across all observed aspects.

As stated previously, deriving the weights for the test statistics given in (3.11)

requires knowledge of the ratio σ . Further, according to (3.13) the weights for high SNR

values tend to be uniform and a knowledge of the actual SNR is no longer required. In

radar, it is impossible to knοω the SNR prior detection, as the mean signal energy depends

on the target's mean RCSI As the target is to be detected in the first place, it is not feasible

to assume to knοω the target's RCSI A simple approach to circumvent this deadlock is to

derive the weights of the test statistic for a fixed assumed minimal SNRI As the following

plots show a target can be called "detectable" for an SNR of roughly Ν2 = 3dBI, this SNR

value may be chosen to derive the weights of the test statistic.

Figures 3.3 and 3.4 show the probability of detection, PD for different values and
y

a false alarm rate of Pfajse = 10 -4 . The first Figure is based on a single target location X0,1

marked in Figure 3.2 by a circle, whereas the second plot is based on an average over all

ten possible target locations.

The solid line is based on an equal weight combining of the observations, ignoring

the different gains over the transmission paths. The dashed line is based on an assumed

fixed SNR of ί2 = 5AB.The dotted line is based on a system which knows the actual ratio

between returned target and noise power.

As expected, the equal gain combining leads to suboptimal performance but approaches

the optimal (hypothetical) one for high SNR values. On the contrary, the approach based on

weights calculated for an SNR of 5dB behaves for similar values as the optimal approach

but leads to lower detection probabilities for higher SNR values. Thus, this approach can

be used to enhance the detection for small targets of minimal detectable size at the expense

of detection probability for big targets resulting in high SNR values.

However, comparing Figures 3.3 and 3.4, it is evident, that the different combining

approaches differ only in performance in situations, where there is a strong bias in the



Figure 3.3 Detection probability versus SNR for different signal combine approaches and
a single cell under test.

Figure 3.4 Detection probability versus SNR for different signal combine approaches,
averaged over several cells under test.

signal gains (the target is close to a particular transmit-receive pair). Even in such situations

the difference between the approaches is within the range of 1, 2dBII Therefore, the exact
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geometry is in the further principal investigations ignored. However, the result of this

analysis is motivating in the ΜΙΜΟ context, as it demonstrates that equal gain combining,

though being suboptimal, leads in realistic scenarios to good results. Particularly in future

research exploring constant false alarm detectors with neighbouring cell averaging similar

to [6], this observation is important.

Finally, it is noted that the slope of the curves in Figure 3.4 is more steep than the

one of the curves in 3.3. This is due to the fact that curves in 3.4 are based on situations

with in the average stronger diversity than the single situation illustrated in 3.3. Indeed the

target location ^o , l is from a diversity point of view degenerated as mainly the signal path

from L1 via Xο , l to R2 contributes to the test statistic.

3.3 Detection in White Noise with Identical Path—Losses

The aim of this section, is to extend the observations concerning target detection in white

noise presented in [8] to include corrected target aspects similar to what is done in the

AAA chapter. Further, low SNR Receiver Operating Characteristics (ROC) are discussed

to prepare a fundamental argument presented in the next section.

3.3.1 Uncorrected Target Aspects

As discussed in the previous section, it can be argued to neglect the different range rected

gains in a MIMO-radar system for principal investigations. Accordingly, from here on

L = ΙΜΝ  is assumed.

The test statistic for equal weights is then
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Denoting with χα a chi square distribution with K degrees of freedom the test statistic has

then the following distributions



and the detection probability is given by

42

prevail the premiss of ΜΙΜΟ radar in target detection. The detection performance of the

conventional coherent beamforming systems for high ratios between mean target return and

interference power is limited by the target's fading RCS. MIMO-systems can capitalize on

the non coherent diversity and thus "harden" the distribution of the target returned power

around its mean. Therefore, the detection probabilities of ΜΙΜΟ radar are larger than the

ones of conventional radar systems given high SNR values. In [8] and [29] this is further
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illustrated by plotting the logarithmic missed detection probability versus the SNR for a

given false alarm rate.

Figure 3.6 Receiver operating Characteristic for SNR = 5B for conventional and
ΜΙΜΟ radars.

However, for rectively low SNR values, such as 	 = 5B in Figure 3.6, this

observation no longer holds. It is noted that this is due to the non-coherent nature of

MIMO-radar detection. The reader is refered to [4, Chapter 3.5], where the difference

between coherent and non-coherent communication via L diversity branches is discussed.

Further, the next section is discussing the principal behaviour of ΜΙΜΟ radar detection in

view of this important aspect.

3.3.2 Correlated Target Aspects

In this part of the dissertation, the impact of collected target aspects is discussed similarly

to the analysis of AAA estimation in the previous chapter. Again, it is noted that the

correction among the fading coefficient is due to a too small element separation on the

transmit or receive side. For simplicity only 1 x N systems are discussed. The elements of

α are again assumed to be one realization of an 1st order AR process.
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Figure 3.7 Receiver operating Characteristic for SNR = 10dB with collection among
the target aspects.

Accordingly, the collection matrix of a is given by

noted, that under Ηρ the ΜΙΜΟ test statistic is again Χ Ν distributed, but under Η 1 it is no

longer χ2 distributed due to the collection among the elements of a accordingly detection

probabilities of the ROC have to be based on Monte Carlo simulations.

Figures 3.7 and 3.8 contain ROC for different values of p and an SNR of 10dB

and 5dB, respectively. The ROC for recollected aspects in ΜΙΜΟ systems and for

conventional phased array systems are plotted for comparison.
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First, it is noted that, given an SNR of 10dB, for small collelation coefficients p the

detection capabilities of ΜΙΜΟ radar are not impaired. However, once the collection

among the target's aspects approaches one, the detection performance of the ΜΙΜΟ

approach is considerably degraded and even worse than the one of the conventional

coherent approach. The reason for this is the fact that the diversity the ΜΙΜΟ system

is aiming at is no longer given and as the ΜΙΜΟ system combines the observations non

coherently it enhances the interference requiring higher thresholds than the conventional

system for a given false alarm rate.

Figure 3.8 Receiver operating Characteristic for SNR = B with collection among
the target aspects.

Second, regarding the ROC for an SNR of 5dit is emphasized once again, that

the ΜΙΜΟ approach cannot enjoy the benefits of diversity for low SNR and thus is

outperformed by the conventional approach. However, it is interesting to observe that for

low false alarm rates and accordingly high thresholds the ΜΙΜΟ system's performance

improves with increasing correction coefficients. This is due to the fact that for high

thresholds and small target returns it is possible to gain from the target's RCS fluctuations

to exceed the thresholds with some probability. Thus, the "hardening" of the signal
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distribution due to diversity is contra-productive in such cases. However, as this results

only in very small detection probabilities, it is very doubtful, if this observation has any

practical implications.

3.4 Combining Diversity with Coherent Processing Gain: Hybrid Systems

In the previous section it is explored that for low SNR values ΜΙΜΟ systems are

outperformed by conventional ones, as the first have to work non-coherently in contrast

to the second which operate coherently with phased allays. In this section is reiterated and

put in the context of scenarios normally found in radar.

It has to be emphasized that the signal to noise or better signal to interference ratio in

radar is a difficult design parameter. To assume just a more or less high SNR or SIN can

be very misleading. First of all, the mean power of the signal component depends evidently

on the target's size determining its mean RCSI A radar system normally has to cope with

a variety of possible target sizes. Second, the clutter return contributes considerably to

the noise or interference power. Moving target detection in clutter presence with Doppler

processing is discussed in the next chapter. However, here it is noted, that the signal to

clutter ratio cannot be controlled by increasing the transmit power. It has to be improved

by Doppler processing, limiting the size of a competing clutter cell by beamforming, or a

combination of both depending on the scenario.

It is possible to develop based on the radar equations for a clutter dominated

environment found in [5] an analysis for target to clutter ratios found in a given scenario.

However, the derived SNR values would be valid only for this particular scenario. Instead

the reader is here asked to remember the size of directive antennas fored in radar and

compare it to the used wavelength. Assuming an inter element spacing of roughly c/2 it is

obvious that the commonly used antennas are equivalent to phased allays with a few tens of

elements. Accordingly, it can be argued that the coherent processing over several elements

is normally necessary to improve the effective SNR to a certain value enabling detection.



Figure 3.9 Detection probability versus number of receive elements for different SNRI.

Following the argument developed above the it is now explored how many array

elements are necessary for a 1 x Ν system with a fading target given a low initial SNRI

Figure 3.9 illustrates the detection performance versus the number of receive elements N

for a false alarm rate of Pjale = 10 -6 based on the expressions 3.20 and 3.23, respectively.

The ΜΙΜΟ system enjoys diversity, but needs to operate non-coherently therefore. It is

observed that increasing the number of elements in the conventional phased allay system

first improves the detection probability fast retil a saturation point is reached. This

saturation point is due to that ones the effective SNR is good enough the target fading

dominates the detection performance. On the contrary, the ΜΙΜΟ system's detection

probability improves slower with an increasing number of antennas, but does not reach

a saturation. However, it is emphasized that for a very low SNR of — B recting to a

very small target the ΜΙΜΟ system effectively fails to work in contrast to the conventional

system.

It is reiterated, that the diversity enjoyed by the ΜΙΜΟ approach results for high SNR

values in an improved detection probability as the chances of a vanishing target return are

limited. However, this improvement is achieved by sacrificing the coherent processing
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gain. This decreases the detection probability for low SNR values rected to small targets.

In other words, MIMO-radar detects big targets more reliable at the expense of detecting

small targets.

Given this argument and the observations derived from Figure 3.9, it is apparent, that

under realistic considerations a trade off between the amoret to which diversity is achieved

and the improvement in effective SNR due to coherent processing can be attractive. For

example, a 1 x N system can consist of Ndiv subarray on the receive side each of which

consists of N 0h individual elements. The total number of elements is N = N 0h • div

Each subarrays shears a beam towards the cell under test resulting in a processing gain of

Ncohand the signals from the div  subarray, which are sufficiently separated in space, are

combined non-coherently to achieve diversity. The same is possible on the transmit side

with M = M 0h • div Such a system may be called a hybrid system.

The false alarm rate of such a system can be derived as

Figure 3.10 presents the detection probability derived with these expressions for a

false alarm rate of Pfalse 10—δ , M = 1 and N = 64 or N = 16. For each value

of N three systems are considered. One achieves full diversity, N = Ndiv, one which

maximizes the coherent processing gain, N = N 0h, and one which uses 4 subarray of 4

or 16 elements, div= 4 and Ncoh 4 or N 0h = 16.



Figure 3.10 Detection probability versus SNR for ΜΙΜΟ, conventional and hybrid
systems.

The hybrid approach using only 4 complex diversity branches bridges successfully

between the two other systems. Its detection performance for low SNR values is roughly

as good as the one of the fully coherent system and for high SNR values it still features

enough diversity to compete with the system enjoying full diversity.

It is noted, that from here on again only systems with full diversity are compared

with the ones operating completely coherent with a limited number of elements. However,

it is obvious that the considered high SNR values can be achieved by replacing the each of

the few elements with a coherently operated subarray.



CHAPTER 4

DETECTION OF MOVING TARGETS IN HOMOGENEOUS CLUTTER

One aim of this chapter is to establish the idea, that an assumed random direction of

a moving target impairs the performance of a conventional phased array moving target

detection radar on a similar way the RCS fluctuations do. In radar, it is commonly

distinguished between the returns of (moving) objects of interest and the ones due to

the omnipresent clutter by the frequency shifts of the returned signals. Clutter, such as

the sea-surface or wooden hills, leads to only small frequency shifts, whereas the target's

radial movement results in larger frequency shifts. Therefore, in Moving Target Indication

(ΈΤΙ) delay lines are employed to attenuate the DC components of the received signal pre

detection [5]. Space Time Adaptive Processing (STAMP) employed in airborne radars uses

the inversion of an estimated clutter covariance matrix to "whiten" the received signal or,

in other words, attenuate the clutter returns.

Assuming that a target has a given speed (v i and a random movement direction Ω,

e.g. reiformly distributed over [0, 2π], the targets velocity components in x and y direction

are given by

Further assuming, that the conventional radar transmit and receive array illuminates and

observes the target along the x-axis, there is a certain probability that the radial velocity

component, υ , is small leading to a small Doppler shift and therefore attenuation of

1 Note, that clutter in STAMP is described in spatial and Doppler domain, whereas in this publication
we assume stationary radar elements and spatial homogenous clutter and thus the later introduced
covariance matrix only contains the Doppler characteristic of the clutter.

50
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the target's reflection. Thus, the target cannot be distinguished from the clutter and can

therefore not be detected.

In [13], it is argued that multi-static radar systems are capable of circumventing this

obstacle, as they observe a target from different aspects and the target cannot have vanishing

velocity components towards all of these aspects. However, in [13] no definite results are

provided. Further, regular multi-static systems can be distinguished from MIMEO systems,

as the first commonly process the received signals in a distributed manner and fuse the

results in a central station, whereas the later process all signals jointly in the central entity.

This chapter illustrates, that MIMEO systems outperform the multi-static ones because of

information losses in the distributed processing.

It has to be noted, that multi-static systems do not necessarily employ decision fusion,

and that MIMO-systems can be viewed as a group of particular multi-static systems.

However, as most of the literature on multi-static detection is concerned with decision

fusion, e.g. [13, 30, 31, 32], in the subsequent, systems using decision fusion are referred to

as multi-static systems.

In this chapter, a simple scenario with fixed radar stations surveying a 2-dimensional

space is assumed. This space contains a homogenous clutter medium, such as a sea

surface or wooden grored, whose second order statistics are assumed to be known or to

be estimated. It is shown in this chapter and Appendix C, that detectors using an estimate

of the clutter covariance matrix lead to Constant False Alarm Rate (AFAR). The radar

systems try to detect the presence of a target with reknown 2-dimensional velocity in a

given cell reder test. The radar systems try to detect the presence of a target with unknown

2-dimensional velocity in a given range cell reder test. It is noted, that in x and y direction

range cells are defined according to the previous chapter. For simplicity, only one cell is

considered subsequently. Therefore, the dependencies of the signals on the coordinates of

this cell can be omitted.
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4.1 Signal Models

In this section, the signal models for the different radar systems considered in this chapter

are developed. The signal models are based on the same physical model. However,

two separate models are developed; one for ΜIΜΟ and multi-static radar and one for

conventional phased array radar, which differ in some details to ease the derivation of the

detectors in the next section.

It has to be noted here that the subsequent developed signal models differ from the

ones used in the previous chapters:

1. The transmit power per transmitter element is no longer normalized by the number
of transmitter elements to maintain a constant total transmit energy.

2. For notational simplicity, the energy per transmitter element is assumed to be one 1.

Particularly the implications of the first point are discussed in Section 4.3.3.

4.1.1 ΜIΜΟ and Multi-Static Signal Model

It is assumed in this chapter, that the target does not leave the above mentioned range cell

during K consecutive pulse transmissions. Furthermore, it is assumed that the M transmit

elements employ pulse waveforms, which maintain approximately orthogonality under a

variety of mutual delays and frequency shifts. This allows the receive elements to separate

between the pulses transmitted by the different transmit elements. Under the Η 1 hypothesis

(target presence in the cell under test) and the Ηρ hypothesis (target absence) respectively,

the K consecutive signal samples at the lath receiver due the pulses from the transmitter

are given by

The scalar k , 1 represents the fading coefficient due to the targets RCS fluctuations across

different aspects, which are assumed to be independent complex Gaussian random variables
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and constant during the K consecutive scans. This is equivalent to a Sterling case 1

model. It is noted, that first in contrast to the previous chapters the transmit power is not

normalized with the number of transmit antennas M in this chapter. Further, the square

root of the transmit energy Ε is from here on incorporated in the ck,1 terms to achieve a

concise notation without loosing any insight.

The vector dk,j (ν, ;y ) represents the changes in phase of the K samples due to the

targets movement and has the form

Here, fa is the carrier frequency, c the speed of light. The transmit and receive elements

are located at 61 and θ, respectively. Figure 4.1 illustrates the geometry of this scenario.

In (4.2), nk,1 represents the clutter return and k,1 the thermal noise at the receivers. We

assume the clutter to be Gaussian distributed with the following properties:

The clutter correction matrix C' is discussed in a later paragraph of this section. The

thermal noise at the receive elements is assumed to be white Gaussian noise with the



Figure 4.1 Location of transmitter and receivers in respect to target and its movement.

In the signal model above, eventual different path losses between the different

transmitter and receiver pairs are ignored for simplicity. Thus, it is assumed, that all

transmitters and receivers have roughly the same distance to the cell reder test, but view

this cell from different angles et and 8 . In this context, it is convenient to rewrite the

expression (4.4) for the Doppler frequency observed by each transmit receive pair in the

following way

The term v • ú denotes the vector product and the vector ú rectes to the bistatic bisector as

discussed in [33]. Figure 4.2 illustrates the geometry of the situation. The reader is asked

As equation (4.7) and Figure 4.2 show, for a given speed the magnitude of the

observed Doppler shift depends on one hand on the angle, ψ sly between the target's velocity

vector v and the bistatic bisector, as the velocity vector is projected onto the bistatic

bisector, and on the other hand on the angle between the transmit and receive pair. Spatial

diversity in respect to the random movement diversity is achieved in ΜIΜΟ radar by

operating with several bistatic bisectors and thus ensuring, that eventually one is almost



Figure 4.2 Illustration of the bistatic bisector and its impact.

aligned with the target's direction (small ksl ) resulting in a large Doppler shift. However,

at the same time the difference between the transmitter aspect θ and the receiver aspect

θΆ should be maintained small to observe a large Doppler shift, which allows to separate

between target and clutter return. Therefore, it is advantageous to distribute both, the

transmitter and receiver elements, in a similar way in space. This leads to diversity in

respect to the target's movement and limits the difference between 8Τ and θ . In a latter

section a numerical example is illustrating this.

4.1.2 Phased Array Signal Model

For comparison with conventional radar systems, this chapter also considers a radar

consisting of N receiver elements forming a linear array with small inter element spacing

and M transmitter elements also having small interelement spacing and steering a beam

into the direction Estε„. The reader is asked to note, that similar to [8] and Chapter 3 the

transmitter elements do not use different orthogonal pulse waveforms, but impose phase

shifts Lk  (steer) to the transmit pulses to steer the beam towards the direction ψsteeτ. The



Here, the fading coefficient, c, is the same for all elements, as they view the same RCS

aspect of the target. Further, the vector d(ν ,' y ) is the same across all elements as they

have the same perspective on the target's movements. The angle of allival, ø t, of the

target return results in the phase shifts across the receive array elements given by a 1 (t)

=012πcοs(φt)Δr/λ,where Δτis the inter element spacing on receive side and c the considered

wavelength. Furthermore, the target's orientation towards the transmitter allay results in

phase shifts of impinging pulses given by Lk (ψt ) = e32k7cοs(Ψt)Δt/', where A t  is the inter

element spacing on the transmit side. The clutter and noise components have the same

properties as described above. In particular, the independence between clutter returns at

different transmitter-receiver-pairs applies here, too:

This may be surprising at first. However, considering, that the clutter return is due to a large

number of small scatters distributed uniformly in a circle around the receive elements, one

may realize the similarity of this situation to the Rayleigh fading channel model commonly

used in mobile commreications. It is a well established observation in commreications,

that the fading coefficients decorrected over a distance of roughly 2, [34]. Thus, if one

equates the clutter return path with the multi path communication models, one can expect,

that the clutter returns are decorrelated for different receiver-transmitter—pairs. Further, in

the next section a beamformer towards the cell under test is introduced at the receiver. This
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beamformer results in a processing gain, which equals the processing gain described by the

signal to interference ratio for clutter dominated scenarios found in [5].

4.1.3 The Clutter Correction Matrix

The clutter collection matrix can have a variety of forms. In most of this chapter, it is

assumed, that the clutter collection matrix is known or estimated. Further, a homogenous

clutter uniformly distributed in space is assumed. This could recte to sea surface, wooden

ground with wind or chaff. In [5] and [35] the correction of such clutter is described with

a Lower Spectral Density (LSD):

This rectes to a continuous Auto Collection Frection (ACC) of
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4.2 The Moving Target Detectors

Using the signal models defined in (4.2) and (4.8), the detectors for the different schemes

are derived based upon the Generalized Likelihood Ratio Test (GIRT) in this section. It is

assumed throughout this chapter that in a cell reder test is either one target with a velocity

vector v = [Mx , Mν ] T or no target at all. Therefore, the velocity vector can be treated as an

unknown deterministic parameter. Note, that even though in the numerical evaluations of

the detectors this vector is implemented as a random variable, it would be rerealistic to

assume to know the probability distribution function of the target's velocity and to derive a

detector based on it.

4.2.1 The ΜΙΜΟ Moving Target Detector

Summarizing the MN received vectors r, in one vector r = [rib ,.... , rΤΤΜ Ν]T and the

MN fading coefficients cxk , l in the vector a = [ιxι,ι, ... , αΜ,Ν] T , the joint densities of the

received vectors conditioned on the hypotheses and parameters can be written as



Further, it is noted that entering the densities given in (4.14) into (4.15) leads to the same

expression as (4.18). Furthermore, the expression (4.18) is maximized for any given pair

Ex and Ay by

It is emphasized that the MIMO-MTD involves a joint estimate involving all receive vectors

of the true velocity vector v. In the next section the implications of this joint estimate are

discussed by comparing it to local velocity estimates at the receive stations. Further, it

is brought to the reader's attention, that the summands of the test statistic (4.20) are well

established in the STALE context as adaptive matched filter test statistic, [37] and [38].

4.2.2 The Multi-Static Moving Target Detector

As mentioned before, an important difference between ΜIΜΟ radar systems and common

multi-static systems is, that in ΜIΜΟ radar the received signals are processed jointly
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at a central station, whereas in multistatic radar it is normal, that each receive station

processes its received signal autonomously and transmits a local decision to a fusion center.

In [13] "1-out-of-N" decision fusion rules are discussed for moving target detection. Such

detection procedures involve first local decisions at the receive stations based on a threshold

test and later a fusion at the central station of those decisions into a final decision, which

is Η1 if 1 or more local decisions indicate target presence and Ho otherwise. The local

thresholds '-y' and the fusion rule (how to choose 1) have to be optimized jointly for such

a detection procedure. In [39], the local thresholds are derived for a given fusion rule in

the radar context. In [40], the case of bit ellors in the transmission of the local decisions is

taken into account. However, it is noted that "l out of N" decision rules are only optimal

under the assumption that the local observations are conditionally independent and have

the same distribution. The reader is referred to [41] and [42] for a thorough treatment of

decision fusion.

In this chapter, the multistate detector is implemented as a fusion of soft decisions

described by the following test and global test statistic

This expression implies that the latch receive station estimates the Doppler frequency fk , l

due to the supposedly present target's movement independently for each of the transmit

stations and independently from the other receive stations. The soft decision are transferred

to the fusion center, which only sums over all the soft decisions to compute the final test

statistic 2 . Thus, instead of transmitting K samples per test and receiver-transmitter-pair

to the central station as in the ΜIΜΟ case only one sample is fed into the fusion center in

the multistatic case. It can be argued, that binary local decisions, as described in [13], are
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nothing but a form of quantization of those samples. Following the common observation

that the fusion of soft decisions outperforms the fusion of hard decisions, it can be infelled

that a detector based on (4.21) performs at least as good as a detector based on a i-out-of-N

fusion procedure.

The expression in (4.21) is the sum of the locally derived likelihood ratios. Summing

equal weight likelihood ratios leads to an optimal test statistic under the assumption that the

observations are independent, similar to a i-out-of-N fusion. In the here discussed scenario,

the observations related to a target without RCS fluctuations are clearly correlated when

more than two receivers are employed. But the independent fading coefficients for a target

with RCS fluctuations de-correlates those observations considerable. However, deriving a

multi-static radar, which is optimal in respect to the eventual residual correction among

observations, is beyond the scope and intention of this dissertation.

4.2.3 Phased Array Moving Target Detector

A conventional phased array radar is steering a transmit beam and a receive beam towards

the cell under test under the assumption, that there are no other targets with the same

range and that the clutter is reiformly distributed. The beamformer on transmit side is

already incorporated in the signal model, (4.8). The beamformer on receive side sums the

N receiver signal vectors into a single received vector r

Assuming that the steering angle Asteeτ matches the angle of arrival fit, this processing

leads to the following observations. The target component of the received signal after

this processing under H 1 is
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resulting in a post processing target power of M2N α A per sample. As the clutter and

noise samples are independent across the receive elements, their joint collelation matrix,

post beamforming, has the form

Accordingly, it can be infelled, that transmit and receive beamforming improves the target

to clutter ratio by MN and the target to additive white noise ratio by MAN. This is due

to the fact, that the total transmit power is not normalized in this chapter as previously

mentioned. The total transmit power increases with the number of transmitter elements.

However, by increasing the total transmit power the system has also to deal with a stronger

clutter return. Therefore, increasing the number of transmitter elements enhances the target

to thermal noise ratio more drastically than the target to clutter ratio.

For comparing phased array and ΜIΜΟ radar in the subsequent, it is focused

on single transmitter systems. This eases the treatment of the phased array systems.

Furthermore, in [8] it is argued, that though beamforming on transmit side in phased array

systems enhances the signal to interference ratio, it requires the system to observe only

a specific direction at a given instant. In contrast ΜIΜΟ systems observe the complete

space at all times. Accordingly, a comparison between the two systems is "fair" only

for a single transmitter. Further, it is noted, that (4.24) leads, for a single transmitter, to

dscribing the interference sum.

In the case of a single transmitter, the beamforming procedure of the phased array on

receive side results in a coherent processing gain of N improving the signal to interference

ratio, where interference denotes both the clutter return and the additive white noise. In [5]
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the following signal to interference ratio is given for a clutter dominated scenario:

where 8Β is the antenna beamwidth. Using the approximation 8Β D and a = N • A, one

can confirm, that the improvement in signal to interference ratio scales with N in phased

array systems. This observation also verifies the signal model in the previous section.

The moving target detection procedure is based on the single K x 1 vector r.

Following the same derivation as in the section 4.2.1 the test statistic is derived as

It is noted again, that the conventional phased array radar observes only one Doppler shift

resulting from the targets radial velocity. Accordingly, the GIRT test statistic is based on

one estimate of this frequency shift, as (4.26) indicates.

4.2.4 Adaptive ΜΙΜΟ Moving Target Detector

All the decision statistics above are derived for clarity under the assumption of known

clutter correction matrix CI However, in reality this matrix might be reknown. It

could still be of the form as described in Section 4.1.3, but feature an reknown σν , an

unknown clutter power pcc(O), an reknown white noise power σα , or may even be of

complete different form. Moreover, different transmitter-receiver-pairs in the ΜIΜΟ or

multi-static system might operate via paths that are subject to different interference levels

or characteristics, and, thus, have different clutter matrices. Accordingly, Ck3 l denotes in

the subsequent the clutter matrix for the specific pair of the latch transmitter and the k-tb

receiver.

It is possible, to convert all of the above detectors to adaptive detectors, which

maintain a Constant False Alarm Rate (AFAR), [6, 38], reder Η0 for any clutter and
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noise levels and characteristics. This is accomplished by replacing the true clutter

matrix by its estimate k,1  based on L > K "secondary" data vectors, rk,i (i) for each

transmitter—receiver-pair k,1,

The rk , i (i) are measured in adjacent range cells, for which target absence is assumed. It is

refelled to [6] and [37] for details. The ΜIΜΟ test statistic is then given as

In Appendix C it is shown, that this test statistic is indeed subject to a CFAR behaviour.

The same result can easily be extrapolated to the multi-static and phased array cases. In this

context, it is noted that the clutter is assumed to have the same statistical characteristics for

all transmitter-receiver-pairs in the phased array system. Thus, the for all pairs common

clutter matrix can be estimated on secondary data vectors retried after the beamforming

process. This assumption is not made for the diversity achieving systems (ΜIΜΟ and

multi-static), as due to the desired diversity the transmit and receive elements have to be

spread out in space and, thus, it is likely that the observed clutter has different second order

statistics for the different transmitter-receiver—pairs.

In Section 4.3.4 the CFAR property of the test statistic (4.28) is demonstrated with

numerical results and the ΜIΜΟ and phased array system in adaptive mode are compared.

4.3 Simuction Results and Inferences

In this section, simulation results are discussed and the performance of the different systems

and setups is compared. In Table 4.1 the parameters used in the simulations are listed.
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The PRF is chosen to allow reambitious velocity estimates over a range of roughly

, νν Ε [-55Okm/h, 55Okm/h]. The searches of the different GIRTH procedures are

performed over this range.

4.3.1 A New Kind of Processing Gain

In this section, the ΜIΜΟ and multi-static detector are compared. In particular, it is

illustrated and discussed in what way the tests defined by (4.2O) and (4.21) differ. As

explained in the previous section, the ΜIΜΟ detector derives the test statistic based on

a joint estimate of the target velocity in vector form based on all available samples. In

contrast, a regular multi-static detector is based on likelihood ratios that are derived in

respect to the for each transmitter-receiver-pair observed frequency shifts ignoring the

observations for the other pairs.

Considering three or more receive different pairs, the ΜIΜΟ joint maximization

approach performs a search over a dimensions space, whereas the multi-static approach

searches over N dimensions independently.

In case that a target is present and the target's reflection dominates the received signal,

both searches should result in addends in the sums, (4.2O) and (4.21), determined by the

true velocity vector v and therefore the distributions of the test statistics should not differ.
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In contrast, in case, that no target is present and the received signals contain only

clutter returns and noise, the ΜIΜΟ processing imposes the condition on the search

for frequencies maximizing the sum (4.20), that all the frequencies have to relate to a

hypothetical but realistic target movement. In contrast, the multi-static searches may

choose a set of frequencies which result in maxima of the local test-statistics, but which

contradict each other. For example, assuming that three receive stations are spread over

less than 90°. For this situation, there exists no target movement that results in a positive

Doppler at the first and the third station and a negative Doppler at the station in the

middle. The ΜIΜΟ processing takes this into account, whereas the multi-static ignores

it. Accordingly, the sum of the total test statistic reder Ηρ is larger in multi-static radar

systems than it is in ΜIΜΟ radar systems.

Figure 4.3 CDF of ξ given Ηρώ for different numbers of receiver antennas.

Figures 4.3 and 4.4 show the CDFs for Ηρώ and Η1 for radar systems in ΜIΜΟ or

multi-static operation mode. The single transmitter is located at 0i = 0°. For N = 1,

the receiver is at 0i = 0°. For N = 4, the receiver locations are given as Ai =
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Figure 4.4 CDF of ξ given Η 1 for different numbers of receiver antennas.

Figure 4.3 features the experimental Cumulative Density Frection (CDF) for the test

statistic given Η0. One may see, that the multi static test statistic increases linearly with

the number of receive antennas, whereas the MIMEO test statistic increases slower.

Figure 4.4 displays the CDFs of the test statistic for a target with speed 3OOkιn/h and

no RCS fluctuations. The target to interference ratio is 0dB. Here, one can see that given

a strong target return the test statistic for ΜΙΜΟ and multi-static radar follow a similar

distribution.

It is reiterated, that the ΜIΜΟ detector imposes the condition on the test statistic,

that the frequency shifts, on which the local likelihood measures are based, recte to one

common velocity vector. The multi-static detector does not impose such a condition. This

condition reduces the interference level in the MIMO-detector and allows to choose a

smaller threshold γ , without reducing the target component. Therefore, one may claim

that using this condition results in a new kind of processing gain.



Figure 4.5 ROC for a 300km!h target with random direction and no RCS-fiuctuations.

Figure 4.6 ROC for a 500km/h target with random direction and no RCS-fiuctuations.

4.3.2 Comparing the three Radar Systems

Here, the different radar systems are compared by the means of their Receiver Operating

Characteristics (ROC). The Figures 4.5 and 4.6 show the ROC for different target to clutter
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ratios, referred to as "tc" in the legends, and target velocities of 300km/h and 500km/h,

respectively, with random direction. 1 x 8 systems are considered with the element locations

as described above.

Figure 4.7 ROC for a 300km/h target with random direction and RCS-fluctuations.

Figure 4.8 ROC for a 500km/h target with random direction and RCS-fluctuations.
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It is noted, that though the detection rules have been developed for targets with CS-

fluctuation, the plots in 4.5 and 4.6 show the performance for a non-fluctuating target.

From this plots, it can be inferred that the random direction of the target by itself leads

to a performance impairment similar to the one caused by the fading behavior of the RCS

explored in [8]. Conventional radar systems which observe only the radial component of

the target's movement suffer reder this effect. The reader may note, that in Figure 4.4 the

vanishing values of the test statistic for a single antenna illustrate this effect of small radial

velocities. Further, it is obvious that with an increased absolute speed value the chances

of small radial velocities, which are attenuated by the detector processing, are reduced.

Therefore, the performance of the phased array system is less subject to the according

degradations. The Figures 4.5 and 4.6 show this tendency.

The Figures 4.7 and 4.8 feature the ROC for targets with RCS fluctuations and

velocities of 300km/h and 55km/h with random direction. One may realize, that

the RCS fluctuations impair the performance of all three radar systems. However, the

ΜIΜΟ and multi-static radars outperform the conventional phased allay systems because

of their spatial diversity in respect to the target's movement direction and the target's RCS

fluctuations. Furthermore, the ΜIΜΟ system outperforms the multi-static system because

it imposes a condition on the interference, as explained in Section 4.3.1.

4.3.3 Distributed Transmitter Elements

In Section 4.1 it has been argued, that in the light of equation (4.7) it is desirable to

distribute both, receiver and transmitter elements, in space to ensure that the target's

movement results in sufficient Doppler shifts to separate between target and interference.

In this Subsection, the validity of this argument is demonstrated by comparing a 1 x 8 and a

2 x 4 MIMO-radar with each other. The element locations of the 1 x 8 system are 0l = 45°

and Θ = {0°, 13°, 26°, 38°, 50°, 62°, 75°, 90°}. The 2 x 4 system consists of transmitter

and receiver elements located at θ = {5°, 85°} and θ1 = {0°, 30°, 60°, 90°}.
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It should be noted here, that as the 1 x 8 and 2 x 4 capture the same amoret of

energy reflected by the target and have the same number of "diversity branches", namely

N . M = 8, it is obvious that they should perform identical in a simple single pulse and

white interference situation. Indeed, with the analysis presented in [8] and Section 3.3

this may be verified. The reader should note again, that in [8] and Section 3.3 the total

transmit power is normalized and under this constraint a 2 x 4 system is outperformed

by 1 x 8. "Denormalizing" the transmit power in Section 3.3 by replacing with Ε in

expressions (3.17) and (3.20) clearly illustrates that for simple AWGN detection without

power normalization a ΜIΜΟ and IMO would have identical ROC as long as only the

product M . N remains constant.

In contrast, Figure 4.9 shows that the system with two transmitters outperforms a

single transmitter system.

Figure 4.9 ROC for a 300km!h target with random direction and RCS-fluctuations for a
1 x 8 and 2 x 4 system.

This is a remarkable observation, as it contrasts possible inferences from the analysis

found for simple scenarios in [8] and Section 3.3. Further, noting that the 1 x 8 system
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has a total of 9 transmit or receive stations whereas the 2 x 4 system has only 6 stations,

the preference towards systems with distributed transmitter and receiver elements may be

strengthened by an economical argument.

4.3.4 AFAR Properties of the Test Statistics

In this section, 1 x 4 and 1 x 8 adaptive ΜIΜΟ or phased array systems are discussed.

Figure 4.10 shows the empirical ADF of the adaptive ΜIΜΟ test statistic, (4.28), under Ho

for a 1 x 4 system and different numbers of secondary vectors, LI The transmit and receiver

elements have the same positions as in Section 4.3.1.

Figure 4.10 ADFs for a AFAR 1 x 4 system with different amounts of secondary samples.

The solid curve is the ADF resulting from a known clutter covariance matrix. The

dashed curves reflect the empirical ADF of the test statistic ξ reder Ηρώ for L = 160 and

the dotted ones for L = 40. For each L two scenarios are considered:

• Scenario 1 (sc. 1): The clutter covariance matrix is the same for all receiver elements
and has the previously described form (Table 4.1 and Section 4.1.3).
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• Scenario 2 (sc. 2): Two of the four receiver elements observe clutter returns with
the same covariance matrix as before. For the other two the clutter to noise ratio is
reduced by 20dB and the complete interference power raised by 6dBII

The almost identical empirical CDFs for the two scenarios illustrate, that the adaptive

test statistic has a distribution that is independent of the underlying clutter characteristic

and, therefore, can be used in a detector with CFAR properties. However, the number of

secondary vectors used in the estimate of the covariance matrix has an impact on the test

statistic distribution. For small values of L a large threshold has to be used for a given

Ρfalses the variance of the test statistic reder Η8 increases. This leads to a reduced PD

and is a well observed fact for CFAR detection, [6].

Figure 4.11 ROC for a 300km/h target with random direction and RCS-fluctuations for a
phased array and MIMO 1 x 8 CFAR system, L = 200.

Figure 4.11 shows the ROC for 1 x 8 MIMO and phased array radar systems. L =

200 secondary data vectors are used. A target with RCS fluctuations and a speed of v =

300km/h is considered for Η 1 . Comparing those ROC to the ROCs featured in Figure

4.7 it can be infelled that performance of both, MIMO-radar and phased allay radar, is
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slightly impaired. However, the MIMO-system still outperforms the phased array one

significantly.



AHAPTER 5

HIGH RESOLUTION MODE OF MIMO-RADAR

This chapter explores the potential of MIMO-systems to locate a single point scatter or

separate between several of those with coherent processing over the extremely sparse

MIMO-aperture. For completeness, it is noted that a similar system with a single

transmitter is discussed in [43]. However, the here presented analysis covers the use of

several transmitter elements and investigates the role of different system parameters.

Normally, the spatial resolution in range of a radar system is determined by the signal

bandwidth employed. Coherent processing over sensor elements partly surroreding the

target may overcome this barrier.

The chapter is organized as follows: First, a signal model for a single scatter

is developed. Based on this model, the ambiguity function for a two dimensional

target location estimation is introduced. Afterwards, theoretical bounds for the location

estimation accuracy of a single scatter are introduced and compared to simulation results.

The boreds are then linked to properties of the ambiguity frection. This leads to a

further exploration of the ambiguity function and of how system parameters, such as

signal bandwidth and angular spread of the MIMO elements, determine the shape of this

ambiguity function.

The reader is asked to note, that in this chapter the total transmit power is again not

normalized by the number of transmit elements in contrast to Chapters 2 and 3.

5.1 Signal Model and Ambiguity Function

To illustrate the potential of high resolution approaches in MIMO-radar, this Chapter

explores first the accuracy, with which a single scatter can be located by a coherent array

consisting of extremely widely separated elements, similar to [43, 44]. The single point

75



76

scatter is assumed to reflect isotropically all impinging waves to all receive elements, thus

allowing the coherent processing among the elements. However, the reflection coefficient

of the scatter is assumed to be unknown. For simplicity a two dimensional scenario is

assumed. The location of the scatter is to be determined within a limited area, which may

be determined by a previously non-coherent detection mode, as described in Chapters 3

and 4 or [29]. It is convenient to introduce a coordinate system with the origin at the center

of the area and to estimate the scatter location X = [x, y]T relative to this origin. Figure 5.1

illustrates this scenario. The k-th transmit and lath receive elements are located at angles Lk

and θΐ with respect to the origin as illustrated in Figure 5.1. It is assumed that the monitored

area to be small compared to the distances from the origin to all transmitters and receivers,

such that if the origin would be moved to any point in the monitored area, the angles and

8 , would not change for all k,1. In this chapter, it is focused on scenarios in which the

elements surrored the scatter partly, thus, e.g., 101 < 90°.

Figure 5.1 Overview of system layout.

Moreover, the following discussion is simplified by assuming that the phases and the

time references at the transmit and receive elements are calibrated to a hypothetical scatter

location at the origin of above mentioned coordinate system. Under the given assumptions,

the signal attenuation due to the distance from the transmitter or receiver to the target

scatter is approximately constant, which can thus be neglected in time delay calculations.

Furthermore, a single snapshot or pulse scenario is considered. The waveform transmitted

by the k-th transmitter, reflected by a scatter located at X, leads to a signal component at
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where a contains the reflectivity of the scatter, k,1 (t) is the white Gaussian noise, and

Tk,i () is the delay for the k,1 transmit-receive-pair introduced by the scatter location X,

Hereinafter, the explicit dependency of Tk,l on X is omitted for conciseness. The

above signals are bandpass signals of the form

Assuming that the baseboard waveforms maintain approximate orthogonality

he receiver

elements can separate the signals from different transmitters. The received signals

over the complete system may then be represented by a MN x 1 vector frection

r(t) = [ri,i(t), ... , rΜ , Ν (t)]T . The noise components are assumed to be i.i.d. Gaussian.

Therefore, the pdf of the received signal vector given a scatter at )? with reflectivity a can

readily be expressed as

It is noted that the only term depending on the actual scatter position in (5.3) is the third

summand. Assuming unit norm waveforms, the second summand can be expressed as



is used to eliminate a in 5.3. Then the logarithm of the pdf of the received signal is given

where c' and c" denote constants independent of the scatter location. The second expression

separates between the phase shifts due to the carrier frequency and the baseboard collelation

processes. Note, these phase shifts can only be observed in a coherent processing mode
L,

across all elements. The Maximum Iikelihood estimate of the scatter location, X, is then

given as

In the next section, this estimate's empirical variance is found using Monte Carlo

simulations and this variance is compared to the Cramer Rao lower bored.

An intuitive way to illustrate high resolution location estimation is to introduce the

ambiguity function, Α(X ). The notion of an ambiguity function has long been used in

the context of location estimates in radar, e.g. [6]." Placing" a scatter at the origin of the

coordinate system, which implies rk , i (t) = ski (t), the ambiguity function may be defined



as a scaled version likelihood expression given in (5.5),
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The constants d' and B" scale the ambiguity in such a manner, that 0 < ΑΝΑ) < 1 is

ensured.

Figure 5.2 Ambiguity Function for a 9 x 9 MIMO-radar.

Figure 5.2 contains a plot of a ambiguity function for a 9 x 9 ΜIΜO system with

the transmitter elements distributed evenly over —45° < Θ < 45°• The receiver elements

are similarly distributed. A x and ιοcut of this ambiguity function can be found in Figure

5.6. The transmitted signals ski (t) are assumed to have a rectangular frequency response
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with bandwidth If . The ratio of this bandwidth to the carrier frequency is set to one tenth,

°ί = 0.1. The impact of this value is discussed in the following sections. The x and y

coordinates are given in multiples of the used wavelength c. The very narrow mainline

around the origin reflects the great capabilities of coherent processing in MIMO-radar.

Figure 5.3 Non-coherent Ambiguity Function for a 9 x 9 MIMO-radar.

The integrals in the sums of the last line of (5.7) are the autocorrelation functions of

which further illustrates the role of the phase shifts across the transmitter-receiver-pairs

in the coherent processing. The impact of these phase shifts is further illuminated by

introducing the non-coherent ambiguity function, Α 71C (X ), which serves as an upper bound



This function illustrates the location accuracy possible for a ΜIΜO system in non-coherent

operation. The location estimate is then solely based on the bandwidth of the used signals.

It is plotted in Figure 5.3 for the same example system as before. A x and y cut of this

non-coherent ambiguity function can be found in Figure 5.8.

By comparing the two plots, it becomes invious how the coherent processing greatly

enhances the accuracy by narrowing the mainlined of the ambiguity function substantially.

This section is concluded by demonstrating the ability of a MIMO-radar system to

resolve several closely spaced scatter. Figure 5.4 features the ambiguity function for four

equal return point scatters at locations [0, 0] T , [0, 6] T , [6, 0] T and [6, 6] T . The coordinate

system is again in multiples of c.

Figure 5.4 Ambiguity Function for four scatters in close proximity and a 9 x 9 MIMEO-
radars.
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Comparing this plot to the non coherent one in Figure 5.3, it is obvious, that a

coherent operating MIMO-radar can accurately resolve several close scatters, which a

non-coherent MIMO-radar could not distinguish. These scatters might either constitute

a single target with a fluctuating RCS or represent separate small targets.

5.2 Aramer Rao Bound

As discussed in [27], the Cramer Rao Bored (CRAB) for a parameter vector, ψ to be

estimated is given as

where the inequality implies that the difference between the first and the second matrix is a

positive definite matrix. Therefore, the CRAB provides a lower bound for the Mean Square

Error (ISE) of any rebiased estimator, which may be expressed as [45]

In the here discussed scenario, the parameter vector contains the x and y coordinates of the

scatter and the real and imaginary part of the common amplitude of the reflected signal, Br
and α i , ψ _ [x, y, α,., c i ]T . In both equations J(ψ) refers to the Fisher information matrix,

which is defined as

Introducing an alternative parameter vector, 9, the chain rule can be used with the first

equality of (5.12), [46],
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Consider a particular '9, that contains the M • N time delays Tk , 1 and the complex amplitude

pair α,. and α2 such that
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It is easy to verify the following three equalities:

The previously occulling integrals containing the transmitted signals are evaluated by



According to (5.13), J (ψ) can now be calculated and is provided in (5.31), where for

conciseness 2 ι = cos LA + cos θΐ and Yk,l = sin et + sin 8i is used. The lower bounds

for the variance of the x and y estimates are the (1, 1) and (2, 2) elements of J(ψ) -1 . It

is noted, that these elements do not depend on the real or imaginary part of the signal

amplitude, Bra or Ai , specifically, but on the square signal energy A A = Ad + A A . The

boreds derived in the above manner allow to predict performance of a location estimate

for a single scatter. Therefore, they can be used to judge the high resolution potential

of coherent MIMO-radar systems as described in the previous section and [29]. They

also allow to derive accuracy limits of approaches similar to the ones presented in [43,

44]. Furthermore, important conclusions about the influence of system-parameters on the

accuracy of the parameter estimation can be derived from J(ψ). Assuming a rectangular

the square of the effective bandwidth is found

as 0A = . Therefore, even for rectively high bandwidth to callier ratios, e.g. °1 = O.1,

the contribution of the signal bandwidth to the CRAB is negligible as ac « 1 and thus

zed upper left matrix of (5.31). However, it is noted, that by replacing

the upper left matrix in (5.31) becomes the Fisher information matrix,

one would attain in a purely Time Of Arrival (TOAD) and thus non-coherent scheme, as

described in [46]. Furthermore, it is possible to conclude from (5.31) that the CAB's for

the x and y estimates are proportional to c A 1 and the inverse of SNR. The proportionality
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to c A and equivalently its due the fact, that the coherent MIMO-system makes use of the

phase information across different paths, as, for example, equation 5.5 illustrates.
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In Figure 5.5 the bounds and the ISLE of the x and y estimates based upon the

Maximum Iikelihood estimation described in (5.6) are plotted. Note, that the ordinate

is given in multiples of λ A I The rederlying scenario is the 9 x 9 system introduced in the

previous section. The ISLE is obtained from Monte Carlo simulations with 2000 iterations

per SNR value. The empirical ISE and the theoretical boreds are in excellent agreement

for high SNR values. For low SNR the classical threshold effect, well known in time of

arrival and angle estimates, is observed. Further, it is observed that the precision of the

x and y estimates differ. This is due to the geometry of the considered scenario and is

discussed in the next section.

Figure 5.5 ISE of MI estimate and CRAB for a 9 x 9 high resolution MIMΟ radar.

5.3 Ambiguity Function Revisited

In the previous section, it has been noted that the accuracy of the location estimate differs

for the x and y coordinates due to the geometry of the scenario. Indeed, this observation is

supported by the shape of the mainline of the ambiguity function. Figure 5.6 features an

x and y cut of the ambiguity function shown in Figure 5.2. The dashed line represents the

cut in x direction and the solid one the cut in y direction. The plots clearly show that the
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Figure 5.6 x and y cuts of the Ambiguity Function.

mainline is much more narrow in they direction than in the x direction, allowing higher

accuracy and resulting in a lower ISLE for they coordinate.

It is possible to derive some idea of the shape of the mainline by calculating the 3-dB

width in the x and y directions of the ambiguity function. This is equivalent to solving

A([A x /2, 0] T ) = 2 and A([0, Aν /2]τ ) = 2 for Axe and AM , respectively, which is a rather

tedious endeavor. Instead, some simple approximations based on geometric observations

are used here. From here on it is assumed, without loss of generality, that the coordinate

system is chosen in such a manner, that the x-axis separates the transmit-receive-aperture

in two parts of the same size. Thus, the antenna elements are distributed over [ — θmaχ, Lomax]

For estimating the width of the mainline, the ΦΦ sk (τ) components in (5.8) can be ignored,

as the discussion in Section 5.2 revealed that the bandwidth has a very limited impact. By

representing the set of transmitter-receiver-pairs by two pairs, that together provide the

highest accuracy in the considered direction, the mainline widths can be approximated. As

the transmitter and receiver elements are handled in pairs and, thus, a pair the same angles

towards the monitored area, = Lib , we denote with 8, the common angle of the i-th

transmitter-receiver pair (8i = Lib = 8, i = 1, 2). The ambiguity frection in x-direction
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only can be evaluated according to (5.7) and (5.2) as

The width of the mainlined can be minimized by maximizing the term denoted by I in

(5.32). This is achieved by choosing Α ι = 0 and 0A = Amax, where LmίΧ is the largest

Similarly, the ambiguity function in direction only may be fored as

Minimizing the width leads here to ΘΆ = Am , and 0A = —Amax. Therefore, the width in y

direction is found as

cuts in Figure 5.2 are based on the 9 x 9 system described in Section 5.1 with elements

spread over [-45°, 45°]. Apparently, the approximations fit the widths of the mainline in

Figure 5.2 well. Further, the above introduced approximations imply that high resolution

requires a large angular spread or, equivalently, a large Amax. Finally, it can be noted that for

small 8max one may expect the "sparse" system to behave as a regular array. Accordingly

the width in y direction should recte to the conventional beamwidth  AI Iet R denote the
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distance between the scatter and the array and D the size of the array. By using A ye = 	 R

and sin AmQZ = 2R, (5.36) leads to the well known rection A 	 , which further validates

the above approximations.

Figure 5.7 Explanation for the non-coherent 3dB widths.

The discussion in the previous and current section established that the employed

signal bandwidth has a very limited impact on the best possible accuracy at high SNR

and the shape of the mainline. However, the bandwidth limits the amount of significant

sidelines the ambiguity function may feature. Note, that Figures 5.2 and 5.6 clearly show

two significant sidelines. Due to the extremely sparse nature of the proposed systems, very

high sidelines can occur if the bandwidth is chosen too small. The bandwidth of the signals

effectively limits the area in which significant sidelines can appear, as per the non-coherent

ambiguity frection given in (5.9) (see the example plotted in Figure 5.3) illustrated. The

area, over which significant sidelines may appear, can be approximated as, say, the 3dB

width of the non-coherent ambiguity function's mainline. To derive an approximation of

the width of the non-coherent mainlined, it is noted first that the i-th non-coherent operating

transmitter-receiver pair by itself has a squared sinc frection as an individual ambiguity

function in the 8i direction, the direction from which the pair inserves the monitored area).

This is similar to a conventional non-coherent range estimation with a bandwidth AMA . The
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first zero of this ambiguity function due to the signal bandwidth is at ά8z = 2Δ f in the A,

direction. Projecting the individual ambiguity function of the i-th transmitter-receiver pair

on the x and y axis, respectively, leads to zeros located at

	 on the x and y axis. According to Figure 5.7, one finds that for evenly distributed

transmitter and receiver pairs half of them are within the interval denoted as A and half

of them within B' and B". The ones within A feature ambiguity frections in x direction

Further, the pairs within B' and B" feature ambiguity

functions in y direction with zeros at B e  (i)

following rough approximations for the 3-dB widths

as half of the individual ambiguity frections have a zero in the x direction before ARC and

the other half have a zero in they direction before ARC. It is noted, that these are rough

AΔf 	 »,

Figure 5.8 x and y cuts of the non-coherent Ambiguity Frection.

Figure 5.8 shows the x and y cuts of the non-coherent ambiguity frection of Figure



93

5.9 of 9 x 9 system described in Section 5.1. Again, the dashed line represents the cut

in x direction and the solid one the cut in y direction. The approximations are indeed

rather rough. However, they predict the ratio between the widths in x and y direction and

also that the possible accuracy in the direction is better than the one in they direction,

which is in contrast to the coherent case. However, for the following considerations, the

important inservation is that the non-coherent mainlined width is inversely proportional to

the employed bandwidth, AMA .

As stated before, with the approximations in (5.38) the size of the area, in which

significant sidelines can appear, can be approximated as ARCH • ARCH. Further, the size

of the mainline and the sidelines is given by A A  and A. This and some assumptions

allow to incorporate the results of Steinberg et al., [47, 48] and, in particular, [49]. In

the following, random transmitter and receiver locations are considered. The angles,

at which elements can be located, are again limited to the [ —Amax, Amaχ] interval. It is

assumed that the mainline widths of the coherent and non-coherent ambiguity function

are not affected by the random element locations as long as this interval is kept constant.

Further, it is assumed that the widths of the "coherent" sidelines is similar to the ones of

the "coherent" mainlined. However, the magnitude of the sidelines are random variables,

e.g. [47]. A sideline of the ambiguity function, which is sufficiently separated from the

but within the non-coherent mainlined

Within the non-coherent mainline the

impact of the φ (τ) terms in (5.8) may be neglected. Thus, one can write for the ambiguity

function

ΙΙ

For random transmitter and receiver locations and a sufficient number of transmitters and

receivers, the term denoted as II is a complex Gaussian random variable with zero mean and
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variance 2N per complex dimension due to the central limit theorem, [49]. Accordingly,

Α( ) is an exponential distributed random variable with the mean E{A(R)} = NJN The

reader is remembered in this context, that the mainline of the coherent ambiguity function

has a height of 1.
y

The realizations of Α() roughly decollate over distances bigger than A xe and Δ.

In other words, the area of the non-coherent mainline is filled with sidelines of the size

Axe • Aye. Accordingly one expects to find

independent sidelines within the non-coherent mainline. c' and c" denote some constants,

which are not of particular interest here. The number n is referred to as the "array

parameter" in [49]. The magnitudes of these sidelines are independent random variables

with an exponential distribution according to the previous discussion. The prinability p

that all of these sidelines are smaller than a given maximum value Amax is then found as

Using 1— p lan ^' — ń In p for ρ1 / ' ti 1, the equation (5.41) can be solved for Amax resulting

in

Thus, with a given prinability p all sidelines, including the peak sideline, are smaller than

ΑmαΧ.

It is noted that, as the height of the mainline is 1, the maximum sideline value is also

the Peak Sidelined Ratio (ASIR). Therefore, important conclusions can be derived from

the analysis of the random element location scheme. First, increasing the ratio of signal

bandwidth to carrier frequency reduces logarithmically the height of the peak sideline

for a given p. Second, the product of the number of transmit and receive elements is



95

inversely proportional to the ASTIRI This reveals the important advantage of the MIMO

approach compared to a possible Single Input Multiple Output (IMO) approach, as the

later would require M Ν receive elements to achieve the same sidelined statistics as

the MIMO approach with M transmit and Ν receive elements. The beginning of this

section linked the angular spread of the system with the width of the coherent mainlined,

which defines the location accuracy discussed in the previous section. The presented

discussion is based on extrapolating the results of Steinberg et al. to a two dimensional

position estimation prinlem. Further research is necessary to validate the description of

the statistical properties of random ambiguity functions.

However, this section is concluded by illustrating the impact of the used signal

bandwidth on the amount and height of potential sidelines. Therefore, with the previously

discussed 9 x 9 system with deterministic element positions is used as an example. Figure

5.9 features z and y cuts of the coherent and non-coherent ambiguity functions. The

first ones are plotted as solid lines and the latter as dashed lines. Part (a) and (b) of the

figure show again the ambiguity function for = 0.1 similar to Figure 5.6 and 5.8. In

contrast, parts (c) and (d) feature the cuts for = 0.01. As expected the mainline width

of the non-coherent ambiguity frection increases by a factor of ten whereas the one of

the coherent ambiguity function stays constant. However, the number and the height of

significant sidelines increases when reducing the signal bandwidth as the discussion in

this section explained.
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CHAPTER 6

AONALUSION AND FUTURE RESEARAH

In Chapter 2, it has been shown that tremendous gains can be achieved with transmit

diversity in a direction finding scenario, as the diversity helps to overcome the target

fluctuations. Average and outage Cramer Rao bounds have been developed and used to

explore the diversity effects.

In Chapter 3, the ΜIMO radar approach has been compared to conventional phased

array systems for target detection in white noise. It has been illustrated that ΜIMO radar

systems still benefit from diversity even when the diversity branches are subject to different

propagation attenuations. Further, the trade-offs between coherent and non-coherent

processing, the first resulting in a coherent processing gain and the later in diversity, have

been explored.

Both, Chapter 2 and 3, include simulation results for collected target aspects. It has

been illustrated that for moderate collection coefficients between target the responses for

each aspect and high SNR a MIMO with diversity still outperforms a conventional radar

system. Both chapters reveal the great potential of MIMO systems enjoying diversity in

radar.

In Chapter 4, the diversity discussion has been extended to include moving targets

and clutter returns. It has been demonstrated that an arbitrary movement direction by itself

impairs the detection performance of Doppler processing based phased array radar in a

similar manner as the RCS fluctuations do. A spatial MIMO radar inserving the target

from several perspectives is not subject to this impairment. Further, the chapter analyzes the

effect of the strictly joint processing across all sensors for a MIΜΟ system by comparing it

to what would commonly be treated as a multi-static system. Finally, an a adaptive MIMO

moving target detector is introduced with a constant false alarm rate. This chapter has
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shown that the diversity enjoyed by a MIΜΟ system is not only advantageous in respect to

RCS fluctuations and thus provides further evidence for the MIMO radar superiority.

In Chapter 5, the MIMO radar discussion has been callied beyond diversity. For

diversity in radar non-coherent processing is used. Assuming isotropic reflecting scatterers,

the different phase shifts of the reflections across the system elements can be used in a

coherent processing system to locate a single scatterer with very high accuracy or to resolve

several scatterers. By the means of Cramer Rao bounds and 2-dimensional ambiguity

functions, the high resolution capabilities of coherent MIMO radar have been illustrated.

The effect of different system parameters such as a signal bandwidth is analyzed. The

analysis of the high resolution capabilities gives raise to great expectations for the usage of

MIMO systems in target recognition and similar applications.

Because of the significant diversity gains of MΙMO radar in respect to fading

targets or targets with arbitrary movement directions and its high resolution abilities, this

dissertation concludes that MIMO systems have the potential to change the way radar is

normally considered.

However, this dissertation can naturally only serve as an initial study. Many topics

of future research can be fored in the MIMO radar context and without attempting

completeness several shall be mentioned briefly subsequently. The trade-offs between

diversity and coherent processing gain as discussed in Chapter 3 should be explored in

more detail. The reader should note in this context that Ii et al. explore also in [ 12]

systems which are referred to in this dissertation as hybrid systems. However, the degree

at which diversity or coherent processing gains have to utilized is not discussed. Further,

tracking systems that in MIMO radar can inserve the true velocity vector and not only the

radial component are a promising field of research. Moreover, MIMO radar with moving

sensor platforms is a topic of great practical interest. Furthermore, more practical issues

such as the synchronization and communication links between the system elements need to

be addressed in the future.



APPENDIX A

DERIVATION OF THE ARAB

Though derivations for the general angle of arrival estimation CRAB can be fored in [27]

and [26], in this appendix the CRAB is derived for the specific prinlem considered in Chapter

2. The textbook derivations are for general, multiple parameter estimation CRAB and are

rather involved.

The CRAB for the parameter vector ψ is given by, [27] :

Where J(ψ) is the so called Fisher information matrix. In this appendix it is shown that

the prinlem decoupages. Iet Θ be the first element of ψ . Decoupling implies then that the

[1, 1] element of J -i is given as Jl,l = J11 . The [2, 1] and [3, 1] elements of J have to be

zero therefore. Here, it is first demonstrated that this is the case and then J 1 , 1 is evaluated.

In the following the CRAB for one snapshot is considered. Each snapshot received

vector r is a Ν dimensional complex Gaussian variable. Therefore, the [i, j] element of the

corresponding Fisher matrix can be written as:

Cr is the collection matrix of the received vector. Based on the signal model defined in

(2.19) and as mentioned in Section 2.2.1, the correction is given by

is the steering vector, as defined in Section

2.1. For conciseness, the received signal power, (2M) -1 Η c A , is denoted p8 in this

derivation. The correction matrix is then C r = ρ,α(Θ)a" (Θ) + 2σ A • IN I

The determinant of the correlation matrix can be evaluated by considering its

eigenvalue. One eigenvector is α(Θ) and the corresponding eigenvalue is
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The other Ν — 1 eigenvectors can be chosen as any set of pairwise mutual orthogonal

vectors orthogonal to a(ø). The collesponding eigenvalues are 2σA . Thus, the determinant

is constantly Ν the

determinant is independent of the value of ΘI Therefore, the first summand in (Α.2) is zero

if either i or j is 1. To prepare for the evaluation of the second terms in (Α.2) it necessary

to note, that the inverse of the correlation matrix can be found with the matrix inversion

lemma, e.g. [50]. Its derivatives in respect to Θ can be evaluated accordingly 1:

To evaluate (Α.5) the elements of the vector a, which is specified in (2.4), and their

derivatives with respect to Θ are listed subsequently; the second derivative is needed in

1 ά(Θ) denotes the derivative of a(ø) in respect to ΘI
For conciseness, the explicit dependency of the vector a on Θ is omitted.
Equality trace{BA} = trace{BA} is used in this evaluation, [51].



13ν evaluating (Α.5) with the first and second expression of (Α.6) it may be found that

is zero for i = 2, 3, as αH  + Ηπα = ΟI Thus, the prinlem decoupages and

it can be continued to evaluate the [1, 1] element of JI As stated before the derivative of the

determinant of Cry in respect to Θ is zero. Using the linearity of the expectation and trace

operator similarly to (Α.5) one can evaluate the second summand of (A.2) for i , j = 1:

Using the last line of (Α.3) in (Α.7) one finds:

The two parts of (A.8) can be evaluated with the expressions given in (Α.6):



102

Thus, the [1, 1] element of the Fisher information matrix for a single snapshot is:

As the Fisher information of multiple snapshots is the sum of the single snapshot Fisher

information and as the prinlem decoupages, the [1, 1] element of the Cramer Rao Bound

matrix, which is called CRAB (Θ ^ρ8 ), is fored as:

Expressing the dependency on the fading coefficients given by α explicitly by re-



APPENDIX B

DERIVATION OF THE TEST STATISTIA

In this appendix the test statistic for non-equal pathiosses is developed. The pdf of the

received signal under the Η 1 hypothesis is given as:

The pdf of the received signal reder Η0 hypothesis is given as:

Evaluating the logarithmic likelihood ratio test the test statistic is found as

103



104

Taking into accoret, that L is a real diagonal matrix, (3.5), and denoting with Lei) its i-th

diagonal element, the test statistic can be rewritten as



APPENDIX A

CFAR PROPERTIES OF THE ΜIΜΟ LTD

In this appendix, the CFAR properties of the MIMO moving target detector are explored.

The way this is done is similar to [38]. The adaptive MIMO moving target detector decision

statistic has the form

where k,1  is an estimate of the covariance matrix of the clutter inserved by the k,1

transmitter-receiver-pair based on L secondary sample vectors. It is focused now on a

follows a complex Wishart distribution, CC eL, K, I)

with mean I and thus its distribution of the actual clutter covariance C. Further. r'L. , is

reder H0 a complex Gaussian vector with zero mean and covariance matrix

Moreover, for any d'k,ιeM , Αν ) a reitary matrix U can be found that rotates it onto the first

are thus independent on the actual Ck , l. Therefore, the term in expression (C.3) is for any
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'z , Cy and any k, l independent from the respective Ckl . Then the double sum in respect to

k and 1 over the terms in (C.2) or (C.3) for any νχ ,; has to be independent of the eventual

different Ck,l. As the double sum is independent of Ck,1 or any Αχ , A ,, , the maximum

in respect to C , and Ay  is independent on the actual clutter covariance matrices for each

transmitter-receiver-pair, Ckl , too. Accordingly, the decision statistic in (C.1) leads reder

H0 to constant false alarm rates.
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