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ABSTRACT

SOLVENT RESISTANT MICROPOROUS/NANOPOROUS
POLYMERIC HOLLOW FIBER AND FLAT FILM MEMBRANES

AND THEIR APPLICATIONS

by
Praveen B Kosaraju

The separation and purification of organic-solvent-based process streams may be carried

out by membrane processes such as nanofiltration/ultrafiltration/microfiltration and

membrane solvent extraction. Lack of solvent stability and chemical stability of most

commercially available membranes is limiting the utilization of the above mentioned

membrane technologies. This dissertation was primarily focused on developing solvent

resistant hollow fiber and flat film membranes for separation and purification of organic-

solvent-based process streams.

Available porous polymeric supports (Polypropylene (PP), Polyethersulfone

(PES) and Nylon) suitable for the required solvent-stable applications were chosen first

and then the supports were modified to satisfy the requirements for the applications.

Membrane modification techniques employed were interfacial polymerization (IP) and

poly(ethyleneimine) (PEI) self crosslinking. Thin film composite (TFC) nanofiltration

and ultrafiltration membranes were fabricated on PES, Nylon and hydrophilized PP

support membranes. Before carrying out IP, PP was hydrophilized by pre-wetting with

acetone and treating with hot chromic acid solution. The introduced procedure of

"modified IP" involved wetting next with the aqueous monomer solution followed by the

organic monomer solution. Nanofiltration membranes were characterized using solutes,

safranin 0 (MW 351) and brilliant blue R (MW 826) dyes in methanol; ultrafiltration



membranes were characterized with a 70% alcoholic solution of zein (MW 35,000).

These membranes were also studied for long term solvent stability in ethanol and toluene.

The membrane based on PP was first hydrophilized by the techniques of "modified IP"

and PEI self crosslinking. For possible applications in microfiltration of aqueous systems,

these hydrophilized membranes were characterized by the water permeation rate.

Crosslinking of PEI was implemented on the lumen side of the Nylon hollow fibers to

reduce the pore size; then, their performance in membrane solvent back extraction was

studied. Extraction of phenol from MIBK into an aqueous caustic solution was studied as

a model system for reactive back extraction; extraction of acetic acid from MIBK into

water was studied as a model system for nonreactive back extraction. Hollow fibers of

PES were coated on the lumen side by IP. The IP layer was again coated with silicone to

make the IP coating impervious to water. The coated PES fibers were then tested for heat

transfer performance. All modified membranes were also characterized using scanning

electron microscopy.

Thin film composite nanofiltration and ultrafiltration membranes were

successfully fabricated on PP and PES hollow fiber supports; high rejections of solutes

and high solvent fluxes were achieved in OF and NF membranes. However, only the PP-

based TFC membranes retained their characteristics after solvent exposure for the studied

period of time. Permanent hydrophilization of PP was achieved by the "modified IP"

procedure. Reduced pores on the lumen side of Nylon hollow fibers provided stable

aqueous-organic interface for solute transport in membrane solvent back extraction; the

coating improved the extraction performance of the membranes. Better heat transfer



performance was achieved in the coated PES hollow fibers when compared with the non-

porous PP hollow fibers.



SOLVENT RESISTANT MICROPOROUS/NANOPOROUS
POLYMERIC HOLLOW FIBER AND FLAT FILM MEMBRANES

AND THEIR APPLICATIONS

by
Praveen B. Kosaraju

A Dissertation
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Chemical Engineering

Otto H. York Department of Chemical Engineering

January 2007



Copyright © 2007 by Praveen B. Kosaraju

ALL RIGHTS RESERVED



APPROVAL PAGE

SOLVENT RESISTANT MICROPOROUS/NANOPOROUS
POLYMERIC HOLLOW FIBER AND FLAT FILM MEMBRANES

AND THEIR APPLICATIONS

Praveen b Kosaraju

Dr. Kamalesh K. Sirkar, Dissertation Advisor 	 Date
Distinguished Professor of Chemical Engineering, NJIT

Dr. Marino Xanthos, Committee Member 	 Date
Professor of Chemical Engineering, NJIT

Dr. Somenath Mitra, Committee Member 	 Date
Professor of Chemistry and Environmental Science, NJIT

Dr. Jing Wu, Committee Member 	 Date
Assistant Professor of Chemical Engineering, NJIT

Dr. Michael Jaffe, Committee Member	 Date
Research Professor of Biomedical Engineering, NJIT



BIOGRAPHICAL SKETCH

Author:	 Praveen B Kosaraju

Degree:	 Doctor of Philosophy

Date:	 January 2007

Undergraduate and Graduate Education:

• Doctor of Philosophy in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2007

• Master of Science in Chemical Engineering,
New Jersey Institute of Technology, Newark, NJ, 2002

• Bachelor of Science in Chemical Engineering,
Bangalore University, Bangalore, India, 1999

Major:	 Chemical Engineering

Presentations and Publications:

Kosaraju, P. B.; Korikov, A. P.; Sirkar, K. K., Interfacially polymerized thin film
composite membranes based on microporous polypropylene hollow fibers. AIChE
Annual Meeting, San Francisco, CA, Nov 14, 2006.

Kosaraju, P. B.; Sirkar, K. K., Novel solvent resistant hydrophilic hollow fiber
membranes for membrane solvent back extraction. AIChE Annual Meeting, San
Francisco, CA, Nov 13, 2006.

Kosaraju, P. B.; Korikov, A. P.; Sirkar, K. K., Interfacially polymerized thin film
composite membranes based on microporous polypropylene flat films and hollow
fibers. NAMS Annual Meeting, Chicago, IL, May 17, 2006.

Kosaraju, P. B.; Sirkar, K. K., Novel solvent resistant hydrophilic hollow fiber
membranes for membrane solvent back extraction. Poster session: NAMS Annual
Meeting, Chicago, IL, May 15, 2006.

iv



Kosaraju, P. B.; Sirkar, K. K., Novel solvent resistant hydrophilic hollow fiber
membranes for membrane solvent back extraction. AIChE Annual Meeting,
Cincinnati, OH, Nov 3, 2005.

Kosaraju, P. B.; Kovvali, A. S.; Korikov, A. P.; Sirkar, K. K., Hollow fiber membrane
contactor based CO2 absorption-stripping using novel solvents and membranes.
NAMS Annual Meeting, Providence, RI, June 14, 2005.

Kosaraju, P. B.; Sirkar, K. K., Novel solvent-resistant hydrophilic hollow fiber
membranes for efficient membrane solvent back extraction. J. Membr. Sci.
(accepted for publication). This paper was selected for the AIChE separations
division graduate student award in the area of extraction.

Korikov, A. P.; Kosaraju, P. B.; Sirkar, K. K., Interfacially polymerized hydrophilic
microporous thin film composite membranes on porous polypropylene hollow
fibers and flat films. J. Membr. Sci. 2006, 279, 588-600.

Kosaraju, P. B.; Kovvali, A. S.; Korikov, A. P.; Sirkar, K. K., Hollow fiber membrane
contactor based CO2 absorption-stripping using novel solvents and membranes.
Ind. Eng. Chem. Res. 2005, 44, 1250-1258.

Kosaraju, P. B.; Sirkar, K. K., Interfacially polymerized thin film composite membranes
on microporous polypropylene support for solvent resistant nanofiltration.
(manuscript in preparation).



To my beloved family and friends for their love, support and encouragement

vi



ACKNOWLEDGMENT

First and foremost, I would like to thank my advisor, Dr. Kamalesh K Sirkar for

introducing me to this exciting area of membrane science and technology and providing

me with most valuable guidance and heartfelt support all through my graduate education.

He has always been a source of encouragement and knowledge. His perseverance,

sincerity and hardworking qualities will always serve as an inspiration to me.

I would like to thank Dr. Marino Xanthos, Dr. Somenath Mitra, Dr. Jing Wu and

Dr. Michael Jaffe, who were kind enough to actively participate in my dissertation

committee, providing constructive criticisms and valuable suggestions at all stages of this

work. I would also like to thank Dr. Reginald Tomkins and Dr. Basil Baltzis for their

help and guidance throughout my studies at NJIT.

I express my deep gratitude to Center for Membrane Technologies at NJIT, which

provided me with an opportunity and platform for fulfilling my dreams and desire to

reach my goals. I would like to thank Dr. Baoan Li and Dr. Liming Song for testing the

heat transfer performance of the fabricated membrane modules. A special thanks goes to

Dr. Alexander Korikov for his guidance and involvement in successfully achieving the

hydrophilization of flat polypropylene supports. I would also like to thank all members of

the research group for their help and guidance in carrying out the research. Jin U Ha's

help with FT-IR is also acknowledged herewith.

Finally, no words are enough to acknowledge the constant support and

encouragement of my family, especially my parents. Thank you. Lastly, a special note of

thanks goes to all my friends who stood with me at all times. I cherish their friendships.

vii



TABLE OF CONTENTS

Chapter	 Page

1 INTRODUCTION 	 1

1.1 Membrane Processes, Membranes and their Preparation  	 1

1.2 Solvent Stable Membranes for Different Membrane Applications  	 6

1.2.1 Solvent Resistant Nanofiltration/Ultrafiltration
Membranes 	 6

1.2.2 Solvent Resistant Hydrophilic Microfiltration
Membranes 	 9

1.2.3 Solvent Resistant Hydrophilic Membranes for Membrane Solvent
Back Extraction 	 10

1.2.4 Thin Film Composite Membranes for Heat Transfer
Applications 	 14

1.3 Approach 	 15

1.4 Support Membranes 	 16

1.5 Coating Techniques 	 21

1.5.1 Interfacial Polymerization 	 21

1.5.2 Modified Interfacial Polymerization 	 27

1.5.3 PEI Self-Crosslinking 	 28

1.6 Hydrophilization of the Hydrophobic Support 	 29

1.7 Coating Hollow Fiber Membranes 	 30

1.8 Membrane Modification, Characterization and their Applications 	 34

1.8.1 Ultrafiltration/Nanofiltration 	 34

1.8.2 Microfiltration 	 35

via



TABLE OF CONTENTS
(Continued)

Chapter	 Page

1.8.3 Membrane Solvent Back Extraction 	 35

1.8.4 Hollow Fiber Membranes for Heat transfer 	 37

2 EXPERIMENTAL 	  39

2.1 Membranes, Chemicals and Instruments 	 39

2.1.1 Membranes 	 39

2.1.2 Chemicals 	 39

2.1.3 Instruments 	 40

2.2 Handling of the Membranes 	  40

2.2.1 Handling of Flat Film Membranes 	 40

2.2.2 Handling of Hollow Fiber Membranes 	 42

2.3 Membrane Modification 	 46

2.3.1 Hydrophilization of PP Hollow Fibers and Flat Films to Carry out IP....	 46

2.3.2 Coating Hollow Fiber Membranes of PP, PES and Nylon in Modules by
IP 	 47

2.3.3 Coating Flat PP Membranes by IP 	 49

2.3.4 Permanent Hydrophilization of PP Flat Sheet Membranes 	 51

2.3.5 Coating Nylon by PEI Crosslinking for MSBE 	  52

2.3.6 Modification of PES Hollow Fibers for Heat Transfer Applications 	 52

2.4 Membrane Characterization 	 53

2.4.1 Characterization by SEM and FT-IR 	 53

2.4.2 Ultrafiltration and Nanofiltration 	 54

ix



TABLE OF CONTENTS
(Continued)

Chapter	 Page

2.4.3 PP Flat Sheet Membranes Modified for Permanent Hydrophilization 	 57

2.5 Performance of the Coated Membranes 	 57

2.5.1 Solvent Stability of the Coated Hollow Fiber Membranes for
Ultrafiltration and Nanofiltration Applications 	 57

2.5.2 Membrane Solvent Back Extraction 	 58

2.6 Heat Transfer 	 61

2.7 Calculation Procedures 	 63

2.7.1 Calculation of Solute Rejection and Solvent Flux in Ultrafiltration and
Nanofiltration Membranes.. 	 63

2.7.2 Considerations on Mass Transfer Coefficient Calculations in MSBE 	 63

2.7.3 Calculation of Overall Heat Transfer Coefficients in Modified PES
Hollow Fiber Modules 	 65

3 ULTRAFILTRATION AND NANOFILTRATION 	  66

3.1 Hydrophilization 	 66

3.2 Ultrafiltration 	 68

3.2.1 Coating on X-10 Hollow Fibers (Module A) 	 68

3.2.2 Coating on X-20 Hollow Fibers (Module B) 	 73

3.2.3 Optimized Coating Procedure 	 77

3.2.4 Coating on PES (Module C) and Nylon (Module D) Hollow Fibers.. ..... 	 79

3.3 Nanofiltration 	 81

3.4 Conclusions 	 86

4 PERMANENT HYDROPHILIZATION OF PP FLAT SHEET MEMBRANES 	  90



TABLE OF CONTENTS
(Continued)

Chapter	 Page

4.1 Hydrophilization by PEI Self-Crosslinking 	 90

4.2 Hydrophilization by a "Modified IP" Procedure 	 91

4.3 Conclusions 	 94

5 MEMBRANE SOLVENT BACK EXTRACTION 	  96

5.1 Membrane Modification 	 96

5.1.1 Modification of PP by the "Modified IP" Procedure 	 96

5.1.2 Modification of Nylon Hollow Fibers by IP 	 96

5.1.3 Modification of Nylon Hollow Fibers by PEI Self-Crosslinking 	 97

5.2 Reactive Back Extraction 	  101

5.3 Nonreactive Back Extraction 	 106

	

5.4 Stability of the PEI-Coated Membranes    109

5.5 Conclusions 	 109

6 HEAT TRANSFER 	  111

6.1 Membrane Modification 	 111

6.2 Heat Transfer Performance 	  113

6.3 Conclusions 	 114

7 GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
STUDIES 	  117

APPENDIX DATA TABLES AND SAMPLE CALCULATIONS IN MEMBRANE
SOLVENT BACK EXTRACTION 	  121

REFERENCES 	  127

xi



LIST OF TABLES

Table	 Page

1.1 Membrane Pore Size and Applied Pressure Range for Microfiltration,
Ultrafiltration and Nanofiltration  	 2

1.2 Membrane Manufacturing Methods and Membrane Materials  	 4

1.3 Limitations of Commercial Ultrafiltration Membranes  	 8

1.4 Membrane Modification Techniques and the Supports Used for Different
Membrane Applications  	 17

1.5 Characteristics of the Porous Support Membranes 	 20

2.1 Characteristics of the Fabricated Hollow Fiber Membrane Modules  	 45

2.2 Characteristics of PES Hollow Fiber Membrane Modules for Heat Transfer
Applications  	 53

3.1 Solvent Flux and Zein Rejection in Hollow Fiber Membranes  	 69

3.2 The Behavior of Solute Rejection and the Solvent Flux (Measured at 413 kPa)
with an Increase in the Monomer Concentrations Used for the Coating in
Hollow Fiber Membrane Modules 	 82

4.1 Breakthrough Pressures and Water Flux in Polypropylene Flat Membranes
Modified using PEI Crosslinking  	 91

4.2 Breakthrough Pressure and Water Flux in Polypropylene Flat Membranes
Modified by the "Modified IP" Procedure and Employing Water as a Medium
for PEI Deposition  	 93

5.1 Effect of PEI Concentration on the Breakthrough Pressure and Reactive Back
Extraction Performance in Coated Hydrophilic Hollow Fibers 	  100

5.2 Effect of Organic and Aqueous Phase Flow Rates on Experimental and
Calculated Overall Mass Transfer Coefficients in Hydrophobic Fibers for a
Nonreactive Back Extraction System 	  107

6.1 Conditions for Modification of PES Hollow Fiber Modules for Heat Transfer.... 112

6.2 Heat Transfer Performance Testing Configurations and Conditions 	  114

xii



LIST OF FIGURES

Figure 	 Page

1.1 Classification of membranes based on membrane morphology  	 3

1.2 Schematic of the immobilization of the aqueous-organic interface at the pore
mouth of the hydrophilic membrane with aqueous phase filled pores 	 11

1.3 Pore structure of Celgard PP flat film membranes  	 18

1.4 Cross section of PES membrane 	 19

1.5 ID of Nylon hydrophilic hollow fiber membrane  	 19

1.6 OD of Nylon hydrophilic hollow fiber membrane 	  21

1.7 Polymerization at the interface of immiscible phases having reactive monomers.	 22

1.8 Schematic of the course of polymerization in the organic phase 	 25

1.9 Structure of poly(ethyleneimine) 	 28

2.1 Setup for passing different solutions through the flat film membranes in the
coating process 	 41

2.2 Flat film membrane cell 	 42

2.3 Assembly of a hollow fiber membrane module 	 43

2.4 Experimental setup for modification of hollow fiber membrane modules (This
setup was also used for characterization) 	 46

2.5 Clamping the flat membrane on PTFE roller 	 50

2.6 Polymerization on the flat film membrane in the organic monomer containing
solution bath 	 50

2.7 Schematic of characterization of the coated hollow fiber membranes by SEM 	 54

2.8 Calibration of the protein, zein, in 70% ethanol (rest, water) 	 55

2.9 Calibration curve for safranin 0 in methanol 	 56

2.10 Calibration curve for brilliant blue R in methanol 	 56



LIST OF FIGURES
(Continued)

Figure	 Page

2.11 Experimental setup for membrane solvent back extraction 	 60

2.12 Calibration curve for analyzing phenol in MIBK... 	 62

3.1 a) Surface of the coated X-10 hollow fiber, coated by wetting the hydrophilized
surface with organic solution followed by aqueous solution; b) defects in the
coated surface of X-10 hollow fiber, heat treated by passing hot water after IP 	 71

3.2 Surface of the third coated layer on X-10 hollow fiber support 	 72

3.3 Surface of X-10 PP hollow fiber membrane heat treated by passing hot air 	 72

3.4 Defect in the coated surface of X-20 hollow fiber 	 74

3.5 Solvent stability of the coated PP X-20 hollow fiber membranes: solvent flux
and zein rejection with time (zein concentration = 1 g/1; AP = 138 kPa)  	 76

3.6 Surface of the coated X-20 hollow fiber 	 78

3.7 A rough coating on X-20 hollow fiber (0.5 wt% 1,3-phenylenediamine , 0.5
wt% trimesoic acid trichloride, polymerization time: 10 minutes) 	 79

3.8 Solvent stability of the coated PES hollow fiber membranes in ethanol: solvent
(70% ethanol) flux. and zein rejection with time (zein concentration = 1 g/1; AP
= 138 kPa)  80

3.9 Effect of applied pressure on the permeate flux of a pure solvent (methanol) in
the coated flat film membranes of PP coated with 0.75 wt% of PEI and 0.75
wt% of IPD for ten minutes 	 85

3.10 Solvent stability of the coated PP X-20 hollow fiber membranes in toluene:
solvent (methanol) flux and brilliant blue rejection with time (brilliant blue R
concentration = 0.01 wt %; AP = 413 kPa) 	 86

3.11 FT-IR spectrum of the non-coated and polyamide-coated flat film membranes of
PP 	 87

4.1 Surface of PP flat membrane coated by "modified IP" procedure with 3 wt% of
aqueous PEI and 2 wt% IPD in xylene 	 94

xiv



LIST OF FIGURES
(Continued)

Figure	 Page

4.2 Surface of PP flat membrane coated by "modified IP" procedure with 6 wt% of
aqueous PEI and 2 wt% IPD in xylene 	 95

5.l Surface of Nylon fiber coated with low monomer concentrations (0.125 wt %
PEI and 0.125 % IPD) 	  97

5.2 Coating on inner surface of Nylon 6 hollow fiber (coated with 4 wt% PEI
aqueous solution) 	 99

5.3 Cross section of the coated Nylon 6 fiber (coated with 4 wt% PEI aqueous
solution) 	 99

5.4 Effect of organic phase flow rate variation on extraction of phenol from MIBK
into an aqueous caustic solution in hydrophobic, non-coated and coated
hydrophilic hollow fiber membranes. a) Overall mass transfer coefficient vs.
organic phase flow rate; b) Sherwood number vs. tube-side organic phase
Reynolds number 	 103

5.5 Theoretical and experimental tube-side Sherwood numbers in hydrophobic,
non-coated and coated hydrophilic hollow fiber membranes for back extraction
of phenol from MIBK into caustic solution 	  105

5.6 Overall mass transfer coefficient vs. organic flow rate in non-coated and 4 wt%
PEI-coated hydrophilic hollow fiber membranes for nonreactive back extraction
system at an aqueous phase flow rate of 0.86 cm3/s  108

6.l Variation of overall heat transfer coefficient of Module 1 with linear velocity of
hot brine (4% NaCl) flowing on the tube side at an inlet temperature of 90°C
(shell side: D.I. water, inlet temperature 20°C, linear flow rate 3600 cm/min) 	

115
6.2 Variation of overall heat transfer coefficient of Module 2 with linear velocity of

D.I water flowing on the tube side at an inlet temperature of 16°C (shell side:
4%NaCl, parallel flow, inlet temperature 93°C, linear velocity 5500 cm/min) 	  115

6.3 Variation of overall heat transfer coefficient of Module 3 with linear velocity of
hot brine (4%NaCl) flowing on the shell side at an inlet temperature of 95°C
(tube side: tap water, inlet temperature 25°C, linear velocity 16000 cm/min) 	  116

xv



LIST OF SYMBOLS

Am mass transfer area of the hollow fiber modules, cm 2

Caq concentration of solute in aqueous phase, mol/cm3

Cfeed concentration of solute in the feed solution, g/ cm3

Corg concentration of solute in organic phase, mol/cm3

Cpermeate concentration of solute in the permeate, g/ cm3

Cp specific heat, J/(kg K)

ΔCLM logarithmic mean concentration difference, mol/cm 3, equation (2.3b)

di inner diameter of a hollow fiber, cm

do outer diameter of a hollow fiber, cm

dlm logarithmic mean diameter of a hollow fiber, cm

DAo, DAw diffusion coefficient of solute in organic, aqueous phase, cm 2/s

Dh hydraulic diameter of the shell side of hollow fiber module, cm

kmo, kmw membrane transfer coefficient when membrane is filled up with organic

phase, aqueous phase, cm/s

ko organic phase film transfer coefficient, cm/s

kw aqueous phase film transfer coefficient, cm/s

Ko overall mass transfer coefficient based on organic phase, cm/s

L length of hollow fiber module, cm

m distribution coefficient of solute between organic and aqueous phase,

(gmol/cm 3 )|org	/ (gmol/cm3 )|aq

m mass flow rate, kg/s

xvi



LIST OF SYMBOLS
(Continued)

NGz Graetz number, πdiNRe-tNSc-t/4L

NRe-t, NRe-s tube-side and shell-side Reynolds numbers, d iυ/ηo, Dhυe/ηw

NSc-t,NSc-s tube-side and shell-side Schmidt numbers, ηo /D,ηw/DAw

NSh-t, NSh-s Sherwood number, kodi/DA0 ,kwDhl DAw

ΔP transmembrane pressure, kPa

ΔPb breakthrough pressure, kPa

Q rate of heat transfer, W

Qaq aqueous phase flow rate, cm3/s

Qorg organic phase flow rate, cm3/s

ri inner radius of hollow fiber, cm

r radial location in a hollow fiber, cm

r+ r/ri

R percentage rejection of solute, %

t thickness of membrane, cm

Ts shell side temperature, K

Tt tube side temperature, K

ΔT temperature difference, K

ΔTlm logarithmic mean temperature difference, K

U overall heat-transfer coefficient, W/(m 2K)

v velocity, cm/s

ve velocity based on empty shell side cross-sectional area, cm/s

xvii



LIST OF SYMBOLS
(Continued)

Greek letters

φ packing fraction of shell side of hollow fiber modules

εm porosity of membraneτm

membrane tortuosity

ηo , ηw kinematic viscosity of MIBK, water, cm2/s

xviii



CHAPTER 1

INTRODUCTION

In separation and purification activities pursued in chemical, petrochemical,

pharmaceutical, biotechnology, textile, food and beverage industries, a variety of organic-

solvent-based process streams are encountered. The separation and purification of such

solutions may be carried out by nanofiltration/ultrafiltration/microfiltration membranes. 1-

16 Lack of solvent stability and the chemical stability of most commercially available

membranes is limiting the utilization of membrane technologies in the above mentioned

industries. Currently available membranes that are claimed to be solvent resistant are

generally too expensive; others are not truly solvent resistant. 4, 14, 17, 18 Similarly, solvent

resistant hydrophilic membranes with the required pores sizes for membrane solvent back

extraction are not available. 19

1.1 Membrane Processes, Membranes and their Preparation

The pressure-driven membrane processes of interest in this study are nanofiltration,

ultrafiltration and microfiltration. Driven by the applied pressure gradient, the solvent

permeates in these processes through the membrane and the solutes will be rejected. As

we go from microfiltration, through ultrafiltration and nanofiltration, the size of the

solutes diminishes; consequently the pore sizes in the membrane must be smaller. As the

pore sizes in the membrane become smaller, the applied pressures have to be increased to

achieve reasonable solvent permeation rates. The pore sizes of the membranes and the

1



2

applied pressure ranges of microfiltration, nanofiltration and ultrafiltration are presented

in Table 1.1.

Table 1.1 Membrane Pore Size and Applied Pressure Range for Microfiltration,
Ultrafiltration and Nanofiltration

Membranes are classified based on different criteria; classification of membranes

according to the morphology is relevant to this study. Membranes are primarily classified

as symmetric and asymmetric membranes based on the membrane morphology. Figure

1.1 illustrates this classification along with the morphology of different membranes. Pore

dimensions of symmetric membranes will be uniform throughout the cross section of the

membrane. Thickness of symmetric membranes range roughly from 10 to 200 μm.

Resistance to mass transfer is determined by the membrane thickness and a decrease in

membrane resistance will result in an increased permeation rate. Asymmetric membranes

consist of a very dense top layer or skin having a thickness of 0.1 to 0.5 μm supported on

a porous sublayer of about 50 to 150 μm thickness. The skin or the selective layer in the

asymmetric membrane largely controls the membrane properties; hence asymmetric

membranes have the advantage of high permeation rates resulting from the thin selective

layers. 20
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Figure 1.1 Classification of membranes based on membrane morphology.

Table 1.2 summarizes commonly employed manufacturing methods for synthetic

membranes as well as the membrane materials commonly used. 20, 21 Pores of

microfiltration membranes are larger; therefore symmetric membranes having large-sized

pores are good enough to generate higher fluxes required in microfiltration. It is not

necessary to employ asymmetric membranes to generate higher fluxes in microfiltration.

Hence microfiltration membranes are in general symmetric membranes. Techniques for

fabrication of symmetric membranes are sintering, stretching, track-etching and phase

inversion. Among these techniques, phase inversion can produce ultrafiltration as well as

dense membranes; the rest of the techniques can only produce membranes with pores in
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the microfiltration range. Symmetric membranes prepared from hydrophobic materials

such as polytetrafluoroethylene (PTFE), polyvinylidenefluoride (PVDF) and PP are often

used for microfiltration. These materials exhibit good chemical and thermal stability, but

water can not wet these membranes spontaneously because of their hydrophobicity.

Therefore, these membranes have to be prewetted (usually by ethanol) when used with

aqueous solutions.

Table 1.2 Membrane Manufacturing Methods and Membrane Materials

Asymmetric membranes can be further classified as integrally skinned

membranes and composite membranes. The selective layer and the support are made up

of the same material in integrally skinned membranes. Integrally skinned asymmetric

membranes are generally fabricated by the technique of phase inversion. In phase

inversion, a polymer solution is transformed in a controlled manner from a liquid state to

a solid state. By controlling the initial stage of phase transition, the membrane
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morphology can be controlled. Symmetric, asymmetric, porous and nonporous

membranes can be prepared by the technique of phase inversion.

In composite membranes, the selective layer originates from a membrane material

different from the support. Most composite membranes are thin film composite (TFC)

membranes; "thin film" refers to a thin selective layer on the support. The major

advantage of TFC membranes is that the selective layer and the support can be optimized

individually to achieve the desired membrane properties with respect to selectivity,

permeation rates, and chemical and thermal stability. Dip-coating, interfacial

polymerization and plasma polymerization are a few of the established methods for

fabrication of thin film composite membranes. 20 Dip-coating makes membranes with a

very dense skin; composite membranes prepared by dip coating are used for reverse

osmosis, gas separation and pervaporation. Another method of applying a very thin dense

layer upon a porous support is via plasma polymerization. Plasma is obtained by the

ionization of a gas by means of an electrical discharge at high frequencies and

precipitated on the support membrane surface. The structure of the resulting polymer is

generally difficult to control. Coating the lumen side of the hollow fibers via plasma

polymerization is difficult to achieve. The technique used in the current study for

fabrication of TFC membranes is interfacial polymerization (IP). More details about this

technique are provided in Section 1.5.1.
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1.2 Solvent Stable Membranes for Different Membrane Applications

Membrane processes such as microfiltration, ultrafiltration, nanofiltration and membrane

solvent back extraction demand solvent stable membranes when the processes involve

organic solvents. These membrane processes and the solvent stability of the membranes

for organic solvents will be discussed in this section.

1.2.1 Solvent Resistant Nanofiltration/Ultrafiltration Membranes

Nanofiltration has gained a lot of attention because of its low operation and maintenance

costs. 22 Nanofiltration is well established for aqueous systems whereas it is still under

development for non-aqueous systems mainly due to lack of appropriate solvent resistant

nanofiltration membranes. 4, 14 The applications of solvent resistant nanofiltration

membranes (SRNF) are however rapidly increasing. These include: materials recovery

from fermentation broth or whey, dyeing industry, separation of active pharmaceutical

compounds (antibiotics), residual reactants or solvents in pharmaceutical synthesis,

separation of homogeneous catalysts from organic solutions, separation of mineral oil

from organic solvents, separation of free fatty acids from vegetable oil and separation of

light hydrocarbon solvents from Tube filtrates. 1-10, 14, 22-25 Polymeric membranes after

contact with an organic solvent may suffer from swelling or dissolution/disintegration of

membranes or relaxation of polymer chains due to plasticization in solvent. This results

in a loss of membrane characteristics. Commercially available SRNF membranes have

been explored for a number of applications and their solvent stability was studied. 4, 14It

was reported that the membranes claimed to be solvent resistant failed in the long run. 14

A number of novel SRNF membranes are also under development. 4, 12, 13, 26
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Nanofiltration membranes are generally fabricated by the method of making

composite membranes. 27, 28 Thin film composite (TFC) membranes via interfacial

polymerization is the most effective method as these membranes provide high fluxes over

other nanofiltration membranes. 22 In TFC by IP, reactive monomers are dissolved in two

immiscible phases and the polymerization of the reactive monomers takes place on the

surface of the porous support membrane. The benefit of TFC by IP is that the membrane

properties can be controlled by optimizing the characteristics of the selective layer and

support. The selective layer can be optimized for solute rejection and solvent flux by

controlling the coating conditions and characteristics of the reactive monomers. 29 The

microporous support can be selectively chosen for porosity, strength and solvent

resistance. The support membranes generally used are ultrafiltration membranes of

polysulfone or polyethersulfone; these supports have limited stability for organic

solvents. They can not handle aromatic hydrocarbons, ketones, ethers and esters. 17, 18, 21

Hence the TFC fabricated from these supports can not be utilized for solvent resistant

nanofiltration applications.

Organic solvents are being increasingly used in extraction, purification and

processing of pharmaceuticals, food and flavor compounds. 11-13 Ultrafiltration would be

the method of choice for separating the desired compounds and for recycling the solvents

if solvent stable ultrafiltration membranes can be employed. Most ultrafiltration

membranes are manufactured by the phase inversion process. During the membrane

fabrication by the process of phase inversion, the polymers are dissolved in organic

solvents. Hence, the membranes are likely to swell or dissolve in the organic solvents

during the usage leading to the changes in solvent flux or solute rejection. 17, 18 As the
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stability of the polymer increases, it generally becomes more difficult to process the

polymer into a membrane. Stability and processability of the polymer oppose each

other. 20

Shukla and Cheryan 17 screened a number of ultrafiltration membranes for solvent

stability and tested some of the membranes claimed to be solvent resistant for stability in

aqueous ethanol solution. Out of a number of ultrafiltration membranes tested, cellulose

and polysulfone-based membranes failed in a few weeks of solvent exposure. Although

polyacrylonitrile-based membranes appeared to have the longest stability periods among

the tested membranes, their performance declined slowly with time. 17 This clearly

indicates the need for solvent stable membranes for ultrafiltration. Limitations of some of

the commercially available ultrafiltration membranes are listed in Table 1.3. 20, 21

Table 1.3 Limitations of Commercial Ultrafiltration Membranes

Membrane Limitations

Cellulose acetate
Narrow temperature range (T max = 30°C)

Narrow pH range (3 to 6)
Highly susceptible to microbial attack

Polysulfone, Polyethersulfone

Poor stability for aromatic hydrocarbons,
ketones, ethers and esters

Low pressure limits (100 psig (790 kPa) for
flat sheets and 25 psig (274 kPa) for hollow

fibers)

Regenerated cellulose Is stable to only alcohols

Polyvinylidene fluoride
Hydrophilized PVDF cannot withstand

caustic conditions
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1.2.2 Solvent Resistant Hydrophilic Microfiltration Membranes

Hydrophobic materials such as PTFE, PVDF and PP are often used for microfiltration;

they can withstand wide pH ranges, and exhibit good chemical and thermal stability. But

their use in aqueous systems such as water purification/recovery in beverage industry,

pulp and paper, and food processing industry has been limited because of their high

hydrophobicity. 15 Water can not wet these membranes spontaneously because of their

hydrophobicity. These membranes have to be prewetted (usually by ethanol) when used

with aqueous solutions. Their use in biotechnology and food industries is also limited

because of the biofouling that results from the hydrophobic nature of these membranes. 16

Microfiltration membranes from PTFE may be prepared by sintering and

stretching whereas PVDF membranes are made by phase inversion. Microporous

membranes can be formed from polyolefins such as polypropylene and polyethylene by

the thermally induced phase separation (TIPS) process or high melt stretch extrusion

process. 15, 20 Out of these membrane materials and membranes, polypropylene or

polyethylene base materials are of low cost and the membrane fabrication processes for

PP or PE are well established. PP membranes possess many desirable properties such as

high void volumes, well controlled porosities, usable over wide pH ranges and high

chemical stability. 15 Because of these reasons, the polypropylene or polyethylene

membranes are very attractive. Hydrophilizing such an inexpensive membrane from PP

or PE would allow the use of membrane microfiltration technologies in food, beverage,

biotechnology, pulp and paper industries and water purification/recovery systems. 15, 16

Although hydrophilic PVDF membranes are commercially available, they can not sustain

alkaline conditions and hence cleaning of the membranes is problematic.
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1.2.3 Solvent Resistant Hydrophilic Membranes for Membrane Solvent Back

Extraction

Nondispersive membrane solvent extraction is being extensively used and studied for a

number of applications including extraction of metals, pollutants and pharmaceutical

products. 19, 30-43 Large-scale industrial installations exist. 35, 36 Membrane solvent

extraction (MSE) is generally followed by membrane solvent back extraction (MSBE) for

regeneration of organic solvents contaminated with metals and pollutants from the feed

stream. 19, 44-47Membrane solvent extraction as well as membrane solvent back extraction

have the following wellknown advantages: dispersion-free operation eliminates emulsion

formation, phase entrainment and the separation of aqueous and organic phases after

achieving the required separation; no limitation on the phase flow rate ratio and density

differences; highly compact devices. Additional advantages are discussed in the

literature. 39-42

In MES/MSBE, two immiscible phases (the aqueous phase and the organic phase)

will be flowing on either side of the membrane and membrane pores will be filled with

one of the phases. Hydrophobic membrane pores can only be filled with aqueous phase

whereas the hydrophilic membrane pores can be filled either with aqueous phase or the

organic phase. When the phase that fills the membrane pores is maintained at an equal or

lower pressure than the other phase, the aqueous-organic phase interface will be

immobilized at each pore mouth. One or more solutes can be transferred between the two

immiscible phases through the immobilized interface. Schematic of the immobilization of

the aqueous-organic interface at the pore mouth of the hydrophilic membrane with

aqueous phase filled pores is shown in Figure 1.2.
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Figure 1.2 Schematic of the immobilization of the aqueous-organic interface at the pore
mouth of the hydrophilic membrane with aqueous phase filled pores.

In MSE/MSBE, the overall mass transfer rate of solute is controlled in general by

the boundary layer resistances on both sides of the membrane and the membrane

resistance; the membrane resistance appears due to the liquid phase occupying the

membrane pores. 41 Membrane-based solvent extraction introduces this additional

resistance of the membrane phase to the solute mass transfer processes. Membrane

resistance is reduced if the solute prefers the phase in the membrane pores. 19, 41-43In back

extraction, the solute should prefer the aqueous phase. Therefore, it is necessary to have a

hydrophilic membrane with the aqueous phase in the pores. It is well known in the

literature. 19, 41, 42 One can achieve it by employing hydrophilic membranes; however such

membranes have to be resistant to organic solvents. Hydrophobic membrane pores can be

filled only with the organic phase and are advantageous only for membrane solvent

extraction. On the other hand, pores of the hydrophilic membranes can be filled either
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with the organic phase or with the aqueous phase and nondispersive operation can be

carried out as long as the correct phase pressures are maintained. 31 Hence, hydrophilic

membrane modules can be used for efficient solvent extraction as well as solvent back

extraction. Porous hydrophilic membrane modules are potentially advantageous in that a

single kind of membrane module (hydrophilic) can be used for both solvent extraction

and solvent back extraction. 19, 31, 41

Basu et al. 19 have studied membrane solvent back extraction of phenol from

MIBK by aqueous caustic solution employing flat porous films of hydrophilic Nylon 6

and Celgard polypropylene hydrophobic membranes. Higher overall mass transfer

coefficients were observed in Nylon-based hydrophilic membranes over polypropylene

hydrophobic membranes since the membrane pores were filled with the aqueous solution

in Nylon-based hydrophilic membranes. 19 Lin and Juang46 have studied extraction and

back extraction of metallic cations and anions in hydrophobic hollow fiber membranes

modules; organic phase was in the membrane pores for the back extraction. They

reported that extraction was governed mostly by aqueous-layer diffusion, whereas back-

extraction was governed by membrane diffusion and organic-layer diffusion. Very

similar results were reported by Ortiz et al. 47 for simultaneous extraction and back

extraction of chromium(VI) carried out using hydrophobic fibers. D'Elia et al. 42

concluded that extraction in hollow fibers will be the fastest when the fibers are wetted

by the fluid in which the solute is more soluble. These results indicate the existence of

considerable additional membrane resistance in MSBE when hydrophobic membranes

are employed. These studies support the earlier argument of using hydrophilic
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membranes to reduce the membrane resistance and suggest the use of solvent resistant

hydrophilic membranes for efficient membrane solvent back extraction.

In addition to hydrophilicity and solvent-resistant nature of the membranes for

MSBE, it is critical to have optimum pore sizes as it influences the breakthrough

pressure. Some immiscible aqueous-organic phase systems such as water-n-butanol and

water- methyl isobutyl ketone (MIBK) have lower interfacial tensions; some solutes to be

extracted behave as surfactants and reduce the interfacial tension of the immiscible phase

systems. 41 Membranes with small pore sizes are required for such systems as the

breakthrough pressure, ΔPb , is proportional to the interfacial tension and inversely

proportional to the pore size:

Here γ  is the interfacial tension, r is the pore radius and θ is the contact angle.

Microfiltration membranes offer relatively low mass transfer resistance to solute

transport, but usually have low breakthrough pressures. 48 Low breakthrough pressures

create problems of phase dispersion even at reasonable transmembrane pressure

differences and affect operational stability.

For example, Basu et al. 19 reported that when porous hydrophilic hollow fibers

(Nylon 6) were used with the water-MIBK system and the organic phase was passed

through the lumen side, nondispersive operation could not be carried out above 3.5 kPa

pressure difference between the phases. Larger pores on the inner surface (ID) of the

porous Nylon fibers could not provide stable immobilized aqueous-organic interface even

at low transmembrane pressures. In contrast to microporous solvent-resistant membranes,

employment of solvent-resistant nanofiltration membranes will increase the breakthrough
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pressures; however the overall mass transfer coefficients will be drastically reduced

especially if nonporous membranes are used."' 49 Hence, one has to employ solvent-

resistant hydrophilic membranes with optimum pore sizes that would provide a higher

breakthrough pressure and lower membrane mass transfer resistance for successful

utilization of membrane technology in solvent back extraction. Ultrafiltration membranes

of membrane materials such as polysulfone and polyethersulfone do not tolerate organic

solvents well. The nature of the thick skin of these asymmetric membranes offers high

resistance to solute mass transfer. Hydrophilic solvent resistant membranes having the

desired properties are not available.

1.2.4 Thin Film Composite Membranes for Heat Transfer Applications

Plastic heat exchangers are of increasing interest for lower temperature applications

because of their better chemical resistance and fouling characteristics. 50, 51Polymers are

less expensive; their densities are much lower resulting in lower construction,

transportation and installation costs of the heat transfer modules. 52, 53Polymeric hollow

fiber membrane modules also provide much higher surface area per unit volume ratios

compared with shell and tube heat exchangers. However, thermal conductivities of

polymer materials are 100 to 300 times lower than that of metals. 51 For the polymers to

compete with the performance of the metals, one has to use polymers of very thin walls. 54

Polypropylene-based solid nonporous hollow fibers of 77.5 μm wall thickness

were explored by Zarkadas and Sirkar 54 and superior heat transfer performance was

reported. Heat transfer performance of the solid polymeric hollow fibers can be further

improved by moving from solid nonporous membranes to porous asymmetric membranes

having an impervious coating. 51 Therefore, membrane modification for heat transfer is
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another interesting application where the available asymmetric microporous membranes

can be modified to enhance heat transfer performance of the polymeric hollow fibers.

1.3 Approach

Available polymeric supports suitable for the required solvent-stable applications are

chosen first and then the supports are modified to satisfy the application requirements.

Coating the membrane surface and/or pores to satisfy the specific requirement is referred

to as membrane modification. Hydrophobic supports chosen were polypropylene (PP)

microfiltration hollow fibers and flat film membranes. Hydrophilic supports chosen were

Nylon-based microfiltration hollow fiber membranes and polyethersulfone (PES)

ultrafiltration hollow fiber membranes.

Thin film composite nanofiltration and ultrafiltration membranes based on

hydrophilized polyolefinic membrane supports such as polypropylene were fabricated to

fulfill the need for solvent stable membranes for many applications in nonaqueous

systems. Relatively inexpensive hydrophilic supports from polymers such as Nylon and

PES were also coated with a solvent stable coating to meet the requirements for

increasing number of applications of solvent-stable membranes in nonaqueous systems as

well as applications. Since the selective layer will determine the membrane separation

characteristics in TFC membranes, solvent stable coating on PES may provide stable

performance in organic solvent systems.

Hollow fiber membrane modules were coated on the lumen side to reduce the

pore sizes so that the reduced pores will provide stable aqueous-organic interface for

solute transport. For heat transfer applications, the hollow fibers modules were coated on



16

the lumen side with an impervious coating. The lumen side was further coated with a

hydrophobic layer to make the first layer of coating impervious to water.

Coating the inner diameter of hollow fiber membranes was the principal objective

in this study rather than coating of flat films because of the well known advantages of

hollow fiber membranes over flat films. However, flat membranes are suitable for many

applications in spiral wound form; therefore flat polypropylene membranes were also

coated to study their potential applications in nanofiltration. In addition to nanofiltration

applications, hydrophilization of flat hydrophobic polypropylene membranes was studied

as it is convenient to work with flat films rather than hollow fiber membrane modules

which have to be fabricated from hollow fibers.

Membrane modification techniques primarily employed were interfacial

polymerization, "modified IP" and self crosslinking of poly(ethyleneimine) (PEI). These

techniques are discussed in detail in Section 1.5. Coating techniques studied and the

supports chosen for different membrane separation applications are listed in Table 1.4.

1.4 Support Membranes

Polypropylene (PP) is a very attractive material as a support for forming a thin film

composite membrane due to its high durability and resistance to chemicals, pH variations

and a substantially wide range of solvents. 15 The PP hollow fiber and flat film

membranes used in this study are from Celgard Inc. (Charlotte, NC). Celgard Inc.

developed the technology of making microporous PP membranes by melt stretch

extrusion. Celgard PP membranes (both flat and hollow fiber) are probably the highest

quality microporous PP membranes available. They are symmetric membranes with
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elliptical pores; the average pore size is 0.042 p.m by 0.117 μm (short axis and long axis,

respectively) with the membrane thickness equal to 25 μm and volume porosities ranging

from 30% to 40% as reported. 55, 56The elliptical pore structure of Celgard 2400 PP flat

film membranes is provided in Figure 1.3. The hollow fiber membranes, Celgard X-10

and Celgard X-20, also have a similar pore structure; Celgard X-10 PP hollow fiber

membranes are available with a smaller inner diameter of 240 μm whereas X-20 PP

fibers are available with a larger inner diameter of 400 μm. Using microfiltration

membranes rather than the ultrafiltration membranes as a support would increase the

solvent flux of TFC membranes 57 and hence can be operated at lower pressures to

achieve reasonable fluxes. Since polypropylene is hydrophobic, the polypropylene

support has to be hydrophilized to fabricate a TFC membrane.

Table 1.4 Membrane Modification Techniques and the Supports Used for Different
Membrane Applications

Support Applications

Ultrafiltration/
Nanofiltration

Microfiltration Solvent
extraction

Heat transfer

PP
(HF *, FS **)

IP
(HF, FS)

"Modified IP", PEI
crosslinking

(FS)

"Modified
IP"
(FS)

-

PES
(HF)

IP - - IP followed
by silicone

coating
Nylon
(HF)

IP - IP, PEI
crosslinking

* Hollow fiber membranes
** Flat sheet membranes
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Figure 1.3 Pore structure of Celgard PP flat film membranes. 

The hollow fiber membranes of PES used were ultrafiltration membranes with 70 

kD molecular weight cut Off
5 8 These fibers were supplied by Membrana Inc. (Wuppertal, 

Germany), under the trade name UltraPES. They are partially hydrophilic and 

asymmetric membranes having a skin on both the ID (inner diameter) and the OD (outer 

diameter) ofthe fiber. Cross section of the PES membrane is shown in Figure 1.4. 

Nylon hollow fiber membranes used were asymmetric micro filtration membranes. 

They are hydrophilic membranes from ENKA America Inc. (Ashville, NC). Scanning 

electron microscopy-based (SEM) pictures of ID and the OD of Nylon hollow fiber 

membranes are shown in Figure 1.5 and Figure 1.6, respectively. Table 1.5 provides 

characteristics ofPP, PES and Nylon support membranes. 
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Figure 1.4 Cross section of PES membrane58 

Figure 1.5 ID of Nylon hydrophilic hollow fiber membrane. 



Table 1.5 Characteristics of the Porous Support Membranes

20



Figure 1.6 OD of Nylon hydrophilic hollow fiber membrane. 

1.5 Coating Techniques 

1.5.1 Interfacial Polymerization 

21 

Interfacial polymerization is a method of polymerization by polycondensation at 

relatively low temperatures. Reactive reagents or monomers are dissolved in two 

immiscible phases. When the two immiscible phases having reactants are brought into 

contact, formation of the polymer takes place at the interface of two immiscible liquids; 

hence it is called interfacial polymerization. The two immiscible phases used in general 

are an aqueous phase and an organic phase. A compound containing active hydrogen in 

the functional group (e.g., amine, phenol) is used as the aqueous phase monomer. An acid 

halide is used as the other reactive monomer in the organic phase. Coating the support 

membranes with poyamide is the objective in this study; polyamides can be synthesized 

from aliphatic or aromatic diacid halides with aliphatic and alicyclic diamines. The terms 

• 
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"diacid halide" and "diamine" are used in the thesis to refer to organic phase and aqueous 

phase monomers although multiacid halides and multiamines are also used as monomers. 

Polymerization at the interface of the organic solvent containing diacid halide and 

aqueous solution of diamine is shown in Figure 1.7. The Polycondensation reaction 

between an aqueous solution of 1,6-hexanediamine and an organic solution of sebacoyl 

chloride in organic solvent in the presence a base is given below: 

(1.2) 

Organic solvent containing 
Diacid halide monomer 

Polymer formed at the 
aqueous-organic interface 

Aqueous solution containing 
Diamine monomer 

Figure 1.7 Polymerization at the interface of immiscible phases having reactive 
monomers. 59 

Membrane modification by the technique of interfacial polymerization is widely 

used for the fabrication of thin film composite membranes for reverse osmosis (RO) and 

less often for nanofiltration20
, 29 The porous support membrane is impregnated with one 

monomer-containing solution; then, another monomer-containing solution is brought into 

contact with the other solution in the pores. The support will get coated at the interface of 

.. 
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the aqueous and organic monomer solutions. Acid acceptor is not necessary during the

course of interfacial polymerization for fabrication of TFC membranes. 60 Thin film

composite membranes for reverse osmosis (RO) by the technique of interfacial

polymerization was first successfully fabricated by Cadotte et al.. 61 They used PEI and

toluene diisocyanate as monomers to generate polyurea; PEI and isophthaloyl chloride to

generate polyamide. Later, the technique was improved and optimized for higher water

fluxes, high salt rejections, membrane stability and durability. Almost all commercially

available RO membranes are now manufactured by the technique of interfacial

polymerization.

The primary difference between the current work with the well established

technique of fabricating RO membranes is using a microporous hydrophobic support

(polypropylene) instead of a porous hydrophilic or a very mildly hydrophobic support.

Supports currently used for IP are mostly polysulfone (PS) or polyethersulfone (PES).

For example, there are a series of commercial thin film composite (TFC) membranes

based on PS, for example, FT30 Filmtec membrane 62 and NS-10063 or PES based, for

example, NF50 M10 Capfil membrane. 64 The TFC membranes for RO by the technique

of IP are flat sheet membranes and only a limited number of studies were carried out in

literature on fabrication of thin film composite membranes in the hollow fiber form by

interfacial polymerization. 65 ' 66 Advantages of hollow fiber membranes over flat sheets

membranes are discussed in Section 1.7.

The course of interfacial polymerization depends on the nature of the monomers,

the monomer concentrations, the reaction kinetics and the nature of the organic phase.

Diacid halides have very little solubility in water and diamines can easily partition into



24

organic solvents. It is generally known that the aqueous phase monomer partitions into

the organic phase and hence the polymerization takes place in the organic phase. It has

been proved for polyamides that polymerization takes place in the organic solvent. 59

When the immiscible phases having reactive monomers are brought into contact, the first

batch of diamine molecules partitioned into the organic phase meets the acid halide and

presumably is acylated to a large extent at both ends. The next batch of diamine

molecules diffused/partitioned into the organic phase, finds a layer of acid halide-

terminated oligomers and diacid halide molecules. A schematic of this process is shown

in Figure 1.8. During this process, the concentration and size of oligomers increase and

ultimately but quickly a polymer is formed. Diamine molecules will now have to diffuse

through this polymer to meet acid chloride molecules. But, the polymer hinders/prevents

further diffusion of diamine molecules into the organic phase: the polymerization

becomes selfinhibitive. As the concentration of the polymer increases, the interchain

contacts increase until a contact network is formed and the polymer precipitates. 59 In

other words, the polymer network freezes during the precipitation and forms a membrane

structure. 67

Polymer precipitation time depends on the polymer-solvent interactions and hence

the properties of the coating layer such as thickness and porosity depend on the organic

solvent used. The order of interactions of polyamide 6-10 with the solvents is as follows:

Cyclohexane < Xylene < CCl4 < CHCl3. With higher polymer-solvent interactions,

precipitation takes place slowly and thickest film will be formed. 59 For example, thickest

films would be formed in chloroform and the thinnest in cyclohexane. Hexane or xylene

is generally used as a solvent for dichloride monomer for fabrication of TFC membranes
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by IP. 60, 68 Here, xylene is used as organic solvent for dichloride monomer throughout the

IP-based coating studies.

Figure 1.8 Schematic of the course of polymerization in the organic phase. 59

The characteristics of the polyamide coating depends greatly on the properties of

the the monomers such as their partition coefficients, functional groups and molecular

weights.29, 60, 67, 69  During the polymerization, aqueous monomer has to partition into the

organic phase and diffuse through the nascent polymer network. If the molecular weight

of the aqueous monomer is high, it diffuses slowly into the reactive zone and hence the

coated film will be thin. 59 The coating would be thick if a low molecular weight aqueous

monomer is used instead of a high molecular weight monomer in the aqueous monomer.

The number of functional groups of the aqueous/organic monomers affects the surface

morphology of the coating. For example, when a monomer having three functional

groups is used, the polymer grows in a three dimensional network and the roughness of

the coating will be high. It was also observed that aromatic amine monomers lead to a
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high surface roughness of the coating compared with the aliphatic monomers. 29 For the

given reactive monomer system, a change in the concentrations of the monomers alters

the pore size of the coating and a change in the reaction times alters the thickness of the

coating. Higher concentration and high reaction times produces a thick coating with

smaller pore sizes. 70 There are a variety of monomer systems generally used for IP.

Following reactive monomer systems were used in this thesis:

• 1,6-hexanediamine - Sebacoyl chloride

• Poly(ethyleneimine) - Isophthaloyl dichloride

• 1,3-Phenylenediamine - Trimesoic acid trichloride.

A variety of monomers (aliphatic, aromatic, bifunctional, trifunctional,

multifunctional, low molecular weight and high molecular weight) were selectively

chosen to study the effects of monomer properties on the coating characteristics. Out of

the aqueous monomers used, poly(ethyleneimine) and 1,6-hexanediamine are aliphatic,

and 1,3-phenylenediamine is aromatic. Poly(ethyleneimine) used is a high molecular

weight (MW 50,000) compound and the rest of the aqueous monomers are low molecular

weight compounds. Isophthaloyl dichloride (IPD) and trimesoic acid trichloride are

aromatic, and sebacoyl chloride is aliphatic. Isophthalyol chloride is a bifunctional

compound and trimesoyl chloride is a trifunctional compound. These reactive monomer

systems are widely used and the properties of the polyamide coating are well studied in

the literature. 29

Coating by IP can be carried out by impregnating the porous membrane support

with aqueous monomer-containing solution followed by contacting with organic

monomer-containing solution or vice versa. Impregnating the membrane support first
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with organic solution is also possible when hydrophilized PP membrane is used as a

support. However, hydrophilized groups on the PP support are likely to get inverted when

contacted with an organic solution.71 The effects of such a possibility of inversion of the

hydrophilized groups were explored and an appropriate coating procedure was

developed.

1.5.2 Modified Interfacial Polymerization

The pore interior of PP microfiltration membranes was coated with polyamide by the

"modified IP" procedure. The objective in this case was to modify and hydrophilize the

internal pore structure rather than form an additional layer on the PP membrane surface.

The "modified IP" procedure was as follows. The diamine was dried onto the membrane

internal surface from a mixture of water and ethanol. The deposited diamine was reacted

with diacid halide monomer to coat the pore interior with the polyamide. This "modified

IP" procedure was first developed to increase the shrink resistance of wool fibers by

coating with polyamide. 72 Dickson et al. 15 studied hydrophilization of PP internal

structure by a "modified IP" technique. In the current study, the pore interior of PP was

first prehydrophilized by prewetting with acetone, followed by chromic acid treatment

(Section 1.6). The "modified IP" procedure was then carried out. Hydrophilization of the

PP pore interior prior to carrying out "modified IP" will facilitate uniform deposition of

the amine on the surface of the pore and helps uniform hydrophilization. These

membranes were tested for possible applications in membrane solvent back extraction

and microfiltration.
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1.5.3 PEI Self-Crosslinking

Commercial PEI is obtained by ring opening polymerization of ethyleneimine and has a

substantial degree of branching and a ratio of primary:secondary:tertiary amines as 3:4:3.

Figure 1.9 provides the structure of PEI. Poly(ethyleneimine) was previously used as a

multifunctional amine for preparation of NS-100 RO membrane. 63 This polymer is

available in the molecular weight range between 600 and 70,000; 73 however best results

for preparation of RO membranes were obtained with a MW of 10,000-60,000. 63 This

polyfunctional amine possesses a high free energy of adhesion of 191 J/mol 73that allows

its use in a variety of applications such as adhesives, flocculating agents, ion exchange

resins, absorbents, etc. It was also used for surface treatment of polymers, including PP

with preliminary surface modification by air corona discharge. 74 Internal crosslinking of

PEI takes place via ammonia elimination from adjacent amino groups at a temperature of

110°C (Figure 1.9). 61 In this thesis, PEI was coated on the surface of the inner diameter

of Nylon hollow fibers for possible applications in membranes solvent back extraction

and ultrafiltration. PEI insolubilization was also carried out on the surface and inside the

pores of porous polypropylene flat membranes to hydrophilize the polypropylene

hydrophobic support for possible use as microfiltration membranes in aqueous systems.

Figure 1.9 Structure and self-crosslinking of poly(ethyleneimine).
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1.6 Hydrophilization of the Hydrophobic Support

Polypropylene is a hydrophobic polymer having a contact angle with water of 116

degrees in the case of isotactic PP. 73 An IP procedure can be carried out by impregnating

the microporous hydrophobic support with an organic solution of diacyl chloride first

followed by a subsequent contact with an aqueous amine reactant. 75 However, it is better

to first make PP hydrophilic, for example, by surface oxidation and then soak the support

in an aqueous solution of an amine reactant (diamine or polymeric amine) and

subsequently contact with an organic solution of diisocyanate or diacyl chloride. Such

surface pretreatment procedure may increase wettability with aqueous amine solution; but

more importantly it will provide better adhesion between the coating and the support in

the already formed composite membrane. 76-78

The most widely used PP is isotactic, which is semi-crystalline, as for example in

the Celgard series;79 therefore, the kinetics of oxidation of the crystalline and amorphous

regions are likely to be different. Further, the amorphous regions of PP have a tendency

to flip their oxidized groups towards the membrane interior while drying or changing the

media to hydrophobic. 71 The fact that PP is not wettable by strong aqueous-based

oxidants like chromic acid, potassium persulfate etc., can increase the non-uniformity of

the membrane surface modification resulting in poor quality of the selective layer of a

thin film composite membrane. Therefore, a strategy to provide better contact between an

oxidant and the treated surface might improve the uniformity of modification.

The surface of PP flat films and the surface of the inside diameter of PP hollow

fibers were modified in this study by chemical surface oxidation. Techniques like UV

activation are incapable of altering the inside surface of hollow fibers; plasma-based
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approach used for modification of surfaces of membranes 16 and polymers74 is also

difficult for the hollow fiber surface on the lumen side. Porous polypropylene support

was prewetted with acetone prior to hydrophilizing the support by treating with chromic

acid solution to improve the hydrophilization of the pore mouth and the pore interior.

This was followed by interfacial polymerization to form a thin coating on the

polypropylene support. When hydrophilic porous supports made out of PES and Nylon

were used for the fabrication of thin film composite membranes by interfacial

polymerization, the hydrophilization step was not necessary.

By creating polar groups on the support surface, one can substantially improve

adhesion between the support and the selective layer containing polar groups itself. Using

an organic liquid such as acetone to wet the pores of polypropylene before treatment with

an oxidizer (chromic acid) is beneficial: first, acetone is miscible with water; second, it is

hard to oxidize because it is a ketone. It is an aprotic solvent but if it is present in small

amounts it should not substantially reduce the oxidizing properties of the oxidizer. In

such a case the very edge of the membrane pore is supposedly getting hydrophilized as

well as the between-pore polymer part of the membrane surface. If the coated layer is

attached close to the membrane pore edge, it might be beneficial in terms of better

attachment of the selective layer to the support.

1.7 Coating Hollow Fiber Membranes

Hollow fiber modules provide a much higher surface area to volume ratio than spiral

wound modules; this pre-treatment is also less demanding than that for the spiral wound

modules. 66 Hence TFC membranes in hollow fiber configuration were fabricated rather
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than flat sheet membranes. Having the selective skin on the lumen side of the hollow

fibers will minimize the problems of concentration polarization and fouling. 65 Coating on

the lumen side is also advantageous as fiber surface abrasion will damage the coating if

the coating is on the OD. On the other hand, a selective skin on the OD would allow the

hollow fibers to withstand higher pressures. If a microfiltration membrane is used as a

support instead of an ultrafiltration membrane, higher fluxes can be achieved at lower

pressures. This reduces the need for operating the hollow fibers at higher pressures in the

inside-out configuration.

Coating by IP on hollow fibers differs from coating on flat films because of the

primary differences in geometry, and handling of the membranes and solution flow.

Individual fibers can be coated only on the outer surface (OD); it is also difficult to

handle long individual fibers. The coating process by IP on individual fibers also lacks

reproducibility when carried out in bench scale. For these reasons, leak-proof hollow

fiber membrane modules were fabricated first using microporous PP hollow fibers potted

in a module; the coating by IP was next carried out on the inside surface (ID) of the

hollow fibers. It is to be noted that coating on the OD of the fibers in the module is not a

good option because the coating could make the neighboring fibers stick to one another

unless other steps are taken.

For coating on the ID of the hollow fibers, the monomer-containing solution has

to be passed through the lumen side of the fibers. On the other hand, for coating flat film

membranes, the whole flat membrane can be dipped at once in the monomer-containing

solution. This flow behavior of the monomers during the coating process in hollow fibers

can influence the characteristics of the thin film. The degree of removal of the excess



32

monomers from the lumen side of the fibers also plays an important role because of the

dependence of the coating characteristics on the amount of monomers left on the surface

of the support. 65 ' 66 Further because the ID of the hollow fibers used in this work is

relatively small (240μm for PP X-10, 400 μm for PP X-20 fibers, 600 μm for Nylon and

700 μm for PES), it is very critical to remove the excess monomers uniformly from the

lumen side of all the fibers in the membrane module without complete or partial

elimination of the monomer solution coated on the support.

The self crosslinking of PEI takes place via heat treatment at 110 °C. Heat

treatment of the coating by IP and "modified IP" techniques is also a necessary step and

helps to complete the polymerization process, remove the organic solvent and

insolubilize the unreacted monomers. 61, 67, 69Removing the organic solvent in IP also

plays a substantial role in improving adhesion between the support and the selective

layer: decreasing actual inter-atomic distances increases adhesion which is based on weak

attraction forces. Thus, heat treatment influences the final morphology of the coating to

some extent and hence affects the coating characteristics.

The following are the controlling factors in coating on the ID of the PP fibers:

1) Hydrophilization of the fibers (when PP is used as support);

2) Nature of the monomers and the reaction times;

3) Removing the excess monomers from the lumen side;

4) Heat treatment technique.

It is apparent that only an appropriate combination of all of the above mentioned

parameters of the IP process using appropriate techniques will lead to the desired,

nondefective coating in the ID of hydrophobic hollow fibers. Hydrophilization of the PP



33

hollow fibers was discussed in Section 1.6. One of the monomer solutions will be first

deposited on the lumen side of the hollow fibers. Another monomer solution will be then

passed from one side to the other side of the fiber. The second monomer starts reacting as

soon as the monomer solution enters the hollow fiber and the monomer concentration

will decrease as it flows in the hollow fiber to the other end. This concentration gradient

along the length of the module could lead to the nonuniform coating. This nonuniformity

can be reduced to some extent by carefully choosing the monomers. Using a high

molecular weight polyamine monomer such as poly(ethyleneimine) will reduce the

chances of nonuniformity in the coating as poly(ethyleneimine) will have a low mobility

to the reaction zone.

Excess monomer solutions from the lumen side will be removed by passing air at

a low flow rate and low pressure. High flow rates of air will remove the deposited

monomers from the lumen side resulting in defects in the coating. At the same time,

using very low rates of air may not remove the excess monomers from the lumen side

uniformly. Therefore, the flow rate of air to remove the excess monomer solutions will

have to be optimized for defect-free coating. As mentioned earlier, it is important to heat

treat the coating and different heat treatment techniques explored are the following:

passing hot water through the lumen side of the fibers, passing hot air through the fiber

and placing the module in an oven. Again, it is very critical not to damage the film during

the heat treatment as the nascent coating will be fragile. There is a possibility of

detachment of the coating from the support during the flow involved in the heat treating

process (especially when PP hollow fibers are used as a support).
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1.8 Membrane Modification, Characterization and their Applications

Modified membranes were tested in the respective applications such as microfiltration,

ultrafiltration, nanofiltration, membrane solvent back extraction and heat transfer. In

addition to the characterization of the coated membranes by testing them for the

applications that the coated membranes are intended for, they were characterized using

scanning electron microscopy. Membrane modification techniques and the supports used

for different membrane applications are provided in Table 1.4.

1.8.1 Ultrafiltration/Nanofiltration

Polypropylene hollow fiber membranes of the types Celgard X-10 and X-20, and hollow

fiber membranes of PES were coated on the lumen side by interfacial polymerization.

Membranes coated with the objective of making ultrafiltration membranes were tested

and characterized by ultrafiltration of an ethanol-soluble protein, zein. Zein is a corn

protein having a MW of 35,000 and belongs to prolamins. It is insoluble in both pure

water and alcohol, but soluble in 70-80% alcohol solutions. The approximate size of the

zein molecule having a MW 24,000 in 70 vol% ethanol in water is 13 nm*2.8 nm. 80 Zein

molecule used in the study will be slightly bigger in size, since the molecular weight of

zein used was 35,000. This particular system (zein in 70% ethanol in water) was chosen

because zein is an inexpensive protein; analysis of zein is relatively simple. Solvent

stability of commercially available ultrafiltration membranes with zein in alcoholic

solutions was studied by Shukla and Cheryan. 17 This allows a comparison of the solvent

stability of the fabricated membranes with the information available in the literature.

Polypropylene hollow fiber membranes coated by IP with the objective of making

nanofiltration membranes were characterized by rejection of appropriate solutes (e.g.,
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safranin 0 (MW 351) and brilliant blue R (MW 826) dyes) in methanol. Solvent stability

of the coated ultrafiltration membranes was tested with ethanol. Solvent stability of

coated nanofiltration membranes was tested with toluene.

Factors that control the coated membrane characteristics like coating thickness

and pore size of the coating, would ultimately determine/dictate the solvent flux and

solute rejection behavior. These behaviors are expected to be controlled by the monomer

concentrations, reaction time, mode of heat treating the coating, and the extent of

hydrophilization when a hydrophobic support is used. The effect of these controlling

factors on the coating characteristics were studied.

1.8.2 Microfiltration

The feasibility of hydrophilizing microporous polypropylene flat film membranes

without effectively reducing its pore size was studied by the coating techniques of

"modified IP" and PEI crosslinking. Water flux through the modified membranes was

measured to study the hydrophilicty of the membranes. Changes in hydrophilic coating

characteristics with membrane conditioning by organic solvents and with repeated drying

of the membranes were also studied.

1.8.3 Membrane Solvent Back Extraction

It is evident from Section 1.2.3 that one has to employ hydrophilic solvent resistant

membranes for efficient membrane solvent back extraction. Polypropylene microporous

membrane is hydrophobic and membrane solvent back extraction can be carried out in PP

microporous membranes if they can be hydrophilized. Therefore, PP flat film membranes
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were hydrophilized by the procedures described in the Section 1.5.2 and feasibility of

using such a modified membrane for MSBE was studied.

Available solvent-resistant hydrophilic microporous hollow fiber membranes

(e.g., Nylon) having large pore sizes cannot withstand higher breakthrough pressures;

hydrophilic nanofiltration hollow fiber membranes do not provide higher values of

overall mass transfer coefficients. Therefore, porous hydrophilic Nylon hollow fibers

were coated on the internal diameter (ID) to optimize the pore sizes required for efficient

MSBE. The coating technique primarily employed to reduce the pore size of nylon

hollow fibers is PEI crosslinking. The possibility of employing Nylon hollow fibers

coated by IP was also explored for membrane solvent back extraction. Hollow fibers

were coated on the ID rather than on the outer surface (OD) for the following reasons.

Unless the shell side flow is designed properly, it is preferable to pass the solution that

has to be treated (organic phase in the case of MSBE) through the lumen side rather than

the shell side to prevent channeling and bypassing. This will lead to lower mass transfer

coefficient, but it will be easily characterizable. When the organic phase is passed

through the lumen side, most of the mass transfer resistance will be in lumen side in

reactive MSBE and quantification is easier as mass transfer correlations for lumen side

are more reliable than those for the shell side. The goal was to coat only on the ID rather

than the entire pore to minimize the increase in membrane resistance with coating. The

objective was to make a thin film composite membrane since it would provide high solute

mass transfer rates compared to the asymmetric membranes.

Coated membranes were studied for nondispersive operation at higher organic

phase pressures in the lumen side and back extraction (non-reactive and reactive
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extraction) of solute from organic solvent into the aqueous phase. Breakthrough pressure

studies were carried out in noncoated and coated membranes using the water-MIBK

system with or without caustic in the water phase. Back extraction of phenol from MIBK

was used as a model system for reactive extraction. Back extraction of acetic acid from

MIBK into water was studied as a model system for non-reactive back extraction. Mass

transfer rates of acetic acid and phenol from organic phase to the aqueous phase were

studied before and after the coating. Back extraction of acetic acid and phenol from

MIBK was also studied in the widely used hydrophobic polypropylene porous hollow

fiber membranes to compare the performance of water-filled pores vs. the organic-filled

pores, characteristic of hydrophobic membranes.

1.8.4 Hollow Fiber Membranes for Heat Transfer

Membranes of PES which have an asymmetric pore structure were chosen as the support

for fabrication of TFC membranes for heat transfer. The lumen side of the fibers was

coated with a polyamide via IP. The reactive monomer systems used are 1,6-

hexanediamine-sebacoyl chloride, poly(ethyleneimine)-isophthaloyl dichloride and 1,3-

phenylenediamine-trimesoic acid trichloride. Since the objective here was to make the

coating impervious, high monomer concentrations (0.5 to 2 wt%) and high reaction times

(2 to 20 minutes) were used to develop a thick coating.

The polyamide coating is hydrophilic and if these coated membranes are used

with water or aqueous systems, there is a possibility of water permeating through the

coating at high transmembrane pressures. Therefore, the coating was further made

impervious to water by applying a layer of a hydrophobic coating of silicone on the

polyamide coated layer. Silicone coating to increase the hydrophobicity of the coating
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was studied by Kistler and Cussler. 81 During heat transfer applications, the pores of the

support will be filled by one solution; this solution will be separated from the other

solution by two layers of coating (polyamide coating and silicone coating). Heat transfer

between the two streams takes place through the coating layers. Coated membranes were

tested for leakage of water at low pressures and the heat transfer performance was studied

in collaboration with other investigators in the laboratory. Overall heat transfer

coefficient in the coated hollow fiber module was calculated and compared with the

values on solid PP hollow fibers.



CHAPTER 2

EXPERIMENTAL

2.1 Membranes, Chemicals and Instruments

2.1.1 Membranes

Support membranes used in the study are as follows:

• Celgard 2400 polypropylene flat film membrane (Celgard, Charlotte, NC)

• Celgard X-10 and X-20 hollow fibers (Celgard, Charlotte, NC)

• Nylon 6 hydrophilic hollow fiber (ENKA America Inc., Ashville, NC)

• UltraPES hollow fibers (Membrana, Wuppertal, Germany)

Characteristics of these membranes are provided in Table 1.5.

2.1.2 Chemicals

N2 high purity (Welco CGI, Newark, NJ); sebacoyl chloride - 99% purity,

1,6-hexanediamine - 98% purity, iso-phthaloyl dichloride - 99% purity, potassium

dichromate - 99% purity ACS reagent, ethanol absolute - 99.5% purity ACS reagent,

methyl isobutyl ketone - certified ACS grade, sodium hydroxide, acetic acid - glacial, 4-

aminoantipyrine, potassium ferricyanide, sodium tetraborate decahydrate, brilliant blue R

- dye content 90%, phenol, 1,3-phenylenediamine - 99+% purity (Sigma-Aldrich, St.

Louis, MO); sulphuric acid - 95.7% purity, acetone - 99% purity (Acros Organics);

poly(ethyleneimine) aqueous solution of 50 wt.% with polymer-average M.W. between

50,000-60,000 (Fisher Scientific, Suwanee, GA); Zein protein (Freeman Industries,

Tuckahoe, NY); methanol, xylene, toluene, safranin 0 -dye content 95% (Fisher, Fair

Lawn, NJ); 184 silicone elastomer base, 184 silicone elastomer curing agent (Dow

39
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Corning, Midland, MI); C-4 resin, D activator (Beacon Chemicals, Mt. Vernon, NY);

RTV 118 translucent silicone rubber adhesive sealant (General Electric, Waterford, NY);

Loctite M-21HP medical device epoxy adhesive (Hysol, CT); water deionized by

Barnstead 5023 (Barnstead, Dubuque, Iowa).

2.1.3 Instruments

• UV-VIS Spectrophotometer (Model U-2000, Hitachi, Danbury, CT)

• Scanning electron microscope (Model Leo 1530 )

• Interfacial tensiometer (Model K8, Kruss, Hamburg, Germany)

• FT-IR Spectrometer (Spectrum One, PerkinElmer Instruments, Wellesley, MA)

• Liquid pump controller (Model 7553-50, Mastedlex, Barrington, IL)

• Pump head (Model 7518-60, Masterflex, Barrington, IL)

2.2 Handling of the Membranes

Two different geometries of the membranes used in the study are flat film membranes

and hollow fiber membranes. Flat film and hollow fiber membranes have to be handled

differently; handling of these two types of membranes is described below.

2.2.1 Handling of Flat Film Membranes

To pass different solutions through the flat membranes during the coating process, an

apparatus (Figure 2.1) consisting of a glass porous support and a reservoir was used. The

membrane was clamped between the porous support and the reservoir. Vacuum was

applied through the porous support to pull the solutions (monomer

solutions/water/chromic acid solution) through the membrane. Solvent permeation
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studies for characterization of the modified flat film membranes was carried out in a flat 

membrane cell (Figure 2.2) having 7 cm2 membrane area. The flat film membrane was 

supported on a porous polypropylene support (membrane holder for Model 8400 from 

Millipore, Billerica, MA). The solvent was pressurized from the top side of the 

membrane using a pressure vessel filled with a solvent and a nitrogen cylinder. Permeate 

was collected from the other side (supported side) of the membrane and the permeation 

rate of the solvent was measured. 

Reservoir 

Flat film clamped between the reservoir 
and the porous support 

Porous support 

Vacuum outlet 

Figure 2.1 Setup for passing different solutions through the flat film membranes in the 
coating process. 
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Figure 2.2 Flat ftlm membrane cell . 

2.2.2 Handling of Hollow Fiber Membranes 

Membrane modules were fabricated first using the hollow fiber support membranes. The 

assembly of a hollow fiber membrane module is similar to that of a shell-and-tube heat 

exchanger. A picture of a hollow fiber membrane module is shown in Figure 2.3. 

Polytetrafluoroethylene (PTFE) tubing was used as the shell for the module. The tubing 

was fitted with 1/4" male run tees at both ends. The required number of fibers for the 

membrane module was bundled together; one end of the bundle was tied with a string. 

This end was pulled through the bore of the tubing. A leak-free tube sheet was prepared 

at the two ends of the tubing. The process of making the tube sheet is referred to as 

potting. The tube sheet held the bundle of fibers in place and prevented the shell side 

fluid and tube side fluid from mixing. 

The regular method of potting the ends of the module is as follows. A two layer 

potting was used to prepare each tube sheet for a module. A two-component RTV 118 

translucent silicone rubber adhesive sealant was applied as the first layer at the end of the 



43 

each module end fitting. This sealant is highly viscous and hence it does not flow out of 

the end fittings of the module when applied. After curing for one day, epoxy (C-4 : resin ; 

D: activator; weight ratio:4/ I) was applied as the second layer through the nearest shell 

side outlet using a glass dropper; the epoxy was cured for two days. Low viscosity of this 

epoxy helped its penetration into the spacing between the fibers and provided a leak-

proof tube sheet. 

Lumen-side wout 

Location of 
the tube sheet 

Shell-side in/out 

Shell-side inlout 

Figure 2.3 Assembly of a hollow fiber membrane module. 

End cap 

Lumen-side in/out 

The fabricated membrane modules were intended for use with organic solvents; 

but si li cone rubber (sealant) swell s in organic solvents. Hence use of the si li cone rubber 

as a first layer for potting was eliminated. The regular epoxy (C-4 resin with activator) is 

not viscous enough to stand by itself when applied at the end fittings with out the layer of 

silicone rubber. Therefore, the membrane modules were potted by the following 

procedure which eliminated the use of silicone rubber. Highly viscous and a solvent 

stable epoxy (Loctite M-2I HP, Medical device epoxy adhesive) was used to make a tube 
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sheet. This epoxy was applied into the end fittings from the module ends and epoxy was

forced to go in between the fiber gaps by separating the fibers apart and creating the

spacing between the fibers. The inner surfaces of the end fittings were grooved before

potting, so that the grooves would anchor the epoxy to the fittings. The effective module

length was the length of the PTFE tubing less double the potting thickness (to account for

both sides of the potting).

Before using these modules, preliminary tests were carried out. To test for any

leakage, the shell side of the module was filled with deionized water. Water pressure was

maintained at 40 psig (377 kPa) for about 1 hour. If no water leaked through the potting,

the module was considered leak-free. Hollow fiber membrane modules were fabricated

with different number of fibers and in different lengths to match the requirements of

different applications. Characteristics of these membrane modules are given in Table 2.1.

Membrane modules were fabricated first from hollow fiber membranes; hollow

fibers potted in the module were then modified. The experimental setup (Figure 2.4) used

for hydrophilization, modification and characterization of the hollow fiber membrane

modules consisted of a pump connected to the hollow fiber membrane module to pass the

solutions through the lumen side and a valve arranged after the hollow fiber module to

control the pressure. A peristaltic pump was used as it facilitated the use of different flow

lines using the same pump. Different flow lines were used to pass different solutions so

that washing of the lines was not required during the hydrophilization/coating process.

For example, flow lines for acetone, chromic acid solution, water, aqueous monomer

solution and organic monomer solution were different.



Table 2.1 Characteristics of the Fabricated Hollow Fiber Membrane Modules
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Figure 2.4 Experimental setup for modification of hollow fiber membrane modules (this
setup was also used for characterization).

2.3 Membrane Modification

2.3.1 Hydrophilization of PP Hollow Fibers and Flat Films to Carry Out IP

Polypropylene hollow fibers and flat film membranes were hydrophilized by oxidizing

with various concentrations of chromic acid solutions. Different concentrations of

chromic acid solutions were prepared by slow mixing of K 2Cr2O7 with H2O and H2 SO4 in

different proportions in a fume hood. The experimental setup shown in Figure 2.4 was

used for hydrophilization of hollow fiber membranes. Pores of the hollow fibers were

first wetted with acetone by passing acetone through the lumen side at 2 psig (115 kPa)

for 2 minutes. Then excess acetone in the lumen side of the fibers was removed by

passing air at a low flow rate followed by continuous circulation of the chromic acid

solution at 65°C through the bore of the fibers. Chromic acid was passed at 5 psig (135.8

kPa), so the acetone in the pores was slowly replaced by the chromic acid solution. After

carrying out the treatment for 30 min, the used chromic acid solution in the reservoir was

replaced with a fresh chromic acid solution of the same concentration and
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hydrophilization was carried out for another 30 min. Membranes were then washed by

passing water through the lumen side at a pressure of 10 psig for 30 minutes. This

ensured the complete removal of chromic acid from the lumen and shell side of the

module as well as from the pores. Membrane modification by coating followed the

washing process.

The flat PP membrane was placed on top of a glass porous support and the

reservoir was clamped on top of the membrane (Figure 2.1). The membrane was

prewetted with acetone for a couple of minutes before treating it with the chromic acid

solution. The reservoir was filled with a hot chromic acid at 65°C and vacuum was pulled

from the bottom of the porous support through the membrane. Hydrophilization was

carried out for 30 minutes. After half an hour, the solution in the reservoir was replaced

with a fresh hot chromic acid solution. The membrane was also turned over so that the

other side of the membrane now faces the fresh chromic acid solution. After the

hydrophilization, flat films were washed with water for 30 minutes to completely replace

the chromic acid in the pores and on the surface of the membrane with water. Coating

procedure of the flat films was implemented following the hydrophilization process.

2.3.2 Coating Hollow Fiber Membranes of PP, PES and Nylon in Modules by IP

Membranes can be coated by interfacial polymerization via the following two procedures.

Impregnate the membranes with the organic monomer solution followed by contacting

with aqueous monomer solution to form a coating: this procedure is referred to as the

"reverse procedure". The "regular procedure" involves soaking the membranes first with

the aqueous monomer solution followed by contacting with organic monomer solution.
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2.3.2.1 Regular Procedure. Polypropylene membrane modules hydrophilized by the

procedure described in Section 2.3.1 were modified by the following procedure. On the

other hand, PES and Nylon membrane modules were directly modified as the

hydrophilization step was not necessary for PES and Nylon membranes. It has to be

remembered that the objective was to coat the lumen side of the fibers (PP, PES and

Nylon). An aqueous monomer-containing solution (concentrations in the range of 0.1 to 2

wt.%) was passed through the lumen side at a pressure of 5 psig for 30 min. Then the

excess aqueous solution was removed from the lumen side by purging gently with air at a

low flow rate for 20 to 60 seconds. The end caps of the modules were replaced with new

ones since the presence of aqueous monomer solution at the dead spaces of the fittings

could be problematic when the organic monomer-containing solution was passed. When

the aqueous diamine solution was pressurized in the lumen side of the fibers, water

present in the pores of the PP/PES/Nylon support would be replaced with diamine

solution. Next, xylene solution having monomer in the concentration range of 0.1 to 2

wt.% was introduced from the lumen side at a very low flow rate for the time period

equal to the reaction time (1.5 to 10 min) of IP holding the membrane module vertical.

After the excess organic solution from the lumen side was removed in the same way as

the aqueous solution for one minute, the coating was heat treated. The rate of removal of

the excess monomer solutions (aqueous and organic) from the lumen side of the fibers

had to be optimized for a defect-free coating; this is discussed in the results section in

great detail.

The coating was then heat treated. Different heat treatment techniques of the

coating studied included passing hot water at 65°C for 30 minutes, passing hot air at 65
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°C for 30 minutes and placing the module in an oven at 110°C for 20 minutes. After the

heat treatment, the modules were dried overnight by passing air at ambient temperature

through the fibers. Modules were then washed with ethanol to wash out the unreacted

monomers before they were characterized.

2.3.2.2 Reverse Procedure. The "reverse procedure" differed form the "regular

procedure" only in the sequence of the exposure of the monomer solutions to the

membrane. In the reverse procedure, the membrane was first wetted with the organic

monomer solution followed by a flow of the aqueous monomer solution through the fiber

bore.

2.3.3 Coating Flat PP Membranes by IP

Flat film membranes were always first exposed to the aqueous monomer solution

followed by the exposing the membrane to the organic monomer solution. An aqueous

monomer solution (0.5 to 2.0 wt.% of monomer) was passed for about 15 min through the

flat PP membrane that was previously oxidized by chromic acid solution. Subsequently,

the treated membrane was drained, placed and secured on a cylindrical PTFE roller

support (Figure 2.5). This assembly was placed in a bath of organic monomer solution

(Figure 2.6) of concentration varying between 0.1 and 1 wt.% to coat the flat film

membrane. The interfacial polymerization reaction time was varied between 30 seconds

and 5 min. The membrane so modified was placed in an oven at 110°C, heat treated for

about 20 min, detached from the PTFE roller support and kept under ambient air

conditions.
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2.3.4 Permanent Hydrophilization of PP Flat Sheet Membranes

2.3.4.1 Hydrophilization by PEI Self-crosslinking. After hydrophilization of the

flat PP membrane by the procedure described in Section 2.3.1, an aqueous PEI solution

(0.5 to 4 wt.%) was pulled through the membranes for 30 minutes by vacuum using the

setup shown in Figure 2.1. The PEI deposited on the surface and in the pores of the

membranes was crosslinked by placing the membrane in an oven at 110°C for 20

minutes. The membrane was then dried overnight in ambient air.

2.3.4.2 Hydrophilization by a "Modified IP" Procedure. The "modified IP" procedure

consisted of deposition of the amine monomer on hydrophilized PP membranes and

contacting the deposited amine with the organic monomer solution to coat the pore

interior and the surface of the PP membranes by the polyamide reaction product. The

"modified IP" coating procedure was as follows. Flat film membranes were

hydrophilized by the procedure described in Section 2.3.1. The membrane was then

washed with water by forcing water to go through the membrane by pulling vacuum.

Pores of the membrane were then filled with the amine monomer dissolved in either

water or a mixture of ethanol and water (0.5 to 6 wt.% of amine). The membranes were

next dried by pulling vacuum for longer periods of time (30 min to 5 hours). Then the

membrane was soaked in the organic monomer containing solution (0.5 to 2 wt. %) for

ten minutes to coat the pore interior and the surface of the membrane with the polyamide

reaction product. After polymerization, the modified membrane was heat treated in an

oven at 110 °C for 20 minutes.
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2.3.5 Coating Nylon by PEI Crosslinking for MSBE

The schematic shown in Figure 2.4 was used to coat the Nylon hollow fibers by self

crosslinking of PEI. Aqueous PEI solution was passed through the lumen side of the

hollow fiber module at a very low pressure of 1 psig (108.2 kPa) for 5 minutes. The

excess aqueous solution of PEI from the lumen side was removed by passing air at a low

flow rate. The PEI deposited on the ID of the fibers was crosslinked by placing the

module in an oven at 110°C for 20 minutes. The module was then dried in ambient air for

4 hours followed by washing with water to wash out the uncrosslinked PEI, if any.

2.3.6 Modification of PES Hollow Fibers for Heat Transfer Applications

Characteristics of the membrane modules of PES hollow fibers used for this application

are provided in Table 2.2. The lumen side of the hollow fiber membrane module was

coated by the "regular procedure" of IP, described in Subsection 2.3.2.1. Different

concentrations of hydrophobic coating solutions were prepared by adding silicone

elastomer and curing agent in the weight ratio of 10:1 in xylene. This coating solution

was stirred for ten minutes and was passed through the IP-coated hollow fiber membrane

module at a pressure of 5 psig (135.8 kPa) for two minutes while holding the module in a

vertical position. The excess coating solution from the lumen side of the fibers was

removed by purging gently with air. The coating solution deposited on the lumen side of

the fibers was cured in ambient air for 48 hours. After curing, the coated membrane

module was tested for water leakage by pressurizing water in the lumen side at 10 psig

(170.3 kPa) for eight hours using the setup shown in Figure 2.4. Heat transfer

performance of the coated membrane modules were performed subsequent to the water

leakage tests.
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Table 2.2 Characteristics of PES Hollow Fiber Membrane Modules for Heat Transfer
Applications

2.4 Membrane Characterization

2.4.1 Characterization by SEM and FT-IR

The modified membranes were characterized by a scanning electron microscope (SEM

Leo 1530). The samples were carbon coated prior to the SEM characterization carried out

at an accelerating voltage of 2-3 kV. In the case of hollow fibers, fibers were taken out of

the module and the cross section of the fiber was sliced at an angle to take the SEM

pictures of the coating on the inner surface. A schematic of this procedure is provided in

Figure 2.7. Carbon coating the lumen side of the hollow fiber that was sliced at an angle

is very important to get a good SEM picture of the lumen side. The sliced fibers were

placed and oriented in the coating machine in such a way that the lumen side at the sliced

part will be coated with carbon. Polyamide coating on the PP support membranes was

confirmed by Fourier transform infrared (FT-IR) spectroscopy.
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Figure 2.7 Schematic of characterization of the coated hollow fiber membranes by SEM.

2.4.2 Ultrafiltration and Nanofiltration

Hollow fiber membranes were characterized by measuring the reduction in solvent flux

and solute rejection. A pump was used to pass the feed solution through the lumen side of

the fibers. The valve located at the end of the module was used to pressurize the feed

solutions and to control the feed pressure. The experimental set up is shown in Figure 2.4.

Permeate was collected through the shell side of the hollow fiber module and analyzed

for solute concentration.
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For ultrafiltration studies, coated and non-coated hollow fiber membranes were

tested for zein rejection and solvent flux reduction with feed solutions of zein in 70%

ethanol (rest, water). The zein concentrations of the feed solutions used were 1g/1 and 5

g/1; the transmembrane pressures were 7.5 psi (52 kPa) and 20 psi (138 kPa).

Concentrations of zein in the permeate were measured by the following method. Zein in

the collected permeate was precipitated by adding 6 cc of 1% NaCl solution to 2 cc of

permeate; the absorbance of the precipitated solution was measured at 590 nm by the U-

2000 UV-VIS spectrophotometer. 82 The calibration curve is shown in Figure 2.8.

Figure 2.8 Calibration of the protein, zein, in 70% ethanol (rest, water).

Nanofiltration of solutes, safranin 0 (MW 351) and brilliant blue R (MW 826)

dyes, was studied using the coated membranes at a transmembrane pressure of 60 psi

(413 kPa). Methanol was used as a solvent for the above-mentioned solutes. Solute

concentration in the feed solution was 0.01 wt%. Concentrations of safranin 0 and

brilliant blue R in the permeate were analyzed by the U-2000 UV-VIS spectrophotometer
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at 530 and 590 nm, respectively.' Calibration curve for safranin 0 in methanol is given in

Figure 2.9 and that of brilliant blue in methanol is given in Figure 2.10.

Figure 2.9 Calibration curve for safranin 0 in methanol.

Figure 2.10 Calibration curve for brilliant blue R in methanol.
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2.4.3 PP Flat Sheet Membranes Modified for Permanent Hydrophilization

The flat film membranes of PP modified for permanent hydrophilization were

characterized by the water breakthrough pressures and the water permeation rates using a

flat membrane cell. Water permeation rate and breakthrough pressures were measured

without any prewetting with prewetting agents such as ethanol or acetone. For

breakthrough pressure measurements, the applied pressure was increased in steps of 5 psi

(34.5kPa). Persistency of the hydrophilicity of the modified membranes with the organic

solvent exposure was tested by soaking the membranes in xylene for a period of 12 hours

and measuring the water flux before and after the soaking.

Permeability of water through the coated flat film membrane was measured using

the flat membrane cell (Figure 2.2). The membrane was supported on a porous support

and water was pressurized on one side of the membrane using a high pressure nitrogen

cylinder. Permeate was collected from the other side of the membrane and the permeate

flow rate was measured.

2.5 Performance of the Coated Membranes

2.5.1 Solvent Stability of the Coated Hollow Fiber Membranes for Ultrafiltration

and Nanofiltration Applications

Since fabrication of solvent stable membranes is one of the objectives of this thesis, the

coated membranes were tested for solvent stability by the following procedure.

Membrane modules were soaked in the solvent for a period of 10 weeks at room

temperature and tested once every week for solute rejection and solvent flux. Solvents

studied for stability of the coated membranes were 70% ethanol (rest, water) and toluene.
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Coated ultrafiltration membrane modules were soaked in 70 % ethanol (rest,

water) at room temperature for a period of 10 weeks and tested once every week for zein

rejection and solvent flux at 138 kPa with a feed solution of 1g/1 zein in 70 % ethanol.

After solute rejection and solvent flux measurements, the membranes were washed for

four hours with 70% ethanol solution to wash out the proteins completely from the

membranes. Stability of the coated nanofiltration membranes with toluene was studied in

a similar fashion at a higher transmembrane pressure (413 kPa). Neither brilliant blue R

nor safranin 0 is soluble in toluene. Therefore, methanol was used as a solvent instead of

toluene to study the membrane characteristics (solvent flux and solute rejection). Coated

membranes were soaked in toluene; membrane characteristics were studied once in a

week using a feed solution of 0.01 wt% of brilliant blue R in pure methanol at 413 kPa.

Before measuring the membrane characteristics, toluene in the membrane pores was

replaced with methanol by pressurizing methanol in the lumen side at a transmembrane

pressure of 413 kPa for three hours. Membranes were washed with pure methanol after

the solute rejection and solvent flux measurements. Next, methanol in the membrane

pores was replaced with toluene before the membrane was soaked in toluene.

2.5.2 Membrane Solvent Back Extraction

2.5.2.1 Breakthrough Pressure and Chemical Stability Studies. The	 breakthrough

pressure is the value of the pressure difference between the organic phase and the

aqueous phase at the point where phase dispersion is observed. 41 The schematic shown in

Figure 2.11 was used to study the breakthrough pressures of the aqueous-organic

interface and chemical stability of the coated Nylon 6 hollow fibers. Aqueous-organic
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phase immobilization at the membrane pore mouth in non-coated and coated Nylon

hollow fibers was studied using the water-MIBK system via the following procedure.

Membrane pores were filled with water and water was passed through the shell side at a

constant pressure. Organic solvent was passed cocurrently through the lumen side at

varying pressures higher than the aqueous phase pressure. Experiments were started with

a low lumen side pressure; it was increased in steps of 0.5 psi (3.45 kPa) till phase

dispersion was observed. Shell side and lumen side pressures were controlled by valves

mounted beyond the hollow fiber module. In addition to the breakthrough pressure

studies, interfacial tensions between the aqueous-organic-solute systems (water-MIBK,

water-MIBK-acetic acid and water-MIBK-phenol) were measured by an interfacial

tensiometer (model K8, Kruss, Hamburg, Germany).

The chemical stability of the coating was studied by passing aqueous caustic

solution (0.5 M) through the shell side and an organic solvent (MIBK) in the lumen side

at a higher pressure than the aqueous phase for extended periods of time. Nondispersive

operation was used as a measure of the stability of the coating since possible damage to

the coating will lead to phase dispersion at a pressure difference of 2 psi (13.78 kPa)

between the phases.

2.5.2.2 Solvent Back Extraction Studies. A schematic of the experimental setup for

solvent back extraction of solutes (phenol and acetic acid) from MIBK into an aqueous

solution is shown in Figure 2.11. For reactive extraction, 0.1M phenol in MIBK was

extracted into 0.25M aqueous caustic solution. Acetic acid extraction from 3 vol% of

acetic acid in MIBK into water was used as a model system for nonreactive extraction.
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Figure 2.11 Experimental setup for membrane solvent back extraction.

The organic phase was passed through the lumen side and the aqueous phase was passed

through the shell side in all experiments. For hydrophilic hollow fiber modules,

experiments were started by pressurizing the aqueous solution in the shell side of the

module at 3 psig (122 kPa) for a couple of minutes so that the membrane pores were

completely filled with the aqueous solution. Then, the aqueous phase pressure was

lowered to 1 psig (108.2 kPa) and the aqueous solution was passed continuously. The

MIBK solution was passed cocurrently through the lumen side at a pressure higher than

the aqueous phase pressure and less than the breakthrough pressure. In the case of

hydrophobic hollow fiber modules, the organic solution first was passed through the

lumen side to fill the pores of the membrane with the organic phase. Next, the aqueous
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phase was passed through the shell side at a pressure greater than the organic phase

pressure.

Freshly prepared aqueous and organic solutions were used for each set of

experiments. After running the system for 30 min (for each set of data taking) to reach

steady state, aqueous samples were collected and analysed for solute concentrations.

Phenol in water was analyzed by the following technique. A 0.5 ml aliquot of alkaline

phenol solution was diluted by first adding 5 ml of solution A (4.767 g sodium borate 10-

hydrate, 0.352 g sodium hydroxide, and 0.06 g 4-amino-antipyrine in 1L distilled water)

followed by adding 10 ml of solution B (4.767 g sodium borate and 10-hydrate, 0.352 g

sodium hydroxide, and 0.15 g potassium ferricyanide in 1L distilled water). Absorbance

of this solution was measured by the UV-VIS spectrophotometer at the wavelength of

520 nm. 19 The calibration curve of absorbance vs. phenol concentration in the aqueous

sample is given in Figure 2.12. Acetic acid in water was analyzed by titrating against

sodium hydroxide solution. Flow rates were measured and pressures were carefully

monitored throughout the experiments.

2.6 Heat Transfer

Heat transfer performance of the PES hollow fiber coated with polyamide and silicone

were tested for heat transfer performance in collaboration with other investigators in the

laboratory. Hot brine of 4% NaCl concentration at 90°C to 95 °C was passed through the

lumen side or shell side of the module and cold water (16°C to 25°C) was passed

countercurrently through the other side of the module. Since the coating was on the

lumen side, the lumen side pressures were always maintained higher than the shell side
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pressures to prevent the possible detachment of the coating from the support. Shell side

and tube side inlet and outlet temperatures were continuously monitored; brine and water

flow rates were measured. Any leakage through the coating will increase the conductivity

of water. Conductivity of water was continuously measured to monitor the leakage, if

any.

Figure 2.12 Calibration curve for analyzing phenol in MIBK.
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2.7 Calculation Procedures

2.7.1 Calculation of Solute Rejection and Solvent Flux in Ultrafiltration and

Nanofiltration Membranes

The percentage rejection of solute is given by

Transmembrane pressure, AP, is defined as the pressure difference across the membrane

and the solvent flux at a particular transmembrane pressure is given by

2.7.2 Considerations on Mass Transfer Coefficient Calculations in MSBE

Overall mass transfer coefficients in MSBE were calculated from experimental data using

the following equations:

The overall mass transfer coefficient of the solute, Ko, based on the organic phase in a

hydrophilic hollow fiber membrane with aqueous phase-filled pores and organic phase

flowing in the lumen side is given by

Here the membrane resistance kmw is given by
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For an instantaneous chemical reaction in the aqueous phase (reactive extraction system),

Equation 2.4 becomes

The overall mass transfer coefficient of the solute, Ko, based on the organic phase in a

hydrophobic hollow fiber membrane with organic filled pores and organic phase flowing

in the lumen side is given by

In the presence of an instantaneous chemical reaction in the aqueous phase (reactive

extraction system), Equation 2.7 will be reduced to

The diffusion coefficients of phenol and acetic acid were calculated using the Wilke-

Chang equation. 83 The tortuosity of the hydrophobic membranes was considered to be

2.6. 84 The tortuosity of the hydrophilic Nylon hollow fibers was estimated from the

following correlation: 85

Graetz solution" was used to estimate theoretically the tube-side mass transfer

coefficients in hydrophobic and hydrophilic hollow fibers. Graetz solution is given by86
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Shell-side mass transfer coefficients in hydrophobic and hydrophilic fibers were

calculated from the following correlation: 84

where the value of a is 5.8 for hydrophobic fibers and 6.1 for hydrophilic fibers.

2.7.3 Calculation of Overall Heat Transfer Coefficients in Modified PES Hollow

Fiber Modules

Overall heat transfer coefficient in the coated hollow fiber module was calculated by the

following equation and compared with the literature data for solid PP hollow fibers:



CHAPTER 3

ULTRAFILTRATION AND NANOFILTRATION

Results for hydrophilization of the PP hollow fiber membranes by chromic acid treatment

will be presented first. This will be followed by the presentation of the results and

corresponding discussion of the membrane modification for fabrication of ultrafiltration

and nanofiltration membranes. Results of solvent stability studies carried out will also be

presented along with the results of ultrafiltration and nanofiltration.

3.1 Hydrophilization

Hydrophilization of PP support membranes was carried out prior to the coating by

interfacial polymerization. Initially, hollow fiber membrane modules were treated with a

chromic acid solution of high concentration (K 2Cr2O7, H2O, H2SO4 : 1, 2, 29.4) for a

shorter period of time (5 minutes). Later, the chromic acid concentration to treat the

membranes was halved (K 2Cr2O7, H2O, H2SO4: 1, 19, 29.4) and the membranes were

treated for longer periods of time (60 minutes). At the same time, a hot chromic solution

at 65 °C was used instead of treating the membranes with chromic acid solution at room

temperature, because oxidation of chromic acid is effective at high temperatures.

Chromic acid solution when passed through the fibers, could not wet the membranes and

hence the pore mouth and the pore interior of the PP membrane were not hydrophilized.

When water was pressurized in the fibers to wash the fibers after chromic acid treatment,

water did not permeate through the membranes because only lumen side of the fibers was

66
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hydrophilized with chromic acid; pore mouth and the pore interior were not

hydrophilized.

In order to hydrophilize the pore mouth and the pore interior of the membranes,

the fibers were first prewetted with acetone and the chromic acid solution was then

pressurized in the fibers. Acetone is miscible with the chromic acid solution and hence

acetone in the membrane pores will be easily replaced with chromic acid with the applied

pressure. Employing acetone as a wetting agent is advantageous over ethanol as acetone

is hard to oxidize because it is a ketone. By wetting the pores with acetone prior to

chromic acid treatment, chromic solution penetrated into pores of the membrane and

hydrophilized the pore mouth and pore interior. After passing acetone through the hollow

fibers and filling the membrane pores with acetone, one should not use air to remove the

excess acetone from the lumen side as air when passed through the fibers would

evaporate acetone from the membrane pores. Instead, chromic solution was immediately

passed through the fibers and the chromic acid solution that comes out of the module for

the first couple of minutes of the treatment was discarded. Water was permeated through

the membranes when water was pressurized in the fibers. Prewetting with acetone helped

uniform hydrophilization of PP hollow fiber membranes. After treating the fibers for

thirty minutes, chromic acid solution in the reservoir was replaced with fresh chromic

solution and the membranes were treated for thirty more minutes.
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3.2 Ultrafiltration

As mentioned in Section 1.7, only a successful combination of hydrophilization of the

fibers (when PP is used as support), IP procedure ("regular or "reverse"), nature of the

monomers and the reaction times, removing the excess monomers from the lumen side,

and heat treatment technique will lead to a non-defective and uniform coating in hollow

fibers. As hydrophilization is the first step involved in the coating process of hydrophobic

fibers, a successful procedure for hydrophilization of PP hydrophobic fibers was first

developed (Section 3.1). The order of the optimization of the other steps is as follows: IP

procedure ("regular or "reverse"), heat treatment technique, removing the excess

monomers from the lumen side, nature of the monomers and the reaction times. Zein

concentration in the feed solution used for characterization of all fabricated ultrafiltration

membranes was 1 g/1 unless otherwise mentioned.

3.2.1 Coating on X-10 Hollow Fibers (Module A)

Solvent flux and zein rejection measurements for bare and coated membranes on X-10

hollow fibers modified to fabricate ultrafiltration membranes are presented in Table 3.1

along with each membrane's IP modification history. During the modification of X-10

hollow fibers, IP procedure ("regular or "reverse") and heat treatment techniques were

optimized.

The reactive monomer system of 1,6-hexanediamine-sebacoyl chloride was used

to coat all X-10 hollow fiber membrane modules. Excess aqueous/organic monomer

containing solutions were removed from the lumen side by purging it gently with air at a

flow rate of 3 cm3/s for 1 minute. The lowest possible flow rate of 20* 10"3 cm3/s was

used to pass the organic/aqueous monomer containing solution through the fibers to
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minimize the drag force (on the nascent coating) involved during the coating process.

Different heat treatment techniques studied were: passing hot water at 65 °C for 30

minutes; passing hot air at 65 °C for 30 minutes.

Table 3.1 Solvent Flux and Zein Rejection in Hollow Fiber Membranes

The PP X-10 hollow fibers in the module were first modified by the "reverse

procedure" as described in Subsection 2.3.2.2. It is well known that only the diamine

monomer can partition into the organic solvent, but dichloride monomer cannot partition

into water and hence the thin film is formed in the organic phase. 59 For this reason, the

support was wetted with the organic monomer containing solution after hydrophilization

because the IP layer formed in the organic phase could bind to the support better.
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However, the membrane module coated by the above procedure offered only 11%

rejection for zein with no reduction in the solvent flux. A SEM picture of the coating

(Figure 3.1a) suggests it was very similar to the support membrane (Figure 1.3),

indicating that there was no coating. From this observation, it was concluded that by

wetting the support with the organic solution after hydrophilization, the hydrophilized

groups created earlier on the surface of the support might have been inverted toward the

interior of the support and hence the coating lacked the binding to the support. 71

Although there will be formation of the coating during the IP process, the coating might

have been washed away when the characterization studies were carried out. For this

reason, the inner surface of the fibers were afterwards always first wetted with the

aqueous monomer solution before passing the organic monomer solution for the rest of

the membrane modification of hydrophobic fibers ("regular procedure" as described in

the Subsection 2.3.2.1).

Next, different modes of heat treatment were studied using 2 wt.% monomer

concentrations with the reaction time of 2.5 minutes. SEM pictures and characterization

by zein rejection indicated that heat treatment by passing hot water through the fibers

immediately after the IP process produced a number of defects (Figure 3.1b). These

defects could have resulted from the drag created on the nascent IP film by the flow of

hot water. To cover these defects, the coated fibers were coated again by the same

procedure as the first coating without the hydrophilization step. The hydrophilization step

was not needed because the polyamide coating was already hydrophilic. A 97% rejection

of zein was achieved after the third layer of coating and the SEM picture of this layer of

the membrane is shown in Figure 3.2. Although this picture shows some defects in the
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third coated layer, it appears that these defects are covered with the nondefective sections 

of the second and fust layers resulting in a good rejection of the protein zein . Even 

though a good rejection of zein was achieved after three layers of coating, the solvent 

flux was reduced 22 times compared with the support membrane. 

Figure 3.1 a) Surface of the coated X-IO hollow fiber, coated by wetting the 
hydrophilized surface with organic solution followed by aqueous solution; b) defects in 
the coated surface ofX- IO hollow fiber, heat treated by passing hot water after IP. 

Heat treatment by passing hot air through the fibers was also studied and did not 

yield fruitful results. The surface of the coating that was heat treated by passing hot air at 

65 °C for 30 minutes is shown in Figure 3.3. The next heat treatment technique studied 

was to place the coated module in an over at 110 °C for 20 minutes. Additional studies of 

optimization of the steps including the heat treatment in an oven were carried out in X-20 

hollow fibers which are larger in diameter than X-I 0 hollow fibers . 
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Figure 3.2 Surface ofthe third coated layer on X-IO hollow fiber support. 

Figure 3.3 Surface ofX-IO PP hollow fiber membrane heat treated by passing hot air. 
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3.2.2 Coating on X-20 Hollow Fibers (Module B)

Since PP X-20 hollow fibers are available in larger inner diameter than X-10 fibers,

further studies were carried out using X-20 fibers with the expectation of improving the

coating characteristics. Removing the excess aqueous/organic monomer solutions from

the lumen side, the nature of the monomers and the reaction times, and heat treatment of

the coating were optimized in the modification of X-20 hollow fibers. Table 3.1 provides

the solvent flux and zein rejection measurements in the modified X-20 hollow fiber

membranes.

The reactive monomer system of poly(ethyleneimine)-isophthaloyl dichloride was

primarily used to coat X-20 hollow fiber membranes. After complete optimization of the

coating process, the nature of the coating with the reactive monomer system of 1,3-

phenylenediamine-trimesoic acid trichloride was also studied. During the polymerization

process, the organic monomer containing solution was kept standing still inside the

lumen of the fibers instead of passing it the through the fibers. This was carried out as

follows. The organic solution was initially passed through the fibers holding the module

vertical; when the organic solution appeared at the other end of the module, the flow of

the organic solution through the fibers was stopped. After a period of up to 10 minutes,

considered as the reaction time, the organic solvent was removed from fibers and the

excess was removed by blowing gently with air. Then the coating was heat treated by

placing the module in an oven at 110 °C for 20 minutes.

The zein rejection achieved in the membrane coated with 0.5 wt% PEI and 0.5

wt% [PD by employing the above mentioned coating procedure was 73% (Table 3.1).

The reduction in solvent flux from that of the support was 15 times. These results indicate
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that uniform and nondefective coating can be achieved in the X-20 hoUow fibers by the 

employed heat treatment technique of placing the module in an oven at 110 DC for 20 

minutes. The flow involved during the IP process was minimized by stopping the flow of 

the organic monomer solution. By doing so, a situation similar to the conditions used in 

coating on flat films was developed. The larger ID of the X-20 fibers could also have 

helped in producing a nondefective coating by reducing the shear on the nascent 

polyamide film at the time of removal of the organic solution after polymerization. 

Although the coating appeared very uniform and nondefective compared to the coatings 

on X-IO coated with different monomers, some defects were still observed in the coating 

(Figure 3.4). These defects explain the lower zein rejection (73%). 

Figure 3.4 Defect in the coated surface ofX-20 hoUow fiber. 

• 
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Next, uniform and controlled removal of excess aqueous/organic monomer

solutions form the lumen side of the fibers was optimized. During the removal process of

the excess aqueous monomer solution from the lumen side, the PP hollow fibers were

transparent because the pores in the fiber wall were filled with the aqueous monomer

solution. When air was passed through the fibers, removal of the aqueous solution from

the lumen side of the fibers was visible through the transparent module casing and the

transparent fibers. Thus, the lowest air flow rate, air pressure and the time of removal that

removes the aqueous solution from the lumen side were measured. An air flow rate of 1.5

cm3/s at 2 psig (115.1 kPa) and 20 seconds of removal time were the lowest values for

complete removal of excess aqueous solution from X-20 hollow fibers. The same

conditions would also apply to the removal of the excess organic solution from the fibers

after completion of the polymerization process.

Good zein rejections (91%) were now achieved following the above mentioned

excess removal procedure and using the same experimental conditions (0.5 wt% PEI, 0.5

wt% IPD, polymerization time: 10 min) on X-20 fibers. Defects in the coating were

reduced by employing the optimized excess removal conditions; however a small number

of defects in the coating resulted in a 91% rejection of zein instead of 99% rejection.

Kistler and Cussler8 ' also reported that they encountered defects when hydrophillic

hollow fibers were coated by interfacial polymerization. However, 97% zein rejection

was achieved at the same transmembrane pressure (138 kPa) with a feed solution of 5 g/1

zein in 70% ethanol (rest, water). Higher rejection of zein with higher concentration of

protein in the feed solution is probably due to the adsorption of protein on the surface of

the coating and subsequent fouling of the membrane.
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The solvent flux of the coated X-20 membranes for z 91% zein rejection was 2 to

10 times lower than the solvent (70% ethanol) fluxes in different ultrafiltration

membranes which were reported as not truly solvent resistant.' ? Solvent stability of such

a coated membrane was studied and the results are presented in Figure 3.5. Both the zein

rejections and the solvent fluxes were stable for an experimentally studied period of 10

weeks indicating that the coated membranes were stable in ethanol solutions. It is worth

mentioning the extent of solvent stability of the ultrafiltration membranes studied by

Shukla and Cheryan for the same model system. 17 Out of a number of ultrafiltration

membranes tested, cellulose and polysulfone based membranes failed in a few weeks of

solvent exposure. Although polyacrylonitrile-based membranes appeared to have the

longest stability periods among the tested membranes, their performance declined slowly

with time.

Figure 3.5 Solvent stability of the coated PP X-20 hollow fiber membranes: solvent flux
and zein rejection with time (zein concentration = 1 g/1; AP = 138 kPa).



77

The coating (Figure 3.6) on X-20 hollow fiber membranes with PEI and IPD was

very uniform. Although the reaction time was 10 minutes, the coating thickness was less

than 0.1m. The impressions of the support pore structure can also be observed in Figure

3.6. The bulkiness of the PEI polymer explains this behavior which is different from that

of 1,6-hexanediamine. When X-20 hollow fibers were coated with 0.5 wt% of 1,3-

Phenylenediamine and 0.5 wt% of trimesoic acid trichloride in xylene for ten minutes,

the surface of the coating was rough with a ridge-and-valley structure (Figure 3.7)

whereas the coating with the reactive monomer system of PEI and IPD was very smooth

(Figure 3.6). These observations are in accordance with those in the literature that

aromatic amines produce coatings with a rough surface. 69 When a tri-functional monomer

(trimesoic acid trichloride) is used instead of a bifunctional monomer (IPD), the polymer

develops in a three dimensional network producing a ridge-and-valley structure. Fouling

is a prominent membrane phenomenon in membrane processes which decreases the

membrane flux and reduces the membrane separation efficiency. Fouling increases with

an increased roughness of the membrane surface; hence one would like to produce a

coating having a smooth surface. From this perspective, the reactive monomer system of

PEI-IPD is advantageous over the other reactive monomer system.

3.2.3 Optimized Coating Procedure

The optimized procedure developed for a defect-free coating on the lumen side of the

hydrophobic X-20 PP hollow fibers is summarized in this section. Pores of the hollow

fibers were first wetted with acetone by passing acetone through the lumen side at 2 psig

(115.1 kPa) for 2 minutes. The chromic acid solution (K 2Cr2O7 , H2O, H2SO4 : 1, 19, 29.4)

at 65 °C was next circulated through the bore of the fibers at 5 psig. After 30 minutes of
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treatment, the chromic acid solution in the reservoir was replaced with a fresh batch of 

chromic acid solution. The chromic acid solution was washed with water for 30 minutes 

at a transmembrane pressure of 10 psi (68.9 kPa). Then the aqueous monomer solution 

was passed through the fibers for 30 minutes at 5 psig. The excess aqueous solution from 

the lumen side was removed by passing air at a flow rate of 1.5 cm3/s and 2 psig (115.1 

kPa) for 20 seconds. Next, the organic monomer solution was passed through the fibers at 

a flow rate of 20' 1 0.3 cm3/s followed by removal of the excess organic solution removal 

by blowing air at 1.5 cm3/s flow rate and 2 psig (115.1 kPa) for 20 seconds. The coated 

module was then heat treated in an oven at 110 °C for 20 minutes. 

Figure 3.6 Surface of the coated X-20 hollow fiber. 
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Figure 3.7 A rough coating on X-20 hollow fiber (0.5 wt% 1,3-phenylenediamine, 0.5 
wt% trimesoic acid trichloride, polymerization time: 10 minutes) . 

3.2.4 Coating on PES (Module C) and Nylon (Module D) Hollow Fibers 

The cross sectional area for the lumen side flow in Modules C and D are slightly larger 

than that of Module B. Since the air flow rate to remove excess aqueous/organic solutions 

from the lumen side depends on this cross sectional area, slightly higher flow rates of air 

(3 cm3/s for Module C and 2.25 cm3/s for Module D) were employed to maintain the 

same velocity of air flow in the fibers ; the pressure at which the air was passed and the 

removal time were the same. Since PES and Nylon hollow fibers are hydrophilic, 

hydrophilization by the chromic acid treatment was not necessary. Other coating 

conditions were same as that of the optimized coating procedure for X-20 hollow fibers . 

• 
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The PES hollow fibers were coated with 0.5 wt% of PEI and 0.5 wt% of IPD for

ten minutes. At the applied pressure of 138 kPa, around 95% zein rejection and a solvent

flux of 2.47* 10" 5 cm3/(cm2s) were achieved. The flux in the coated PES fibers was 1.7

times lower than the flux in coated X-20 hollow fibers although the modification was

done via the same coating conditions. Differences in the surface porosity and pores of the

X-20 and PES hollow fibers support explain this behavior. 57 Coated PES membranes

were tested for solvent stability and the data are provided in Figure 3.8. Zein rejection

gradually decreased to 79% in the period of four weeks and the solvent flux was

increased. These results are in accordance with the solvent stability studies reported by

Shukla et al." that PES membranes are not stable in alcohols.

Figure 3.8 Solvent stability of the coated PES hollow fiber membranes in ethanol:
solvent (70% ethanol) flux and zein rejection with time (zein concentration = 1 g/1, AP =
138 kPa).
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The Nylon hollow fiber membrane has larger pores and a wider pore size

distribution on the lumen side than the other fibers. Therefore, TFC membranes on

porous Nylon supports will not be suitable for pressure driven membrane processes such

as ultrafiltration. However, the lumen side of the Nylon hollow fibers was coated by

interfacial polymerization because of its high solvent stability compared with PES. Nylon

hollow fibers were coated with 2 wt% of PEI and 2 wt% of IPD for ten minutes. Higher

concentrations of monomers (2 wt%) were used as larger pores and a wider distribution

of pores have to be coated. Zein rejections in coated membranes were less than 20% at

138 kPa. From these poor zein rejection data, it was interpreted that the coating on the

larger pores could not withstand the high pressures employed during the testing.

3.3 Nanofiltration

Nanofiltration membranes were fabricated on both the X-20 hollow fiber and flat film

membrane supports of PP. Characterization of the coating (solute rejection and solvent

flux) and solvent stability studies were carried out in hollow fiber membrane modules

(Module B). Pressure dependence of the solvent flux in the modified membranes was

studied using flat film membranes. As the concentrations of monomers for IP increase,

the pore size of the coating will decrease. 70 Hence, membranes were fabricated using

higher monomer concentrations and employing the optimized procedure that was

developed for the fabrication of the ultrafiltration membranes. The monomer

concentrations studied for fabrication of ultrafiltration membranes were 0.5 wt% whereas

for nanofiltration, the monomer concentrations studied were 0.75 wt%, 1.0 wt% and 2.0

wt%. The same reaction time of 10 minutes was used. The optimized coating procedure
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described in Section 3.2.3 was employed to modify the X-20 hollow fiber membranes.

Modification conditions of the hollow fiber membrane modules along with the

coating characteristics studied with methanol solutions of brilliant blue R and safranin 0

are provided in Table 3.2. This table illustrates the behavior of the solute rejection and

the solvent flux with the increase in the monomer concentrations of the coating. Rejection

of brilliant blue R in the membrane coated with 0.5 wt% of monomers was 78%. With the

increase in concentration of the monomers used for the coating to 0.75 wt%, the rejection

of brilliant blue R was increased to 88%. Rejection was not further improved with the

increase in monomer concentrations 1 wt%. However, the solvent flux was gradually

reduced with the increase in monomer concentrations used for the coating.

Table 3.2 The Behavior of Solute Rejection and the Solvent Flux (Measured at 413 kPa)
with an Increase in the Monomer Concentrations Used for the Coating in Hollow Fiber
Membrane Modules

Reactants
concentrations

Feed solution: 0.01 wt% of
brilliant blue R in methanol

Feed solution: 0.01 wt% of
safranin 0 in methanol

Brilliant blue R
rejection (%)

Methanol flux
(cm3/(cm2*s))

Safranin 0
rejection (%)

Methanol flux
(cm3/(cm2•s))

0.5 wt% PEI
0.5 wt% IPD

79 1.83*10-4 38 1.81*10-4

0.75 wt% PEI
0.75 wt% IPD

88 1.69*10-4 43 1.69* 10-4

1.0 wt% PEI
1.0 wt% IPD

88 1.38*10-4 45 1.40*10-4

2.0 wt% PEI
2.0 wt% IPD

- - 45 0.95*10-4

Rejection of safranin 0 was increased from 38% to 43% when the monomer

concentrations for the coating were increased from 0.5 wt% to 0.75 wt%. Safranin 0

rejection in the membranes coated with 0.75 wt%, 1.0 wt% and 2 wt% monomer
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concentrations were nearly the same. These solute (brilliant blue R and safranin 0)

rejection results indicate that only a limited variation in pore size of the coating can be

achieved by varying the concentrations of the monomers for the studied reactive

monomer system of PEI-IPD. The values of methanol flux (Table 3.2) achieved in the

membranes were the same with both the feed solutions of brilliant blue R in methanol

and safranin 0 in methanol because feed solutions had very low dye concentrations (0.01

wt%). The steady state flux of methanol obtained by Whu et al.' in the commercially

available nanofiltration membranes having a 400 molecular weight cut off (MWCO) for a

feed solution of 0.01 wt% of safranin 0 in methanol at 1034 kPa was 1.97*10 -4

cm3/(cm2 •s). The solvent flux values normalized with the pressure in the membranes

fabricated here were at least two times higher than the normalized solvent flux in the

commercial membrane having a 400 MWCO.

To better understand the nature of the coating, rejection of zein was also studied

in the hollow fiber membranes coated with 0.75 wt% monomer concentrations. A zein

rejection of 97% was achieved with a solvent (70% ethanol) flux of 1.17*10 -4

cm3/(cm2•s) at a transmembrane pressure of 413 kPa. Flux of methanol in the same

membrane was 1.69* 10 -4 cm3/(cm2•s). Lower flux values of ethanol over methanol was

also observed by Musale et al. 4 and Kim et al. 60 in crosslinked poly(acrylonitrile)

composite nanofiltration membranes. This may be due to the combined effects of an

increase in molecular weight and viscosity of ethanol over methanol. 4, 60 The zein

rejection and solvent flux in the membranes coated with 0.5 wt% monomer

concentrations measured at 413 kPa were respectively 97% and 1.36*10 -4 cm3/(cm2 •s).

At 138 kPa, the zein rejection and solvent flux in the same membranes were 91% and
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53*10-6 cm3/(cm2*s) (Table 3.1). Therefore, zein rejection was increased from 91% to

97% when the transmembrane pressure was increased from 138 kPa to 413 kPa. It is

believed that transport mechanism in nanofiltration membranes follows the solution-

diffusion model. This model predicts that the solute rejection increases with an increase

in pressure. In the solution-diffusion model, the solute flux is independent of the applied

pressure at high solute rejections and solvent flux is proportional to the applied pressure.

1, 2As a result, rejection increases at higher pressures. Rejection of safranin 0 measured at

413 kPa in the membrane module coated with 0.75 wt% monomer concentrations was

43%. If higher pressures (>413 kPa) can be employed in hollow fiber modules, higher

rejections of safranin 0 can be achieved in the same membrane module. Whu et al.'

reported that rejection of safranin 0 in a nanofiltration membrane with 400 MWCO was

increased from 45% to 87% with an increase in the transmembrane pressure from 1517

kPa to 3034 kPa.

Pure solvent (methanol) flux dependence on the transmembrane pressure (138 kPa

to 689 kPa) was studied using coated flat film membranes rather than hollow fiber

membrane modules because of the capability of the flat membrane cell to withstand

higher pressures. Pure solvent flux was studied instead of the solvent flux for a protein

(zein) or dye (brilliant blue R or safranin 0) solution so that the effect (if any) of the

solute can be neglected. Figure 3.9 illustrates the effect of applied pressure on the

permeate flux of a pure solvent (methanol) in the PP flat film membrane coated with 0.75

wt% of PEI and 0.75 wt% of IPD for ten minutes (88% rejection of brilliant blue R was

achieved in the hollow fiber membranes modified with the same coating conditions of

monomer concentrations and polymerization time). Results in Figure 3.9 show that the
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solvent flux increased linearly with transmembrane pressure in the studied pressure

range. This observed behavior follows the commonly observed linear relation between

the flux and the transmembrane pressure in the absence of a solute. 2 This linear relation

also indicates that there was no pore deformation at higher transmembrane pressures.

Figure 3.9 Effect of applied pressure on the permeate flux of a pure solvent (methanol)
in the coated flat film membranes of PP coated with 0.75 wt% of PEI and 0.75 wt% of
IPD for ten minutes.

The methanol flux and brilliant blue R rejection values were stable for the studied

period of ten week's exposure to toluene (Figure 3.10). The coated membranes retained

their characteristics with a long exposure to toluene. These coated membranes were

already proved to be stable in alcoholic solutions (Section 3.2.2). These studies indicate

that the polyamide coating on PP support is stable when exposed to a wide range of

solvents (alcohols and aromatic hydrocarbons). Kim et a1. 6° have reported that in short

term stability studies, polyamide coating on polyacrylonitrile ultrafiltration support

membrane was solvent resistant to a wide variety of solvents such as alcohols, ketones
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and hexane. Therefore, the membranes fabricated using a polyamide coating on

polypropylene support will provide solvent stability over a wide range of solvents in

extended runs.

Figure 3.10 Solvent stability of the coated PP X-20 hollow fiber membranes in toluene:
solvent (methanol) flux and brilliant blue rejection with time (brilliant blue R
concentration = 0.01 wt %; AP = 413 kPa).

FT-IR spectrum of the non-coated PP flat film membrane and the polyamide-

coated PP flat film membrane were compared in Figure 3.11. The peaks at 1638 cm-1 and

1543 cm-1 corresponds to the amide. 87 Therefore, it is apparent that the PP membranes

were coated with the polyamide material.

3.4 Conclusions

Thin film composite membranes on polypropylene hollow fibers and flat films were

successfully prepared by interfacial polymerization on the porous polypropylene support.

The support was hydrophilized on a preliminary basis by pre-wetting the membranes with
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acetone, followed by oxidation with a hot chromic acid solution. This technique allowed

achievement of uniform hydrophilization of both the pore mouth and the interior of the

hydrophobic support. Treating the PP support membranes using a lower concentration of

chromic acid at a higher temperature for a longer period of time provided controlled and

uniform hydrophilization. Treating the hydrophilized support with the organic monomer

containing solution followed by the aqueous monomer containing solution resulted in

poor binding of the coated layer to the support; to obtain an effective coating on the

hydrophilized support the aqueous monomer containing solution should be introduced

first followed by the organic monomer containing solution.

Figure 3.11 FT-IR spectrum of the non-coated and polyamide-coated flat film
membrane of PP.

In the case of IP on hollow fibers, removing the excess monomer solutions by

blowing air at low flow rates helped in obtaining a uniform coating. Interfacial

polymerization carried out in hollow fibers having a larger ID resulted in a better coating
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by reducing the shear created by the flow of monomer solution on the nascent coating.

Better coating was obtained by heat treatment in an oven compared with heat treatment

by passing hot water, hot air and curing by ambient air. Interfacially polymerized hollow

fiber membranes were characterized by ultrafiltration measurements of the corn protein,

zein, in an alcoholic solution. High zein rejection of 97% was achieved at a

transmembrane pressure of 413 kPa with a single coating on X-20 hollow fibers. X-20

hollow fibers of PP coated with the monomer system of poly(ethyleneimine) and iso-

phthaloyl dichloride appeared to be stable in ethanol solutions. A very thin coating was

achieved although the reaction time was ten minutes because of the high molecular

weight of the amine monomer (PEI). The reactive monomer system of PEI-IPD produced

a very smooth coating and this would reduce the membrane fouling.

The attempts to fabricate solvent resistant TFC membranes on PES and Nylon

supports were unsuccessful. The coated PES membrane could not retain its characteristics

when treated with alcoholic solutions in an extended run because the PES support could

not provide sufficient solvent stability. The coated layer on the Nylon support which has

larger pores and a wide pore size distribution could not withstand high transmembrane

pressures.

Hollow fiber membranes were successfully coated with higher concentrations of

monomers and the coated membranes were characterized by nanofiltration of brilliant

blue R in methanol and safranin 0 in methanol. Only a limited variation in pore size of

the coating could be achieved by varying the concentrations of the monomers for the

studied reactive monomer system of PEI-IPD. Rejection values of 88% and 43% were

achieved for brilliant blue R and safranin 0, respectively at a transmembrane pressure of
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413 kPa in a hollow fiber membrane module coated for ten minutes with 0.75 wt %

monomer concentrations of PEI and IPD. The rejections could be further increased by

increasing the operating pressures. However, hollow fiber membrane modules have to be

specially fabricated with metal fittings to handle higher pressures. Normalized methanol

flux in the fabricated membranes was at least two times higher than the flux in

commercial nanofiltration membranes for a particular rejection level. Increase in the

solvent flux in the coated flat film membranes was proportional to the applied

transmembrane pressure in the studied pressure range. The coating was able to withstand

the applied pressure of 689 kPa and pore deformation was not observed at such a high

pressure. The coating was also stable to continued exposure to toluene for the studied

period of ten weeks. This proves that the polyamide coating on PP has solvent resistance

to alcohols and aromatic hydrocarbons.



CHAPTER 4

PERMANENT HYDROPHILIZATION OF PP FLAT SHEET MEMBRANES

Polypropylene flat film membranes were first hydrophilized by prewetting with acetone

and treating with hot chromic acid solution before they were modified for permanent

hydrophilization by PEI crosslinking or the "modified IP" procedure. The detailed

procedure of chromic acid treatment is described in Section 3.1. The optimum

concentration of chromic acid was same as the concentration that was optimized for

hollow fiber modules. The results for permanent hydrophilization by PEI crosslinking

will be presented first followed by the results of modification by the "modified IP"

procedure.

4.1 Hydrophilization by PEI Self-Crosslinking

Porous flat film membranes of PP were modified by the modification procedure

described in Section 2.3.4.1. The breakthrough pressures and the water permeation rates

of the membranes modified by PEI crosslinking for different PEI concentrations are

provided in Table 4.1. No water permeation was observed through the membranes

modified with 0.5 wt% and 2 wt% aqueous solutions of PEI even at a transmembrane

pressure of 65 psi (448 kPa). When PEI was deposited and crosslinked on the PP flat film

membranes with a 4 wt% of aqueous solution of PEI, water permeated through the

modified membrane when the transmembrane pressure was between 55 psi (379 kPa) and

60 psi (414 kPa). The water permeation rate after the modification was 6.7* 10" 6

cm3/(cm2s). But, the water permeation rate was reduced drastically to 8.2*10 -7 cm3/(cm2s)

90
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after a twelve hour exposure of the modified membrane to xylene. This indicated that the

hydrophilicity of the PEI crosslinking was not persistent enough to withstand an exposure

to organic solvents. The possibility of chain mobility and the inversion of the hydrophilic

groups of the crosslinked PEI with the exposure to xylene may explain this behavior. 71

Reorganization of the polymer chains with the organic solvent exposure in some

hydrophilic membranes was also observed by Bruggen et al.. 14 Since hydrophilicty of the

modified membranes did not persist with the organic solvent exposure, permanent

hydrophilization by PEI cross linking was not further persued.

Table 4.1 Breakthrough Pressures and Water Flux in Polypropylene Flat Membranes
Modified using PEI Crosslinking

Reactants concentrations Breakthrough pressure
(kPa)

Water permeation rate
(cm3/(cm2 s))

0.5 wt.% PEI >448 -

2 wt.% PEI >448 -

4 wt.% PEI Between 379 and 414 6.7* 10-6 at 414 kPa

4.2 Hydrophilization by a "Modified IP" Procedure

Two different methods were employed for permanent hydrophilization of porous flat

films of PP by the "modified IP" procedure. One of them was depositing PEI on the pore

interior of the PP membrane from a solution of the amine dissolved in a mixture of water

and ethanol. The other method was depositing PEI from the solution of amine dissolved

only in water. Employing a mixture of ethanol and water instead of water as a medium to

dissolve and deposit PEI, ensures the complete vaporization of the medium because of
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the lower overall vapor pressure of the ethanol and water mixture. When the membrane

pores were filled with 2 wt % of PEI in 50 vol% of aqueous ethanol solution and vacuum

was pulled through the membrane, evaporation of the medium and deposition of the PEI

was achieved in less than 30 minutes. Then, the membrane was soaked in 2 wt% iso-

phthaloyl dichloride in xylene for ten minutes and heat treatment was followed. The

breakthrough pressure of water through such a coated membrane was between 45 psi

(310 kPa) and 50psi (345 kPa), and the water flux at a transmembrane pressure of 50 psi

(345 kPa) was 16.7 *10 -6 cm3/(cm2 s). These modified membranes retained their water

flux with organic solvent (xylene) exposure.

Water was employed as a medium instead of mixture of ethanol and water to

deposit PEI on the PP pore interior for the next set of experiments. Hydrophilization

helps the uniform deposition of PEI on the pore interior. Employing ethanol as medium

could invert the hydrophilized groups towards the polymer interior. Therefore, one would

like to completely eliminate the possibility of inversion of the hydrophilized groups to

provide good binding between the support and the coating. Hence water was used as a

medium instead of a mixture of ethanol and water. Membrane pores filled with the

aqueous PEI solution was dried for five hours to ensure complete evaporation of water.

The membranes were then soaked in xylene containing iso-phthaloyl dichloride for ten

minutes and heat treatment was followed. The values of the breakthrough pressures for

water and water permeation rates for flat films modified employing water as a medium

are provided in Table 4.2. As PEI concentration for the modification was increased from

0.5 wt.% to 3 wt.%, the breakthrough pressures for water was decreased. The surface of

such a coated membrane is provided in Figure 4.1. When the PEI concentration was
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further increased to 6 wt%, the breakthrough pressure was increased. This phenomenon is

explained as follows. When a high PEI concentration (6 wt.%) was used for coating, the

surface of the flat film was most likely covered with PEI that was dried out of water

instead of depositing only on the pore interior. As a result, a thin film composite

membrane was formed and the breakthrough pressure was increased. It was confirmed

from a SEM picture (Figure 4.2) of the flat membrane modified by 6 wt% of aqueous PEI

and 2 wt% iso-phthaloyl dichloride in xylene.

Table 4.2 Breakthrough Pressure and Water Flux in Polypropylene Flat Membranes
Modified by the "Modified IP" Procedure and Employing Water as a Medium for PEI
Deposition

Reactants concentrations Breakthrough pressure
(kPa)

Water permeation
(cm3/(cm2 s))

0.5 wt.% PEI, 0.5 wt.%
IPD

>448 -

2 wt.% PEI, 2 wt.% IPD Between 310 and 345 18.3 *10-6 at 345 kPa

3 wt.% PEI, 2 wt.% IPD Between 241 and 276 33*10

-6

 at 276 kPa

6wt.% PEI, 2 wt.% IPD Between 379 and 414 9.9* 10

-6

 at 414 kPa

Best results (low breakthrough pressure and high water flux) were obtained when

the membrane was modified with a 3 wt% aqueous solution of PEI and 2 wt% of iso-

phthaloyl dichloride in xylene. Water flux and breakthrough pressure in the membranes

modified with the same monomer concentrations, but employing different mediums for

PEI deposition (mixture of water and ethanol as a medium and water as a medium) were

nearly the same. This indicates that the medium for PEI disposition has no significant

effect on coating. Hydrophilicity of the polyamide coating depends on the nature of the
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monomers (functional groups and the chain length) used for the coating. For example, 

hydrophilicity of the polyamide decreases with an increase in the hydrocarbon chain 

length of the monomer. IS. 88 Consequently, by selectively choosing the monomers for the 

coating, lower breakthrough pressures of water and hence better hydrophilicity can be 

achieved. 

Mag: 30.00 K )( 

Figure 4.1 Surface ofPP flat membrane coated by "modified IP" procedure with 3 wt% 
of aqueous PEl and 2 wt% IPD in xylene. 

4.3 Conclusions 

The technique of PEl crosslinking was not successful for permanent hydrophilization of 

PP flat film membranes as the modified membranes lost their hydropbilicity with the 

exposure to organic solvent. Both methods (mixture of ethanol and water as a medium 

and water as a medium to dissolve and deposit PEl) of membrane modification by the 

"modified IP" procedure appear promising for permanent hydrophilization of PP. 
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Membranes modified with 3 wt% of aqueous PEl solution and 2 wt% of iso-phthaloyl 

dichloride in xylene provided lowest breakthrough pressures and highest water flux out of 

all of the membrane modification experiments carried out. 

1~m 
.... 9· 50.00 K x 1-1 -----I 

EHT = 2.00 leV 
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Figure 4.2 Surface of PP flat membrane coated by "modified IP" procedure with 6 wt% 
of aqueous PEl and 2 wt% IPD in xylene. 
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CHAPTER 5

MEMBRANE SOLVENT BACK EXTRACTION

The results for modification of PP membranes by the "modified IP" procedure and Nylon

fibers by the "regular IP" procedure will be presented first. The results from coating the

Nylon fiber by PEI-crosslinking vis-à-vis the breakthrough pressures and the observed

mass transfer coefficients will be presented next. Results of reactive back extraction of

phenol from MIBK into caustic solution will be presented followed by the results for

non-reactive back extraction of acetic acid from MIBK into water.

5.1 Membrane Modification

5.1.1 Modification of PP by "Modified IP" Procedure

Results and discussion for permanent hydrophilization of PP by the "modified IP"

procedure are provided in Section 4.2. The lowest breakthrough pressure achieved for

water was between 241 and 276 kPa and water cannot immediately wet these modified

PP membranes. Hence, these modified membranes are not suitable to carry out membrane

solvent back extraction with the membrane pores containing the aqueous phase.

5.1.2 Modification of Nylon Hollow Fibers by

It is known that lowering the monomer concentrations for IP will produce a coating with

smaller pores. 70 Nylon hollow fibers were coated with 0.125 wt % PEI and IPD monomer

solutions by the coating procedure described in Subsection 2.3.2.1; the reaction time was

ten minutes. The SEM picture of the surface of such a coating is provided in Figure 5.1. It

is evident from this SEM picture that using low values of monomer concentrations

96
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produced defects in the coating rather than producing a coating with small pores. This 

technique of IP can not therefore be employed to produce membranes having pore sizes 

between those needed for ultrafiltration and microfiltration. If higher concentrations of 

monomers (2:. 0.25 wt%) are used, the pore size of the coated membranes will be in the 

range of a lower end of the ultrafiltration membranes. Modification of Nylon by IP was 

not further studied for MSBE as the membranes modified by this technique were unlikely 

to be suitable for MSBE. 

EHT'" 5,OOkV 
wo" 6mm 

Signal A.>: [nlens Dale :23 May 2005 
Photo No. " 1277 Time :19:53:40 

Figure 5.1 Surface of Nylon fiber coated with low monomer concentrations (0.125 wt % 
PEl and 0.125 % IPD). 

5.1.3 Modification of Nylon Hollow Fibers by PEl Self-Crosslin king 

Coating on hydrophilic Nylon fibers was carried out using different concentrations of 

aqueous PEl solutions (2, 4 and 6 wt%). Coating on the surface of hydrophilic 

membranes by crossJjnking PEl appears to be a convenient and simple procedure and 
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beneficial over other coating techniques like interfacial polymerization (IP) for the

following reasons. Only one reactive solution is involved; this decreases the number of

steps in the coating procedure. Defect-free and uniform coating can be achieved in the

hollow fibers because flow of the reactive solution is not involved during the formation

of the coating since crosslinking of PEI takes place during heat treatment. Kistler el al. 81

reported that they encountered the defects when interfacial polymerization technique was

used for coating on the surface of porous hollow fibers.

To develop a better understanding of the nature of the coating, SEM pictures of

the inner and outer surfaces of the non-coated Nylon fiber are shown in Figures 1.5 and

1.6, respectively. This noncoated Nylon fiber has pores of about 0.2 gm to 1.5 gm on the

surface of the ID. The surface of the coated membrane with 4% PEI aqueous solution is

shown in Figure 5.2. The coating appears uniform and the pore dimensions are in the

range of 0.05 to 0.2 gm. Nondispersive operation carried out for extended periods of time

indicated the formation of a nondefective coating. It was intended to coat only on the

inside surface of the fibers because PEI insolubilization in the cross section rather than on

the inside surface of fibers reduces the porosity and adds additional resistance to mass

transfer. Therefore, the presence of PEI in the cross section of the fibers during the

coating was eliminated by passing aqueous solution at low pressures and hence ended up

coating only on the inner surface of the fibers. The SEM picture of the cross section of

the coated fibers (Figure 5.3) shows an absence of crosslinked PEI in the cross section.

The continuous thin line on the inner surface of fiber in Figure 5.3 is the PEI coating; the

approximate coating thickness is about 0.4 gm.
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Figure 5.2 Coating on Inner surface of Nylon 6 hollow fiber (coated with 4 wt% PEl 
aqueous solution). 

Figure 5.3 Cross section of the coated Nylon 6 fiber (coated with 4 wt% PEl aqueous 
solution). 
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The effect of PEI concentration on the coating characteristics was studied via the

performance of reactive back extraction of phenol and measurement of the breakthrough

pressure. The results for coating with different concentrations (2, 4 and 6 wt%) of

aqueous PEI solutions are presented in Table 5.1 The breakthrough pressure in the non-

coated fibers was 3.45 kPa and increased up to 120 kPa with an increase in the PEI

concentration used for the coating. The experimentally measured value of the interfacial

tension for the water-MIBK system is 9.5 dyne/cm and is in accordance with the value

reported in the literature. 89 With added solutes like phenol or acetic acid, the interfacial

tensions measured remained almost constant. If 9 in Equation 1.1 may be assumed to be

constant for non-coated and coated hydrophilic fibers, the ratio of the breakthrough

pressures between the non-coated and the coated fibers will be inversely proportional to

the ratio of their respective pore radii. Estimation of pore radius from this relation for 2%,

4% and 6% PEI coated fibers will be 55, 24 and 15 nm, respectively (pore radius of the

non-coated fiber is approximated as 0.5 pm). The values from SEM pictures are also in

the same range.

Table 5.1 Effect of PEI Concentration on the Breakthrough Pressure and Reactive Back
Extraction Performance in Coated Hydrophilic Hollow Fibers

PEI concentration
for coating

(wt%)

Breakthrough
pressure for MIBK-
water system, APb

(kPa)

Reactive back
extraction of phenol*

K. (cm/s)

0% (Non-coated) 3.45 0.68*10

-3

2% 31.0 1.61*10

-3

4% 72.4 1.12*10

-3

6% 120 0.94*10

-3

* at Qorg = 0.33 cm3/s, Qaq 0.45 cm3/s.
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At an organic phase flow rate of 0.33 cm 3/s, the overall mass transfer coefficient

for the reactive back extraction system in the non-coated hydrophilic fibers was 0.68*10 -3

cm/s; it was increased to 1.61*10 -3 cm/s when the membrane was coated with an aqueous

PEI solution of 2 wt%. The values of the overall organic phase-based mass transfer

coefficients in the membrane coated with 4 and 6 wt% aqueous PEI solutions were

1.12*10-3 cm/s and 0.94*10-3 cm/s, respectively. These values are higher than that in the

non-coated fibers and smaller than the mass transfer coefficients in the fibers coated with

aqueous solution of 2 wt% PEI. Pore size of the coating decreases as the PEI

concentration used for the coating increases. This increases the breakthrough pressures of

the aqueous-organic interface; but it also decreases the interfacial area available for the

mass transfer of the solute. With the 2 wt% PEI coating, potential replacement of the

aqueous phase in the membrane pores with the organic phase due to an excess organic

phase pressure is avoided thus preventing an increase in the membrane resistance for

solute transport. With the 4 and 6 wt% of PEI coating, the additional membrane

resistance due to the coating dominates the mass transfer and hence lower overall mass

transfer coefficients are observed. Coating with 4 wt% PEI was employed quite often

because of the wide range of phase pressure difference that can be used.

5.2 Reactive Back Extraction

In reactive back extraction, phenol is back extracted into an aqueous solution having a

relatively high caustic concentration (0.25 M). Hence the aqueous phase resistance may

be neglected. Equations 2.6 and 2.8 were used to calculate the overall mass transfer

coefficients in hydrophilic and hydrophobic hollow fibers, respectively. The experimental
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values of the overall mass transfer coefficients for back extraction of phenol in

hydrophobic, non-coated and coated hydrophilic hollow fibers are plotted against the

organic phase flow rate in Figure 5.4a. With an increase in the organic phase flow rate,

the overall mass transfer coefficients increased in hydrophobic fibers and in coated

hydrophilic fibers. But, the overall mass transfer coefficients were constant in non-coated

hydrophilic fibers with an increase in the organic phase flow rate.

Basu et al. 19 reported that overall mass transfer coefficients varied with the

organic phase flow rates in the same experimental system studied when flat film

membranes were used. The difference in the observed behavior between the hydrophilic

flat film membranes and non-coated hydrophilic hollow fiber membranes could be

explained from the pressure drop occurring at low flow rates in the lumen side of the

hollow fibers.

Organic phase flowing through the lumen side of the hollow fibers encounters

some pressure drop even at low flow rates. Even at such low pressure drops, organic

phase pressure is increased enough for it to penetrate partially into the micropores and

replace the aqueous phase. This increases the membrane phase resistance as the organic

phase penetrates the membrane pores and offers more resistance to solute transport than

the remaining aqueous phase in the pores of the membrane. Although the tube side mass

transfer coefficient will increase with an increase in the organic phase flow rate, the

overall mass transfer coefficients may remain constant in these non-coated hydrophilic

hollow fibers because of the change in membrane resistance along the membrane length.

This increase in organic phase penetration will occur at the highest organic phase

pressure regions.
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Figure 5.4 Effect of organic phase flow rate variation on extraction of phenol from
MIBK into an aqueous caustic solution in hydrophobic, non-coated and coated
hydrophilic hollow fiber membranes. a) Overall mass transfer coefficient vs. organic
phase flow rate; b) Sherwood number vs. tube-side organic phase Reynolds number.
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In the case of coated hydrophilic hollow fibers, the membrane pores have a

reduced pore size which increases the breakthrough pressures of the aqueous-organic

interface and therefore provides a stable interface for the mass transfer of the solute. As a

result, replacement of the aqueous phase in the membranes pores with the organic phase

will be prevented and the overall mass transfer coefficients will increase with increased

organic phase flow rates in coated hydrophilic fibers. In fact, an increase in the overall

mass transfer coefficient with an increase in the organic phase flow rate is observed in

coated hydrophilic fibers prepared with 4 wt% PEI (Figure 5.4a). Further even though the

hydrophilic fibers have a larger diameter and therefore lower velocities at a given flow

rate, they exibit higher mass transfer coefficients than the hydrophobic Celgard PP fibers.

In Figure 5.4b, the same data are plotted as the Sherwood number against the Reynolds

number. One clearly observes the considerable enhancement in Sherwood number for the

coated fibers at a given Reynolds number.

The above mentioned phenomena can be studied in greater detail by plotting the

tube-side organic-phase Sherwood numbers against the Graetz number. The tube-side

Sherwood numbers in hydrophilic and hydrophobic hollow fibers were calculated from

the experimental data using Equations 2.6 and 2.8, respectively. Theoretical values of the

tube-side Sherwood numbers estimated from the Graetz solution (Equation 2.11) are

compared with the experimental values in hydrophobic, non-coated and coated

hydrophilic hollow fibers in Figure 5.5. Tube-side Sherwood numbers in hydrophobic

hollow fibers followed the theoretical values obtained from the Graetz solution closely

whereas the tube-side Sherwood numbers are much lower in non-coated hydrophilic

hollow fibers and are constant with an increased Graetz number.



Figure 5.5 Theoretical and experimental tube-side Sherwood numbers in hydrophobic,
non-coated and coated hydrophilic hollow fiber membranes for back extraction of phenol
from MIBK into caustic solution.

For coated hydrophilic hollow fibers, the tube-side Sherwood numbers increased

with an increase in the Graetz number and are higher than that in non-coated hydrophilic

fibers. However the values are smaller than the theoretical values. The membrane

resistance was assumed to be negligible in the calculation of Nsh in coated hydrophilic

fibers because the membrane pores were filled with the aqueous phase and instantaneous

reactive back extraction was taking place at the aqueous-organic interface. However, the

coated layer offers additional resistance to mass transfer and this additional resistance

was factored into the tube—side mass transfer coefficients in the calculations since the

membrane resistance was assumed to be zero. It would be appropriate to account for the

increase in membrane resistance with the coating by incorporating the membrane

resistance term for the calculation of tube-side Sherwood numbers from the experimental

105



106

values of overall mass transfer coefficients. The exact coating characteristics such as

porosity and the thickness are unknown to account for the increase in membrane

resistance with the coating.

5.3 Nonreactive Back Extraction

For nonreactive back extraction of acetic acid from MIBK into water in either

hydrophilic or hydrophobic fibers, the resistances of both aqueous phase and organic

phase are present. Since the partition coefficient of the system has a value of 0.52 (a case

of m z 1)41 , all three mass transfer resistances (tube-side, membrane phase and shell-side)

will have a significant affect on the overall mass transfer coefficient. The overall mass

transfer coefficients in the hydrophobic, non-coated and coated hydrophilic hollow fibers

were calculated and compared by the following procedure. Individual mass transfer

coefficients were estimated from the correlations and the overall mass transfer

coefficients calculated (Equation 2.4 for hydrophilic fibers and Equation 2.7 for

hydrophobic fibers) from these individual mass transfer coefficients and compared with

the corresponding experimental values to evaluate the non-reactive membrane back

extraction system.

The data in Table 5.2 imply that most likely the shell-side transfer coefficient

estimate was an overestimate leading to values higher than the actual. Regardless, it is

evident also from Table 5.2 that the membrane resistance dominates the tube-side and

shell-side resistances as the overall mass transfer coefficients remained nearly constant in

hydrophobic fibers with change in the flow rates of the aqueous phase and the organic

phase. D'Elia et al. 42 also reported that extraction of acetic acid from water into MIBK
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was controlled by the membrane resistance and a reduction of the membrane resistance

will improve the overall mass transfer coefficient. As acetic acid prefers to some extent to

be in the aqueous phase rather than in the organic phase, the membrane phase has to be

filled up with the aqueous phase to have the least possible membrane resistance by

employing hydrophilic fibers for extraction of acetic acid (either from MIBK into water

or from water into MIBK). Aqueous phase resistance is less important than the organic

phase resistance as acetic acid prefers to be in aqueous phase over MIBK. Therefore,

organic phase resistance can be minimized by having high flow rates of MIBK.

Table 5.2 Effect of Organic and Aqueous Phase Flow Rates on Experimental and
Calculated Overall Mass Transfer Coefficients in Hydrophobic Fibers for a Nonreactive
Back Extraction System

Qorg (cm3/s) Qaq (cm3/s) Ko  (cm/s)
Experimental

Ko  (cm/s)
Calculated*

0.23 0.57 1.38*10-4 2.35*10-4

0.41 0.57 1.44*10-4 2.41*10-4

0.59 0.57 1.46*10-4 2.44*10-4

0.76 0.57 1.47*10-4 2.45*10-4

0.76 0.62 1.57*10-4 2.56*10-4

0.76 0.78 1.66*10-4 2.85*10-4

0.76 0.95 1.89*10-4 2.98*10 -4

Calculated from Equations 2.7, 2.11 and 2.15

Acetic acid back extraction was studied in coated hydrophilic fibers as the coating

will improve the stability of the water-MIBK interface and avoid the displacement of the

aqueous phase from the membrane pores. High breakthrough pressures in the coated

fibers will also allow high organic flow rates through the fibers. The variation of the
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overall mass transfer coefficients in noncoated and coated hydrophilic fibers with

different organic flow rates were compared with the calculated values in Figure 5.6. The

overall mass transfer coefficients in the noncoated and coated hydrophilic fibers are

almost identical. But, the coated membranes support nondispersive operation over a wide

range of transmembrane pressures as the coated membranes will posses much higher

breakthrough pressures. The coating prevents the possible organic phase penetration into

the membrane pores. The overall mass transfer coefficients remained nearly constant with

the coating as the coating also adds additional membrane resistance to the solute

transport. This additional membrane resistance of the coating also explains the lower

experimental overall mass transfer coefficients than the calculated values, in addition to

the overestimation of the shell-side coefficient value.

Figure 5.6 Overall mass transfer coefficient vs. organic flow rate in non-coated and 4
wt% PEI-coated hydrophilic hollow fiber membranes for nonreactive back extraction
system at an aqueous phase flow rate of 0.86 cm3/s.
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5.4 Stability of the PEI-Coated Membranes

Polyamide displays a wide pH tolerance range (acceptable pH range 3 -11). 21 Therefore,

the coated membranes can be used for solvent back extraction with basic and dilute acidic

stripping solutions. Nondispersive operation was carried out continuously for an

experimentally studied period of five days and the aqueous-organic interface appeared

very stable. This indicates that the coating was very stable to 0.25M caustic solutions.

5.5 Conclusions

The benefits of employing hydrophilic hollow fiber membranes with the membrane pores

filled with the aqueous phase for efficient membrane solvent back extraction were studied

in porous Nylon hollow fibers coated on the ID with PEI which underwent self

crosslinking. As PEI concentration for the coating was increased, the pore size of the

coating was reduced and the breakthrough pressures were increased. Higher breakthrough

pressures prevented the replacement of the aqueous phase in the membrane pores with

the organic phase and provided a stable aqueous-organic interface for the solute

extraction.

The overall mass transfer coefficients improved significantly with the coating in

the reactive back extraction system as the resistance to the mass transfer is primarily from

the organic phase and the membrane pores were filled only with aqueous phase. In the

case of the nonreactive back extraction system, both organic and aqueous phase

resistances contribute to the overall mass transfer resistance. The advantage of filling the

membrane pores with the aqueous phase in nonreactive back extraction is due to the fact

that the solute prefers to be in the aqueous phase over the organic phase (m= 0.52). This
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advantage was balanced by the decrease in the interfacial area for mass transfer due to the

coating. Hence overall mass transfer coefficients are not increased drastically by the

coating even though the membrane pores are filled only with aqueous phase. But the

coating helped to achieve non-dispersive operation over a wide range of transmembrane

pressures. If the Nylon 6 fiber wall thickness were a few times smaller, the performance

will significantly improve in non-reactive back extraction where m 1.

Coating by PEI crosslinking on the inner surface of Nylon hollow fiber

membranes was convenient, free from defects and appeared promising. Among the

coatings with different PEI concentrations (2, 4, 6 wt%), coating with 4 wt% of PEI

solution is beneficial for the studied aqueous-organic phase system as it provided a

reasonable breakthrough pressure (72.5 kPa) and improved the overall mass transfer

coefficients significantly. Comparison of mass transfer coefficients in coated membranes

with that in hydrophobic membranes demonstrated that by employing hydrophilic

membranes having an appropriate pore size, one can improve the efficiency of membrane

solvent back extraction vis-à-vis hydrophobic membranes.



CHAPTER 6

HEAT TRANSFER

The objective of making a leak proof coating was first pursued. Then, the heat transfer

performance of the coated modules was studied. Results and discussion of the membrane

modification will be presented first followed by their heat transfer performance.

6.1 Membrane Modification

The primary objective of the membrane modification in this case was to fabricate a TFC

membrane by coating the lumen side of the porous PES hollow fibers with a water-

impervious layer. Therefore, attention was paid to making an impervious coating rather

than controlling the coating characteristics such as thickness and morphology of the

coating. These coating characteristics will have the least effect on the heat transfer

performance (the effect of the coating roughness is an unknown at this time). Membrane

modification conditions for different membrane modules are provided in Table 6.1.

Module 1 was coated with an 1 wt% aqueous solution of 1,6-hexanediamine and an 1

wt% sebacoyl chloride solution in xylene; the reaction time was two minutes. When

water was pressurized in the lumen side of the coated module at 10 psig (170.1 kPa),

water permeated to the shell side through the coating. The coated material is a polyamide;

it is hydrophilic and also swells a little with water. To prevent water leakage through the

coating, two more layers of polyamide coating was applied to the lumen side. The

procedure for the additional coating layers was same as that of the first layer of coating.
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After the three-layered coating was developed, water did not permeate from lumen side to

the shell side when water was pressurized in the lumen side at 10 psig (170.1 kPa).

Table 6.1 Conditions for Modification of PES Hollow Fiber Modules for Heat Transfer

Module
designation

Coating conditions

Layer 1 Layer 2

Module 1 l wt% 1,6-hexanediamine
1 wt% Sebacoyl chloride

Polymerization time: 2 minutes
No. of coatings: 3

-

Module 2 0.5 wt% Poly(ethyleneimine)
0.5 wt% Isophthaloyl dichloride
Polymerization time: 10 minutes

No. of coatings: 1

1.0 wt% silicone
elastomer in

xylene

Module 3 2 wt% 1,3-Phenylenediamine
2 wt% Trimesoic acid trichloride
Polymerization time: 20 minutes

No. of coatings: 1

2.0 % wt%
silicone elastomer

in xylene

Next, Module 2 was coated with Poly(ethyleneimine)-Isophthaloyl dichloride

reactive monomer system, because improved and uniform coating was observed in the

coating studies carried out in PP hollow fibers with this reactive monomer system over

1,6-hexanediamine-Sebacoyl chloride. Instead of adding layers of polyamide to prevent

the water permeation, the first layer of polyamide coating was further coated with a

coating solution of 1% silicone in xylene. The modified membrane module was

impervious to water at 10 psig (170.1 kPa) with the hydrophobic coating of silicone on

polyamide. The reactive monomer system of 1,3-Phenylenediamine-Trimesoic acid

trichloride was also studied to fabricate TFC membranes for heat transfer in Module 3.

After the first layer of polyamide coating in the lumen side of the hollow fibers in

Module 3 with monomer concentrations of 2 wt% and a reaction time of 20 minutes, 2
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wt% of silicone coating was applied. The fabricated TFC membrane was also impervious

to water at 10 psig (170.1 kPa).

6.2 Heat Transfer Performance

Configurations and the testing conditions for studying heat transfer performance in the

modified hollow fiber membranes are provided in Table 6.2. Variation of the overall heat

transfer coefficients with a flow rate variation of one of the flow streams keeping the

flow rate of the other stream constant was studied. All the figures of heat transfer

performance presented in this section and the respective calculations are from the report

submitted to the Office of Naval Research (ONR). 90 Variation of the overall heat transfer

coefficients (calculated from Equation 2.16) in Modules 1, 2 and 3 with the linear

velocity of one of the flow streams are provided in Figures 6.1, 6.2 and 6.3, respectively.

These figures also provide the magnitude of the overall heat transfer coefficients and the

maximum values of the overall heat transfer coefficients achieved. The highest values of

overall heat transfer coefficient values achieved in Module 1, Module 2 and Module 3

were 3000, 1900 and 1800 W/m2K, respectively. The overall heat transfer coefficients in

solid PP hollow fibers were in the range of 647 to 1314 W/m2K for the water-water

system. 54 A comparison of the performance of the modified PES fibers and the solid PP

fibers clearly indicates that modified PES hollow fibers modules showed better

performance.

Conductance values of the water stream will increase rapidly if there is any leak

between the brine and water streams. The conductance values of water stream was

constant during the experiments carried out in all of the modified modules (Module 1, 2
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and 3) and this implies that the coating was leak proof. Values of overall heat transfer

coefficient were higher in Module 1 compared with the values in Module 2 and Module

3. From this comparison, it appears that a three layered coating of polyamide performed

better than a layer of silicone on polyamide. However it needs to be verified with

additional experiments and systematic studies. Coating a layer of silicone over polyamide

coating is convenient over a three layered coating of polyamide as the numbers of steps

involved in the coating are fewer. By having a silicone coating instead of a number of

polyamide coatings, the possibility of swelling of the polyamide with water and hence

water permeation will be completely eliminated.

Table 6.2 Heat Transfer Performance Testing Configurations and Conditions

Module
designation

Tube side Shell side
Flow

stream
Linear

flow rate
(cm/min)

Inlet
temperature

(°C)

Flow
stream

Linear
flow rate
(cm/min)

Inlet
temperature

(°C)
Module 1 4%

brine
Varied 90 DI

water
3600 20

Module 2 DI
water

Varied 16 4%
brine

5500 93

Module 3 Tap
water

1600 25 4%
brine

varied 95

6.3 Conclusions

Thin film composite membranes fabricated on the internal diameter of porous

asymmetric PES hollow fiber membranes provided better heat transfer performance over

solid PP hollow fibers since the thickness of the barrier for heat transfer is lower in TFC

membranes. The coatings by both modification procedures (three layered polyamide
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coating and silicone coating on polyamide) generated a water-leak-proof coating. Three

layered coating appears to provide better heat transfer performance.

Figure 6.1 Variation of overall heat transfer coefficient of Module 1 with linear velocity
of hot brine (4% NaCl) flowing on the tube side at an inlet temperature of 90°C (shell
side: D.I. water, inlet temperature 20°C, linear flow rate 3600 cm/min).

Figure 6.2 Variation of overall heat transfer coefficient of Module 2 with linear velocity
of D.I water flowing on the tube side at an inlet temperature of 16°C (shell side: 4%NaCl,
parallel flow, inlet temperature 93°C, linear velocity 5500 cm/min).
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Figure 6.3 Variation of overall heat transfer coefficient of Module 3 with linear velocity
of hot brine (4%NaCl) flowing on the shell side at an inlet temperature of 95°C (tube
side: tap water, inlet temperature 25°C, linear velocity 16000 cm/min).



CHAPTER 7

GENERAL CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE
STUDIES

Thin film composite membranes on porous polypropylene hollow fibers and flat films

were successfully prepared by interfacial polymerization for solvent stable ultrafiltration

and nanofiltration applications. Hydrophilization of the PP support by acetone

prewetting, followed by oxidation with chromic acid solution facilitated uniform

hydrophilization of the PP support and provided good binding between the support and

the polyamide coating. A standard procedure for coating the lumen side of the hollow

fiber membranes was developed and optimized. Pore interior and surface of PP

microfiltration membranes were successfully coated with polyamide for permanent

hydrophilization by the "modified IP" technique; the technique of PEI crosslinking was

not successful in this case. By selectively choosing the monomers for the "modified IP"

technique, lower breakthrough pressures of water and, hence, better hydrophilicity is

likely to be achieved.

Nylon hydrophilic hollow fiber membranes were coated successfully on the

lumen side by the technique of PEI-self crosslinking. As PEI concentration for the

coating was increased, the pore size of the coating was reduced and the breakthrough

pressures were increased. The reduced pore sizes provided stable aqueous-organic

interface for the solute transport in membrane solvent back extraction and overall mass

transfer coefficients were increased significantly with the coating. It was demonstrated

that membrane pores filled with the aqueous phase reduce the membrane resistance in

117



118

MSBE. Fabricated thin film composite hollow fibers provided better heat transfer

performance over solid PP hollow fibers.

The following recommendations are made for future explorations. Thin film

composite membranes on PP support can also be fabricated with a sulfonamide rather

than amide coating by the technique of IP. 91 This would improve the acid stability of the

selective layer and the fabricated membranes could tolerate a wider pH range. The

reactive monomer system of 1,3-phenylenediamine and trimesoic acid trichloride

provides high crosslinking and also produces a rough coating with a ridge-and-valley

structure, whereas, coating by the reactive monomer system of PEI-IPD provides a

smooth surface. The microporous membrane support used in the current studies for

fabrication of TFC membranes is a microfiltration membrane and has larger pores. The

ridge-and-valley structure of the coating on the support having larger pores could

withstand higher pressures rather than the smooth coating on the support having larger

pores. From this perspective, employing the reactive monomer system of 1,3-

phenylenediamine and trimesoic acid trichloride is advantageous as it provides higher

rejection of smaller solutes because of higher crosslinking and can withstand higher

pressures due to the ridge-and-valley structure of the coating. On the other hand,

roughness increases the fouling tendencies of the coating. For permanent

hydrophilization of PP microfiltration membranes, the reactive monomers can be

selectively chosen to coat the membranes with a polyamide having lower values of

contact angles with water.

The coating technique of PEI crosslinking used in this thesis can be applied to a

number of applications in the fields of bio-separations, biotechnology, ion exchange and
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gas separations. Cationic characteristics and the presence of functional amine groups in

PEI contribute to the observed behavior. Poly(ethyleneimine) is commonly used for the

immobilization of a number of enzymes. 92 It was employed as a intermediate polymer

layer by Nguyen et al. 92 on a negatively charged membrane to immobilize bio-

macromolecules such as glucose oxydase and heparin for fabrication of glucose

biosensors and hemocompatible membranes. As per mechanism, one has to modify the

support membranes with negative charge or the membranes have to be selectively chosen

for their negative charge. If self crosslinking of PEI is employed, any hydrophilic or

mildly hydrophilic membranes can be used as a support; the number of steps involved in

the membrane functionalization process will be reduced and the functionalized

membranes will be stable since PEI is crosslinked. The polymer PEI was also used as an

intermediate layer between the PVDF membrane support and the poly(ethylene glycol)

(PEG) coating by Ademovic et al.93to make PVDF support biocompatible. PEG-PEI graft

films were also studied for antifouling coatings in variety of biotechnology

applications. 93, 94 Attaching PEI on PVDF support in the above mentioned studies

involved a number of steps. The same effect could be achieved by crosslinking of PEI,

which is a simple process.

PEI has been used as a ligand for metal chelating, removal of endotoxins and ion

exchange. 95, 96 One of the barriers of using PEI for ion exchange membranes is the

fixation of PEI on the support membrane. Takata et al. 97 have studied the acid-amide

bonding for fixation of PEI on a support membrane which involved a number of steps.

Crosslinking of PEI could be an easy way to deposit PEI on the support membrane for

fabrication of cation exchange membranes. The role of the amine groups in the PEI
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molecule were also explored in the literature for CO2 separation from gas mixtures and

separation of alcohols from aqueous solutions. 98 Therefore, one could use the PEI coating

on a dense polymeric membrane for selective removal of CO 2 and as a pervaporation

membrane for separation of alcohols. For such applications, fabrication of thin film

composite membranes by interfacial polymerization employing PEI as a monomer in the

aqueous phase, coupled with the crosslinking of PEI can also be explored. For all of the

above mentioned applications, methods to achieve controlled crosslinking of PEI are

needed.



APPENDIX

DATA TABLES AND SAMPLE CALCULATIONS IN MEMBRANE SOLVENT
BACK EXTRACTION

The data tables for membrane solvent back extraction are provided first. Then, sample

calculations of individual and overall mass transfer coefficients, Reynolds numbers,

Schmidt numbers, Sherwood numbers and Graetz numbers in hydrophilic hollow fiber

membrane modules for nonreactive and reactive back extraction will be presented.

Calculations for hydrophobic hollow fiber membrane modules were carried out in a

similar fashion.

Table Al. Reactive Back Extraction of Phenol in Noncoated Hydrophilic Hollow Fiber
Membrane Module (Module E)

Sl. No. Qorg
(cm 3/s)

Corg-in
(mol/cm3)

Qaq
(cm3/s)

Caq-out-sodium phenoxide
(mol/cm3)

1 0.432 0.1*10 -30.227 3.83*10-6

2 0.332 0.1*10

-3

0.547 1.63*10

-6

3 0.217 0.1*10

-3

0.547 1.57*10-6

4 0.119 0.1*10

-3

0.547 1.51*10

-6

Table A2. Reactive Back Extraction of Phenol in 4 wt% PEI-Coated Hydrophilic Hollow
Fiber Membrane Module (Module E)

Sl. No.

Qorg(cm 3/s)
Corg-in
(mol/cm3)

Qaq
(cm3/s)

Caq-out-sodium phenoxide
(mol/cm3)

1 0.087 0.1*10

-3

0.153 7.31*10

-6

2 0.102 0.1*10

-3

0.153 7.72*10

-6

3 0.182 0.1*10

-3

0.153 8.71*10

-6

4 0.331 0.1*10

-3

0.153 9.45*10

-6

5 0.445 0.1*10

-3

0.153 1.02*10-5
6 0.509 0.1*10

-3

0.153 1.02*10-5
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Table A3. Reactive Back Extraction of Phenol in Hydrophobic Hollow Fiber Membrane
Module (Module F)

Sl. No. Qorg
(cm 3/s)

Qorg-in
(mol/cm3)

Qaq
(mol/cm3)

Qaq-out-sodium phenoxide
(mol/cm 3 )

1 0.178 0.1*10

-3

0.714 1.293*10

-5

2 0.312 0.1*10

-3

0.714 1.598*10

-5

3 0.512 0.1*10

-3

0.714 1.917* 10

-5

4 0.714 0.1*10

-3

0.714 2.093*10

-5

5 0.813 0.1*10

-3

0.714 2.146*10

-5

Table A4. Nonreactive Back Extraction of Acetic Acid in Noncoated Hydrophilic
Hollow Fiber Membrane Module (Module E)

Sl. No.

Qorg
(cm 3/s)

Qorg-in
(mol/cm3)

Qaq
(mol/cm3)

Qaq-out-sodium phenoxide
(mol/cm 3 )

1 0.280 5.241*10

-4

0.86 2.298* 10

-6

2 0.373 5.241*10

-4

0.86 2.351*10

-6

3 0.454 5.241*10

-4

0.86 2.298* 10

-6

4 0.510 5.241*10

-4

0.86 2.298* 10

-6
Table A5. Nonreactive Back Extraction of Acetic Acid in 4 wt% PEI-Coated
Hydrophilic Hollow Fiber Membrane Module (Module E)

Sl. No.

Qorg
(cm 3/s)

Qorg-in
(mol/cm3)

Qaq
(mol/cm3)

Qaq-out-sodium phenoxide
(mol/cm 3 )

1 0.34 5.24*10

-4

0.86 1.38*10-4

2 0.57 5.24*10

-4

0.86 1.38*10-4

3 0.72 5.24*10

-4

0.86 1.44*10-4

4 0.94 5.24*10

-4

0.86 1.41*10-4

5 1.13 5.24*10

-4

0.86 1.41*10-4
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Table A6. Nonreactive Back Extraction of Acetic Acid in Hydrophobic Hollow Fiber
Membrane Module (Module F)

Sl. No. Qorg

(CM3/S)

Corg-in

(mol/ cm3)
Qaq

(cm3/s)
Caq-out

(mol/ cm 3)

1 0.23 5.24*10-4 0.57 1.72* 10-5

2 0.41 5.24*10-4 0.57 1.82*10-5

3 0.59 5.24*10-4 0.57 1.87*10-5

4 0.76 5.24*10-4 0.57 1.88* 10-5

5 0.76 5.24*10-4 0.62 1.82* 10 -5

6 0.76 5.24*10-4 0.78 1.55* 10 -5

7 0.76 5.24*10-4 0.85 1.60*10-5

Reactive back extraction of phenol from MIBK into aqueous caustic solution in a
hydrophilic hollow fiber membrane module coated with 4 wt% aqueous PEI
solution (Reference: First row of Table A2):

Organic phase: 
Qorg = 0.087 cm3/s
Corg-in = 0. 1 * 10-3 mol/cm3

Aqueous phase: 
Qaq = 0.153 cm3/s
Caq-in = 0 MOUCM 3

Caq-in = 0 mol/cm3

Caq-in-sodium phenoxide = 0 M01/CM 3

Caq-out-sodium phenoxide 7.31*10 -6 mol/cm3

Calculation of experimental values of overall mass transfer coefficients: 

From the material balance,



The logarithmic mean concentration difference from Equation 2.3b is obtained as

Overall mass transfer coefficient from Equation 2.3a is obtained as

Calculation of N Sh-t, NRe-t, NSc-t, and NGz-t  :
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Nonreactive back extraction of acetic acid from MIBK into water in a noncoated
hydrophilic hollow fiber membrane module (Reference: First row of Table A4):



Calculation of experimental values of overall mass transfer coefficients: 

From the material balance,

The logarithmic mean concentration difference from Equation 2.3b is obtained as
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Overall mass transfer coefficient from Equation 2.3a is obtained as

Calculation of theoretical values of individual and overall mass transfer coefficients: 

Membrane mass transfer coefficients:

Shell-side mass transfer coefficients:



Tube-side mass transfer coefficients:

The value of 0 calculated from Equation 2.12 for the this particular sample calculation is

0.101.
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Overall mass transfer coefficients:
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