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ABSTRACT

MULTI-DEGREE OF FREEDOM TELEMANIPULATION IN AN
UNSTRUCTURED ENVIRONMENT

by
Diego Ramirez

Two approaches to 6-degrees-of-freedom telemanipulation that will accommodate

different needs and skills of potential users with congenital amputation, artbrogryposis,

muscular dystrophy and cerebral palsy were developed. One method uses scalable

movements (i.e. position and orientation), and the second employs isometric forces and

torques without movement. The scalable position approach employs a 6-degress-of-

freedom electromechanical stylus whose joint orientations are used by the controlling

computer to determine the position and orientation of the robot's end effector via inverse

kinematics or by one-to-one matching of the stylus joint angles with those of the

manipulator. The isometric method uses the measured forces and torques to define

velocities in Χ-Υ-Ζ and in pitch, roll and yaw of the end effector. The latter is

accomplished using the pseudo-inverse Jacobean to define a rate resolved controller, with

a novel form of damping to minimize instabilities at singularities. Both forms of

telemanipulation have been implemented using Matlab and Simulink. A fully

interactive, stereo VRML model of a commercial robot has been developed using the

Matlab VRML Toolbox. This robot model is driven in real-time to allow evaluation of

the telemanipulation methods, and serve as an eventual user-training environment.
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CHAPTER 1

INTRODUCTION

In response to the necessities detected by the Biomedical Engineering Department at

NJIT, it joined, in conjunction with the Children's Specialized Hospital, the

Rehabilitation Engineering Research Center (RERC) on Technology for Children with

Orthopedic Disabilities in 2005, with the objective of implementing a series of projects

and developing state-of-the-art technology to allow improvements in the rehabilitation

processes and independent living of children with physical impairments.

Six projects are being implemented, three of them focused on research and the

other three in the development of existing technologies. These projects intend to fulfill

some of the necessities to improve quality of life for children with cerebral palsy,

arthrogryposis, contracture due to burns, congenital and traumatic amputations, polio and

bone diseases.

The first stage of one of the projects presented by RERC is being addressed by

this work; this project is a multi-degree control of a wheelchair-mounted manipulator that

provides the user with increased independent living in an unstructured environment. This

first stage comprises the development of new human-machine interfaces as well as a

virtual reality-based training environment. It means that, before implementing the control

mechanisms in the actual manipulator, these mechanisms will be designed and tested in a

3D virtual environment in a scaled model from the actual one. The control strategy to be

implemented takes some characteristics of the methodology known as Extended

1
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Physiological Proprioception (ΕΡΡ) 1 , which intends to give the user the sensation of

using the manipulator as an extension of the body and a replacement of the impaired

limb. Based on this concept, two types of controrers are used according to the differences

in the necessities and limitations of the users, mainly children with cerebral palsy,

arthrogryposis, muscular dystrophy and congenital amputations. These controrers are

intended to operate the manipulator by replication of the movements or forces generated

by the user and applied to them in direct correspondence with their directions and

orientations. The first one uses a 6-degree-of-freedom stylus-like scaled manipulator,

which uses joint angles as control input (i.e., scalable position approach). The second

one, also with six degrees of freedom, responds to applied torques and forces and does

not require displacement to execute the required tasks (i.e., isometric force and torque

approach).

The mathematical computation is based on the Denavit-Hartenberg (DOH) model,

which wir be explained later, and brings as outputs, the joint angles that feed the model

of the manipulator, built in Virtual Reality Modeling Language (VRML); these are the

angles that wir arow positioning the tip of the manipulator in the desired position and

orientation in space.
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1.1 Organization of this Document

The first chapter of this document introduces a brief picture of the total work and

exposes its objectives, showing the goals that are intended to be reached. Some terms

denounced wir be explained later in the next chapters.

Chapter two addresses the background required to create a reference frame for the

implementation of the work. First, the RERC creation and foundations wir be presented,

as the entity supporting the development of the whole project. Specific definitions and

technical theory, necessary for the implementation of the model, are summarized in the

second part of this chapter.

Chapter three focuses in the exposition of the control system and the different

elements to be integrated into it. Α block diagram shows schematicary what is intended

to control tbe manipulator and botb, the hardware and software, are pointed out, as wer

as their role within the whole system.

Chapter four is dedicated to the explanation of the implementation procedure and

the integration of software and hardware to comply with the specified tasks. Key parts of

the code are introduced for better understanding of the implementation.
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Chapters five and six brings the results, conclusions and futures work. The results

are presented to show how the system behaves and which limitations were detected.

Conclusions and future work are presented together to show the potentialities of the

system and its future applications.Primary Objective

The primary aim of this work is to control, in real time, a 3D model of a 6OdegreeOofO

freedom (6 dot) robotic manipulator, featuring independently position and force as

control variables. In other words, two different and independent controrers wir be used

to drive in real time a model of a robotic arm, by using either position or force applied to

the respective controrer.

Several intermediate tasks must be achieved to reach the goal of the creation of

this controred environment:

1.2 Objective

To create a virtual 3D model of a 6Odof robotic manipulator according to the

specifications of the Assertive Robotic Manipulator (ARM), designed by Exact Dynamics

from Metherlands. (http://www.exactdynamics.nl/) . (Mote: The ARM Manipulator is a

redesigned version of another manipulator, the Manus, a wheelchair-mounted seven-axis

robot designed, for people with special needs and controred in unstructured

environments. The ARM incorporates a number of improvements including a new

computer interface that arows the development of new manipulator control strategies).
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To create independent communication protocols between the proposed

controrers:

• Immersion Probe® and Personal Digitizer® by Immersion Corporation, for the

scalable position approach.

• Spaceba115000 ® by 3Dconnexion, for the isometric force approach,

the application tool for computation:

• MatalbΤΜ by Mathworks,

and the virtual reality builder tool:

• VReaΙmΤΜ Builder by Data Systems

To use the kinematics properties of robotic models to determine the angles of the

joints for the virtual model of the 6-dof robotic manipulator.

To direct the end-effector of the virtual model to reach a determined point in its

workspace by controring either the position or the force applied to determined

controrers.



CHAPTER 2

BACKGROUND

2.1 RERC

Independent living for a person requires the development of daily tasks whether they are

simple or complex. Even the simplest tasks may become extremely difficult if a subject

does not have the required skirs or specific tools that facilitate their development. This is

the case of people with special needs. In conjunction with the Children's Specialized

Hospital, the Biomedical Engineering Department at MJIT was granted with the

Rehabilitation Engineering Research Center (RERC) on Technology for Children with

Orthopedic Disabilities. This RERC assemblies a set of projects intended for fulfiring the

fields of researcb and development using stateOofOthe-art technology.

This application includes six projects, three of them focused in research and the

other tbree addressing development as wer as training projects serving the needs of

children, families, students and professionals.

The RERC was granted in 2005 and the projects involve the application of virtual

reality gaming systems in combination with robot-assisted therapy for rehabilitation

purposes.

6



2.2 Robotics Theory

2.2.1 Overview

According to Khalil and Hombre, a robot is an automatic system that can be programmed

and controred automaticary, and characterized for having several degrees of freedom or

position variables (this term wir be defined more accurately later). Hence, one can think

of a robot as a mechanical device that can be programmed and which configuration

facilitates human tasks, either by emulating human movements or developing actions that

are difficult for a person to do by himiherself.

Examples of types of robots are :

a. Manipulators: Imitating movements of human arms.

b. Walking robots: Imitating translation of humans and animals.

c. Mobile robots: used mainly for transportation of specific loads.

2.2.2 Definitions

Some definitions that characterize a mechanicary robot are required. Although

some of them are general, these definitions apply specificary to manipulators and

walking robots. Mobile robots have different configurations and specifications and they

are not part of the scope of this work:
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Link: Each one of the physical components of a manipulator, adjacent one to the

other, rigid or semi-rigid.

Joints: Connections between two adjacent links, which arow movement of one of

them, relative to the other. They can be either prismatic or resolute, depending on the

way that the links conform the joint displace one relative to the adjacent one. Resolute

joints describe angular displacements respect to the other, while prismatic joints

characterize by linear displacement along the same axis, one referenced to the otber.

Degrees of freedom: Independent displacement variables that shar be intended to

define exactly the position in space of every part of the robot/manipulator.

End-effector: Element located at the end of the chain of links, where the tool to

develop the required task shar be located (i.e., a grip, a drir, etc). The final description of

a given position for a robot is given according to the location and the reference frame of

the end-effector. This is obvious if it is understood that it is the tool what has to be

located in a defined position.

Reference Frame: Coordinate system attached to each robotic object (i.e., joints

for manipulators), which arows describing its location and orientation in space.

Workspace: In the most general terms, one can define the workspace as the

points in space reachable by the endOeffector of the robotic manipulator.

2.2.3 Spatial description of a robotic manipulator

In the developing of its regular tasks, a robot requires continuous movement in

space, which is associated with changing position and orientation of the different parts of
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the manipulator. These changes must be Tossible to be described and represented in a

conventional way, arowing for mathematical manipulation.

A frame is the entity used to describe an object in space; it has four components

or vectors grouped in two independent objects:

Position vector: Α 3x1 entity used to describe the position of an object according

to a determined reference frame or coordinate system.

Rotation matrix: Α 3x3 object that defines the orientation of a coordinate system

attached to the object described, according to the reference coordinate system.

The entity that can totary describe or map a quantity in terms of various reference

frames is cared a homogeneous transforms . It combines the position vector and the

rotation matrix to create the homogeneous coordinates in Cartesian space. The result is a

4x4 matrix containing both in a way that if

is the rotation matrix of frame j relative to frame i, the homogeneous transform would be

given by,
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where, the last row (i.e., [0 0 0 1]) has been added to cast rotation and translation into this

one single matrix, named the homogeneous transform. 1 s , iinj `a 1 represent the unit

vectors of reference frame F a along x^ , y; , z> axes respectively, according to the

reference frame F,. ' Ρ represents the coordinates of the reference frame Fa in terms of the

frame F ; .

The entity described above may be interpreted as operators that are used to

represent the displacement of any element of a robot either in position, orientation or

both.

In terms of robotic manipulators, two or more rigid-body are connected one to

the other by one-degree-of-freedom joints; these rigid body are cared links. A link,

thus, is the rigid-body that defines the relationship between two adjacent joint axes of a

manipulator. Α joint can be either resolute or prismatic and its axis is the imaginary line

about which a link rotates according to its predecessor. Figure 2.1 shows a model of

manipulator designed in a 3H Virtual Reality software application based on the

programming language VRML (Virtual Reality Modeling Language, which wir be

described later).
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Each link has associated a set of variables and parameters that describes it

according to its location in space and connection to the other links in the manipulator.

Denavit and Hartenber developed a metbod to describe mechanisms using four basic

types of quantities $ or parameters. Tbis convention, known as the D-H model, defines an

independent coordinate system or reference frame attached to each link. The parameters

used by the DOH model are:

Link length (a ;): The mutuary perpendicular line between two adjacent joint axes z ; .

Link twist (α): The angle between these two adjacent joint axes about the link length a;

already defined.

Link offset (d ;): The distance along a joint axis z ; between the end of a link length and

the beginning of the next one.

Joint angle (θ ): The angle between two link lengths about the common joint axis z,.

Figure 2.2 sbows a schematic of two links of a robot witb its different associated

parameters.
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Figure 2.2. Schematic of two attached joints in a robot.
Source http ://www.ee.υnb.ca!terνο/ee4353/dhχfοrm.htm. Oct. 2006.

When studying movement in robotics it is important to differentiate whether the

forces causing these movements are of interest or not. In such way, two different fields

arise: Kinematics which relates to movements without involving any applied force to

cause or affect it, and dynamics which is the science that takes into account ar the forces

required to generate such changes.

Reference frames can be assigned in two different ways:

1. Frame i has its origin along the axis of joint i+1. This is cared the

"Standard H-Η form".

2. Frame i has its origin along the axis of joint i. This is referred as the

"Modified D-H form".



Figure 2.3 irustrates the two types of notation defining two adjacent links.

13

Figure 2.3. Hifference form of Henavit-Hartenberg notation.
Source: Corked, Peter I. Robotics Toolbox for Matlab. Release 6.

http://www.cat.csiro.au/cmstistaffipicirobot. Australia 2001.

2.3 Kinematics

Kinematics defines the description of property of motion in time and space. For this

purpose, the position of an object, as wer as the multiple variables derived from this one

(e.g. velocity, accelerations, gradients, etc.) must be analyzed and solved for an specific

reference frame; then it has to be possible to do a mathematical representation of the
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model referred to another object's reference frame. Kinematics may be translational,

rotational or both or may apply to one or many object or rigid-body

The motion of one body Α with respect to another body B is defined as the

movement of B with respect to a common reference frame Ο minus the movement of A

with respect to Ο. If these motions are considered being vectors (i.e., with magnitude and

direction), we can derive this description from the definition of vector's addition:

To solve the final position of the link n of a manipulator (with reference frame

located in the end-effector) relative to link 0 (which is associated to the origin of the

manipulator; this origin is usuary the base of the robot and is bound to the reference

frame 0), a series of subsequent transformations must be derived and later on,

concatenated. The general form of a transformation matrix for a robotic manipulator, for

subsequent reference frames, is expressed as:
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After solving each one of these individual subproblems, the multiplication of ar

the transformations matrices wir concatenate the results to obtain the final relation

between the {n} reference frame corresponding to the n link or end-effector, and the {0}

reference frame, located on base of the manipulator and corresponding to link 0:

Hepending on the necessities and solution required for the enunciated problem,

kinematics comprises two major branches or divisions: forward and inverse kinematics.

2.3.1 Forward kinematics

Also cared direct kinematics, analyzes the problem by extracting the position and

orientation of the tool (i.e., end-effector) from the known values of the joint angles

associated to each one of the links of the manipulator. Being K the kinematics function

for a given manipulator, forward kinematics is given by,
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This equation uses K to relate the transformation matrix of a manipulator from its

end-effector to its origin (i.e., reference frame n to reference frame 0), and the set of joint

angles q that defines the positions and orientations for every link of the manipulator.

In other words, the independent variable or input is the set of joint angles, while

the dependent variable or output wir be the description of the position of the end-effector

of the manipulator. The solution is given by the definition of the components of the robot

in terms of the four parameters defined previously by the D-H model, and the

transformations carried out according to the mathematical computation and concatenation

of them. The final result is a pool of twelve equations, nine of them representing the

rotation matrix °R^ and the remaining three indicating the position vector °P . These

equations are cast in the transformation matrix °T^ , being j the reference frame of the

tool. Craig gives two complete examples for obtaining forward kinematics solutions for

industrial robots. It is to be mentioned and can be concluded that forward kinematics

solutions can be found for any manipulator in any configuration independent of the

number of joints associated to it.

2.3.1 Inverse Kinematics

A more complex problem requires finding the joint angles associated to the links

of the manipulator when a given position of the end effector is set.

q= Κ 1 ( °Τη
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In this case the independent variable or input is the transformation matrix that

gives the position and orientation of the tool while the dependent variable or output is the

set of joint angles. Analyzing this definition, it can be concluded that not every single

point selected in the space may evolve in a solution for a manipulator, since it has

obvious restrictions; moreover, some Toints may bring infinite solutions, such points are

cared singularity. Therefore, the methods to solve inverse kinematics and determine

whether a solution is possible or not, vary depending whether derivatives for positions

and orientation angles (i.e., linear and angular velocity and accelerations) are known

and considered as part of the statement of the problem.

The solution for an inverse kinematics problem is neither trivial nor linear and it

can be solved either analyticary (also cared closed-form solutions) or numericary.

According to Craig "ar systems with resolute and prismatic joints having a total of six

degrees of freedom in a single series chain is solvable1 1 . If a solution can be computed

for robotic manipulators for ar its joints, the manipulator is said to be solvable 1 .

Currently, manipulators are design in such way that analytical solution can be reached;

these are preferred to numerical solutions since the later require more time to compute

and find a converging solution, in such way, analytical solution save calculation time.

This work focuses in a 6-dof manipulator. In such way, and unless a generalization is

established, calculation wir be based on this assumption.

Models involving differentials of location (i.e., position and orientation) or, in

other words linear and angular velocity, and differentials of joint angles and, how they
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relate to each other beyond static Tositioning, whether it is thrum forward or inverse

computations, require further analysis, every time that the elements of the manipulator

are changing their position in time. To find a possible solution a whole computational

theory has been developed based on another mathematical entity that must be studied

deeply: the Jacobian matrix or Jacobian of the manipulator.

"The Jacobian matrix is the matrix of ar first-order partial derivatives of a vector-valued

function. Its importance ly in the fact that it represents the best linear approximation to a

differentiable function near a given point. In this sense, the Jacobian is akin to a

derivative of a multivariate function." 12

The matrix that represents the Jacobean is defined as

The solutions although applicable for manipulators with a simple design, stir

present some mathematical difficulty that remain unsolved 13

Hepending on the type of displacement of a link relative to its adjacent, whether

the joint conformed by the union of them is resolute or prismatic; the parameter used as

variable of the joint is either θ ; or d ; respectively. Thus, a general definition for a joint

angle in a manipulator is given by14:

q = σ^θ^ + σ ι d ι
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In the robotics theory, the Jacobean is the mxn entity that relates the velocity of the

end-effector to the joint velocity according to the equation:

for i=1,...m and j=1,...n, and J1 is the (i,j) element of the Jacobean matrix [J].

The velocity of the joint k, defined by 4'k produces the velocity of the end effector

which is a combination of the linear velocity v k,n and angular velocity L k ,, where n

represents the reference frame at the tip of the tool. The general form for both velocity

of the joint k and the reference frame n, is given by the equations



,were Bak is me unn vector along Lk axis an L k ,n is me vector that connects το games

(i.e., joints).

Two different cases must be considered according to the configuration of the

manipulator:

k is a prismatic joint. In such case, σ = 1

k is a resolute joint. Thus, σ = Ο

Mathematical computations  takes to the expression of the kith column of the

Jacobean matrix as



CHAPTER 3

ELEMENTS OF THE CONTROL SYSTEM

3.1 Model Schematics

A series of successise steps summariLes the implementation of the model of manipulator;

this is the control block diagram:

Figure 3.1. Conceptual Sketch of a robot manipulator control system. Source: Makamura,
Y., Hanafusa, Y. Inserse kinematics solutions with singularity robustness for robot
manipulator control. Trans. of ACME, J. of Dynamic Systems, Measurements, and

Control. Vol. 108. 1986, pp: 163-171.

The input is a position and orientation in space of the endOeffector; the inserse

kinematics block adjusts the angles from the presious block to the reference frame of the

manipulator. The output of the manipulator is a set of angles tbat wir be the input for the

forward kinematics block, which wir be delisered the actual position and orientation in

space; this salue returns to the input as negatise feedback.

21
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Being this a general sketch of a control system for any type of manipulator, some

differences might be found with the control system being implemented in this work; first,

it does not require a numerical determination of the position and orientation of the Bend-

effecter; therefore, the Forward Kinematics block is not required. Instead, the feedback is

sisual and delisered by the user, who is the one that determines if the final position

corresponds to the one determined by the operation of the controrers.

3.2 Controllers

3.2.1 Immersion Probe and Personal Digitizer

The Immersion Probe or Stylus Unit is a six-degree-of-freedom stylus-like tool

with six revolute joints and three of them located in its end-effector; this is the desice

used to control the manipulator using position and orientation of the tip as input

sariables. This tool has one optical encoder located in each one of its joints; the

information captured by the encoders is used as the input for the Personal Digitizer s

The Personal Digitizer or Electronics Module has built-in software with a set of

configuration commands that arow the programmer to set and/or get information from

the probe such as the length of the links and the response to external stimuli.
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Figure 3.2. Immersion Probe ΤΜ . Deseloped by Immersion Corporation

A MC68HC 11 processor with an 8-bit data bus commands the electronic module.

The module uses built-in permanent and solatile memories to execute the code tbat

contains the configuration commands. An internal A/C conserter modifies analog signals

to obtain the digital streams that are the final output of the module. Response to motion

stimuli is obtain using the built-in real-time interrupt circuit. An internal clock

synchronizes ar the operations witb a frequency of 1.8 MHL.

Tbe encoders hase different resolutions depending on the joint. The first two

encoders (i.e., joints 0 and 1) hase a resolution of 2048 pulses per resolution (APR). The

rest of the encoders hase a resolution of 1024 APR.



3.2.2 Spaceball® 5000

24

Figure 3.3. Spacebar 5000. Developed by 3D Connexion.

The Spacebar® 5000 is recognized as a 6Odof motion controrer that receives

forces and torques as inputs (i.e., pressure applied directly to de device in six different

directions) from optical sensors, to be interpreted either as positions or velocities,

depending on the configuration. Tbe sensitivity of tbe device can be adjusted, wbich is

translated in the accuracy and speed of the movements of the model to be controred, in

this case, the manipulator.

3.3 Software Applications

3.3.1 Virtual Reality Viewer

A virtual reality viewer is a tool that arows the construction and visualization of

3D animated spaces. This tool requires a programming language, the Virtual Reality

Modeling Language or VRML. More than a language
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"VRML is simply a 3D interchange format. It defines most of the commonly used

semantics found in today's 3D applications such as hierarchical transformations, light

sources, siewpoints, geometry, animation, fog, material property, and texture

mapping „ 16
PP g

VRML uses hierarchical scene graphs to construct its sirtual worlds containing

entity cared nodes. Modes define the physical structure and location of objects, always

related to other objects in the hierarchical organization (i.e., parents / children structure, a

node can't contain itself). The information that characterizes each node is stored in fields;

each node contains its particular fields of information. Modes and fields that define

objects in a scene are organized in files, which VRML code structure, containing

functional parts, arows the definition of indisidual entity; these functional parts are: the

header, the scene graph, the prototypes, and esent routing s '

V-Realm Builder is the graphic application used to build the 3D sirtual model of

the ARM Manipulator. It takes the hierarchical philosophy of VRML and brings a

graphic-oriented ensironment to facilitate the design of 3D models.

3D models are built within a sirtual world defined by geometric structures with

different characteristics represented by its nodes. A virtual model is built and oriented in

VRML using a Cartesian, right-handed, three-dimensional coordinate system, as seen in

Figure 3.4.
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Figure 3.4. Cartesian, right-handed, three-dimensional coordinate system.

Each new element added to the virtual model is an actual node cared a transform;

this node groups its children, defines their coordinated system and contains a set of

generic nodes that specify the parameters that characterizes new transform (i.e., each new

transform added as a children of a precedent one wir hase a coordinated system in space

relatise to its parent).
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Figure 3.5. Typical screen of Realm Builders, the VRML editor used to make
the model of the manipulator

In figure 3.5, cylinder A and cylinder B have coordinated frames rotated π/2

radians (90 degrees) one to the other. In the same way, cylinder A and cylinder B have

coordinate frames rotated π radians one to the other.

3.3.2 Robotics Toolbox — Matlab

The robotics toolbox for Matlab is a development of Peter Corked who is the

research director of the Autonomous Systems laboratory within the CAIRO PICT Centre in

Australia. This toolbox is available to be downloaded from the World Wide Web for free
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with access to the source code written in Matlab 18 . It provides ar the implementations for

the developments of robotics-oriented calculations such as kinematics and dynamics for

serial link manipulators.

Figure 3.6. Schematic model of a robotic manipulator built in Matlab18 Robotics
Toolbox

The toolbox is based in the definition of a robot object that contains a series of

links sequentiary located. Links are defined according to DH model and depending on

the requirements of the design, it can be implemented using either standard or modified

model configuration. From the DH model, four basic parameters define a joint-link pair:

link twist (α), link length (1), link offset (d), joint angle (8).
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3.3.3 Virtual Reality Toolbox — Matlab

The computation toolbox (i.e Robotics Toolbox) and the sirtual reality siewer

need an interface to be able to communicate. This is the Virtual Reality Toolbox

contained in Matlab. This is the platform for the 3D scenes and the Simulink and Matlab

animations. The toolbox gets the data from the input devices (i.e., the two controrers

implemented in the system) and interprets the final result to deliser it to the output (i.e.,

the model of the ARM Manipulator).

3.3.4 Simulink

Simulink arows real-time simulations and, according to embedded mathematical

manipulations deseloped in Matlab, Simulirik interacts with both V-Realm Builder and

with the Virtual Reality Toolbox and creates the platform for the execution of Matlab

code. Functional blocks design arows modular configuration and the interaction with the

Virtual Reality Toolbox makes the system fast enough to permit a real-time process.

Simulink is used as a control tool only for the Spacebars, since the existent driser in the

Virtual Reality Toolbox for the desice was made in this platform.



CHAPTER 4

IMPLEMENTATION

4.1 Communication Protocol

4.1.1 Immersion Probe and Personal Digitizer

There are two steps in the communication process. The first one is from the controrer to

the electronic module of the controrer (i.e., Personal DigitiLer) and the second one from

the electronic module to the CPU. The data acquisition port that communicates the probe

unit with the electronic module uses a DB-37 connector to get the six two-word sets of

signals from the six encoders of the stylus unit. 19 The number of pulses of encoder is

translated into a binary number proportionary corresponding to the number of

resolutions of each joint. The number of pulses per revolution sary depending on the

joint of the controrer.

The communication between the electronic module and the CPU is made sia

serial Tort, RS-232 protocol; there is bidirectional data transmission sia a standard serial

communications cable with DB connector

The communication with the host computer starts with an initialization sequence

that starts when the electronic module is turned on; the stylus is assumed to be in its

initial position (i.e., the stylus resting serticary on the base), in this position the angle

registers are reloaded with default salues for this position.

30
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The second step is the identification of the host computer's baud rate; the PC

sends the string "IMMC" (this can be done either by the ASCII characters or its

numerical representation), and the module wir try to receive and echo the string using

different baud rates, where echoing the string means successful communication. After

this, the communication has established and the Personal DigitiLer is ready to receive

instructions. This process is accomplished in Matlab using the algorithm below. The code

instructs the CPU to carry out as many communication attempts as required until the

controrer echoes a string of characters. If the string is not the one required a warning

requesting rebooting the controrer is displayed.

The first instruction to be sent is to signify the start of normal operation. The host

sends the string "BEGIM", which wir be echoed by the module with "PROBE", a nur-

terminated string, this is cared the identifier string. Commands can be sent to the

Personal Digitizer according to the instructions code and data corected from it. Attention

must be paid to the format of the information receised from the module; the length of the

data packets saries depending on the instruction gisen. The implementation code is

shown below.
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Each command is sent from the host in a single-byte format, where each bit

represents a field that may or may not be activated, depending on its value.

When the session is to be finished, the "EMD" command (or the string "E") must

be sent to stop communication and put the module in and baud rate identification state

phase again. The angles must be initialiLed to their "home" or resting position.

This is the basic communication routine and operation process of the system.

4.1.2 Spaceba115000

Universal Serial Bus US communicates the spacebars with the host computer. The

driser for the desice is already instared in the Virtual Reality Toolbox and is the one in

charge of processing the data obtained from the optical sensors of the desice. The

communication with the PC is established in Simulink and defined as part of the block

parameters. The only parameter required for communications with Simulink is the port;

data is always delisered in a unidirectional serial transmission protocol, there is no

initialization protocol.
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Figure 4.1. Control block of the Spacebars in the Virtual Reality Toolbox.

4.2 Design of the Virtual Model

V-Realm Builder is the editing tool used on the Matlab platform to create the model of

the manipulator. The application is based on VRML node configuration and arows a

graphical representation of its hierarchical distribution.

The manipulator18 model starts from its base and keeps adding geometrical shapes

to the structure in a parents / children relationsbip; these geometrical structures give
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shape and movement to the model according to the number of links and offsets and the

rotation requirements for each joint.

Figure 4.2. Example of rotation for a geometric shape in Realm Builder.

A geometrical shape does not arow successise rotations or displacements; it

means that if an object requires two rotations (e.g. one for location in space, the other for

joint rotation), an additional geometric figure to perform the physical rotation in space

must be added as child of the first object and parent of the second one.
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The model was designed forowing the specifications of the actual manipulator

ARM (Assertive Robot Manipulator), developed by Exact Dynamics from Netherlands. 21

The ARM is a 6 doff manipulator instared in wheelchairs, designed with the purpose of

emulating human arm movements, to give more independence to people with conditions

that have affected their upper limbs, such as muscular dystrophy, or brain stroke.

The dimensions and rotation of the links and joints remain, to create a model with

the same characteristics as the actual manipulator.



Tbe model bas 6 degrees of freedom and one button is active in eacb controrer to

control the grip.
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Figure 4.5. Model of the ARM Manipulator built in Realm Builder, the VRML editor
used for this work.

The design of the model required a hierarchical structure conformed by:

6 geometric shapes, one for each link (cylinders)

2 geometric shapes for the offsets (cylinders)

3 geometric shapes to change the orientation of the links (twists, spheres)

2 geometric shapes for the grip (cylinders)

1 geometric shape for the base (cube)
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4.3 Control Models

4.3.1 Immersion Probe — Position control

The control system for the stylus or Immersion Probe is based on the interpretation of the

encoders' data and its consersion in actual joint angles.

This is the simplest case; the optic encoders sense the position of each one of the

joints and send this data to the electronic module, which conserts the analog data in

binary information subsequently transmitted to the host computer. In here the binary

information is conserted to angles and delisered to the model, which interprets the angles

in its own coordinate system to represent the mosements of the joints.

4.3.2 Spacebar — Force Control

The Spacebar takes the forces and torques applied to it and conserts them into

speed; the final result is a sector with linear and angular selocity. This 6xl sector is

later associated to the end-effector, thus the selocity obtained are the selocity of the

end-effector in the direction and/or orientation specified by the applied force/torque. The



39

selocity from the tip of the manipulator are the input to the block of mathematical

computation, which brings, as a final result, a sector containing the selocity of the

joints of the manipulator (i.e., the rate of change in the joint angles). The integral of these

velocity in time wir result in a sector containing the joint angles in that particular

moment that wir feed the model of the manipulator.

This control system was deseloped in Simulink; it brought the adsantage that a

driver for the Spacebars already exists in the Virtual Reality Toolbox to be used with

Simulink. Since the computation of the joint angles must be done using Matlab

Robotics Toolbox, Simulink had to car the functions at some point. To make this

possible in real-time, the required Matlab functions are cared from an embedded Matlab

Function block; this block guarantees that the computation of the angles wir be run

alongside with each cycle of the simulation.
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4.4 Computational Application

4.4.1 Immersion Probe —Scalable Control of Position

Seseral steps were considered when designing the application for the control of

position at a scalable lesel. Once asynchronous communication is established with the

serial port, the information from the encoders is read and transformed into correspondent

joint angles, they are delisered to the model of the ARM Manipulator thrum the Virtual

Reality Toolbox. The control for the grip is also implemented forowing the same

structure and forms part of the algorithm.

4.4.1.1 Computation of the angles from the stylus

A command that continuously monitors ar the time-dependent sariables is sent to

the personal digitizer; when a changed beyond a defined threshold is detected in any one

of these variables, a set of packets is sent to update this information.

The command is a 2-byte word; byte 1 is reserved for the instruction to be

executed; bytes 2 and 3 are a byte word designed as the time delay between packets in

ms; byte 4 is the command to be executed when the threshold is surpassed; the last 12
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bytes correspond to the indisidual thresholds assigned to each one of the encoders. By

design, the number of pulses per resolution saries depending on the encoder,

consequently, the number of radians per pulse.

echo=fread(C,2);

To empty the buffer, the echoed instructions are read; then, the stylus is ready to

send information according to the parameters already set. To read the binary set and

consert it into angles a switch command is used, which takes the information from the

buffer in the port and assigns the salues of each angle to a Tosition in a sector.

ι ιιυ
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When the port is actise and ready to read data, there is a timeout period after

which a warning is generated in Matlab and the program keeps running. This behasior

makes the program to break its continuity and esentuary, it is aborted. To asoid this, the

cycle of reading the data from the port was conditioned to the parameter bytesavailable.

This is a property of the port and indicates the number of bytes currently available to be

read from the input buffer. Its salue is continuously updated as the input buffer is fired.

Another property, this one bound to the sariable containing the final joint angles is used

to execute an action when the port times out. Numel (vary) returns the number of elements

in the sariable var. In this case, when nume1=0, the cycle of creating the angles sector is

broken and the execution returns to the presious step of reading the port. A warning

announcing the timeout period expiration is displayed but the program continues running

cyclicary.

4.4.1.2 Implementation of grip activation

A digital input of the electronic module is used to implement the actisation of the

grip. A pedal, which is supplied with the Personal Digitizer package, is the control that

delisers the signal to open and close the grip. The algorithm forms part of the angles

computation code by taking information from the same command. Once activation is

detected, a function is cared that updates the sirtual model. The grip is conformed by two

independent structures each one hasing a rotation assigned, opposite one to the other (i.e.,

they mose between +/- pi/4 (open) and 0 (close) radians).
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end

4.4.1.3 Car the VR model from Matlab

The model of the ARM manipulator is cared using instructions from the Virtual

Reality Toolbox. The open and view commands bring to model to execution. Then, the

function Ayr stylus associates the angles calculated from the stylus to the ARM.

The instruction that maps the angles requires specifying the direction of rotation,

as wer as adjusting the angles from the reference frame of the stylus to the reference

frame of the Realm Builder.



4.4.2 Spacebars - Control of Isometric Force

44

Figure 3.8. Schematic control system for the Spacebars controrer, made in Simulink.

4.4.2.1 Inputs

The input is corected from the Spacebars in the form of linear and angular velocities.

Spacebar Depending on the necessities, Spacebars can isolate its types of outputs (i.e.,

inputs for the control system); dominant mode, disable of position movement or disable
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of rotation mosement are parametric options that can be selected. An additional input

taken from the buttons is used to control the grip of the manipulator.

4.4.2.2 Matlab embedded function

The driser for the spacebars was deseloped originary for Simulink. Thus, the

control system was done in this application; since the robotics toolbox is deseloped in

Matlab, an integration of both applications was necessary. Caring Simulink from Matlab

would result in no-real time data acquisition; therefore, an embedded Matlab block was

used in the Simulink control block. In this way the computation functions in Matlab are

cared every cycle of the simulation and the data are asailable on real time. This

embedded Matlab function contains ar the inverse kinematics necessary to gise joint-

angle selocities as an output.

Matlab Robotics Toolbox contains predefined functions that calculate the

mathematical operations required to obtain the required joint-angle selocity. To make

the computations a model of the manipulator must be deseloped using the tools of the

toolbox.

4.4.2.3 Design of the ARM-like manipulator in Robotics toolbox

The model of the ARM manipulator is based on the modified DH configuration .

It is scaled to match the dimensions of the ARM model built in Realm Builder.



The variable L defines the object that contains the six links of the manipulator.

The values in the vector correspond to twist angle, link length, joint angle and offset,

respectively.

Figure 3.9. Model of the ARM Manipulator built in the Matlab18 Robotics Toolbox.

This is the schematic representation of the manipulator. The object Link

associated to the robot created arows the computation of the inverse kinematics.
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4.4.2.4 Jacobean for robotics toolbox model

Inverse kinematics uses both the linear and angular selocity of the end-effector

to calculate the joint angles. A mathematical entity, the Jacobean (see Chapter 2, numeral

2.3.2), is used for this purpose according to the equation

and from here,

This equation can only be computed when J(q) is know to be square and non-

singular; otherwise there is no solution for this equation because the inverse of the

Jacobean does not exist mathematically23. Therefore, this computation is deseloped using,

instead of the regular inverse, a different type of matrix cared pseudoinverse (also,

Moore - Penrose pseudoinverse or generaliLed pseudoinverse), which is a generaliLation

of inverse matrices 24 . The pseudoinverse matrix A + is the unique matrixwhich satisfies

the forowing criteria:

This pseudoinverse is applied to the Jacobean matrix, which guarantees a solution for the

equation. However, this solution might not be the desired solution for the system, as it

wir be explained later on. The Robotics Toolbox has a built-in jacobian calculation

function based on the formula explained before,
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From here, the j jacobian 3J6, gises the information necessary to obtain the angles

of the joints for the wrist of the manipulator; hence, the first step to calculate the Jacobean

is to obtain the transformation matrices to complete the data for each column.

For example °T 1 for the frame 1 related to frame 0 is,

Since the calculations of transformation matrices require matrices multiplications,

the terms become extremely long and complex. For example, the first row of 1 Τ6 is (ice.,

1Τ6(1,1:4)),
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The Robotics Toolbox takes the values of the initial transformation matrix and

calculates the Jacobean by recursively concatenating the values of each term obtained 25 .

4.4.2.5 Singularities

The inverse of the Jacobean presents innumerable problems when approaching

singularity. According to Chang and Khatib, a singular configuration is a configuration

at which the end-effector mobility, defined as the rank of the Jacobean matrix, locally

decreases27 . At a singular configuration, the end-effector locally loses the ability to move

along or rotate about some direction in the Cartesian space. In this case the inverse of the

jacobian does not exist and, therefore, there is no solution for the joint velocity. The

singularity of a square jacobian matrix are defined as the zeros of the determinant of the

Jacobean, det(J)=0 or, in case of a redundant robot, the zeros of det(J*J T).

The generalized inverse or pseudoinverse is a matrix that can bring a solution for

ή . The solution for the pseudoinverse provides a minimum norm sοlutiοn 28 . In the same

way, energy consumption can be related to the norm of joint velocity, therefore,

solutions for the pseudoinverse are related to minimum instantaneous power

consumption; in this sense an since getting near to a singularity means an increase in

velocity, therefore, the pseudoinverse solutions, by providing minimum norm solutions,
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avoid these singularity29 Pseudoinverse, nevertheless, not always comes up with the

desired results for the joint velocity due to stability problems. When in a singularity, the

Jacobean is no full row rank anymore (i.e., a direction of movement of the end-effector is

not achievable). Curiously, when the manipulator is in an exact singularity, it will not try

to move in an impossible direction and it will be "well-behaved". On the other side, if

near to a singularity, smar movements will bring large and unpredictable changes in joint

angles. This phenomenon will signify uncontrolled and accelerated movements (e.g.,

tremors and `jerk' movements), compromising the safety of the user.

For manipulators with a configuration as the ARM manipulator, called non-

redundant manipulator (i.e., the number of degrees of freedom correspond to the number

of joints), mobility and singularities are determined by the determinant of the Jacobean

matrix.

4.4.2.6 Damping.

The problem of the type of discontinuity of the pseudoinverse solution at a

singular configuration was approached using the damped least-squares method. m this

case, instead of finding the minimum vector ΔΑ to solve the system (i.e., minimum norm

solution), this method finds a ΔΑthat minimiLes the expression

where α is a constant and is called tbe damping factor or scale factor.
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The normal (i.e., least-squares solution) equivalent is represented by the system 3o

The damping factor α limits the norm of the solution. The objective of this

damping factor, which is obtaining a feasible solution in the vicinity of singular points,

is contrary to the requirement of reducing the error of inverse kinematics. A trade-off

between an exact and a feasible solution must be found. An automatic adjustment of the

damping factor try to deal with both requisites and not to substantially affect the

behavior of the manipulator.

Yoshikawa defined manipulability in a robot as its capacity to generate velocity

and it is expressed in terms of the determinant of the j jacobia n34'35 :

Manipulability can be interpreted as distance from singular points. To find

singularity the determinants of both the j jacobian and its transpose are tested in real-time

using a function created in the robotics toolbox of Matlab and modified in-house.
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To adjust the damping factor, Yoshikawa proposes to adjust it as a function of

manipulability as follows

This function was used in the implementation of the inverse kinematics and the

values were determined by trial an error using visual feedback:
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4.4.2.7 Joint angles from joint velocities

The output value from the previous block is an angle velocity vector, according to

the equation for the inverse kinematics solution. An integrator block outputs the joint

angles, ar the time that

Since an initial value is required, this is taken as a 0 value vector (i.e., no change

in position). The result of the integration is used as feedback for the computation block;

this is the initial angle for every calculation of the velocity vector for the new iteration

4.4.2.8 Adjust of the angles

The angles obtained correspond to the computation in the Robotics toolbox,

which has a different coordinate system than the Virtual Reality toolbox (i.e., although

they both obey to the right-hand rule, the coordinate systems are rotated one with respect

to the other). To compensate, two blocks were added, which make the angles from both

toolboxes equivalent.

4.4.2.9 Outputs

Finally, the angles vector must be parameterized according to the VR Builder

variables configuration. Angle rotations require four fields: the first three defined the axis

of the rotation, the last one, the value of the rotation. Expander blocks create four-term

vectors for each one of the positions of the angle vector and put this value in the last
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position of them. Each vector is assigned to the rotation transform corresponding to every

joint in the manipulator model.



CHAPTER 5

RESULTS

5.1 Scalable Position — Immersion Probe

The control system was implemented in the Meuromuscular Engineering Laboratory of

the Biomedical Department at MJIT.

The first observation to be made, when running the system, is that to establish a

successful serial communication between the controller and the computer, the buffer of

the port of the electronic module must be empty, otherwise, it will not echo the string that

confirms the establishment of communication. The communication routine developed

provides a security by the implementation of a conditional routine that requests the

rebooting of the electronic module when a wrong echo is received. In the same order of

ideas, another routine was implemented to guarantee that there is a port available and

Matlab has priority to use it. These initialization routines avoid generation of errors and

abortions of the program once it is run.

The serial port generates and interruption if data is not received within a pre-

established period of time. This data is basically angles read from the electronic module

of the controller. In other words, if the stylus does not execute a movement before the

timeout period, an error is generated and the program aborts. To avoid this error and the

abortion of the program, the timeout interruption is redirected to the beginning of the

55
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reading cycle. A warning is generated noticing the user that there is no movement

detected but the program keeps running continuously.

The model precisely replicates the movements of the stylus controller. This

required the necessary adjustments since each one of the modules (i.e., the controller and

the modeling software) has its own coordinate system.

Although the configurations are slightly different, the visual feedback obtained

from the model in the monitor of the computer, and the fact that the joints distribution is

equivalent for both, the controller and the model, give the sensation of being moving

directly the model in the screen and diminishes these differences.

The grip activation was implemented as part of the routine to read the angles. The

command used in the Personal Digitizer allows detection of activation of analog inputs.

This input is read from the buffer and lets it empty for more data to come allowing,

therefore, the action of the grip and the movement of the manipulator simultaneously.

5.2 Isometric Forces — Spaceball 5000

The driver for the Spacebars 5000 was developed in Simulirik, and a driver for

Matlab will not be available until the second semester of 2007. The computation toolbox

for robotics implementations is entirely developed in Matlab. Therefore, the control

system requires implementation using both applications running together.. Thus, two

different approaches were studied:
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1. Use Matlab as platform and from there call Simuliiik to carry out the interface

with the model. When this option was examined, it was unlikely that Simulink

could obtain data from the Spacebars controller and delivered in real-time to

Matlab. The way that Simulink runs its simulations and interacts with Matlab

only allows for data to be delivered as a variable to the workspace in Matlab

after the simulation has been stopped. This option was not considered since

did not comply with the real-time requirements of the project.

2. The second option available was using Simulirik as a platform and calling the

computation Matlab routines from there. To avoid the same situation of no

real-time data, exposed before, it was required to "insert" Matlab in Simulink

using and Embedded Matlab Function Block, allowing Matlab to run as a part

of Simulink. This block has operational limitations restricted to some Matlab

functions. For this reason, the block was used to get the data from the

Spacebars controller and call the computation routines in Matlab, then

delivering its output to the next block of the simulation. The simulation runs

uninterruptedly and uses both applications successfully.

The communication of the Spaceball controller is made via the US port,

which features facilitates the communication and does not have the restrictions

due to timing out presented in the serial connection for the Personal Digitizer

controller.
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Unlike the previous control approaching, this controller does not use

displacements as inputs. The operation, thus, at first sight must seem slightly

more complex (i.e., there is not one-to-one match between the model and the

controller) and might require some training for the user to be able to use it

comfortably. The most important feature to be considered is that the user must

understand that, by moving the controller in any of its three directions or three

rotations, what the user is commanding is the end-effector or the grip of the

manipulator; the links and joints will accommodate to take the tip to the desired

position.

Rotation and translation are possible to be isolated one from the other as

control features, as is the sensitivity of the controller. These are recommendable

characteristics to be used when training the user to use the system. Same comment

applies for a specific feature that isolates the dominant direction of movement

from the others; this option makes the movements softer and smoother.

One particular case was noticed and is an interesting case point for future

works: When the manipulator reaches its maximum extension and the user

maintains a steady force applied to the controller, the model does not stop but

continues with a rotation of the base joint sweeping the workspace, with the other

links fully extended. This might be due to fact that the inverse kinematics

functions keep finding minimum solutions for the system.



59

As mentioned before, a trade-off between an exact and a feasible solution

must be found. Mear a singularity the system reduces its speed perceptibly due to

the damping effects; otherwise no solution would be possible and the system

would be totally unstable. Despite the fact that the damping factor was

implemented by trial and error the reduction of the speed does not compromise

the total operation of the system and is likely that the user might be easily got

used to these changes.



CHAPTER 6

CONCLUSIONS AND FUTURE WORK

Stylus (scalable position) and Spaceball (isometric method) were successfully adapted to

be used as controllers for a 6-dof-manipulator model. Their outputs were used as an

accuracy input for the control systems implemented.

The same configuration of manipulators with different workspace can be matched

in a one-to-one match development. Since visual feedback is delivered by the

manipulator18 model, a learning process makes no necessary to reach a precise point in

the control space to be modeled in tbe virtual world. Inverse kinematics eventually would

allow the goal of reaching the same point in both workspaces (i.e., the control and the

manipulator); it can be applied by defining the restrictions in the task space (i.e., the

Toints in space defined by the control to be reached by the model in its own workspace).

In this moment, with the available tools, this process is too costly in time and accuracy; a

function to calculate inverse kinematics using the Robotics Toolbox was developed, but

upon implementation, it was observed the for most of the points reached by the

Immersion Probe and replicated to the ARM model, the solution did not converge and the

resulting movements were never accurate neither reliable.

Maciejewski and Κlein36 use a property of pseudoinverse and least square

methods, which projects the resultant matrix into the workspace of the Jacobean, what

they called the null workspace. This nulispace method can be used as a tool to avoid
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obstacles. Mevertheless, the workspace has to be defined and the singularity identified;

Botturi et a137 developed a method to determine geometrically the workspace of a

manipulator

Kinematics theory was applied to the selected configurations and real-time control

was achieved with the expected results.

Future evaluation of controllers and training for Totential users to determine their

reliability is a necessary step prior to the implementation in the actual manipulator

(ARM).

This implementation opens the Tossibility of using the designed model as an

interactive tool, which could be used in learning and rehabilitation processes for kinds we

disabilities.

The experience in the implementation brought knowledge and tools necessary to

avoid possible errors in the implementation of the controllers in the ARM manipulator.

Before implementing, the obstacle avoidance technique must be clearly defined.

Security must be provided before putting the ARM into movement.

The definition of the workspace and the determination of the singularity for this

configuration may lead to an improvement in the manipulator18 behavior, by selecting

more appropriate damping factors. Right now this was determined by trial and error.
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